### **March 2016**

### Off-Post Quarterly Groundwater Monitoring Report



Prepared For

Department of the Army Camp Stanley Storage Activity Boerne, Texas

**May 2016** 

#### **EXECUTIVE SUMMARY**

- A total of six off-post wells and seven granular activated carbon (GAC) filtered samples were collected during the March 2016 sampling event for volatile organic compound (VOC) analyses.
- Analyses indicated off-post well RFR-10 exceeded the maximum contaminant level (MCL) for tetrachloroethene (PCE) and trichloroethene (TCE). This well is equipped with GAC filtration systems. All other wells were below the MCLs.
- Seven GAC-filtered samples were collected in March 2016. The GAC-filtered sample collected from the "A2" side of the RFR-10 GAC filtration system showed detections of PCE and TCE above the MCL. The "B2" side of the same GAC system showed no detection of VOCs. Based on this result, the "A" side of the GAC system was turned off and additional samples were collected. The additional samples indicated no VOCs present at the kitchen tap of both homes. The carbon canisters on the "A" side of the system were replaced and confirmation samples were collected. All samples indicated that both sides of the GAC system were functioning properly.
- At the remaining six GAC systems, all sample results were non-detect, indicating the GAC systems are functioning properly. The next scheduled GAC-filtered samples will be collected in September 2016.
- Due to the RFR-10 post-GAC sample detection changes were made to the sampling protocol in order to enhance the quality of the monitoring program.
- Semi-annual GAC maintenance was performed February 18, 2016. This involved replacing the first carbon canister in each GAC system and other routine maintenance. This carbon exchange is performed semi-annually; the next carbon change-out will be due in August 2016.
- Updates to the data quality objectives (DQOs) and the long term monitoring optimization (LTMO) have been submitted to the Texas Commission on Environmental Quality (TCEQ) and United States Environmental Protection Agency (USEPA) for approval.

#### GEOSCIENTIST CERTIFICATION

#### March 2016 Off-Post Quarterly Groundwater Monitoring Report

For

Department of the Army
Camp Stanley Storage Activity
Boerne, Texas

I, W. Scott Pearson, Professional Geologist (P.G.), hereby certify that the 2016 March Off-Post Quarterly Groundwater Monitoring Report for the Camp Stanley Storage Activity installation in Boerne, Texas accurately represents the site conditions of the subject area. This certification is limited only to geoscientific products contained in the subject report and is made on the basis of written and oral information provided by the Camp Stanley Storage Activity Environmental Office, laboratory data provided by APPL, and field data obtained during groundwater monitoring conducted at the site in March 2016, and is true and accurate to the best of my knowledge and belief.

W. SCOTT PEARSON

GEOLOGY
2186

VCENSED

OVAL & GEOS

W. Scott Pearson, P.G.

State of Texas

Geology License No. 2186

Date

#### TABLE OF CONTENTS

| EXEC    | CUTIV | E SUMMARY                                                       | ii  |
|---------|-------|-----------------------------------------------------------------|-----|
| GEOS    | CIEN  | TIST CERTIFICATION                                              | iii |
| 1.0     | INT   | RODUCTION                                                       | 1-1 |
| 2.0     | MAI   | RCH 2016 ANALYTICAL RESULTS                                     | 2-1 |
|         | 2.1   | Off-Post Well Sampling                                          | 2-1 |
|         | 2.2   | GAC System Sampling                                             | 2-5 |
| 3.0     | SUM   | IMARY AND RECOMMENDATIONS                                       | 3-1 |
|         |       | LIST OF TABLES                                                  |     |
| Table   | 2.1   | Sampling Rationale for March 2016                               | 2-2 |
| Table 2 | 2.2   | March 2016 Off-Post Groundwater Results, Detected Analytes Only | 2-4 |
| Table   | 3.1   | Sampling Rationale for June 2016                                | 3-2 |
|         |       | LIST OF FIGURES                                                 |     |
| Figure  | 2.1   | On-Post and Off-Post Well Sampling Locations for March 2016     | 2-3 |
| Figure  | 2.2   | VOC Sampling of RFR-10 GAC Treatment System – March/April 2016  | 2-6 |
|         |       | LIST OF APPENDICES                                              |     |
| Appen   | dix A | Evaluation of Data Quality Objectives Attainment                |     |
| Appen   | dix B | March 2016 Quarterly Off-post Groundwater Analytical Results    |     |
| Appen   | dix C | Data Validation Reports                                         |     |

#### ABBREVIATIONS AND ACRONYMS

| μg/L        | microgram per liter                                    |
|-------------|--------------------------------------------------------|
| 1,1-DCE     | 1,1-dichloroethene                                     |
| AOC         | Area of Concern                                        |
| APPL        | Agriculture and Priority Pollutants Laboratories, Inc. |
| cis-1,2-DCE | cis-1,2-Dichloroethene                                 |
| CSSA        | Camp Stanley Storage Activity                          |
| DQO         | Data Quality Objective                                 |
| FD          | Field Duplicate                                        |
| GAC         | Granular Activated Carbon                              |
| HSP         | Health and Safety Plan                                 |
| LS          | Leon Springs                                           |
| LTMO        | Long Term Monitoring Optimization                      |
| MCL         | Maximum Contaminant Level                              |
| MDL         | Method Detection Limit                                 |
| MS/MSD      | Matrix Spike/Matrix Spike Duplicate                    |
| NA          | Not Applicable                                         |
| OFR         | Old Fredericksburg Road                                |
| Parsons     | Parsons Government Services, Inc.                      |
| PCE         | Tetrachloroethene                                      |
| P.G.        | Professional Geologist                                 |
| QAPP        | Quality Assurance Project Plan                         |
| QA/QC       | Quality Assurance/Quality Control                      |
| RFR         | Ralph Fair Road                                        |
| RL          | Reporting Limit                                        |
| SAP         | Sampling and Analysis Plan                             |
| SLD         | Scenic Loop Drive                                      |
| TCE         | Trichloroethene                                        |
| TCEQ        | Texas Commission on Environmental Quality              |
| USEPA       | United States Environmental Protection Agency          |
| VOC         | Volatile Organic Compound                              |

#### MARCH 2016 OFF-POST GROUNDWATER MONITORING REPORT CAMP STANLEY STORAGE ACTIVITY

#### 1.0 INTRODUCTION

This report presents results from the off-post quarterly sampling performed for Camp Stanley Storage Activity (CSSA) in March 2016 as required by the Administrative Order on Consent dated May 5, 1999. The purpose of this report is to present a summary of the sampling results. Results from all four 2016 quarterly monitoring events (March, June, September, and December) will be described in detail in an Annual Report to be submitted after December 2016. The Annual Report will also provide an interpretation of all analytical results and an evaluation of any temporal or spatial trends observed in the groundwater contaminant plume during investigations.

Groundwater monitoring was performed March 7 through 16, 2016. The quarterly off-post groundwater monitoring program was initiated in September 2001 in accordance with the **Off-Post Monitoring Program and Response Plan** (**CSSA**, **2002**), herein referred to as the "Plan". Action levels for detection of volatile organic compounds (VOCs) and the rationale for sampling off-post wells are described in the Plan.

The CSSA groundwater monitoring program also follows the provisions of the groundwater monitoring program data quality objectives (DQOs) as well as the recommendations of all applicable project-specific work plans. **Appendix A** provides an evaluation of the DQO attainment for this sampling event. Currently, an update to the DQOs and the long term monitoring optimization (LTMO) has been submitted to the Texas Commission on Environmental Quality (TCEQ) and United States Environmental Protection Agency (USEPA) for approval.

The primary objective of the off-post groundwater monitoring program is to determine whether concentrations of chlorinated VOCs detected in off-post public and private drinking water wells exceed safe drinking water standards. Other objectives are to determine the lateral and vertical extent of the contaminant plumes and identify trends (decreasing or increasing) in contaminant levels over time in the sampled wells.

#### 2.0 MARCH 2016 ANALYTICAL RESULTS

During the March 2016 event, groundwater samples were collected from six off-post wells shown in **Figure 2.1.** Seven granular activated carbon (GAC) filtered samples (LS-5-A2, LS-6-A2, LS-7-A2, OFR-3-A2, RFR-10-A2, RFR-10-B2, and RFR-11-A2) are collected semi-annually (March and September), and were also collected during this event.

**Table 2.1** includes the rationale for selection of the wells to be sampled in March 2016, and **Figure 2.1** provides well locations for the following sampled wells:

- Three privately-owned wells in the Leon Springs (LS) Villa area: LS-5, LS-6, and LS-7:
- One privately-owned well on Old Fredericksburg Road (OFR) (OFR-3).
- Two privately-owned wells in the Ralph Fair Road (RFR) area (RFR-10 and RFR-11).

A total of 13 groundwater samples, two trip blanks, one field duplicate (FD), and one matrix spike/matrix spike duplicate (MS/MSD) included with the on-post data groups were submitted to Agriculture & Priority Pollutant Laboratories, Inc. (APPL) in Clovis, California for analysis. Groundwater samples were analyzed for the short list of VOCs using SW-846 Method 8260B. The approved short list of VOCs includes *cis*-1,2-dichloroethene (*cis*-1,2-DCE), *trans*-1,2-DCE, 1,1-DCE, tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride.

The data packages (Parsons Government Services, Inc. [Parsons] internal reference 810000-#113) contain the analytical results for this sampling event and are presented in **Appendix C**. Laboratory results were reviewed and verified according to the guidelines outlined in the CSSA Quality Assurance Project Plan (QAPP), Version 1.0. Parsons received the data package March 21, 2016.

#### 2.1 OFF-POST WELL SAMPLING

All active wells with submersible pumps were sampled from a tap located as close to the wellhead as possible. Most taps were previously installed by CSSA to obtain a representative groundwater sample before pressurization or storage of groundwater in the water supply distribution system. Water was purged to engage the well pump prior to sample collection. Conductivity, pH, and temperature readings were recorded to confirm adequate purging while the well was pumping. Generally, this required an average of 20 gallons to be purged prior to sample collection.

Concentrations of the VOCs detected in March 2016 are presented in **Table 2.2**. Full analytical results from the March 2016 sampling event are presented in **Appendix B**. As shown in **Table 2.1**, all 13 samples that were scheduled for collection in March 2016 were obtained. Additional follow up samples were collected in April to confirm the RFR-10 GAC filtration system was functioning properly.

On February 18, 2016, routine semi-annual maintenance was performed on the GAC treatment systems at LS-5, LS-6, LS-7, OFR-3, RFR-10, and RFR-11. Carbon canisters were exchanged and other routine maintenance was performed. GAC-filtered samples were collected this quarter and are scheduled to be collected again during the September 2016 event.

Table 2.1 Sampling Rationale for March 2016

| Well ID                    | 200             | 1        |        | 2002  |       |      | 2        | 003    |          |       | 2004      | 4      |       | :        | 2005     |          |     | 200    | 6      |       | 2        | 007    |          |          | 2008   |        |                          | 200          | 109      |         |          | 2010    |          |            | 201        | 11       |          | 20                | 012      |      | 201        | 13   |                |      | 2014       |          |   |            | 2015         |         | 2016      | i .          | lamulina I                   | Cuo cuo au |
|----------------------------|-----------------|----------|--------|-------|-------|------|----------|--------|----------|-------|-----------|--------|-------|----------|----------|----------|-----|--------|--------|-------|----------|--------|----------|----------|--------|--------|--------------------------|--------------|----------|---------|----------|---------|----------|------------|------------|----------|----------|-------------------|----------|------|------------|------|----------------|------|------------|----------|---|------------|--------------|---------|-----------|--------------|------------------------------|------------|
|                            | Sept            | Dec N    | Iar Ju | ne Se | pt De | c Ma | r June   | e Sept | Dec 1    | Mar J | June S    | Sept D | ec Ma | ar Jun   | e Sept   | Dec      | Mar | June 3 | Sept D | ec Ma | ır Jun   | e Sept | Dec      | Mar J    | une Se | ept De | c Mai                    | June         | Sept     | Dec N   | Aar Ju   | ine Se  | pt Dec   | Mar        | June       | Sept     | Dec 1    | Mar June          |          |      | lar June   |      |                |      | ne Sept    |          | _ |            | ne Sept      | t Dec   | Mar       |              | Sampling I                   | requency   |
| BSR-03                     |                 |          |        |       |       |      |          | -      | <u> </u> |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          | _       |          | access     | agreem     |          |          | NS                |          |      | NS NS      | _    | NS NS          | _    | NS         |          | _ | NS         |              |         | NS        | _            | nth (snapsl                  | ,          |
| BSR-04<br>FO-8             | NS              | NS       | N      | S N   | c Ni  |      | NS       | NS     | NS       |       | NS        | NIC N  | IS    | NS       | NS       | NS       |     | NS     | NS N   | S     | NS       | NS     | NS       |          | NS N   | IS NS  | ,                        | NS           | NS       | NIC     | N        | IS N    | S NS     |            |            | NS ac    |          | greement re<br>NS | _        |      | NS NS      |      | NS NS          |      | NS<br>NS   |          |   | NS<br>NS   |              |         | NS<br>NC  | _            | onth (snapsl<br>onth (snapsl |            |
| FO-8<br>FO-17              |                 | NS<br>NS |        | S N   |       | 5    | NS<br>NS | _      |          | NS    | _         |        | IS N  |          | NS<br>NS |          |     | _      |        | S N   |          | _      | NS<br>NS |          |        | IS NS  |                          |              |          | NS I    | NIS NIS  | IS N    | _        |            |            | NS<br>NS |          |                   | NS<br>NS |      | NS NS      | _    | NS NS          |      | NS<br>NS   |          |   | NS<br>NS   |              | _       | NS<br>NS  | _            | onth (snapsi<br>onth (snapsi |            |
| FO-22                      |                 |          | NS N   |       |       | ,    | S NS     |        |          | NS    | NS        |        |       | S NS     | _        |          | NS  |        | NS N   |       | S NS     | _      | NS       |          |        | IS NS  |                          |              | NS       |         | N        | IS N    | _        | _          |            | NS       |          |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          | _ | NS         |              |         | NS        |              | onth (snapsi                 | ,          |
| FO-J1                      |                 | -        | -      |       |       | -    |          |        |          |       | NS        |        | -     |          |          | NS       |     |        | - 1,5  | -     |          |        | 2.10     |          |        |        |                          |              |          | - 1.0   |          |         | -        |            | _          | NS       |          |                   | NS       |      | NS NS      | _    | NS NS          |      | NS         |          | _ | NS         |              | _       |           | _            | onth (snapsl                 |            |
| HS-1                       | NS              | NS 1     | NS N   | S N   | S N   | S NS | S NS     | NS     | NS       | NS    | NS        | NS N   | IS N  | S NS     | NS       | NS       | NS  | NS     |        |       |          |        |          |          |        |        |                          |              |          | ]       | NS N     | IS N    | S        |            |            | NS       | NS       | NS                | NS       | 1    | NS NS      |      | NS NS          | S    | NS         | NS       |   | NS         | S NS         |         | NS        | 9-mo         | nth (snapsl                  | not)       |
| HS-2                       | NS              |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          | IS      |          | NS         |            | NS       |          |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          |   | NS         |              | _       |           | _            | nth (snapsl                  |            |
| HS-3                       | NS              | 1        | NS     | N     | S N   | S NS | S        | NS     | NS       | NS    |           | NS N   | IS N  | S        | NS       | NS       |     | _      |        | S N   |          |        | NS       | _        |        | IS NS  | _                        |              | NS       |         | NS       | N       | _        | _          |            | NS       |          |                   | NS       |      | NS NS      | _    | NS NS          |      | NS         |          | _ | NS         |              | _       |           | _            | nth (snapsl                  |            |
| I10-2<br>I10-4             | NS              | _        | -      |       |       |      | _        | _      | NS       |       |           | _      | _     | _        |          |          |     | NS     | NS N   | S     | NS       |        |          |          | NS N   | IS NS  | 5                        | NS           | NS       | NS      |          |         | NA       | NS         |            | NS       | NS       | NS                | NS       | 1    | IS NS      |      | NS NS          |      | NS<br>A NA |          |   | NS<br>A NA | S NS<br>A NA |         |           | 9-mo<br>P&A  | onth (snapsl                 | iot)       |
| I10-4<br>I10-5             |                 | NS 1     | NS N   | S N   | S     | N.S  | S NS     | NS     |          | NS    | NS        | NS     | N     | S NS     | NS       |          | NS  | NS     | NS     | N:    |          |        |          | NS I     |        | IS NS  | ,                        | NS           | NS       | NS      | N        | IS N    | S NS     |            |            | NS       | NS       | NS                | NS       | ,    | IS NS      |      | NS NS          |      | NS NS      |          | _ | NS NS      |              | _       | NS        |              | ed access a                  | greement   |
| I10-7                      | NS              | NS       |        |       | S N   |      | , 110    | NS     |          | NS    |           | NS     | .,    | 5 111    | 118      |          | 145 | 110    | TUB    | 211   | 3 110    | 110    | 110      | 110      | 110    | 10 111 | _                        | 110          | 110      | 110     |          |         | A NA     |            |            | NS       |          |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         | NS        | _            | onth (snapsl                 |            |
| I10-8                      | NS              | NS 1     | NS N   | S N   | S N   | S NS | S NS     | NS     | NS       | NS    | NS        | NS N   | IS N  | S NS     | NS       |          | NS  | NS     | NS     | N:    | S NS     | NS     |          | NS :     | NS N   | IS     | NS                       | NS           | NS       |         |          |         |          |            |            | NS       | NS       | NS                | NS       | 1    | NS NS      | 1    | NS NS          | S    | NS         | NS       |   | NS         | S NS         |         | NS        | 9-mo         | nth (snapsl                  | not)       |
| I10-9                      |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          | acce    | ss agree | ment re    | eceived    |          |          |                   | NA       | NA N | IA NA      | NA I | NA NA          |      |            | NA       | _ |            |              | . NA    |           | P&A          |                              |            |
| I10-10                     | 270             | 270      | 70 31  |       |       |      |          | 270    | 270      | 270   | 270       |        | 10 11 |          |          |          |     | 270    |        |       |          |        |          |          |        |        |                          | 270          | 270      | 270     |          |         | 0 110    |            |            | 270      | 2.70     |                   |          |      | t received |      | NS NS          |      |            |          |   |            |              | _       | _         | _            | time sampl                   |            |
| JW-5                       | _               |          | NS N   | _     | _     | _    | S NS     | _      |          |       | NS        |        | IS N  | _        | NIC      | NG       |     | NS     |        | S     | 2        | NG     | NIC      | NC       |        | IC NO  | N.C.                     |              | NS       | _       | NG       | IS N    | _        |            |            | NS       |          |                   | NS       |      | NS NS      | _    | NS NS          | _    | NS         |          | _ | NS         |              | _       |           | _            | onth (snapsl                 |            |
| JW-6<br>JW-7               |                 | NS I     | M 2V   | _     | S N   |      | S NS     | NS     | NS       | NS    |           | NS N   | IS N  | ە<br>1   | NS       | NS       | INS |        | NS N   | S N   | )        | INS    | NS       | N2       | N      | IS NS  | S NS                     |              | NS       | INO I   | CNI      | N       | S NS     | NS         |            | NS<br>NS |          |                   | NS<br>NS |      | NS NS      |      | NS NS          |      | NS<br>NS   |          |   | NS<br>NS   | S NS         |         |           | _            | onth (snapsl<br>onth (snapsl |            |
| JW-8                       |                 | NS 1     | _      | _     |       | _    |          |        |          |       |           |        | +     |          |          |          |     |        |        |       |          |        |          | $\dashv$ |        |        |                          |              |          | -+      |          |         |          |            |            | NS       |          |                   | NS       | _    | NS NS      |      | NS NS          | _    | NS         | _        | _ | NS         |              | _       | NS        | _            | onth (snapsi                 |            |
| JW-9                       |                 |          |        |       |       |      |          |        |          |       |           |        |       | NS       | NS       | NS       |     | NS     | NS N   | S     | NS       | NS     | NS       |          | NS N   | IS NS  | S                        | NS           | NS       | NS      | N        | IS N    | S NS     | NS         |            | NS       |          | NS                |          |      | NS NS      | _    | NS NS          | _    | NS         |          |   | NS         |              | _       |           | _            | onth (snapsl                 |            |
| JW-12                      |                 | NS 1     | NS N   | S N   | S     | NS   | S NS     | NS     | NS       |       | NS        | NS N   | NS .  | NS       |          | NS       | NS  | NS     | _      | S N   |          |        |          | NA       | _      | A NA   | _                        | _            | access   | agreeme |          |         |          | _          | owners     |          | NA       | NA NA             |          |      | IA NA      | NA I | NA NA          |      | A NA       |          |   | A          | NS           |         | NS        | _            | onth (snapsl                 |            |
| JW-13                      |                 | NS 1     | NS N   | S N   | S     | NS   | S        | NS     | NS       | NS    |           | NS N   | IS N  | S        | NS       | NS       | NS  |        | NS N   | S N   | S        | NS     | NS       | NS       | N      | IS NS  | S NS                     |              | NS       | NS 1    | NS       | N       | S NS     | NS         |            | NS       |          | NS                |          |      | IS NS      |      | NS NS          |      | NS         |          |   | NS         |              | _       |           |              | onth (snapsl                 |            |
| JW-14                      |                 | 110      | 10     |       |       |      |          |        | , v      | 116   | 270       | 110    | 10    |          |          |          | Tol | 116    | 110    |       |          |        |          |          | 110    |        |                          |              |          | 110     |          | 10      |          |            |            | NS       |          | NS                |          |      | IS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         | NS        | _            | onth (snapsl                 | iot)       |
| JW-15                      | NS              | NS I     | NS N   | S N   | S N   | S NS | S NS     | NS     | NS       | NS    | NS        | NS N   | IS N  | S        |          |          |     | NS     | NS N   | S     | NS       | NS     | NS       |          | NS N   | IS NS  | S Contract of the second | NS           | NS       | NS      | N        | IS N    | S NS     |            |            | NS       | NS       | NS                | •        |      | NS NS      |      | NS NS          | S    | NS         |          |   | NS         |              |         | NS        |              | e vacant<br>onth (snapsl     | h a 6)     |
| JW-20<br>JW-26             | NS              | NS       | N      | S     |       |      |          |        |          |       |           |        | N     | s Nis    | NS       |          | NS  | NS     | NS     | N!    | S NIS    | NS     | NΛ       | NIA I    | NA N   | A N/   | N N A                    | NA           | NIA      | NA ?    | NA N     | ſΛ      | NS       | NS         |            | NS       | NS       | NS                | NS ac    |      | eement rec |      | NS NS          | 1    | NS         | NS<br>NS |   | NS<br>NS   | S NS         |         | NS<br>NS  | _            | ed access a                  | ,          |
| JW-20<br>JW-27             | _               | NS 1     |        | _     | S N   | S NS | S        | NS     | NS       | NS    |           | NS N   |       |          | NS       |          | 143 | 145    | INS    | IN.   | 3 143    | 140    | NS       | INA      | NA N   | A INF  | 1 IVA                    |              |          |         |          |         | S NS     |            |            | NS       |          |                   |          |      | NS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         | NS        |              | onth (snapsl                 | _          |
| JW-28                      | NS              | NS 1     | NS N   | S N   |       |      |          |        | - 1.0    |       |           |        |       |          |          |          |     |        |        |       |          | NS     | NS       | NS       |        |        |                          |              |          |         |          |         | -        |            |            | NS       |          |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         |           |              | homeowne                     |            |
| JW-29                      | NS              | NS 1     | NS N   | S N   | S N   | S NS | S        |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         |          |            |            | NS       | NS       | NS                | NS       | 1    | NS NS      |      | NS NS          | S    | NS         | NS       |   | NS         | S NS         |         | NS        | 9-mo         | nth (snapsl                  | not)       |
| JW-30                      |                 | NS 1     | NS N   | S N   | S N   | S    |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         |          |            |            | NS       |          |                   | NS       |      | NS NS      | _    | NS NS          |      | NS         |          |   | NS         |              |         | NS        | _            | nth (snapsl                  |            |
| JW-31                      | NA              | NA N     | NA N   | A N   | A NA  | A NA | A NA     | NA     | NA       | NA    | NA I      |        | IA N. | _        | NA       | NA       | NA  | NA     |        | A N   |          |        |          | NA 1     | NA N   | A NA   | NA NA                    | NA           | NA       |         |          |         | NS       | NS         |            | NS       |          |                   | NS       |      | IS NS      | _    | NS NS          |      | NS         |          |   | NS         |              | _       | NS        | _            | nth (snapsl                  | ,          |
| LS-1                       |                 | _        | _      | -     | _     | _    | _        | _      | +        | _     |           | NS N   | IS N  | S NS     | NS       | NS       | NS  | NS     | NS N   | S N   |          |        | NS       | NS       | _      |        |                          |              |          |         |          | _       |          |            | _          | NS       | _        |                   | NS       | _    | NS NS      | _    | NS NS          | _    | NS         | _        | _ | NS         |              |         | NS        | _            | onth (snapsl<br>onth (snapsl | ,          |
| LS-4<br>LS-5               |                 | -        | _      |       | +     | +    | +        | +-     | _        | _     |           | -      | +     | +        |          |          |     | _      |        |       | NS       | NS     | NS       | NS       |        |        |                          |              |          |         |          | _       |          |            |            | NS       | NS       | NS                | NS       | 1    | IS NS      |      | NS NS          | 5    | NS         | NS       |   | N.S        | S NS         | NS      | NS<br>Yes |              | . (1                         | 10t)       |
| LS-5-A2                    |                 |          |        |       |       | +    |          | +      |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          | _       | G        | AC inst    | talled 10  | 0/6/11   | NS       | NS                |          | NS   | NS         |      | NS             | NS   | S          | NS       |   | NS         | S            | NS      | _         |              | nually (Ma                   | r & Sept)  |
| LS-6                       |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         | 0.       | I TO III S | tarretr 10 | 0, 0, 11 | 110      | 110               |          | TNB  | 110        |      | I NO           | 111. | 9          | 11.5     |   | 110        |              | 1115    | Yes       |              | •                            |            |
| LS-6-A2                    |                 |          | N      | S     | N:    | S    | NS       |        | NS       |       | NS        | N      | NS .  | NS       |          | NS       |     | NS     | N      | S     | NS       |        | NS       |          | NS     | NS     | S                        | NS           |          | NS      | N        | IS      | NS       |            | NS         |          | NS       | NS                |          | NS   | NS         |      | NS             | NS   | S          | NS       |   | NS         | S            | NS      | Yes       | Bianı        | nually (Ma                   | r & Sept)  |
| LS-7                       |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         |          |            |            |          |          |                   |          |      |            |      |                |      |            |          |   |            |              |         | Yes       | _            | terly                        |            |
| LS-7-A2                    |                 |          | N      | S     | N:    | S    | NS       |        | NS       |       | NS        | N      | NS .  | NS       |          | NS       |     | NS     | N      | S     | NS       |        | NS       |          | NS     | NS     | 3                        | NS           |          | NS      | N        | IS      | NS       |            | NS         |          | NS       | NS                |          | NS   | NS         |      | NS             | NS   |            | NS       |   | NS         |              | NS      |           |              | nually (Ma                   | t & Sept)  |
| OFR-1                      | NS              |          |        | _     | _     | _    |          |        |          | _     |           | _      | _     | _        |          |          |     | _      | _      |       |          |        |          |          |        |        |                          |              |          | _       |          |         | NY A     | NO         |            | NS       | NS       | NS                | NS       | 1    | NS NS      |      | NS NS          | _    | NS         | _        | _ | A NA       | A NA         | . NA    | _         | P&A          |                              |            |
| OFR-3<br>OFR-3-A2          | NS              | NS       | N      | 2     | N     | 9    | NS       |        | NS       |       | NS        | N      | IS    | NS       |          | NS       |     | NS     | N      | 'S    | NS       |        | NS       |          | NS     | NS     | ,                        | NS           |          | NS      | N        | IS      | NA<br>NS | NS<br>NS   | NS         |          | NS       | NS                |          | NS   | NA<br>NS   |      | NA NA<br>NS NA |      | _          | _        | _ | NS         | 9            | NS      |           | Quar         | teriy<br>nually (Ma          | r & Sant)  |
| OFR-4                      |                 | NS 1     | NS N   | S N   | S NS  | S NS | 149      |        | NS       | _     | NS<br>NS  |        | IS    | NS<br>NS |          | NS       |     |        |        | S     | NS<br>NS |        |          | _        | _      | IS NS  | _                        | NS           | NS       | _       |          |         | S NS     |            |            | NS       |          |                   | NS       |      | IS NS      |      | NS NS          | _    | _          | NA<br>NA | _ |            | A NA         | _       |           | P&A          |                              | с вері)    |
| OW-HH1                     |                 | - 10     | 1      |       | - 11  | 11   |          |        | . 1.5    |       |           | - 10   |       | 116      | 113      | .10      |     | 1      | - 10   | ~     | 110      | .10    |          |          |        | 116    |                          | .10          | 2.15     | - 1-0   |          |         | receive  |            |            | 1.15     | 15       |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          |   |            | S NS         |         | _         | _            | nth (snapsl                  | not)       |
| OW-HH2                     |                 |          |        | ⅎ     |       | 1    |          | L      |          |       | t         |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         | receive  | _          |            |          |          |                   |          |      |            |      | NS NS          |      |            | NS       |   |            | NS           | _       |           | _            | onth (snapsl                 |            |
| OW-CE1                     |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          | acc     | ess agre | eement  | receive  | d          |            |          |          |                   | NS       |      | IS NS      |      | NS NS          |      | NS         |          |   |            | S NS         |         |           | _            | nth (snapsl                  |            |
| OW-CE2                     | igsquare        |          |        |       |       |      |          |        | 1        |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          | $oxed{oxed}$ | <u> </u> |         | ess agr  |         |          | d          |            |          |          |                   | NS       |      | IS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         |           |              | nth (snapsl                  |            |
| OW-MT2                     | $\vdash$        |          | -      | -     | -     | -    | -        | -      | ++       |       |           |        | +     | -        | -        |          |     |        |        |       |          | 1-     |          |          |        |        | -                        | +            | -        |         |          |         | receive  | _          |            |          |          | NS                | NS       | l l  | IS NS      |      | NS NS          |      | NS         |          |   | NS         | S NS         | _       |           |              | nth (snapsl                  |            |
| OW-BARNOWL<br>OW-DAIRYWELI | $\vdash \vdash$ |          | _      | -     | -     | -    | -        |        | +        |       |           |        | -     | +        | -        |          |     |        |        |       |          | 1      | 1        |          |        |        |                          | +            | $\vdash$ |         |          |         | receive  | _          |            |          |          | NC                | NS       | N    | NS NS      |      | NS NS          |      | NS<br>NS   |          |   | NI:        | S NS         | _       | NS<br>NS  | _            | onth (snapsl<br>onth (snapsl |            |
| OW-DAIRY WELL              | $\vdash$        |          | -      | -     | -     |      | +        |        | ++       |       |           | -      | +     | +        |          |          |     |        |        |       |          | 1      | 1        |          |        |        |                          | +            | +        |         |          |         | receive  | _          |            |          |          |                   |          |      | NS NS      |      | NS NS          |      | NS<br>NS   |          |   | NS<br>NS   |              |         | NS<br>NS  |              | nth (snapsi<br>onth (snapsi  |            |
| RFR-3                      | NS              | NS 1     | NS N   | S N   | S N   | S NS | S NS     | NS     |          |       |           |        | N     | S NS     | NS       |          | NS  | NS     | NS     | N:    | S NS     | NS     |          | NS :     | NS N   | IS     | NS                       | NS           | NS       |         |          | IS N    |          | NS         |            | NS       | NS       |                   | NS       |      | NS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         | NS        | _            | nth (snapsl                  | ,          |
| RFR-4                      | NS              | NS 1     |        | S N   | .,    |      | S NS     | NS     | NS       |       |           | NS N   | IS To | ol NS    | NS       | NS       |     | NS     |        | S     | NS       | NS     | NS       |          | NS N   | IS     | NS                       | NS           | NS       | ]       | NS N     | IS N    | S        | NS         |            | NS       | NS       | NS                | NS       | N    | IS NS      | ]    | NS NS          | S    | NS         | NS       |   | S NS       |              |         | NS        | 9-mo         | nth (snapsl                  | hot)       |
| RFR-5                      |                 |          |        |       |       |      | S NS     |        |          |       |           | NS N   |       |          | NS       |          |     | NS     |        | S     |          | NS     |          |          | NS N   |        | NS                       |              |          |         | NS N     |         |          | NS         |            | NS       |          |                   | NS       |      | IS NS      |      | NS NS          |      | NS         |          |   | NS         |              | _       |           |              | nth (snapsl                  |            |
| RFR-8                      |                 |          | NS     |       | S NS  |      |          | NS     | NS       |       |           | NS N   |       |          |          | NS       |     |        | NS N   |       |          |        | NS       |          |        | IS NS  |                          |              |          | NS I    | NS       | N       | S NS     | NS         |            | NS       |          |                   | NS       |      | IS NS      |      | NS NS          |      | NS         |          |   | NS         |              |         |           |              | nth (snapsl                  |            |
| RFR-9<br>RFR-10            |                 | 1        | NS     | N     | S N   | S NS | )        |        | NS       | NS    | NS        | N      | IS N  | 5 NS     |          | NS       | NS  | NS     | N      | s N   | S NS     |        | NS       | NS :     | NS     | NS     | NS                       | NS           |          |         |          |         | NS       | NS         |            | NS       | NS       | NS                | NS       | ı    | IS NS      | NA   | NS NS          | )    | NS         | NS       |   | NS         | S NS         |         |           | 9-mo<br>Quar | nth (snapsl                  | iOt)       |
| RFR-10-A2                  |                 |          | N      | S     | N:    | S    | NS       |        | NS       |       | NS        | N      | IS    | NS       |          | NS       |     | NS     | N      | S     | NS       |        | NS       |          | NS     | NS     | 3                        | NS           |          | NS      | N        | IS      | NS       |            | NS         |          | NS       | NS                |          | NS   | NS         |      | NS             | NS   | S          | NS       |   | NS         | S            | NS      |           |              | nually (Ma                   | r & Sept)  |
| RFR-10-B2                  |                 |          |        |       |       |      | S NS     |        | NS       |       | NS        |        | NS S  | NS       |          | NS       |     | NS     |        | S     | NS       |        | NS       |          | NS     | NS     |                          | NS           |          | NS      |          | IS      | NS       |            | NS         |          | NS       | NS                |          | NS   | NS         |      | NS             | NS   |            | NS       |   | NS         |              |         |           |              | nually (Ma                   |            |
| RFR-11                     |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         |          |            |            |          |          |                   |          |      |            |      |                |      |            |          |   |            |              |         |           | Quar         |                              |            |
| RFR-11-A2                  |                 |          | N      | S     | N:    | S    | NS       |        | NS       |       | NS        | N      | NS .  | NS       |          | NS       |     | NS     |        | S     | NS       |        | NS       |          | NS     | NS     |                          | NS           |          | NS      | N        | IS      | NS       |            | NS         |          | NS       | NS                |          | NS   | NS         |      | NS             | NS   |            | NS       |   | NS         |              |         |           |              | nually (Ma                   |            |
| RFR-12                     |                 |          |        |       |       |      |          |        |          | XX.   | 11 Y      |        |       |          |          |          |     |        | NS N   |       |          | NS     |          |          | NS N   |        |                          |              | NS       | _       | N.T.C.   |         |          | NS         |            |          | NS       |                   | NS       |      | NS NS      | _    | NS NS          |      | NS         |          |   | NS<br>NS   |              |         |           |              | onth (snapsl                 | iot)       |
| RFR-13<br>RFR-14           | $\vdash \vdash$ |          | -      | +     | -     | -    | -        | -      | ++       | We    | ell Insta | atled  | +     |          | Well In  | ctolla.1 |     |        | NS N   | S N   | 5        | NS     | NS       | NS       | N      | IS NS  | NS NS                    |              | NS       | NS I    | NS       | N       | S NS     | NS         |            | NS<br>NS |          |                   | NS<br>NS |      | NS NS      |      | NS NS          |      |            | NS<br>NS |   |            | S NS         |         |           |              | ricity off<br>onth (snapsl   | hot)       |
| SLD-01                     | $\vdash$        |          | +      | +     | +     | +    | +        | 1      | ++       |       |           |        | +     | +        | wellin   | staned   |     |        |        |       |          |        |          | -        |        |        |                          |              | nermin   | sion to | ample    | grapted | no acc   | ace ann    | eement     |          | NS<br>NS |                   |          |      | NS NS      |      | NS NS          | ,    | INS.       | INS      |   | N.S        | , INS        |         |           | _            | onth (snapsl<br>onth (snapsl |            |
| SLD-01<br>SLD-02           | $\vdash$        |          | -      | +     | +     | +    | +        | 1      | +        | -+    | -+        |        | +     | +        | +        |          |     | -+     | -+     | +     | +        | +      | +        | -+       | -      | -      | +                        |              |          |         |          |         |          |            | eement     |          |          |                   |          |      | NS NS      |      | NS NS          | S    | NS         | NS       |   | N'         | S NS         |         |           |              | onth (snapsi                 |            |
| -                          |                 |          |        |       |       |      |          | 1      |          |       |           |        |       |          |          |          |     |        |        |       |          |        | <u> </u> |          |        |        |                          |              |          |         | 1 .      |         |          |            |            |          |          |                   |          |      |            |      |                |      |            |          |   |            |              | Sampled |           |              |                              |            |
|                            |                 |          |        |       |       |      |          |        |          |       |           |        |       |          |          |          |     |        |        |       |          |        |          |          |        |        |                          |              |          |         |          |         |          |            |            |          |          |                   |          |      |            |      |                |      |            |          |   | г          | Post GAC     |         |           |              |                              |            |

VOCs detected are greater than 90% of the MCL. Sample monthly; quarterly after GAC installation. VOCs detected are greater than 80% of the MCL. The well will be placed on a monthly sampling schedule until GAC installation then quarterly sampling after GAC installation.

VOCs detected are less than 80% of the MCL (<4.0 ppb and >0.06 ppb for PCE & <4.0 ppb >0.05 ppb for TCE). After four quarters of stable results the well can be removed from quarterly sampling.

This well has a GAC filtration unit installed by CSSA. Post GAC samples are collected every six months.
A1 - after GAC canister #1
A2 - after GAC canister #2

Yes To be sampled in Mar. 2016.

NS Not sampled for that event. No VOCs detected. Sample on an as needed basis. NA
Not applicable, sample could not be collected due to pump outage or well access conflict.

Post GAC samples: 7
Total Samples: 13



Table 2.2 March 2016 Off-Post Groundwater Results, Detected Analytes Only

|                        |                  |               |                    | cis-1,2-    | trans-1,2-  |            |       | Vinyl    |
|------------------------|------------------|---------------|--------------------|-------------|-------------|------------|-------|----------|
| Subdivision            | Well ID          | Sample Date   | 1,1-DCE            | DCE         | DCE         | PCE        | TCE   | Chloride |
|                        | LS-5             | 3/7/2016      |                    |             |             | 1.12F      | 2.50  |          |
|                        | LS-5-A2          | 3/7/2016      |                    |             |             |            |       |          |
| Leon Springs           | LS-6             | 3/7/2016      |                    |             |             | 0.76F      | 1.47  |          |
| Villas                 | LS-6-A2          | 3/7/2016      | -                  |             |             |            |       |          |
|                        | LS-7             | 3/7/2016      | -                  |             |             | 1.63       | 0.28F |          |
|                        | LS-7-A2          | 3/7/2016      |                    |             |             |            |       |          |
| Old                    | OFR-3            | 3/7/2016      |                    |             |             | 2.86       | 2.38  |          |
| Fredericksburg<br>Road | OFR-3-A2         | 3/7/2016      | -                  | -           |             |            |       |          |
|                        | RFR-10           | 3/7/2016      |                    | 0.18F       |             | 13.85      | 7.40  |          |
|                        | RFR-10 FD        | 3/7/2016      |                    |             |             | 13.33      | 6.76  |          |
|                        | RFR-10-A2        | 3/7/2016      | -                  | 0.17F       |             | 10.38      | 6.41  |          |
|                        | RFR-10-B2        | 3/7/2016      | -                  |             |             |            |       |          |
|                        | RFR-10-HKT       | 4/1/2016      |                    |             |             |            |       |          |
|                        | RFR-10-TKT       | 4/1/2016      |                    |             |             |            |       |          |
| Ralph Fair Road        | RFR-10           | 4/4/2016      | -                  | 0.17F       |             | 11.89      | 6.73  |          |
| Kaipii Faii Koau       | RFR-10-A1        | 4/4/2016      | -                  |             |             |            |       |          |
|                        | RFR-10-A2        | 4/4/2016      |                    |             |             |            |       |          |
|                        | RFR-10-B1        | 4/4/2016      |                    |             |             |            |       |          |
|                        | RFR-10-B2        | 4/4/2016      | -                  |             |             |            |       |          |
|                        | RFR-10-TANK      | 4/4/2016      |                    |             |             |            |       |          |
|                        | RFR-11           | 3/7/2016      |                    |             |             | 0.96F      | 1.62  |          |
|                        | RFR-11-A2        | 3/7/2016      |                    |             |             |            |       |          |
|                        |                  | Laboratory    | <b>Detection</b> L | imits & Max | ximum Conta | minant Lev | el    |          |
|                        | Method Detection | Limit (MDL)   | 0.12               | 0.07        | 0.08        | 0.06       | 0.05  | 0.08     |
|                        |                  | ng Limit (RL) | 1.2                | 1.2         | 0.6         | 1.4        | 1     | 1.1      |
|                        | Max. Contaminan  | t Level (MCL) | 7                  | 70          | 100         | 5          | 5     | 2        |

| BOLD | $\geq$ MDL |
|------|------------|
| BOLD | $\geq$ RL  |
| BOLD | ≥ MCL      |

All samples were analyzed by APPL, Inc.

VOC data reported in ug/L.

#### Abbreviations/Notes:

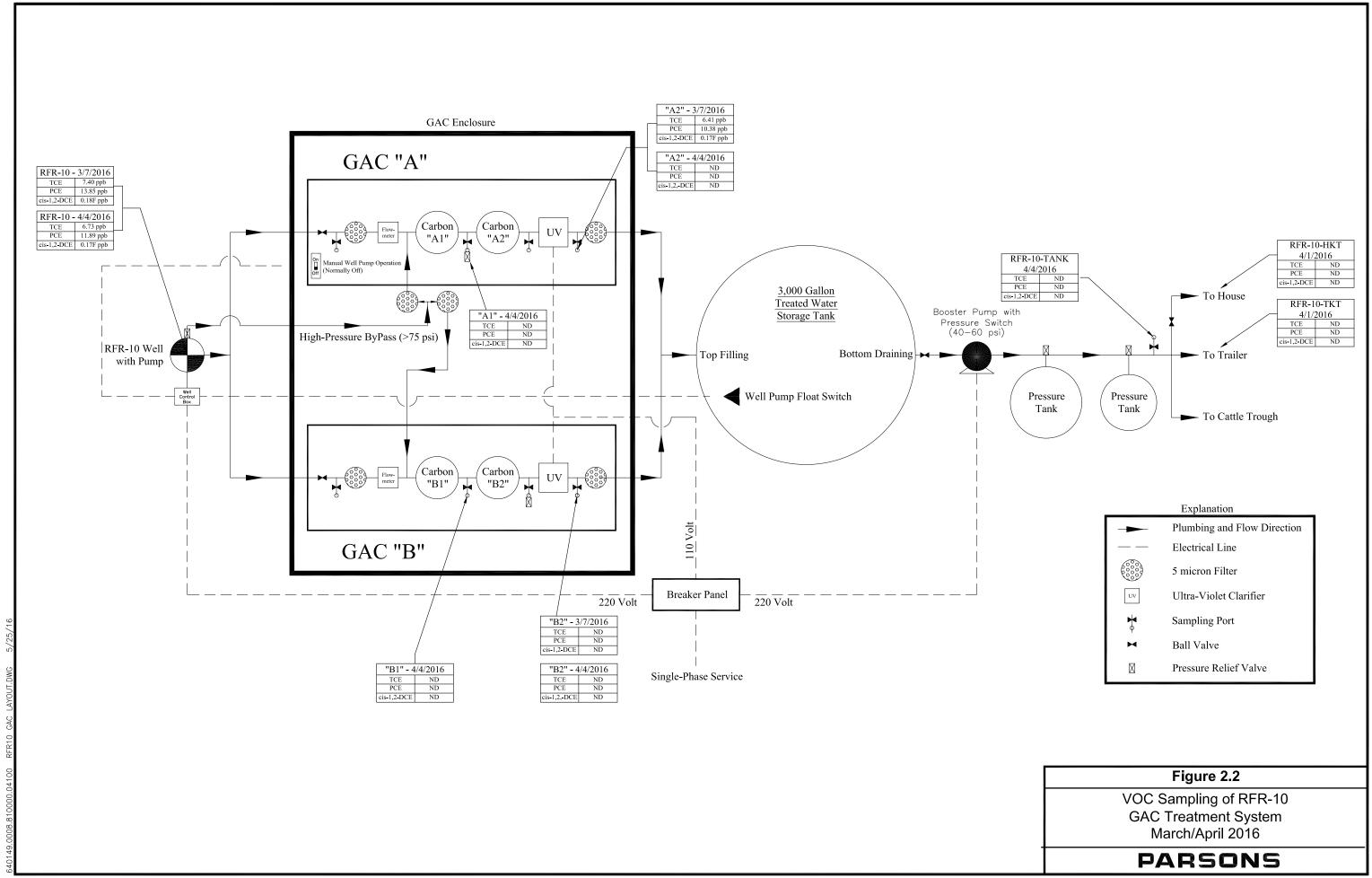
FD Field Duplicate
TCE Trichloroethene
PCE Tetrachloroethene
DCE Dichloroethene

#### Data Qualifiers:

--The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

F-The analyte was positively identified but the associated numerical value is below the RL.

Based on historical detections, the lateral extent of VOC detections extends beyond the south and west boundaries of CSSA. Past detections of VOCs have extended 0.37 miles south to well LS-4 and 2.9 miles west to SLD-01 (**Figure 2.1**).


#### 2.2 GAC SYSTEM SAMPLING

GAC-filtered samples were collected as part of the quarterly groundwater monitoring in March 2016. All GAC-filtered samples, with the exception of RFR-10-A2, were non-detect indicating the GAC systems are functioning properly. The next GAC-filtered samples will be collected in September 2016.

The GAC-filtered sample collected from the "A2" side of the RFR-10 GAC filtration system showed detections of PCE and TCE above the MCL (**Figure 2.2**). The "B2" side of the same GAC system showed no detection of VOCs. These two GAC systems run in parallel and are sent to a 3,000 gallon holding tank before distribution. Upon receipt of this result, tap samples were collected from the two homes fed by this well and the "A" side of the GAC system was turned off. These results initially indicated low levels of VOCs (less than the reporting limit [RL]) in the sample collected from the house kitchen tap (RFR-10-HKT) and no VOCs present in the tap sample collected from the trailer (RFR-10-TKT). Upon laboratory verification of this detection it was determined that no VOCs were present in either of the kitchen tap samples. Carbonair was contacted to change both carbon canisters on the "A" side of the system. Confirmation samples were collected from the "A2" and "B2" sides of the system and also between the carbon canisters (A1 and B1). All samples indicated that both sides of the GAC system were functioning properly. The "A" side of the GAC system was then placed back into service.

Due to the RFR-10 post-GAC sample detection the following changes will be made to the sampling protocol to minimize the time between sample collection and receipt of the results.

- Order expedited (3-day) turnaround times from the laboratory for all scheduled or unscheduled post-GAC (A2 and B2) sample analyses so that problems in GAC treatment are identified quickly.
- Collect post-GAC samples (A2 and B2) following each carbon canister replacement, in addition to the normal quarterly monitoring event, to identify any problems with replacement parts.
- Maintain a carbon canister at CSSA that can be transported to the well and installed by CSSA personnel if the service provider is unable to make a same day service call.



#### 3.0 SUMMARY AND RECOMMENDATIONS

Results of the March 2016 sampling event are summarized as follows:

- All six wells scheduled for collection in March 2016 were obtained during the quarterly monitoring event. Seven GAC filtered samples were collected from the treatment units serving those wells.
- Well RFR-10 exceeded the MCL in March 2016 for PCE and TCE. This well is equipped with two GAC filtration systems.
- PCE and/or TCE were detected above the Reporting Limits (RLs) in private drinking water wells LS-5, LS-6, LS-7, OFR-3, and RFR-11. These wells have GAC filtration systems in place.
- 1,1-DCE, *trans*-1,2-DCE, and vinyl chloride were not detected in any of the off-post wells sampled in March 2016.
- GAC-filtered samples were collected as part of the quarterly groundwater monitoring in March 2016. All GAC-filtered samples, with the exception of RFR-10-A2, were non-detect indicating the GAC systems are functioning properly. The next GAC-filtered samples will be collected in September 2016.
- The GAC-filtered sample collected from the "A2" side of the RFR-10 GAC filtration system showed detections of PCE and TCE above the MCL. The "B2" side of the same GAC system showed no detection of VOCs. Upon receipt of this result, tap samples were collected from the two homes fed by this well and the "A" side of the GAC system was turned off. Samples were collected from the kitchen faucets from the two homes served by the GAC system, which both returned non-detect results. The "A" side carbon canisters were immediately replaced and confirmation samples were collected. All samples indicated that both sides of the GAC system were functioning properly. The "A" side of the GAC system was then placed back into service.
- Due to the RFR-10 post-GAC sample detection the following changes will be made to the sampling protocol to minimize the time between sample collection and receipt of the results.
  - o Order expedited (3-day) turnaround times from the laboratory for all scheduled or unscheduled post-GAC sample analyses.
  - o Collect post-GAC samples following each carbon canister replacement.
  - Maintain a spare carbon canister at CSSA that can be transported to the well and installed by CSSA personnel if the service provider is unable to make a same day service call.
- Semi-annual GAC maintenance, including carbon change-out, was performed February 18, 2016. The next semi-annual GAC maintenance will be due in August 2016.
- In accordance with project DQOs, the rationale for the selection of 6 samples to be collected in June 2016 is provided in **Table 3.1**.

Table 3.1 Sampling Rationale for June 2016

| W. II II             | 2001          | 2002           |              | 2003        |        |          | 2004       |                                                  | 20      | 005        |         | 2000   | 6        | 2           | 007      |             | 20       | 008                                              |       | 2009         |         |            | 2010      |          | 2           | 011            | 20                | 012        | 20                | 13      |          | 2014      |      | 2015           |              | 2016                                                 |
|----------------------|---------------|----------------|--------------|-------------|--------|----------|------------|--------------------------------------------------|---------|------------|---------|--------|----------|-------------|----------|-------------|----------|--------------------------------------------------|-------|--------------|---------|------------|-----------|----------|-------------|----------------|-------------------|------------|-------------------|---------|----------|-----------|------|----------------|--------------|------------------------------------------------------|
| Well ID              | Sept Dec Ma   | r June Sept    | Dec Ma       | ar June Sep | ot Dec | Mar Jur  | ne Sept    | Dec M                                            | ar June | Sept 1     | Dec Mar | June S | Sept Dec | Mar June    | e Sept   | Dec Ma      | r June   | Sept De                                          | c Mar | June Se      | pt Dec  | Mar Ju     | ne Sept   |          |             |                | Mar June          |            |                   | _       |          | ne Sept D |      | June Sept      |              |                                                      |
| BSR-03<br>BSR-04     |               | +              | -            | +           |        |          |            | -                                                |         | -          |         | +      | _        |             | +        |             | _        | -                                                | -     | -            | _       | +          |           | acc      | ess agreer  | ment received  | NS<br>greement re |            | NS NS             | NS I    |          | NS N      |      | NS NS<br>NS NS |              | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| FO-8                 | NS NS         | NS NS          | NS           | NS NS       | S NS   | NS       | S NS       | NS                                               | NS      | NS I       | NS      | NS :   | NS NS    | NS          | NS       | NS          | NS       | NS NS                                            | 3     | NS N         | S NS    | N          | S NS      | NS       |             | NS NS          | NS NS             |            | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| FO-17                | NS NS         | - 1.00         |              | NS NS       |        | NS       | NS         |                                                  |         |            | NS NS   |        | NS NS    |             |          | NS NS       |          | NS N                                             |       |              | S NS    |            |           | NS 1     | NS          | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| FO-22<br>FO-J1       | NS NS         | NS NS          | N:           | S NS NS     | S      | NS NS    |            | N                                                | IS NS   |            | NS NS   |        | NS       | NS NS       | NS       | NS          | NS       | NS N                                             | 3     | NS N         | S NS    | N          | S NS      | NS       |             | NS NS          |                   | NS<br>NC N | NS NS<br>NA NS NS | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| HS-1                 | NS NS NS      | NS NS          | NS N         | S NS NS     | S NS   |          |            | NS N                                             | S NS    |            |         |        |          |             |          |             | _        |                                                  |       |              |         | NS N       | S NS      | -        | _           | NS NS          | NA NS             |            | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| HS-2                 | NS            |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         | N          |           |          | NS          | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| HS-3                 | NS NS         | NS NS          | NS N         | S NS        | S NS   | NS       | NS         | NS N                                             | S       | NS I       | NS NS   |        | NS NS    |             | NS<br>NS | NS NS       |          | NS NS                                            |       | NS N         | S NS    |            |           | NS I     |             | NS NS          | NS                | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| I10-2<br>I10-4       | NS            |                |              |             | NS     |          |            |                                                  |         |            |         | NS .   | NS NS    |             |          | NA NA       |          | NS NS                                            | ,     | NS N         | 5 NS    |            |           | NA I     | NS          | NS NS          | NS                | NS         | NS NS             |         |          | A NA N    |      |                |              | NS 9-month (snapshot)  NA P&A                        |
| I10-5                | NS NS NS      | NS NS          | N:           | S NS NS     |        | NS NS    |            |                                                  | S NS    | NS         | NS      | NS     | NS       | NS NS       |          |             |          |                                                  | S     | NS N         | S NS    |            | S NS      |          |             | NS NS          | NS                |            | NS NS             | NS I    | NS       | NS N      | S    | NS NS          | NA NS        | NS expired access agreement                          |
| I10-7<br>I10-8       | NS NS NS      | NS NS<br>NS NS |              |             | S NS   |          | NS<br>S NS |                                                  | e Ne    | NC         | NC      | NS     | NC       | NS NS       | NIC      | NIC         | NS       | NC                                               | NIC   | NS N         | C       | N          | S NA      | NA N     | NS          | NS NS<br>NS NS |                   | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot) NS 9-month (snapshot)          |
| I10-8<br>I10-9       | NS NS NS      | NS NS          | NS N         | 5 NS NS     | 5 NS   | No No    | 5 NS       | No N                                             | 5 N5    | No         | NS      | INS .  | NS       | No No       | No       | NS          | i No     | N5                                               | INS   | NS N         | 3       |            | access a  | agreemer | nt receive  |                | NS                |            | NA NA NA          |         |          |           |      |                | NA NA        |                                                      |
| I10-10               |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         |            | Leccissia | agreeme. | III TOCCIVO |                |                   | ccess agr  | reement received  | NS I    | NS NS    | S NS N    | S NS |                |              | NS One time sample                                   |
| JW-5                 |               | NS NS          |              | S NS NS     |        |          |            | NS N                                             | _       |            |         | NS :   |          |             | 210      | 110         |          | 110                                              |       |              | S NS    |            |           |          | T           | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| JW-6<br>JW-7         | NS NS         | S NS NS        | NS N         |             | S NS   | NS       | NS         | NS N                                             | S       | NS I       | NS NS   |        | NS NS    | NS          | NS       | NS NS       |          | NS N                                             | S NS  | N            | S NS    | NS         | NS        | NS 1     | NS          | NS NS<br>NS NS |                   | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| JW-8                 | NS NS NS      |                |              |             |        |          |            |                                                  | _       | $\vdash$   |         |        |          |             |          |             | +        |                                                  |       |              | _       |            |           | _        | _           | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| JW-9                 |               |                |              |             |        |          |            |                                                  |         | NS I       |         |        | NS NS    |             |          | NS          |          | NS N                                             |       |              | S NS    |            |           | NS 1     |             | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| JW-12                | NS NS         |                |              | S NS NS     |        |          | S NS       |                                                  |         |            | NS NS   |        |          | NS NS       |          | NA<br>NG NG |          | NA NA                                            |       |              |         |            |           |          |             |                |                   |            | NA NA NA          |         |          |           |      |                |              | NS 9-month (snapshot)                                |
| JW-13<br>JW-14       | NS NS         | S NS NS        | N            | S NS        | S NS   | NS       | NS         | NS N                                             | S       | NS I       | NS NS   |        | NS NS    | NS          | NS       | NS NS       |          | NS N                                             | S NS  | N            | S NS    | NS         | NS        | NS 1     | NS          | NS NS<br>NS NS | NS<br>NS          | NS<br>NS   | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot) NS 9-month (snapshot)          |
| JW-15                | NS NS NS      | NS NS          | NS N         | S NS NS     | S NS   | NS NS    | S NS       | NS N                                             | S       |            | 101     | NS :   | NS NS    | NS          | NS       | NS          | NS       | NS N                                             | 3     | NS N         | S NS    | N          | S NS      | NS       |             | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      |                | NA NS        |                                                      |
| JW-20                |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         |            |           |          |             |                |                   |            | ess agreement re  |         |          | N         |      | NS NS          |              | NS 9-month (snapshot)                                |
| JW-26<br>JW-27       | NS NS NS      | NS NS          | NS N         | S NS        | S NS   | NS       | NS         | NS N                                             | S NS    | NS<br>NS   | NS      | NS     | NS       | NS NS       |          | NA NA       | NA       | NA NA                                            | A NA  | NA N.        |         |            | S NS      | NS I     | NS          | NS NS<br>NS NS |                   | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS expired access agreement<br>NS 9-month (snapshot) |
| JW-28                |               | NS NS          | NS N         | _           | 3 143  | 145      | NS         | 145 14                                           | .5      | No         |         |        |          |             |          | NS NS       |          |                                                  | +     | NS N         | 5 145   |            | 5 115     | IND      |             | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS new homeowners                                    |
| JW-29                |               | NS NS          |              | S           |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         |            |           |          |             | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| JW-30<br>JW-31       | NS NS NS      | NS NS          | NS NA        | A NA NA     | A NA   | NA NA    | A NA       | NA N                                             | A NA    | N/A        | NA NA   | NYA .  | NA NA    | NA NA       | NIA      | NIA NIA     | NIA      | NA NA                                            | NYA   | NA N         |         |            |           | NS 1     | VIC.        | NS NS<br>NS NS |                   | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| LS-1                 | NA NA NA      | A NA NA        | NA N         | A NA NA     | A NA   | NA NA    | A NA<br>NS | NS N                                             |         |            | NS NS   |        | NS NS    | - 10 - 10 - |          | NS NS       |          | NA NA                                            | A NA  | NA N.        | A       |            |           | NS I     | NS          | NS NS          |                   | NS<br>NS   | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| LS-4                 |               |                |              |             |        |          |            | 11.0                                             |         |            |         |        |          |             |          | NS NS       |          |                                                  |       |              |         |            |           |          |             | NS NS          | NS                |            | NS NS             | NS I    |          | NS N      |      |                |              | NS 9-month (snapshot)                                |
| LS-5                 |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         |            |           | ~ . ~    |             | 10/11/11 200   | 110               |            |                   | 270     |          |           |      | 110            | 2.00         | Yes Quarterly                                        |
| LS-5-A2<br>LS-6      |               |                |              | _           |        |          |            |                                                  | _       |            |         |        | _        |             |          |             |          |                                                  | _     |              | _       |            |           | GAC      | ınstalled   | 10/6/11 NS     | NS                | N          | NS NS             | NS      | NS       | S N       | S    | NS             | NS           | NS Biannually (Mar & Sept) Yes Quarterly             |
| LS-6-A2              |               | NS             | NS           | NS          | NS     | NS       | S          | NS                                               | NS      | ]          | NS      | NS     | NS       | NS          |          | NS          | NS       | N:                                               | 3     | NS           | NS      | N          | S         | NS       | NS          | NS             | NS                | N          | NS NS             | NS      | NS       | S N       | S    | NS             | NS           | NS Biannually (Mar & Sept)                           |
| LS-7                 |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              |         |            |           |          |             |                |                   |            |                   |         |          |           |      |                |              | Yes Quarterly                                        |
| LS-7-A2<br>OFR-1     | NS            | NS             | NS           | NS          | NS     | NS       | S          | NS                                               | NS      | 1          | NS      | NS     | NS       | NS          |          | NS          | NS       | N:                                               | 3     | NS           | NS      | N          | S         | NS       | NS          | NS NS          | NS                | NS N       | NS NS NS          | NS I    | NS<br>NS |           |      | NS NA NA       | NS NA        | NS Biannually (Mar & Sept)  NA P&A                   |
| OFR-3                | NS            |                |              |             |        |          |            |                                                  | _       |            |         | +      |          |             |          |             |          |                                                  |       |              |         |            |           | NA N     | NS          | NS NS          | NS                | N5         |                   | NA NA 1 |          |           |      | NA NA          | NA NA        | Yes Quarterly                                        |
| OFR-3-A2             | NS NS         | NS             | NS           | NS          | NS     | NS       |            | NS                                               | NS      |            | NS      | NS     | NS       |             |          | NS          | NS       |                                                  | ,     | NS           | NS      |            | S         | NS 1     | NS NS       |                | NS                |            | NS NS             | NA NS 1 | NA NA    | A NA N    | A    | NS             | NS           | NS Biannually (Mar & Sept)                           |
| OFR-4                | NS NS NS      | NS NS          | NS N         | S           | NS     | NS       | S NS       | NS                                               | NS      | NS I       | NS      | NS :   | NS NS    | NS          | NS       | NS          | NS       | NS N                                             | S     | NS N         | S NS    |            | S NS      |          |             | NS NS          |                   | NS         | NS NS<br>NS NS    | NS I    |          | NS N      |      |                |              | NA P&A                                               |
| OW-HH1<br>OW-HH2     |               | ++-            |              | ++          |        |          | -          | <del>                                     </del> |         |            |         | + +    | _        |             |          |             |          |                                                  |       | +            |         | access agr |           |          |             |                | NS                | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          | NS<br>NS     | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| OW-CE1               |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             | ╧        |                                                  |       |              | _       | access agr |           |          |             |                |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          | NS           | ` * '                                                |
| OW-CE2               |               |                | $oxed{\Box}$ | $+$ $\top$  |        |          | $\perp$    |                                                  |         | $\Box$     |         | ₩Ţ.    |          |             | $\bot$   |             |          | $\perp \perp \perp$                              | 1     | $\perp \top$ |         | access agr |           |          |             |                |                   | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| OW-MT2<br>OW-BARNOWL | $\vdash$      | +              | $\vdash$     | +           |        | $\vdash$ | +-         | -                                                | +       | $\vdash$   |         | ++     |          | $\vdash$    | +        |             | +        | $\vdash$                                         | +     | +            | _       | access agr |           |          |             |                | NS                | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)<br>NS 9-month (snapshot)       |
| OW-DAIRYWEL          | լ             | + +            |              | + +         |        |          | +          |                                                  | +       | ++         |         | ++     | -        |             | +        |             | 1        | 1 1                                              | +     |              |         | access agr |           |          |             |                | NS                | NS         | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| OW-HH3               |               |                |              |             |        |          |            |                                                  |         |            |         |        |          |             |          |             |          |                                                  |       |              | _       | access agr |           |          |             |                | NS                | NS         | NS NS             | NS I    | NS       | NS N      | S    | NS NS          |              | NS 9-month (snapshot)                                |
| RFR-3<br>RFR-4       | 1.00 1.00 1.0 | NS NS          | 110 111      | S NS NS     |        | NIC      | S MG       | NS To                                            | S NS    |            |         | NS I   | NS NS    | NS NS       |          | NS<br>NS    | NS<br>NS | NS<br>NS                                         |       | NS N         |         | NS N       |           |          | NS<br>NS    | NS NS<br>NS NS |                   | NS<br>NS   | NS NS<br>NS NS    | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot) NS 9-month (snapshot)          |
| RFR-4<br>RFR-5       | NS NS NS      |                | - 100        |             |        |          | S NS       |                                                  |         | NS I       |         |        | NS NS    |             | NS       |             |          | NS<br>NS                                         |       | NS N         |         | NS N       |           |          | NS<br>NS    | NS NS          | NS<br>NS          |            | NS NS             | NS I    |          | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| RFR-8                | NS NS         |                | NS N         |             | S NS   | - 100    |            | NS N                                             | S       | NS I       | NS NS   |        | NS NS    | NS          | NS       | NS NS       |          | NS N                                             |       |              | S NS    | NS         |           | NS 1     |             | NS NS          | NS                | NS         | NS NS             | NS I    | NS       | NS N      |      | NS NS          |              | NS 9-month (snapshot)                                |
| RFR-9<br>RFR-10      | NS            | NS NS          | NS N         | S           | NS     | NS NS    | S          | NS N                                             | S NS    |            | NS NS   | NS     | NS       | NS NS       |          | NS NS       | NS       | N:                                               | S NS  | NS           |         |            |           | NS 1     | NS          | NS NS          | NS                | NS         | NS NS             | NA NS I | NS       | NS N      | S    | NS NS          | NS           | NS 9-month (snapshot) Yes Quarterly                  |
| RFR-10-A2            |               | NS             | NS           | NS          | NS     | NS       | S          | NS                                               | NS      |            | NS      | NS     | NS       | NS          |          | NS          | NS       | N:                                               | S     | NS           | NS      |            |           | NS       | NS          | NS             | NS                | N          | NS NS             | NS      | NS       |           |      | NS             | NS           | NS Biannually (Mar & Sept)                           |
| RFR-10-B2            |               | NS NS          | NS N         | S NS        | NS     | NS       | S          | NS                                               | NS      | 1          | NS      | NS     | NS       | NS          |          | NS          | NS       | N:                                               | 5     | NS           | NS      | N          | S         | NS       | NS          | NS             | NS                | N          | NS NS             | NS      | NS       | S N       | S    | NS             | NS           | NS Biannually (Mar & Sept)                           |
| RFR-11<br>RFR-11-A2  |               | NS             | NS           | NS          | NS     | NS       | S          | NS                                               | NS      |            | NS      | NS     | NS       | NS          |          | NS          | NS       | N:                                               | 3     | NS           | NS      | N          | S         | NS       | NS          | NS             | NS                | N          | NS NS             | NS      | NS       | S N       | S    | NS             | NS           | Yes Quarterly NS Biannually (Mar & Sept)             |
| RFR-12               |               | 110            | 110          | 110         | 1,5    | 146      |            | 110                                              | 1,13    |            |         |        | NS NS    | NS          | NS       |             |          | NS N                                             |       | NS N         |         |            |           | NA 1     | NS          | NS             | NS                | NS         | NS NS             | NS I    | NS       | NS N      | S    | NS NS          | NS           | NS 9-month (snapshot)                                |
| RFR-13               |               |                |              |             |        | Well     | Installed  |                                                  |         |            |         |        | NS NS    | NS          | NS       | NS NS       |          | NS N                                             | S NS  | N            | S NS    | NS         | NS        | NS 1     | NS          | NS NS          |                   | NS         | NS NS             | NS I    |          | NS N      |      |                | NA NA        |                                                      |
| RFR-14<br>SLD-01     | $\vdash$      | + +            | $\vdash$     | +           |        | $\vdash$ |            | -                                                | V       | Well Insta | alled   |        |          |             |          |             |          |                                                  |       | nor          | mission | to sample  | granted = | 0.300000 | agreemer    | NS NS          |                   | NS N       | NS NS<br>NA NS NS | NS I    | NS       | NS N      | S    | NS NS          | NS<br>NS     |                                                      |
| SLD-01<br>SLD-02     |               | + + -          |              | + +         |        |          |            | 1 1                                              | +       |            |         | +      | -        |             | +        |             | +        | <del>                                     </del> | 1     |              |         |            |           |          |             | n NA NS        |                   |            | NA NS NS          | NS I    | NS       | NS N      | S    | NS NS          |              | NS 9-month (snapshot)                                |
|                      |               | •              |              |             |        | •        |            | •                                                |         | •          |         |        |          |             |          |             |          |                                                  | _     |              |         | _          |           |          |             |                |                   |            |                   |         |          |           |      | •              | Wells Sample | d: 6                                                 |

VOCs detected are greater than 90% of the MCL. Sample monthly; quarterly after GAC installation. VOCs detected are greater than 80% of the MCL. The well will be placed on a monthly sampling schedule until GAC installation then quarterly sampling after GAC installation.

VOCs detected are less than 80% of the MCL (<4.0 ppb and >0.06 ppb for PCE & <4.0 ppb >0.05 ppb for TCE). After four quarters of stable results the well can be removed from quarterly sampling.

This well has a GAC filtration unit installed by CSSA. Post GAC samples are collected every six months.
Al - after GAC canister #1
A2 - after GAC canister #2

Yes
To be
sampled in
June 2016.

NS Not Sampled for that event.

No VOCs detected. Sample on an as needed basis. NA Not applicable, sample could not be collected due to pump outage or well access conflict.

Wells Sampled: 6
Post GAC samples: 0
Total Samples: 6

### APPENDIX A EVALUATION OF DATA QUALITY OBJECTIVES ATTAINMENT

Appendix A Evaluation of Data Quality Objectives Attainment

| Activity                          | Objectives                                                                                                                                            | Action                                                                                                                                            | <b>Objective Attained?</b> | Recommendations                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Field Sampling                    | Conduct field sampling in accordance with procedures defined in the project work plan, SAP, QAPP, and HSP.                                            | All sampling was conducted in accordance with the procedures described in the project plans.                                                      | Yes                        | NA                                                                                                                                                                                                                                                                                                                                       |  |  |
| Contamination<br>Characterization | Determine the potential extent of off-post contamination (§2.3.1 of the DQOs for the Groundwater Contamination Investigation, revised November 2010). | Samples for laboratory analysis were collected from selected off-post public and private wells, which are located within a 3 mile radius of CSSA. | Partially                  | Replace wells where no VOCs were detected with wells that may be identified in the future, located to the west and southwest of Area of Concern (AOC)-65 to provide better definition of Plume 2. Continue sampling of wells to the west of Plume 1 (Fair Oaks and Jackson Woods) to confirm any detections possibly related to Plume 1. |  |  |
| (Groundwater<br>Contamination)    | Meet CSSA QAPP quality assurance                                                                                                                      | Samples were analyzed in accordance with the CSSA QAPP, and approved variances. A chemist verified all data.                                      | Yes                        | NA                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                   | requirements.                                                                                                                                         | All data flagged with a "U" and "J" are usable for characterizing contamination.                                                                  | Yes                        | NA                                                                                                                                                                                                                                                                                                                                       |  |  |

| Activity                       | Objectives                                                                                                                                                                                                | Action                                                                                                                                                                                                                                                                                                                         | Objective Attained? | Recommendations                                                                                                                                                                                            |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Evaluate CSSA monitoring program and expand as necessary (§2.3.1 of the DQOs for the Groundwater Contamination Investigation, revised November 2010). Determine locations of future monitoring locations. | Evaluation of data collected is ongoing and is reported in this quarterly groundwater report and will be reported in future quarterly groundwater reports. Additional information covering the CSSA monitoring program is available in Volume 5, CSSA Environmental Encyclopedia.                                              | Yes                 | Continue data evaluation and quarterly teleconferences for evaluation of the monitoring program. Each teleconference/ planning session covers expansion of the quarterly monitoring program, if necessary. |
| Project Schedule/<br>Reporting | The quarterly monitoring project schedule shall provide a schedule for sampling, analysis, validation, verification, reviews, and reports for monitoring events offpost.                                  | A schedule for sampling, analysis, validation, verification and data review, and reports is provided in this quarterly groundwater report and will be reported in future quarterly groundwater reports. Additional information covering the CSSA monitoring program is available in Volume 5, CSSA Environmental Encyclopedia. | Yes                 | Continue quarterly reporting to include a schedule for sampling, analysis, validation, and verification and data review and data reports.                                                                  |

| Activity    | Objectives                                                                                                     | Action                                                     | Objective Attained? | Recommendations                                                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remediation | Evaluate the effectiveness of GACs (§3.2.3) and install as needed (§3.2.5 both of the DQOs for the Groundwater | Perform maintenance as needed. Install new GACs as needed. | Yes                 | Maintenance to the off-post GAC systems to be continued by Parsons' personnel every 3 weeks. Twice yearly (or as needed) maintenance to the off-post GAC systems by additional subcontractors to continue. |
|             | Contamination Investigation, revised November 2010).                                                           | Orics as needed.                                           |                     | Evaluations of future sampling results for installation of new GAC systems will occur as needed.                                                                                                           |

# APPENDIX B MARCH 2016 QUARTERLY OFF-POST GROUNDWATER ANALYTICAL RESULTS

Appendix B
March 2016 Quarterly Off-post Groundwater Analytical Results

|             |             |         | cis-1,2- | trans-1,2- |       |       | Vinyl    |
|-------------|-------------|---------|----------|------------|-------|-------|----------|
| Well ID     | Sample Date | 1,1-DCE | DCE      | DCE        | PCE   | TCE   | Chloride |
| LS-5        | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 1.12F | 2.5   | 0.08U    |
| LS-5-A2     | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| LS-6        | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.76F | 1.47  | 0.08U    |
| LS-6-A2     | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| LS-7        | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 1.63  | 0.28F | 0.08U    |
| LS-7-A2     | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| OFR-3       | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 2.86  | 2.38  | 0.08U    |
| OFR-3-A2    | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10      | 3/7/2016    | 0.12U   | 0.18F    | 0.08U      | 13.85 | 7.4   | 0.08U    |
| RFR-10 FD   | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 13.33 | 6.76  | 0.08U    |
| RFR-10-A2   | 3/7/2016    | 0.12U   | 0.17F    | 0.08U      | 10.38 | 6.41  | 0.08U    |
| RFR-10-B2   | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-HKT  | 4/1/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-TKT  | 4/1/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10      | 4/4/2016    | 0.12U   | 0.17F    | 0.08U      | 11.89 | 6.73  | 0.08U    |
| RFR-10-A1   | 4/4/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-A2   | 4/4/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-B1   | 4/4/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-B2   | 4/4/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-10-TANK | 4/4/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |
| RFR-11      | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.96F | 1.62  | 0.08U    |
| RFR-11-A2   | 3/7/2016    | 0.12U   | 0.07U    | 0.08U      | 0.06U | 0.05U | 0.08U    |

| BOLD | $\geq$ MDL |
|------|------------|
| BOLD | $\geq$ RL  |
| BOLD | ≥ MCL      |

All samples were analyzed by APPL, Inc.

VOC data reported in ug/L. **Abbreviations/Notes:** 

FD Field Duplicate
TCE Trichloroethene
PCE Tetrachloroethene
DCE Dichloroethene

#### Data Qualifiers:

U-The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

F-The analyte was positively identified but the associated numerical value is below the RL.

### APPENDIX C DATA VALIDATION REPORTS

SDG 78870 SDG 79220

#### DATA VERIFICATION SUMMARY REPORT

## for off-post samples collected from CAMP STANLEY STORAGE ACTIVITY

#### **BOERNE, TEXAS**

Data Verification by: Tammy Chang Parsons - Austin

#### **INTRODUCTION**

The following data verification summary report covers thirteen groundwater samples and the associated field quality control (QC) samples collected from off-post Camp Stanley Storage Activity (CSSA) on March 8, 2016. The samples were assigned to the following Sample Delivery Group (SDG). All samples were analyzed for volatile organic compounds (VOCs).

78870

The field QC samples associated with this SDG were one trip blank (TB) and one set of parent/field duplicate (FD) samples. TB was analyzed for VOC only. No ambient blanks were collected. During the initiation of this project, it was determined that ambient blanks were not necessary due to the absence of a source at these sites.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. Samples in this SDG were shipped to the laboratory in two cooler. Both coolers were received by the laboratory at a temperature of 4.5 °C, which was within the 2-6°C range recommended by the CSSA QAPP. There were other samples involved in the shipment. All VOC vial were packed in one cooler.

#### **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

PAGE 1 OF 3

#### **VOLATILES**

#### General

The volatiles portion of this data package consisted of fourteen (14) off-post groundwater samples and one (1) TB. There was a set of parent/FD collected. All samples were collected from March 7, 2016 and analyzed for a reduced list of VOCs which included: 1,1-dichloroethene, *cis*-1,2-dichloroethene, tetrachloroethene, *trans*-1,2-dichloroethene, trichloroethene, and vinyl chloride.

The VOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8260B. The samples were analyzed in three analytical batches #205443, #205459, and #205494, with two instrument under two sets of initial calibration (ICAL). All samples were analyzed following the procedures outlined in the CSSA QAPP and were prepared and analyzed within the holding time required by the method. All analyses were performed undiluted.

#### Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the three laboratory control spike (LCS) samples and the surrogate spikes.

All LCSs and surrogate spike recoveries were within acceptance criteria.

#### **Precision**

Precision was evaluated based on the relative percent difference (%RPD) between the parent and FD sample results. Sample RFR-10 was collected in duplicate.

Only TCE and PCE were detected above the reporting limit (RL).

| Analyte | Parent (µg/L) | FD (µg/L) | %RPD | Criteria (%RPD) |
|---------|---------------|-----------|------|-----------------|
| TCE     | 7.40          | 6.76      | 9.0  | ≤30             |
| PCE     | 13.85         | 13.33     | 3.8  | ≤30             |

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining trip and laboratory blanks for cross contamination of samples during transit or analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

PAGE 2 OF 3

- All instrument performance check criteria were met.
- All initial calibration criteria were met for both sets of curves.
- All three LCSs were prepared using a secondary source standard. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- All internal standard criteria were met.

There were three method blanks and one TB associated with the VOC analyses in this SDG. All blanks were non-detect at method detection limits for all target VOCs.

#### **Completeness**

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All VOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

#### DATA VERIFICATION SUMMARY REPORT

## for off-post samples collected from CAMP STANLEY STORAGE ACTIVITY

#### **BOERNE, TEXAS**

Data Verification by: Tammy Chang Parsons - Austin

#### INTRODUCTION

The following data verification summary report covers eight groundwater samples and the associated field quality control (QC) sample collected from off-post Camp Stanley Storage Activity (CSSA) on April 1<sup>st</sup> and 4, 2016. The samples were assigned to the following Sample Delivery Group (SDG). All samples were analyzed for volatile organic compounds (VOCs).

79220

The field QC samples associated with this SDG was one trip blank (TB). TB was analyzed for VOC only. No ambient blanks were collected. During the initiation of this project, it was determined that ambient blanks were not necessary due to the absence of a source at these sites.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. Samples in this SDG were shipped to the laboratory in two cooler. Both coolers were received by the laboratory at a temperature of 3.0 °C, which was within the 2-6°C range recommended by the CSSA QAPP. There were other samples involved in the shipment. All VOC vial were packed in one cooler.

#### **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

PAGE 1 OF 3

#### **VOLATILES**

#### General

The volatiles portion of this data package consisted of eight (8) off-post groundwater samples and one (1) TB. All samples were collected on April 1<sup>st</sup> and 4th, 2016 and analyzed for a reduced list of VOCs which included: 1,1-dichloroethene, *cis*-1,2-dichloroethene, tetrachloroethene, *trans*-1,2-dichloroethene, trichloroethene, and vinyl chloride.

The VOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8260B. The samples were analyzed in one analytical batches #206250, with one instrument under one set of initial calibration (ICAL). All samples were analyzed following the procedures outlined in the CSSA QAPP and were prepared and analyzed within the holding time required by the method. All analyses were performed undiluted.

#### Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample and the surrogate spikes.

All LCS and surrogate spike recoveries were within acceptance criteria.

#### **Precision**

Precision could not be evaluated due to the lack of duplicate analysis in this SDG.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining trip and laboratory blanks for cross contamination of samples during transit or analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met for both sets of curves.
- The LCS was prepared using a secondary source standard. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.

PAGE 2 OF 3

 $\hbox{C:} \verb|VUSERS| P0087112| DOCUMENTS| CSSA| GROUNDWATER| OFF-POST| 2016| MARCH| DVRS| DVR 79920 (OFF POST) APRIL 1 AND 4 2016. DOC$ 

- All continuing calibration verification (CCV) criteria were met.
- All internal standard criteria were met.

There were one method blank and one TB associated with the VOC analyses in this SDG. All blanks were non-detect at method detection limits for all target VOCs.

#### **Completeness**

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All VOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.