FINAL

DATA QUALITY OBJECTIVES GROUNDWATER MONITORING PROGRAM

Prepared for

CAMP STANLEY STORAGE ACTIVITY BOERNE, TEXAS

Revised November 2009

GEOSCIENTIST CERTIFICATION

Data Quality Objectives – Groundwater Contamination

For

Department of the Army Camp Stanley Storage Activity Boerne, Texas

I, Julie Burdey, P.G., hereby certify that the Data Quality Objectives for the Groundwater Monitoring Program for the Camp Stanley Storage Activity installation in Boerne, Texas accurately represents the site conditions of the subject area. This certification is limited only to geoscientific products contained in the subject report and is made on the basis of written and verbal information provided by the CSSA Environmental Office, laboratory data provided by APPL and/or DHL, and field data obtained during groundwater monitoring conducted at the site, and is true and accurate to the best of my knowledge and belief.

Juin Burdey

Julie Burdey, P.G. State of Texas Geology License No. 1913

11/12/2009

Date

CONTENTS

STEP 1 STATE THE PROBLEM	1
1.1 BACKGROUND	1
1.2 PLANNING TEAM	1
1.2.1 CSSA	1
1.2.2 Army Corps of Engineers	1
1.2.3 Contractors	1
1.2.4 Decision Makers	1
STEP 2 IDENTIFY THE DECISIONS	2
2.1 CURRENT DECISIONS	2
2.2 Remediation Decisions	2
2.3 FUTURE DECISIONS	2
2.4 ALTERNATIVE DECISION	3
STEP 3 IDENTIFY THE INPUTS TO THE DECISION	4
3.1 GENERAL CSSA INPUTS	4
3.2 OFF-POST SAMPLING	5
3.3 ON-POST SAMPLING	7
3.4 On-post Drinking Water Well Sampling	8
3.5 ON-POST MONITORING AND AGRICULTURAL WELLS	8
3.6 WATER LEVELS	8
3.7 New Monitoring Wells	9
STEP 4 DEFINE THE BOUNDARIES OF THE STUDY	0
4.1 Project Schedule1	0
4.1.1 Definitive Data Reports (Drinking Water and Monitoring Well)	0
4.1.2 Screening Data Reports (Discrete interval, soil/rock, and IDW samples) 1	1
4.1.3 Westbay [®] Multi-Level Sampling Device Reports	1
STEP 5 DEVELOP A DECISION RULE 1	3
STEP 6 SPECIFY TOLERABLE LIMITS ON DECISION ERRORS	4
STEP 7 OPTIMIZE THE DESIGN FOR OBTAINING DATA 1	5

LIST OF FIGURES

Figure 1	CSSA Monitoring Well Network, March 2009	
Figure 2	VOC Action Levels	
Figure 3	PCE Concentrations for LGR Wells, Max. 2008	
Figure 4	TCE Concentrations for LGR Wells, Max. 2008	
Figure 5	cis-1,2-DCE Concentrations for LGR Wells, Max. 2008	
Figure 6	Timeline for Groundwater Sampling	

APPENDICES

Appendix A	Approval from USEPA and TCEQ for Previous DQOs and Implementation of LTMO Recommendations
Appendix B	Summary of Historical Detections by Well, 1999 through June 2009
Appendix C	Statistical Summary of Occurrence of Groundwater Contaminants
Appendix D	Groundwater Metals Detections above the MCL, 1995-2009
Appendix E	Summary of Three-Tiered Long Term Monitoring Network Optimization
Appendix F	List of all CSSA Groundwater Monitoring Program On-Post Well Locations and the Rationale for Installation

INTRODUCTION

In April 2002, data quality objectives (DQOs) for Camp Stanley Storage Activity's (CSSA) groundwater monitoring program were formally developed using U.S. Environmental Protection Agency's (USEPA's) *Guidance for the Data Quality Objectives Process* (EPA/600/R-96/055). The DQO process is a planning tool for data collection activities. It provides a basis for balancing decision uncertainty with available resources. The April 2002 DQOs, and subsequent updates in 2003 and 2006, were approved by the USEPA and the Texas Commission on Environmental Quality (TCEQ). Approval letters are included in **Appendix A**.

These revised DQOs are submitted to incorporate recent changes to the groundwater program. These changes include: revised metals analyte list for on-post wells, addition of an annual 'snapshot' event, implementation of the updated 2010 LTMO recommendations both onand off-post (pending TCEQ and USEPA approval), the addition of 1 drinking water well.

After the March 2008 event it was determined that chromium and mercury would be added back to the on-post metals sampling list and nickel would be dropped. Chromium and mercury were added back due to analytical findings in new monitoring wells installed in early 2007. Nickel was dropped from the list because there is no enforceable regulatory standard set by the USEPA. Off-post wells will be analyzed for the same short list of VOCs as the on-post wells.

The format of these DQOs follows the seven-step process identified in the above-referenced USEPA guidance document.

STEP 1 STATE THE PROBLEM

Past operations resulted in contamination at CSSA and previous investigations have documented the presence of volatile organic compounds (VOCs) in soil, groundwater, and rock; and metals in soils. The extents of these contaminants are not fully characterized at CSSA; however, 62% of solid waste management units (SWMUs) and areas of concern (AOCs) have been remediated and closed. This DQO document is focused on CSSA's groundwater monitoring program, well installations, sampling and analyses, recharge studies, and other associated activities.

1.1 Background

CSSA has identified three VOC source areas as sites that have contaminated groundwater. They are SWMU B-3 and O-1, and AOC-65. Based on present knowledge, there are two groundwater VOC plumes, known as Plume 1 and 2. Current interpretations suggest Plume 1 is associated with SWMUs B-3 and O-1, and Plume 2's source is AOC-65. CSSA has identified VOCs at detectable levels in on- and off-post drinking water and monitoring wells. These levels are above and below the maximum contaminant levels (MCLs) for the VOCs of concern as discussed in Section 4. Appendix B, attached, presents a summary of historical detections presented by well for the short list of VOCs and metals through June 2009.

1.2 Planning Team

1.2.1 CSSA

Ms. Glaré Sanchez, CSSA Environmental and Safety Program Manager

1.2.2 Army Corps of Engineers

Mr. Wayne Elliott, USACE Contracting Officer's Representative

1.2.3 Contractors

Mr. Christopher Beal, P.G., Contract Geologist, Portage Environmental

Ms. Julie Burdey, P.G., Project Manager, Parsons

Mr. Brian Vanderglas, P.G., Project Manager, Parsons

Ms. Tammy Chang, Project Chemist, Parsons

- Ms. Kimberly Vaughn, P.G., Deputy Project Manager, Parsons
- Mr. Scott Pearson, P.G., Task Manager, Parsons
- Ms. Samantha Elliott, Task Manager, Parsons

1.2.4 Decision Makers

Mr. Jason D. Shirley, Installation Manager, CSSA

Ms. Glaré Sanchez, CSSA Environmental and Safety Program Manager

Mr. Greg Lyssy, U.S., USEPA, Region 6

Mr. Sonny Rayos, TCEQ, Corrective Action Section

STEP 2 IDENTIFY THE DECISIONS

2.1 Current Decisions

A detailed discussion of these current decision items is given in Section 3:

Determine whether on- and neighboring off-post drinking water meets the VOC standards for safe drinking water as prescribed under USEPA and TCEQ rules.

Determine if VOC concentrations in on-post and neighboring off-post drinking water wells exceed levels established in these project DQOs and the CSSA Off-Post Monitoring Response Plan and whether the VOC concentration requires an action by CSSA.

Determine which formation(s) in the Upper and Middle Trinity Aquifer are impacted by the VOC contaminants.

Determine if there are additional contaminants of concern (COCs) and identify the list of VOCs and metals to be sampled for.

Determine the necessary sampling frequency for on-post wells by implementing the LTMO.

Determine the necessary sampling frequencies for off-post wells without considering the findings of the LTMO study, which has not been approved by TCEQ for off-post implementation.

Identify data gaps in groundwater monitoring program, including, but not limited to plume delineation, analytes, additional well locations, fracture flow/matrix flow/conduit flow determinations, water balance issues (precipitation data, published recharge infiltration rates, discharge from water supply wells and other parameters), and recharge study concepts.

2.2 Remediation Decisions

Determine potential remediation goals based upon the media impacted and COCs. Identify cost-effective and technically appropriate remedial alternatives (i.e., soil vapor extraction, bioreactor, monitored natural attenuation, pump and treat, chemical treatment, etc.) for cleaning up groundwater.

Continue to determine the effectiveness of the granular activated carbon (GAC) filtration units for the removal of VOCs from public and private off-post wells. Determine if additional GAC units are needed as specified in CSSA's Off-post Monitoring Response Plan.

Determine if the plume is expanding or shrinking for future remediation decisions.

2.3 Future Decisions

Determine if additional off-post drinking water wells need to be sampled, and if so, identify the most appropriate locations to monitor the status of the plumes.

Select proper placement of future monitoring wells on- and off-post from historical results and statistical analyses.

Determine whether groundwater sampling should be expanded or reduced for on- and offpost wells based on recent and historical data. The LTMO study will be updated in 2010 with five additional years of monitoring data to determine whether the sampling program should be expanded or reduced.

Determine when modifications to the CSSA **Off-post Monitoring Response Plan** (June 2002) are necessary and provide input to the USEPA and TCEQ.

2.4 Alternative Decision

Determine if no further action is necessary (no additional groundwater monitoring or program activities).

STEP 3 IDENTIFY THE INPUTS TO THE DECISION

3.1 General CSSA Inputs

CSSA owns and operates three groundwater wells as part of TCEQ public water system (PWS 0150117). Sampling required by the TCEQ related to the operation of the CSSA PWS is not covered under these DQOs. TCEQ collects samples from the PWS drinking water wells at frequencies determined by TCEQ PWS regulations. TCEQ will also collect split samples from other monitoring well locations at their discretion. A fourth groundwater well has recently been drilled and will be added to CSSA's water supply system in late 2009 or early 2010.

Metals and VOCs will be sampled from CSSA on-post wells and VOCs only will be sampled from off-post wells. Frequencies for sampling are discussed in Sections 3.2 to 3.5, below. Only those COCs that have statistically significant detections above the reporting limit (RL) and the MCL based on historical data will be analyzed, and a statistical summary of the occurrence of groundwater COCs as prepared in the LTMO is provided in **Appendix C**. **Appendix B** includes a summary of all detections of VOCs and metals in sampled wells.

Newly installed on-post wells will be sampled the first time for the cadmium, lead, nickel, arsenic, barium, calcium, chromium, copper, iron, magnesium, manganese, mercury, potassium, sodium, and zinc and the full list of VOCs. Bromide, chloride, fluoride, nitrate, nitrite, sulfate, alkalinity, TDS, pH, resistivity, and bicarbonate will also be collected from newly installed wells. Existing on-post wells will be now be analyzed for the metals chromium, cadmium, lead, and mercury as agreed upon by the TCEQ and USEPA during the October 30, 2008 meeting. Nickel will be dropped from the sampling list due to the lack of an MCL, also agreed upon by the TCEQ and USEPA. Metals and VOCs 1,1-dichloroethene, *cis*-1,2-dichloroethene, *trans*-1,2-dichloroethene, tetrachloroethene, trichloroethene and vinyl chloride (VOC Short List) will be collected from on-post wells. Additional analytes may be included in subsequent events due to results from the initial sampling event. A newly installed monitoring well will initially be sampled for four consecutive quarterly events to provide data for temporal and spatial statistical evaluation in future LTMO studies. Off-post wells will be sampled for the VOC Short List for four quarterly events. After one year of sampling, a future LTMO evaluation will be performed to provide a recommended sampling frequency for the well.

An effort will be made to collect one round of samples from each on-post well per year, despite LTMO recommendations. This annual event will provide a "snapshot" of groundwater concentrations and elevations across the installation. Ideally, this annual event will "rotate" through the quarters so that seasonal variations can be captured. However, drought periods will be avoided due to the number of wells/sampling intervals that go dry during droughts. Any proposed modifications for future sampling will be submitted to USEPA and TCEQ for concurrence. **Figure 1** illustrates all on- and off-post well locations included in this DQO evaluation.

3.2 Off-post Sampling

Public and private off-post drinking water wells with historical VOC detections will be sampled in accordance with these project DQOs, the Off-Post Monitoring Response Plan, and the LTMO pending approval by the TCEQ and USEPA. Off-post groundwater sampling is conducted quarterly, in March, June, September, and December. The list of wells to be included in each event is determined based on the decisions provided below.

Off-post drinking water wells will be analyzed for the VOC Short List (1,1-dichloroethene, *cis*-1,2-dichloroethene, *trans*-1,2-dichloroethene, tetrachloroethene, trichloroethene and vinyl chloride), upon initial sampling. Metals will not be sampled in off-post wells because construction materials used for the off-post wells are not known. Metals detections above the appropriate action level or MCL have not been frequently detected in groundwater sampled from on-post wells. Metals have been sampled in on-post monitoring, agricultural/livestock, and drinking water wells since 1995. Based on the infrequent and inconsistent on-post detections, metals have not been sampled in off-post monitoring activities. Previous summaries of metals results were presented to TCEQ by correspondence on September 24, 2003, explaining the rationale for sampling VOCs only in off-post wells and the updated summary is attached as **Appendix D**.

Six off-post wells have had historical sampling results exceeding the MCL for tetrachloroethene (PCE) and/or trichloroethene (TCE) and five of these wells have been equipped with GAC water treatment systems. Pre-GAC samples will be collected quarterly to continue plume characterization. Post-GAC samples will be collected semi-annually to confirm GAC filtration is operating properly. These wells with GAC systems include LS-6, LS-7, OFR-3, RFR-10, and RFR-11. Previous analytical results and GAC water treatment systems installed on these wells are available in **Volume 5**, **Groundwater** of the **CSSA Environmental Encyclopedia**, behind the Off-post Groundwater Monitoring Reports Table of Contents. Well 110-4 has also recently had PCE concentrations exceeding the MCL. However, this well does not have a pump, is situated on a vacant lot, and is not used. The landowner has been notified of the concentrations and has been told that CSSA will install a GAC system or provide potable water. CSSA will monitor I10-4 and confirm its status quarterly.

Private drinking water wells (LS-6, LS-7, OFR-3, RFR-10, and RFR-11) with a GAC system or any future wells with GAC systems installed will require semi-annual maintenance. Post-GAC samples will be collected to confirm each system's effectiveness during the next scheduled quarterly sampling event after maintenance has occurred.

Action levels for detection of VOCs and decisions to sample an off-post private well are based on the following, see also **Figure 2**.

• If VOC contaminant levels are ≥ 90% of the MCL based on preliminary data received from the laboratory [≥ 4.5 parts per billion (ppb) for PCE and TCE] and the well is used as a potable water source, bottled water will be supplied within 24 hours of receipt of the data, and a confirmation sample will be collected from the well. The resampling will take place within 14 days of the receipt of the final validated analytical report. If the follow-up sampling confirms a COC is above MCLs, the residence or supply well will be evaluated and an appropriate method for wellhead protection, either installation of GAC or connection to an alternative water source will be

selected. Cost related to the installation and maintenance of wellhead treatment equipment or connection to an alternative water source will be borne by CSSA.

- If VOC contaminant levels are ≥ 80% of the MCL during any single monitoring event based on preliminary data from the laboratory (4.0 ppb for PCE and TCE) and the well is used as a potable water source, it shall be monitored monthly. If the follow-up sampling confirms a COC is ≥ 80% of the MCL, it will be re-sampled until the level falls below the 80% value. If the concentration increases to ≥ 90% of the MCL see above.
- If any VOC COC is detected at levels ≥ the MDL (historically around 0.11 ppb for PCE and 0.14 ppb for TCE), and less than 80% of the MCL the well will be resampled on a quarterly basis. This sampling will be conducted concurrently with onpost sampling events and will be used to develop historical trends in the area. Quarterly sampling will continue for a minimum of one year, after which the sampling frequency will be reviewed and possibly decreased.
- If VOCs are not detected during the initial sampling event, (i.e. no VOC contaminant levels above the MDL), further sampling of the well would be considered on an as needed basis. A well that has no detectable VOCs can be removed from sampling, unless plume migration could influence the well. The well owner will be apprised of any re-sampling decisions regarding the non-detect wells.

Action levels for detection of VOCs and decisions to sample an off-post public well are based on the following, see also **Figure 2**.

- If an off-post public supply system is ≥ 90% of the MCL, CSSA will coordinate solutions to the maximum extent feasible. The system operator and CSSA will determine the best course of action for providing potable water when data suggests an exceedance of the MCL. Possible options include:
 - Potable water could be brought in by tanker truck.
 - Potable water could be provided by another water system.
 - A wellhead treatment system (i.e., GAC) can be installed by CSSA.

Expansion or reduction of the off-post drinking water wells to be sampled will be dependent on an evaluation of previous results. In 2010 the LTMO study will be updated with 5 additional years of groundwater monitoring data. In November 2009 a public meeting will be held, and information regarding the LTMO study and possible changes to the off-post sampling program will be presented. CSSA plans to implement the recommendations of the updated LTMO study for off-post wells, pending TCEQ and USEPA approval. LTMO recommendations for on-post wells were implemented in December 2005.

New off-post drinking water wells may be added to the program in the future. Locations of new wells to be sampled will be based on the inferred-flow direction of the off-post VOC plume derived from historical data. Concerns of area residential well owners or municipal water purveyors will be dealt with on a case-by-case basis. These decisions will be made based on the action levels given above. Additional information on the inclusion of off-post wells to the sampling program is available in Volume 5, Groundwater, of the CSSA Environmental Encyclopedia.

3.3 **On-post Sampling**

These DQOs set out revised frequencies for sampling for on-post wells. **Appendix E** is a summary presented in the 2005 LTMO illustrating the recommended sampling frequencies for on-post wells. Sampling frequencies for the types of wells are discussed in Sections 3.4 and 3.5, below. As described above, the LTMO study will be updated in 2010, and CSSA plans to implement the recommendations of the updated study after receiving TCEQ and USEPA approval.

Prior to October 1999 all on-post wells have been tested for the complete list of VOCs or a selected short list of VOCs (8260B). The VOC Short List is revised in these DQOs to include 1.1-dichloroethene. *cis*-1,2-dichloroethene, *trans*-1,2dichloroethene, tetrachloroethene. trichloroethene and vinyl chloride. Methylene chloride. toluene, naphthalene, bromodichloromethane, bromoform, chloroform, dichlorodifluoromethane and 1.1dichloroethene were removed from this list in September 2006 based on statistical analysis of previous results provided from the 2005 LTMO study, see Appendix C.

Methylene chloride has been reported periodically in samples from both on- and off-post wells since 1992. Each time methylene chloride was detected in a sample, it was also consistently present in the analysis method blank, indicating the likelihood that this COC was introduced as a laboratory contaminant and was not present in the groundwater. Methylene chloride is considered a common laboratory contaminant and there are no known historical uses of methylene chloride on-post. Only 1% of the methylene chloride samples analyzed have had an MCL exceedance, and these exceedances may be related to laboratory contamination.

Toluene was detected sporadically in previous sampling events at concentrations ranging from 0.06 μ g/L to 8.7 μ g/L. These levels are below the applicable MCL for toluene in drinking water (1,000 μ g/L). Based on a review of the data and the sample packaging procedures, it was concluded that low-level toluene concentrations detected in the March 2003 event were likely introduced by tape used to label sample bottles. Contaminant-free tape was used in sampling events after March 2003 and subsequently toluene was detected at decreased concentrations and frequency. Toluene is not an expected COC related to activities conducted on-post and the sporadic appearance of toluene in off-post wells is considered to be related to other sources, not a source originating at CSSA. Toluene was detected in 13% of the samples collected through December 2004, and none of these detections exceeded the MCL.

Naphthalene was detected in 2% of the samples collected through December 2004. Other COCs which have been detected, as indicated in the statistical summary included in **Appendix C**, include bromodichloromethane, bromoform, dichlorodifluoromethane and 1,1-dichloroethene. These COCs have been detected in 1% to 3% of the groundwater samples and all except 1,1-dichloroethene are contaminants related to the disinfection of drinking water. Chloroform has been detected in 15% of the samples analyzed, but never above the combined MCL for total trihalomethanes. Based on the occurrences of these COCs as summarized in **Appendix C**, they were removed from the VOCs Short List in 2006.

Compliance sampling for metals required under the Safe Drinking Water Act for CSSA's drinking water wells (CS-1, CS-9, and CS-10) will be continued per TCEQ rules. Sampling required by the TCEQ related to the operation of the CSSA PWS is not covered under these

DQOs and is not related to sampling of the water wells for environmental monitoring purposes under these DQOs.

Metals detections above the appropriate action level or MCL have not frequently occurred in groundwater sampled from on-post wells. Metals have been sampled in on-post monitoring, agricultural/livestock, and drinking water wells since 1995. The review of the occurrences of metals detections under previous project DQOs and statistical analysis as part of the 2005 LTMO study showed that the metals lead, cadmium, and nickel only should be analyzed in the future for on-post wells. However, after sampling began on the 6 new monitoring wells, the metals list was modified again to include mercury, chromium, cadmium and lead. The change in the metals analyte list was approved during the July 10, 2008 TCEQ/EPA meeting, see **Appendix A**. These metals will be sampled at the frequency recommended in the LTMO recommendations. Nickel has been removed from the monitoring list because there is no longer an MCL for it.

3.4 On-post Drinking Water Well Sampling

Under the LTMO study the drinking water wells (CS-1, CS-9, and CS-10) were to be sampled at a 9-month frequency for the VOC Short List and the updated metals list of chromium, cadmium, lead, and mercury. This frequency has been increased to quarterly due to recent metals results from drinking water well CS-9. Well CS-9 has been isolated from the drinking water system after lead results exceeded the MCL in 2006. Wells CS-10 and CS-1 historical detections have been below the RL or non-detect and the sampling will ensure that on-post drinking water will continue to meet drinking water standards in the future.

3.5 On-post Monitoring and Agricultural Wells

Existing on-post monitoring wells and open borehole agricultural wells will be sampled for the VOC Short List and chromium, cadmium, lead, and mercury at the frequencies set out in the LTMO study, as approved by TCEQ and USEPA (see **Appendix F**). A list of all existing wells present at CSSA and the date and rationale for their installation, is included in **Appendix F**.

The Westbay \mathbb{R} equipped wells will be sampled at the frequency of semi-annually for wells in the Glen Rose, or biennially for wells in the Bexar Shale and Cow Creek formations, as set out in the LTMO study. The Westbay \mathbb{R} equipped wells will be sampled for the VOC Short List at the frequencies recommended in the LTMO (see **Appendix E**).

3.6 Water Levels

Water levels will be collected from all available wells at least quarterly. Additional water level data will be collected weekly, monthly and/or after significant rainfall events are measured. Water level gradient/potentiometric maps will be prepared separately for each formation of the Middle Trinity aquifer.

Westbay® profiling will be conducted quarterly at the 4 southern Westbay® wells WB01 thru WB04. Westbay® wells WB05 through WB08 are part of the bioreactor at SWMU B-3 and are not included in these DQOs.

3.7 New Monitoring Wells

No new monitoring wells are scheduled for installation at this time. If future site investigations include monitoring well installations the following procedures have been outlined. No coring will be performed for future well installations. Geophysical and video surveying will be conducted for each borehole. Other well construction details will be set out in specific scope of work documents. For cost effectiveness, based on the data obtained during drilling of numerous wells at CSSA, geophysical logging is sufficient for identifying geologic strata.

Each newly installed monitoring well will be sampled at the first event for the full list of VOCs, metals (arsenic, cadmium, lead, mercury, barium, chromium, copper, nickel, and zinc) and selected groundwater quality parameters (bromide, chloride, fluoride, nitrate, nitrite, sulfate, alkalinity [SW9046], TDS, pH, resistivity, alkalinity, bicarbonate [E310.1]). Subsequent monitoring events will utilize the VOC Short List and metals (Cr, Cd, Pb, and Hg). At least four consecutive quarterly sampling events will be conducted for a newly installed monitoring well. Future sampling frequencies will be scheduled depending upon the LTMO study recommendations (see **Appendix E**).

Dataloggers and transducers will be installed at selected on-post monitoring wells. Additional transducers may be installed in future wells. Each data-logger is Supervisory Control and Data Acquisition compatible and continuously collects and stores information regarding static water level, water temperature, and/or conductivity.

Upon completion of well development, dedicated low-flow pumps will be purchased and installed in each new monitoring well. The pumps will be pneumatically operated bladder pumps consistent with the monitoring system already existing at CSSA. Water levels, construction, and survey data for wells will be collected for the CSM Update, for incorporation into the groundwater model and any future risk assessments.

STEP 4 DEFINE THE BOUNDARIES OF THE STUDY

The study boundary is not limited to the confines of the installation. The outer limit of the study boundary is based on detections of VOCs in on- and off-post drinking water wells. Plume 1 and Plume 2 are currently used to define the area(s) impacted by past military activities. Our present study boundary is based on past monitoring activities and will be expanded as necessary to determine the lateral and vertical extent of contamination. Plume boundaries for the Lower Glen Rose (LGR) for the COCs PCE, TCE and *cis*-1,2-dichloroethene are shown on **Figures 3** through **5**, as of 2008.

The areas of interest in the groundwater monitoring program are the Upper Glen Rose formation (Upper Trinity aquifer) and the three formations in the Middle Trinity aquifer (LGR, BS, and CC) via well data for VOC and metal concentrations. At a minimum the following factors will be evaluated:

- Wet and dry seasonal variations;
- Rainfall impacts on plume or potential plume migration and groundwater recharge;
- Remediation alternatives;
- Fault and fracture location and size, and orientation that promote or retard plume migration; and
- CSSA will continue to monitor wells for the foreseeable future to make technically sound judgments to sample additional wells or exclude them from our sampling set.

Quarterly reports will summarize the findings of each monitoring event and an annual report will be prepared to describe trends and factors impacting the data. These reports will address groundwater elevations, contaminant concentrations, data gaps, and other pertinent information.

Constraints to the groundwater project include, but are not limited to:

- Frequency of monitoring.
- Securing access agreements with off-post well owners.
- Frequency of rainfall events.

4.1 **Project Schedule**

The quarterly monitoring timeline shall provide a road map for sampling, analysis, validation, verification, reviews, and reports for monitoring events both on- and off-post. A timeline is given in **Figure 6** for preparation of quarterly reports and planning of sampling events. Explanations for schedules associated with sampling events are given below.

4.1.1 Definitive Data Reports (Drinking Water and Monitoring Well)

Drinking water analytical data are to be provided by the laboratory to the prime contractor within 21 calendar days of the last sampling day. Un-validated on- and off-post drinking water

analytical data generated by each approved laboratory will be provided in 21 calendar days and distributed to CSSA immediately thereafter. The laboratory will provide the finalized analytical data in 30 calendar days.

Off-post GAC preliminary data are to be provided to the prime contractor within seven days of receipt of the samples by the laboratory.

To the maximum extent practicable, data validation reports, draft quarterly on- and off-post groundwater monitoring reports, and letters to off-post well owners will be provided to CSSA, where applicable, 60 days from the sample date.

On- and off-post analytical groundwater (for up to 40 on-post and 40 off-post samples collected) data packages will be validated in accordance with the CSSA QAPP, 60 days from the sample date. If more than 40 samples are collected, Parsons will contact CSSA and discuss acceptable turn-around times for data validation. The Quarterly On- and Off-Post Groundwater Reports will also be submitted for CSSA review at this time.

CSSA will provide comments to the draft report and letters within 10 days.

Quarterly Groundwater Monitoring Reports and well owner notification letters will be finalized after CSSA approval within 80 days of sampling date.

Note: These time frames allow for adequate planning for the next quarterly sampling event, which will take place within 90 days from previous sampling date.

4.1.2 Screening Data Reports (Discrete interval, soil/rock, and IDW samples)

Preliminary results for discrete interval analytical data collected during well installations are to be provided by the laboratory to the prime contractor within 24 hours of receipt of the samples by the laboratory.

Prime contractor will review and provide approved preliminary discrete interval data to CSSA within two days of the receipt of the preliminary data from the laboratory.

Investigation derived waste (IDW) analytical data are to be provided by the laboratory to the prime contractor within 24 hours, three days, or seven days of receipt of the samples by the laboratory, depending on the purpose of sampling. IDW will be sampled in accordance with the provisions of the *RFI and Interim Measures Waste Management Plan* (Parsons, 2002).

The prime contractor will review and provide approved IDW data to CSSA within 14 days of the receipt of the data package from the laboratory.

Prime contractor will review and provide approved GAC screening sample data to CSSA within 14 days of the receipt of the data package from the laboratory.

4.1.3 Westbay[®] Multi-Level Sampling Device Reports

Discrete interval analytical screening data are to be provided by the laboratory to the prime contractor within 21 days of receipt of the samples by the laboratory.

Prime contractor will review and provide approved discrete interval data to CSSA within 30 days of receipt of the preliminary data from the laboratory. The evaluation of screening data will include a check on sample integrity, method blank, and LCS.

Pressure/transducer data shall be collected from the Westbay® and In-Situ transducer devices and provided to CSSA in the annual report.

STEP 5 DEVELOP A DECISION RULE

Refer to Step 2 of these DQOs for decision processes related to the groundwater monitoring.

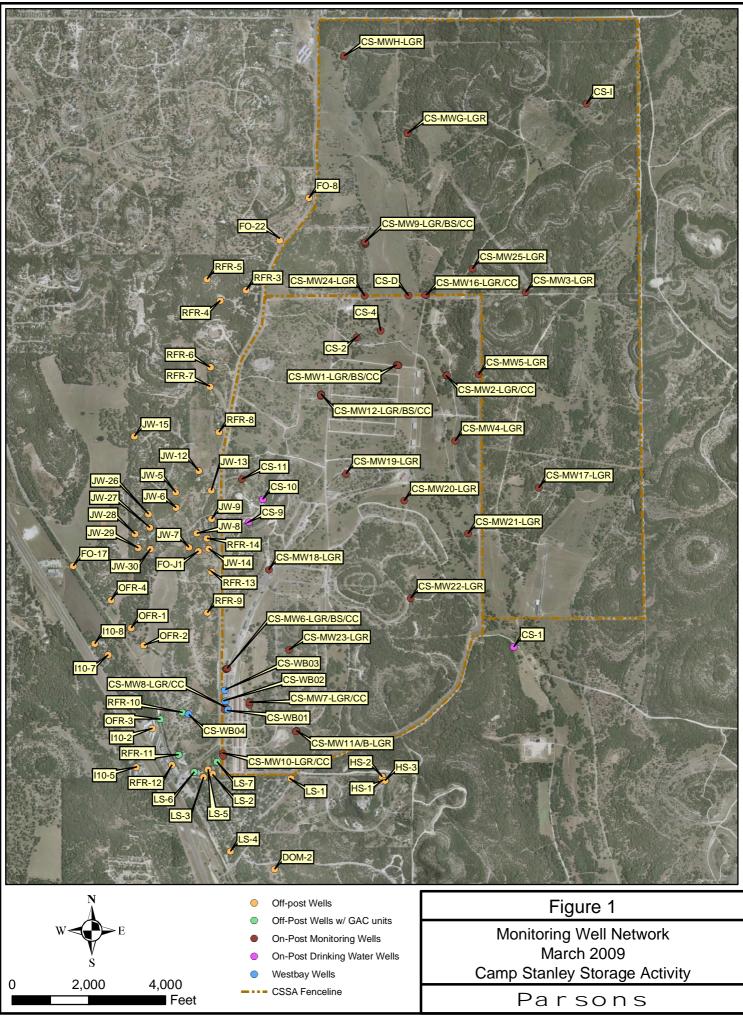
STEP 6

SPECIFY TOLERABLE LIMITS ON DECISION ERRORS

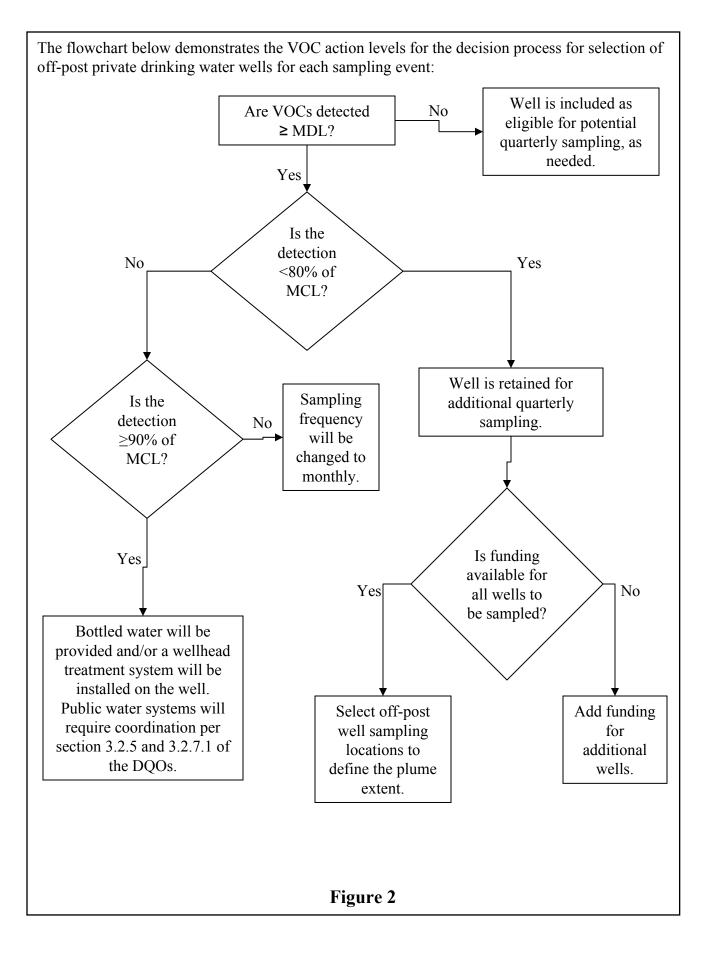
Currently, the CSSA QAPP is being utilized by CSSA. The CSSA QAPP (approved January 16, 2003) is applicable to task orders funded since that date. The QAPP specifies required reporting limits and control limits for all site interested parameters.

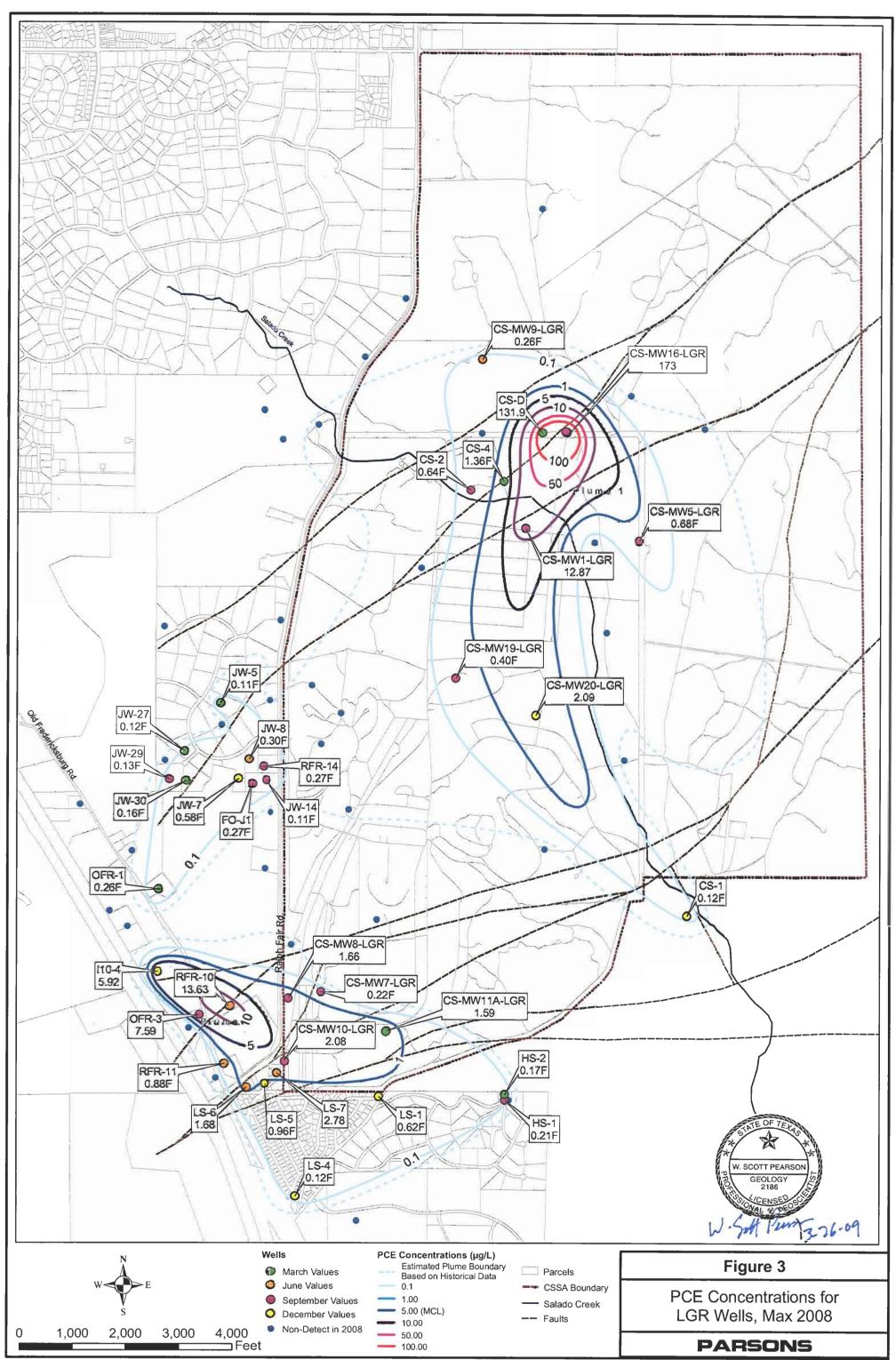
Specific variances to the QAPP have been approved by the USEPA and TCEQ and are located in the CSSA Environmental Encyclopedia, Volume 1 Scoping Documents, Volume 1.4 Sampling and Analysis Plan, CSSA Quality Assurance Project Plan. For the CSSA drinking water program, CSSA has developed very stringent rules to protect human health above and beyond the regulatory requirements. The groundwater monitoring presented in this DQO document are a long-term program to delineate the extent of each VOC plume. These DQOs do not require the use of matrix spike, matrix spike duplicates, or field duplicates. However, CSSA elects to include these QA/QC parameters for all definitive data collected. Parsons has periodically audited the subcontract lab used for CSSA. The last audit was conducted in August 2007. The laboratory satisfactorily addressed all audit findings, and audit reports were completed and submitted to CSSA.

STEP 7

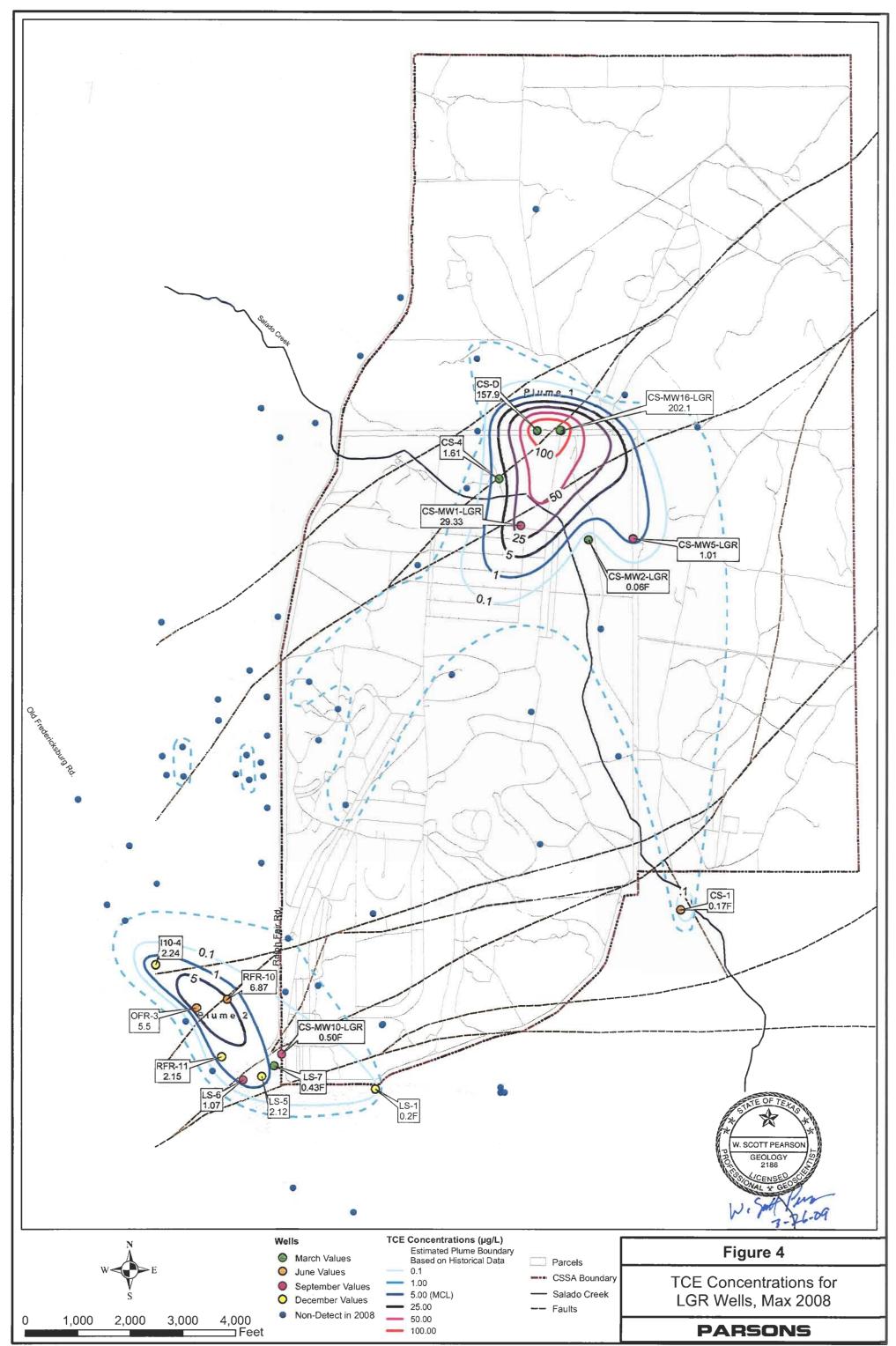

OPTIMIZE THE DESIGN FOR OBTAINING DATA

An optimization of the long-term monitoring being conducted under the CSSA groundwater monitoring program was conducted in 2005. The LTMO report was submitted May 2005 for review by USEPA and TCEQ. CSSA elected to perform this LTMO study because optimizations can assure proper remedial decisions are made and streamline future data collection over the life of a monitoring program.

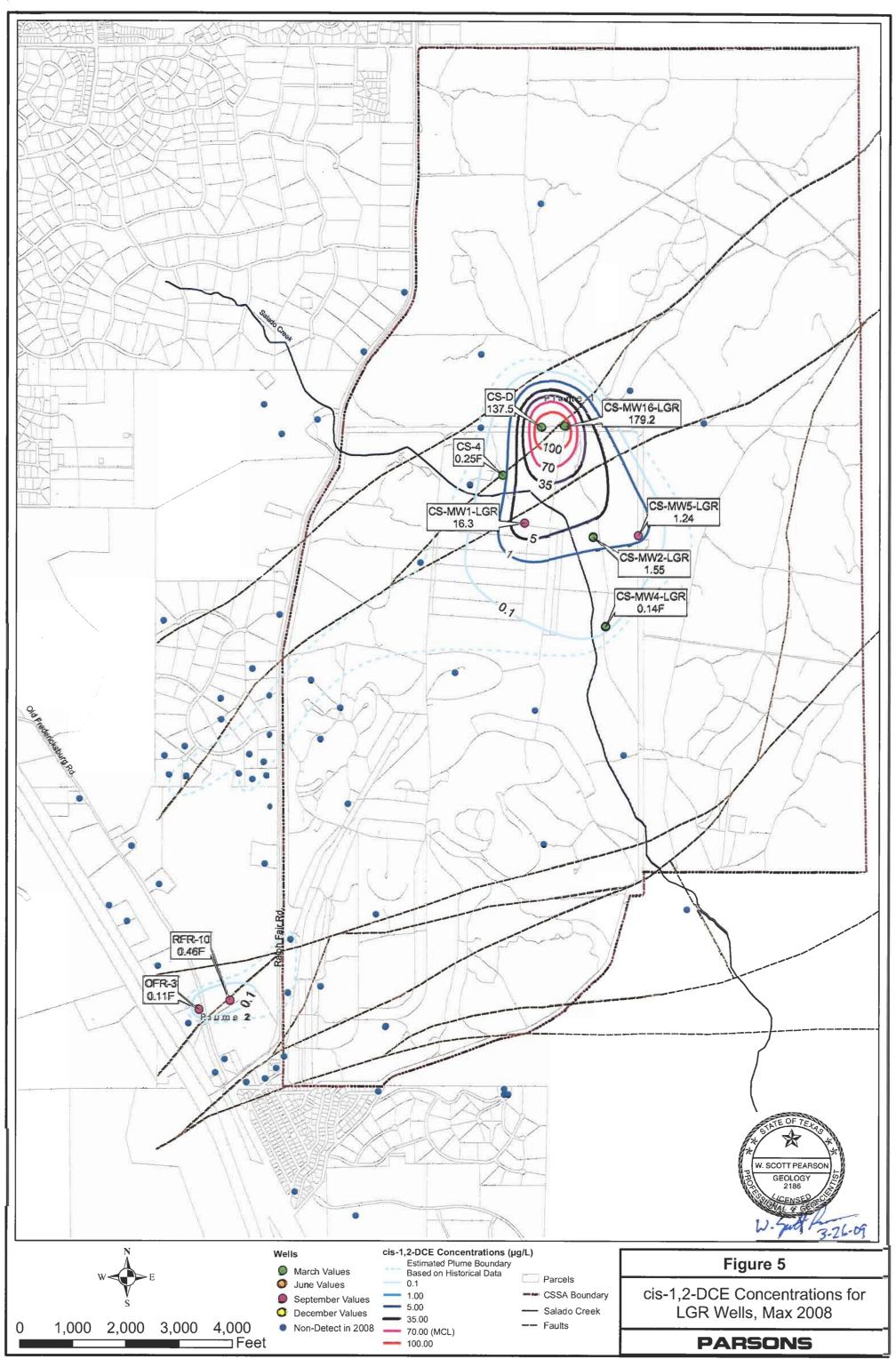

The CSSA LTMO study utilized a three-tiered methodology, and included data compilation and site screening, qualitative evaluation decision logic, temporal trend evaluations, and spatial statistical analyses. CSSA will continue to utilize LTMO reviews in the future to continue to optimize the design for obtaining data under these DQOs.

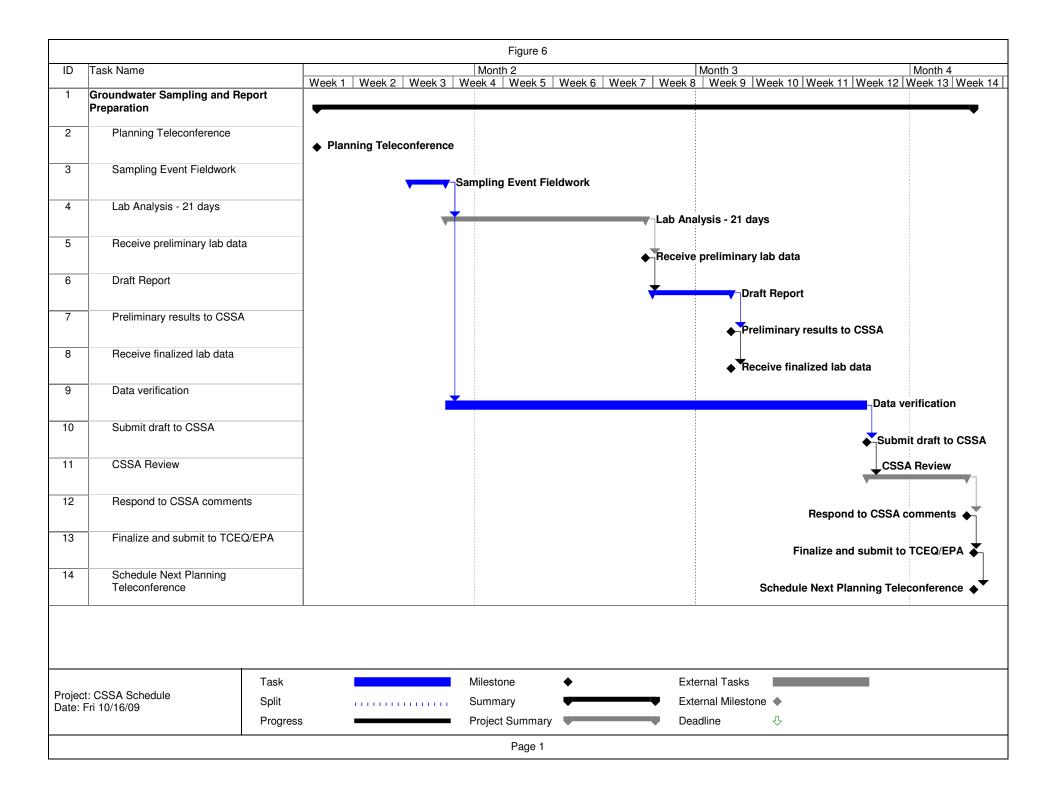

Mr. Greg Lyssy, of the USEPA approved implementing LTMO recommendations on November 14, 2005, while TCEQ approved the COC changes and the on-post sampling frequency recommendations on December 19, 2005. However, TCEQ did not approve any sampling frequency changes to the off-post sampling program.

The LTMO study will be updated in 2010 with 5 additional years of monitoring data. Pending TCEQ and USEPA approval, the monitoring recommendations of the updated study will be implemented both on- and off-post.



J:\745\745953 CSSA DY02\GIS\Monitoring_Well_Network_March2009.mxd - 3/13/2009 @ 1:29:14 PM




J/\745\745953 CSSA DY02\GIS\max_08_concentrations_lgr_pce.mxd - 3/25/2009 @ 11:15:04 AM

J:\745\745953 CSSA DY02\GIS\max_08_concentrations_lgr_tce.mxd - 3/25/2009 @ 11:13:33 AM

J:\745\745953 CSSA DY02\GIS\max_08_concentrations_lgr_cis.mxd - 3/25/2009 @ 11:11:55 AM

Appendix A Approval from USEPA and TCEQ for Previous DQOs and Implementation of LTMO Recommendations

October 30, 2008	Environmental Project Status Update
December 19, 2006	TCEQ's approval of August 2006 DQO update
December 19, 2005	TCEQ's conditional approval of LTMO Evaluation
November 16, 2005	USEPA approval of LTMO Evaluation, on-post only
April 20, 2004	TCEQ approval of November 2003 DQOs
August 26, 2002	Letter requesting approval or comment to the April 2002 DQOs

8000 Centre Park Drive, Suite 200• Austin, Texas 78754• (512) 719-6000 • Fax: (512) 719-6099 • www.parsons.com

October 30, 2008

Subject: Meeting Minutes: Environmental Project Status Meeting (10-July-08) – SWMU Investigations and Closures, Groundwater Overview, and Pilot Studies Update Camp Stanley Storage Activity, Boerne, Texas Contract DACA87-02-D-0005, Delivery Order DY01

Dear Mr. Rayos:

Enclosed is a copy of the *Meeting Minutes: Environmental Project Status Meeting (10-July-08)* as referenced above. These minutes provide a summary of the main discussion items and main action items from the meeting.

If you have any questions or comments, please feel free to contact me at 512-719-6017.

Sincerely,

Lea Aureline for

Julie Burdey Project Manager

Attachments

cc: Glaré Sanchez, CSSA Chris Beal, CSSA Brenda Shirley, CSSA Greg Lyssy, USEPA Jorge Salazar, TCEQ Wayne Elliott, USACE Bob Edwards, Noblis Mike Chapa, Weston Steve Mitchell, Weston 745953 Project File

Environmental Project Status Meeting

SWMU Investigations and Closures, Groundwater Overview, and Pilot Studies Update

Camp Stanley Storage Activity Boerne, TX

Parsons, DACA87-02-D-0005, Delivery Order DY01 July 10, 2008

Date:	Thursday, July 10, 2008	
Time:	9:30 AM – 12:30 PM	
Place:	Camp Stanley Storage Activity, Boerne, Texas	
Subject:	SWMU Investigations and Closures, Groundwater Overview, and Pilot Studies Update	

Attendees:

Glaré Sanchez	CSSA	321-662-3718
Chris Beal	Portage/CSSA	210-336-1171
Julie Burdey	Parsons	512-719-6062
Greg Lyssy	USEPA Region VI	214-665-8317
Sonny Rayos	TCEQ	512-239-2371
Jorge Salazar	TCEQ	210-403-4059
Bob Edwards	Noblis	210-408-5552
Ken Rice	Parsons	512-719-6050
Scott Pearson	Parsons	512-719-6087
Samantha Elliot	Parsons	210-347-6012
Lea Aurelius	Parsons	512-719-6017
Steve Mitchell	Weston	512-651-7104
Mike Chapa	Weston	210-248-2428

INTRODUCTION

The meeting was held at Camp Stanley Storage Activity. Attendees included representatives from CSSA, TCEQ, USEPA (Region VI), Noblis, Weston Solutions, Inc., and Parsons. The sign-in sheet is provided as **Attachment A**. A copy of the slide presentation was provided as a handout at the meeting and is included as **Attachment B**. A second handout with additional information was also provided at the meeting and is included as **Attachment C**.

These minutes are intended to provide a summary of the main discussion items and action items from the meeting.

SLIDE PRESENTATION

<u>Slides 1-4</u>. Introduction and closure status of SWMUs/AOCs. CSSA's goal is to close as many sites as possible with Release Investigation Reports (RIR).

<u>Slides 5-10</u>. AOC-73 overview. RIR distributed to CSSA and USACE for review; RIR submitted to TCEQ and USEPA following CSSA/USACE comments.

<u>Slides 11-13</u>. SWMU I-1 overview. RIR submitted to TCEQ and USEPA.

Slides 14-17. AOC-69 overview. Further removal actions planned, followed by RIR.

<u>Slides 18-19</u>. AOC-67/68 overview. TCEQ and USEPA agreed that an RIR could be submitted for AOC-67/68 following additional removal actions in the immediate area of the Wheelabrator, which can reasonably be achieved between the buildings and the roads. When operations at neighboring Building 90 are discontinued, closure of the wider area around this building will be addressed.

<u>Slides 20-24</u>. Overview of North Pasture sites (SWMUs B-2, B-8, B-20/21, and B-24). Further removal/remedial actions planned, followed by APAR.

Tier 2 calculations for the North Pasture sites will use the following data: (1) the average soil pH and soil type for the North Pasture; (2) the most conservative (shallowest) depth to groundwater in monitoring wells located in the North Pasture; and (3) the most conservative (maximum) thickness of affected soil from the four SWMUs in the North Pasture.

Mr. Rayos requested that Parsons provide TCEQ with (1) all of the data that will be used in the Tier 2 calculations, and (2) the calculated Tier 2 PCLs.

<u>Slides 25-34</u>. Weston's presentation regarding AOC-63, AOC-64, and SWMU B-71. For AOC-63, the draft APAR had been distributed to CSSA and Parsons for review (Weston requested comments by 18 July 08). For AOC-64 and SWMU B-71, further removal actions planned, followed by RIRs.

<u>Slides 35-48</u>. CSSA groundwater monitoring and long-term monitoring optimization (LTMO) was discussed, including on-post and off-post MWs with COC exceedances.

The schedule for the next public meeting for LTMO off-post was discussed; it was decided that the meeting should be planned for the Fall 2009.

Analytical parameters for groundwater monitoring were discussed. It was agreed that nickel could be dropped from the list of analytical parameters. Chromium and mercury will be added to the list of parameters. Lead has been detected in newly installed MWs (CS-MW22-LGR and CS-MW25-LGR) and will continue to be monitored.

TCE and PCE were detected at an off-post VOC monitoring well (I10-4) during the March 2007 sampling event. According to the landowner, the well was plugged following that sampling event. Concentrations of TCE/PCE were above their respective reporting limits (RLs), but below MCLs and Tier 1 residential drinking water PCLs.

<u>Slides 49-58</u>. The hydrogeologic conceptual site model was discussed. Contamination beyond Ralph Fair Road and possible locations of MWs beyond I-10 were discussed.

There is a need to either locate existing private well(s) or to install new MW(s) west of I-10 so that the western extent of the plume can be identified.

<u>Slides 59-90</u>. CSSA pilot studies (SWMU B-3 bioreactor and AOC-65 SVE) were discussed. The proposed monitoring schedules were discussed and agreed to (slides 84 and 90). Future investigation work for AOC-65 was discussed. Possible options discussed included tracer tests (soil gas or groundwater) and additional wells.

Concern was expressed about the potential for vapor intrusion in recently developed areas west of CSSA. USEPA indicated that there is a need to focus on ways to collect/evaluate data related to vapor intrusion, especially related to AOC-65 SVE.

The next meeting was proposed for early November 2008, to be held at the Parsons office, Austin, TX.

MEETING ADJOURNED

Kathleen Hartnett White, *Chairman* Larry R. Soward, *Commissioner* Martin A. Hubert, *Commissioner* Glenn Shankle, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

December 19, 2006

Camp Stanley Storage Activity 25800 Ralph Fair Road Boerne, TX 78015-4800 Attention: LTC Jason D. Shirley, Commander

Re: Camp Stanley Storage Activity (CSSA), Boerne, TX; TCEQ SWR No. 69026; Final Data Quality Objectives (DQO) Groundwater Monitoring Program - Approval

Dear LTC Shirley:

The Texas Commission on Environmental Quality (TCEQ) has received the report entitled *Final Data Quality Objectives Groundwater Monitoring Program Revised August 2006.* The report recommends the removal of toluene, methylene chloride and naphthalene from the monitored groundwater Volatile Organic Compounds (VOCs) list. For metals analyses, groundwater samples will be limited to the analyses of cadmium, lead and nickel for on-post wells. The report also recommended that groundwater samples from off-post wells will be analyzed for the same VOCs constituents as the on-post wells.

The TCEQ has reviewed the report. The TCEQ does not have any comment regarding the report and its recommendations. The data quality objectives and procedures specified in the report appear to be adequate in addressing the investigation and characterization of the on-site and off-site groundwater contaminations.

Please call me at 512.239.2371 or email me at <u>srayos@tceq.state.tx.us</u> if you wish to discuss or if you have any questions concerning this letter.

Sincerely.

Sonny Rayos, P.G., Project Manager Team 3, Environmental Cleanup Section II Remediation Division

Ms. Glare Sanchez, CSSA, 25800 Ralph Fair Road, Boerne, TX 78015-4800
 Mr. Greg Lyssy, U.S. EPA Region 6, 1445 Ross Ave (6SF-LT), Dallas, TX 75202-2733
 Ms. Julie Burdey, Parsons, 8000 Centre Park Drive, Suite 200, Austin, TX 78754
 Waste Program Manager, TCEQ Region 13 Office, San Antonio, TX

Kathleen Hartnett White, *Chairman* R. B. "Ralph" Marquez, *Commissioner* Larry R. Soward, *Commissioner* Glenn Shankle, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

December 19, 2005

Camp Stanley Storage Activity 25800 Ralph Fair Road Boerne, TX 78015-4800 Attention: Lieutenant Colonel Jason Shirley

Re: Three-Tiered Long Term Monitoring Network Optimization Evaluation - Approval with modification

Camp Stanley Storage Activity, Boerne, TX TCEQ SWR No. 69026 EPA ID No. TX2210020739

Dear LTC Shirley:

The Texas Commission on Environmental Quality (TCEQ) has reviewed the report entitled *Final Three Tiered Long Term Monitoring Network Optimization Evaluation* received by the TCEQ on May 19, 2005. On November 8, 2005, the TCEQ approved your request to implement the Long Term Monitoring Optimization (LTMO) program; however, implementation of the LTMO was approved only for on-site monitor wells and only for the last calendar quarter 2005 groundwater monitoring. As further stated in the November 8, 2005 TCEQ letter, the approval may be modified upon completion of the review of the above-stated report.

The TCEQ Technical Support Section reviewed and provided comments regarding the above-stated report. The recommendations and conclusions of the TCEQ review are provided as an Enclosure to this letter. As stated in the InterOffice Memorandum, the four recommendations are acceptable. The TCEQ Technical Support Section has reservations concerning the fifth recommendation (i.e., reduced off-site monitoring) - this appears to be in agreement with the previous requirement of the TCEQ Environmental Cleanup Section letter dated November 8, 2005. Consequently, the TCEQ requires Camp Stanley to continue monitoring the off-site wells according to standard protocol currently in effect while implementing the four other recommendations. The TCEQ will monitor the LTMO groundwater sampling results at the southwest portion (area near the off-site contaminant release) of the facility; should a need to modify or invalidate the LTMO at this area arise, the TCEQ will inform you in a separate letter.

LTC Shirley December 19, 2005 Page 2

Please call me at 512.239.2371 or email me at <u>srayos@tceq.state.tx.us</u> if you wish to discuss or if you have questions concerning this letter.

Sincerely, Sonny Rayos, P.G., Project Manager

Team III, Environmental Cleanup II Remediation Division Texas Commission on Environmental Quality

Enclosure: InterOffice Memorandum from Mr. Greg Tipple

cc: Ms. Glare Sanchez, Camp Stanley Storage Activity, 25800 Ralph Fair Road, Boerne, TX 78015-4800

Mr. Greg Lyssy, U.S. EPA Region 6, 1445 Ross Ave (6SF-LT), Dallas, TX 75202-2733 Ms. Julie Burdey, Parsons Engineering, 8000 Centre Park Drive, Suite 200, Austin, TX 78754

Waste Program Manager, TCEQ Region 13 Office, San Antonio, TX

Texas Commission on Environmental Quality

INTEROFFICE MEMORANDUM

Sonny Rayos, Environmental Cleanup Section II, Team 3, Remediation Division

Date: December 14, 2005

Thru: Chet Clarke, Section Manager, Technical Support Section, Remediation Division

From: \bigwedge_{2} Greg Tipple, Technical Specialist, Technical Support Section, Remediation Division

Subject:

To:

Three-Tiered Long-Term Monitoring Network Optimization Evaluation, May 2005, Camp Stanley Storage Activity, Bexar County

As requested, I have reviewed the document titled Three-Tiered Long Term Monitoring Network Optimization Evaluation that is dated May 2005 and that pertains to Camp Stanley Storage Activity (CSSA). CSSA consists of 4,004 acres and is located approximately 19 miles northwest of downtown San Antonio in the general vicinity of Boerne, Texas. Primary activities at CSSA include the receipt, storage, and issuance of ordnance material as well as quality assurance testing and maintenance of military weapons and ammunition. While 39 solid waste management units (SWMUs) and 40 areas of concern (AOCs) have been identified at the facility, only SWMUs B-3 and O-1 and AOC-65 are considered as potential sources for elevated concentrations of tetrachloroethene, trichloroethene, dichloroethene, and other chemicals of concern within the Lower Glen Rose limestone member of the middle Trinity Aquifer. The reviewed document describes qualitative, temporal statistical, and spatial statistical evaluations that were performed in order to identify potential opportunities for streamlining while still maintaining an effective groundwater monitoring program at the CSSA facility.

This groundwater monitoring optimization study for the CSSA facility recommends the following:

- 1. that the sampling frequency for the 40 on-post monitoring wells be reduced from quarterly to a biennial, annual, and semi-annual schedule for 13, 11, and 16 on-post wells, respectively;
- 2. that the AOC-65 piezometers be removed from the monitoring program while the sampling frequency for the 2 AOC-65 monitoring wells be reduced from quarterly to after significant rainfall events;

Camp Stanley Storage Activity Page 2 December 14, 2005

- 3. that the sampling frequency for the 4 Westbay monitoring wells, with a total of 64 sampling points, be reduced from monthly and after significant rainfall events to semi-annual;
- 4. that 11 additional on-post monitoring wells be constructed to better determine groundwater levels and/or to further delineate groundwater PCLE zone boundaries; and
- 5. that the monitoring frequency for the 44 off-post monitoring wells be reduced from annual for 18 wells and quarterly for 26 wells to biennial for 20 wells, annual for 17 wells, and quarterly for 7 wells.

In my evaluation, the groundwater monitoring optimization report provides adequate documentation and rationale to support the first four recommendations stated above. However, I do have concern regarding the fifth recommendation. The document indicates that the distance to potential receptor exposure points and the groundwater seepage velocity are primary factors that should be considered when designing a groundwater monitoring network. The report indicates that the land use surrounding the CSSA facility is primarily residential or is used for ranching. In my view, the report does not adequately discuss how the proximity of potential receptors and the groundwater transport velocity were actually taken into account when designing the proposed revision to the sampling frequencies for the off-post monitoring wells. The TCEQ, of course, has a heightened concern to make sure that the groundwater monitoring program will adequately protect off-site receptors. Therefore, I recommend that you carefully consider whether the final recommendation listed above should be approved.

Vaughn, Kimberly

From:Burdey, JulieSent:Wednesday, November 16, 2005 12:48 PMTo:Vaughn, KimberlySubject:FW: Approval of the LTMO Changes On-Post

-----Original Message-----From: Glare Sanchez [mailto:environmentaldept@campstanley.net] Sent: Wednesday, November 16, 2005 11:55 AM To: Lyssy.Gregory@epamail.epa.gov Cc: Burdey, Julie Subject: RE: Approval of the LTMO Changes On-Post

Thanks!!

-----Original Message-----From: Lyssy.Gregory@epamail.epa.gov [mailto:Lyssy.Gregory@epamail.epa.gov] Sent: Monday, November 14, 2005 12:59 PM To: Glare Sanchez Cc: Jeff Aston Subject: Approval of the LTMO Changes On-Post

Hey Glare:

I received a voice-mail message from Julie at Parsons concerning the LTMO recommendations for the December sampling. I hereby approve the optimization recommendations for the on-post portion of the CSSA monitoring network, starting with the December sampling event.

Please feel free to call me with any questions.

Greg J. Lyssy U.S. EPA Senior Project Manager New Mexico - Federal Facilities Section (6PD-F) Phone - 214.665.8317 Cell Phone - 214.543.4415 Fax - 214.665.7263 lyssy.gregory@epa.gov Kathleen Hartnett White, *Chairman* R. B. "Ralph" Marquez, *Commissioner* Larry R. Soward, *Commissioner* Margaret Hoffman, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

April 20, 2004

LTC Jason D. Shirley, Commander Camp Stanley Storage Activity 25800 Ralph Fair Road Boerne, TX 78015-4800

Re: Camp Stanley Storage Activity (CSSA), Boerne, TX; TCEQ SWR No. 69026; Data Quality Objectives Groundwater Contamination Investigation - Approval

Dear Mr. Shirley:

The Texas Commission on Environmental Quality (TCEQ) has received the report entitled *Data Quality Objectives Groundwater Contamination Investigation - Revised November 2003*. The TCEQ has reviewed the report. The TCEQ does not have any comment regarding the report. The data quality objectives specified in the report appears to be adequate in addressing the investigation and characterization of the on-site and off-site groundwater contamination.

Please call me at 512.239.2371 or email me at <u>srayos@tceq.state.tx.us</u> if you wish to discuss or if you have any questions concerning this letter.

Sincerely,

Sonny Rayes, P.G., Project Manager Team I, Corrective Action Section Remediation Division Texas Commission on Environmental Quality

cc: Mr. Brian Murphy, Camp Stanley Storage Activity, 25800 Ralph Fair Road, Boerne, TX 78015-4800

Mr. Greg Lyssy, U.S. EPA Region 6, 1445 Ross Ave (6SF-LT), Dallas, TX 75202-2733

Ms. Julie Burdey, Parsons Engineering, 8000 Centre Park Drive, Suite 200, Austin, TX 78754

Waste Program Manager, TCEQ Region 13 Office, San Antonio, TX

8000 Centre Park Drive, Suite 200 • Austin, Texas 78754 • (512) 719-6000 • Fax: (512) 719-6099 • www.parsons.com

August 26, 2002

Via facsimile

Mr. Greg J. Lyssy U.S. Environmental Protection Agency, Region 6 1445 Ross Avenue Dallas, TX 75202-2733

Subject: Camp Stanley Storage Activity (CSSA) Groundwater Monitoring Program TNRCC Number: Solid Waste Registration Number 69026 EPA Identification Number: TXD2210020739

Dear Mr. Lyssy:

This letter concerns the CSSA Data Quality Objectives (DQOs) for the Groundwater Contamination Investigation submitted April 22, 2002. The DQOs were also submitted to Mr. Kirk Coulter of the Texas Natural Resource Conservation Commission (TNRCC) requesting his review and comments. At this time, CSSA has not received suggestions or revisions to the proposed DQOs.

CSSA is currently planning the September 9, 2002, quarterly groundwater monitoring event for both on- and off-post drinking water and monitoring wells. CSSA proposes to reduce the frequency of sampling of groundwater for metals, as set out in the DQOs. Cumulative analysis for metals in groundwater since 1995 indicate exceedance of the maximum contaminant level (MCL) / action level (AL) for lead, cadmium and nickel only. Results during the last two years of quarterly groundwater monitoring indicate exceedance of the MCL for lead only, occurring in agricultural/livestock wells. Therefore, beginning in September 2002, on-post monitoring wells sampling for metals will be conducted annually. On-post drinking water supply wells will continue to be sampled for metals on a quarterly basis.

Additionally, CSSA requests confirmation of the list of VOCs to be sampled in the future for off-post drinking water wells. Quarterly off-post groundwater monitoring conducted since September 2001 included full list VOCs analyzed under SW 846 Method 8260B. In accordance with the proposed DQOs, CSSA proposes reducing the analyte list for off-post monitoring to the following short list:

1,2-dichloroethane Acetone Bromodichloromethane Bromoform

5

Page 2 August 26, 2002

> Chloroform *cis*-1,2-Dichloroethene Dibromochloromethane Dichlorodifluoromethane Naphthalene Tetrachloroethene Toluene *trans*-1,2-Dichloroethene Trichloroethene Vinyl chloride

CSSA prepared the proposed short list of analytes following review of cumulative historical detections of VOCs from off-post groundwater monitoring conducted since 1999. All analytes with detections over the last year of monitoring, even though detections were below MCLs, are included in the proposed short list.

If you have any questions or comments regarding CSSA's plan for metals analysis, a reduced list of analytes, or on the previously submitted DQOs, please call me at (512) 719-6051 or Mr. Brian Murphy, CSSA, at (210) 698-5208.

Sincerely, Karuna Mirchandani

Karuna Mirchandani Deputy Task Manager

Via telefacsimile or hand delivery

 xc: Kirk Coulter, TNRCC Remediation Division Teri DuPriest, AFCEE
 Brian Murphy, CSSA
 Susan Roberts, Parsons
 Tammy Chang, Parsons Appendix B Summary of Historical Detections by Well, 1999 through June 2009

		Septer	mber 1992	9 through Ju	une 2009				
Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-1									
Dic	hloroethene, 1,1-	SW8260	1.2	9/15/2004	0.053F	9/15/2004	0.053 F	1/36	7
Bro	modichloromethane	SW8260	0.8	3/19/2003	2.6	3/19/2003	2.6	1/29	80 ⁵
Bro	omoform	SW8260	1.2	3/19/2003	3.4	3/19/2003	3.4	1/22	80 ⁵
Chl	oroform	SW8260	0.3	3/19/2003	1.8	9/16/2003	0.053 F	11/19	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/37	70
Dib	oromochloromethane	SW8260	0.5	3/19/2003	3.7	3/19/2003	3.7	1/29	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/23	6
Me	thylene chloride	SW8260	2.0	3/19/2003	1.2F	9/9/1999	0.21 F	8/22	5
Naj	ohthalene	SW8260	1.0					0/23	6
Tet	rachloroethene	SW8260	1.4	12/14/1999	0.17F	9/15/2004	0.066 F	18/19	5
Tol	uene	SW8260	1.1	3/19/2003	3.7B	2/16/2003	0.088 F	6/17	1000
trar	ns-1,2-Dichloroethene	SW8260	0.6					0/37	100
Trie	chloroethene	SW8260	1.0	12/12/2000	1.2	9/15/2004	0.093 F	29/8	5
Vir	yl chloride	SW8260	1.1					0/37	2
Ars	enic	SW6010/SW6020	30/20	9/18/2008	2.2F	6/15/2006	0.40F	23/10	10
Bar	ium	SW6010	5.0	9/8/2005	39	3/20/2000	28	33/0	2000
Cac	lmium	SW7131/SW6020	1.0/2.0	12/12/2000	15 J	6/17/2002	$0.027\mathrm{F}$	3/31	5
Chi	omium	SW6010	10	9/13/2000	6.0F	9/9/1999	2.0F	8/25	100
Coj	oper	SW6010	10	3/11/2004	42 J	12/16/2003	2.0F	27/6	1300
Me	rcury	SW7470	1.0	6/26/2008	0.40F	12/2/2004	0.039 F	6/27	2
Nic	kel	SW6010	10	12/11/2001	3.0F	3/19/2001	1.4 F	7/24	6
Lea	ıd	SW7421/SW6020	5.0/2.0	9/13/2000	85 J	6/15/2006	0.98F	31/3	15
Zin	c	SW6010	50	12/12/2000	1800	9/18/2008	67	32/0	5000

Summary of Historical Detections by Well a 1000 /1 2000

Units are micrograms per liter (μ/L). No results listed indicates that the analyte was analyzed for, but not detected above the Method Detection Limit (MDL).

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

2 Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

3 Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

4 Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

5 MCL for THMs combined cannot exceed 80 µg/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-2									
Dic	hloroethene, 1,1-	SW8260	1.2					0/39	7
Bro	modichloromethane	SW8260	0.8					0/35	80 ⁵
Bro	moform	SW8260	1.2					0/18	80 ⁵
Chl	oroform	SW8260	0.3	3/20/2003	0.12F	2/16/2002	0.11F	2/33	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/39	70
Dib	romochloromethane	SW8260	0.5					0/35	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/18	6
Met	thylene chloride	SW8260	2.0	9/19/2003	0.73F	9/16/2004	0.28 F	5/30	5
Nap	ohthalene	SW8260	1.0					0/18	6
Tetr	rachloroethene	SW8260	1.4	9/7/1999	1.1 F	9/10/2002	0.073 F	19/20	5
Tol	uene	SW8260	1.1	3/20/2003	8.7 J	3/20/2003	8.7 J	1/17	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/39	100
Tric	chloroethene	SW8260	1.0	12/14/2001	0.17F	2/10/2003	0.071 F	2/37	5
Vin	yl chloride	SW8260	1.1					0/39	2
Ars	enic	SW6010/SW6020	30/20	1/30/2006	5.6F	6/16/2004	0.54 F	10/15	10
Bar	ium	SW6010	5.0	6/13/2006	40	6/14/2005	32	25/0	2000
Cad	lmium	SW6020	2.0	6/19/2003	0.11F	6/18/2002	0.029 F	3/25	5
Chr	omium	SW6010	10	6/18/2002	39 J	6/14/2005	1.9F	20/7	100
Cop	oper	SW6010	10	6/13/2001	4.0F	2/13/2000	0.50F	9/16	1300
Mei	rcury	SW7470	1.0	6/14/2005	0.055F	6/14/2005	0.055 F	1/26	2
Nic	kel	SW6010	10	12/13/2000	23 J	6/14/2005	1.2F	18/8	6
Lea	d	SW6010/SW6020	25/2.0	9/11/2008	3.0F	2/13/2007	0.20F	13/15	15
Zine	с	SW6010	50	1/30/2006	18F	2/13/2000	2.9 F	22/3	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-3									
Dic	hloroethene, 1,1-	SW8260	1.2					0/1	7
Bro	modichloromethane	SW8260	0.8					0/1	80 ⁵
Bro	moform	SW8260	1.2					0/1	80 ⁵
Chl	oroform	SW8260	0.3					0/1	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/1	70
Dib	romochloromethane	SW8260	0.5					0/1	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/1	6
Met	thylene chloride	SW8260	2.0					0/1	5
Nap	ohthalene	SW8260	1.0					0/1	6
Tetr	rachloroethene	SW8260	1.4	12/16/1999	0.99F	2/16/1999	0.99 F	1/0	5
Tol	uene	SW8260	1.1					0/1	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/1	100
Tric	chloroethene	SW8260	1.0					0/1	5
Vin	yl chloride	SW8260	1.1					0/1	2
Ars	enic	SW7060	5.0					0/1	10
Bar	ium	SW6010	5.0	12/16/1999	26	2/16/1999	26	1/0	2000
Cad	lmium	SW7131	1.0					0/1	5
Chr	omium	SW6010	10	12/16/1999	5.0F	2/16/1999	5.0F	1/0	100
Cop	oper	SW6010	10	12/16/1999	4.0F	2/16/1999	4.0F	1/0	1300
Mei	rcury	SW7470	1.0					0/1	2
Nic	kel	SW6010	10	12/16/1999	2.0F	2/16/1999	2.0F	1/0	6
Lea	d	SW7421	5.0					0/1	15
Zin	с	SW6010	50	12/16/1999	13	2/16/1999	13	1/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-4									
Dic	hloroethene, 1,1-	SW8260	1.2					0/16	7
Bro	omodichloromethane	SW8260	0.8					0/12	80 ⁵
Bro	omoform	SW8260	1.2					0/12	80 ⁵
Chl	oroform	SW8260	0.3	6/16/2004	0.057F	6/16/2004	0.057 F	1/11	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2	6/16/2004	7.2	9/25/2003	0.11F	12/4	70
Dib	oromochloromethane	SW8260	0.5					0/12	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/12	6
Me	thylene chloride	SW8260	2.0	9/25/2003	0.43F	3/11/2004	0.28 M	4/8	5
Nap	ohthalene	SW8260	1.0					0/12	6
Tet	rachloroethene	SW8260	1.4	6/16/2004	5.1	2/16/2003	0.70F	16/0	5
Tol	uene	SW8260	1.1	12/16/2003	0.076F	2/16/2003	0.076 F	1/11	1000
tran	ns-1,2-Dichloroethene	SW8260	0.6	6/16/2004	0.068F	9/15/2004	0.058F	3/13	100
Tric	chloroethene	SW8260	1.0	6/16/2004	15	2/16/2003	0.43 F	16/0	5
Vin	yl chloride	SW8260	1.1					0/16	2
Ars	enic	SW6020	20	6/23/2003	0.57F	6/16/2004	0.42 F	3/0	10
Bar	ium	SW6010	5.0	6/23/2003	31	6/14/2005	29	3/0	2000
Cad	lmium	SW6020	2.0	9/25/2007	0.50F	6/16/2004	0.034 F	4/2	5
Chr	comium	SW6010	10					0/4	100
Cop	oper	SW6010	10	6/23/2003	2.0F	6/23/2003	2.0F	1/2	1300
Me	rcury	SW7470	1.0	6/14/2005	0.056F	6/14/2005	0.056 F	1/3	2
Nic	kel	SW6010	10					0/5	6
Lea	ıd	SW6010/SW6020	25/2.0	3/12/2008	2.8F	6/23/2003	0.19F	6/0	15
Zin	c	SW6010	50	6/23/2003	72	6/16/2004	9.3F	3/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-9									
Dic	hloroethene, 1,1-	SW8260	1.2					0/36	7
Bro	modichloromethane	SW8260	0.8					0/28	80 ⁵
Bro	moform	SW8260	1.2					0/22	80 ⁵
Chl	oroform	SW8260	0.3	6/13/2006	1.1	6/13/2006	1.1	1/27	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/36	70
Dib	romochloromethane	SW8260	0.5					0/28	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/22	6
Me	thylene chloride	SW8260	2.0	6/13/2006	1.1F	9/8/1999	0.17 F	7/21	5
Nap	ohthalene	SW8260	1.0					0/22	6
Tet	rachloroethene	SW8260	1.4	3/19/2001	0.11F	9/16/2003	0.050F	6/30	5
Tol	uene	SW8260	1.1	3/19/2003	3.0B	12/15/2003	0.10F	6/16	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/36	100
Tric	chloroethene	SW8260	1.0					0/36	5
Vin	yl chloride	SW8260	1.1					0/36	2
Ars	enic	SW6010/SW6020	30/20	9/16/2008	1.2F	12/10/2002	0.34 F	20/13	10
Bar	ium	SW6010	5.0	6/11/2009	46	12/3/2004	29	33/0	2000
Cad	lmium	SW7131/SW6020	1.0/2.0	9/17/2001	0.30F	9/10/2002	0.032 F	7/28	5
Chr	omium	SW6010	10	6/13/2006	8.8F	6/11/2009	2.0F	9/25	100
Cop	oper	SW6010	10	6/26/2008	47	12/3/2004	1.9F	29/4	1300
Me	rcury	SW7470	1.0	6/11/2009	10	12/3/2004	0.031 F	19/18	2
Nic	kel	SW6010	10	12/13/2007	22	9/8/1999	1.0F	8/23	6
Lea	d	SW6020	2.0	6/26/2008	54	6/15/2005	0.56 F	38/0	15
Zin	c	SW6010	50	6/13/2006	3400	6/22/2004	49 F	36/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-10									
Dic	hloroethene, 1,1-	SW8260	1.2	9/15/2004	0.071F	9/15/2004	0.071 F	1/34	7
Bro	modichloromethane	SW8260	0.8	6/22/2006	1.5	6/22/2006	1.5	1/27	80 ⁵
Bro	moform	SW8260	1.2	6/22/2006	0.30F	6/22/2006	0.30F	1/21	80 ⁵
Chle	oroform	SW8260	0.3	6/22/2006	9.4	6/17/2002	0.053 F	23/5	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/35	70
Dib	romochloromethane	SW8260	0.5	6/22/2006	0.75	6/22/2006	0.75	1/27	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/22	6
Met	thylene chloride	SW8260	2.0	3/11/2004	0.61 F	9/10/1999	0.12F	8/20	5
Nap	ohthalene	SW8260	1.0					0/22	6
Tetr	rachloroethene	SW8260	1.4	3/19/2001	0.11F	6/22/2004	0.055 F	9/26	5
Tol	uene	SW8260	1.1	6/22/2006	16	2/16/2003	0.089 F	4/18	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/35	100
Tric	chloroethene	SW8260	1.0					0/35	5
Vin	yl chloride	SW8260	1.1					0/35	2
Arse	enic	SW6010/SW6020	30/20	9/16/2008	3.4F	9/16/2003	0.53 F	19/13	10
Bar	ium	SW6010	5.0	6/22/2006	46	6/17/2002	35	32/0	2000
Cad	lmium	SW7131/SW6020	1.0/2.0	9/17/2001	0.20F	2/10/2002	0.026 F	5/28	5
Chr	omium	SW6010	10	9/13/2000	6.0F	3/19/2003	0.74 F	9/23	100
Cop	oper	SW6010	10	3/11/2004	13 J	9/10/2002	1.4F	24/8	1300
Mer	rcury	SW7470	1.0	6/22/2006	0.58F	9/15/2004	0.029 F	8/24	2
Nic	kel	SW6010	10	9/17/2001	9.0F	9/8/2005	1.2F	14/15	6
Lea	d	SW6010/SW6020	25/2.0	9/16/2008	5.4F	6/22/2004	0.48 F	24/9	15
Zind	с	SW6010	50	6/22/2006	430	9/15/2004	13 F	32/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-11									
Dic	hloroethene, 1,1-	SW8260	1.2	9/10/2002	0.032F	9/10/2002	0.032 F	1/28	7
Bro	modichloromethane	SW8260	0.8	9/10/1999	0.23 F	9/10/1999	0.23 F	1/24	80 ⁵
Bro	moform	SW8260	1.2					0/16	80 ⁵
Chle	oroform	SW8260	0.3	9/10/1999	49	2/16/2003	0.11F	7/18	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2	3/19/2001	0.38F	2/11/2001	0.30F	2/27	70
Dib	romochloromethane	SW8260	0.5					0/25	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/16	6
Met	hylene chloride	SW8260	2.0	9/10/1999	0.68F	3/11/2004	0.21 M	5/20	5
Nap	ohthalene	SW8260	1.0					0/16	6
Tetr	rachloroethene	SW8260	1.4	6/14/2000	0.41 F	3/14/2002	0.062 F	3/26	5
Tol	uene	SW8260	1.1	3/19/2003	2.3	12/16/2003	0.098 F	2/14	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/29	100
Tric	chloroethene	SW8260	1.0	3/19/2001	0.20F	3/19/2001	0.20F	1/28	5
Vin	yl chloride	SW8260	1.1					0/29	2
Arse	enic	SW7060/SW6020	5.0/20	3/20/2000	0.80F	6/14/2006	0.26 F	8/7	10
Bar	ium	SW6010	5.0	9/10/1999	64	6/14/2006	21	15/0	2000
Cad	mium	SW6020	2.0	6/14/2006	0.087 F	3/14/2002	0.062 F	2/16	5
Chr	omium	SW6010	10	9/15/2008	20	3/19/2001	2.0F	8/9	100
Cop	oper	SW6010	10	6/22/2004	13	12/15/1999	2.0F	12/3	1300
Mer	cury	SW7470	1.0	6/9/2009	0.20F	6/17/2003	0.040 F	3/14	2
Nic	kel	SW6010	10	9/10/1999	4.0F	2/12/2000	1.6F	4/12	6
Lea	d	SW6010/SW7421	25/5.0	9/15/2008	200	6/14/2000	2.6 F	15/3	15
Zind	c	SW6010	50	6/17/2002	5800	6/14/2000	420	15/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-12									
Dich	nloroethene, 1,1-	SW8260	1.2					0/2	7
Bron	nodichloromethane	SW8260	0.8					0/2	80 ⁵
Bron	noform	SW8260	1.2					0/2	80 ⁵
Chlo	oroform	SW8260	0.3	3/25/2009	1.5	3/25/2009	1.4	2/0	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/2	70
Dibr	comochloromethane	SW8260	0.5					0/2	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/2	6
Meth	hylene chloride	SW8260	2.0					0/2	5
Napl	hthalene	SW8260	1.0					0/4	6
Tetra	achloroethene	SW8260	1.4					0/2	5
Tolu	iene	SW8260	1.1	3/25/2009	0.55F	3/25/2009	0.54F	2/0	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/2	100
Tricl	hloroethene	SW8260	1.0					0/2	5
Viny	yl chloride	SW8260	1.1					0/2	2
Arse	enic	SW6010	30					0/2	10
Bari	um	SW6010	5.0	3/25/2009	34	3/25/2009	34	2/0	2000
Cadı	mium	SW6010	7.0					0/2	5
Chro	omium	SW6010	10	3/25/2009	2.0F	3/25/2009	2.0F	2/0	100
Cop	per	SW6010	10					0/2	1300
Mere	cury	SW7470	1.0					0/2	2
Nick	kel	SW6010	10	3/25/2009	3.0F	3/25/2009	3.0F	2/0	6
Lead	f	SW6010	25					0/2	15
Zinc		SW6010	50	3/25/2009	310	3/25/2009	300	2/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-D									
Dicl	hloroethene, 1,1-	SW8260	1.2	9/18/2003	0.15F	3/20/2003	0.061 F	12/24	7
Bro	modichloromethane	SW8260	0.8					0/32	80 ⁵
Bro	moform	SW8260	1.2					0/21	80 ⁵
Chle	oroform	SW8260	0.3	6/19/2003	0.24 F	6/18/2002	0.10F	27/5	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2	12/10/2003	270	0/28/2008	34	36/0	70
Dib	romochloromethane	SW8260	0.5					0/32	80 ⁵
Dicl	hlorodifluoromethane	SW8260	1.0					0/21	6
Met	hylene chloride	SW8260	2.0	3/14/2002	4.9R	3/16/2006	0.19F	8/23	5
Nap	hthalene	SW8260	1.0					0/21	6
Tetr	rachloroethene	SW8260	1.4	12/10/2003	230	3/16/2006	53	36/0	5
Tolı	uene	SW8260	1.1	3/20/2003	2.7 J	3/20/2003	1.3 J	2/19	1000
tran	s-1,2-Dichloroethene	SW8260	0.6	3/20/2003	12 J	2/14/2001	0.43 F	36/0	100
Tric	chloroethene	SW8260	1.0	9/18/2003	300	0/28/2008	39	36/0	5
Vin	yl chloride	SW8260	1.1	9/18/2003	0.062F	3/20/2003	0.030F	3/33	2
Arse	enic	SW6010/SW6020	30/20	4/21/2008	10	6/16/2004	0.16F	7/11	10
Bari	ium	SW6010	5.0	10/28/2008	32	6/18/2002	27	18/0	2000
Cad	mium	SW7131/SW6020	1.0/2.0	6/13/2001	0.70F	6/16/2004	0.053 F	8/13	5
Chr	omium	SW6010	10	3/20/2001	4.0F	6/8/2005	0.92 F	4/15	100
Cop	oper	SW6010	10	6/13/2001	6.0F	3/20/2001	1.0F	6/12	1300
Mer	cury	SW7470	1.0	7/21/2008	0.12F	1/21/2008	0.089 F	2/17	2
Nicl	kel	SW6010	10	12/14/2001	9.0F	0/15/2007	0.66 F	10/10	6
Lea	d	SW6020	2.0	6/18/2002	4.4	6/19/2003	0.33 F	14/7	15
Zinc	2	SW6010	50	10/15/2007	280	7/21/2008	9.0F	17/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-I									
Dic	hloroethene, 1,1-	SW8260	1.2					0/22	7
Bro	modichloromethane	SW8260	0.8					0/21	80 ⁵
Bro	moform	SW8260	1.2					0/13	80 ⁵
Chl	oroform	SW8260	0.3					0/21	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/22	70
Dib	romochloromethane	SW8260	0.5					0/21	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/13	6
Met	thylene chloride	SW8260	2.0	6/12/2006	0.60F	3/13/2002	0.23 F	5/16	5
Nap	ohthalene	SW8260	1.0					0/13	6
Tet	rachloroethene	SW8260	1.4	9/7/2004	0.054F	9/7/2004	0.054 F	1/21	5
Tol	uene	SW8260	1.1	9/24/2003	23	12/9/2003	0.22 F	2/11	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/22	100
Tric	chloroethene	SW8260	1.0	9/7/2004	0.041 F	9/7/2004	0.041 F	1/21	5
Vin	yl chloride	SW8260	1.1					0/22	2
Ars	enic	SW6020	20	3/13/2002	1.9F	6/15/2004	0.25 F	5/9	10
Bar	ium	SW6010	5.0	3/13/2002	160 J	9/12/2001	100 J	14/0	2000
Cac	lmium	SW7131/SW6020	1.0/2.0	12/17/2001	0.30F	6/6/2005	0.089 F	3/12	5
Chr	omium	SW6010	10	3/13/2002	9.1F	6/12/2001	2.0F	9/6	100
Cop	oper	SW6010	10	3/13/2002	57	3/20/2001	1.0F	11/3	1300
Me	rcury	SW7470	1.0	3/13/2002	0.66F	2/17/2001	0.20F	3/12	2
Nic	kel	SW6010	10	3/13/2002	6.9F	2/12/2000	1.5 F	10/4	6
Lea	d	SW6020	2.0	3/13/2002	87	6/15/2004	0.30F	8/7	15
Zin	c	SW6010	50	6/12/2001	3500000	6/15/2004	18 F	14/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW1-I	LGR								
Dicl	hloroethene, 1,1-	SW8260	1.2	9/10/2002	0.045 F	9/10/2002	0.045 F	1/44	7
Bro	modichloromethane	SW8260	0.8					0/38	80 ⁵
Bro	moform	SW8260	1.2					0/27	80 ⁵
Chlo	oroform	SW8260	0.3	4/20/2009	0.14F	12/12/2001	0.070F	15/23	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2	7/27/2007	82	3/21/2000	2.3	45/0	70
Dib	romochloromethane	SW8260	0.5					0/38	80 ⁵
Dicl	hlorodifluoromethane	SW8260	1.0					0/27	6
Met	hylene chloride	SW8260	2.0	3/9/2004	0.64F	3/14/2006	0.19F	6/32	5
Nap	ohthalene	SW8260	1.0					0/27	6
Tetr	rachloroethene	SW8260	1.4	7/27/2007	50	1/20/2009	2.5	45/0	5
Tolu	uene	SW8260	1.1	3/20/2003	5.2 J	3/20/2003	5.2 J	1/26	1000
tran	s-1,2-Dichloroethene	SW8260	0.6	7/27/2007	2.9	12/10/2003	0.13F	39/6	100
Tric	chloroethene	SW8260	1.0	7/27/2007	68	3/21/2000	3.0	45/0	5
Vin	yl chloride	SW8260	1.1	3/20/2003	0.032F	3/20/2003	0.032F	1/44	2
Arse	enic	SW6010/SW6020	30/20	4/21/2008	16	6/17/2004	0.26 F	13/12	10
Bari	ium	SW6010	5.0	4/20/2009	36	6/12/2000	25	25/0	2000
Cad	mium	SW7131/SW6020	1.0/2.0	9/12/2000	0.60F	9/10/2002	$0.027\mathrm{F}$	3/27	5
Chro	omium	SW6010	10	3/17/2009	100	9/10/2002	1.3F	20/7	100
Сор	oper	SW6010	10	6/13/2001	5.0F	9/12/2000	1.0F	10/15	1300
Mer	cury	SW7470	1.0	1/25/2006	0.24	4/20/2009	$0.077\mathrm{F}$	5/22	2
Nicl	kel	SW6010	10	9/25/2007	66	9/13/2001	2.0F	25/3	6
Lead	d	SW6010/SW6020	25/2.0	1/20/2009	2.8F	6/17/2004	0.091 F	7/23	15
Zinc	С	SW6010	50	9/10/2002	81	1/25/2006	3.2 F	20/5	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW1-H	BS								
Dich	nloroethene, 1,1-	SW8260	1.2					0/15	7
Bror	nodichloromethane	SW8260	0.8					0/14	80 ⁵
Bror	noform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/14	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	11/21/2002	2.2	3/9/2004	0.12F	14/2	70
Dibr	comochloromethane	SW8260	0.5					0/14	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/14	6
Metl	hylene chloride	SW8260	2.0	3/9/2004	0.62F	9/15/2003	0.33 F	3/11	5
Napl	hthalene	SW8260	1.0	9/15/2003	0.11F	9/15/2003	0.11F	1/13	6
Tetra	achloroethene	SW8260	1.4	3/25/2003	0.19F	3/25/2003	0.19F	1/15	5
Tolu	iene	SW8260	1.1	6/16/2003	26	9/14/2005	0.34F	14/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/16	100
Tric	hloroethene	SW8260	1.0	3/25/2003	0.24F	7/26/2004	0.044 F	8/8	5
Viny	yl chloride	SW8260	1.1	6/16/2003	0.069 F	6/16/2003	0.069 F	1/14	2
Arse	enic	SW6020	20	6/13/2005	2.6F	3/25/2003	1.6F	5/0	10
Bari	um	SW6010	5.0	6/16/2003	51	3/25/2003	30	5/0	2000
Cadı	mium	SW6020	2.0	6/17/2004	0.036F	3/25/2003	0.025 F	3/3	5
Chro	omium	SW6010	10	6/16/2003	5.8F	3/25/2003	1.0F	2/3	100
Cop	per	SW6010	10	3/25/2003	1.8F	6/16/2003	1.7F	2/3	1300
Mer	cury	SW7470	1.0	6/13/2005	0.071 F	6/16/2003	0.038 F	2/3	2
Nick	kel	SW6010	10	6/16/2003	9.8F	6/13/2005	3.3 F	2/4	6
Lead	f	SW6020	2.0	6/13/2005	0.33F	6/16/2003	0.20F	2/4	15
Zinc		SW6010	50	6/16/2003	78	3/25/2003	34	2/3	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW1-0	CC								
Dich	nloroethene, 1,1-	SW8260	1.2					0/15	7
Bron	modichloromethane	SW8260	0.8					0/13	80 ⁵
Bron	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/13	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	11/10/2002	3.2	6/17/2004	0.17 R	2/17	70
Dibr	romochloromethane	SW8260	0.5					0/13	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/13	6
Met	hylene chloride	SW8260	2.0	9/8/2004	0.52F	3/11/2004	0.27 M	4/9	5
Nap	hthalene	SW8260	1.0					0/13	6
Tetr	achloroethene	SW8260	1.4	11/10/2002	1.3F	1/10/2002	1.3F	1/18	5
Tolu	iene	SW8260	1.1	11/10/2002	40	9/8/2004	0.086 F	9/8	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/19	100
Tric	hloroethene	SW8260	1.0	11/10/2002	1.2F	1/10/2002	1.2F	1/18	5
Viny	yl chloride	SW8260	1.1	6/16/2003	0.052F	6/16/2003	0.052 F	1/14	2
Arse	enic	SW6020	20	3/25/2003	1.5F	6/13/2005	0.38 F	4/0	10
Bari	um	SW6010	5.0	6/16/2003	30	6/13/2005	17	4/0	2000
Cadi	mium	SW6020	2.0	9/25/2007	1.8F	9/25/2007	0.20F	2/4	5
Chro	omium	SW6010	10	6/13/2005	1.4F	6/13/2005	1.4 F	1/3	100
Cop	per	SW6010	10	3/25/2003	1.8F	6/16/2003	1.7 F	2/2	1300
Mer	cury	SW7470	1.0	6/13/2005	0.054F	6/16/2003	0.038 F	2/2	2
Nick	kel	SW6010	10					0/6	6
Lead	d	SW6020	2.0	6/13/2005	0.32F	6/17/2004	0.14 F	3/3	15
Zinc	2	SW6010	50	6/16/2003	5.0F	6/13/2005	4.7 F	2/2	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW2-I	LGR								
Dich	hloroethene, 1,1-	SW8260	1.2					0/41	7
Bron	modichloromethane	SW8260	0.8					0/34	80 ⁵
Bron	moform	SW8260	1.2					0/19	80 ⁵
Chlo	oroform	SW8260	0.3					0/34	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	9/13/2001	4.6	3/17/2009	0.51 F	41/0	70
Dibr	romochloromethane	SW8260	0.5					0/34	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/19	6
Met	hylene chloride	SW8260	2.0	3/9/2004	0.78F	9/9/1999	0.12F	6/28	5
Nap	hthalene	SW8260	1.0					0/19	6
Tetr	achloroethene	SW8260	1.4	9/18/2000	14	9/25/2007	0.11F	33/8	5
Tolu	lene	SW8260	1.1	3/9/2004	8.1	9/10/2002	0.071 F	15/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6	3/20/2001	0.27 F	6/17/2003	0.040 F	18/23	100
Tric	hloroethene	SW8260	1.0	3/20/2001	9.8	3/11/2008	0.060 F	33/8	5
Viny	yl chloride	SW8260	1.1	3/20/2003	0.032F	3/20/2003	0.032 F	1/40	2
Arse	enic	SW6020/SW7060	20/5.0	6/17/2003	4.0F	9/12/2000	0.50F	10/13	10
Bari	ium	SW6010	5.0	1/25/2006	220	3/20/2001	30	23/0	2000
Cad	mium	SW6020	2.0	9/25/2007	1.0F	6/8/2005	0.050F	7/20	5
Chro	omium	SW6010	10	3/21/2000	9.0F	6/8/2005	1.8 F	15/10	100
Cop	per	SW6010	10	6/13/2001	5.0F	3/20/2001	1.0F	8/15	1300
Mer	cury	SW7470	1.0	1/25/2006	0.25	6/17/2003	0.038 F	2/23	2
Nick	kel	SW6010	10	9/12/2000	38	3/11/2008	3.0F	24/1	6
Lead	d	SW6020	2.0	9/25/2007	3.6	6/17/2004	0.18F	7/20	15
Zinc	2	SW6010	50	6/8/2005	110	9/12/2000	3.0F	22/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW2-0	CC								
Dich	nloroethene, 1,1-	SW8260	1.2					0/12	7
Bron	modichloromethane	SW8260	0.8					0/11	80 ⁵
Bror	moform	SW8260	1.2					0/11	80 ⁵
Chlo	oroform	SW8260	0.3					0/11	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/16	70
Dibr	romochloromethane	SW8260	0.5					0/11	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/11	6
Meth	hylene chloride	SW8260	2.0	3/9/2004	0.75F	9/15/2003	0.36 F	4/7	5
Napl	hthalene	SW8260	1.0					0/11	6
Tetra	achloroethene	SW8260	1.4					0/16	5
Tolu	iene	SW8260	1.1	9/7/2005	2.7	6/17/2004	0.11F	10/5	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/16	100
Tricl	hloroethene	SW8260	1.0					0/16	5
Viny	yl chloride	SW8260	1.1					0/12	2
Arse	enic	SW6020	20	6/8/2005	0.46F	6/17/2004	0.30F	3/0	10
Bari	um	SW6010	5.0	6/17/2003	37	6/8/2005	17	3/0	2000
Cadı	mium	SW6020	2.0	9/25/2007	0.50F	9/25/2007	0.50F	1/3	5
Chro	omium	SW6010	10					0/3	100
Cop	per	SW6010	10	6/17/2003	1.1 F	6/17/2003	1.1 F	1/2	1300
Mere	cury	SW7470	1.0	6/17/2003	0.037 F	6/17/2003	0.037 F	1/2	2
Nick	kel	SW6010	10	9/25/2007	11	6/8/2005	2.6 F	2/2	6
Lead	d	SW6020	2.0	9/25/2007	2.5	6/8/2005	0.20F	2/2	15
Zinc	2	SW6010	50	6/17/2003	27	6/8/2005	11 F	2/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW3-I	LGR								
Dicł	hloroethene, 1,1-	SW8260	1.2					0/27	7
Brou	modichloromethane	SW8260	0.8					0/20	80 ⁵
Brou	moform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/20	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/27	70
Dibı	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/14	6
Met	hylene chloride	SW8260	2.0	12/17/2001	0.49F	3/13/2002	0.20F	8/12	5
Nap	hthalene	SW8260	1.0					0/14	6
Tetr	achloroethene	SW8260	1.4	9/7/2004	0.062F	9/7/2004	0.062 F	1/26	5
Tolu	uene	SW8260	1.1					0/14	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/27	100
Tric	hloroethene	SW8260	1.0	11/29/2004	0.21 F	9/7/2004	0.056 F	2/25	5
Vin	yl chloride	SW8260	1.1					0/27	2
Arse	enic	SW7060/SW6020	5.0/20	9/12/2001	2.1 F	6/7/2005	0.44 F	5/3	10
Bari	ium	SW6010	5.0	9/12/2001	29 J	6/20/2003	27	8/0	2000
Cad	mium	SW6020	2.0	10/1/2007	0.30F	6/20/2003	0.081 F	3/10	5
Chro	omium	SW6010	10	6/14/2001	2.0F	6/14/2001	2.0F	1/10	100
Cop	per	SW6010	10					0/8	1300
Mer	cury	SW7470	1.0					0/11	2
Nick	kel	SW6010	10	10/1/2007	6.0F	6/7/2005	1.4 F	5/5	6
Lead	d	SW7421/SW6020	5.0/2.0	6/14/2001	32	6/15/2004	0.13 F	8/5	15
Zinc	2	SW6010	50	6/14/2001	62	6/15/2004	20 F	8/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW4-L	.GR								
Dich	loroethene, 1,1-	SW8260	1.2					0/25	7
Bron	nodichloromethane	SW8260	0.8					0/20	80 ⁵
Bron	noform	SW8260	1.2					0/14	80 ⁵
Chlo	roform	SW8260	0.3					0/20	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	3/21/2003	0.22F	6/18/2002	0.11 F	12/13	70
Dibro	omochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/14	6
Meth	ylene chloride	SW8260	2.0	9/9/2004	0.57F	2/10/2003	0.33 M	4/16	5
Naph	nthalene	SW8260	1.0	3/21/2003	0.86	6/14/2001	0.25 F	2/12	6
Tetra	achloroethene	SW8260	1.4	3/21/2003	0.12F	6/23/2003	0.061 F	6/19	5
Tolu	ene	SW8260	1.1	3/21/2003	2.5 J	3/21/2003	2.5 J	1/13	1000
trans	-1,2-Dichloroethene	SW8260	0.6					0/25	100
Trich	nloroethene	SW8260	1.0	3/21/2003	0.098F	6/23/2003	0.044 F	7/18	5
Viny	l chloride	SW8260	1.1	3/21/2003	0.051 F	3/21/2003	0.051 F	1/24	2
Arse	nic	SW7060	5.0	6/14/2001	3.0F	2/12/2001	0.90F	9/0	10
Bariı	um	SW6010	5.0	6/8/2005	54	9/13/2001	42 J	9/0	2000
Cadr	nium	SW6020	2.0	9/27/2007	0.70F	3/14/2002	0.032 F	2/10	5
Chro	omium	SW6010	10	3/17/2009	3.0F	6/14/2001	2.0F	2/8	100
Copp	per	SW6010	10	6/14/2001	4.0F	6/14/2001	4.0F	1/8	1300
Merc	cury	SW7470	1.0	6/8/2005	0.045 F	6/8/2005	0.045 F	1/9	2
Nick	el	SW6010	10	6/14/2001	29	6/8/2005	2.7 F	9/2	6
Lead	l	SW6020	2.0	9/27/2007	1.0F	3/14/2002	0.15F	3/9	15
Zinc		SW6010	50	6/14/2001	19F	6/18/2002	5.5 F	6/3	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW5-I	LGR								
Dicł	hloroethene, 1,1-	SW8260	1.2					0/26	7
Brou	modichloromethane	SW8260	0.8					0/20	80 ⁵
Brou	moform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/20	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	3/17/2003	2.8	9/11/2002	0.46 F	26/0	70
Dibı	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/14	6
Met	hylene chloride	SW8260	2.0	9/9/2004	0.55F	3/21/2002	0.22 F	5/15	5
Nap	hthalene	SW8260	1.0					0/14	6
Tetr	achloroethene	SW8260	1.4	3/17/2003	1.7	9/11/2002	0.32 F	25/1	5
Tolu	lene	SW8260	1.1	3/17/2003	$0.077\mathrm{F}$	2/11/2003	0.068 F	2/12	1000
trans	s-1,2-Dichloroethene	SW8260	0.6	3/17/2003	0.080F	6/18/2002	0.041 F	7/19	100
Tric	hloroethene	SW8260	1.0	6/23/2003	2.6	9/11/2002	0.40 F	26/0	5
Vin	yl chloride	SW8260	1.1					0/26	2
Arse	enic	SW7060/SW6020	5.0/20	6/14/2001	5.2	6/16/2004	1.7F	9/0	10
Bari	ium	SW6010	5.0	6/14/2001	37	3/21/2002	6.1	9/0	2000
Cad	mium	SW6020	2.0	9/27/2007	0.40F	3/21/2002	0.022 F	3/10	5
Chro	omium	SW6010	10	9/11/2008	2.0F	9/11/2008	2.0F	2/9	100
Cop	per	SW6010	10					0/9	1300
Mer	cury	SW7470	1.0					0/11	2
Nick	kel	SW6010	10	6/14/2001	32	3/11/2008	7.0F	11/0	6
Lead	d	SW6010/SW6020	25/2.0	9/11/2008	5.0F	6/16/2004	0.094 F	8/5	15
Zinc	2	SW6010	50	6/14/2001	140	6/16/2004	9.5 F	9/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW6-L	.GR								
Dich	loroethene, 1,1-	SW8260	1.2					0/25	7
Bron	nodichloromethane	SW8260	0.8					0/19	80 ⁵
Bron	noform	SW8260	1.2					0/13	80 ⁵
Chlo	roform	SW8260	0.3					0/19	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	6/13/2001	0.26F	6/13/2001	0.26 F	1/24	70
Dibro	omochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/13	6
Meth	ylene chloride	SW8260	2.0	3/8/2004	0.84F	6/20/2002	0.25 F	5/14	5
Naph	nthalene	SW8260	1.0	3/18/2003	0.25 F	3/18/2003	0.25 F	1/12	6
Tetra	achloroethene	SW8260	1.4	6/13/2001	0.50F	6/13/2001	0.50F	1/24	5
Tolue	ene	SW8260	1.1	3/18/2003	2.2B	2/11/2003	0.061 F	3/10	1000
trans	-1,2-Dichloroethene	SW8260	0.6					0/25	100
Trich	nloroethene	SW8260	1.0	6/13/2001	0.42F	6/13/2001	0.42 F	1/24	5
Viny	l chloride	SW8260	1.1					0/25	2
Arsei	nic	SW6020	20	6/20/2002	1.0F	6/21/2004	0.68 F	5/3	10
Bariu	ım	SW6010	5.0	6/20/2002	40	6/18/2003	31	8/0	2000
Cadn	nium	SW6020	2.0	10/2/2007	0.20F	10/2/2007	0.20F	1/12	5
Chro	mium	SW6010	10	6/13/2001	11	3/18/2009	2.0F	5/5	100
Copp	ber	SW6010	10	9/13/2001	6.0F	6/13/2001	5.0F	2/6	1300
Merc	cury	SW7470	1.0	6/9/2005	0.082F	6/9/2005	0.082 F	1/9	2
Nick	el	SW6010	10	12/13/2001	65	6/13/2001	3.0F	11/0	6
Lead		SW6010/SW6020	25/2.0	9/10/2008	4.3F	6/9/2005	0.22 F	6/7	15
Zinc		SW6010	50	6/13/2001	35 F	6/9/2005	8.0F	8/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW6-I	BS								
Dich	hloroethene, 1,1-	SW8260	1.2					0/21	7
Brou	modichloromethane	SW8260	0.8					0/20	80 ⁵
Brou	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/20	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	3/18/2003	0.14F	3/18/2003	0.14F	1/20	70
Dibı	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/13	6
Met	hylene chloride	SW8260	2.0	3/8/2004	0.82F	6/20/2002	0.25 F	5/15	5
Nap	hthalene	SW8260	1.0	3/18/2003	0.23 F	9/16/2003	0.12F	2/11	6
Tetr	achloroethene	SW8260	1.4					0/21	5
Tolu	lene	SW8260	1.1	3/18/2003	1.9B	6/18/2003	0.076 F	6/7	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/21	100
Tric	hloroethene	SW8260	1.0					0/21	5
Vin	yl chloride	SW8260	1.1					0/21	2
Arse	enic	SW6020/SW7060	20/5.0	6/21/2004	5.6F	6/13/2001	1.3F	8/0	10
Bari	ium	SW6010	5.0	6/9/2005	39	6/13/2001	9.5	8/0	2000
Cad	mium	SW6020	2.0					0/9	5
Chro	omium	SW6010	10	6/13/2001	5.0F	6/13/2001	5.0F	1/7	100
Cop	per	SW6010	10	6/13/2001	9.0F	9/13/2001	4.0F	2/6	1300
Mer	cury	SW7470	1.0	12/13/2001	0.20F	2/13/2001	0.20F	1/7	2
Nick	kel	SW6010	10	6/13/2001	3.0F	6/13/2001	3.0F	1/8	6
Lead	d	SW6020	2.0	6/9/2005	0.11F	6/9/2005	0.11F	1/8	15
Zinc	2	SW6010	50	6/13/2001	85	6/20/2002	3.7 F	4/4	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW6-	CC								
Dicl	hloroethene, 1,1-	SW8260	1.2					0/22	7
Bro	modichloromethane	SW8260	0.8					0/21	80 ⁵
Bro	moform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/21	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2	3/18/2003	0.23F	3/18/2003	0.23 F	1/21	70
Dib	romochloromethane	SW8260	0.5					0/21	80 ⁵
Dicl	hlorodifluoromethane	SW8260	1.0					0/14	6
Met	hylene chloride	SW8260	2.0	3/8/2004	0.85 F	6/20/2002	0.26 F	6/15	5
Nap	hthalene	SW8260	1.0	3/18/2003	0.23 F	3/18/2003	0.23 F	1/13	6
Tetr	achloroethene	SW8260	1.4					0/22	5
Tolu	uene	SW8260	1.1	3/18/2003	2.6B	9/10/2004	0.11F	4/10	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/22	100
Tric	chloroethene	SW8260	1.0	3/18/2003	0.090F	3/18/2003	0.090 F	1/21	5
Vin	yl chloride	SW8260	1.1					0/22	2
Arse	enic	SW7060/SW6020	5.0/20	9/13/2001	2.8F	6/9/2005	0.97 F	9/1	10
Bari	ium	SW6010	5.0	6/9/2005	38	6/13/2001	12	10/0	2000
Cad	mium	SW6020	2.0	10/2/2007	0.40F	6/18/2003	0.083 F	2/9	5
Chro	omium	SW6010	10	6/13/2001	17	6/13/2001	17	1/9	100
Сор	per	SW6010	10	9/13/2001	6.0F	6/13/2001	5.0F	2/8	1300
Mer	cury	SW7470	1.0	12/13/2001	0.20F	2/13/2001	0.20F	1/9	2
Nicl	kel	SW6010	10	6/13/2001	8.0F	6/9/2005	1.4 F	4/7	6
Lead	d	SW7421/SW6020	5.0/2.0	12/13/2001	1.6F	3/12/2002	0.18F	4/7	15
Zinc	2	SW6010	50	9/13/2001	120	6/9/2005	6.8 F	9/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW7-I	LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/24	7
Bron	modichloromethane	SW8260	0.8					0/19	80 ⁵
Bron	moform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/19	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/24	70
Dibr	romochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/12	6
Met	hylene chloride	SW8260	2.0	12/14/2001	0.85F	3/11/2004	0.20 M	6/13	5
Nap	hthalene	SW8260	1.0	3/18/2003	0.32F	3/18/2003	0.32F	1/11	6
Tetr	achloroethene	SW8260	1.4	9/9/2008	0.22F	6/23/2003	0.053 F	5/19	5
Tolu	iene	SW8260	1.1	3/18/2003	2.5 B	9/13/2004	0.094 F	3/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/24	100
Tric	hloroethene	SW8260	1.0	12/15/2003	0.038F	3/11/2004	0.037 F	2/22	5
Viny	yl chloride	SW8260	1.1					0/24	2
Arse	enic	SW6020	20	6/13/2005	0.77F	3/12/2002	0.50F	5/4	10
Bari	um	SW6010	5.0	6/23/2004	47	3/12/2002	20 J	10/0	2000
Cad	mium	SW6020	2.0	10/2/2007	0.30F	6/23/2003	$0.078\mathrm{F}$	2/11	5
Chro	omium	SW6010	10	3/12/2009	5.0F	6/13/2005	1.3F	4/8	100
Cop	per	SW6010	10	9/13/2001	9.0F	9/17/2001	4.0F	3/7	1300
Mer	cury	SW7470	1.0	6/13/2005	0.067 F	6/13/2005	$0.067\mathrm{F}$	1/10	2
Nick	kel	SW6010	10	9/17/2001	10	6/13/2005	1.4 F	5/7	6
Lead	d	SW7421/SW6020	5.0/2.0	7/31/2001	0.90F	6/23/2004	0.13F	6/7	15
Zinc	2	SW6010	50	9/13/2001	54	6/23/2004	4.4 F	10/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW7-0	CC								
Dich	hloroethene, 1,1-	SW8260	1.2	6/24/2002	0.33F	9/13/2004	0.034 F	2/18	7
Brou	modichloromethane	SW8260	0.8					0/19	80 ⁵
Brou	moform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/19	80 ⁵
cis-]	1,2-Dichloroethene	SW8260	1.2					0/20	70
Dibı	romochloromethane	SW8260	0.5					0/19	80 ⁵
Dicł	hlorodifluoromethane	SW8260	1.0					0/12	6
Met	hylene chloride	SW8260	2.0	6/24/2002	1.8F	2/14/2001	0.21 F	6/13	5
Nap	hthalene	SW8260	1.0					0/12	6
Tetr	achloroethene	SW8260	1.4	9/13/2002	0.13F	9/13/2002	0.13F	1/19	5
Tolu	lene	SW8260	1.1	3/18/2003	2.8B	2/15/2003	0.084 F	3/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/20	100
Tric	hloroethene	SW8260	1.0					0/20	5
Vin	yl chloride	SW8260	1.1					0/20	2
Arse	enic	SW7060/SW6020	5.0/20	7/18/2001	6.1	6/23/2003	1.0F	9/1	10
Bari	ium	SW6010	5.0	7/18/2001	42	6/23/2003	25	11/0	2000
Cad	mium	SW6020	2.0					0/11	5
Chro	omium	SW6010	10	6/24/2002	5.6F	9/13/2001	2.0F	2/9	100
Cop	per	SW6010	10					0/11	1300
Mer	cury	SW7470	1.0	12/14/2001	0.20F	6/13/2005	0.052 F	4/6	2
Nick	kel	SW6010	10	7/18/2001	15	2/14/2001	2.0F	6/6	6
Lead	d	SW7421/SW6020	5.0/2.0	12/14/2001	1.2F	6/23/2004	0.11F	5/6	15
Zinc	2	SW6010	50	6/24/2002	57	6/23/2003	13	7/4	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW8-I	LGR								
Dich	hloroethene, 1,1-	SW8260	1.2					0/25	7
Brou	modichloromethane	SW8260	0.8					0/21	80 ⁵
Brou	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/21	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	3/18/2003	0.21 F	3/18/2003	0.21 F	1/24	70
Dibı	romochloromethane	SW8260	0.5					0/21	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/13	6
Met	hylene chloride	SW8260	2.0	3/12/2002	0.53 F	3/12/2004	0.31 M	4/17	5
Nap	hthalene	SW8260	1.0					0/13	6
Tetr	achloroethene	SW8260	1.4	9/10/2008	1.7	6/19/2002	$0.057\mathrm{F}$	24/1	5
Tolu	uene	SW8260	1.1	3/18/2003	2.9B	9/13/2004	0.10F	3/10	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Tric	hloroethene	SW8260	1.0	6/12/2001	0.18F	3/18/2003	0.032 F	3/22	5
Vin	yl chloride	SW8260	1.1					0/25	2
Arse	enic	SW7060/SW6020	5.0/20	9/13/2001	1.1F	3/12/2002	0.50F	7/3	10
Bari	ium	SW6010	5.0	6/12/2001	42	6/21/2004	35	10/0	2000
Cad	mium	SW6010/SW6020	7.0/2.0	9/10/2008	0.70F	6/19/2002	0.12F	2/11	5
Chro	omium	SW6010	10	6/9/2005	2.1 F	9/10/2008	2.0F	2/10	100
Cop	per	SW6010	10	6/19/2002	11	6/12/2001	4.0F	2/8	1300
Mer	cury	SW7470	1.0	9/13/2001	0.20F	9/13/2001	0.20F	1/11	2
Nick	kel	SW6010	10	3/12/2002	10	6/9/2005	1.7 F	6/5	6
Lead	d	SW6010/SW6020	25/2.0	9/10/2008	2.7 F	6/21/2004	0.16F	9/4	15
Zinc	2	SW6010	50	9/13/2001	88	6/21/2004	17 F	10/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW8-0	CC								
Dich	hloroethene, 1,1-	SW8260	1.2					0/20	7
Brou	modichloromethane	SW8260	0.8					0/19	80 ⁵
Brou	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3	12/12/2003	0.12R	2/12/2003	0.12 R	1/18	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/20	70
Dibi	romochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/13	6
Met	hylene chloride	SW8260	2.0	3/12/2002	0.52F	2/12/2003	0.23 R	6/13	5
Nap	hthalene	SW8260	1.0	9/16/2003	0.34F	9/16/2003	0.34 F	1/12	6
Tetr	achloroethene	SW8260	1.4	12/12/2003	2.5 R	9/13/2004	0.19F	7/13	5
Tolu	lene	SW8260	1.1	3/19/2003	3.5	9/13/2004	0.082 F	4/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/20	100
Tric	hloroethene	SW8260	1.0	12/12/2003	0.45 R	10/2/2007	0.080 F	2/18	5
Vin	yl chloride	SW8260	1.1					0/20	2
Arse	enic	SW7060/SW6020	5.0/20	9/13/2001	7.2 J	6/9/2005	2.4 F	8/0	10
Bari	ium	SW6010	5.0	12/13/2001	42	6/19/2002	8.8	8/0	2000
Cad	mium	SW6020	2.0	10/2/2007	0.20F	6/19/2002	0.058 F	2/7	5
Chro	omium	SW6010	10	6/14/2001	2.0F	6/14/2001	2.0F	1/7	100
Cop	per	SW6010	10	6/14/2001	19	6/19/2003	1.5 F	3/5	1300
Mer	cury	SW7470	1.0	6/19/2003	0.023 F	6/19/2003	0.023 F	1/7	2
Nick	kel	SW6010	10	6/14/2001	23	10/2/2007	3.0F	3/6	6
Lead	d	SW7421/SW6020	5.0/2.0	6/14/2001	2.6F	6/23/2004	0.12F	5/4	15
Zinc	2	SW6010	50	6/14/2001	69	6/19/2003	5.0F	3/5	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW9-I	LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/32	7
Bron	modichloromethane	SW8260	0.8					0/23	80 ⁵
Bron	moform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3					0/23	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/32	70
Dibr	romochloromethane	SW8260	0.5					0/23	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/15	6
Met	hylene chloride	SW8260	2.0	9/7/2004	0.49F	3/13/2002	0.22 F	4/19	5
Nap	hthalene	SW8260	1.0	3/17/2003	0.49	3/17/2003	0.49	1/14	6
Tetr	achloroethene	SW8260	1.4	6/10/2008	0.26F	3/13/2002	0.041 F	8/24	5
Tolu	iene	SW8260	1.1	3/17/2003	0.26F	3/17/2003	0.26 F	1/14	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/32	100
Tric	hloroethene	SW8260	1.0	3/17/2003	0.26F	3/17/2003	0.26 F	1/31	5
Viny	yl chloride	SW8260	1.1					0/32	2
Arse	enic	SW6010/SW6020	30/20	6/10/2008	5.8F	6/15/2004	0.35 F	11/4	10
Bari	um	SW6010	5.0	6/14/2001	68	3/17/2008	29	15/0	2000
Cadi	mium	SW6020	2.0	9/25/2007	0.40F	6/19/2002	0.044 F	3/16	5
Chro	omium	SW6010	10	2/18/2001	54	9/16/2008	2.0F	10/8	100
Cop	per	SW6010	10	2/18/2001	11	2/18/2001	11	1/14	1300
Mer	cury	SW7470	1.0	6/10/2008	0.40F	3/17/2008	0.058 F	4/14	2
Nick	kel	SW6010	10	6/10/2005	52	6/10/2008	6.0F	16/0	6
Lead	d	SW7421/SW6020	5.0/2.0	2/18/2001	8.6	6/15/2004	0.082 F	11/8	15
Zinc	c	SW6010	50	2/18/2001	120	6/15/2004	4.6F	13/2	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW9-I	BS								
Dich	nloroethene, 1,1-	SW8260	1.2					0/19	7
Bron	modichloromethane	SW8260	0.8					0/18	80 ⁵
Bron	moform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/18	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/19	70
Dibr	romochloromethane	SW8260	0.5					0/18	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/12	6
Met	hylene chloride	SW8260	2.0	9/7/2004	0.52F	3/13/2002	0.23 F	5/13	5
Nap	hthalene	SW8260	1.0					0/12	6
Tetr	achloroethene	SW8260	1.4					0/19	5
Tolu	iene	SW8260	1.1	3/17/2003	0.60F	6/20/2003	0.072 F	3/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/19	100
Tric	hloroethene	SW8260	1.0					0/19	5
Viny	yl chloride	SW8260	1.1	3/17/2003	0.059F	12/12/2002	0.055 F	2/17	2
Arse	enic	SW6020	20	6/15/2004	2.8F	6/20/2003	0.94 F	7/1	10
Bari	um	SW6010	5.0	6/10/2005	79	6/14/2001	13	8/0	2000
Cad	mium	SW6020	2.0	9/25/2007	2.6	6/15/2004	0.033 F	2/7	5
Chro	omium	SW6010	10	6/14/2001	3.0F	6/14/2001	3.0F	1/7	100
Cop	per	SW6010	10					0/8	1300
Mer	cury	SW7470	1.0	12/14/2001	0.20F	2/14/2001	0.20F	2/6	2
Nick	kel	SW6010	10	9/25/2007	19	6/14/2001	3.0F	2/7	6
Lead	d	SW6020	2.0	9/25/2007	110	6/15/2004	0.20F	6/3	15
Zinc	2	SW6010	50	6/10/2005	36 F	6/19/2002	3.3 F	7/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW9-0	CC								
Dich	nloroethene, 1,1-	SW8260	1.2					0/23	7
Bron	modichloromethane	SW8260	0.8					0/22	80 ⁵
Bron	moform	SW8260	1.2					0/16	80 ⁵
Chlo	oroform	SW8260	0.3					0/22	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	3/17/2003	0.40F	3/17/2003	0.40F	1/22	70
Dibr	romochloromethane	SW8260	0.5					0/22	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/16	6
Met	hylene chloride	SW8260	2.0	12/14/2001	0.70F	3/13/2002	0.24 F	5/17	5
Nap	hthalene	SW8260	1.0	11/20/2000	3.8	1/19/2000	1.0	2/14	6
Tetr	achloroethene	SW8260	1.4					0/23	5
Tolu	iene	SW8260	1.1	3/17/2003	0.69F	1/19/2000	0.11F	5/11	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/23	100
Tric	hloroethene	SW8260	1.0					0/23	5
Viny	yl chloride	SW8260	1.1					0/23	2
Arse	enic	SW6020	20	6/19/2002	1.3F	6/15/2004	0.23 F	8/1	10
Bari	um	SW6010	5.0	6/14/2001	27	6/19/2002	18	9/0	2000
Cad	mium	SW6020	2.0	9/25/2007	0.20F	9/25/2007	0.20F	1/9	5
Chro	omium	SW6010	10	12/14/2001	13	6/14/2001	2.0F	2/7	100
Cop	per	SW6010	10					0/9	1300
Mer	cury	SW7470	1.0	6/10/2005	0.080F	6/10/2005	0.080 F	1/8	2
Nick	kel	SW6010	10	6/14/2001	5.0F	9/12/2001	3.0F	2/8	6
Lead	d	SW6020	2.0	9/25/2007	0.20F	6/10/2005	0.19F	2/8	15
Zinc	2	SW6010	50	6/14/2001	54	6/20/2003	5.6F	7/2	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW10-	LGR								
Dich	loroethene, 1,1-	SW8260	1.2	3/20/2003	0.052F	3/20/2003	0.052 F	1/24	7
Bron	nodichloromethane	SW8260	0.8					0/21	80 ⁵
Bron	noform	SW8260	1.2					0/16	80 ⁵
Chlo	oroform	SW8260	0.3	6/18/2003	0.13F	6/23/2004	0.095 F	16/5	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/25	70
Dibro	omochloromethane	SW8260	0.5					0/21	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/16	6
Meth	nylene chloride	SW8260	2.0	3/12/2004	0.72 M	2/12/2003	0.22 R	5/16	5
Napł	hthalene	SW8260	1.0					0/16	6
Tetra	achloroethene	SW8260	1.4	9/26/2001	2.8	3/7/2007	1.3F	24/1	5
Tolu	ene	SW8260	1.1	3/20/2003	2.6J	2/12/2003	0.20 R	2/14	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Trich	hloroethene	SW8260	1.0	3/12/2002	0.72F	3/7/2007	0.37 F	24/1	5
Viny	l chloride	SW8260	1.1					0/25	2
Arse	enic	SW7060/SW6020	5.0/20	9/26/2001	1.7F	3/12/2002	0.62 F	7/1	10
Bariı	um	SW6010	5.0	9/26/2001	58 J	3/12/2002	26 J	8/0	2000
Cadr	mium	SW6020	2.0					0/11	5
Chro	omium	SW6010	10	9/15/2008	16	9/26/2001	3.0F	3/7	100
Copp	per	SW6010	10	12/13/2001	14	9/26/2001	9.0F	2/6	1300
Merc	cury	SW7470	1.0					0/10	2
Nick	tel	SW6010	10	9/26/2001	13	6/9/2005	1.4 F	3/6	6
Lead	1	SW6010/SW6020	25/2.0	9/15/2008	2.5 F	6/23/2004	0.19F	7/4	15
Zinc		SW6010	50	9/26/2001	79	6/18/2002	5.0F	7/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW10	-CC								
Dich	hloroethene, 1,1-	SW8260	1.2					0/20	7
Bron	modichloromethane	SW8260	0.8					0/19	80 ⁵
Brou	moform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3					0/19	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/20	70
Dibi	romochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/15	6
Met	hylene chloride	SW8260	2.0	3/12/2004	0.68 M	9/16/2004	0.28 F	6/13	5
Nap	hthalene	SW8260	1.0	3/20/2003	0.23 F	3/20/2003	0.23 F	1/14	6
Tetr	achloroethene	SW8260	1.4	9/13/2002	0.058F	9/13/2002	0.058F	1/19	5
Tolu	uene	SW8260	1.1	3/20/2003	2.1 J	9/16/2004	0.062 F	3/12	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/20	100
Tric	hloroethene	SW8260	1.0					0/20	5
Vin	yl chloride	SW8260	1.1					0/20	2
Arse	enic	SW7060/SW6020	5.0/20	12/13/2001	5.8	6/23/2004	2.1 F	6/1	10
Bari	ium	SW6010	5.0	9/26/2001	77 J	6/18/2002	24	7/0	2000
Cad	mium	SW6020	2.0	10/2/2007	0.40F	6/18/2002	0.034 F	2/6	5
Chro	omium	SW6010	10	9/26/2001	7.0F	6/18/2003	3.5 F	2/5	100
Cop	per	SW6010	10	9/26/2001	10	9/26/2001	10	1/6	1300
Mer	cury	SW7470	1.0					0/7	2
Nicl	kel	SW6010	10	9/26/2001	26	10/2/2007	3.0F	6/2	6
Lead	d	SW7421/SW6020	5.0/2.0	9/26/2001	4.8F	6/9/2005	0.096 F	5/3	15
Zinc	2	SW6010	50	12/13/2001	60	6/18/2003	5.9F	5/2	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW11	A-LGR								
Dich	hloroethene, 1,1-	SW8260	1.2					0/19	7
Bron	modichloromethane	SW8260	0.8					0/12	80 ⁵
Bron	moform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/12	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/24	70
Dibi	romochloromethane	SW8260	0.5					0/12	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/12	6
Met	hylene chloride	SW8260	2.0	9/13/2004	0.41 F	3/17/2006	0.22 F	4/8	5
Nap	hthalene	SW8260	1.0					0/12	6
Tetr	achloroethene	SW8260	1.4	9/15/2008	1.6	2/15/2003	0.17 F	19/5	5
Tolu	uene	SW8260	1.1	3/31/2003	3.9	9/13/2004	0.090 F	6/11	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/24	100
Tric	hloroethene	SW8260	1.0					0/24	5
Vin	yl chloride	SW8260	1.1					0/19	2
Arse	enic	SW6020	20	6/17/2003	0.67 F	6/23/2004	0.55 F	3/0	10
Bari	ium	SW6010	5.0	6/23/2004	35	6/16/2005	30	3/0	2000
Cad	mium	SW6010/SW6020	7.0/2.0	9/15/2008	0.80F	9/27/2007	0.40F	3/5	5
Chro	omium	SW6010	10	3/12/2009	6.0F	3/12/2009	6.0F	1/4	100
Cop	per	SW6010	10	6/17/2003	1.7F	6/17/2003	1.7F	1/2	1300
Mer	cury	SW7470	1.0	6/17/2003	0.031F	6/17/2003	0.031 F	1/4	2
Nicl	kel	SW6010	10	9/27/2007	5.0F	3/12/2008	2.0F	5/1	6
Lead	d	SW6010/SW6020	25/2.0	9/15/2008	2.3F	6/23/2004	0.12F	4/4	15
Zinc	2	SW6010	50	6/17/2003	44	6/23/2004	5.3 F	3/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW111	B-LGR								
Dich	loroethene, 1,1-	SW8260	1.2					0/10	7
Bron	nodichloromethane	SW8260	0.8					0/8	80 ⁵
Bron	noform	SW8260	1.2					0/8	80 ⁵
Chlo	oroform	SW8260	0.3					0/8	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/14	70
Dibr	omochloromethane	SW8260	0.5					0/8	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/8	6
Meth	nylene chloride	SW8260	2.0	9/13/2004	0.39F	9/15/2003	0.35 F	2/6	5
Napl	hthalene	SW8260	1.0					0/8	6
Tetra	achloroethene	SW8260	1.4	9/15/2005	1.5	5/26/2004	0.83 F	10/4	5
Tolu	ene	SW8260	1.1	4/8/2003	300	6/17/2003	0.10F	2/10	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/14	100
Tricl	hloroethene	SW8260	1.0					0/14	5
Viny	l chloride	SW8260	1.1					0/10	2
Arse	enic	SW6020	20	6/14/2005	0.48F	6/17/2003	0.34F	3/0	10
Barit	um	SW6010	5.0	5/26/2004	36	6/14/2005	32	3/0	2000
Cadr	nium	SW6020	2.0	9/27/2007	1.0F	9/27/2007	1.0F	1/4	5
Chro	omium	SW6010	10	5/26/2004	3.0F	6/14/2005	2.1 F	2/1	100
Cop	per	SW6010	10	6/17/2003	1.8F	6/17/2003	1.8F	1/2	1300
Merc	cury	SW7470	1.0	6/14/2005	0.060F	5/26/2004	0.026 F	3/0	2
Nick	tel	SW6010	10	3/12/2008	13	9/27/2007	7.0F	4/1	6
Lead	1	SW6010/SW6020	25/2.0	3/12/2008	2.1 F	5/26/2004	0.15 F	5/0	15
Zinc		SW6010	50	5/26/2004	21 F	6/14/2005	6.7 F	3/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW12-	-LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/18	7
Bron	modichloromethane	SW8260	0.8					0/12	80 ⁵
Bron	moform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/12	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/22	70
Dibr	romochloromethane	SW8260	0.5					0/12	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/12	6
Met	hylene chloride	SW8260	2.0	9/9/2004	0.70F	9/18/2003	0.36F	3/9	5
Nap	hthalene	SW8260	1.0					0/12	6
Tetr	achloroethene	SW8260	1.4					0/22	5
Tolu	iene	SW8260	1.1	3/21/2003	1.4J	9/9/2004	0.12F	2/14	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/22	100
Tric	hloroethene	SW8260	1.0					0/22	5
Viny	yl chloride	SW8260	1.1					0/18	2
Arse	enic	SW6020	20	12/16/2002	0.71F	6/16/2003	0.46 F	4/0	10
Bari	um	SW6010	5.0	6/21/2004	37	2/16/2002	32	4/0	2000
Cad	mium	SW6020	2.0					0/9	5
Chro	omium	SW6010	10	6/11/2009	2.0F	2/16/2002	1.3F	3/4	100
Cop	per	SW6010	10	6/16/2003	2.2F	6/16/2003	2.2 F	1/3	1300
Mer	cury	SW7470	1.0	6/14/2005	0.049 F	6/16/2003	0.035 F	2/5	2
Nick	kel	SW6010	10	12/13/2007	35	6/14/2005	2.5 F	5/1	6
Lead	d	SW6010/SW6020	25/2.0	9/11/2008	2.6F	6/14/2005	0.090 F	5/4	15
Zinc	2	SW6010	50	12/16/2002	96	6/14/2005	8.2 F	4/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW12-	-BS								
Dich	nloroethene, 1,1-	SW8260	1.2	3/21/2003	0.032F	3/21/2003	0.032 F	1/12	7
Bror	nodichloromethane	SW8260	0.8					0/12	80 ⁵
Bror	noform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/12	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/13	70
Dibr	comochloromethane	SW8260	0.5					0/12	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/12	6
Metl	hylene chloride	SW8260	2.0	9/9/2004	0.68F	6/21/2004	0.23 F	4/8	5
Napl	hthalene	SW8260	1.0	6/16/2003	0.36F	3/9/2004	0.23 F	8/4	6
Tetra	achloroethene	SW8260	1.4					0/13	5
Tolu	iene	SW8260	1.1	3/21/2003	2.8 J	6/21/2004	0.16F	8/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/13	100
Tric	hloroethene	SW8260	1.0					0/13	5
Viny	yl chloride	SW8260	1.1	12/7/2004	0.32F	3/21/2003	0.096 F	11/2	2
Arse	enic	SW6020	20	6/16/2003	3.0F	6/14/2005	1.1 F	4/0	10
Bari	um	SW6010	5.0	6/21/2004	17	2/16/2002	6.9	4/0	2000
Cadı	mium	SW6020	2.0	9/27/2007	0.20F	2/16/2002	0.045 F	2/3	5
Chro	omium	SW6010	10					0/4	100
Cop	per	SW6010	10	6/16/2003	1.3F	6/16/2003	1.3F	1/3	1300
Mer	cury	SW7470	1.0	6/14/2005	0.049F	6/16/2003	0.032 F	2/2	2
Nick	kel	SW6010	10	6/16/2003	11	9/27/2007	3.0F	5/0	6
Lead	t	SW6020	2.0	6/14/2005	0.28F	6/14/2005	0.28 F	1/4	15
Zinc		SW6010	50	6/16/2003	18	6/14/2005	8.8F	3/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW12-	-CC								
Dich	nloroethene, 1,1-	SW8260	1.2					0/14	7
Bron	modichloromethane	SW8260	0.8					0/13	80 ⁵
Bror	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/13	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/18	70
Dibr	romochloromethane	SW8260	0.5					0/13	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/13	6
Meth	hylene chloride	SW8260	2.0	9/9/2004	0.66F	9/18/2003	0.42 F	3/10	5
Napl	hthalene	SW8260	1.0					0/13	6
Tetra	achloroethene	SW8260	1.4					0/18	5
Tolu	iene	SW8260	1.1	12/8/2003	6.6	9/7/2005	0.19F	13/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/18	100
Tric	hloroethene	SW8260	1.0					0/18	5
Viny	yl chloride	SW8260	1.1	12/8/2003	0.14F	12/8/2003	0.14F	1/13	2
Arse	enic	SW6020	20	12/16/2002	11	6/16/2005	1.4F	5/0	10
Bari	um	SW6010	5.0	12/16/2002	97	6/21/2004	35	5/0	2000
Cadı	mium	SW6020	2.0	12/16/2002	0.079F	2/16/2002	0.076 F	2/4	5
Chro	omium	SW6010	10	6/16/2005	2.0F	2/16/2002	1.0F	3/2	100
Cop	per	SW6010	10	6/16/2003	1.8F	6/16/2003	1.8 F	1/4	1300
Mere	cury	SW7470	1.0	6/16/2003	0.040F	6/16/2003	0.040 F	1/4	2
Nick	kel	SW6010	10	12/16/2002	23	6/16/2005	2.9 F	3/3	6
Lead	d	SW6020	2.0	6/16/2005	0.55 F	2/16/2002	0.35 F	3/3	15
Zinc		SW6010	50	6/16/2005	72	2/16/2002	17	4/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW16	-LGR								
Dich	hloroethene, 1,1-	SW8260	1.2	9/15/2000	0.12F	3/21/2003	0.038F	5/42	7
Brou	modichloromethane	SW8260	0.8					0/41	80 ⁵
Brou	moform	SW8260	1.2					0/29	80 ⁵
Chlo	oroform	SW8260	0.3	12/14/1999	0.19F	6/16/2004	0.054 F	22/19	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	9/9/2008	180	9/8/2005	5.1	47/0	70
Dibi	romochloromethane	SW8260	0.5					0/41	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/29	6
Met	hylene chloride	SW8260	2.0	9/8/2004	0.54F	3/14/2006	0.21 F	8/33	5
Nap	hthalene	SW8260	1.0	10/11/2006	3.8F	10/11/2006	3.8 F	1/28	6
Tetr	achloroethene	SW8260	1.4	3/12/2009	190	9/8/2005	7.5	47/0	5
Tolı	uene	SW8260	1.1	3/21/2003	5.6J	9/9/2002	0.45 F	3/26	1000
tran	s-1,2-Dichloroethene	SW8260	0.6	12/14/1999	9.6	3/11/2004	0.047 M	38/9	100
Tric	chloroethene	SW8260	1.0	9/9/2008	200	9/8/2005	7.0	47/0	5
Vin	yl chloride	SW8260	1.1					0/47	2
Arse	enic	SW6010/SW6020	30/20	4/21/2008	15	6/16/2004	0.27 F	9/18	10
Bari	ium	SW6010	5.0	10/15/2007	41	6/13/2000	30	27/0	2000
Cad	mium	SW6010/SW6020	7.0/2.0	1/21/2008	1.9F	6/18/2002	0.028 F	6/25	5
Chro	omium	SW6010	10	12/14/1999	6.0F	9/9/2002	0.85 F	11/18	100
Cop	per	SW6010	10	4/21/2008	120	12/13/2000	1.0F	12/15	1300
Mer	cury	SW7470	1.0	9/12/2000	0.20F	10/15/2007	0.063 F	6/22	2
Nicl	kel	SW6010	10	9/14/1999	220	0/15/2007	0.84 F	7/22	6
Lead	d	SW6010/SW6020	25/2.0	4/21/2008	13	6/16/2004	0.24 F	14/17	15
Zinc	2	SW6010	50	10/11/2006	1000	9/12/2000	5.0F	27/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW16-	-CC								
Dich	nloroethene, 1,1-	SW8260	1.2	7/27/2007	1.0F	10/27/2008	0.31 F	23/4	7
Bror	modichloromethane	SW8260	0.8					0/19	80 ⁵
Bror	moform	SW8260	1.2	8/10/2006	0.37F	8/10/2006	0.37 F	1/18	80 ⁵
Chlo	oroform	SW8260	0.3	8/10/2006	0.52	8/10/2006	0.52	1/18	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	6/4/2003	140	4/21/2003	23	48/0	70
Dibr	romochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/19	6
Metl	hylene chloride	SW8260	2.0	9/16/2003	8.3F	9/8/2004	0.55 F	4/15	5
Napl	hthalene	SW8260	1.0					0/19	6
Tetra	achloroethene	SW8260	1.4	3/5/2004	64	3/14/2006	0.86 F	45/3	5
Tolu	iene	SW8260	1.1	3/14/2006	160	1/21/2008	0.35 F	9/31	1000
trans	s-1,2-Dichloroethene	SW8260	0.6	9/12/2006	36 R	4/21/2003	0.29 F	47/1	100
Tric	hloroethene	SW8260	1.0	7/23/2003	130	9/12/2006	7.8	48/0	5
Viny	yl chloride	SW8260	1.1	9/16/2003	1.3F	9/8/2004	0.19F	15/12	2
Arse	enic	SW6010/SW6020	30/20	4/21/2008	13	6/16/2004	0.31 F	5/9	10
Bari	um	SW6010	5.0	8/10/2006	29	1/26/2006	9.5	14/0	2000
Cadı	mium	SW6010	7.0					0/18	5
Chro	omium	SW6010	10	8/10/2006	5.3F	4/20/2009	1.6F	2/14	100
Cop	per	SW6010	10	10/15/2007	53	9/16/2003	1.5 F	9/5	1300
Mer	cury	SW7470	1.0	1/26/2006	0.17F	1/20/2009	0.10F	6/9	2
Nick	kel	SW6010	10	4/20/2009	15	1/26/2006	0.98 F	13/3	6
Lead	b	SW6010/SW6020	25/2.0	4/20/2009	38	9/16/2003	0.32F	13/5	15
Zinc		SW6010	50	8/10/2006	4600	7/21/2008	21 F	13/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW17-	-LGR								
Dich	nloroethene, 1,1-	SW8260	1.2	9/12/2002	0.055F	9/12/2002	0.055 F	1/16	7
Bror	modichloromethane	SW8260	0.8					0/15	80 ⁵
Bror	moform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/15	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/17	70
Dibr	romochloromethane	SW8260	0.5					0/15	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/14	6
Metl	hylene chloride	SW8260	2.0	9/19/2003	0.82F	3/21/2003	0.25 F	5/10	5
Napl	hthalene	SW8260	1.0					0/14	6
Tetra	achloroethene	SW8260	1.4	9/7/2004	0.34F	9/12/2002	0.083 F	17/0	5
Tolu	iene	SW8260	1.1	3/21/2003	3.6J	9/19/2003	0.071 F	5/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/17	100
Tric	hloroethene	SW8260	1.0	9/7/2004	0.067 F	9/7/2004	0.067 F	1/16	5
Viny	yl chloride	SW8260	1.1					0/17	2
Arse	enic	SW6020	20	6/23/2003	0.81 F	6/15/2004	0.41 F	5/0	10
Bari	um	SW6010	5.0	9/12/2002	37	6/23/2003	30	5/0	2000
Cadı	mium	SW6020	2.0	6/23/2003	0.066 F	9/12/2002	0.023 F	3/3	5
Chro	omium	SW6010	10	9/12/2002	4.3F	6/7/2005	1.0F	3/2	100
Cop	per	SW6010	10	9/12/2002	2.9F	9/12/2002	2.9 F	1/4	1300
Mer	cury	SW7470	1.0					0/5	2
Nick	kel	SW6010	10	9/12/2002	150	2/11/2007	4.0F	6/0	6
Lead	d	SW6020	2.0	9/12/2002	0.96F	6/7/2005	0.092 F	2/4	15
Zinc		SW6010	50	9/12/2002	270	6/7/2005	10F	4/1	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW18-	-LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/20	7
Bron	nodichloromethane	SW8260	0.8					0/16	80 ⁵
Bror	noform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3					0/16	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/23	70
Dibr	comochloromethane	SW8260	0.5					0/16	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/15	6
Meth	hylene chloride	SW8260	2.0	6/23/2003	1.7F	9/24/2003	0.37 F	5/11	5
Napl	hthalene	SW8260	1.0					0/15	6
Tetra	achloroethene	SW8260	1.4	9/10/2004	0.052F	9/10/2004	0.051 F	2/21	5
Tolu	iene	SW8260	1.1	3/18/2003	3.6B	9/10/2004	0.065 F	9/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/23	100
Tric	hloroethene	SW8260	1.0	3/18/2003	0.097 F	3/18/2003	0.097 F	1/22	5
Viny	yl chloride	SW8260	1.1					0/20	2
Arse	enic	SW6020	20	6/14/2005	0.78F	6/17/2004	0.41 F	4/0	10
Bari	um	SW6010	5.0	6/23/2003	230	9/12/2002	39	4/0	2000
Cadı	mium	SW6020	2.0	10/2/2007	0.90F	10/2/2007	0.30F	2/5	5
Chro	omium	SW6010	10	6/23/2003	14	6/23/2003	14	1/3	100
Cop	per	SW6010	10	9/12/2002	4.5 F	9/12/2002	4.5 F	1/3	1300
Mere	cury	SW7470	1.0	6/14/2005	0.056F	6/14/2005	0.056 F	1/3	2
Nick	kel	SW6010	10	9/12/2002	15	6/23/2003	6.6F	7/0	6
Lead	f	SW6010/SW6020	25/2.0	3/12/2008	2.2F	6/14/2005	0.18F	4/3	15
Zinc		SW6010	50	9/12/2002	44	6/14/2005	6.9F	2/2	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW19-	·LGR								
Dich	nloroethene, 1,1-	SW8260	1.2	3/20/2003	0.032F	3/20/2003	0.032 F	1/21	7
Bron	nodichloromethane	SW8260	0.8					0/16	80 ⁵
Bror	noform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3					0/16	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/25	70
Dibr	comochloromethane	SW8260	0.5					0/16	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/15	6
Meth	hylene chloride	SW8260	2.0	12/16/2002	3.3	3/16/2006	0.19F	8/8	5
Napl	hthalene	SW8260	1.0					0/15	6
Tetra	achloroethene	SW8260	1.4	3/16/2009	0.56F	2/16/2002	0.14F	22/3	5
Tolu	iene	SW8260	1.1	8/6/2002	33	9/16/2004	0.066 F	6/12	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Tricl	hloroethene	SW8260	1.0					0/25	5
Viny	yl chloride	SW8260	1.1	3/20/2003	0.053F	3/20/2003	0.053 F	1/21	2
Arse	enic	SW6020	20	6/16/2005	0.68F	9/12/2002	0.51 F	5/0	10
Bari	um	SW6010	5.0	6/16/2005	39	6/23/2003	34	5/0	2000
Cadı	mium	SW6020	2.0	9/27/2007	0.60F	9/12/2002	0.028 F	2/7	5
Chro	omium	SW6010	10	6/23/2003	2.6F	3/16/2009	2.0F	5/2	100
Cop	per	SW6010	10	9/12/2002	8.6F	9/12/2002	8.6 F	1/4	1300
Mere	cury	SW7470	1.0					0/7	2
Nick	kel	SW6010	10	9/27/2007	130	9/12/2002	11	7/0	6
Lead	f	SW6010/SW6020	25/2.0	9/11/2008	3.7F	6/16/2005	0.10F	4/5	15
Zinc		SW6010	50	9/12/2002	390	6/16/2004	15 F	5/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW20-	-LGR								
Dicł	nloroethene, 1,1-	SW8260	1.2					0/10	7
Bron	modichloromethane	SW8260	0.8					0/1	80 ⁵
Bron	moform	SW8260	1.2					0/1	80 ⁵
Chlo	oroform	SW8260	0.3					0/1	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/10	70
Dibr	romochloromethane	SW8260	0.5					0/1	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/1	6
Met	hylene chloride	SW8260	2.0					0/1	5
Nap	hthalene	SW8260	1.0					0/1	6
Tetr	achloroethene	SW8260	1.4	6/10/2009	2.1	3/18/2009	0.97 F	9/1	5
Tolu	iene	SW8260	1.1					0/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/10	100
Tric	hloroethene	SW8260	1.0					0/10	5
Viny	yl chloride	SW8260	1.1					0/10	2
Arse	enic	SW6020	20	6/6/2007	0.92F	2/12/2007	0.35 F	4/1	10
Bari	um	SW6010	5.0	10/1/2007	150	6/6/2007	130	5/0	2000
Cad	mium	SW6010/SW6020	7.0/2.0	9/15/2008	0.80F	3/13/2008	0.21 F	2/7	5
Chro	omium	SW6010	10	6/6/2007	2.7 F	9/15/2008	2.0F	2/7	100
Cop	per	SW6010	10					0/5	1300
Mer	cury	SW7470	1.0					0/9	2
Nick	kel	SW6010	10	6/6/2007	20	6/6/2007	20	1/4	6
Lead	d	SW6010/SW6020	25/2.0	9/15/2008	2.9F	3/13/2008	0.19F	6/3	15
Zinc	2	SW6010	50	6/6/2007	65	3/13/2008	8.0F	5/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW21-	·LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/10	7
Bron	nodichloromethane	SW8260	0.8					0/1	80 ⁵
Bron	noform	SW8260	1.2					0/1	80 ⁵
Chlo	oroform	SW8260	0.3					0/1	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/10	70
Dibr	omochloromethane	SW8260	0.5					0/1	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/1	6
Meth	hylene chloride	SW8260	2.0					0/1	5
Napl	hthalene	SW8260	1.0					0/1	6
Tetra	achloroethene	SW8260	1.4					0/10	5
Tolu	iene	SW8260	1.1					0/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/10	100
Tricl	hloroethene	SW8260	1.0					0/10	5
Viny	yl chloride	SW8260	1.1					0/10	2
Arse	enic	SW6020	20	6/7/2007	3.8F	2/12/2007	0.54F	4/1	10
Bari	um	SW6010	5.0	6/24/2008	91	6/7/2007	81	5/0	2000
Cadr	mium	SW6010	7.0					0/10	5
Chro	omium	SW6010	10					0/10	100
Cop	per	SW6010	10					0/5	1300
Mere	cury	SW7470	1.0					0/10	2
Nick	xel	SW6010	10	6/24/2008	2.0F	6/24/2008	2.0F	1/4	6
Lead	1	SW6010/SW6020	25/2.0	9/15/2008	3.2F	2/12/2007	0.21 F	5/5	15
Zinc	;	SW6010	50	6/7/2007	470	6/24/2008	140	5/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW22-	LGR								
Dich	loroethene, 1,1-	SW8260	1.2					0/13	7
Bron	nodichloromethane	SW8260	0.8					0/2	80 ⁵
Bron	noform	SW8260	1.2					0/2	80 ⁵
Chlo	oroform	SW8260	0.3					0/2	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/13	70
Dibr	omochloromethane	SW8260	0.5					0/2	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/2	6
Meth	hylene chloride	SW8260	2.0					0/2	5
Napl	hthalene	SW8260	1.0					0/2	6
Tetra	achloroethene	SW8260	1.4					0/13	5
Tolu	iene	SW8260	1.1	11/9/2006	18	11/9/2006	18	1/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/13	100
Tricl	hloroethene	SW8260	1.0					0/13	5
Viny	l chloride	SW8260	1.1					0/13	2
Arse	enic	SW6020	20	10/1/2007	5.6F	2/13/2007	2.3 F	6/2	10
Barit	um	SW6010	5.0	10/1/2007	93	2/13/2007	60	8/0	2000
Cadr	mium	SW6020	2.0	10/1/2007	0.13F	2/13/2007	0.047 F	6/6	5
Chro	omium	SW6010	10	10/1/2007	23	2/13/2007	2.7 F	8/4	100
Cop	per	SW6010	10	6/7/2007	29	3/13/2008	12	4/4	1300
Merc	cury	SW7470	1.0	6/10/2009	0.20F	6/7/2007	0.079 F	5/7	2
Nick	cel	SW6010	10	10/1/2007	37	6/24/2008	6.0F	8/0	6
Lead	1	SW6020/SW6010	2.0/25	6/7/2007	91	9/15/2008	3.7 F	9/3	15
Zinc	;	SW6010	50	6/7/2007	8000	6/24/2008	1700	8/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW23-	·LGR								
Dich	loroethene, 1,1-	SW8260	1.2					0/9	7
Bron	nodichloromethane	SW8260	0.8					0/1	80 ⁵
Bron	noform	SW8260	1.2					0/1	80 ⁵
Chlo	oroform	SW8260	0.3					0/1	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/9	70
Dibr	omochloromethane	SW8260	0.5					0/1	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/1	6
Meth	hylene chloride	SW8260	2.0					0/1	5
Napl	hthalene	SW8260	1.0					0/1	6
Tetra	achloroethene	SW8260	1.4					0/9	5
Tolu	iene	SW8260	1.1					0/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Tricl	hloroethene	SW8260	1.0					0/9	5
Viny	yl chloride	SW8260	1.1					0/9	2
Arse	enic	SW6020	20	6/5/2007	1.5F	12/12/2007	0.69 F	4/1	10
Bari	um	SW6010	5.0	10/1/2007	54	3/13/2008	46	5/0	2000
Cadr	mium	SW6010/SW6020	7.0/2.0	9/15/2008	0.60F	10/1/2007	0.046 F	3/6	5
Chro	omium	SW6010	10	9/15/2008	4.0F	6/10/2009	2.0F	2/7	100
Cop	per	SW6010	10	6/5/2007	6.1F	10/1/2007	4.6F	2/3	1300
Merc	cury	SW7470	1.0	6/5/2007	7.8	6/10/2009	0.20F	2/7	2
Nick	xel	SW6010	10	6/24/2008	35	6/24/2008	35	1/4	6
Lead	1	SW6010/SW6020	25/2.0	9/15/2008	7.9F	3/13/2008	0.23 F	5/4	15
Zinc	;	SW6010	50	6/5/2007	590	3/13/2008	100	5/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW24-	LGR								
Dich	loroethene, 1,1-	SW8260	1.2					0/14	7
Bron	nodichloromethane	SW8260	0.8					0/2	80 ⁵
Bron	noform	SW8260	1.2					0/2	80 ⁵
Chlo	roform	SW8260	0.3					0/2	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/14	70
Dibro	omochloromethane	SW8260	0.5					0/2	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/2	6
Meth	ylene chloride	SW8260	2.0	6/6/2007	0.30F	6/6/2007	0.30F	1/1	5
Naph	nthalene	SW8260	1.0					0/2	6
Tetra	achloroethene	SW8260	1.4					0/14	5
Tolu	ene	SW8260	1.1					0/2	1000
trans	-1,2-Dichloroethene	SW8260	0.6					0/14	100
Trich	nloroethene	SW8260	1.0					0/14	5
Viny	l chloride	SW8260	1.1					0/14	2
Arse	nic	SW6020	20	6/6/2007	0.88F	3/17/2008	0.39 F	5/1	10
Bariu	ım	SW6010	5.0	6/24/2008	33	3/17/2008	30	6/0	2000
Cadn	nium	SW6020	2.0					0/11	5
Chro	mium	SW6010	10	9/10/2008	2.0F	9/10/2008	2.0F	1/10	100
Copp	ber	SW6010	10					0/6	1300
Merc	cury	SW7470	1.0	3/17/2008	0.060F	3/17/2008	0.060 F	1/10	2
Nick	el	SW6010	10	6/6/2007	11	6/6/2007	8.8 F	2/4	6
Lead		SW6010/SW6020	25/2.0	9/10/2008	3.5 F	2/12/2007	0.18F	5/6	15
Zinc		SW6010	50	6/6/2007	220	3/17/2008	74	6/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MW25-	LGR								
Dich	loroethene, 1,1-	SW8260	1.2					0/9	7
Bron	nodichloromethane	SW8260	0.8					0/1	80 ⁵
Bron	noform	SW8260	1.2					0/1	80 ⁵
Chlo	oroform	SW8260	0.3					0/1	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/9	70
Dibr	omochloromethane	SW8260	0.5					0/1	80 ⁵
Dich	llorodifluoromethane	SW8260	1.0					0/1	6
Meth	nylene chloride	SW8260	2.0	6/5/2007	0.33F	6/5/2007	0.33 F	1/0	5
Napł	hthalene	SW8260	1.0					0/1	6
Tetra	achloroethene	SW8260	1.4					0/9	5
Tolu	ene	SW8260	1.1					0/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Trick	hloroethene	SW8260	1.0					0/9	5
Viny	l chloride	SW8260	1.1					0/9	2
Arse	enic	SW6020	20	10/1/2007	4.4F	3/17/2008	1.0F	5/0	10
Bariu	um	SW6010	5.0	10/1/2007	63	3/17/2008	32	5/0	2000
Cadr	nium	SW6020	2.0	10/1/2007	0.16F	3/17/2008	0.043 F	4/5	5
Chro	omium	SW6010	10	10/1/2007	240	3/16/2009	2.0F	9/0	100
Copp	per	SW6010	10	10/1/2007	65	6/10/2008	4.0F	4/1	1300
Merc	cury	SW7470	1.0	6/10/2008	0.50F	3/17/2008	0.060 F	2/7	2
Nick	tel	SW6010	10	10/1/2007	140	6/10/2008	9.0F	5/0	6
Lead	1	SW6020/SW6010	2.0/25	10/1/2007	32	3/16/2009	2.0F	7/2	15
Zinc		SW6010	50	10/1/2007	2200	6/10/2008	210	5/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MWG-	LGR								
Dich	nloroethene, 1,1-	SW8260	1.2					0/25	7
Bron	modichloromethane	SW8260	0.8					0/21	80 ⁵
Bron	moform	SW8260	1.2					0/16	80 ⁵
Chlo	oroform	SW8260	0.3					0/21	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/25	70
Dibr	romochloromethane	SW8260	0.5					0/21	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/16	6
Met	hylene chloride	SW8260	2.0	9/7/2004	0.47 F	12/9/2003	0.24 F	6/15	5
Nap	hthalene	SW8260	1.0					0/16	6
Tetr	achloroethene	SW8260	1.4					0/25	5
Tolu	iene	SW8260	1.1	3/17/2003	0.33R	9/11/2002	0.060 F	3/13	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Tric	hloroethene	SW8260	1.0					0/25	5
Viny	yl chloride	SW8260	1.1					0/25	2
Arse	enic	SW7060/SW6020	5.0/20	9/12/2001	0.90F	2/11/2007	0.23 F	8/3	10
Bari	um	SW6010	5.0	9/8/1999	32	6/16/2003	19	11/0	2000
Cad	mium	SW7131/SW6020	1.0/2.0	9/8/1999	1.7	6/19/2002	0.038 F	5/8	5
Chro	omium	SW6010	10	9/8/1999	3.0F	6/7/2005	1.2F	4/9	100
Cop	per	SW6010	10	9/12/2001	20	6/16/2003	2.4 F	4/7	1300
Mer	cury	SW7470	1.0	6/16/2003	0.032F	6/16/2003	0.032 F	1/12	2
Nick	kel	SW6010	10	6/7/2005	35	9/8/1999	2.0F	4/7	6
Lead	b	SW7421/SW6020	5.0/2.0	9/12/2001	37	6/7/2005	0.41 F	9/4	15
Zinc		SW6010	50	9/8/1999	4800	6/15/2004	8.4 F	11/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
CS-MWH-	LGR								
Dicł	hloroethene, 1,1-	SW8260	1.2					0/16	7
Brou	modichloromethane	SW8260	0.8					0/15	80 ⁵
Brou	moform	SW8260	1.2	3/17/2003	0.10F	3/17/2003	0.10F	1/10	80 ⁵
Chlo	oroform	SW8260	0.3					0/15	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/17	70
Dibı	romochloromethane	SW8260	0.5	3/17/2003	0.030F	3/17/2003	0.030F	1/14	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/11	6
Met	hylene chloride	SW8260	2.0	9/7/2004	0.51F	3/13/2002	0.20F	5/10	5
Nap	hthalene	SW8260	1.0					0/11	6
Tetr	achloroethene	SW8260	1.4					0/17	5
Tolu	uene	SW8260	1.1	9/16/2003	9.2	6/12/2001	0.31 F	5/7	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/17	100
Tric	chloroethene	SW8260	1.0					0/17	5
Vin	yl chloride	SW8260	1.1					0/16	2
Arse	enic	SW6020	20	6/19/2002	1.2F	3/17/2003	0.37 F	6/2	10
Bari	ium	SW6010	5.0	6/12/2001	34	2/18/2001	19	8/0	2000
Cad	mium	SW7131/SW6020	1.0/2.0	9/12/2001	1.0	3/17/2003	0.030F	5/4	5
Chro	omium	SW6010	10	3/17/2003	8.1 F	9/12/2001	2.0F	5/3	100
Cop	per	SW6010	10	9/12/2001	28	6/19/2002	9.2 F	3/5	1300
Mer	cury	SW7470	1.0					0/8	2
Nick	kel	SW6010	10	3/17/2003	17	6/12/2001	2.0F	5/4	6
Lead	d	SW7421/SW6020	5.0/2.0	9/12/2001	47 J	6/15/2004	2.3	9/0	15
Zinc	2	SW6010	50	6/6/2005	2000	3/13/2002	84 J	8/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
DOM-2									
Dich	nloroethene, 1,1-	SW8260	1.2					0/8	7
Bror	modichloromethane	SW8260	0.8					0/6	80 ⁵
Bror	moform	SW8260	1.2					0/6	80 ⁵
Chlo	oroform	SW8260	0.3					0/6	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/8	70
Dibr	romochloromethane	SW8260	0.5					0/6	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/6	6
Metl	hylene chloride	SW8260	2.0	3/20/2002	0.43 F	3/20/2002	0.43 F	1/5	5
Napl	hthalene	SW8260	1.0					0/6	6
Tetra	achloroethene	SW8260	1.4					0/8	5
Tolu	iene	SW8260	1.1	3/24/2005	0.15F	3/24/2005	0.15F	1/5	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/8	100
Tric	hloroethene	SW8260	1.0					0/8	5
Viny	yl chloride	SW8260	1.1					0/8	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
FO-8									
Dich	nloroethene, 1,1-	SW8260	1.2					0/8	7
Bron	modichloromethane	SW8260	0.8					0/5	80 ⁵
Bron	moform	SW8260	1.2					0/5	80 ⁵
Chlo	oroform	SW8260	0.3					0/5	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/8	70
Dibr	romochloromethane	SW8260	0.5					0/5	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/5	6
Meth	hylene chloride	SW8260	2.0	3/19/2002	0.20F	3/19/2002	0.20F	1/4	5
Napl	hthalene	SW8260	1.0					0/5	6
Tetra	achloroethene	SW8260	1.4					0/8	5
Tolu	iene	SW8260	1.1	3/10/2003	0.40F	3/10/2003	0.40 F	1/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/8	100
Tric	hloroethene	SW8260	1.0					0/8	5
Viny	yl chloride	SW8260	1.1					0/8	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
FO-17									
Dich	nloroethene, 1,1-	SW8260	1.2					0/9	7
Bror	modichloromethane	SW8260	0.8					0/6	80 ⁵
Bror	moform	SW8260	1.2					0/6	80 ⁵
Chlo	oroform	SW8260	0.3					0/6	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/9	70
Dibr	romochloromethane	SW8260	0.5					0/6	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/6	6
Metl	hylene chloride	SW8260	2.0	3/19/2002	0.31F	3/19/2002	0.31 F	1/5	5
Napl	hthalene	SW8260	1.0					0/6	6
Tetra	achloroethene	SW8260	1.4					0/9	5
Tolu	iene	SW8260	1.1	3/10/2003	0.25 F	3/10/2003	0.25 F	1/5	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Tric	hloroethene	SW8260	1.0					0/9	5
Viny	yl chloride	SW8260	1.1					0/9	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
FO-22									
Dich	nloroethene, 1,1-	SW8260	1.2					0/7	7
Bron	nodichloromethane	SW8260	0.8					0/5	80 ⁵
Bron	noform	SW8260	1.2					0/5	80 ⁵
Chlo	oroform	SW8260	0.3					0/5	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/8	70
Dibr	omochloromethane	SW8260	0.5					0/5	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/5	6
Meth	hylene chloride	SW8260	2.0					0/4	5
Napl	hthalene	SW8260	1.0					0/5	6
Tetra	achloroethene	SW8260	1.4					0/8	5
Tolu	iene	SW8260	1.1					0/5	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/8	100
Tricl	hloroethene	SW8260	1.0					0/8	5
Viny	yl chloride	SW8260	1.1					0/8	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
FO-J1									
Dich	nloroethene, 1,1-	SW8260	1.2					0/33	7
Bron	modichloromethane	SW8260	0.8					0/20	80 ⁵
Bron	moform	SW8260	1.2					0/20	80 ⁵
Chlo	oroform	SW8260	0.3					0/20	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	6/12/2007	0.60F	3/10/2003	0.20F	5/29	70
Dibr	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/20	6
Met	hylene chloride	SW8260	2.0	3/10/2003	2.6B	3/19/2002	0.27 F	4/15	5
Nap	hthalene	SW8260	1.0					0/20	6
Tetr	achloroethene	SW8260	1.4	6/3/2009	0.57F	6/20/2006	0.080 F	20/14	5
Tolu	iene	SW8260	1.1	3/10/2003	0.74F	3/10/2003	0.74 F	1/19	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/34	100
Tric	hloroethene	SW8260	1.0	3/22/2005	0.25 F	2/14/2004	0.22 F	2/32	5
Viny	yl chloride	SW8260	1.1					0/34	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	Action Level/ MCL ⁴
HS-1									
Dich	loroethene, 1,1-	SW8260	1.2					0/13	7
cis-1	,2-Dichloroethene	SW8260	1.2					0/13	70
Tetra	achloroethene	SW8260	1.4	9/10/2008	0.21 F	2/12/2006	0.13F	7/6	5
trans	-1,2-Dichloroethene	SW8260	0.6					0/13	100
Trich	nloroethene	SW8260	1.0					0/13	5
Viny	l chloride	SW8260	1.1					0/13	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³ Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
HS-2									
Dich	hloroethene, 1,1-	SW8260	1.2					0/32	7
Bron	modichloromethane	SW8260	0.8					0/20	80 ⁵
Bron	moform	SW8260	1.2					0/20	80 ⁵
Chlo	oroform	SW8260	0.3	3/12/2003	0.16F	3/12/2003	0.16F	1/19	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/33	70
Dibr	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/20	6
Met	hylene chloride	SW8260	2.0	3/23/2006	1.1F	3/21/2002	0.31 F	3/16	5
Nap	hthalene	SW8260	1.0					0/20	6
Tetr	achloroethene	SW8260	1.4	6/3/2009	0.23 F	6/21/2006	0.070F	22/11	5
Tolu	iene	SW8260	1.1	3/3/2004	1.0F	3/21/2002	0.12F	2/18	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/33	100
Tric	hloroethene	SW8260	1.0					0/33	5
Viny	yl chloride	SW8260	1.1					0/33	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
HS-3									
Dic	hloroethene, 1,1-	SW8260	1.2					0/9	7
Bro	modichloromethane	SW8260	0.8					0/6	80 ⁵
Bro	moform	SW8260	1.2					0/6	80 ⁵
Chl	oroform	SW8260	0.3					0/6	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/9	70
Dib	romochloromethane	SW8260	0.5					0/6	80 ⁵
Dic	hlorodifluoromethane	SW8260	1.0					0/6	6
Met	thylene chloride	SW8260	2.0	12/19/2001	0.38F	2/19/2001	0.38F	1/5	5
Nap	ohthalene	SW8260	1.0					0/6	6
Tetr	rachloroethene	SW8260	1.4					0/9	5
Tol	uene	SW8260	1.1					0/6	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Tric	chloroethene	SW8260	1.0					0/9	5
Vin	yl chloride	SW8260	1.1					0/9	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
I10-2									
Dich	hloroethene, 1,1-	SW8260	1.2					0/22	7
Bror	modichloromethane	SW8260	0.8					0/20	80 ⁵
Bror	moform	SW8260	1.2					0/20	80 ⁵
Chlo	oroform	SW8260	0.3					0/20	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/23	70
Dibr	romochloromethane	SW8260	0.5					0/20	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/20	6
Met	hylene chloride	SW8260	2.0	9/18/2002	0.83F	2/18/2001	0.21 F	3/16	5
Nap	hthalene	SW8260	1.0					0/20	6
Tetr	achloroethene	SW8260	1.4	12/18/2001	0.16F	12/5/2002	0.080 F	9/14	5
Tolu	iene	SW8260	1.1					0/20	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/23	100
Tric	hloroethene	SW8260	1.0	9/19/2001	0.23F	3/13/2003	0.060 F	7/16	5
Viny	yl chloride	SW8260	1.1					0/23	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
I10-4									
Dich	nloroethene, 1,1-	SW8260	1.2					0/28	7
Bror	modichloromethane	SW8260	0.8					0/23	80 ⁵
Bror	moform	SW8260	1.2					0/23	80 ⁵
Chlo	oroform	SW8260	0.3					0/23	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/30	70
Dibr	romochloromethane	SW8260	0.5					0/23	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/23	6
Metl	hylene chloride	SW8260	2.0	3/22/2006	1.2F	3/21/2002	0.20F	3/18	5
Napl	hthalene	SW8260	1.0					0/23	6
Tetra	achloroethene	SW8260	1.4	3/3/2009	6.7	2/15/2004	0.12F	14/16	5
Tolu	iene	SW8260	1.1					0/23	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/30	100
Tric	hloroethene	SW8260	1.0	6/1/2009	2.7	4/14/2004	0.25 F	10/20	5
Viny	yl chloride	SW8260	1.1					0/30	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
I10-5									
Dich	nloroethene, 1,1-	SW8260	1.2					0/8	7
Bron	modichloromethane	SW8260	0.8					0/5	80 ⁵
Bron	moform	SW8260	1.2					0/5	80 ⁵
Chlo	oroform	SW8260	0.3					0/5	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/8	70
Dibr	romochloromethane	SW8260	0.5					0/5	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/5	6
Meth	hylene chloride	SW8260	2.0					0/5	5
Napl	hthalene	SW8260	1.0					0/5	6
Tetra	achloroethene	SW8260	1.4					0/8	5
Tolu	iene	SW8260	1.1					0/5	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/8	100
Tric	hloroethene	SW8260	1.0					0/8	5
Viny	yl chloride	SW8260	1.1					0/8	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
I10-7									
Dich	nloroethene, 1,1-	SW8260	1.2					0/30	7
Bron	nodichloromethane	SW8260	0.8					0/14	80 ⁵
Bron	noform	SW8260	1.2					0/14	80 ⁵
Chlo	oroform	SW8260	0.3					0/14	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/30	70
Dibr	omochloromethane	SW8260	0.5					0/14	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/14	6
Meth	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	3/21/2002	0.44 F	2/12	5
Napl	hthalene	SW8260	1.0					0/14	6
Tetra	achloroethene	SW8260	1.4					0/30	5
Tolu	iene	SW8260	1.1	3/21/2002	0.36F	3/21/2002	0.36F	1/13	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/30	100
Tric	hloroethene	SW8260	1.0					0/30	5
Viny	yl chloride	SW8260	1.1					0/30	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
I10-8									
Dich	nloroethene, 1,1-	SW8260	1.2					0/5	7
Bron	modichloromethane	SW8260	0.8					0/1	80 ⁵
Bror	moform	SW8260	1.2					0/1	80 ⁵
Chlo	oroform	SW8260	0.3					0/1	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/5	70
Dibr	romochloromethane	SW8260	0.5					0/1	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/1	6
Meth	hylene chloride	SW8260	2.0					0/1	5
Napl	hthalene	SW8260	1.0					0/1	6
Tetra	achloroethene	SW8260	1.4					0/5	5
Tolu	iene	SW8260	1.1					0/1	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/5	100
Tricl	hloroethene	SW8260	1.0					0/5	5
Viny	yl chloride	SW8260	1.1					0/5	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-5									
Dich	hloroethene, 1,1-	SW8260	1.2					0/15	7
Brou	modichloromethane	SW8260	0.8					0/4	80 ⁵
Brou	moform	SW8260	1.2					0/4	80 ⁵
Chlo	oroform	SW8260	0.3					0/4	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/15	70
Dibi	romochloromethane	SW8260	0.5					0/4	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/4	6
Met	hylene chloride	SW8260	2.0	3/22/2006	1.1F	3/22/2006	1.1 F	1/3	5
Nap	hthalene	SW8260	1.0					0/4	6
Tetr	achloroethene	SW8260	1.4	3/5/2008	0.11F	3/20/2007	0.070F	2/13	5
Tolu	lene	SW8260	1.1					0/4	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/15	100
Tric	hloroethene	SW8260	1.0					0/15	5
Vin	yl chloride	SW8260	1.1					0/15	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-6									
Dich	loroethene, 1,1-	SW8260	1.2					0/9	7
Bron	nodichloromethane	SW8260	0.8					0/6	80 ⁵
Bron	noform	SW8260	1.2					0/6	80 ⁵
Chlo	oroform	SW8260	0.3					0/6	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/9	70
Dibre	omochloromethane	SW8260	0.5					0/6	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/6	6
Meth	hylene chloride	SW8260	2.0					0/6	5
Napł	hthalene	SW8260	1.0					0/6	6
Tetra	achloroethene	SW8260	1.4					0/9	5
Tolu	iene	SW8260	1.1					0/6	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Trick	hloroethene	SW8260	1.0					0/9	5
Viny	l chloride	SW8260	1.1					0/9	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-7									
Dich	nloroethene, 1,1-	SW8260	1.2					0/25	7
Bron	modichloromethane	SW8260	0.8					0/13	80 ⁵
Bron	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/13	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/25	70
Dibr	romochloromethane	SW8260	0.5					0/13	80 ⁵
Dicł	nlorodifluoromethane	SW8260	1.0	3/22/2005	0.33F	9/23/2004	0.13R	6/7	6
Met	hylene chloride	SW8260	2.0	9/23/2004	19 R	3/21/2006	1.2 M	2/11	5
Nap	hthalene	SW8260	1.0					0/13	6
Tetr	achloroethene	SW8260	1.4	12/11/2006	0.77F	9/20/2005	0.22 F	22/3	5
Tolu	iene	SW8260	1.1					0/13	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Tric	hloroethene	SW8260	1.0					0/25	5
Viny	yl chloride	SW8260	1.1					0/25	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-8									
Dich	nloroethene, 1,1-	SW8260	1.2					0/29	7
Bron	nodichloromethane	SW8260	0.8					0/15	80 ⁵
Bron	moform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3	3/24/2005	0.10F	3/24/2005	0.10F	1/14	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	6/13/2007	0.40F	3/21/2007	0.12F	4/25	70
Dibr	romochloromethane	SW8260	0.5					0/15	80 ⁵
Dicł	nlorodifluoromethane	SW8260	1.0					0/15	6
Met	hylene chloride	SW8260	2.0	3/23/2006	1.2F	3/23/2006	1.1 F	2/13	5
Nap	hthalene	SW8260	1.0					0/15	6
Tetr	achloroethene	SW8260	1.4	9/20/2006	0.43 F	3/24/2005	0.12F	21/8	5
Tolu	iene	SW8260	1.1					0/15	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/29	100
Tric	hloroethene	SW8260	1.0	12/16/2004	0.22 F	3/24/2005	0.21 F	2/27	5
Viny	yl chloride	SW8260	1.1					0/29	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-9									
Dich	nloroethene, 1,1-	SW8260	1.2					0/21	7
Bron	modichloromethane	SW8260	0.8					0/17	80 ⁵
Bron	moform	SW8260	1.2					0/17	80 ⁵
Chlo	oroform	SW8260	0.3					0/17	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	12/19/2001	0.33F	2/19/2001	0.33 F	1/20	70
Dibr	romochloromethane	SW8260	0.5					0/17	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/17	6
Met	hylene chloride	SW8260	2.0	3/21/2006	1.1 M	3/20/2002	0.37 F	2/15	5
Nap	hthalene	SW8260	1.0					0/17	6
Tetr	achloroethene	SW8260	1.4	3/4/2004	0.15F	3/4/2004	0.15F	1/20	5
Tolu	iene	SW8260	1.1	3/11/2003	0.23 F	3/11/2003	0.23 F	1/16	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/21	100
Tric	hloroethene	SW8260	1.0					0/21	5
Viny	yl chloride	SW8260	1.1					0/21	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-12									
Dich	nloroethene, 1,1-	SW8260	1.2					0/10	7
Bror	modichloromethane	SW8260	0.8					0/4	80 ⁵
Bror	moform	SW8260	1.2					0/4	80 ⁵
Chlo	oroform	SW8260	0.3					0/4	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/11	70
Dibr	romochloromethane	SW8260	0.5					0/4	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/4	6
Meth	hylene chloride	SW8260	2.0					0/3	5
Napl	hthalene	SW8260	1.0					0/4	6
Tetra	achloroethene	SW8260	1.4	9/20/2007	0.21 F	9/20/2007	0.21 F	1/10	5
Tolu	iene	SW8260	1.1					0/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/11	100
Tric	hloroethene	SW8260	1.0					0/11	5
Viny	yl chloride	SW8260	1.1					0/11	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-13									
Dich	loroethene, 1,1-	SW8260	1.2					0/9	7
Bron	nodichloromethane	SW8260	0.8					0/7	80 ⁵
Bron	noform	SW8260	1.2					0/7	80 ⁵
Chlo	roform	SW8260	0.3					0/7	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/10	70
Dibro	omochloromethane	SW8260	0.5					0/7	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/7	6
Meth	ylene chloride	SW8260	2.0					0/6	5
Naph	nthalene	SW8260	1.0					0/7	6
Tetra	achloroethene	SW8260	1.4					0/10	5
Tolu	ene	SW8260	1.1					0/7	1000
trans	-1,2-Dichloroethene	SW8260	0.6					0/10	100
Trich	nloroethene	SW8260	1.0					0/10	5
Viny	l chloride	SW8260	1.1					0/10	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³ Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-14									
Dich	hloroethene, 1,1-	SW8260	1.2					0/36	7
Brou	modichloromethane	SW8260	0.8	12/1/2003	5.9	3/2/2004	0.11F	5/20	80 ⁵
Brou	moform	SW8260	1.2	12/1/2003	1.1F	12/1/2003	1.1 F	1/24	80 ⁵
Chlo	oroform	SW8260	0.3	12/1/2003	53	9/22/2004	0.11F	20/5	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/37	70
Dibi	romochloromethane	SW8260	0.5	12/1/2003	2.7	9/18/2001	0.10F	3/22	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/25	6
Met	hylene chloride	SW8260	2.0	3/10/2003	3.4B	3/19/2002	0.39 F	5/19	5
Nap	hthalene	SW8260	1.0					0/25	6
Tetr	achloroethene	SW8260	1.4	6/3/2009	0.19F	2/14/2006	0.070F	12/25	5
Tolı	iene	SW8260	1.1	3/10/2003	2.4	3/21/2006	0.14F	3/22	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/37	100
Tric	hloroethene	SW8260	1.0					0/37	5
Vin	yl chloride	SW8260	1.1					0/37	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-15									
Dich	nloroethene, 1,1-	SW8260	1.2					0/7	7
Bron	modichloromethane	SW8260	0.8					0/4	80 ⁵
Bron	moform	SW8260	1.2					0/4	80 ⁵
Chlo	oroform	SW8260	0.3					0/4	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/7	70
Dibr	romochloromethane	SW8260	0.5					0/4	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/4	6
Met	hylene chloride	SW8260	2.0	3/21/2006	1.1 M	3/21/2006	1.1 M	1/3	5
Nap	hthalene	SW8260	1.0					0/4	6
Tetr	achloroethene	SW8260	1.4					0/7	5
Tolu	iene	SW8260	1.1					0/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/7	100
Tric	hloroethene	SW8260	1.0					0/7	5
Viny	yl chloride	SW8260	1.1					0/7	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-26									
Dich	nloroethene, 1,1-	SW8260	1.2					0/17	7
Bron	modichloromethane	SW8260	0.8					0/17	80 ⁵
Bron	moform	SW8260	1.2					0/17	80 ⁵
Chlo	oroform	SW8260	0.3	9/10/2003	0.18F	3/21/2002	0.11F	3/14	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/18	70
Dibr	romochloromethane	SW8260	0.5					0/17	80 ⁵
Dicł	nlorodifluoromethane	SW8260	1.0					0/17	6
Met	hylene chloride	SW8260	2.0	3/21/2002	0.21 F	3/21/2002	0.21 F	1/15	5
Nap	hthalene	SW8260	1.0					0/17	6
Tetr	achloroethene	SW8260	1.4	6/18/2003	0.14F	3/13/2003	0.11F	3/15	5
Tolu	iene	SW8260	1.1					0/17	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/18	100
Tric	hloroethene	SW8260	1.0					0/18	5
Viny	yl chloride	SW8260	1.1					0/18	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-27									
Dich	nloroethene, 1,1-	SW8260	1.2					0/19	7
Bror	nodichloromethane	SW8260	0.8					0/6	80 ⁵
Bror	moform	SW8260	1.2					0/6	80 ⁵
Chlo	oroform	SW8260	0.3					0/6	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/19	70
Dibr	romochloromethane	SW8260	0.5					0/6	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/6	6
Metl	hylene chloride	SW8260	2.0	3/21/2006	1.1 M	3/21/2006	1.1 M	1/5	5
Napl	hthalene	SW8260	1.0					0/6	6
Tetra	achloroethene	SW8260	1.4	3/6/2008	0.12F	3/6/2008	0.070F	4/15	5
Tolu	iene	SW8260	1.1					0/6	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/19	100
Tric	hloroethene	SW8260	1.0	6/21/2005	0.10F	6/21/2005	0.10F	1/18	5
Viny	yl chloride	SW8260	1.1					0/19	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-28									
Dich	nloroethene, 1,1-	SW8260	1.2					0/25	7
Bron	modichloromethane	SW8260	0.8					0/15	80 ⁵
Bror	moform	SW8260	1.2					0/15	80 ⁵
Chlo	oroform	SW8260	0.3					0/15	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/25	70
Dibr	romochloromethane	SW8260	0.5					0/15	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/15	6
Metl	hylene chloride	SW8260	2.0	3/22/2006	1.1F	3/22/2006	1.1 F	1/14	5
Nap	hthalene	SW8260	1.0					0/15	6
Tetr	achloroethene	SW8260	1.4					0/25	5
Tolu	iene	SW8260	1.1	9/22/2004	0.24 F	6/21/2006	0.12F	11/4	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/25	100
Tric	hloroethene	SW8260	1.0					0/25	5
Viny	yl chloride	SW8260	1.1					0/25	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-29									
Dich	nloroethene, 1,1-	SW8260	1.2					0/31	7
Bror	modichloromethane	SW8260	0.8					0/16	80 ⁵
Bror	moform	SW8260	1.2					0/16	80 ⁵
Chlo	oroform	SW8260	0.3					0/16	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/31	70
Dibr	romochloromethane	SW8260	0.5					0/16	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/16	6
Meth	hylene chloride	SW8260	2.0	3/21/2006	1.1 M	3/21/2006	1.1 M	1/15	5
Napl	hthalene	SW8260	1.0					0/16	6
Tetra	achloroethene	SW8260	1.4	9/20/2007	0.16F	3/4/2008	0.10F	8/23	5
Tolu	iene	SW8260	1.1					0/16	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/31	100
Tric	hloroethene	SW8260	1.0					0/31	5
Viny	yl chloride	SW8260	1.1					0/31	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
JW-30									
Dich	hloroethene, 1,1-	SW8260	1.2					0/31	7
Bron	modichloromethane	SW8260	0.8					0/16	80 ⁵
Bron	moform	SW8260	1.2					0/16	80 ⁵
Chlo	oroform	SW8260	0.3	3/23/2005	0.11F	3/23/2005	0.11F	1/15	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	6/12/2007	0.65 F	3/13/2003	0.30F	5/26	70
Dibr	romochloromethane	SW8260	0.5					0/16	80 ⁵
Dicł	hlorodifluoromethane	SW8260	1.0					0/16	6
Met	hylene chloride	SW8260	2.0	3/22/2006	1.1F	9/8/1999	0.15F	2/14	5
Nap	hthalene	SW8260	1.0					0/16	6
Tetr	achloroethene	SW8260	1.4	6/22/2006	0.22F	2/21/2005	0.090 F	12/19	5
Tolu	lene	SW8260	1.1					0/16	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/31	100
Tric	hloroethene	SW8260	1.0	12/15/2004	0.27 F	3/13/2003	0.080 F	3/28	5
Viny	yl chloride	SW8260	1.1					0/31	2
Arse	enic	SW7060	5.0					0/1	10
Bari	ium	SW6010	5.0	9/8/1999	30	9/8/1999	30	1/0	2000
Cad	mium	SW7131	1.0					0/1	5
Chro	omium	SW6010	10	9/8/1999	2.0F	9/8/1999	2.0F	1/0	100
Cop	per	SW6010	10	9/8/1999	13	9/8/1999	13	1/0	1300
Mer	cury	SW7470	1.0					0/1	2
Nick	kel	SW6010	10					0/1	6
Lead	d	SW7421	5.0					0/1	15
Zinc	2	SW6010	50	9/8/1999	200	9/8/1999	200	1/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-1									
Dich	hloroethene, 1,1-	SW8260	1.2					0/19	7
Bron	modichloromethane	SW8260	0.8	3/12/2003	0.46F	3/12/2003	0.46 F	1/13	80 ⁵
Bron	moform	SW8260	1.2	3/12/2003	0.58F	3/12/2003	0.58F	1/13	80 ⁵
Chlo	oroform	SW8260	0.3	3/12/2003	0.42	9/17/2002	0.070F	10/4	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/20	70
Dibr	romochloromethane	SW8260	0.5	3/12/2003	0.51	3/12/2003	0.51	1/13	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/14	6
Met	hylene chloride	SW8260	2.0	12/19/2001	0.22F	2/19/2001	0.22 F	1/12	5
Nap	hthalene	SW8260	1.0					0/14	6
Tetr	achloroethene	SW8260	1.4	3/5/2009	0.86F	9/9/2003	0.24 F	16/4	5
Tolu	uene	SW8260	1.1					0/14	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/20	100
Tric	chloroethene	SW8260	1.0	3/18/2002	0.51F	3/12/2003	0.12F	13/7	5
Viny	yl chloride	SW8260	1.1					0/20	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-4									
Dich	nloroethene, 1,1-	SW8260	1.2					0/30	7
Bror	nodichloromethane	SW8260	0.8	9/20/2005	0.23F	9/20/2005	0.23 F	1/21	80 ⁵
Bror	noform	SW8260	1.2					0/22	80 ⁵
Chlo	oroform	SW8260	0.3	9/20/2005	0.40	3/3/2004	0.16F	3/19	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/31	70
Dibr	omochloromethane	SW8260	0.5					0/22	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/22	6
Meth	hylene chloride	SW8260	2.0	3/23/2006	1.2F	2/19/2001	0.20F	2/19	5
Napl	hthalene	SW8260	1.0					0/22	6
Tetra	achloroethene	SW8260	1.4	3/12/2003	0.25 F	2/12/2006	0.090 F	18/13	5
Tolu	iene	SW8260	1.1					0/22	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/31	100
Tricl	hloroethene	SW8260	1.0					0/31	5
Viny	yl chloride	SW8260	1.1					0/31	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-5									
Dich	nloroethene, 1,1-	SW8260	1.2					0/35	7
Bror	nodichloromethane	SW8260	0.8					0/23	80 ⁵
Bror	noform	SW8260	1.2					0/23	80 ⁵
Chlo	oroform	SW8260	0.3					0/23	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/36	70
Dibr	omochloromethane	SW8260	0.5					0/23	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/23	6
Meth	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	3/20/2002	0.25 F	3/19	5
Napl	hthalene	SW8260	1.0					0/23	6
Tetra	achloroethene	SW8260	1.4	12/1/2008	0.96F	3/12/2003	0.080 F	9/27	5
Tolu	iene	SW8260	1.1					0/23	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/36	100
Tricl	hloroethene	SW8260	1.0	6/1/2009	2.6	6/19/2006	0.090 F	30/6	5
Viny	yl chloride	SW8260	1.1					0/36	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-6									
Dich	loroethene, 1,1-	SW8260	1.2					0/39	7
Bron	nodichloromethane	SW8260	0.8	6/20/2005	0.60F	9/19/2005	0.11F	3/24	80 ⁵
Bron	noform	SW8260	1.2					0/27	80 ⁵
Chlo	oroform	SW8260	0.3	6/20/2005	0.60	2/21/2005	0.070F	5/22	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/40	70
Dibr	omochloromethane	SW8260	0.5	6/20/2005	0.43F	9/20/2004	0.14 F	2/25	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/27	6
Meth	nylene chloride	SW8260	2.0	3/20/2006	1.1 M	2/18/2001	0.33 F	3/23	5
Napł	hthalene	SW8260	1.0	3/21/2005	0.43	3/21/2005	0.43	1/26	6
Tetra	achloroethene	SW8260	1.4	9/27/2001	10	2/11/2006	0.69 F	39/1	5
Tolu	lene	SW8260	1.1	3/12/2003	0.17F	3/12/2003	0.17 F	1/26	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/40	100
Trick	hloroethene	SW8260	1.0	9/18/2006	1.8	9/16/2002	0.10F	35/5	5
Viny	l chloride	SW8260	1.1					0/40	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-6-A2									
Dich	nloroethene, 1,1-	SW8260	1.2					0/18	7
Bron	nodichloromethane	SW8260	0.8					0/12	80 ⁵
Bron	noform	SW8260	1.2					0/12	80 ⁵
Chlo	oroform	SW8260	0.3					0/12	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/18	70
Dibr	omochloromethane	SW8260	0.5					0/12	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/12	6
Meth	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	8/30/2001	0.28 F	5/7	5
Napl	hthalene	SW8260	1.0					0/12	6
Tetra	achloroethene	SW8260	1.4					0/18	5
Tolu	iene	SW8260	1.1					0/12	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/18	100
Tricl	hloroethene	SW8260	1.0					0/18	5
Viny	yl chloride	SW8260	1.1					0/18	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-7									
Dic	hloroethene, 1,1-	SW8260	1.2					0/44	7
Bro	omodichloromethane	SW8260	0.8	9/16/2002	0.17F	9/16/2002	0.17F	1/32	80 ⁵
Bro	omoform	SW8260	1.2					0/29	80 ⁵
Chl	loroform	SW8260	0.3	9/16/2002	0.83	12/2/2002	0.080F	16/17	80 ⁵
cis-	1,2-Dichloroethene	SW8260	1.2					0/45	70
Dib	promochloromethane	SW8260	0.5					0/33	80 ⁵
Dic	chlorodifluoromethane	SW8260	1.0					0/29	6
Me	thylene chloride	SW8260	2.0	3/20/2006	1.1 M	2/18/2001	0.39F	3/29	5
Nap	phthalene	SW8260	1.0	7/31/2001	0.22F	3/18/2002	0.12 R	2/27	6
Tet	rachloroethene	SW8260	1.4	12/2/2002	7.2	8/30/2001	1.1 F	44/1	5
Tol	uene	SW8260	1.1	3/10/2003	0.78F	6/20/2005	0.12F	2/27	1000
trar	ns-1,2-Dichloroethene	SW8260	0.6					0/45	100
Trie	chloroethene	SW8260	1.0	12/13/2000	1.2	3/2/2009	0.10F	39/6	5
Vin	yl chloride	SW8260	1.1					0/45	2
Ars	senic	SW7060	5.0					0/1	10
Bar	rium	SW6010	5.0	12/13/1999	36	2/13/1999	36	1/0	2000
Cac	lmium	SW7131	1.0					0/1	5
Chr	romium	SW6010	10	12/13/1999	4.0F	2/13/1999	4.0F	1/0	100
Cop	pper	SW6010	10	12/13/1999	5.0F	2/13/1999	5.0F	1/0	1300
Me	rcury	SW7470	1.0					0/1	2
Nic	kel	SW6010	10					0/1	6
Lea	ıd	SW7421	5.0					0/1	15
Zin	c	SW6010	50	12/13/1999	22	2/13/1999	22	1/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
LS-7-A2									
Dich	hloroethene, 1,1-	SW8260	1.2					0/19	7
Bron	modichloromethane	SW8260	0.8					0/13	80 ⁵
Bron	moform	SW8260	1.2					0/13	80 ⁵
Chlo	oroform	SW8260	0.3					0/13	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/19	70
Dibr	romochloromethane	SW8260	0.5					0/13	80 ⁵
Dicł	hlorodifluoromethane	SW8260	1.0					0/13	6
Met	hylene chloride	SW8260	2.0	9/16/2002	3.0R	2/18/2001	0.30F	3/10	5
Nap	hthalene	SW8260	1.0					0/13	6
Tetr	achloroethene	SW8260	1.4					0/19	5
Tolu	lene	SW8260	1.1	3/12/2003	0.52F	3/12/2003	0.52F	1/12	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/19	100
Tric	hloroethene	SW8260	1.0					0/19	5
Viny	yl chloride	SW8260	1.1					0/19	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
OFR-1									
Dich	nloroethene, 1,1-	SW8260	1.2					0/37	7
Bron	nodichloromethane	SW8260	0.8					0/24	80 ⁵
Bror	moform	SW8260	1.2					0/24	80 ⁵
Chlo	oroform	SW8260	0.3					0/24	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/38	70
Dibr	romochloromethane	SW8260	0.5					0/24	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/24	6
Meth	hylene chloride	SW8260	2.0	9/18/2002	1.4B	3/21/2002	0.32F	3/20	5
Napl	hthalene	SW8260	1.0					0/24	6
Tetra	achloroethene	SW8260	1.4	9/9/2003	0.49F	3/24/2005	0.19F	32/6	5
Tolu	iene	SW8260	1.1	3/21/2002	0.12F	3/21/2002	0.12F	1/23	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/38	100
Tric	hloroethene	SW8260	1.0					0/38	5
Viny	yl chloride	SW8260	1.1					0/38	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
OFR-3									
Dich	nloroethene, 1,1-	SW8260	1.2					0/36	7
Brou	modichloromethane	SW8260	0.8					0/25	80 ⁵
Brou	moform	SW8260	1.2					0/25	80 ⁵
Chlo	oroform	SW8260	0.3					0/25	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	12/4/2003	0.21 F	9/2/2008	0.11F	6/31	70
Dibi	romochloromethane	SW8260	0.5					0/25	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0	6/11/2002	1.9	3/21/2005	0.16F	24/1	6
Met	hylene chloride	SW8260	2.0	3/22/2006	1.1F	2/18/2001	0.26 F	6/18	5
Nap	hthalene	SW8260	1.0					0/25	6
Tetr	achloroethene	SW8260	1.4	12/4/2003	13	3/22/2006	0.35 F	37/0	5
Tolu	iene	SW8260	1.1					0/25	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/37	100
Tric	hloroethene	SW8260	1.0	12/4/2003	7.9	3/22/2006	0.46F	37/0	5
Vin	yl chloride	SW8260	1.1					0/37	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
OFR-3-A2									
Dich	hloroethene, 1,1-	SW8260	1.2					0/15	7
Bron	modichloromethane	SW8260	0.8					0/9	80 ⁵
Bron	moform	SW8260	1.2					0/8	80 ⁵
Chlo	oroform	SW8260	0.3					0/9	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/15	70
Dibr	romochloromethane	SW8260	0.5					0/9	80 ⁵
Dicł	hlorodifluoromethane	SW8260	1.0					0/9	6
Met	hylene chloride	SW8260	2.0	4/30/2002	0.21 F	4/30/2002	0.21 F	1/8	5
Nap	hthalene	SW8260	1.0					0/8	6
Tetr	achloroethene	SW8260	1.4					0/15	5
Tolu	uene	SW8260	1.1					0/8	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/15	100
Tric	hloroethene	SW8260	1.0					0/15	5
Viny	yl chloride	SW8260	1.1					0/15	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
OFR-4									
Dich	hloroethene, 1,1-	SW8260	1.2					0/9	7
Brou	modichloromethane	SW8260	0.8					0/6	80 ⁵
Brou	moform	SW8260	1.2					0/6	80 ⁵
Chlo	oroform	SW8260	0.3					0/6	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/9	70
Dibı	romochloromethane	SW8260	0.5					0/6	80 ⁵
Dicł	hlorodifluoromethane	SW8260	1.0					0/6	6
Met	hylene chloride	SW8260	2.0	3/21/2006	1.1 M	3/21/2006	1.1 M	1/5	5
Nap	hthalene	SW8260	1.0					0/6	6
Tetr	cachloroethene	SW8260	1.4					0/9	5
Tolu	uene	SW8260	1.1					0/6	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/9	100
Tric	chloroethene	SW8260	1.0					0/9	5
Vin	yl chloride	SW8260	1.1					0/9	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-3									
Dich	nloroethene, 1,1-	SW8260	1.2					0/10	7
Bror	nodichloromethane	SW8260	0.8					0/8	80 ⁵
Bron	noform	SW8260	1.2					0/8	80 ⁵
Chlo	oroform	SW8260	0.3					0/8	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/11	70
Dibr	omochloromethane	SW8260	0.5					0/8	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/8	6
Meth	hylene chloride	SW8260	2.0	9/8/1999	0.17F	9/8/1999	0.17 F	1/6	5
Napl	hthalene	SW8260	1.0					0/8	6
Tetra	achloroethene	SW8260	1.4	12/2/2003	0.12F	12/2/2003	0.12F	1/10	5
Tolu	iene	SW8260	1.1					0/8	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/11	100
Tricl	hloroethene	SW8260	1.0					0/11	5
Viny	yl chloride	SW8260	1.1					0/11	2
Arse	enic	SW7060	5.0					0/1	10
Bari	um	SW6010	5.0	9/8/1999	34	9/8/1999	34	1/0	2000
Cadı	mium	SW7131	1.0					0/1	5
Chro	omium	SW6010	10	9/8/1999	3.0F	9/8/1999	3.0F	1/0	100
Cop	per	SW6010	10	9/8/1999	5.0F	9/8/1999	5.0F	1/0	1300
Mere	cury	SW7470	1.0					0/1	2
Nick	xel	SW6010	10	9/8/1999	2.0F	9/8/1999	2.0F	1/0	6
Lead	1	SW7421	5.0	9/8/1999	4.1F	9/8/1999	4.1 F	1/0	15
Zinc	;	SW6010	50	9/8/1999	130	9/8/1999	130	1/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-4									
Dich	nloroethene, 1,1-	SW8260	1.2					0/7	7
Bror	nodichloromethane	SW8260	0.8					0/3	80 ⁵
Bror	moform	SW8260	1.2					0/3	80 ⁵
Chlo	oroform	SW8260	0.3	3/23/2005	0.22F	3/23/2005	0.22 F	1/2	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/7	70
Dibr	romochloromethane	SW8260	0.5					0/3	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/3	6
Metl	hylene chloride	SW8260	2.0	3/21/2006	1.3 M	3/21/2006	1.3 M	1/2	5
Napl	hthalene	SW8260	1.0					0/3	6
Tetra	achloroethene	SW8260	1.4					0/7	5
Tolu	iene	SW8260	1.1					0/3	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/7	100
Tric	hloroethene	SW8260	1.0					0/7	5
Viny	yl chloride	SW8260	1.1					0/7	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-5									
Dich	nloroethene, 1,1-	SW8260	1.2					0/6	7
Bron	modichloromethane	SW8260	0.8					0/3	80 ⁵
Bron	moform	SW8260	1.2					0/3	80 ⁵
Chlo	oroform	SW8260	0.3					0/3	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/6	70
Dibr	romochloromethane	SW8260	0.5					0/3	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/3	6
Met	hylene chloride	SW8260	2.0	3/21/2006	1.3 M	3/21/2006	1.3 M	1/2	5
Nap	hthalene	SW8260	1.0					0/3	6
Tetr	achloroethene	SW8260	1.4					0/6	5
Tolu	iene	SW8260	1.1					0/3	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/6	100
Tric	hloroethene	SW8260	1.0					0/6	5
Viny	yl chloride	SW8260	1.1					0/6	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-8									
Dich	loroethene, 1,1-	SW8260	1.2					0/10	7
Bron	nodichloromethane	SW8260	0.8					0/7	80 ⁵
Bron	noform	SW8260	1.2					0/7	80 ⁵
Chlo	proform	SW8260	0.3					0/7	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/10	70
Dibro	omochloromethane	SW8260	0.5					0/7	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/7	6
Meth	nylene chloride	SW8260	2.0	9/8/1999	0.15F	9/8/1999	0.15 F	1/6	5
Napł	hthalene	SW8260	1.0					0/7	6
Tetra	achloroethene	SW8260	1.4					0/10	5
Tolu	ene	SW8260	1.1					0/7	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/10	100
Trich	hloroethene	SW8260	1.0					0/10	5
Viny	l chloride	SW8260	1.1					0/10	2
Arse	nic	SW7060	5.0					0/1	10
Bariı	um	SW6010	5.0	9/8/1999	31	9/8/1999	31	1/0	2000
Cadr	nium	SW7131	1.0					0/1	5
Chro	omium	SW6010	10	9/8/1999	4.0F	9/8/1999	4.0F	1/0	100
Copp	per	SW6010	10	9/8/1999	4.0F	9/8/1999	4.0F	1/0	1300
Merc	cury	SW7470	1.0					0/1	2
Nick	tel	SW6010	10					0/1	6
Lead	1	SW7421	5.0					0/1	15
Zinc		SW6010	50	9/8/1999	140	9/8/1999	140	1/0	5000

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-9									
Dich	nloroethene, 1,1-	SW8260	1.2					0/12	7
Bror	modichloromethane	SW8260	0.8					0/8	80 ⁵
Bron	moform	SW8260	1.2					0/8	80 ⁵
Chlo	oroform	SW8260	0.3					0/8	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/12	70
Dibr	romochloromethane	SW8260	0.5					0/8	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/8	6
Met	hylene chloride	SW8260	2.0	12/20/2001	0.52F	2/20/2001	0.52F	1/7	5
Nap	hthalene	SW8260	1.0					0/8	6
Tetr	achloroethene	SW8260	1.4					0/12	5
Tolu	iene	SW8260	1.1					0/8	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/12	100
Tric	hloroethene	SW8260	1.0					0/12	5
Viny	yl chloride	SW8260	1.1					0/12	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-10									
Dich	nloroethene, 1,1-	SW8260	1.2					0/39	7
Bron	modichloromethane	SW8260	0.8					0/26	80 ⁵
Bron	moform	SW8260	1.2					0/26	80 ⁵
Chlo	oroform	SW8260	0.3	9/11/2003	0.21 F	10/3/2001	0.070F	6/20	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2	12/2/2003	0.96F	3/19/2007	0.13F	37/9	70
Dibr	romochloromethane	SW8260	0.5					0/26	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/26	6
Met	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	2/17/2001	0.30F	2/23	5
Nap	hthalene	SW8260	1.0					0/26	6
Tetr	achloroethene	SW8260	1.4	7/17/2003	92	2/11/2006	2.4	46/0	5
Tolu	iene	SW8260	1.1	7/16/2003	28	6/20/2005	0.17 F	7/25	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/46	100
Tric	hloroethene	SW8260	1.0	7/16/2003	20	2/11/2006	1.3	44/2	5
Viny	yl chloride	SW8260	1.1					0/40	2
Lead	d	SW6020	2.0	8/24/2004	0.80F	8/24/2004	0.80F	1/0	15

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-10-A2	2/B2								
Dich	loroethene, 1,1-	SW8260	1.2					0/31	7
Bron	nodichloromethane	SW8260	0.8					0/19	80 ⁵
Bron	noform	SW8260	1.2					0/19	80 ⁵
Chlo	oroform	SW8260	0.3					0/19	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2					0/31	70
Dibr	omochloromethane	SW8260	0.5					0/19	80 ⁵
Dich	lorodifluoromethane	SW8260	1.0					0/19	6
Meth	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	2/17/2001	0.96 F	3/16	5
Napl	hthalene	SW8260	1.0					0/19	6
Tetra	achloroethene	SW8260	1.4					0/31	5
Tolu	iene	SW8260	1.1	3/12/2003	0.12F	3/12/2003	0.12F	1/18	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/31	100
Tricl	hloroethene	SW8260	1.0					0/31	5
Viny	/l chloride	SW8260	1.1					0/31	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-11									
Dich	hloroethene, 1,1-	SW8260	1.2					0/33	7
Brou	modichloromethane	SW8260	0.8					0/22	80 ⁵
Brou	moform	SW8260	1.2					0/22	80 ⁵
Chlo	oroform	SW8260	0.3	10/4/2001	0.14F	10/4/2001	0.14F	1/21	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/34	70
Dibi	romochloromethane	SW8260	0.5					0/22	80 ⁵
Dich	hlorodifluoromethane	SW8260	1.0					0/22	6
Met	hylene chloride	SW8260	2.0	3/20/2006	1.1 M	3/19/2002	0.24 F	3/18	5
Nap	hthalene	SW8260	1.0					0/22	6
Tetr	achloroethene	SW8260	1.4	10/12/2001	17	6/19/2006	0.33 F	30/4	5
Tolu	lene	SW8260	1.1					0/22	1000
tran	s-1,2-Dichloroethene	SW8260	0.6					0/34	100
Tric	hloroethene	SW8260	1.0	12/1/2008	2.1	3/3/2008	0.080F	31/3	5
Vin	yl chloride	SW8260	1.1					0/34	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-11-A2									
Dichl	loroethene, 1,1-	SW8260	1.2					0/18	7
Brom	nodichloromethane	SW8260	0.8					0/12	80 ⁵
Brom	noform	SW8260	1.2					0/12	80 ⁵
Chlor	roform	SW8260	0.3					0/12	80 ⁵
cis-1,	,2-Dichloroethene	SW8260	1.2					0/18	70
Dibro	omochloromethane	SW8260	0.5					0/12	80 ⁵
Dichl	lorodifluoromethane	SW8260	1.0					0/12	6
Meth	ylene chloride	SW8260	2.0	3/20/2006	1.1 M	2/17/2001	0.22 F	4/8	5
Naph	thalene	SW8260	1.0					0/12	6
Tetra	chloroethene	SW8260	1.4	3/12/2003	0.070F	3/12/2003	0.070F	1/17	5
Tolue	ene	SW8260	1.1	3/19/2002	0.39F	3/12/2003	0.070F	2/10	1000
trans-	-1,2-Dichloroethene	SW8260	0.6					0/18	100
Trich	loroethene	SW8260	1.0					0/18	5
Viny	l chloride	SW8260	1.1					0/18	2

¹ Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method.

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-12									
Dich	nloroethene, 1,1-	SW8260	1.2					0/23	7
Brou	modichloromethane	SW8260	0.8					0/21	80 ⁵
Brou	moform	SW8260	1.2					0/21	80 ⁵
Chlo	oroform	SW8260	0.3					0/21	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/24	70
Dibı	romochloromethane	SW8260	0.5					0/21	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/21	6
Met	hylene chloride	SW8260	2.0	3/23/2006	1.2F	2/18/2001	0.38 F	2/18	5
Nap	hthalene	SW8260	1.0					0/21	6
Tetr	achloroethene	SW8260	1.4	12/2/2003	0.23F	12/5/2002	0.080 F	3/21	5
Tolu	iene	SW8260	1.1					0/21	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/24	100
Tric	hloroethene	SW8260	1.0	6/10/2003	0.24F	9/22/2004	0.11F	15/9	5
Vin	yl chloride	SW8260	1.1					0/24	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{1}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-13									
Dich	nloroethene, 1,1-	SW8260	1.2					0/13	7
Bron	modichloromethane	SW8260	0.8	1/11/2005	8.7	3/24/2005	1.4	4/5	80 ⁵
Bron	moform	SW8260	1.2	3/24/2005	1.2	3/24/2005	1.1 F	2/7	80 ⁵
Chlo	oroform	SW8260	0.3	1/11/2005	65	6/22/2005	0.39	5/4	80 ⁵
cis-1	1,2-Dichloroethene	SW8260	1.2					0/13	70
Dibr	romochloromethane	SW8260	0.5	1/11/2005	2.9	3/24/2005	1.5	4/5	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/9	6
Met	hylene chloride	SW8260	2.0	3/22/2006	1.1F	3/22/2006	1.1 F	1/8	5
Nap	hthalene	SW8260	1.0					0/9	6
Tetr	achloroethene	SW8260	1.4					0/13	5
Tolu	iene	SW8260	1.1					0/9	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/13	100
Tric	hloroethene	SW8260	1.0					0/13	5
Viny	yl chloride	SW8260	1.1					0/13	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Well Location ID	Analytes of Concern in Groundwater Monitoring	Analytical Method ¹	CSSA RL ²	Max Det Date ³	Maximum Detected Conc	Min Det Date ³	Minimum Detected Conc	Number of Detections/ NDs	
RFR-14									
Dich	nloroethene, 1,1-	SW8260	1.2					0/15	7
Bror	modichloromethane	SW8260	0.8					0/2	80 ⁵
Bror	moform	SW8260	1.2					0/2	80 ⁵
Chlo	oroform	SW8260	0.3					0/2	80 ⁵
cis-1	,2-Dichloroethene	SW8260	1.2	6/14/2007	0.27 F	6/14/2007	0.27 F	1/14	70
Dibr	romochloromethane	SW8260	0.5					0/2	80 ⁵
Dich	nlorodifluoromethane	SW8260	1.0					0/2	6
Metl	hylene chloride	SW8260	2.0	3/23/2006	1.2F	3/23/2006	1.2F	1/1	5
Napl	hthalene	SW8260	1.0					0/2	6
Tetra	achloroethene	SW8260	1.4	9/4/2008	0.27 F	3/22/2007	0.10F	11/4	5
Tolu	iene	SW8260	1.1					0/2	1000
trans	s-1,2-Dichloroethene	SW8260	0.6					0/15	100
Tric	hloroethene	SW8260	1.0					0/15	5
Viny	yl chloride	SW8260	1.1					0/15	2

Analytical method listed without the revision designation. For metals analylzed by differing methods, both methods are listed: Max Method/Min Method. $\frac{2}{2}$

² Reporting Limit (RL) established by CSSA Base-Wide Quality Assurance Project Plan, January, 2003.

³Where the minimum and/or maximum detected results were the same for multiple dates, the most recent date is listed.

⁴ Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Lead and copper are Action Levels.

Taken from the US EPA National Primary Drinking Water Standards.

⁵ MCL for THMs combined cannot exceed 80 μ g/L (as of January 1, 2002).

Appendix C Statistical Summary of Occurrence of Groundwater COCs

Appendix C Statistical Summary of Occurrence of Groundwater Contaminants of Concern for All Active Wells Long Term Monitoring Optimization Camp Stanley Storage Activity, Texas

Parameter	Total Samples ^{a/}	Range of Detections (µg/L) ^{b/}	Percentage of Detections	Percentage of Samples with MCL Exceedances	MCL (µg/L) ^{b/}	Number of Wells with Results ^{c/}	Number of Wells with Detections	Number of Wells with MCL Exceedances
Tetrachloroethene	2272	0 - 230	42%	13%	5	98	60	12
Trichloroethene	2272	0 - 510	28%	11%	5	98	38	8
Lead	665	0 - 250	58%	6.0%	15	53	49	14
Dichloroethene, cis-1,2-	2235	0 - 290	16%	4.9%	70	98	23	4
Zinc	538	0 - 3500000	91%	1.5%	5000	52	52	3
Arsenic	534	0 - 30	64%	1.5%	10	52	46	7
Mercury	603	0 - 10	18%	1.0%	2	52	37	2
Cadmium	661	0 - 15	19%	0.45%	5	52	39	3
Methylene chloride	1577	0 - 19	20%	0.44%	5	97	86	6
Chromium	604	0 - 240	35%	0.33%	100	52	48	1
Alkalinity, Total (as CaCO3)	159	210000 - 380000	100%			42	42	
Calcium	76	1600 - 120000	100%			46	46	
Chloride	117	7300 - 32000	100%			54	54	
Dichloroethene, 1,2- (total)	4	43 - 130	100%			2	2	
Magnesium	76	7.0 - 52000	100%			46	46	
Potassium	78	750 - 460000	100%			46	46	
Sodium	76	6100 - 200000	100%			46	46	
Sulfate	93	2300 - 130000	100%			41	41	
Total Dissolved Solids	125	130000 - 500000	100%			20	20	
Alkalinity, Bicarbonate	47	0 - 350000	98%			39	39	

a/ Analytical data includes sampling results from August 1991 through June 2009.
 b/ μg/L = micrograms per liter.
 c/ Data includes 08 active wells shown in Appendix P.

Data includes 98 active wells shown in Appendix B.

Parameter	Total Samples ^{a/}	Range of Detections (µg/L) ^{b/}	Percentage of Detections	Percentage of Samples with MCL Exceedances	<i>MCL</i> (µg/L) ^{b/}	Number of Wells with Results ^{c/}	Number of Wells with Detections	Number of Wells with MCL Exceedances
Barium	536	0 - 300	98%		2000	52	52	
Fluoride	51	0 - 2300	96%			39	38	
Manganese	114	0 - 81	81%			46	45	
Iron	76	0 - 28000	74%			46	41	
Nitrate	90	0 - 11000	73%			41	32	
Methane	73	0 - 7900	71%			32	32	
Nickel	585	0 - 220	53%			52	47	
Copper	536	0 - 180	44%		1300	52	43	
Bromide	60	0 - 1100	33%			40	17	
Selenium	37	0 - 6.0	22%			17	4	
Acetone	81	0 - 3600	17%			21	8	
Toluene	1353	0 - 300	17%		1000	97	57	
Chloroform	1606	0 - 65	13%		80	97	26	
Isopropanol	16	0 - 15	13%			2	1	
Alkalinity, Carbonate	47	0 - 140000	8.5%			39	4	
Dichloroethene, trans-1,2-	2268	0 - 36	8.5%		100	98	9	
Phosphorus, Total Orthophosphate	29	0 - 790	6.9%		1000	26	2	
Nitrite	90	0 - 1700	6.7%			41	6	
Dichloroethane, 1,2-	354	0 - 0.58	4.5%			81	14	
Benzene	333	0 - 0.56	4.2%		100	81	10	
Chloromethane	412	0 - 5.0	3.9%			82	7	
1,2,4-Trimethylbenzene	333	0 - 0.37	2.4%			81	8	
Dichlorodifluoromethane	1264	0 - 1.9	2.4%			97	2	
Dichloroethene, 1,1-	2184	0 - 1.0	2.3%		7	98	13	

a/ Analytical data includes sampling results from August 1991 through June 2009.
b/ µg/L = micrograms per liter.
c/ Data includes 98 active wells shown in Appendix B.

Parameter	Total Samples ^{a/}	Range of Detections (µg/L) ^{b/}	Percentage of Detections	Percentage of Samples with MCL Exceedances	MCL (µg/L) ^{b/}	Number of Wells with Results ^{c/}	Number of Wells with Detections	Number of Wells with MCL Exceedances
Naphthalene	1265	0 - 3.8	2.0%			97	14	
Vinyl chloride	2158	0 - 1.3	1.8%		2	98	11	
Bromodichloromethane	1599	0 - 8.7	1.5%		80	97	10	
1,2,3-Trichlorobenzene	333	0 - 0.96	1.2%			81	4	
1,3,5-Trimethylbenzene	333	0 - 0.38	1.2%			81	4	
Dibromochloromethane	1599	0 - 4.5	1.1%		80	97	8	
1,2,4-Trichlorobenzene	335	0 - 0.85	0.90%			81	3	
Bromochloromethane	333	0 - 0.25	0.90%			81	3	
Ethylbenzene	333	0 - 0.46	0.90%			81	3	
Xylene, o-	333	0 - 0.45	0.90%			81	3	
Bromoform	1263	0 - 3.4	0.63%		80	97	7	
Isopropyltoluene, 4- (Cymene, p-)	324	0 - 0.09	0.62%			81	2	
Butylbenzene, n-	333	0 - 0.49	0.60%			81	2	
Butylbenzene, sec-	333	0 - 0.40	0.60%			81	2	
Butylbenzene, tert-	333	0 - 0.42	0.60%			81	2	
Chlorotoluene, 2-	333	0 - 0.41	0.60%			81	2	
Chlorotoluene, 4-	333	0 - 0.40	0.60%			81	2	
Hexachlorobutadiene	335	0 - 1.4	0.60%			81	2	
Styrene	333	0 - 0.29	0.60%			81	2	
Xylene, m,p-	333	0 - 0.97	0.60%			81	2	
Dibromomethane	333	0 - 0.19	0.30%			81	1	
Dichloroethane, 1,1-	412	0 - 0.14	0.24%			82	1	

a/ Analytical data includes sampling results from August 1991 through June 2009.
b/ µg/L = micrograms per liter.
c/ Data includes 98 active wells shown in Appendix B.

Appendix D Groundwater Metals Detections above the MCL, 1995-2009

Well ID	Laboration	Comula D.	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	1
weil ID	Laboratory	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(1
Maxim	um Contaminant Level (MCL)	0.01	2	0.005	0.1	AL=1.3	AL=0.015	0.002	S
CS-1	Chemron	12/11/1995	0.005U	0.05U	0.005U	0.01U	0.06	0.023	0.0004U	
	Chemron	1/19/1996	0.01U	0.03	0.005U	0.01U	0.02	0.015	0.0004U	(
	Chemron	3/1/1996	0.005U	0.03	0.001U	0.01U	0.07	0.015	0.0004U	
	ITS	01/07/97 ¹ 10/23/97 ¹	0.001U	0.04	0.00028F	0.00227F	0.01867F	0.030	0.0001U	0
	ITS O'B&G	9/9/1999	0.0009U 0.00044U	0.034	0.0002U 0.00019U	0.002U 0.002F	0.0072F 0.008F	0.007 0.0017F	0.0001U 0.00016U	0
	O'B&G	12/14/1999	0.00044U 0.00045U	0.0293	0.00019U	0.002F	0.003F	0.0017F	0.00016U	0.
	O'B&G	3/20/2000	0.0006F	0.0278	0.00019U	0.003F	0.003F	0.0172	0.00016U	0.
	O'B&G	6/14/2000	0.00045J	0.032	0.00019U	0.004F	0.002F	0.0043F	0.00008U	
Duplicate	O'B&G	6/14/2000	0.00045J	0.0323	0.00019U	0.004F	0.003F	0.0041F	0.00008U	0.
	O'B&G	9/13/2000	0.002F	0.0347	0.00019U	0.006F	0.016	0.0851J	0.00012U	0.
	O'B&G	12/12/2000	0.0005F	0.0302 0.0372	0.0114R 0.0002U	0.003F	0.004F	0.0314J	0.00012U	1.
	O'B&G AP18430	3/19/2001 6/12/2001	0.0013F 0.0008U	0.0372	0.0002U 0.0001U	0.004F 0.001U	0.003F 0.009F	0.0131 0.0063	0.0001U 0.0001U	0. 0.
	AP22229	9/17/2001	0.0008C	0.0352J	0.0001U	0.001U	0.009F	0.0082	0.0001C	0.
	AP26254/AP26259	12/11/2001	0.0008U	0.0356	0.0001U	0.001U	0.003U	0.0037F	0.0001U	0.
	AP30837	3/19/2002	0.0008U	0.0343	0.0001U	0.001U	0.009F	0.005	0.0001U	0.4
	STL	6/17/2002	0.0006F	0.0308	0.000027F	0.0026U	0.012	0.0028	0.000028U	.3
	STL	9/10/2002	0.00059F	0.036	0.000022U	0.00074U	0.0042F	0.0031	0.000028U	0.
	STL	12/10/2002	0.00059F	0.037	0.000036F	0.00074U	0.022	0.0053	0.000015U	.2
	STLD3C250256 STLD3F200339	3/19/2003 6/19/2003	0.00043F 0.00057F	0.035	0.000022U 0.000051U	0.00074U 0.0021U	0.0022F 0.0033F	0.003 0.0021	0.000015U 0.000015U	
	STLD3I170355	9/16/2003	0.00037F	0.034	0.000051U	0.0021U	0.0052F	0.0021	0.000015U	0
	STLD3L180116	12/16/2003	0.00066F	0.035	0.000051U	0.0021U	0.0062F	0.0066	0.000054U	0
Duplicate	STLD3L180116	12/16/2003	0.00066F	0.036	0.000051U	0.0021U	0.002F	0.0062	0.000054U	0
	STLD4C120341	3/11/2004	0.00045F	0.039	0.000051R	0.0021U	0.011J	0.0032J	0.000054U	0
Duplicate	STLD4C120341	3/11/2004	0.00051F	0.039	0.000051R	0.0021U	0.042J	0.0051J	0.000054U	0
	STLD4F240326	6/22/2004	0.00045F	0.036	0.000028U	0.0021U	0.024	0.0029	0.000025U	0
	STLD41160208 STLD4L040200	9/15/2004 12/2/2004	0.00051F 0.00059F	0.036	0.000028U 0.000028U	0.0012U 0.0012U	0.0016U 0.0024F	0.0021 0.0011F	0.000047F 0.000039F	0
	STLD5C170383	3/16/2005	0.00039F	0.035	0.000028U	0.0012U	0.00241	0.0011F	0.000039F	0
	STLD5F170398	6/15/2005	0.00067F	0.036	0.00004U	0.00082U	0.0041 0.0045U	0.00151	0.0000491 0.000044U	- 0
	STL	9/8/2005	0.00069F	0.039	0.00004U	0.0026U	0.01	0.0091	0.000044U	0
	STL	6/15/2006	0.0004F	0.032	0.00004U	0.0026U	0.0045U	0.00098F	0.000027U	0
	APPL	12/13/2007	NA	NA	0.00004U	NA	NA	0.0017F	NA	1
	APPL	6/27/2008	0.00022U	0.0371	0.0005U	0.001U	0.005F	0.0019U	0.0004F	0.
	APPL APPL	9/18/2008 12/10/2008	0.00222F 0.00022U	0.0376 0.0374	0.0005U 0.0005U	0.001U 0.001U	0.003U 0.006F	0.0019U 0.0019U	0.0001U 0.0001U	0. 0.
	APPL	6/11/2009	0.000220 0.0002U	0.0374	0.0005U	0.001U	0.003U	0.00190 0.0143F	0.0001C	0.
CS-2	Chemron	12/12/1995	0.013	0.3	0.008	0.01	0.05	0.25	0.0004U	0
Duplicate	Chemron	12/12/1995	0.005U	0.05U	0.005U	0.01U	0.02U	0.015U	0.0004U	0
	Chemron	1/19/1996	0.01	0.03	0.005U	0.01U	0.02	0.01	0.0004U	0
Duplicate	Chemron	1/19/1996	0.015U	0.04	0.005U	0.01U	0.03U	0.011	0.0004U	0
	Chemron	2/29/1996	0.006	0.04	0.001U	0.01U	0.02	0.005	0.0004U	0.
	ITS	01/15/97	0.001U	0.04	0.0002U	0.002U	0.00889F	0.00205F	0.0001U	0.0
	ITS	10/23/971	0.0009U	0.03	0.0002U	0.002U	0.004U	0.0015U	0.0001U	0.0
		9/7/1999	0.00044U	0.04	0.00019U	0.005F	0.002F 0.003F	0.00142U	0.00016U	0.0 0.0
Dunlingto	O'B&G			0.0202	0.0001011	0.00312		0.00142U	0.00016U	
Duplicate	O'B&G	9/7/1999	0.00044U 0.00045U	0.0386	0.00019U 0.00019U	0.003F 0.004F		0.0014211	0.00016U	
	O'B&G O'B&G	9/7/1999 12/14/1999	0.00045U	0.0327	0.00019U	0.004F	0.0009U 0.0009U	0.00142U 0.00142U	0.00016U 0.00016U	0.0
Duplicate Duplicate	O'B&G	9/7/1999					0.0009U 0.0009U 0.0009U	0.00142U	0.00016U 0.00016U 0.00016U	0.0 0. 0
	O'B&G O'B&G O'B&G	9/7/1999 12/14/1999 12/14/1999	0.00045U 0.00045U	0.0327 0.0332	0.00019U 0.00019U	0.004F 0.004F	0.0009U		0.00016U	0.0 0.0 0.0
Duplicate	O'B&G O'B&G O'B&G O'B&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 6/12/2000	0.00045U 0.00045U 0.00045U	0.0327 0.0332 0.0340	0.00019U 0.00019U 0.00019U	0.004F 0.004F 0.003F	0.0009U 0.0009U	0.00142U 0.00053U	0.00016U 0.00016U	0.0 0.0 0.0 0.0
Duplicate Duplicate	0'B&G 0'B&G 0'B&G 0'B&G 0'B&G 0'B&G 0'B&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 6/12/2000 9/12/2000	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U	0.004F 0.004F 0.003F 0.003F 0.004F 0.006F	0.0009U 0.0009U 0.0009U 0.0009U 0.000 F	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M	0.0 0.0 0.0 0.0 0.0
Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 6/12/2000 9/12/2000 9/12/2000	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U	0.004F 0.004F 0.003F 0.003F 0.004F 0.006F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J 0.00053J	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M 0.00012M	0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M 0.00045U	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370 0.0359	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J	0.004F 0.004F 0.003F 0.004F 0.006F 0.004F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.001F	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J	0.00016U 0.00016U 0.00016U 0.0008U 0.00012M 0.00012M 0.00012U	0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate	OB&G OB&G OB&G OB&G OB&G OB&G OB&G OB&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370 0.0359 0.0373	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J	0.004F 0.004F 0.003F 0.004F 0.006F 0.004F 0.004F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0015U 0.0005U	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J	0.00016U 0.00016U 0.00016U 0.0008U 0.00012M 0.00012M 0.00012U 0.00012U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate	OB&G OB&G OB&G OB&G OB&G OB&G OB&G OB&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00045U	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370 0.0359 0.0373 0.0338	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00019J	0.004F 0.003F 0.003F 0.004F 0.004F 0.004F 0.004F 0.004F 0.006F 0.005F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0005U 0.0005U 0.001F	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J	0.00016U 0.00016U 0.0008U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate	OB&G OB&G OB&G OB&G OB&G OB&G OB&G OB&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370 0.0359 0.0373	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J	0.004F 0.004F 0.003F 0.004F 0.006F 0.004F 0.004F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0015U 0.0005U	0.00142U 0.00053U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J	0.00016U 0.00016U 0.00016U 0.0008U 0.00012M 0.00012M 0.00012U 0.00012U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate	OB&G OB&G OB&G OB&G OB&G OB&G OB&G OB&G	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 12/13/2000 12/13/2000 12/13/2000 3/20/2001 3/20/2001	0.00045U 0.00045U 0.0007F 0.00045J 0.00045J 0.00045J 0.00045U 0.00045U 0.00045U 0.00045U	0.0327 0.0332 0.0340 0.0342 0.0348 0.0342 0.0338 0.0364 0.0359 0.0359 0.0373 0.0338 0.0338	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M	0.004F 0.003F 0.003F 0.004F 0.004F 0.004F 0.004F 0.004F 0.006F 0.003F 0.002F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0005U 0.0005U 0.0005U 0.001F 0.001F	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP2634/AP26520	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2001 3/20/2001 6/13/2001 9/13/2001 12/14/2001	0.00045U 0.00045U 0.00045U 0.0007F 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U	0.0327 0.0332 0.0340 0.0342 0.0338 0.0364 0.0370 0.0359 0.0373 0.0338 0.0332 0.0332 0.0332 0.0352J 0.0352J	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.000019J 0.000021M 0.000021M 0.00001U 0.0001U	0.004F 0.003F 0.003F 0.004F 0.004F 0.004F 0.004F 0.004F 0.003F 0.002F 0.002F 0.002F 0.002F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.005U 0.0005U 0.001F 0.001F 0.001F 0.004F 0.003U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.0008U 0.0012F 0.0014F	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP22213 AP26534/AP26520 STL D2C150260009	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001 6/13/2001 9/13/2001 9/13/2001 12/14/2001 3/14/2002	0.00045U 0.00045U 0.00045J 0.00045J 0.00045J 0.00045U 0.00045U 0.00045U 0.00028U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U	0.0327 0.0332 0.0340 0.0342 0.0354 0.0364 0.0364 0.0370 0.0359 0.0373 0.0338 0.0332 0.0332 0.0352J 0.0352	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00019J 0.00021M 0.00021M 0.0001U 0.0001U 0.00001 0.000012U	0.004F 0.003F 0.003F 0.004F 0.006F 0.004F 0.006F 0.003F 0.002F 0.002F 0.002F 0.004F 0.004F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0005U 0.0005U 0.001F 0.004F 0.004F 0.003U 0.003U 0.003U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00026U 0.0002F 0.0012F 0.0014F	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U 0.0001U 0.0001U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP22213 AP26534/AP26520 STL D2C150260009 STL	9/7/1999 12/14/1999 3/20/2000 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001 3/20/2001 3/20/2001 9/13/2001 12/14/2001 3/14/2002 6/18/2002	0.00045U 0.00045U 0.00045U 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.0008U 0.00085F 0.00097F	0.0327 0.0332 0.0340 0.0342 0.0358 0.0364 0.0370 0.0359 0.0373 0.0338 0.0338 0.0332 0.0349 0.0352J 0.0358	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M 0.0001U 0.0001U 0.0001U 0.000022U 0.000022F	0.004F 0.003F 0.003F 0.004F 0.006F 0.004F 0.006F 0.003F 0.002F 0.002F 0.002F 0.002F 0.004F 0.004F 0.001U 0.0058F	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.0005U 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.0008U 0.00012F 0.0014F	0.00016U 0.00016U 0.00008U 0.00008U 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U 0.00001U 0.000028U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP26334/AP26520 STL D2C150260009 STL STL	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2001 6/13/2001 12/14/2001 3/14/2002 6/18/2002	0.00045U 0.00045U 0.00045U 0.00045J 0.00045M 0.00045M 0.00045M 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.0008U 0.00087F 0.00097F	0.0327 0.0332 0.0340 0.0342 0.0342 0.0358 0.0370 0.0370 0.0370 0.0373 0.0338 0.0332 0.0332 0.0349 0.0352J 0.0318 0.0358 0.0358	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M 0.0001U 0.00001U 0.00002F 0.000022F	0.004F 0.003F 0.003F 0.004F 0.004F 0.004F 0.004F 0.003F 0.002F 0.002F 0.002F 0.002F 0.004F 0.001U 0.001U 0.0058F 0.0039J 0.0173J	0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.005U 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U 0.0042U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00026U 0.00026U 0.00026F 0.0014F 0.0014F	0.00016U 0.00016U 0.00016U 0.00008U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U 0.0001U 0.0001U 0.00012U 0.000028U	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP22514/AP26520 STL D2C150260009 STL STL STL STLJ57200337	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001 6/13/2001 9/13/2001 9/13/2001 3/14/2001 3/14/2002 6/18/2002 6/18/2002	0.00045U 0.00045U 0.00045U 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.00085F 0.00095F 0.00085F	$\begin{array}{c} 0.0327\\ 0.0332\\ 0.0340\\ 0.0342\\ 0.0344\\ 0.0352\\ 0.0359\\ 0.0359\\ 0.0373\\ 0.0359\\ 0.0373\\ 0.0332\\ 0.0332\\ 0.0332\\ 0.035\\ 0.035\\ 0.034\\$	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00019J 0.00021M 0.00021M 0.00001U 0.00001U 0.000012U 0.000022U 0.000022F 0.000032F 0.00001F	0.004F 0.003F 0.003F 0.004F 0.006F 0.004F 0.006F 0.002F 0.002F 0.002F 0.002F 0.002F 0.002F 0.0038F 0.0038F 0.0058F 0.0039J 0.0017J 0.0017J 0.0012U	0.0009U 0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.0005U 0.001F 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U 0.0042U 0.0042U 0.0042U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00012F 0.0014F 0.00014F 0.00013F 0.00013F	0.00016U 0.00016U 0.00018U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.00012U 0.00012U 0.00011U 0.0001U 0.000028U 0.000028U 0.000028U	0.00 0.00
Duplicate Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP22213 AP26534/AP26520 STL D2603009 STL STL STL STL STL STL STL STL STL STL	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001 3/20/2001 3/20/2001 12/14/2001 12/14/2001 12/14/2001 3/14/2002 6/18/2002 6/18/2002 6/18/2003 6/16/2004	0.00045U 0.00045U 0.00045U 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.00085F 0.00055F 0.00056F 0.00056F	0.0327 0.0332 0.0340 0.0342 0.0342 0.0358 0.0359 0.0373 0.0338 0.0338 0.0332 0.0338 0.0332 0.0358 0.0358 0.0358 0.0340 0.0358	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M 0.0001U 0.0001U 0.00001U 0.000022F 0.000032F 0.000032F	0.004F 0.003F 0.003F 0.004F 0.006F 0.004F 0.006F 0.002F 0.002F 0.002F 0.002F 0.002F 0.004F 0.001U 0.0058F 0.0035F 0.0039J 0.00173J 0.0021U 0.0021U	0.0009U 0.0009U 0.0009U 0.0001F 0.0001F 0.0005U 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U 0.0042U 0.0042U 0.0042U 0.0042U 0.0016F 0.00097U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00026U 0.00012F 0.0014F 0.0013F 0.00031F	0.00016U 0.00016U 0.00016U 0.00018U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U 0.0001U 0.000028U 0.000028U 0.000028U 0.000028U	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Duplicate Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G STL D2C150260009 STL STL.D3F200337 STL.D3F170404 STLD5F170498	9/7/1999 12/14/1999 12/14/1999 3/20/2000 3/20/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 12/13/2000 12/13/2000 3/20/2001 6/13/2001 3/14/2001 3/14/2001 3/14/2002 6/18/2002 6/19/2003 6/16/2004 6/14/2005	0.00045U 0.00045U 0.00045U 0.00045J 0.00045J 0.00045J 0.00045U 0.00045U 0.00028U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.00085F 0.00054F 0.00054F	$\begin{array}{c} 0.0327\\ 0.0332\\ 0.03340\\ 0.0342\\ 0.0342\\ 0.0364\\ 0.0370\\ 0.0359\\ 0.0373\\ 0.0338\\ 0.0338\\ 0.0338\\ 0.0338\\ 0.0352J\\ 0.0352J\\ 0.0358\\ 0.0346\\ 0.035\\ 0.0346\\ 0.0346\\ 0.034\\ 0.035\\ 0.0346\\ 0.034\\ 0.035\\ 0.0346\\ 0.032\\$	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M 0.00001U 0.00001U 0.00001U 0.000022F 0.000022F 0.000012F 0.000012F 0.000014U	0.004F 0.003F 0.003F 0.004F 0.004F 0.004F 0.004F 0.003F 0.002F 0.002F 0.002F 0.004F 0.002F 0.004F 0.001U 0.0014F 0.0039J 0.0173J 0.0021U 0.0021U 0.0021F	0.0009U 0.0009U 0.0009U 0.001F 0.001F 0.001F 0.001F 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U 0.0042U 0.0042U 0.0042U 0.0042U 0.0045U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00026U 0.00024F 0.0014F 0.0014F 0.0014F 0.0013F 0.00021F 0.00021F	0.00016U 0.00016U 0.00016U 0.00018U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.00012U 0.00011U 0.000028U 0.000028U 0.00002SF	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duplicate Duplicate Duplicate Duplicate Duplicate	O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G O'B&G AP18323 AP22213 AP26534/AP26520 STL D2603009 STL STL STL STL STL STL STL STL STL STL	9/7/1999 12/14/1999 12/14/1999 3/20/2000 6/12/2000 9/12/2000 9/12/2000 12/13/2000 12/13/2000 3/20/2001 3/20/2001 3/20/2001 12/14/2001 12/14/2001 12/14/2001 3/14/2002 6/18/2002 6/18/2002 6/18/2003 6/16/2004	0.00045U 0.00045U 0.00045U 0.00045J 0.00045M 0.00045M 0.00045U 0.00045U 0.00028U 0.00028U 0.0008U 0.0008U 0.0008U 0.00085F 0.00055F 0.00056F 0.00056F	0.0327 0.0332 0.0340 0.0342 0.0342 0.0358 0.0359 0.0373 0.0338 0.0338 0.0332 0.0338 0.0332 0.0358 0.0358 0.0358 0.0340 0.0358	0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019U 0.00019J 0.00019J 0.00021M 0.00021M 0.0001U 0.0001U 0.00001U 0.000022F 0.000032F 0.000032F	0.004F 0.003F 0.003F 0.004F 0.006F 0.004F 0.006F 0.002F 0.002F 0.002F 0.002F 0.002F 0.004F 0.001U 0.0058F 0.0035F 0.0039J 0.00173J 0.0021U 0.0021U	0.0009U 0.0009U 0.0009U 0.0001F 0.0001F 0.0005U 0.001F 0.001F 0.004F 0.003U 0.003U 0.003U 0.003U 0.0042U 0.0042U 0.0042U 0.0042U 0.0016F 0.00097U	0.00142U 0.00053U 0.00053U 0.00053J 0.00053J 0.00053J 0.00053J 0.00053J 0.00026U 0.00026U 0.00026U 0.00026U 0.00012F 0.0014F 0.0013F 0.00031F	0.00016U 0.00016U 0.00016U 0.00018U 0.00012M 0.00012M 0.00012U 0.00012U 0.00012U 0.00012U 0.0001U 0.0001U 0.0001U 0.000028U 0.000028U 0.000028U 0.000028U	0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

Well ID	Laboratory	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Zinc
	Laboratory	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L
Maxim	um Contaminant Level ((MCL)	0.01	2	0.005	0.1	AL=1.3	AL=0.015	0.002	SS=5.0
CS-3	Chemron	12/12/1995	0.005U	0.05U	0.005U	0.01U	0.02U	0.029	0.0004U	0.04
	Chemron	1/19/1996	0.01U	0.03	0.005U	0.01U	0.05	0.002	0.0004U	0.05
	Chemron	2/27/1996	0.005U	0.04	0.001U	0.01U	0.03	0.028	0.0004U	0.04
	ITS	01/10/97 ¹	0.001U	0.03	0.0002U	0.002U	0.01048F	0.0015U	0.0001U	0.01935
CS-9	O'B&G Chemron	12/16/1999 12/12/1995	0.00045U 0.005U	0.0265 0.05U	0.00019U 0.005U	0.005F 0.01U	0.004F 0.02	0.00142U 0.015U	0.00016U 0.0004U	0.013
C5-7	Chemron	2/28/1996	0.02	0.03	0.001U	0.01U	0.02	0.005	0.0004U	0.34
	ITS	01/06/971	0.001U	0.03	0.00026F	0.002U	0.05578F	0.013	0.00038F	0.45
	ITS	10/23/971	0.0018F	0.04	0.00045F	0.0023F	0.0103F	0.013	0.000247F	0.56
	O'B&G	9/8/1999	0.00044U	0.0331	0.00019U	0.004F	0.007F	0.0034F	0.00016U	0.624
	O'B&G	12/13/1999	0.00045U	0.0331	0.00019U	0.006F	0.004F	0.0018F	0.00016U	0.421
	O'B&G	3/20/2000	0.00045U	0.0347	0.00019U	0.005F	0.003F	0.0025F	0.00016U	0.717
	O'B&G O'B&G	6/13/2000	0.00045M 0.00045J	0.0356	0.00019U 0.00019U	0.004F 0.005F	0.004F 0.003F	0.0046F 0.0142J	0.00008U 0.00012U	0.590
	O'B&G	9/13/2000 12/12/2000	0.00045J 0.00045U	0.0364	0.00019U 0.00019J	0.003F	0.003F 0.006F	0.0142J 0.0019F	0.00012U 0.00012U	0.4585
	O'B&G	3/19/2001	0.00045U	0.0339	0.00021U	0.003F	0.005F	0.00191 0.0018F	0.00012U	0.3331
	AP18428	6/12/2001	0.0008U	0.0383	0.0001U	0.001U	0.007F	0.002F	0.0001U	0.28
	AP22230	9/17/2001	0.0008U	0.0356J	0.0003F	0.001U	0.009F	0.005	0.0002F	0.138
	AP26251/AP26256	12/11/2001	0.0008U	0.0349	0.0001U	0.001U	0.008F	0.0028F	0.0001U	0.256
	AP30835	3/19/2002	0.0008U	0.0348	0.0001U	0.001U	0.007F	0.0025F	0.0001U	0.087.
	STL	6/17/2002	0.0011F	0.0381	0.00011F	.0026U	0.0138	0.0109	0.0013	0.693
	STL STL	9/10/2002 12/10/2002	0.00044F 0.00034F	0.035	0.000032F 0.000022U	0.00074U 0.00074U	0.0026F 0.00076U	0.00065F 0.0013F	0.000028U 0.000015U	0.160.
	STLD3C250256	3/19/2003	0.00034F 0.00039F	0.039	0.0000220 0.00004F	0.00074U	0.000780 0.0046F	0.0013F	0.000015U 0.000015U	0.170.
	STLD3F180197	6/17/2003	0.0004F	0.035	0.000051U	.0021U	0.00401 0.008F	0.00078F	0.000037F	0.17
Duplicate	STLD3F180197	6/17/2003	0.00042F	0.036	0.000051U	.0021U	0.0084F	0.00086F	0.000039F	0.16
-	STLD31170355	9/16/2003	0.00035F	0.036	0.000051U	.0021U	0.007F	0.0015F	0.000054U	0.17
	STLD3L180116	12/15/2003	0.00049F	0.039	0.000051U	.0021U	0.0023F	0.00091F	0.00091F	0.13
	STLD4F240326	6/22/2004	0.00042F	0.037	0.000028U	0.0021U	0.0056F	0.00091F	0.000025U	0.0491
	STLD4I160208	9/15/2004	0.00056F	0.035	0.000028U	0.0012U	0.003F	0.00062F	0.000042F	0.068
Duplicate	STLD4L040200 STLD4L040200	12/3/2004 12/3/2004	0.00037F 0.00037F	0.029	0.000028U 0.000028U	0.0012U 0.0012U	0.013 0.0019F	0.005 0.00094F	0.000025U 0.000031F	0.18
Duplicale	STLD5C170383	3/15/2005	0.00057F	0.032	0.0000280 0.000047F	0.0012U 0.0012U	0.0019F	0.0038	0.000031F 0.00015F	0.18
	STLD5F170398	6/15/2005	0.00038F	0.032	0.0000471 0.00004U	0.00082U	0.0032F	0.00056F	0.000131 0.000044U	0.099
	STL	9/8/2005	0.00042F	0.039	0.00004U	0.0026U	0.012	0.0011F	0.000044U	0.062
	STL	6/13/2006	0.0011F	0.034	0.000072F	0.0088F	0.028	0.018	0.0059	3.4
	STL	9/13/2006	0.00036F	0.036	0.00011F	0.0026U	0.0079F	0.028	0.00036F	1.7
	APPL	12/13/2007	NA	NA	0.00004U	NA	NA	0.0362	NA	NA
sample time 1317	APPL	6/27/2008	0.00058F	0.0383	0.0005U	0.001U	0.012	0.0067F	0.0012	0.983
sample time 1356	APPL APPL	6/27/2008 9/16/2008	0.00022U 0.00197F	0.038	0.0005U 0.0005U	0.001U 0.001U	0.047 0.003U	0.0541 0.0088F	0.0015 0.0082J	0.519
Duplicate	APPL	9/16/2008	0.00197F 0.00196F	0.0394	0.0005U 0.0005U	0.001U	0.003U 0.003U	0.0083F	0.0082J 0.0066J	2.42
Dupricule	APPL	12/10/2008	NA	NA	0.0005U	0.001U	NA	0.0066F	0.00003	NA
	APPL	6/11/2009	0.0002U	0.0455	0.0005U	0.002F	0.012	0.0215F	0.0105	2.54
CS-10	Chemron	12/12/1995	0.005U	0.05U	0.005U	0.01U	0.1	0.06	0.0004U	0.180
	Chemron	1/19/1996	0.01U	0.03	0.005U	0.01U	0.02U	0.004	0.0004U	0.080
	Chemron	2/28/1996	0.006	0.04	0.001U	0.01U	0.02	0.002U	0.0004U	0.040
	ITS	01/07/971	0.001U	0.04	0.0002U	0.002U	0.015F	0.0015U	0.0001U	0.041
	ITS	10/23/971	0.0009U	0.04	0.0002U	0.002U	0.004U	0.0015U	0.0001U	0.022
	O'B&G	9/10/1999	0.00444U	0.0354	0.00019U	0.004F	0.006F	0.00142U	0.00016U	0.079
	O'B&G	12/13/1999	0.00045U 0.0019F	0.0355	0.00019U	0.005F	0.002F	0.00142U	0.00016U	0.015
	O'B&G O'B&G	3/20/2000 6/13/2000	0.0019F 0.00045J	0.0375 0.0357	0.00019U 0.00019U	0.005F 0.005F	0.004F 0.002F	0.0031F 0.00053U	0.00016U 0.00008U	0.057
	O'B&G	9/13/2000	0.00045J 0.00045J	0.0357	0.00019U 0.00019U	0.005F 0.006F	0.002F 0.005F	0.00053U 0.00053J	0.00008U 0.00012U	0.014
	O'B&G	12/12/2000	0.00045U	0.0378	0.000190 0.00019J	0.000F	0.003F	0.00053J	0.00012U	0.010
	O'B&G	3/19/2001	0.0003U	0.0375	0.00021U	0.005F	0.004F	0.0003U	0.00012U	0.032
	AP18429	6/12/2001	0.0008U	0.0406	0.0002F	0.002F	0.009F	0.0026F	0.0001U	0.042
	AP22231	9/17/2001	0.0008U	0.0373J	0.0002F	0.001U	0.006F	0.0032F	0.0002F	0.048
	AP26252/AP26257	12/11/2001	0.0008U	0.0405	0.0001U	0.001U	0.006F	0.0014F	0.0001U	0.069
	AP30836	3/19/2002	0.0008U	0.0372	0.0001U	0.001U	0.006F	0.0026F	0.0001U	0.037
	STL STL	6/17/2002 9/10/2002	0.00095F 0.00061F	0.0349 0.0390	0.000061F 0.000022U	.0026U 0.00074U	.0042U 0.0014F	0.0023 0.00048F	0.000028U 0.000028U	0.125
	STL	12/10/2002	0.00053F	0.0390	0.0000220 0.000026F	0.00074U	0.0014F	0.00048F 0.00064F	0.000028U 0.000015U	0.026
	STLD3C250256	3/19/2003	0.00059F	0.039	0.000035F	0.00074	0.0065F	0.0013F	0.000015U	0.049
	STLD3F180197	6/17/2003	0.00054F	0.039	0.000051U	.0021U	0.0058F	0.00085F	0.000039F	0.063
	STLD31170355	9/16/2003	0.00058F	0.039	0.000051U	.0021U	0.0058F	0.0011F	0.000054U	0.031
Duplicate	STLD31170355	9/16/2003	0.00053F	0.038	0.000051U	.0021U	0.0043F	0.0008F	0.000054U	0.024
	STLD3L180116	12/16/2003	0.00066F	0.039	0.000051U	.0021U	0.0017F	0.00059F	0.000054U	0.024
	STLD4C120341 STLD4E240326	3/11/2004	0.00068F 0.00054F	0.04 0.041	0.000051R 0.000028U	.0021U 0.0021U	0.013J 0.006F	0.00066F 0.00048F	0.000054U 0.000025U	0.021 0.017
	STLD4F240326 STLD4I160208	6/22/2004	0.00054F 0.00058F	0.041		0.0021U 0.0012U		0.00048F 0.00053F		0.017
	STLD41160208 STLD4L040200	9/15/2004 12/3/2004	0.00058F 0.00066F	0.037	0.000028U 0.000028U	0.0012U 0.0012U	0.0016U 0.0027F	0.00053F 0.0012F	0.000029F 0.000071F	0.013
	STLD5C170383	3/15/2005	0.00074F	0.039	0.000028U 0.000028U	0.0012U 0.0012U	0.0027F	0.0012F 0.00078F	0.000071F	0.028
	STLD5F170398	6/15/2005	0.00068F	0.037	0.000028C	0.00082U	0.0083F	0.0015F	0.000044U	0.023
	STL	9/8/2005	0.00057F	0.04	0.00004U	0.0026U	0.0064F	0.0011F	0.000044U	0.038
	STL	6/22/2006	0.00063F	0.046	0.00004U	0.0026U	0.0045U	0.00071F	0.00058F	0.43
	APPL	12/13/2007	NA	NA	0.00004U	NA	NA	0.0049	NA	NA
	APPL	6/27/2008	0.00085F	0.0418	0.0005U	0.001U	0.006F	0.0019U	0.0003F	0.261
	APPL	9/16/2008	0.00338F	0.0393	0.0005U	0.001U	0.003U	0.0054F	0.0001U	0.184
		12/10/2000	0.000	0.0000	0.000					
Duplicate	APPL APPL	12/10/2008 12/10/2008	0.00022U 0.00022U	0.0375 0.0378	0.0005U 0.0005U	0.001U 0.001U	0.003U 0.003U	0.0019U 0.0019U	0.0001U 0.0001U	0.103

Well ID	Laboratory	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Zin
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/
Maxin	um Contaminant Level (I	MCL)	0.01	2	0.005	0.1	AL=1.3	AL=0.015	0.002	SS=5
CS-11	Chemron	12/15/1995	0.01	0.05U	0.005U	0.01U	0.02U	0.015U	0.0004U	0.04
	Chemron	2/29/1996	0.005U	0.03	0.001U	0.01U	0.02U	0.002U	0.0004U	0.09
	ITS	01/20/971	0.001U	0.04	0.0002U	0.002U	0.00797F	0.00177F	0.0001U	0.13
	ITS	10/23/971	0.0009U	0.04	0.00021F	0.002U	0.0079F	0.00803	0.0001U	1.91
	O'B&G O'B&G	9/10/1999 12/15/1999	0.00044U 0.00045U	0.0640 0.0354	0.00019U 0.00019U	0.002F 0.003F	0.009F 0.002F	0.00142U 0.00142U	0.00016U 0.00016U	2.93
	O'B&G	3/20/2000	0.000430 0.0008F	0.0354	0.00019U	0.003F 0.004F	0.002F 0.007F	0.001420	0.00016U 0.00016U	1.12
	O'B&G	6/14/2000	0.00045J	0.0454	0.00019U	0.003F	0.01F	0.0026F	0.00008U	0.42
	O'B&G	9/13/2000	0.00045J	0.0379	0.00019U	0.005F	0.004F	0.0098J	0.00012U	1.21
	O'B&G	12/12/2000	0.00045U	0.0383	0.00019J	0.003F	0.006F	0.0165R	0.00012U	2.15
	O'B&G	3/19/2001	0.0003U	0.0334 0.0335	0.0002U 0.0001U	0.002F 0.001U	0.005F 0.005F	0.0072 0.0063	0.0001U 0.0001U	0.95
	AP26253/AP26258 STL D2C150260005	12/11/2001 3/14/2002	0.0008U 0.0005F	0.0355	0.00010 0.000062F	0.001U 0.0026U	0.005F	0.0063	0.00010 0.000028U	1.12
	STE D20150200005	6/17/2002	0.00066F	0.037	0.000022U	0.0026U	.0042U	0.0154	0.000028U	5.80
	STLD3F180197	6/17/2003	0.00062F	0.037	0.000051U	0.0021U	0.0092F	0.004	0.00004F	0.6
	STLD4F240332	6/22/2004	0.00048F	0.037	0.000028U	0.0021U	0.013	0.0048	0.000025U	0.74
	STLD5F170398	6/16/2005	0.00047F	0.038	0.00004U	0.00082U	0.0092F	0.0068	0.000044U	1.8
Duplicate	STL STL	6/14/2006 6/14/2006	0.00026F 0.00028F	0.021 0.022	0.00004U 0.000087F	0.0026U 0.0026U	0.0045U 0.0045U	0.014 0.013	0.000027U 0.000027U	0.8
Dupticule	APPL	12/13/2007	0.00028F NA	0.022 NA	0.00008/F	0.00280 NA	0.00430 NA	0.015	0.0000270 NA	NA
	APPL	9/15/2008	NA	NA	0.0005U	0.02	NA	0.1972	0.0001U	NA
	APPL	6/9/2009	NA	NA	0.0005U	0.001U	NA	0.0019U	0.0002F	NA
CS-MWG-LGR	Chemron	12/12/1995	0.005U	0.05U	0.001U	0.01U	0.04	0.002U	0.0004U	0.3
	Chemron Chemron	1/19/1996 2/28/1996	0.01U 0.005U	0.02	0.005U 0.002	0.01U 0.01U	0.12 0.18	0.048 0.094	0.0004U 0.0004U	2.8
		01/17/971		-						<u> </u>
	ITS	10/24/97 ¹	0.001U	0.03	0.003	0.002U	0.09	0.039	0.0001U	2.9
	ITS O'B&G	9/8/1999	0.001F 0.00044U	0.03	0.001 0.0017	0.002U 0.003F	0.0434F 0.013	0.020 0.00142U	0.0001U 0.00016U	4.2
	AP18432	6/12/2001	0.00044U	0.032	0.00017	0.001U	0.003U	0.001420 0.002F	0.00010U	0.04
	AP22201	9/12/2001	0.0009F	0.0252J	0.0003F	0.002F	0.02	0.0369	0.0001U	0.20
	AP26733	12/18/2001	0.0008U	0.0219	0.0001U	0.001U	0.003U	0.0015F	0.0001U	0.05
	STL D2C140338008	3/13/2002	0.00066F	0.0209	0.000041F	.0026U	0.0056F	0.0041	0.000028U	0.02
W. B. F	STL	6/19/2002	0.0005F	0.0206	0.000038F	.0026U	.0042U	0.0021	0.000028U	0.03
Well Upgraded	STL STLD3F180197	9/11/2002 6/16/2003	0.00032F 0.00047F	0.021 0.019	0.000022U 0.000051U	0.00074U 0.0026F	0.00076U 0.0024F	0.00015U 0.00019U	0.000028U 0.000032F	0.009
	STLD4F170404	6/15/2004	0.00025F	0.020	0.000028U	0.0021U	0.00097U	0.00041F	0.000025U	0.008
	STLD5F170398	6/7/2005	0.00038F	0.022	0.00004U	0.0012F	0.0045U	0.00041F	0.000044U	0.02
	TestAmerica	12/11/2007	0.00023F	0.022	0.00004U	0.00026U	0.0045U	0.00018U	NA	0.01
	APPL	9/16/2008	NA	NA	0.0006F	0.001U	NA	0.0102F	0.0001U	NA
CS-MWH-LGR	APPL Chemron	6/9/2009 12/12/1996	0.005	NA 0.05U	0.0005U 0.007	0.001U 0.01U	NA 0.11	0.0025F 0.045	0.0001U 0.0004U	NA 2.2
Co-MWII-LOK	Chemron	2/28/1996	0.005U	0.030	0.001U	0.01U	0.05	0.043	0.0004U	0.2
	ITS	01/07/971	0.001U	0.03	0.00083F	0.002U	0.02643F	0.007	0.0001U	0.7
	ITS	10/23/971	0.0022F	0.03	0.00145F	0.002U	0.0242F	0.011	0.0001U	0.7
	AP18433	6/12/2001	0.0008U	0.0343	0.0001	0.003F	0.025	0.0459	0.0001U	0.6
	AP22202	9/12/2001	0.0012F	0.0317J	0.001	0.002F	0.028	0.047	0.0001U	0.8
	AP26732	12/18/2001	0.0008U	0.0191	0.0002F	0.004F	0.003U	0.005	0.0001U	0.0
	STL D2C140338007 STL	3/13/2002 6/19/2002	0.0012F 0.0012F	0.0292 0.0267	0.000097F 0.00023F	0.0026U 0.0026U	0.0042U 0.0092F	0.0033 0.0089	0.000028U 0.000028U	0.08
Well Upgraded	STLD3C240193	3/17/2003	0.00037F	0.029	0.000025F	0.00200 0.0081F	0.00076U	0.003	0.000028U	0.10
of the second seco	STLD4F170404	6/15/2004	0.00038F	0.029	0.000028U	0.0021U	0.00097U	0.0023	0.000025U	0.6
	STLD5F170398	6/6/2005	0.00074F	0.028	0.00004U	0.0066F	0.0045U	0.0027	0.000044U	2
	APPL	9/24/2007	NA	NA	0.0014F	NA	NA	0.009	NA	NA
CS-I	Chemron	12/12/1995	0.005U	0.06	0.005U	0.01U	0.05	0.019 0.022	0.0004U	9.9
	Chemron Chemron	1/19/1996 2/28/1996	0.01U 0.005U	0.05	0.005U 0.001U	0.01U 0.01U	0.1	0.022	0.0004U 0.0004U	8.2
	ITS	10/23/971	0.0009U	0.11	0.0002U	0.002U	0.004U	0.00225F	0.0001U	1.9
	O'B&G	9/7/1999	0.00044U	0.1169	0.00019U	0.004F	0.004F	0.00142U	0.00016U	1.7
	O'B&G	12/14/1999	0.00045U	0.1155	0.00019U	0.005F	0.006F	0.00142U	0.00016U	1.7
	O'B&G	3/21/2000	0.0006F	0.1242	0.00019U	0.004F	0.0009U	0.00053U	0.00016U	1.5
	O'B&G	6/13/2000	0.00045J	0.1231	0.00019U	0.005F	0.002F	0.00053U	0.00008U	1.5
	O'B&G O'B&G	9/12/2000 12/12/2000	0.00045J 0.00045U	0.1252 0.1359	0.00019U 0.00019J	0.005F 0.004F	0.003F 0.001F	0.00053J 0.002F	0.00012U 0.00012U	1.7
	O'B&G	3/20/2001	0.00043U 0.00028U	0.1339	0.000193 0.00021U	0.004F	0.001F	0.002F	0.00012U 0.00012U	2.9
	AP18434	6/12/2001	0.000200	0.1413	0.0001U	0.002F	0.014	0.0349	0.000120	3.4
	AP22206	9/12/2001	0.0008U	0.1028J	0.0001U	0.001U	0.008F	0.0193	0.0002F	2.92
	AP26642/AP26639	12/17/2001	0.0008U	0.1256	0.0003F	0.001U	0.039	0.0827	0.0002F	3.0
	STL D2C140338009	3/13/2002	0.0019F	0.2	0.00022F	0.0091F	0.0572	0.087	0.00066F	8.6
	STLD4F170404	6/15/2004	0.00025F	0.130	0.000028U 0.000089F	0.0021U 0.00082U	0.00097U 0.0045U	0.0003F 0.0028	0.000025U 0.000044U	0.01
	STLD5F170398 STL	6/6/2005 6/12/2006	0.00031F 0.00041F	0.12 0.14	0.000089F 0.00004U	0.0026U	0.00430	0.0020	0.000044U 0.000027U	0.04

Well ID	Laboratory	Sample Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Mercury (mg/L)	Zinc (mg/L)
	um Contaminant Level (0.01	2	0.005	0.1	AL=1.3	AL=0.015	0.002	SS=5.0
CS-MW1-LGR	ITS	01/09/97 ¹ 10/23/97 ¹	0.001U 0.009U	0.03	0.0002U 0.0002U	0.002U 0.002U	0.01033F 0.004U	0.0015U 0.0015U	0.0001U 0.0001U	0.016U
	ITS O'B&G	9/8/1999	0.009U 0.00044U	0.03	0.00020 0.00019U	0.0020 0.004F	0.0040 0.001F	0.0015U 0.00142U	0.00010 0.00016U	0.016U 0.009F
	O'B&G	12/13/1999	0.0006F	0.0258	0.00019U	0.006F	0.001F	0.00142U	0.00016U	0.005F
	O'B&G	3/21/2000	0.0014F	0.0260	0.00019U	0.006F	0.0009U	0.00053U	0.00016U	0.008F
	O'B&G	6/12/2000	0.001F	0.0255	0.00019U	0.006F	0.0009U	0.00053U	0.00008U	0.006F
	O'B&G O'B&G	9/12/2000 12/13/2000	0.0007F 0.0006F	0.0285 0.0310	0.0006F 0.00019J	0.005F 0.004F	0.001F 0.0005U	0.00053J 0.00053J	0.00012U 0.00012U	0.004F 0.0039F
	O'B&G	3/20/2001	0.00026U	0.0299	0.000193 0.00021U	0.004F	0.0005U	0.000355 0.00026U	0.00012U 0.00012U	0.00331
	AP18324	6/13/2001	0.0008U	0.0333	0.0001U	0.003F	0.005F	0.0008U	0.0001U	0.017F
	AP22212	9/13/2001	0.0015F	0.033J	0.0001U	0.001U	0.003U	0.0008U	0.0001U	0.012F
	AP26362/AP26368	12/12/2001	0.0008U	0.0327	0.0001U	0.001U	0.003U	0.0008U	0.0001U	0.013F
Duplicate	STL D2C150260006 STL D2C150260007	3/14/2002 3/14/2002	0.00074F 0.00064F	0.0335 0.0336	0.000022U 0.000022U	0.0026U 0.0026U	0.0042U 0.0042U	0.00015U 0.00015U	0.000028U 0.000028U	0.0124 0.00371
Well Upgraded	STL D2C150200007 STL	9/10/2002	0.00034F	0.0336	0.0000220 0.000027F	0.0013F	0.00420 0.0023F	0.000130 0.0004F	0.000028U 0.000028U	0.00371
or of Brane	STLD3F200337	6/19/2003	0.00036F	0.032	0.000051U	0.0021U	0.0014F	0.00047F	0.000015U	0.00691
	STLD4F180203	6/17/2004	0.00026F	0.032	0.000028U	0.0021U	0.00097U	0.000091F	0.000025U	0.0036U
	STLD5F170398	6/13/2005	0.00056F	0.029	0.00004U	0.0048F	0.0045U	0.0001F	0.000044U	0.0044U
	APPL TestAmerica	9/25/2007 3/11/2008	NA NA	NA NA	0.0036F 0.0005U	NA NA	NA NA	0.0063 0.0019U	NA NA	NA NA
Duplicate	TestAmerica	3/11/2008	NA	NA	0.0005U	NA	NA	0.0019U	NA	NA
	APPL	9/9/2008	NA	NA	0.0005U	0.023	NA	0.0027F	0.0001U	NA
	APPL	3/17/2009	NA	NA	0.0005U	0.102	NA	0.0019U	0.0001U	NA
CS-MW2-CC	STLD3F180197	6/17/2003	0.00046F	0.037	0.000051U	0.0021U	0.0011F	0.00019U	0.000037F	0.027
	STLD4F180203	6/17/2004	0.0003F	0.021	0.000028U 0.00004U	0.0021U 0.00082U	0.00097U	0.000077U	0.000025U	0.00360
	STLD5F170398 APPL	6/8/2005 9/25/2007	0.00046F NA	0.017 NA	0.000040	0.00082U NA	0.0045U NA	0.0002F 0.0051	0.000044U NA	0.011F NA
CS-MW3-LGR	AP18445	6/14/2001	0.0008U	0.0279	0.00075 0.0002F	0.002F	0.003U	0.0316	0.0001U	0.062
	AP22207	9/12/2001	0.0021F	0.0286J	0.0001U	0.001U	0.003U	0.002F	0.0001U	0.055
	AP26643/AP26640	12/17/2001	0.0008U	0.0281	0.0001U	0.001U	0.003U	0.0009F	0.0001U	0.036F
Duplicate	AP26644/AP26641	12/17/2001	0.0008U	0.0277	0.0001U	0.001U	0.003U	0.0008U	0.0001U	0.045F
	STL D2C140338006 STLD3F210180	3/13/2002 6/20/2003	0.00064F 0.00048F	0.0268	0.000022U 0.000081F	0.0026U 0.0021U	0.0042U 0.00097U	0.00023F 0.00019U	0.000028U 0.000015U	0.0216
	STLD4F170404	6/15/2004	0.00048F	0.027	0.0000311 0.000028U	0.0021U	0.00097U	0.00013E	0.000015U 0.000025U	0.02 0.020F
	STLD5F170398	6/7/2005	0.00044F	0.028	0.00004U	0.00082U	0.0045U	0.00014F	0.000044U	0.021F
	APPL	10/1/2007	NA	NA	0.0003F	NA	NA	0.0004F	NA	NA
	TestAmerica	3/11/2008	NA	NA	0.0005U	NA	NA	0.0019U	NA	NA
	APPL APPL	9/16/2008 3/16/2009	NA NA	NA NA	0.0005U 0.0005U	0.001U 0.001U	NA NA	0.0024F 0.0019U	0.0001U 0.0001U	NA NA
Duplicate	APPL	3/16/2009	NA	NA	0.0005U	0.001U	NA	0.0019U	0.0001U	NA
CS-MW9-BS	AP18441	6/14/2001	0.0015F	0.0134	0.0001U	0.003F	0.003U	0.0009F	0.0001U	0.021F
	AP22204	9/12/2001	0.001F	0.025J	0.0001U	0.001U	0.003U	0.0024F	0.0002F	0.016F
	AP26536/AP26522 STL D2C140338004	12/14/2001	0.0008U 0.0016F	0.0204 0.0176	0.0001U 0.000022U	0.001U 0.0026U	0.003U	0.0008U 0.00015U	0.0002F 0.000028U	0.008U 0.0033I
	STL D2C140338004 STL	3/13/2002 6/19/2002	0.0016F 0.0018F	0.0176	0.000022U 0.000022U	0.0026U 0.0026U	0.0042U 0.0042U	0.000150 0.00054F	0.000028U 0.000028U	0.00331
	STLD3F210180	6/20/2002	0.00094F	0.048	0.000051U	0.0021U	0.000420 0.00097U	0.00019U	0.000015U	0.00741
	STLD4F170404	6/15/2004	0.0028F	0.059	0.000033F	0.0021U	0.00097U	0.0002F	0.000025U	0.00441
	STLD5F170398	6/10/2005	0.0024F	0.079	0.00004U	0.00082U	0.0045U	0.0041	0.000044U	0.036F
66 MILLA 66	APPL	9/25/2007	NA	NA 0.007	0.0019F	NA	NA	0.1065	NA	NA
CS-MW12-CC Duplicate	STL STL	12/16/2002 12/16/2002	0.011 0.011	0.095	0.000079F 0.000076F	0.001F 0.0011F	0.00076U 0.00076U	0.00035F 0.00037F	0.000015U 0.000015U	0.017
Duplicate	STLD3F180197	6/16/2003	0.0019F	0.037	0.000051U	0.0021U	0.0018F	0.00019U	0.00004F	0.010
	STLD4F220238	6/21/2004	0.0031F	0.035	0.000028U	0.0021U	0.00097U	0.000077U	0.000025U	0.00360
	STLD5F170398	6/16/2005	0.0014F	0.069	0.00004U	0.002F	0.0045U	0.00055F	0.000044U	0.072
CO MILAN L CD	APPL	9/27/2007	NA	NA	0.00004U	NA	NA	0.00018U	NA	NA
CS-MW22-LGR	TestAmerica TestAmerica	6/7/2007	0.0045F	0.073	0.00012F 0.00013F	0.017	0.029	0.091	0.000079F	8.0
	TestAmerica	12/13/2007	0.0056F 0.0024F	0.093	0.000056F	0.023 0.0027F	0.026 0.0045U	0.086	0.00012F 0.000027U	6.7
Duplicate	TestAmerica	12/13/2007	0.0023F	0.063	0.000047F	0.0028F	0.0045U	0.011	0.000027U	2.1
	TestAmerica	3/13/2008	0.0038F	0.079	0.000067F	0.017	0.013	0.04	0.00013F	4.9
Duplicate	TestAmerica	3/13/2008	0.0036F	0.077	0.00008F	0.016	0.012	0.038	0.00012F	4.7
Durkant	APPL	6/24/2008	0.00022U	0.0651	0.0005U	0.001U	0.003U	0.0019U	0.0001U	1.701
Duplicate	APPL APPL	6/24/2008 9/15/2008	0.00022U NA	0.0658 NA	0.0005U 0.0005U	0.001U 0.001U	0.003U NA	0.0019U 0.0037F	0.0001U 0.0001U	1.732 NA
	APPL	12/10/2008	NA	NA	0.0005U	0.001U	NA	0.0019U	0.0001U	NA
	APPL	3/18/2009	NA	NA	0.0005U	0.005F	NA	0.0077F	0.0001U	NA
CS-MW23-LGR	APPL TestAmerica	6/10/2009	NA 0.0015E	NA 0.051	0.0005U 0.000058F	0.005F	NA 0.0061F	0.0088F	0.0002F 0.0078	NA 0.59
C3-31 11 23-LGK	TestAmerica TestAmerica	6/5/2007 10/1/2007	0.0015F 0.0011F	0.051	0.000058F 0.000046F	0.0026U 0.0026U	0.0061F 0.0046F	0.0032 0.0018F	0.0078 0.000027U	0.59
	TestAmerica	12/12/2007	0.00069F	0.034	0.0000401	0.00026U	0.0045U	0.00018U	0.000027U	0.16
	TestAmerica	3/13/2008	0.0008F	0.046	0.00004U	0.0026U	0.0045U	0.00023F	0.000027U	0.1
	APPL	6/24/2008	0.00022U	0.0528	0.0005U	0.001U	0.003U	0.0019U	0.0001U	0.133
	APPL	9/15/2008	NA	NA	0.0006F	0.004F	NA	0.0079F	0.0001U	NA
	APPL APPL	12/10/2008 3/12/2009	NA NA	NA NA	0.0005U 0.0005U	0.001U 0.001U	NA NA	0.0019U 0.0019U	0.0001U 0.0001U	NA NA
	APPL	6/10/2009	NA	NA	0.0005U	0.0010 0.002F	NA	0.00190 0.0023F	0.00010 0.0002F	NA
CS-MW25-LGR	TestAmerica	6/5/2007	0.0031F	0.044	0.000087F	0.065	0.032	0.017	0.000027U	1.8
	TestAmerica	10/1/2007	0.0044F	0.063	0.00016F	0.24	0.065	0.032	0.000027U	2.2
	TestAmerica	12/11/2007	0.0039F	0.045	0.00015F	0.22	0.03	0.023	0.000027U	1.5
	TestAmerica A PPI	3/17/2008	0.0010F 0.00274F	0.032	0.000043F	0.038	0.0045U 0.004F	0.0026	0.00006F	0.24
	APPL	6/10/2008	0.002/4F	0.0333	0.0005U	0.012	0.004F	0.0019U	0.0005F	0.297
		9/16/2008	NA	NA	0.0005U	0.002F	NA	0.0035F	0.000111	NA
	APPL APPL	9/16/2008 12/9/2008	NA NA	NA NA	0.0005U 0.0005U	0.002F 0.026	NA NA	0.0035F 0.0019U	0.0001U 0.0001U	NA NA
	APPL									

Well ID	Laboratory	Sample Da	Arsenic te (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Mercury (mg/L)	Zinc (mg/L)
M	Aaximum Contaminant Level	(MCL)	0.01	2	0.005	0.1	AL=1.3	AL=0.015	0.002	SS=5.0
Comparison		MCL	0.01	2.0	0.005	0.1	1.3	0.015	0.002	5.0 (SS)
Criteria		GW-Ind	0.05	2.0	0.005	0.1	1.3	0.015	0.002	31
	Chemron	PQL	0.005	0.02	0.005	0.1	1.3	0.015	0.002	3.1
	Chemron	MDL	MDLs not provi	ded by the labora	atory.					
	ITS	PQL	0.005	0.020	0.001	0.07	0.06	0.005	0.001	0.02
	ITS	MDL	0.0009	0.001	0.0002	0.002	0.004	0.0015	0.0001	0.016
	O'B&G	RL	0.005	0.005	0.001	0.01	0.01	0.005	0.001	0.05
	O'B&G	MDL	0.00028	0.0003	0.00021	0.0012	0.0009	0.00142	0.00016	0.0014
	APPL	RL	0.005	0.005	0.001	0.01	0.01	0.005	0.001	0.05
	APPL	MDL	0.0008	0.0003	0.0001	0.001	0.003	0.0008	0.0001	0.008
	STL	RL	0.005	0.005	0.001	0.010	0.010	0.002	0.001	0.010
	STL	MDL	0.00006	0.0018	0.00002	0.00074	0.00076	0.00015	0.00003	0.0068
	TestAmerica	RL	0.02	0.005	0.002	0.01	0.01	0.002	0.001	0.05
	TestAmerica	MDL	0.00021	0.001	0.00004	0.00026	0.0045	0.00018	0.000027	0.0045

nalytical data analyzed by ITS Laboratories.

Bold Value > or = MCL Bold MCL > Value > or = RL

RL > Value > MDLBold

¹ Indicates that data is screening analytical data only.

Notes:

- Due to potential improper practices, the ITS data cannot be used to draw any conclusions about groundwater quality at CSSA.

- January 1996 data represents re-test data.

- Samples were not analyzed for Alkalinity, TDL, pH, and Resistivity prior to 1997.

- F = The analyte was positively identified but the associated numerical value is below the RL.
 - J = The analyte was positively identified below quantitation limits; the quantitation is an estimate.

R = The data are unusable with deficiencies in the ability to analyze the sample and meet QC criteria.
U = The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection.
NA = Not sampled for this parameter.

- SS = Secondary Standard - AL = Action Level

Appendix E Summary of Three-Tiered Long Term Monitoring Network Optimization

TABLE 7.1 SUMMARY OF LONG TERM MONITORING OPTIMIZATION EVALUATION OF CURRENT GROUNDWATER MONITORING PROGRAM LONG TERM MONITORING OPTIMIZATION CAMP STANLEY STORAGE ACTIVITY, TEXAS

			Oua	litative Evaluation	Temporal I	Evaluation	Spatial Evaluation			Summary	
Well ID					Exclude/						
		Exclude	Retain	Recommended Monitoring Frequency	Reduce	Retain	Exclude Retain	Exclude	Retain	Recommended Monitoring Frequency	
On Post Monitoring	Current Sampling Frequency										Rationale
AOC65-MW1-LGR	Ouarterly	✓		Sample after major rain event	Not An	alvzed	↓ ^a ⁄		✓	Sample after major rain event	Statistics confirm qualitative evaluation
AOC65-MW2A	Quarterly	· · ·		Sample after major rain event	10071	√	^{b/}		· ✓	Sample after major rain event	Statistics confirm qualitative evaluation
AOC65-PZ01-LGR	Quarterly	· •		Sample after major rain event	×	•	Not Included	~	•	Exclude	Exclude well based on statistics
AOC65-PZ02-LGR	Quarterly	√		Sample after major rain event	✓		Not Included	√		Exclude	Exclude well based on statistics
AOC65-PZ03-LGR	Quarterly	✓		Sample after major rain event	~		Not Included	~		Exclude	Exclude well based on statistics
AOC65-PZ04-LGR	Quarterly	✓		Sample after major rain event	✓		Not Included	✓		Exclude	Exclude well based on statistics
AOC65-PZ05-LGR	Quarterly	✓		Sample after major rain event	✓		Not Included	✓		Exclude	Exclude well based on statistics
AOC65-PZ06-LGR	Quarterly	✓		Sample after major rain event	✓		Not Included	✓		Exclude	Exclude well based on statistics
CS-1	Quarterly		√	Annual		~	✓		✓	Annual	Statistics confirm qualitative evaluation
CS-10	Quarterly		✓	Annual	✓				✓	Annual	Qualitative factor (drinking water well) overrides statistic recommendations
CS-11	Quarterly	✓		Biennial		✓	✓		✓	Annual	Increase sampling frequency due to temporal trend
CS-2	Quarterly		√	Semi-annual	✓		✓	✓		Annual	Decrease sampling frequency due to statistics results
CS-3	Not Sampled	✓		Remove	✓		Not Included	✓		Exclude	Statistics confirm qualitative evaluation
CS-4	Quarterly		√	Semi-annual		✓	✓		✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-9	Quarterly		✓	Annual	✓				✓	Annual	Qualitative factor (drinking water well) overrides statistic recommendations
CS-D	Quarterly		✓	Semi-annual		✓	✓		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-I	Quarterly		✓	Biennial		~	\checkmark		✓	Annual	Increase sampling frequency due to temporal trend
CS-MW10-CC	Quarterly		✓	Biennial	~		Not Included		✓	Biennial	Statistics confirm qualitative evaluation
CS-MW10-LGR	Quarterly		✓	Semi-annual	✓		\checkmark		✓	Annual	Decrease sampling frequency due to statistics results
CS-MW11A-LGR	Quarterly		✓	Semi-annual	✓		✓		✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW11B-LGR	Quarterly		✓	Semi-annual	✓		✓		✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW12-BS	Quarterly		✓	Biennial	✓		Not Included		✓	Biennial	Statistics confirm qualitative evaluation
CS-MW12-CC	Quarterly		✓	Biennial	✓		Not Included		✓	Biennial	Statistics confirm qualitative evaluation
CS-MW12-LGR	Quarterly		✓	Semi-annual		✓	✓		✓	Annual	Decrease sampling frequency due to statistics results (ND sentry well)
CS-MW16-CC	Quarterly		✓	Semi-annual		✓	Not Included		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-16-LGR	Quarterly		√	Semi-annual		~	✓		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-MW17-LGR	Quarterly		√	Biennial	~		✓		✓	Annual	Increase sampling frequency due to spatial result
CS-MW18-LGR	Quarterly		✓	Semi-annual		√	√		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-MW19-LGR	Quarterly		~	Semi-annual	✓		√		✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW1-BS	Quarterly		√	Biennial	✓		Not Included		 ✓ 	Biennial	Statistics confirm qualitative evaluation
CS-MW1-CC	Quarterly		 ✓ 	Biennial	√		Not Included		 ✓ 	Biennial	Statistics confirm qualitative evaluation
CS-MW1-LGR	Quarterly		✓	Semi-annual		√	✓ ✓		 ✓ 	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-MW2-CC	Quarterly		✓	Biennial	√				 ✓ 	Biennial	Statistics confirm qualitative evaluation
CS-MW2-LGR	Quarterly		✓	Semi-annual	√				 ✓ 	Semi-Annual	Qualitative factor (recompleted well) overrides statistic recommendations
CS-MW3-LGR	Quarterly		√	Semi-annual	✓ ✓		√		✓ ✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW4-LGR	Quarterly		✓ ✓	Semi-annual	✓ 		✓ ✓		✓ ✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW5-LGR	Quarterly		✓	Semi-annual	√		✓ ↓		✓ ✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-MW6-BS	Quarterly		✓ ✓	Biennial	✓ (↓		✓ ✓	Biennial	Temporal statistics confirm qualitative evaluation
CS-MW6-CC	Quarterly		✓ ✓	Biennial	✓ 		↓ ok		✓ ✓	Biennial	Temporal statistics confirm qualitative evaluation
CS-MW6-LGR	Quarterly		✓ ✓	Semi-annual Diamial	✓ ✓		→ [¢]		✓ ✓	Semi-Annual Diamaial	Spatial statistics confirm qualitative evaluation
CS-MW7-CC	Quarterly		✓ ✓	Biennial Somi onnual	v	✓			✓ ✓	Biennial	Temporal statistics confirm qualitative evaluation
CS-MW7-LGR	Quarterly		✓ ✓	Semi-annual Rionnial	 ✓ 	v	√→ ↓	ł	✓ ✓	Semi-Annual Bioppiel	Statistics confirm qualitative evaluation
CS-MW8-CC	Quarterly		✓ ✓	Biennial	✓ ✓		Ψ		✓ ✓	Biennial	Temporal statistics confirm qualitative evaluation
CS-MW8-LGR	Quarterly		✓ ✓	Semi-annual Rionnial	✓ ✓		· · ·	ł	✓ ✓	Annual Biennial	Decrease sampling frequency due to statistics results
CS-MW9-BS	Quarterly		✓ ✓	Biennial	✓ ✓		Not Included	1	✓ ✓		Temporal statistics confirm qualitative evaluation
CS-MW9-CC	Quarterly		✓ ✓	Biennial Somi oppual	✓ ✓		Not Included	ł	v	Biennial Somi annual	Temporal statistics confirm qualitative evaluation
CS-MW9-LGR	Quarterly		✓ ✓	Semi-annual Rionnial	✓ ✓		✓ ✓	ł	✓	Semi-annual	Spatial statistics confirm qualitative evaluation
CS-G-LGR CS-MWH-LGR	Quarterly		✓ ✓	Biennial	✓ ✓		✓ ✓		✓ ✓	Annual	Increase sampling frequency due to spatial result
CS-MWH-LUK	Quarterly		v	Biennial	v		Ý	1	v	Biennial	Statistics confirm qualitative evaluation

TABLE 7.1 SUMMARY OF LONG TERM MONITORING OPTIMIZATION EVALUATION OF CURRENT GROUNDWATER MONITORING PROGRAM LONG TERM MONITORING OPTIMIZATION CAMP STANLEY STORAGE ACTIVITY, TEXAS

			Qua	litative Evaluation	Temporal I	Evaluation	Spatial E	valuation		Summary	
Well ID	Current Someling Frequency	Exclude	Retain	Recommended Monitoring Frequency	Exclude/ Reduce	Retain	Exclude	Retain	Exclude Retain	Recommended Monitoring Frequency	Rationale
Off Post Monitoring	Current Sampling Frequency Wells										Kauonaie
DOM-2	Annually		~	Annual	\checkmark		✓		✓	Biennial	Decrease sampling frequency due to statistics results
FO-17	Annually		✓	Annual	Not An	alvzed	√		✓	Biennial	Decrease sampling frequency due to statistics results
FO-22	Annually		✓	Annual		<u></u>		✓	✓	Annual	Statistics confirm qualitative evaluation
FO-8	Annually		✓	Annual	Not An	alvzed		✓	✓	Annual	Spatial statistics confirm qualitative evaluation
FO-J1	Otrly, 1 year thru Mar 05		✓	Annual	✓		✓		✓	Annual	Decrease sampling frequency due to statistics results
HS-2	Otrly, 1 year thru Mar 05		✓	Annual		✓		✓	✓	Annual	Statistics confirm qualitative evaluation
HS-3	Annually		✓	Annual	✓			✓	✓	Annual	Spatial statistics confirm qualitative evaluation
I10-2	Otrly, 1 year thru Jun 05		✓	Annual		✓			✓	Annual	Temporal statistics confirm qualitative evaluation
I10-4	Otrly, 1 year thru Mar 05		✓	Annual		✓		✓	✓	Annual	Statistics confirm qualitative evaluation
I10-5	Annually		✓	Annual	Not An	alyzed		✓	✓	Annual	Spatial statistics confirm qualitative evaluation
I10-7	Annually		✓	Annual	✓				✓	Biennial	Decrease sampling frequency due to statistics results
JW-12	Annually		✓	Annual	Not An	alyzed			✓	Biennial	Decrease sampling frequency due to statistics results
JW-13	Annually		✓	Annual	✓	2	✓		✓	Biennial	Decrease sampling frequency due to statistics results
JW-14	Otrly, 1 year thru Jun 05		✓	Annual		✓	✓		✓	Biennial	Temporal statistics confirm qualitative evaluation
JW-26	Qtrly, 1 year thru Dec 04		✓	Annual		✓			✓	Annual	Temporal statistics confirm qualitative evaluation
JW-27	Annually		✓	Annual	Not An	alyzed	✓		✓	Biennial	Decrease sampling frequency due to statistics results
JW-28	Qtrly, 1 year thru Jun 05		✓	Annual	✓	2			✓	Biennial	Decrease sampling frequency due to statistics results
JW-29	Qtrly, due to location		✓	Annual	\checkmark		✓		✓	Biennial	Decrease sampling frequency due to statistics results
JW-30	Qtrly, 1 year thru Mar 05		✓	Annual		✓	✓		✓	Annual	Temporal statistics confirm qualitative evaluation
JW-6	Annually		✓	Annual	✓		✓		✓	Biennial	Decrease sampling frequency due to statistics results
JW-7	Qtrly, 1 year thru Jun 05		✓	Annual	✓		✓		✓	Annual	Qualitative factor overrides statistic recommendations
JW-8	Qtrly, 1 year thru Mar 05		✓	Annual	✓		✓		✓	Biennial	Decrease sampling frequency due to statistics results
JW-9	Qtrly, 1 year thru Mar 05		✓	Annual	✓		✓		✓	Biennial	Decrease sampling frequency due to statistics results
LS-1	Qtrly, 1 year thru Mar 05		~	Annual	✓			✓	✓	Annual	Spatial statistics confirm qualitative evaluation
LS-2	Qtrly, 1 year thru Jun 05		~	Quarterly	✓				✓	Quarterly	Qualitative factor (GAC well)overrides statistic recommendations
LS-3	Qtrly, 1 year thru Jun 05		✓	Quarterly		\checkmark			✓	Quarterly	Temporal statistics confirm qualitative evaluation
LS-4	Qtrly, 1 year thru Jun 05		~	Annual		\checkmark		✓	✓	Annual	Statistics confirm qualitative evaluation
LS-5	Qtrly, 1 year thru Mar 05		~	Annual	✓		✓		✓	Biennial	Decrease sampling frequency due to statistics results
LS-6	Qtrly, 1 year thru Jun 05		✓	Quarterly		✓			✓	Quarterly	Temporal statistics confirm qualitative evaluation
LS-7	Qtrly, 1 year thru Jun 05		✓	Quarterly		✓	✓		✓	Quarterly	Temporal statistics confirm qualitative evaluation
OFR-1	Qtrly, 1 year thru Jun 05		✓	Annual		✓	✓		✓	Annual	Temporal statistics confirm qualitative evaluation
OFR-2	Qtrly, 1 year thru Jun 05		~	Annual	✓		✓		✓	Biennial	Decrease sampling frequency due to statistics results
OFR-3	Qtrly, 1 year thru Jun 05		~	Quarterly		\checkmark			✓	Quarterly	Temporal statistics confirm qualitative evaluation
OFR-4	Annually		~	Annual	Not An	alyzed	✓		✓	Biennial	Decrease sampling frequency due to statistics results
RFR-10	Qtrly, 1 year thru Jun 05		~	Quarterly		√	✓ 		✓	Quarterly	Temporal statistics confirm qualitative evaluation
RFR-11	Qtrly, 1 year thru Jun 05		~	Quarterly		√	^{d/}		✓	Quarterly	Temporal statistics confirm qualitative evaluation
RFR-12	Qtrly, 1 year thru Jun 05		√	Annual		\checkmark			✓	Annual	Temporal statistics confirm qualitative evaluation
RFR-3	Qtrly, 1 year thru Dec 04		~	Annual	\checkmark				✓	Biennial	Decrease sampling frequency due to statistics results
RFR-4	Annually		✓	Annual	Not An	•		✓	✓		Spatial statistics confirm qualitative evaluation
RFR-5	Annually		✓	Annual	Not An	alyzed		✓	✓		Spatial statistics confirm qualitative evaluation
RFR-6	Annually		✓	Annual	✓			✓	✓ ✓	Biennial	Decrease sampling frequency due to temporal statistics results
RFR-7	Annually		✓	Annual	✓			✓	✓ ✓	Biennial	Decrease sampling frequency due to temporal statistics results
RFR-8	Annually		✓	Annual	✓				✓	Biennial	Decrease sampling frequency due to statistics results
RFR-9	Annually		✓	Annual	√				✓	Biennial	Decrease sampling frequency due to statistics results
WestBay Wells					1		J.				
CS-WB01-LGR-01	Monthly & after rain events		✓ ✓	Semi-annual	√		↓ ↓		✓ ✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB01-LGR-02	Monthly & after rain events		✓ ✓	Semi-annual	√		¥		✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB01-LGR-03	Monthly & after rain events		✓ ✓	Semi-annual		\checkmark	 		✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB01-LGR-04	Monthly & after rain events		✓ ✓	Semi-annual	✓ ✓		¥		✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB01-LGR-05	Monthly & after rain events		✓ ✓	Semi-annual	✓ ✓		¥		✓ ✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB01-LGR-06	Monthly & after rain events	I	\checkmark	Semi-annual	*		•		\checkmark	Semi-Annual	Qualitative factor overrides statistic recommendations

TABLE 7.1 SUMMARY OF LONG TERM MONITORING OPTIMIZATION EVALUATION OF CURRENT GROUNDWATER MONITORING PROGRAM LONG TERM MONITORING OPTIMIZATION CAMP STANLEY STORAGE ACTIVITY, TEXAS

			Qua	litative Evaluation	Temporal E	Evaluation	Spatial E	valuation			Summary	
Well ID	Current Someling Frequency	Exclude	Retain	Recommended Monitoring Frequency	Exclude/ Reduce	Retain	Exclude	Retain	Exclude	Retain	Recommended Monitoring Frequency	Rationale
CS-WB01-LGR-07	Current Sampling Frequency Monthly & after rain events		✓	Semi-annual		√	¥			✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB01-LGR-07	Monthly & after rain events		✓ ✓	Semi-annual	 ✓ 	v	<u>т</u>			✓ ✓	Semi-Annual	Oualitative factor overrides statistic recommendations
CS-WB01-LGR-09	Monthly & after rain events		✓ ✓	Semi-annual	•					▼ ✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB01-LGR-09 CS-WB01-UGR-01	Monthly & after rain events		• ✓	Semi-annual	Not Ana	• alward				✓ ✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-WB01-UGR-01	Monthly & after rain events		✓ ✓	Semi-annual	Not Alla	aryzeu		► →		✓ ✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB02-LGR-01	Monthly & after rain events		✓ ✓	Semi-annual		•		7		✓ ✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB02-LGR-02	Monthly & after rain events		✓ ✓	Semi-annual		 ✓				✓ ✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB02-LGR-04	,		✓ ✓	Semi-annual	✓	•	 ↓			✓ ✓	Semi-Annual	Oualitative factor overrides statistic recommendations
CS-WB02-LGR-04 CS-WB02-LGR-05	Monthly & after rain events Monthly & after rain events		✓ ✓	Semi-annual	▼ ✓		↓ ↓			▼ ✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB02-LGR-05			✓ ✓	Semi-annual	▼ ✓		↓	 >		✓ ✓	Semi-Annual	
	Monthly & after rain events		v √		✓ ✓		↓ ↓	→		✓ ✓		Qualitative factor overrides statistic recommendations
CS-WB02-LGR-07	Monthly & after rain events		✓ ✓	Semi-annual	✓ ✓		↓ ↓	→		✓ ✓	Semi-Annual Semi-Annual	Qualitative factor overrides statistic recommendations Oualitative factor overrides statistic recommendations
CS-WB02-LGR-08	Monthly & after rain events		✓ ✓	Semi-annual	✓ ✓		•	→ ↓→		✓ ✓		
CS-WB02-LGR-09	Monthly & after rain events		✓ ✓	Semi-annual	•			 ↓→			Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-WB02-UGR-01	Monthly & after rain events		✓ ✓	Semi-annual	Not Ana	2				 ✓ 	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-WB03-LGR-01	Monthly & after rain events		•	Semi-annual	Not Ana	2				 ✓ 	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB03-LGR-02	Monthly & after rain events		 ✓ 	Semi-annual	Not Ana					 ✓ 	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB03-LGR-03	Monthly & after rain events		~	Semi-annual		✓				✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB03-LGR-04	Monthly & after rain events		✓	Semi-annual		✓				✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB03-LGR-05	Monthly & after rain events		√	Semi-annual		\checkmark		↓		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB03-LGR-06	Monthly & after rain events		~	Semi-annual		✓		→		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB03-LGR-07	Monthly & after rain events		√	Semi-annual		√		¥		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB03-LGR-08	Monthly & after rain events		✓	Semi-annual		✓				✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB03-LGR-09	Monthly & after rain events		~	Semi-annual		✓		→		✓	Semi-Annual	Statistics confirm qualitative evaluation
CS-WB03-UGR-01	Monthly & after rain events		✓	Semi-annual		~	$\mathbf{+}$			✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB04-BS-01	Monthly & after rain events		✓	Biennial	✓		→			✓	Biennial	Statistics confirm qualitative evaluation
CS-WB04-BS-02	Monthly & after rain events		~	Biennial	✓		→			✓	Biennial	Statistics confirm qualitative evaluation
CS-WB04-CC-01	Monthly & after rain events		~	Biennial	✓		→			✓	Biennial	Statistics confirm qualitative evaluation
CS-WB04-CC-02	Monthly & after rain events		~	Biennial	✓		→			✓	Biennial	Statistics confirm qualitative evaluation
CS-WB04-CC-03	Monthly & after rain events		~	Biennial	✓					✓	Biennial	Statistics confirm qualitative evaluation
CS-WB04-LGR-01	Monthly & after rain events		~	Semi-annual	✓					✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-02	Monthly & after rain events		~	Semi-annual	~		→			✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-03	Monthly & after rain events		✓	Semi-annual	~					✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-04	Monthly & after rain events		✓	Semi-annual	✓			→		✓	Semi-Annual	Spatial statistics confirm qualitative evaluation
CS-WB04-LGR-06	Monthly & after rain events		√	Semi-annual	~					✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-07	Monthly & after rain events		✓	Semi-annual	✓					✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-08	Monthly & after rain events		✓	Semi-annual	✓		→			~	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-LGR-09	Monthly & after rain events		✓	Semi-annual		\checkmark	→			~	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB04-LGR-10	Monthly & after rain events		√	Semi-annual		✓	→			✓	Semi-Annual	Temporal statistics confirm qualitative evaluation
CS-WB04-LGR-11	Monthly & after rain events		√	Semi-annual	✓		→			✓	Semi-Annual	Qualitative factor overrides statistic recommendations
CS-WB04-UGR-01	Monthly & after rain events		√	Semi-annual	Not Ana	alyzed		→		✓	Semi-Annual	Spatial statistics confirm qualitative evaluation

^{a'} Spatial recommendation result from North to South vertical cross section analysis that do not impact LGR zone well summary evaluation results ^{b'} Well in the "intermediate" range; received no recommendation for removal/exclusion or retention/addition in spatial evaluation ^{c'} Spatial recommendation result from West to East vertical cross section analysis that do not impact LGR zone well summary evaluation results

Drilling Location	Date Installed	Rationale
<u>Supply Wells</u> (CS-1, CS-9, CS-10, CS-11)	March 1940 – September 1958	 All production wells to supply CSSA with potable water, and are open-hole completions fully penetrating throughout the thickness of the Middle Trinity aquifer. CS-1 is located on Camp Bullis, but is operated and maintained by CSSA. Used as supplemental groundwater production by direct entry into the distribution system. Wells CS-9, CS-10, CS-11 are part of wellfield that are located in conjunction with the storage reservoir. CS-10 is the primary purveyor of groundwater for CSSA. CS-9 is generally inactive. CS-11 is no longer used due to coliform contamination.
<u>Agricultural Wells</u> (CS-1, CS-2, CS-3, CS-4, CS-D, CS-G, CS-H, CS-I	Dates Unknown (except CS-I in April 1979)	 Old agricultural and supply wells that generally produce groundwater from the Lower Glen Rose. Most were formerly equipped with windmills or motorized pump jacks. With exception of CS-I, all are inactive except for groundwater monitoring. CS-H was obstructed, and has been replaced by CS-MWH-LGR (see below).
<u>CS-MW1 Cluster</u> (CS-MW1-LGR, CS-MW1-BS, CS-MW1-CC)	July 2002 November 2002 December 2002	 Monitors for southward flow components within Plume 1 and the fault zone. Helps evaluate the effects of topographic expression on the water table and local recharge. Determine if contamination detected in LGR groundwater at this location has migrated downward to the Bexar Shale and Cow Creek Limestone. Fills in spatial data gap in central portion of CSSA. CS-MW1 was installed in 1996 as an open borehole completion for preliminary investigation of the well CS-16 and CS-D VOC detections. This well was upgraded to a screen completion (CS-MW1-LGR) in July 2002.
<u>CS-MW2-Pair</u> (CS-MW-2-LGR CS-MW2-CC)	July 2002 March 2003	 Fills data gap regarding Cow Creek in the eastern portion of the Inner Cantonment. Monitors for eastward flow of Plume 1 contaminants beyond the fault zone. Determine if contamination detected in LGR groundwater at this location has migrated downward to the Bexar Shale and Cow Creek Limestone. Helps evaluate effects of topographic expression on the water table and local recharge. CS-MW2 was installed in 1996 for preliminary investigation of the well CS-16 and CS-D VOC detections. This well was upgraded to a screen completion (CS-MW2-LGR) in July 2002.
CS-MW3-LGR	February 2001	 Monitors for eastward flow components within Plume 1 and the fault zone. Helps evaluate the effects of topographic expression on the water table and local recharge. Fills in spatial data gap in eastern portion of CSSA.
CS-MW4-LGR	February 2001	 Serves as a downgradient LGR well to Plume 1 outside the fault zone. Helps measure effects (if any) that Salado Creek may have on localized groundwater system.
CS-MW5 LGR	February 2001	> Fills data gap regarding subsurface in the eastern portion of the inner

Appendix F List of all CSSA Groundwater Monitoring Program On-Post Well Locations and the Rationale for Installation

Drilling Location	Date Installed	Rationale
<u>CS-MW6-Cluster</u> (CS-MW6-LGR, CS-MW6-BS, CS-MW6-CC)	March 2001 - April 2001	 cantonment area. Monitors for eastward flow of Plume 1 contaminants within the fault zone. Helps evaluate effects of topographic expression on the water table and local recharge. Fills in spatial data gap in eastern portion of CSSA. Provides data for areas upgradient of Building 90 (AOC 65). Provides information regarding BS and CC Limestone in the vicinity of the Plume 2 area.
<u>CS-MW7-Pair</u> (CS-MW7-LGR, CS-MW7-CC)	June 2001 - July 2001	 Monitors groundwater impacts in the most industrialized portion of CSSA (Plume 2). Provides information for area downgradient (based on historical potentiometric maps) of Building 90 during periods of normal groundwater levels.
<u>CS-MW8-Pair</u> (CS-MW8-LGR, CS-MW8-CC)	May 2001 - June 2001	 Monitors groundwater impacts in the most industrialized portion of CSSA (Plume 2). Provides information for area downgradient (based on historical potentiometric maps) of Building 90 during periods of low (drought condition) groundwater levels.
<u>CS-MW9-Cluster</u> (CS-MW9-LGR, CS-MW9-BS, CS-MW9-CC)	November 2000 - January 2001	 Provides background condition data, upgradient of Wells CS-16 and CS-D and fault zone. Provides a sentry well between Plume 1 and nearest Fair Oaks municipal production well. Provides information regarding BS and CC Limestone north of inner cantonment area.
<u>CS-MW10-Pair</u> (CS-MW10-LGR, CS-MW10-CC)	September 2001	 Provides data in vicinity of former well CS-6, which had 1.5 ppb PCE in May 1994. Also within 500 feet of impacted off-post wells at Leon Springs Villa and Curres Creek Road. Monitors groundwater impacts in the most industrialized portion of CSSA. Helps spatially distribute data for future modeling efforts. Provides data for area proximal to mapped fault zone.
<u>CS-MW11 Cluster</u> CS-MW11A-LGR CS-MW11B-LGR	April 2003	 Provides data for area east of Building 90 (AOC-65) and provide detection monitoring for public supply wells along southern post boundary. Investigate hydrologic properties of large, transmissive fault system encountered at this location (MW11B-LGR).
CS-MW12 Cluster (CS-MW12-LGR CS-MW12-BS CS-MW12-CC)	September 2002 - October 2002	Serves as a monitoring point down-gradient of Plume 1, within the fault zone, and between the source area and CSSA drinking water supply wells.
<u>CS-16 Cluster</u> CS-16-LGR CS-MW16-CC	July 2002 June 2003	 CS-16 is a former supply well that was re-fitted as a monitoring well (CS-16-LGR) in July 2002. The BS and CC portions of the former supply well were plugged with cement to eliminate downward cross contamination between the LGR and CC portions of the Middle Trinity aquifer. Monitors Cow Creek major water-bearing zone adjacent to the alleged Plume 1 source area. Determine if contamination detected in LGR groundwater at this location has migrated downward to the Bexar Shale and Cow Creek Limestone.

Drilling Location	Date Installed	Rationale
CS-MW17-LGR CS-MW18-LGR CS-MW19-LGR	July 2002 - August 2002	 CS-MW17-LGR installed for detection of Plume contaminants between source area and public supply well CS-1. CS-MW18-LGR and MW19-LGR monitors LGR groundwater downgradient of Plume 1 in central sections of CSSA.
CS-WB01-LGR CS-WB02-LGR CS-WB03-LGR	July 2003 - August 2003	 Multi-port wells to provide information on UGR and LGR in AOC-65 area. Monitor subsurface throughout possible Plume 2 migration pathways. Provide continuous detailed profile analysis of hydrologic and contaminant properties near Plume 2 source area.
CS-WB04	July 2003 - August 2003	 Provides off-post data near impacted off-post private wells and near faults thought to affect the advance of Plume 2. Helps spatially distribute data for future modeling efforts.
CS-WB05 CS-WB06-LGR CS-WB07-LGR CS-WB08-LGR	July 2005 - November 2005	 These multi-port wells are used to support ongoing remedial activities at SWMU B-3. Provide information on UGR and LGR in SWMU B-3 area. WB05 is also completed through the BS and CC portions of the Middle Trinity aquifer in support of pumping and tracer testing being conducted as part of the remedial effort. Monitor subsurface throughout possible Plume 1 migration pathways from the source area. Provide continuous detailed profile analysis of hydrologic and contaminant properties near Plume 1 source area.
CS-MWG-LGR CS-MWH-LGR	June 2002 September 2002	 Monitor LGR in northern portion of CSSA, up-gradient of affected areas. Monitor LGR for potential contaminants entering CSSA from the north. CS-G is an existing agricultural/livestock well (see above) re-fitted with a new surface completion in June 2002. Re-designated as CS-MWG-LGR, the well is an open borehole completion through most of the LGR. CS-MWH-LGR is a replacement well for former well CS-H (see above). Provides a remote water supply well for livestock, wild game, and fire protection. Also used for groundwater monitoring.
CS-MW25-LGR	May 2006	 Monitor the north-northeast margin of PCE/TCE/DCE concentrations detected around the CS-MW16 well location. This location is proximal to SWMU B-8 and AOC 41 Provide additional data for characterization of the plume midpoint between MW4-LGR and CS-1 and to further define the shape of Plume 1.
CS-MW24-LGR	May 2006	 Monitor the westward movement of Plume 1. Historical results indicate that Plume 1 may have a significant westward component. Concentrations in CS-D have increased while concentrations at MW16 have decreased. Provide additional characterization data for the area of the plume which exceeds the MCLs toward Ralph Fair Road.
CS-MW20-LGR CS-MW21-LGR	May 2006	 Provide additional data to characterize the gap between MW19-LGR, MW4-LGR, MW17-LGR, and CS-1. Monitor to understand and delineate the groundwater elevation mounding at MW4-LGR. Monitor to further define the shape of Plume 1. Monitor CS-MW21-LGR to determine the significance of Salado Creek as a conduit and determine if subsurface karst development has occurred in conjunction with Salado Creek.

Drilling Location	Date Installed	Rationale
	N 2006	 Monitor to further define the shape of Plume 1. Manitor for a differentia formation for any direction data.
CS-MW22-LGR	May 2006	 Monitor for additional information for groundwater elevation data. Monitor to study a large throw fault extending across southern CSSA.
CS-MW23-LGR	May 2006	Monitor to delineate upgradient VOCs near AOC-65, to support that no other VOC contamination source is present.
	February 2009	A production well to supply CSSA with potable water, and is an open-hole completions fully penetrating throughout the thickness of the Middle Trinity aquifer.
CS-12		Well CS-12 will help alleviate the workload of wells CS-10 and CS-1 which provide CSSA with potable drinking water. It will replace the production of CS-9 and CS-11 which have been take offline for various reasons.
		CS-9 is generally inactive. CS-11 is no longer used due to coliform contamination.