# **JUNE 2019**

# **On-Post Quarterly Groundwater Monitoring Report**



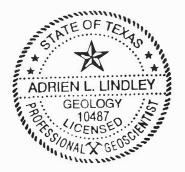
# **Prepared For**

Department of the Army Camp Stanley Storage Activity Boerne, Texas

August 2019

# **EXECUTIVE SUMMARY**

- Groundwater samples were collected from 4 on-post drinking water wells scheduled for sampling at Camp Stanley Storage Activity (CSSA) in June 2019.
- CSSA experienced above average rainfall during the second quarter of 2019 and the aquifer experienced a slight increase from March to June 2019. The CSSA weather stations (WS) recorded 16.05 inches of rainfall from April to June. The average rainfall for the Boerne area from April to June is 11.09 inches.
- At CSSA, the Middle Trinity aquifers' average groundwater elevation in June 2019 increased 15.36 feet from the elevations measured in March 2019. The average depth to water in the wells was 127.32 feet below top of casing (BTOC) or 1115.35 feet above mean sea level (MSL). As such, the Trinity-Glen Rose Groundwater Conservation District (TGRGCD) remained in 'year-round' conservation measures. For the adjacent Edwards aquifer, the San Antonio Water System (SAWS) has also remained in 'year-round' water restrictions implemented October 2, 2018.
- The maximum contaminant level (MCL) for VOCs was not exceeded in any wells sampled in June 2019.
- No wells sampled had metal detections above their corresponding MCL, action level (AL), or secondary standard (SS) in June 2019.
- No Westbay Well zones were scheduled for sampling in June 2019. However, these wells were profiled to capture water level data for the area.
- All samples collected in June 2019 were in accordance with the 2015 long term monitoring optimization (LTMO) report that has been approved by the TCEQ and USEPA.


# **GEOSCIENTIST CERTIFICATION**

## JUNE 2019 ON-POST QUARTERLY GROUNDWATER MONITORING REPORT

#### FOR

# DEPARTMENT OF THE ARMY CAMP STANLEY STORAGE ACTIVITY BOERNE, TEXAS

I, Adrien Lindley, Professional Geologist (P.G.), hereby certify that the June 2019 On-Post Quarterly Groundwater Monitoring Report for the Camp Stanley Storage Activity installation in Boerne, Texas accurately represents the site conditions of the subject area. This certification is limited only to geoscientific products contained in the subject report and is made on the basis of written and oral information provided by the CSSA Environmental Office, laboratory data provided by APPL Laboratories, and field data obtained during groundwater monitoring conducted at the site in June 2019 and is true and accurate to the best of my knowledge and belief.



Adrien Lindley, P.G.

State of Texas Geology License No. 10487

5/19

Date

# **TABLE OF CONTENTS**

| EXEC   | UTIVE         | SUMMARY                            | ii  |
|--------|---------------|------------------------------------|-----|
| GEOS   | CIENT         | IST CERTIFICATION                  | iii |
| APPE   | NDICE         | S                                  | iv  |
| LIST ( | OF TA         | BLES                               | v   |
| LIST ( | <b>OF FIG</b> | URES                               | v   |
| ACRO   | NYMS          | AND ABBREVIATIONS                  | vi  |
| 1.0    | INTRO         | DDUCTION1                          | ·1  |
| 2.0    | POST          | WIDE FLOW DIRECTION AND GRADIENT2- | ·1  |
| 3.0    | JUNE          | ANALYTICAL RESULTS                 | ·1  |
|        |               | Monitoring Wells                   |     |
|        | 3.2           | Westbay-equipped Wells             | -7  |
| 4.0    | JUNE          | 2019 SUMMARY                       | ·1  |

# APPENDICES

| Appendix A | Evaluation of Data Quality Objectives Attainment                       |
|------------|------------------------------------------------------------------------|
| Appendix B | Quarterly On-Post Groundwater Monitoring Analytical Results, June 2019 |
| Appendix C | Data Validation Report                                                 |

# LIST OF TABLES

| Table 2.1 | Measured Groundwater Elevations – June 2019                        | 2-2 |
|-----------|--------------------------------------------------------------------|-----|
| Table 2.2 | Changes in Groundwater Elevation from Previous Quarter – June 2019 | 2-3 |
| Table 3.1 | Overview of the On-Post Monitoring Program                         | 3-2 |
| Table 3.2 | Overview of the On-Post Monitoring Program (Westbay)               | 3-3 |
| Table 3.3 | June 2019 On-Post Quarterly Groundwater Results, Detected Analytes | 3-5 |

# **LIST OF FIGURES**

| Figure 2.1 | June 2019 Potentiometric Surface Map, LGR Wells Only           |     |
|------------|----------------------------------------------------------------|-----|
| Figure 2.2 | June 2019 Potentiometric Surface Map, BS Wells Only            |     |
| Figure 2.3 | June 2019 Potentiometric Surface Map, CC Wells Only            |     |
| Figure 2.4 | Average LGR Groundwater Elevations and Quarterly Precipitation | 2-7 |
| Figure 3.1 | On-Post & Off-Post Well Sampling Locations for June 2019       |     |
| Figure 3.2 | Cumulative VOC Concentrations vs. Groundwater Elevation        |     |

# ACRONYMS AND ABBREVIATIONS

| μg/L                                  | microgram per liter                                    |
|---------------------------------------|--------------------------------------------------------|
| §3008(h) Order                        |                                                        |
| AL                                    | Action Level                                           |
| AOC                                   | Area of Concern                                        |
| APPL                                  | Agriculture and Priority Pollutants Laboratories, Inc. |
| BS                                    | Bexar Shale                                            |
| BTOC                                  | below top of casing                                    |
| CC                                    | Cow Creek                                              |
| cis-1,2-DCE                           | cis-1,2-Dichloroethene                                 |
| COC                                   | constituents of concern                                |
| CSSA                                  | Camp Stanley Storage Activity                          |
| DQO                                   | Data Quality Objectives                                |
| HSP                                   | Health and Safety Plan                                 |
| ISCO                                  | In-Situ Chemical Oxidation                             |
| LGR                                   | Lower Glen Rose                                        |
| LTMO                                  | Long-Term Monitoring Optimization                      |
| MCL                                   | Maximum Contaminant Level                              |
| MDL                                   | Method Detection Limit                                 |
| MSL                                   | mean sea level                                         |
| NA                                    | Not Available                                          |
| PCE                                   | Tetrachloroethene                                      |
| P.G.                                  | Professional Geologist                                 |
| Parsons                               | Parsons Government Services, Inc.                      |
| QAPP                                  | Quality Assurance Project Plan                         |
| RCRA                                  | Resource Conservation and Recovery Act                 |
| RL                                    | Reporting Limit                                        |
| SAP                                   | Sampling and Analysis Plan                             |
| SAWS                                  | San Antonio Water System                               |
| SS                                    | Secondary Standard                                     |
| SWMU                                  | Solid Waste Management Units                           |
| TCE                                   | Trichloroethene                                        |
| TCEQ                                  | Texas Commission on Environmental Quality              |
| TGRGCD                                | Trinity-Glen Rose Groundwater Conservation District    |
| UGR                                   | Upper Glen Rose                                        |
| USEPA                                 | United States Environmental Protection Agency          |
| VOC                                   | Volatile Organic Compound                              |
| WS                                    | Weather Station                                        |
| · · · · · · · · · · · · · · · · · · · |                                                        |

# JUNE 2019 GROUNDWATER MONITORING REPORT CAMP STANLEY STORAGE ACTIVITY, TEXAS

# **1.0 INTRODUCTION**

This report presents results from the on-post quarterly sampling performed at Camp Stanley Storage Activity (CSSA) in June 2019. Laboratory analytical results are presented along with potentiometric contour maps. Results from all four 2019 quarterly monitoring events (March, June, September, and December) will be described in detail in the 2019 Annual Report. The Annual Report will also provide an interpretation of all analytical results and an evaluation of any temporal or spatial trends observed in the groundwater contaminant plume during investigations. For this specific quarter, groundwater monitoring was performed June 3 through 14, 2019 by Parsons Government Services, Inc. (Parsons).

Current objectives of the groundwater monitoring program are to determine groundwater flow direction and elevations, determine groundwater contaminant concentrations for characterization purposes, and identify meteorological and seasonal variations in physical and chemical properties. **Appendix A** identifies the data quality objectives (DQOs) for CSSA's groundwater monitoring program, along with an evaluation of whether each DQO was attained. The objectives listed in **Appendix A** also reference appropriate sections of the Resource Conservation and Recovery Act (RCRA) **§3008(h)** Administrative Order on Consent [§3008(h) Order].

The CSSA groundwater monitoring program follows the provisions of the groundwater monitoring program DQOs as well as the recommendations of the **Three-Tiered Long Term Monitoring Network Optimization (LTMO) Evaluation (Parsons, 2015)** which provided recommendations for sampling based on an LTMO study performed for the CSSA groundwater monitoring program. The LTMO evaluation was updated in 2015 using groundwater data from monitoring conducted between 2010 and 2015. The proposed LTMO changes/updates were approved by the TCEQ and USEPA April 22 and May 5, 2016, respectively. These changes were briefed to the public in the 2016 Annual Fact Sheet. The updated LTMO study sampling frequencies were implemented in December 2016.

# 2.0 POST-WIDE FLOW DIRECTION AND GRADIENT

The aquifer levels at the end of 2018 remained elevated after an above average rainfall year which left the Middle Trinity aquifer with a net gain of 165.09 feet in average elevation. In the first quarter of 2019 the rainfall tapered off allowing the aquifer to drop 31.29 feet. The second quarter of 2019 reported above average rainfall each month, the aquifer responded with an increase of 15.36 inches. As a result of the abundant 2018 rains and subsequent aquifer recovery, the San Antonio Water System (SAWS) restrictions remain in 'year-round watering' since October 2, 2018. The Trinity-Glen Rose Groundwater Conservation District (TGRGCD) also remained in 'year-round' watering restrictions.

The 30-year precipitation normal for the San Antonio area for the three-month period of April through June is 9.9 inches of rainfall. Over the 3-month period of record, the weather station (WS) at CSSA, recorded 16.05 inches of rainfall (4.09 inches in April, 5.25 inches in May, and 6.71 inches in June). Of the 32 rain events during this timeframe 7 events had a daily rainfall total in excess of 1 inch. Neither weather station (B-3 WS nor AOC-65 WS) recorded a complete set of data during the quarter due to battery and equipment failure, therefore a composite record of rainfall data from both weather stations was generated. The composite data set includes "primary" data from the AOC-65 WS and "secondary" data from the B-3 WS to fill in the data gaps, thus resulting in a complete precipitation record for the quarter.

Fifty-six water level measurements were recorded on June 14, 2019 from on- and off-post monitoring wells completed in the Lower Glen Rose (LGR), Bexar Shale (BS), and Cow Creek (CC) formational members of the Middle Trinity Aquifer (**Tables 2.1 and 2.2**). The groundwater potentiometric surface maps illustrating groundwater elevations from the LGR, BS, and CC zones in June 2019 are shown in **Figures 2.1, 2.2, and 2.3**, respectively.

The June 2019 potentiometric surface map for LGR-screened wells (**Figure 2.1**) exhibits a wide range of groundwater elevations, from a minimum of 1018.83 feet above mean sea level (MSL) at B3-EXW01 to a maximum of 1,156.96 feet above MSL at CS-MW4-LGR. Groundwater elevations are generally higher in the northern and central portions of CSSA and decrease to the southeast. As measured in all non-pumping wells, the average groundwater elevation measured in June 2019 was 1115.35 feet above MSL. This is 81.49 feet above the 16.5-year average groundwater elevation for the area (1033.86 feet) (**Figure 2.4**). Also shown in that figure is the 3-month precipitation total (12.28 inches) recorded at the San Antonio International Airport weather station (KSAT) and the resultant aquifer response. In June, an average increase in LGR groundwater elevation of 16.53 feet was observed within CSSA LGR monitoring wells from the previous quarter.

Well CS-MW4-LGR, located in the central portion of CSSA, typically has one of the highest groundwater elevations of LGR-screened wells. During average and above-average aquifer elevations, the groundwater level is 20 to 30 feet higher than the nearest comparable wells (CS-MW2-LGR and CS-MW5-LGR), creating a pronounced groundwater mound in the central portion of the facility. Long-term monitoring has ascertained that when groundwater near CS-MW4-LGR rises above about 970 feet MSL, the mounding effect is evident. In June 2019, mounding was observed as the groundwater elevation at CS-MW4-LGR was higher than at CS-MW2-LGR (1,156.96 and 1,119.35 feet MSL, respectively), and 38 feet higher than CS-MW5-LGR (1,118.59 feet MSL).

#### Table 2.1 **Measured Groundwater Elevation** June 2019

|                                |                             |                                   |                                   | Formations Screened |         |              |           |
|--------------------------------|-----------------------------|-----------------------------------|-----------------------------------|---------------------|---------|--------------|-----------|
| Well ID:                       | TOC elevation<br>(ft MSL)   | Depth to Groundwater<br>(ft BTOC) | Groundwater Elevation<br>(ft MSL) | LGR                 | BS      | СС           | Date      |
| CS-1                           | 1169.27                     | 108.37                            | 1060.90                           |                     | ALL     |              | 6/14/2019 |
| CS-2                           | 1237.59                     | 126.33                            | 1111.26                           | X                   | ?       |              | 6/14/2019 |
| CS-3                           | 1240.17                     | 125.62                            | 1114.55                           | Х                   |         |              | 6/14/2019 |
| CS-4                           | 1229.28                     | 115.52                            | 1113.76                           | Х                   |         |              | 6/14/2019 |
| CS-10                          | 1331.51                     | 211.78                            | 1119.73                           |                     | ALL     |              | 6/14/2019 |
| CS-12                          | 1274.09                     | 155.94                            | 1118.15                           |                     | ALL     |              | 6/14/2019 |
| CS-13                          | 1193.26                     | 115.41                            | 1077.85                           |                     | ALL     |              | 6/14/2019 |
| CS-D                           | 1236.03                     | 126.78                            | 1109.25                           | X                   |         |              | 6/14/2019 |
| CS-MWG-LGR                     | 1328.14                     | 199.88                            | 1128.26                           | X                   |         |              | 6/14/2019 |
| CS-MWH-LGR                     | 1319.19                     | 185.82                            | 1133.37                           | X                   |         |              | 6/14/2019 |
| CS-I                           | 1315.20                     | 195.38                            | 1119.82                           | X                   |         |              | 6/14/2019 |
| CS-MW1-LGR                     | 1220.73                     | 104.42                            | 1116.31                           | X                   |         |              | 6/14/2019 |
| CS-MW1-EGK                     | 1221.09                     | 119.88                            | 1101.21                           | 28                  | х       |              | 6/14/2019 |
| CS-MW1-DS<br>CS-MW1-CC         | 1221.39                     | 117.43                            | 1103.96                           |                     | 28      | х            | 6/14/2019 |
| CS-MW2-LGR                     | 1237.08                     | 117.43                            | 1119.35                           | X                   |         | л            | 6/14/2019 |
| CS-MW2-CC                      | 1240.11                     | 147.47                            | 1092.64                           | Α                   |         | X            | 6/14/2019 |
| CS-MW3-LGR                     | 1334.14                     | 220.09                            | 1114.05                           | X                   |         | л            | 6/14/2019 |
| CS-MW4-LGR                     | 1209.71                     | 52.75                             | 1114.05                           | X                   |         |              | 6/14/2019 |
| CS-MW5-LGR                     | 1340.24                     | 221.65                            | 1130.90                           | X                   |         |              | 6/14/2019 |
| CS-MW5-LGR                     | 1232.25                     | 112.84                            | 1118.39                           | X                   |         |              | 6/14/2019 |
|                                |                             | 112.84                            |                                   | Λ                   | х       |              |           |
| CS-MW6-BS                      | 1232.67                     |                                   | 1114.15                           |                     | А       | v            | 6/14/2019 |
| CS-MW6-CC                      | 1233.21                     | 119.01                            | 1114.20                           | N7                  |         | X            | 6/14/2019 |
| CS-MW7-LGR                     | 1202.27                     | 89.32                             | 1112.95                           | Х                   |         | N/           | 6/14/2019 |
| CS-MW7-CC                      | 1201.84                     | 89.37                             | 1112.47                           | N7                  |         | X            | 6/14/2019 |
| CS-MW8-LGR                     | 1208.35                     | 90.91                             | 1117.44                           | Х                   |         |              | 6/14/2019 |
| CS-MW8-CC                      | 1206.13                     | 93.08                             | 1113.05                           | **                  |         | X            | 6/14/2019 |
| CS-MW9-LGR                     | 1257.27                     | 141.98                            | 1115.29                           | Х                   |         |              | 6/14/2019 |
| CS-MW9-BS                      | 1256.73                     | 134.97                            | 1121.76                           |                     | X       |              | 6/14/2019 |
| CS-MW9-CC                      | 1255.95                     | 142.84                            | 1113.11                           |                     |         | X            | 6/14/2019 |
| CS-MW10-LGR                    | 1189.53                     | 79.99                             | 1109.54                           | Х                   |         |              | 6/14/2019 |
| CS-MW10-CC                     | 1190.04                     | 83.20                             | 1106.84                           |                     |         | X            | 6/14/2019 |
| CS-MW11A-LGR                   | 1204.03                     | 106.42                            | 1097.61                           | X                   |         |              | 6/14/2019 |
| CS-MW11B-LGR                   | 1203.52                     | 114.54                            | 1088.98                           | X                   |         |              | 6/14/2019 |
| CS-MW12-LGR                    | 1259.07                     | 139.98                            | 1119.09                           | Х                   |         |              | 6/14/2019 |
| CS-MW12-BS                     | 1258.37                     | 134.20                            | 1124.17                           |                     | Х       |              | 6/14/2019 |
| CS-MW12-CC                     | 1257.31                     | 144.50                            | 1112.81                           |                     |         | X            | 6/14/2019 |
| CS-MW16-LGR*                   | 1244.60                     | 150.16                            | 1094.44                           | Х                   |         |              | 6/14/2019 |
| CS-MW16-CC                     | 1244.51                     | 143.00                            | 1101.51                           |                     |         | Х            | 6/14/2019 |
| B3-EXW01*                      | 1245.26                     | 226.43                            | 1018.83                           | Х                   |         |              | 6/14/2019 |
| B3-EXW02                       | 1249.66                     | 135.96                            | 1113.70                           | Х                   |         |              | 6/14/2019 |
| B3-EXW03                       | 1235.11                     | 121.24                            | 1113.87                           | Х                   |         |              | 6/14/2019 |
| B3-EXW04                       | 1228.46                     | 115.40                            | 1113.06                           | Х                   |         |              | 6/14/2019 |
| B3-EXW05*                      | 1279.46                     | 228.75                            | 1050.71                           | Х                   |         |              | 6/14/2019 |
| CS-MW17-LGR                    | 1257.01                     | 144.27                            | 1112.74                           | Х                   |         |              | 6/14/2019 |
| CS-MW18-LGR                    | 1283.61                     | 165.42                            | 1118.19                           | Х                   |         |              | 6/14/2019 |
| CS-MW19-LGR                    | 1255.53                     | 127.96                            | 1127.57                           | Х                   |         |              | 6/14/2019 |
| CS-MW20-LGR                    | 1209.42                     | 78.21                             | 1131.21                           | Х                   |         |              | 6/14/2019 |
| CS-MW21-LGR                    | 1184.53                     | 69.10                             | 1115.43                           | Х                   |         |              | 6/14/2019 |
| CS-MW22-LGR                    | 1280.49                     | 167.03                            | 1113.46                           | Х                   |         |              | 6/14/2019 |
| CS-MW23-LGR                    | 1258.20                     | 149.58                            | 1108.62                           | Х                   |         |              | 6/14/2019 |
| CS-MW24-LGR                    | 1253.90                     | 141.39                            | 1112.51                           | X                   |         |              | 6/14/2019 |
| CS-MW25-LGR                    | 1293.01                     | 179.91                            | 1113.10                           | X                   |         |              | 6/14/2019 |
| CS-MW35-LGR                    | 1186.97                     | 80.03                             | 1106.94                           | X                   |         |              | 6/14/2019 |
| CS-MW36-LGR                    | 1218.74                     | 100.06                            | 1118.68                           | X                   |         |              | 6/14/2019 |
| CS-MW37-LGR                    | 1205.83                     | 92.29                             | 1113.54                           | X                   |         |              | 6/14/2019 |
| FO-20                          | 1203.83                     | 189.86                            | 1137.14                           | Λ                   | ALL     | 1            | 6/14/2019 |
| Number of wells screened in ea |                             | 107.00                            | 115/.14                           | 38                  | 4       | 9            | 0/17/2017 |
| Average groundwater elevation  |                             | feet (non numning wells)          |                                   | 1116.56             | 1115.32 | 9<br>1108.64 |           |
| average groundwater elevation  | i in each iormation given i | ricer (non pumping wells).        |                                   | 1110.30             | 1113.34 | 1100.04      |           |

Notes:

Bold wells: CS-2, CS-10, CS-12, CS-13, and FO-20 are open boreholes across more than one formational unit.

? = Exact screening information unknown for this well.

Shaded wells are routinely pumped for either domestic, livestock, or environmental remediation purposes, and therefore are not used in calculating statistics.

CS-1, CS-10, CS-12, and CS-13 are current active drinking water wells. CS-MW16-LGR, CS-MW16-CC, B3-EXW01 through B3-EXW05 pumps are cycling continuously to feed the B-3 Bioreactor.

\* = submersible pump running at time of water level measurement.

Formational average groundwater elevation is calculated from non-pumping wells screened in only one formation.

All measurements given in feet.

NA = Data not available

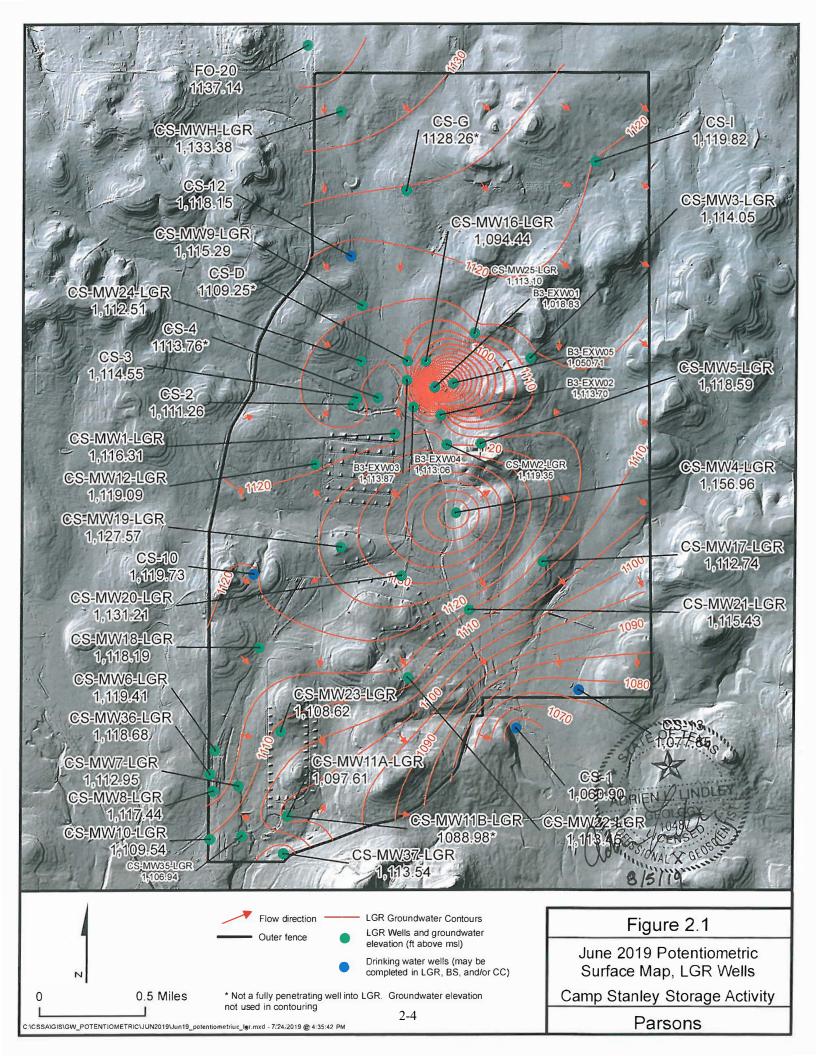
| Table 2.2                                                    |
|--------------------------------------------------------------|
| <b>Change in Groundwater Elevation from Previous Quarter</b> |
| June 2019                                                    |

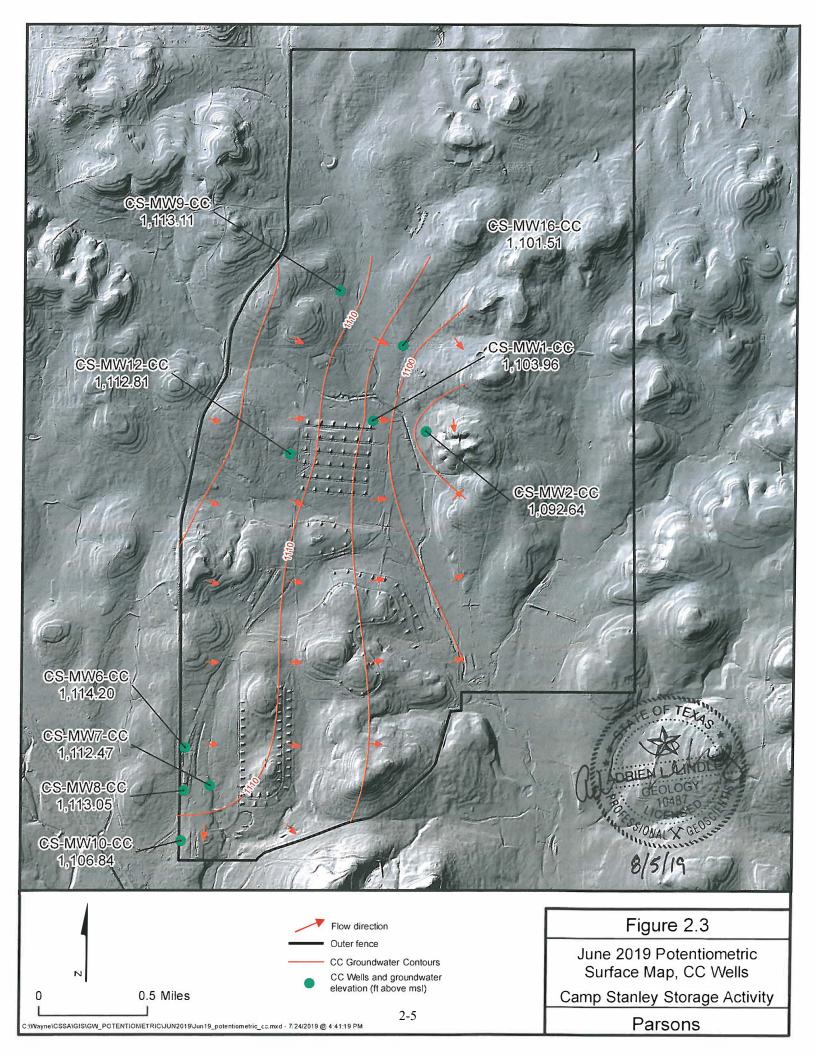
|                              |                            |                      | GW elevation change |        | Formations Screene | d     |
|------------------------------|----------------------------|----------------------|---------------------|--------|--------------------|-------|
| Well ID                      | Mar. 2019 Elevations       | June 2019 Elevations | (Mar. minus June)   | LGR    | BS                 | CC    |
| CS-1                         | 1061.39                    | 1060.90              | -0.49               |        | ALL                |       |
| CS-2                         | 1090.54                    | 1111.26              | 20.72               | X      | ?                  |       |
| CS-3                         | 1093.49                    | 1114.55              | 21.06               | x      |                    |       |
| CS-4                         | 1092.68                    | 1113.76              | 21.08               | X      |                    |       |
| CS-10                        | 1098.20                    | 1119.73              | 21.53               |        | ALL                |       |
| CS-12                        | 1112.77                    | 1118.15              | 5.38                |        | ALL                |       |
| CS-13                        | 1077.82                    | 1077.85              | 0.03                |        | ALL                |       |
| CS-D                         | 1089.51                    | 1109.25              | 19.74               | X      |                    |       |
| CS-MWG-LGR                   | 1123.55                    | 1128.26              | 4.71                | X      |                    |       |
| CS-MWH-LGR                   | 1119.44                    | 1133.37              | 13.93               | X      |                    |       |
| CS-I                         | 1111.12                    | 1119.82              | 8.70                | X      |                    |       |
| CS-MW1-LGR                   | 1097.58                    | 1110.31              | 18.73               | X      |                    |       |
| CS-MW1-BS                    | 1112.16                    | 1101.21              | -10.95              | А      | Х                  |       |
| CS-MW1-DS<br>CS-MW1-CC       | 1085.51                    | 1103.96              | 18.45               |        | <b>A</b>           | X     |
| CS-MW2-LGR                   | 1104.39                    | 1119.35              | 14.96               | X      |                    | А     |
| CS-MW2-CC                    | 104.39                     | 1092.64              | 6.49                | Λ      |                    | X     |
|                              |                            |                      |                     | X      |                    | А     |
| CS-MW3-LGR                   | 1100.78                    | 1114.05              | 13.27               |        |                    |       |
| CS-MW4-LGR                   | 1152.29                    | 1156.96              | 4.67                | X      |                    |       |
| CS-MW5-LGR                   | 1106.01                    | 1118.59              | 12.58               | X      |                    |       |
| CS-MW6-LGR                   | 1102.15                    | 1119.41              | 17.26               | X      |                    |       |
| CS-MW6-BS                    | 1103.22                    | 1114.15              | 10.93               |        | Х                  |       |
| CS-MW6-CC                    | 1102.42                    | 1114.20              | 11.78               |        |                    | Х     |
| CS-MW7-LGR                   | 1094.06                    | 1112.95              | 18.89               | Х      |                    |       |
| CS-MW7-CC                    | 1097.94                    | 1112.47              | 14.53               |        |                    | Х     |
| CS-MW8-LGR                   | 1098.74                    | 1117.44              | 18.70               | Х      |                    |       |
| CS-MW8-CC                    | 1098.93                    | 1113.05              | 14.12               |        |                    | Х     |
| CS-MW9-LGR                   | 1097.02                    | 1115.29              | 18.27               | Х      |                    |       |
| CS-MW9-BS                    | 1108.75                    | 1121.76              | 13.01               |        | X                  |       |
| CS-MW9-CC                    | 1100.40                    | 1113.11              | 12.71               |        |                    | Х     |
| CS-MW10-LGR                  | 1089.48                    | 1109.54              | 20.06               | Х      |                    |       |
| CS-MW10-CC                   | 1086.70                    | 1106.84              | 20.14               |        |                    | Х     |
| CS-MW11A-LGR                 | 1078.83                    | 1097.61              | 18.78               | Х      |                    |       |
| CS-MW11B-LGR                 | 1073.27                    | 1088.98              | 15.71               | Х      |                    |       |
| CS-MW12-LGR                  | 1098.12                    | 1119.09              | 20.97               | X      |                    |       |
| CS-MW12-BS                   | 1118.76                    | 1124.17              | 5.41                |        | Х                  |       |
| CS-MW12-CC                   | 1097.32                    | 1112.81              | 15.49               |        |                    | Х     |
| CS-MW16-LGR*                 | 1093.62                    | 1094.44              | 0.82                | Х      |                    |       |
| CS-MW16-CC*                  | 969.94                     | 1101.51              | 131.57              |        |                    | Х     |
| B3-EXW01*                    | 1014.74                    | 1018.83              | 4.09                | Х      |                    |       |
| B3-EXW02                     | 1095.79                    | 1113.70              | 17.91               | X      |                    |       |
| B3-EXW02<br>B3-EXW03*        | 1060.68                    | 1113.87              | 53.19               | X      |                    |       |
| B3-EXW03<br>B3-EXW04         | 1092.62                    | 1113.06              | 20.44               | X      |                    |       |
| B3-EXW05*                    | 1039.09                    | 1050.71              | 11.62               | X      |                    |       |
| CS-MW17-LGR                  | 1095.86                    | 1112.74              | 16.88               | X      |                    |       |
| CS-MW17-LGR<br>CS-MW18-LGR   | 1095.86                    | 1112.74              | 18.43               | X<br>X |                    |       |
|                              |                            |                      |                     |        |                    |       |
| CS-MW19-LGR                  | 1110.76                    | 1127.57              | 16.81               | X      |                    |       |
| CS-MW20-LGR                  | 1115.87                    | 1131.21              | 15.34               | X      |                    |       |
| CS-MW21-LGR                  | 1097.69                    | 1115.43              | 17.74               | X      |                    |       |
| CS-MW22-LGR                  | 1093.48                    | 1113.46              | 19.98               | X      |                    |       |
| CS-MW23-LGR                  | 1089.44                    | 1108.62              | 19.18               | X      |                    |       |
| CS-MW24-LGR                  | 1091.52                    | 1112.51              | 20.99               | X      |                    |       |
| CS-MW25-LGR                  | 1098.27                    | 1113.10              | 14.83               | X      |                    |       |
| CS-MW35-LGR                  | 1087.67                    | 1106.94              | 19.27               | X      |                    |       |
| CS-MW36-LGR                  | 1099.91                    | 1118.68              | 18.77               | X      |                    |       |
| CS-MW37-LGR                  | 1093.81                    | 1113.54              | 19.73               | Х      |                    |       |
| FO-20                        | 1125.51                    | 1137.14              | 11.63               |        | ALL                |       |
| verage groundwater elevation | change (all wells minus pu | mping wells)         | 15.36               |        |                    |       |
|                              |                            | non pumping wells)   |                     | 17.21  | 4.60               | 14.21 |

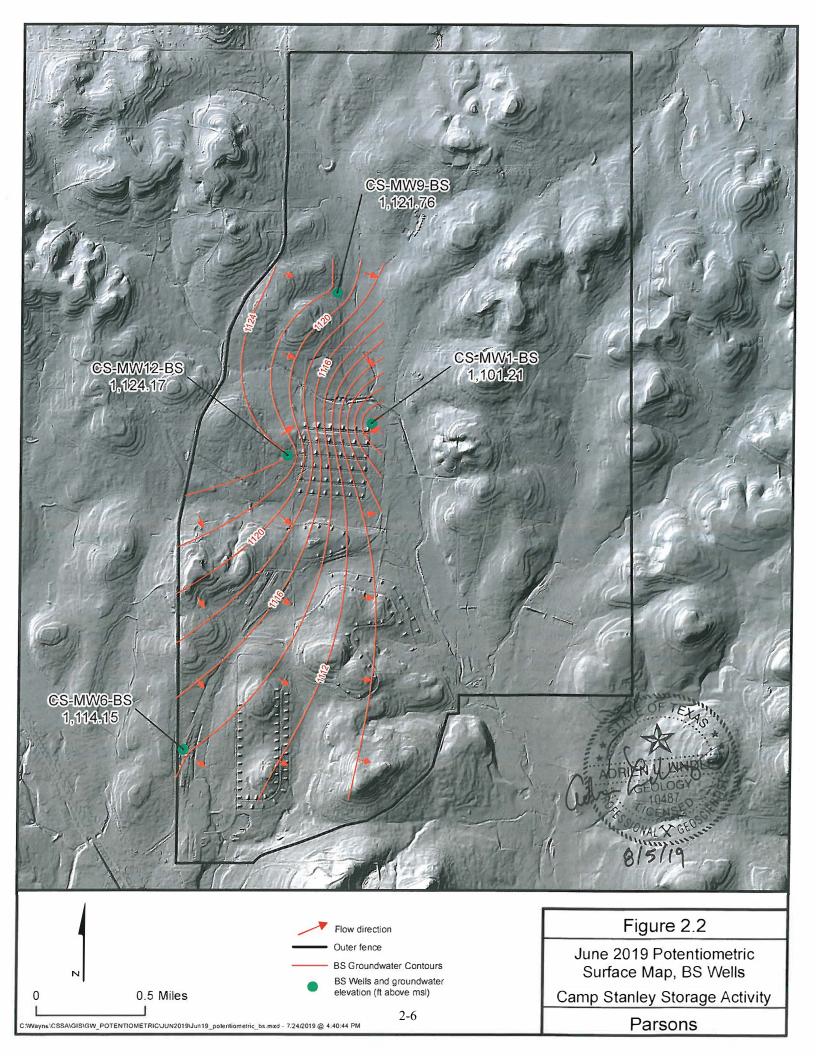
Bold wells: CS-2, CS-10, CS-12, CS-13, and FO-20 are open boreholes across more than one formational unit.

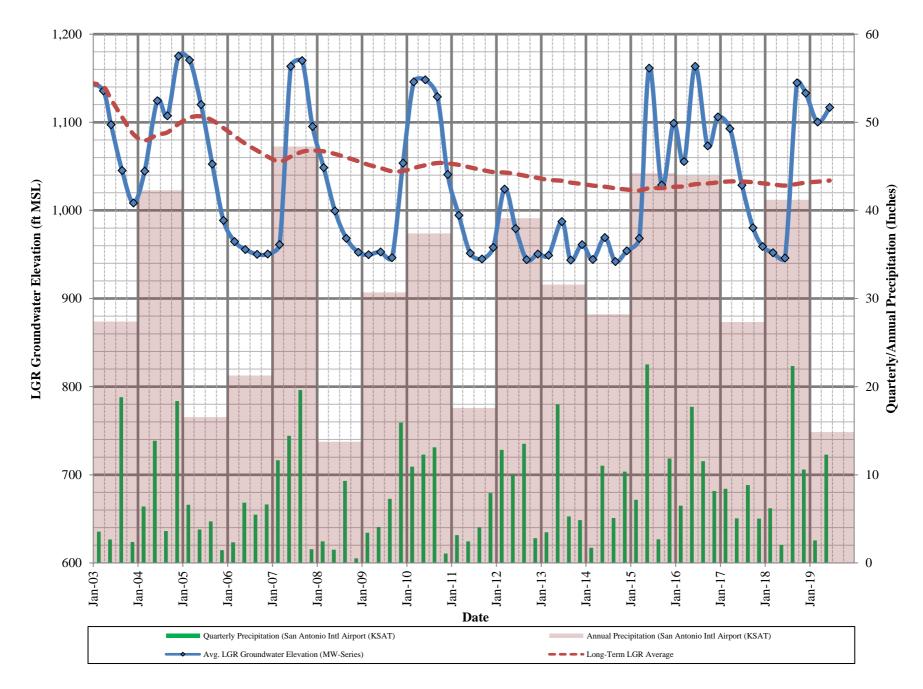
? = Exact screening information unknown for this well.

Shaded wells are routinely pumped for either domestic, livestock, or environmental remediation purposes, and therefore are not used in calculating statistics. CS-1, CS-10, CS-12, and CS-13 are current active drinking water wells. CS-MW16-LGR, CS-MW16-CC, B3-EXW01 through B3-EXW05 pumps are cycling continuously to feed the B-3 Bioreactor.


\* = submersible pump running at time of water level measurement.


Formational average groundwater elevation change is calculated from non-pumping wells screened in only one formation.


All measurements given in feet.


NA = Data not available

Notes:









# Figure 2.4 - Average LGR Groundwater Elevations and Quarterly/Annual Precipitation

It should be noted that well pumping on and around CSSA affects the potentiometric surface. On-post wells CS-MW16-LGR, CS-MW16-CC, B3-EXW01, B3-EXW02, B3-EXW03, B3-EXW04, and B3-EXW05 are cyclically pumped as part of the Bioreactor remediation system at Solid Waste Management Unit (SWMU) B-3. These remediation wells provide groundwater to the Bioreactor system and are automatically operated based upon water level within each well and availability within the storage tanks. Influences from the pumping of the Bioreactor wells B3-EXW01 through B3-EXW05 may be manifested as "cones of depression". The typical "cone of depression" is observed in the June 2019 LGR potentiometric surface map. The Bioreactor cone of depression is induced into the aquifer to extract contaminated water within its direct zone of influence, and otherwise retard the flow of the groundwater that cannot be directly captured by the extraction wells away from the site.

CSSA drinking water wells CS-1, CS-10, CS-12, and CS-13 are also cycled on and off to maintain the drinking water system currently in place at CSSA and, as a result, may manifest a cone of depression. Additionally, off-post water supply wells along Ralph Fair Road may also exert a subtle influence on gradients along the western and southern boundaries of the post. In June, no discernable cone of depression is observed centered on any of the drinking water wells, nor are any off-post influences on the LGR potentiometric surface observed.

Historical groundwater monitoring at CSSA has demonstrated that the aquifer gradient typically slopes in a south-southeast direction; however, variable aquifer levels and well-pumping scenarios can affect the localized and regional gradients (**Figure 2.1**). The above average precipitation recorded during the quarter have resulted in an increase in water levels from the levels recorded in March 2019. The typically south-southeasterly gradient is observed in June 2019, which is interrupted in the central portion of the post by the cone of depression at the bioreactor and groundwater mound centered on CS-MW4-LGR.

Pumping action at wells CS-1, CS-10, CS-12, CS-13, CS-MW16-LGR/CC, B3-EXW01 through B3-EXW05, CS-MWH-LGR, CS-I, and even off-post wells (Fair Oaks Ranch) can significantly alter the LGR groundwater gradient. The regional gradient calculation, an overall groundwater gradient averaged across CSSA, is measured from CS-MWH-LGR to CS-1 (0.0045297 ft/ft) indicating a southeasterly flow, however flow is interrupted by mounding in the central portion of the post. At the southern end of the post a more steeply dipping south-southeasterly gradient of 0.0172828 ft/ft is observed, as measured between CS-MW4-LGR and CS-1.

Under normal conditions, the potentiometric surface in both the BS and CC members of the aquifer generally trend in a southerly direction, similar to the LGR, but during periods of above-average water levels (as is the case in June 2019) or intense aquifer recharge, an eastward component in both the BS and CC may develop. In June 2019, the average groundwater elevation of the BS was 1,115.32 feet MSL, and groundwater flow was mainly to the east (**Figure 2.2**).

A review of historical data has shown that the CC potentiometric surface develops a predominantly easterly gradient when the average CC groundwater elevation is higher than 995 feet MSL. In June 2019, the average groundwater elevation for all CC wells was 1108.64 feet MSL, and an easterly gradient is observed (**Figure 2.3**). Below 995 feet MSL, the gradient resumes a more southerly flow direction. Influences from pumping the Bioreactor extraction well CS-MW16-CC may sometimes be observed on the potentiometric map as a cone of depression

centered at that well. The cone of depression centered on CS-MW16-CC was most recently observed in March 2019.

Groundwater elevations have been measured and recorded since 1992. Previous droughts resulted in water levels decreasing substantially in 1996, 1999, 2000, 2006, 2008, 2009, and 2011 through 2014. In 2015, approximately 44 inches of rainfall in the San Antonio area ended the drought cycle, resulting in a net gain of 145 feet in aquifer level over the course of the year. In 2017, approximately 28 inches of rainfall was recorded in the San Antonio area, about 4 inches below the 30-year annual average. In 2018, historic rainfalls in the third quarter and above-average rains in the fourth quarter contributed to an average LGR groundwater elevation of 1,133.18 feet MSL by December (101.62 feet above the 16-year long-term average). Below average rainfall in the first quarter of 2019 allowed the aquifer to decline 33.93 feet from December to March. In the second quarter of 2019, above-average rainfall totals prompted a 16.53-foot gain in aquifer water level from the March level, which is 82.92 feet above the long-term average of 1033.86 feet (now at 16.5 years).

It is worth noting that, based on more than 16.5 years of program history, the post wide LGR groundwater level has declined by 111.48 feet (see **Figure 2.4**). As can be expected with sparse data sets, the largest rate of change/decline (90 feet) came during the initial 4 years of the groundwater monitoring program. Over the past 10 years, the average decline rate has subdued, losing an additional 10.55 feet of average groundwater elevation. This 10-year period included 6 years of prolonged drought and four years of above average precipitation (2010, 2015, 2016, and 2018). The past 16.5-year history of CSSA groundwater monitoring indicates that the aquifer level is "below average" approximately 62.7 percent of the time. Over the last three years (12 monitoring events), the aquifer has been "below average" 41.6 percent of the time including the monitoring events in June, September, and December 2017, and March and June 2018. Above average groundwater elevations have been recorded only twelve times in the past 32 monitoring events (8 years). Prior to September 2018, the LGR had not been above the long-term "average" water elevation since March 2017.

# **3.0 JUNE ANALYTICAL RESULTS**

# 3.1 Monitoring Wells

Under the provisions of the groundwater monitoring DQOs and the 2015 LTMO evaluation, the schedule for sampling on-post in June 2019 included 4 wells. The 4 wells sampled included drinking water production wells: CS-1, CS-10, CS-12, and CS-13 (see **Table 3.1**). In conjunction with the off-post monitoring initiative (under a separate report) the June 2019 groundwater sampling constituted a "quarterly" event as outlined in the 2015 LTMO updated schedule, which was implemented in December 2016.

All 4 wells scheduled for monitoring in June 2019 were sampled. Additional samples were collected as part of the AOC-65 in-situ chemical oxidation (ISCO) and SWMU B-3 bioreactor Corrective Measures operations; these results will be documented in separate reports. **Tables 3.1** and **3.2** provide a sampling overview for June 2019 and the schedule under the LTMO recommendations. The wells listed in **Table 3.1** are sampled using dedicated low-flow gas-operated bladder pumps. Wells CS-1, CS-10, CS-12, and CS-13 were sampled using dedicated electric submersible pumps. **Figure 3.1** shows well sampling locations.

Wells sampled by low-flow pumps were purged until the field parameters of pH, temperature, and conductivity stabilized. The on-post monitoring wells were sampled in June 2019 for volatile organic compounds (VOCs) analytes which include *cis*-1,2-dichloroethene (*cis*-1,2-DCE), tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride. Effective in September 2016 per the recently-approved DQOs, metals are no longer obtained from on-post monitoring wells. Metals analyses will continue to be collected from active groundwater remediation sites (AOC-65 and B-3), as well as on-post drinking water wells. As such, active drinking water wells CS-1, CS-10, CS-12, and CS-13 were analyzed for the same VOC analytes and metals (arsenic, barium, chromium, copper, zinc, cadmium, mercury, and lead).

Samples were analyzed by Agriculture & Priority Pollutant Laboratories (APPL) in Clovis, California. All detected concentrations of VOCs and metals are presented in **Table 3.3**. Full analytical results are presented in **Appendix B**.

No wells sampled this quarter had VOCs detected above the PCE and/or TCE Maximum Contaminant Level (MCL) of 5 micrograms per liter ( $\mu$ g/L). A comparison of VOC concentrations versus water level for select wells is presented in **Figure 3.2**. The overall trend for CS-D, CS-MW1-LGR, CS-MW5-LGR last sampled in September 2018 was a moderate decrease in VOC concentrations with a significant increase in groundwater elevation. Wells CS-4 and CS-MW36-LGR showed increasing VOC concentrations along with the significant increase in water elevation. CS-MW5-LGR has been sampled since 2001, but it did not show concentrations of PCE and TCE above the MCL until December 2015. It has since fallen back below the MCL. This quarter the overall groundwater elevation in all wells indicates the aquifer remains elevated from the above average rainfall in 2018. Wells presented in **Figure 3.2** are sampled every 15 months according to the current LTMO, with the next scheduled event occurring in December 2019.

#### J:\CSSA Program\Restoration\Groundwater\GW Monitoring Reports\2019\On-post\June

## Table 3.1 **Overview of the On-Post Monitoring Program**

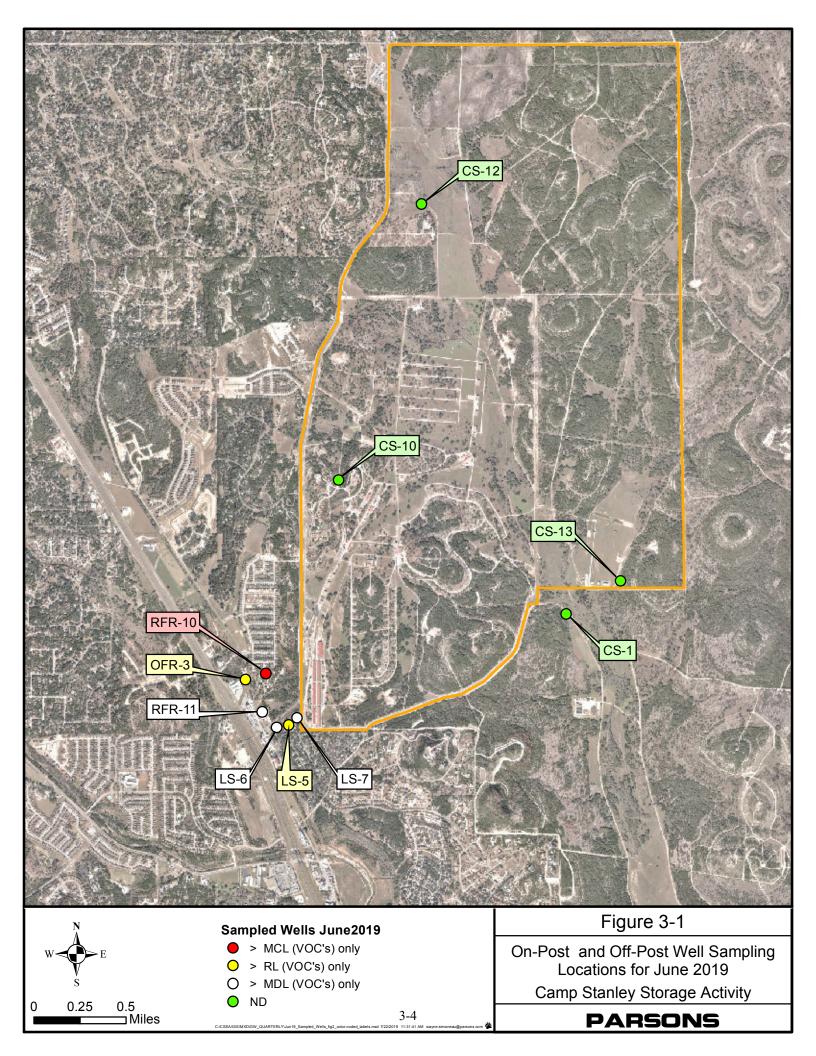
| Count | Well ID      | Analytes                         | Last Sample<br>Date | Sep-18 | Dec-18 | Mar-19 | Jun-19 | Sampling Frequency* |
|-------|--------------|----------------------------------|---------------------|--------|--------|--------|--------|---------------------|
|       | CS-MW1-LGR   | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW1-BS    | VOCs                             | Dec-12              | NS     | NS     | NS     | NS     | as needed           |
|       | CS-MW1-CC    | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW2-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW2-CC    | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW3-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW4-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW5-LGR   | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW6-LGR   | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW6-BS    | VOCs                             | Dec-12              | NS     | NS     | NS     | NS     | as needed           |
|       | CS-MW6-CC    | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW7-LGR   | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW7-CC    | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW8-LGR   | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW8-CC    | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW9-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW9-BS    | VOCs                             | Dec-12              | NS     | NS     | NS     | NS     | as needed           |
|       | CS-MW9-CC    | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW10-LGR  | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW10-CC   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW11A-LGR | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW11B-LGR | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW12-LGR  | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW12-BS   | VOCs                             | Dec-12              | NS     | NS     | NS     | NS     | as needed           |
|       | CS-MW12-CC   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CW-MW17-LGR  | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW18-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW19-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       |              | VOCs & metals (As,Ba,Cr,         | N/ 10               | a      |        |        | G      |                     |
| 1     | CS-1         | Cu,Cd,Hg,Pb,Zn)                  | Mar-19              | S      | S      | S      | S      | Quarterly           |
|       | CS-2         | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-4         | VOCs<br>VOCs & metals (As,Ba,Cr, | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
| 2     | CS-10        | Cu,Cd,Hg,Pb,Zn)                  | Mar-19              | S      | S      | S      | S      | Quarterly           |
|       | 0.5 10       | VOCs & metals (As,Ba,Cr,         | With 15             | 5      | 5      | 5      | 5      | Quartorij           |
| 3     | CS-12        | Cu,Cd,Hg,Pb,Zn)                  | Mar-19              | S      | S      | S      | S      | Quarterly           |
| 5     | 05-12        | VOCs & metals (As,Ba,Cr,         | 11111-17            | 5      | 5      | 5      | 5      | Quantity            |
| 4     | CS-13        | Cu,Cd,Hg,Pb,Zn)                  | Mar-19              | S      | S      | S      | S      | Quarterly           |
|       | CS-D         | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MWG-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MWH-LGR   | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-I         | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW20-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW21-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW22-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW23-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW24-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW25-LGR  | VOCs                             | Jun-17              | NS     | NS     | NS     | NS     | 30 months           |
|       | CS-MW35-LGR  | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |
|       | CS-MW36-LGR  | VOCs                             | Sep-18              | Š      | NS     | NS     | NS     | 15 months           |
|       | CS-MW37-LGR  | VOCs                             | Sep-18              | S      | NS     | NS     | NS     | 15 months           |

\* New LTMO sampling frequency to be implemented in December 2016

S = Sample

NS = No Sample NSWL = No Sample due to low water level

# Table 3.2 Westbay Sampling Frequency


|                  | Last Sample |        |        |        |        | LTMO Sampling Frequency     |
|------------------|-------------|--------|--------|--------|--------|-----------------------------|
| Westbay Interval | Date        | Sep-18 | Dec-18 | Mar-19 | Jun-19 | (as of Dec. 2016)           |
| CS-WB01-UGR-01   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-01   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-02   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-03   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-04   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-05   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-06   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-07   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-08   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB01-LGR-09   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-UGR-01   | Dec-04      | NS     | NS     | NS     | NS     | 15 months (port clogged NS) |
| CS-WB02-LGR-01   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-02   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-03   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-04   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-05   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-06   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-07   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-08   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB02-LGR-09   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-UGR-01   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-01   | Jun-17      | NSWL   | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-02   | Jun-16      | NSWL   | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-03   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-04   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-05   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-06   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-07   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-08   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB03-LGR-09   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-UGR-01   | Nov-04      | NSWL   | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-01   | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-LGR-02   | Mar-10      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-LGR-03   | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-LGR-04   | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-LGR-06   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-07   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-08   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-09   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-10   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-LGR-11   | Sep-18      | S      | NS     | NS     | NS     | 15 months                   |
| CS-WB04-BS-01    | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-BS-02    | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-CC-01    | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-CC-02    | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |
| CS-WB04-CC-03    | Jun-17      | NS     | NS     | NS     | NS     | 30 months                   |

Profiling performed quarterly, in conjunction with post wide water levels.

S = Sample

NS = No Sample

NSWL = No sample due to low water level



# Table 3.3 June 2019 On-Post Quarterly Groundwater Results, Detected Analytes

| Well ID                         | Sample Date         | Arsenic  | Barium | Cadmium | Chromium | Copper | Lead     | Zinc   | Mercury |  |
|---------------------------------|---------------------|----------|--------|---------|----------|--------|----------|--------|---------|--|
| CSSA Drinking Water Well System |                     |          |        |         |          |        |          |        |         |  |
| CS-1                            | 6/5/2019            |          | 0.0378 |         |          | 0.004F |          | 0.109  |         |  |
| CS-10                           | 6/5/2019            |          | 0.0400 |         |          |        | 0.0040F  | 0.245  |         |  |
| CS-10 FD                        | 6/5/2019            |          | 0.0403 |         | 0.0012F  |        |          | 0.249  |         |  |
| CS-12                           | 6/5/2019            |          | 0.0309 |         |          |        |          | 0.434  |         |  |
| CS-13                           | 6/5/2019            | 0.00323F | 0.0311 |         | 0.0011F  |        | 0.0021F  | 0.306  |         |  |
|                                 | Comparison Criteria |          |        |         |          |        |          |        |         |  |
| Method Detectio                 | n Limit (MDL)       | 0.00022  | 0.0003 | 0.0005  | 0.001    | 0.003  | 0.0019   | 0.008  | 0.0001  |  |
| Reporting Limit (RL)            |                     | 0.03     | 0.005  | 0.007   | 0.01     | 0.01   | 0.025    | 0.05   | 0.001   |  |
| Max. Contaminar                 | nt Level (MCL)      | 0.01     | 2      | 0.005   | 0.1      | AL=1.3 | AL=0.015 | SS=5.0 | 0.002   |  |

| Well ID                         | Sample Date         | cis-1,2-<br>DCE | PCE  | TCE  | Vinyl<br>Chloride |  |  |  |  |  |
|---------------------------------|---------------------|-----------------|------|------|-------------------|--|--|--|--|--|
| CSSA Drinking Water Well System |                     |                 |      |      |                   |  |  |  |  |  |
| CS-1                            | 6/5/2019            |                 |      |      |                   |  |  |  |  |  |
| CS-10                           | 6/5/2019            |                 |      |      |                   |  |  |  |  |  |
| CS-10 FD                        | 6/5/2019            |                 |      |      |                   |  |  |  |  |  |
| CS-12                           | 6/5/2019            |                 |      |      |                   |  |  |  |  |  |
| CS-13                           | 6/5/2019            |                 |      |      |                   |  |  |  |  |  |
|                                 | Comparison Criteria |                 |      |      |                   |  |  |  |  |  |
| Method Detection                | n Limit (MDL)       | 0.07            | 0.06 | 0.05 | 0.08              |  |  |  |  |  |
| Report                          | ing Limit (RL)      | 1.2             | 1.4  | 1    | 1.1               |  |  |  |  |  |
| Max. Contaminan                 | t Level (MCL)       | 70              | 5    | 5    | 2                 |  |  |  |  |  |

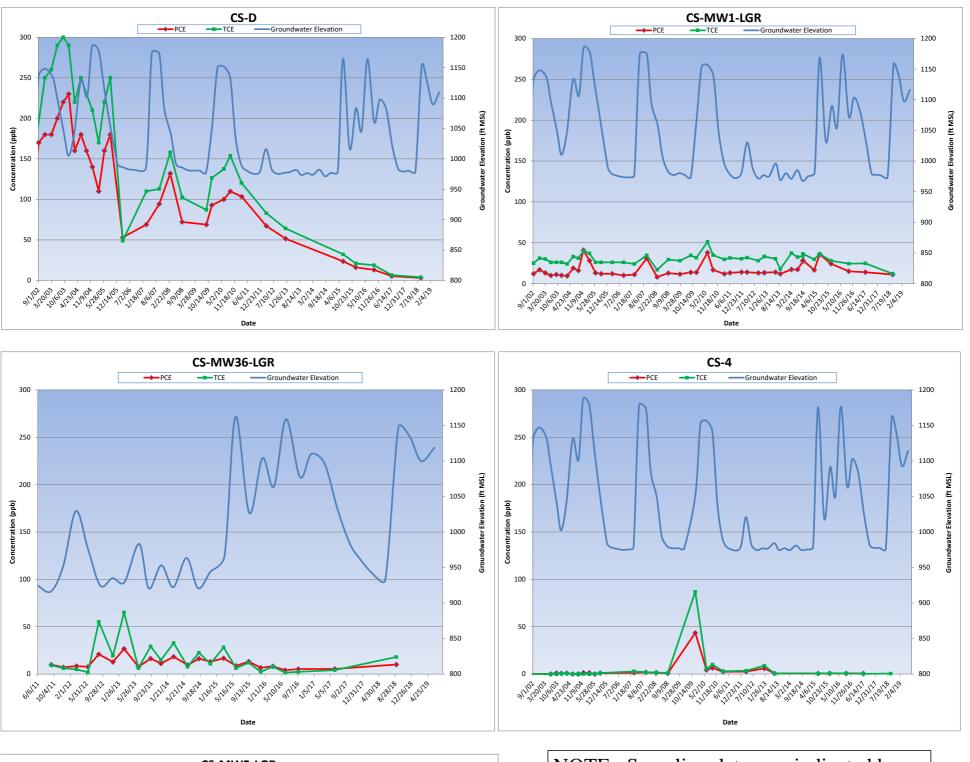
| BOLD | ≥MDL | Precipitation per Quarter:                 | Mar-19 | Jun-19 |
|------|------|--------------------------------------------|--------|--------|
| BOLD | ≥RL  | AOC-65 Weather Station (AOC-65 WS)         | 2.53   | NA     |
| BOLD | ≥MCL | B-3 Weather Station (B-3 WS)               | NA     | NA     |
|      |      | AOC-65 & B-3 Weather Station Data Combined | NA     | 16.05  |

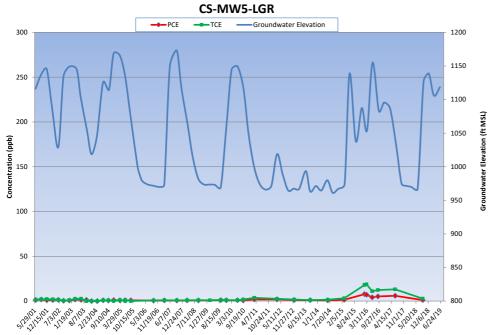
All samples were analyzed by APPL, Inc.

VOC data reported in ug/L & metals data reported in mg/L.

Abbreviations/Notes:

| FD  | Field Duplicate    |
|-----|--------------------|
| TCE | Trichloroethene    |
| PCE | Tetrachloroethene  |
| DCE | Dichloroethene     |
| AL  | Action Level       |
| SS  | Secondary Standard |


Data Qualifiers:


--The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

F-The analyte was positively identified but the associated numerical value is below the RL.

J - Analyte detected, concentration estimated.

NA - data not available





NOTE: Sampling dates are indicated by the squares on the trend line.

Results from on-post monitoring wells are considered definitive data and are subject to data validation and verification under provisions of the CSSA Quality Assurance Project Plan (QAPP). Parsons data package numbered 110201-#4 containing the analytical results from this sampling event, were received by Parsons July 14, 2019. Data validation was conducted, and data validation reports are presented in **Appendix D**.

# 3.2 Westbay-equipped Wells

The recently updated LTMO schedule was implemented in December 2016. In June 2019, no Westbay Well zones were scheduled for sampling. However, these wells (CS-WB01, CS-WB02, CS-WB03, and CS-WB04) were profiled to capture water level readings. These Westbay wells are located in the vicinity of AOC-65 and are part of the post-wide quarterly groundwater monitoring program. Per the approved 2015 LTMO, the Upper Glen Rose (UGR)/LGR zones are to be sampled on a 15-month schedule and the BS/CC zones are sampled on a 30-month schedule. The sampling of these wells began in September 2003.

There are four other Westbay wells (CS-WB05, CS-WB06, CS-WB07, and CS-WB08) that are located at the SWMU B-3 remediation site. Those wells are sampled on a separate schedule in association with the SWMU B-3 bioreactor monitoring. Results for those wells are presented in the SWMU B-3 Performance Status Reports.

# 4.0 JUNE 2019 SUMMARY

- Groundwater samples were collected from 4 on-post wells scheduled for monitoring in June 2019 at CSSA.
- From April 1<sup>st</sup> to June 30, 2019, CSSA's weather stations recorded 16.05 inches of rainfall. Neither weather station, the SWMU B-3 or the AOC-65, recorded a complete set of data due to equipment failures. Fortunately, neither station was out of service on the same days therefore the data collected was merged to generate one complete set of data from both stations. The majority of the rain fell in June, with 4.09 inches falling in April, 5.25 inches falling in May, and 6.71 inches in June. Seven events had greater than one inch of daily rainfall and 2 of those 7 had greater than 2 inches of rainfall.
- The Middle Trinity aquifer levels (LGR, BS, and CC) increased an average of 15.36 feet per non-pumping well since last quarter. The average water level in June 2019 (excluding pumping wells) was 127.32 feet BTOC (1115.35 feet MSL).
- No VOCs were detected above the MCL in wells sampled in June 2019. (Table 3.3).
- There were no metals detected above the MCL/AL/SS in the wells sampled in June 2019.
- Westbay Wells 01-04 were not sampled in June 2019 per LTMO sampling schedule. However, these wells were profiled to capture water level data in the area. These wells are scheduled to be sampled in December 2019.

# **APPENDIX A**

# EVALUATION OF DATA QUALITY OBJECTIVES ATTAINMENT

| Activity                                                          | Objectives                                                                                                                                            | Action                                                                                                                                                                                                                          | <b>Objective Attained?</b>                                                                                                                                                                                                                                                                                                                                           | Recommendations                                                                                                                                                         |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Sampling                                                    | Conduct field<br>sampling in<br>accordance with<br>procedures defined in<br>the project work plan,<br>SAP, QAPP, HSP,<br>and LTMO<br>recommendations. | All sampling was conducted in accordance<br>with the procedures described in the project<br>plans.                                                                                                                              | Yes.                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                      |
| Characterization<br>of Environmental<br>Setting<br>(Hydrogeology) | Prepare water-level<br>contour and/or<br>potentiometric maps<br>for each formation of<br>the Middle Trinity<br>Aquifer (3.5.3).                       | Potentiometric surface maps were prepared<br>based on water levels measured in each of<br>CSSA's wells screened in three formations on<br>June 14, 2019.                                                                        | To the extent possible with data<br>available. Due to the limited<br>data available and the fact that<br>wells are completed across<br>multiple water-bearing units,<br>potentiometric maps should only<br>be used for regional water flow<br>direction, not local. Ongoing<br>pumping in the CSSA area likely<br>affects the natural groundwater<br>flow direction. | As additional wells are installed<br>screened in distinct formations, future<br>evaluations will eliminate reliance on<br>wells screened across multiple<br>formations. |
|                                                                   | Describe the flow<br>system, including the<br>vertical and<br>horizontal<br>components of flow<br>(2.1.9).                                            | Potentiometric maps were created using June<br>14, 2019 water level data, and horizontal flow<br>direction was tentatively identified.<br>Insufficient data are currently available to<br>determine vertical component of flow. | As described above, due to the<br>lack of aquifer-specific water<br>level information, potentiometric<br>surface maps should only be<br>used as an estimate of regional<br>flow direction.                                                                                                                                                                           | Same as above.                                                                                                                                                          |
|                                                                   | Define formation(s)<br>in the Middle Trinity<br>Aquifer are impacted<br>by the VOC<br>contaminants (2.1.3).                                           | Quarterly groundwater monitoring provides<br>information on Middle Trinity Aquifer impacts.<br>Monitoring wells equipped with Westbay <sup>®</sup> -<br>multi-port samplers are sampled every 15 or 30<br>months.               | Yes.                                                                                                                                                                                                                                                                                                                                                                 | Continue sampling.                                                                                                                                                      |

# Appendix A Evaluation of Data Quality Objectives Attainment

| Activity                                                                         | Objectives                                                                                                                                                                                                                                                                                                                                           | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Objective Attained?</b>                                                                          | Recommendations                                                                                       |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Characterization<br>of Environmental<br>Setting<br>(Hydrogeology)<br>(Continued) | Identify any temporal<br>changes in hydraulic<br>gradients due to<br>seasonal influences<br>(2.1.5).                                                                                                                                                                                                                                                 | Downloaded data from continuous-reading<br>transducers in wells: CS-MW4-LGR, CS-<br>MW9-LGR, CS-MW12-LGR, CS-MW12-CC,<br>and CS-MW10-CC. Additional continuous<br>reading transducers were added to the program<br>through the SCADA project. The following<br>wells can be uploaded to see real time water<br>level data: CS-MW16-LGR, CS-MW16-CC,<br>CS-1, CS-12, CS-13, and CS-10. Data was<br>also downloaded from the AOC-65 and B-3<br>weather stations. Water levels will be graphed<br>at these wells against precipitation data through<br>December 2019 and included in the annual<br>groundwater report. | Yes.                                                                                                | Continue collection of transducer data<br>and possibly install transducers in<br>other cluster wells. |
|                                                                                  | Characterize the<br>horizontal and<br>vertical extent of any<br>immiscible or<br>dissolved plume(s)<br>originating from the<br>Facility (3.1.2).                                                                                                                                                                                                     | Samples for laboratory analysis were collected<br>from all 4 CSSA drinking water wells. The 4<br>BS wells are sampled on an 'as needed' basis<br>as part of the groundwater program.                                                                                                                                                                                                                                                                                                                                                                                                                                | The horizontal and vertical<br>extent of groundwater<br>contamination is continuously<br>monitored. | Continue groundwater monitoring and construct additional wells as necessary.                          |
| Contamination<br>Characterization<br>(Ground Water<br>Contamination)             | Determine the<br>horizontal and<br>vertical concentration<br>profiles of all<br>constituents of<br>concern (COC) in the<br>groundwater that are<br>measured by<br>USEPA-approved<br>procedures (3.1.2).<br>COCs are those<br>chemicals that have<br>been detected in<br>groundwater in the<br>past and their<br>daughter<br>(breakdown)<br>products. | Groundwater samples were collected from<br>wells: CS-1, CS-10, CS-12, and CS-13.<br>Samples were analyzed for the short list of<br>VOCs using USEPA method SW8260B. The<br>drinking water wells were also sampled for<br>metals (arsenic, barium, chromium, copper,<br>cadmium, mercury, lead, and zinc). Analyses<br>were conducted in accordance with the CSSA<br>QAPP and approved variances. All reporting<br>limits (RL) were below MCLs, as listed below:                                                                                                                                                     | Yes.                                                                                                | Continue sampling.                                                                                    |

| Activity                                                                       | Objectives                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    | Action                                                 |                                                                        | <b>Objective Attained?</b> | Recommendations    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------|--------------------|
| Contamination<br>(Ground Water<br>Contamination)<br>(Continued)<br>(Continued) | Determine the<br>horizontal and<br>vertical concentration<br>profiles of all<br>constituents of<br>concern (COC) in the<br>groundwater that are<br>measured by<br>USEPA-approved<br>procedures (3.1.2).<br>COCs are those<br>chemicals that have<br>been detected in<br>groundwater in the<br>past and their<br>daughter<br>(breakdown)<br>products. | ANALYTE<br>cis-1,2-DCE<br>PCE<br>TCE<br>Vinyl chloride                                                             | RL (μg /L)<br>1.2<br>1.4<br>1.0<br>1.1                 | MCL(μg/L)<br>70<br>5<br>5<br>2                                         | Yes.                       | Continue sampling. |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                      | ANALYTE<br>Barium<br>Chromium<br>Copper<br>Zinc<br>Arsenic<br>Cadmium<br>Lead<br>Mercury                           | RL (μg/L)<br>5<br>10<br>10<br>50<br>30<br>7<br>25<br>1 | MCL/AL (μg /L)<br>2,000<br>100<br>1,300<br>5,000<br>10<br>5<br>15<br>2 | Yes.                       | Continue sampling. |
|                                                                                | Meet CSSA QAPP<br>quality assurance<br>requirements.                                                                                                                                                                                                                                                                                                 | Samples were analyzed in accordance with the CSSA QAPP and approved variances. Parsons chemists verified all data. |                                                        | Yes.                                                                   | NA                         |                    |
|                                                                                | requirements.                                                                                                                                                                                                                                                                                                                                        | are usable for                                                                                                     | characterizing                                         | "J," "M," and "F"<br>contamination.<br>sidered unusable.               | Yes.                       | NA                 |

| Activity                                                                            | Objectives                                                                                                                                              | Action                                                                                                                                                                   | <b>Objective Attained?</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recommendations                                                                                                               |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Contamination<br>Characterization<br>(Ground Water<br>Contamination)<br>(Continued) | Meet CSSA QAPP<br>quality assurance<br>requirements.<br>(Continued)                                                                                     | Previously, a method detection limit (MDL)<br>study for arsenic, cadmium, and lead was not<br>performed within a year of the analyses, as<br>required by the AFCEE QAPP. | The laboratory performed new<br>MDL studies in February 2001<br>for these metals and the new<br>MDL values were found to be<br>almost identical to the previous<br>MDLs and all met the associated<br>AFCEE QAPP requirements.<br>MDLs for these three metals are<br>well below MCLs. In addition,<br>the laboratory performed daily<br>calibrations and RL verifications<br>for these metals, both of which<br>demonstrate the laboratory's<br>ability to detect and quantitate<br>these metals at RL levels. These<br>daily analyses also indicate that<br>concentrations above the<br>laboratory RL for these<br>compounds were not affected by<br>the expired MDL study. | Use results for groundwater<br>characterization purposes.                                                                     |
| Remediation                                                                         | Determine goals and<br>create cost-effective<br>and technologically<br>appropriate methods<br>for remediation<br>(2.2.1).                               | Continued data collection will provide<br>analytical results for accomplishing this<br>objective.                                                                        | Ongoing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Continue sampling and evaluation,<br>including quarterly groundwater<br>monitoring teleconferences to address<br>remediation. |
|                                                                                     | Determine placement<br>of new wells for<br>monitoring (2.3.1,<br>3.6)                                                                                   | Sampling frequency and sample locations to be<br>monitored (including any new wells) will be<br>based on trend data from monitoring event(s)<br>(3.1.5).                 | Ongoing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Continue quarterly groundwater<br>teleconferences to discuss sampling<br>frequency and placement of new<br>monitor wells.     |
| Project schedule/<br>Reporting                                                      | Produce a quarterly<br>monitoring project<br>schedule as a road<br>map for sampling,<br>analysis, validation,<br>verification, reviews,<br>and reports. | Prepare schedules and sampling guidelines<br>prior to each quarterly sampling event.                                                                                     | Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Continue sampling schedule<br>preparation each quarter.                                                                       |

# **APPENDIX B**

# QUARTERLY ON-POST GROUNDWATER MONITORING ANALYTICAL RESULTS JUNE 2019

## Appendix B Quarterly On-Post Groundwater Monitoring Analytical Results, June 2019

| Well ID  | Sample Date                     | Arsenic  | Barium | Cadmium | Chromium | Copper | Lead    | Zinc  | Mercury |
|----------|---------------------------------|----------|--------|---------|----------|--------|---------|-------|---------|
|          | CSSA Drinking Water Well System |          |        |         |          |        |         |       |         |
| CS-1     | 6/5/2019                        | 0.00022U | 0.0378 | 0.0005U | 0.0010U  | 0.004F | 0.0019U | 0.109 | 0.0001U |
| CS-10    | 6/5/2019                        | 0.00022U | 0.0400 | 0.0005U | 0.0010U  | 0.003U | 0.0040F | 0.245 | 0.0001U |
| CS-10 FD | 6/5/2019                        | 0.00022U | 0.0403 | 0.0005U | 0.0012F  | 0.003U | 0.0019U | 0.249 | 0.0001U |
| CS-12    | 6/5/2019                        | 0.00022U | 0.0309 | 0.0005U | 0.0010U  | 0.003U | 0.0019U | 0.434 | 0.0001U |
| CS-13    | 6/5/2019                        | 0.00323F | 0.0311 | 0.0005U | 0.0011F  | 0.003U | 0.0021F | 0.306 | 0.0001U |

| Well ID                         | Sample Date | cis-1,2-<br>DCE | PCE   | TCE   | Vinyl<br>Chloride |  |
|---------------------------------|-------------|-----------------|-------|-------|-------------------|--|
| CSSA Drinking Water Well System |             |                 |       |       |                   |  |
| CS-1                            | 6/5/2019    | 0.07U           | 0.06U | 0.05U | 0.08U             |  |
| CS-10                           | 6/5/2019    | 0.07U           | 0.06U | 0.05U | 0.08U             |  |
| CS-10 FD                        | 6/5/2019    | 0.07U           | 0.06U | 0.05U | 0.08U             |  |
| CS-12                           | 6/5/2019    | 0.07U           | 0.06U | 0.05U | 0.08U             |  |
| CS-13                           | 6/5/2019    | 0.07U           | 0.06U | 0.05U | 0.08U             |  |

| BOLD | $\geq$ MDL |
|------|------------|
| BOLD | $\geq$ RL  |
| BOLD | $\geq$ MCL |

All samples were analyzed by APPL, Inc.

VOC data reported in ug/L & metals data reported in mg/L.

Abbreviations/Notes:

| FD  | Field Duplicate   |
|-----|-------------------|
| TCE | Trichloroethene   |
| PCE | Tetrachloroethene |
| DCE | Dichloroethene    |

Data Qualifiers:

F-The analyte was positively identified but the associated numerical value is below the RL.

J - Analyte detected, concentration estimated.

U-The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

NA - data not available

# **APPENDIX C**

# DATA VALIDATION REPORT SDG 89115

# **DATA VERIFICATION SUMMARY REPORT**

#### for groundwater samples collected from

# CAMP STANLEY STORAGE ACTIVITY

## **BOERNE, TEXAS**

# Data Verification by: Sandra de las Fuentes Parsons - Austin

# **INTRODUCTION**

The following data verification summary report covers water samples and the associated field quality control (QC) samples collected from Camp Stanley Storage Activity (CSSA) on June 5, 2019. The samples were assigned to the following Sample Delivery Group (SDG).

89115

The samples were analyzed for the following parameters: volatile organic compounds by SW8260B, metals by SW6010B, and mercury by SW7470A. The field QC samples associated with this SDG was one field duplicate (FD), one set of matrix spike/matrix spike duplicate (MS/MSD), and one trip blank (TB) sample. No ambient blanks were collected. During the initiation of this project, it was determined that ambient blanks were not necessary due to the absence of a source at these sites.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. Samples in this SDG were shipped to the laboratory in one cooler, which was received by the laboratory at a temperature of 3.3°C.

| Sample ID | Matrix | VOCs | Metals | Mercury | Comments                 |
|-----------|--------|------|--------|---------|--------------------------|
| TB-1      | Water  | Х    |        |         | Trip blank               |
| CS-12     | Water  | Х    | Х      | Х       |                          |
| CS-13     | Water  | Х    | Х      | Х       | MS/MSD                   |
| CS-1      | Water  | Х    |        |         |                          |
| CS-13     | Water  | Х    | Х      | Х       |                          |
| CS-10     | Water  | Х    | Х      | Х       |                          |
| CS-10 FD  | Water  | Х    | Х      | Х       | Field duplicate of CS-10 |

# SAMPLE IDs AND REQUESTED PARAMETERS

## PAGE 1 OF 6

| Parameter | Matrix | Prep Method | Analytical Method | Units |
|-----------|--------|-------------|-------------------|-------|
| VOCS      | WATER  | SW5030B     | SW8260B           | μg/L  |
| Metals    | WATER  | SW3010A     | SW6010B           | mg/L  |
| Mercury   | WATER  | SW7470A     | SW7470A           | mg/L  |

# EXTRACTION, ANALYTICAL, AND REPORTING DETAILS

# **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

# VOLATILES

# General

The volatiles portion of this data package consisted of eight (8) water samples that include four (4) groundwater samples, one (1) field duplicate, one (1) MS/MSD pair and one (1) trip blank. All samples were collected on June 5, 2019 and analyzed for a reduced list of VOCs which included: *cis*-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride.

The VOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8260B. The samples were analyzed in one analytical batch, #241216, under a single initial calibration (ICAL). All samples were analyzed following the procedures outlined in the CSSA QAPP and were prepared and analyzed within the holding time required by the method. All analyses were performed undiluted.

# Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample, MS/MSD, and the surrogate spikes. Sample CS-13 was designated as the MS/MSD on the COC.

All LCS, MS/MSD, and surrogate spike recoveries were within acceptance criteria.

# Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the MS/MSD results. Precision was further evaluated by comparing the field duplicate analyte results. Sample CS-10 FD was collected and analyzed as the field duplicate of CS-10.

All MS/MSD RPDs were within acceptance criteria.

All FD/parent sample results were non-detect; therefore, the RPD could not be evaluated.

# PAGE 2 OF 6

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blank and TB for cross contamination of samples during sample collection, transportation, and analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- All initial calibration verification (ICV) criteria were met. The ICV was prepared using a secondary source standard. All second source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- All internal standard criteria were met.

There was one method blank associated with the VOC analyses in this SDG. The MB was non-detect for all target VOCs.

There was one trip blank sample associated with the VOC analyses in this SDG. The TB was non-detect for all target VOCs.

# Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All VOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

# **ICP-AES METALS**

# General

The ICP-AES portion of this SDG consisted of seven (7) water samples that includes five (4) groundwater samples, one (1) field duplicate and one (1) MS/MSD pair. All samples were collected on June 5, 2019. All samples were analyzed for arsenic, barium, cadmium, chromium, copper, lead, and zinc.

## PAGE 3 OF 6

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. All samples were analyzed following the procedures outlined in the CSSA QAPP and were prepared and analyzed within the holding time required by the method.

The samples for ICP-AES metals were digested in batch #242320. All analyses were performed undiluted.

# Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS, MS and MSD. CS-13 was designated as the parent sample for the MS/MSD analyses.

All LCS, MS, and MSD recoveries were within acceptance.

## Precision

Precision was measured based on the RPD of MS/MSD results and parent/FD sample results. Sample CS-10 FD was collected and analyzed as the field duplicate of CS-10.

All RPDs were compliant for the MS/MSD.

Barium and Zinc were detected above the reporting limit (RL) for parent sample CS-10, and met criteria as follows:

| Metal          | Parent<br>(mg/L)  | FD<br>(mg/L) | RPD        | Criteria<br>(RPD) |
|----------------|-------------------|--------------|------------|-------------------|
| Barium<br>Zinc | $0.0400 \\ 0.245$ | 0.0403 0.249 | 0.7<br>1.6 | ≤20               |

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating preservation and holding times; and
- Examining laboratory blank for cross contamination of samples during analysis.

All samples were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0, prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met.

- Dilution test (DT) was not applicable since all target metals met criteria in the MS/MSD.
- Post digestion spike (PDS) was also not applicable since all target metals met criteria in the MS/MSD samples.
- The initial calibration blank (ICB) was non-detect at their reporting limits. Two of the continuing calibration blank (CCB) samples reported low concentrations of cadmium, below the reporting limit. In addition, the preparation blank reported a trace amount of copper, also below the reporting limit. No corrective action was necessary since qualifiers are only applied when blank results are above the reporting limits.

One method blank was analyzed in association with the ICP-AES analyses in this SDG. The method blank was free of target metals at or above the RL.

# Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

## MERCURY

# General

The mercury portion of this SDG consisted of seven (7) water samples that includes five (4) groundwater samples, one (1) field duplicate and one (1) MS/MSD pair. All samples were collected on June 5, 2019 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7470A. These samples were analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

The mercury samples were prepared in batch #241698. All analyses were performed undiluted.

## Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS, MS, and MSD. CS-13 was designated as the parent sample for the MS/MSD analyses.

All LCS, MS, and MSD recoveries were within acceptance.

## Precision

Precision was measured based on the RPD of MS/MSD results and parent/FD sample results. Sample CS-10 FD was collected and analyzed as the field duplicate of CS-10.

## PAGE 5 OF 6

The RPD of MS/MSD was compliant.

Mercury was not detected in the parent or FD sample; therefore, the RPD could not be evaluated.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

All samples were analyzed following the COC and the analytical procedures described in the CSSA QAPP, prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All calibration verification criteria were met.

There was one method blank and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

# Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

Mercury result for the samples in this SDG was considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.