FINAL WELL INSTALLATION REPORT

Prepared for:

Camp Stanley Storage Activity Boerne, Texas

September 2011

TABLE OF CONTENTS

SECTIO	ON 1 Introduction	1-1
1.1	Purpose	1-1
1.2	Overview	1-1
1.3	Objectives of Investigation	1-3
1.4	Report Organization	1-3
SECTIO	ON 2 Lower Glen Rose Formation Well Installation	2-1
2.1	Determination of Well Locations	2-1
2.2	Drilling Narrative	2-1
	2.2.1 CS-MW35-LGR	
	2.2.2 CS-MW36-LGR	
2.3	Geophysical Logging	
2.4	Discrete Interval Groundwater Sampling	
2.5	Well Construction	
2.6	Well Development	2-7
2.7	Waste Disposition	2-8
SECTIO	ON 3 AOC-65 Well Installation	3-1
3.1	Determination of Well Locations	3-1
3.2	Drilling Narrative	3-1
	3.2.1 Steam Injection Wells	3-2
	3.2.2 Vapor Extraction Wells	3-3
3.3	Geophysical Logging	3-3
3.4	Well Construction	
	3.4.1 Steam Injection Wells	
	3.4.2 Vapor Extraction Wells	
3.5	Sampling Results	
SECTIO	ON 4 SWMU B-3 Well Installation	4-1
4.1	Determination of Well Locations	4-1
4.2	Drilling and Geophysical Logging	
	4.2.1 B3-EXW03-LGR	
	4.2.2 B3-EXW04-LGR	
4.3	Well Construction	
4.4	Pumping Tests	
4.5	Sampling Results	4-5
SECTIO	ON 5 USGS Well Logging Services	5-1
5.1	Borehole Geophysics	5-1
SECTIO	ON 6 CS-1 Pump Replacement	6-1

6.1	Field Narrative	6-1
6.2	Geophysical Logging	6-2
6.3	Equipment Replacement	6-2
SECTION	N 7 CS-WB07 Repair	7-3
7.1	Background	
7.2	CS-WB07 Removal/Recovery	
7.3	CS-WB07 Replacement	
	LIST OF FIGURES	
Figure 1.1	New and Rehabilitated Wells Surveyed Locations	1-2
Figure 2.1	Newly Installed Wells, AOC-65 Area	
Figure 3.1	Typical Steam Injection Well Design	
Figure 3.2	2011 VEW System Expansion	
Figure 3.3	Typical Vapor Extraction Well Design	
Figure 3.4	Typical Vapor Extraction Well Head Design	
Figure 4.1 Figure 5.1	New and Rehabilitated Wells, B-3 Area CSSA Wells Surveyed by USGS in 2011	
	LIST OF TABLES	
Table 2.1	Discrete Interval Groundwater Samples March and April 2011	2-5
Table 2.2	Summary of LGR Wells Analytical Results	2-5
Table 2.3	Well Development Stabilization Parameters	2-8
Table 2.4	Summary of LGR Well Construction	2-9
Table 3.1	Summary of SIW Drilling	3-3
Table 3.2	Summary of VEW Drilling	
Table 3.3	Summary of SIW and VEW Well Construction	3-4
Table 3.4	Summary of AOC-SIW01 Sampling	
Table 4.1	Summary of EXW Well Construction	
	APPENDICES	
Appendix	A State of Texas Well Reports	
Appendix	-	
Appendix		
Appendix	* *	
11	\mathcal{L}	

ACRONYMS AND ABBREVIATIONS

μg/L	micrograms per liter			
3D	three-dimensional			
AOC	Area of Concern			
bgs	below ground surface			
BS	Bexar Shale			
cis-1,2-DCE	cis-1,2-dichloroethene			
CSSA	Camp Stanley Storage Activity			
DIGW	discrete interval groundwater			
e. coli	Escherichia coli			
EDN	Earth Data Northeast, Inc.			
EE	Environmental Encyclopedia			
EXW	extraction well			
GPI	GeoProjects International, Inc.			
gpm	gallons per minute			
hp	horsepower			
IDM	investigation-derived media			
LGR	Lower Glen Rose			
MCL	maximum contaminant level			
mg/kg	milligrams per kilogram			
MW	monitoring well			
NSF	National Sanitation Foundation			
NTU	nephelometric turbidity units			
PCE	tetrachloroethene			
PCL	protective concentration level			
PID	photoionization detector			
ppm	parts per million			
PVC	polyvinyl chloride			
QA	quality assurance			
QAPP	Quality Assurance Project Plan			
QC	quality control			
SAP	Sampling and Analysis Plan			
SIW	steam injection well			
SVE	soil vapor extraction			
SWMU	Solid Waste Management Unit			
SWS	Schlumberger Water Services			
TCE	trichloroethylene			

TCEQ	Texas Commission on Environmental Quality
TRRP	Texas Risk Reduction Program
TVH	total volatile hydrocarbon
UGR	Upper Glen Rose
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
VEW	vapor extraction well
VOC	volatile organic compound
WBS	Work Breakdown Structure

EXECUTIVE SUMMARY

This report provides a summary and evaluation of drilling activities at Camp Stanley Storage Activity (CSSA) between March and July 2011. These drilling activities were conducted in support of CSSA's groundwater investigation and treatability studies at Solid Waste Management Unit (SWMU) B-3 and Area of Concern (AOC)-65. Parsons installed 11 new wells and rehabilitated two wells. In addition, ten wells were geophysically logged by the United States Geological Survey (USGS). The types and purposes of the 11 new wells ranged significantly, and included:

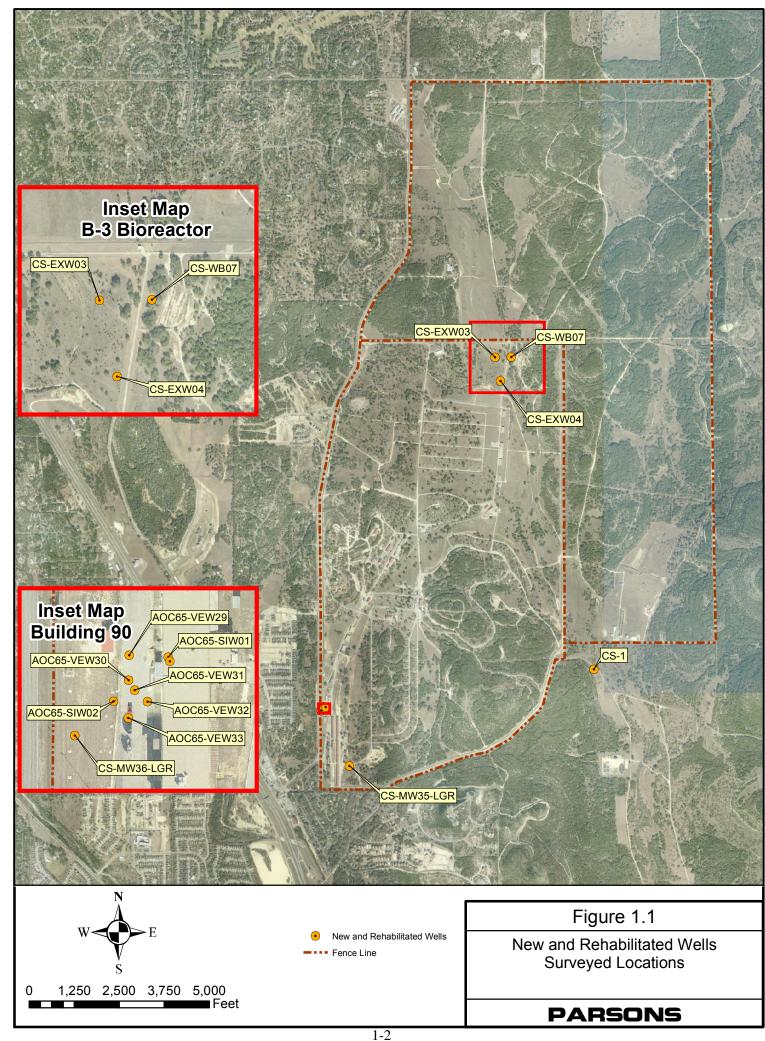
- Two deep (385 and 440 feet deep) wells installed to aid in the horizontal and vertical delineation of solvent contamination within the Lower Glen Rose Formation (LGR);
- Seven shallower (between 28 and 44 feet deep) wells installed to support the treatability study at AOC-65; and
- Two LGR (335 and 350 feet deep) extraction wells drilled to support the bioreactor treatability study at SWMU B-3.

The well rehabilitations included replacing a damaged multi-port Westbay^{$^{\text{TM}}$} well at SWMU B-3 and installing a new pump at a CSSA supply well CS-1. This report describes the field methods, results, and conclusions associated with the monitoring well installation and rehabilitation activities.

SECTION 1 INTRODUCTION

1.1 PURPOSE

This report provides a summary and evaluation of drilling activities at Camp Stanley Storage Activity (CSSA) between March and July 2011. These drilling activities were conducted in support of CSSA's groundwater investigation and treatability studies at Solid Waste Management Unit (SWMU) B-3 and Area of Concern (AOC)-65. Parsons installed 11 new wells and rehabilitated two wells, at locations shown in **Figure 1.1**. In addition, ten wells were geophysically logged by the United States Geological Survey (USGS). The types and purposes of the 11 new wells ranged significantly, and included:


- Two deep (385 and 440 feet deep) wells installed to aid in the horizontal and vertical delineation of solvent contamination within the Lower Glen Rose Formation (LGR);
- Seven shallower (between 28 and 44 feet deep) wells installed to support the treatability study at AOC-65; and
- Two LGR (335 and 350 feet deep) extraction wells drilled to support the bioreactor treatability study at SWMU B-3.

The well rehabilitations included replacing a damaged multi-port WestbayTM well at SWMU B-3 and installing a new pump at a CSSA supply well CS-1. This report describes the field methods, results, and conclusions associated with the monitoring well installation and rehabilitation activities.

1.2 OVERVIEW

This report summarizes work associated with installation of the new monitoring wells at CSSA, and presents limited interpretation of data collected during installation, as well as preliminary analytical results from groundwater samples. Further analysis and detailed interpretation of the analytical data collected will be incorporated in update reports associated with the *Quarterly Groundwater Monitoring Program* (CSSA Environmental Encyclopedia, Volume 5: Groundwater), and the *Annual Performance Reports for the AOC-65 and SWMU B-3 Remediation Systems* (CSSA Environmental Encyclopedia, Volumes 3.1 and 3.2: Investigation and Closure Reports). The entire CSSA groundwater program has been overseen by the U.S. Environmental Protection Agency (USEPA) and Texas Commission on Environmental Quality (TCEQ) since October 1993.

A chronology of work conducted in association with the CSSA groundwater investigation is provided in Volume 1.1 of the Environmental Encyclopedia (EE) online at http://www.stanley.army.mil/. Detailed reviews of the regulatory basis for investigation, historical groundwater monitoring, and previous monitoring well installation reports, as well as specific construction and logging methods, decontamination procedures, and investigation-derived media (IDM) management procedures are contained in Volume 4.1 of the EE.

1.3 OBJECTIVES OF INVESTIGATION

The objective of the investigation was to provide sources of additional data for determining the extent of groundwater contamination in the aquifer at CSSA, and to support active treatability studies at AOC-65 and SWMU B-3. The well installation efforts included the following specific objectives:

- 1. Install two 4-inch-diameter monitoring wells (MWs) in the LGR portion of the aquifer. Collect up to four discrete groundwater samples from selected hydrologic zones at each well borehole. Analyze samples for volatile organic compounds (VOCs).
- 2. Install two, 8-inch-diameter open borehole steam injection wells (SIWs) at AOC-65, and install steam delivery systems.
- 3. Install five, 4-inch-diameter vapor extraction wells (VEWs) at AOC-65.
- 4. Install two, 8-inch-diameter open borehole extraction wells (EXWs) with submersible pumps at SWMU B-3.
- 5. Replace damaged Westbay well B3-WB07 with new equipment.
- 6. Replace submersible pump at supply well CS-1.
- 7. Perform geophysical and/or video inspection surveys in each well.
- 8. Survey new monitoring well locations.
- 9. Provide logistical support to USGS for geophysical surveys at six on-post well locations and four off-post locations.
- 10. Manage IDM and construction debris.
- 11. Prepare a well installation report.

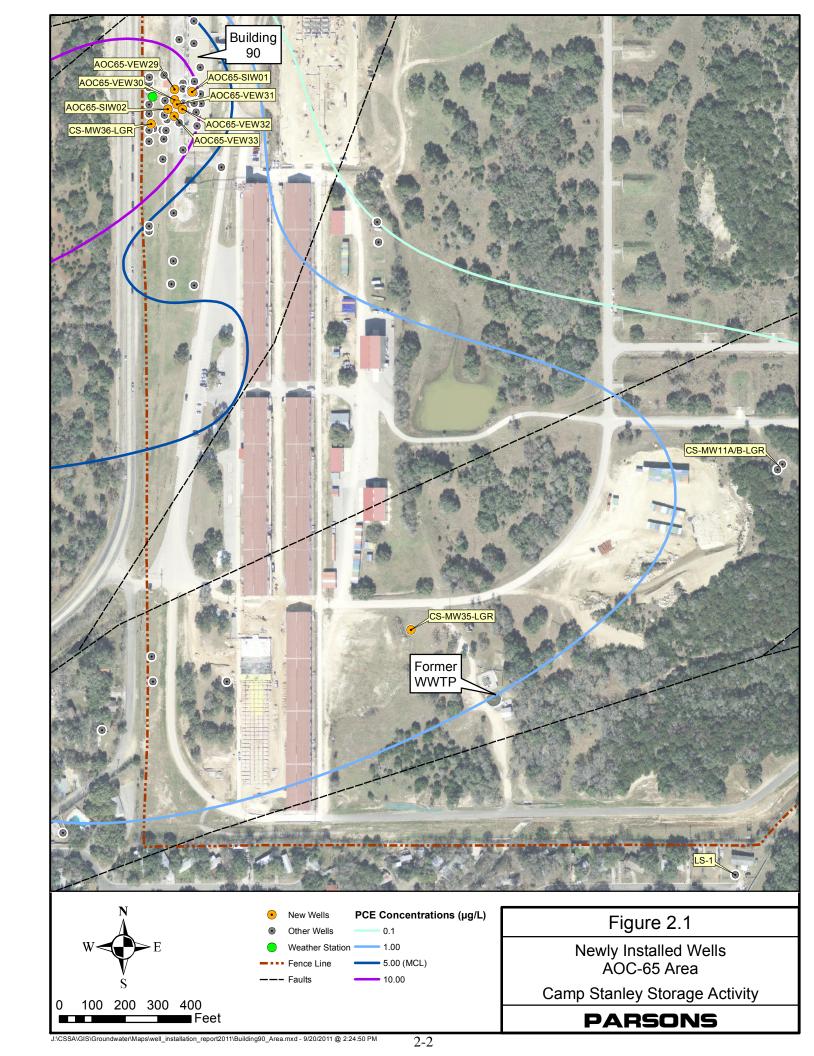
1.4 REPORT ORGANIZATION

This report consists of seven sections. Section 1 presents an overview, including the project purpose, and objectives of the well installation work accomplished under contract. Section 2 provides narrative on the installation of two LGR monitoring wells used for groundwater plume detection and long-term monitoring. This includes discussion of the drilling activities, geophysical logging, discrete interval sampling, monitoring well construction, surface completions, and well development. Section 3 describes the installation of two steam injection wells and five vapor extraction wells at the AOC-65 soil vapor extraction (SVE) system. Section 4 details the installation and equipping of two open-hole groundwater extraction wells to be incorporated into the SWMU B-3 bioreactor system. Narratives for this effort include well construction methods, geophysical logging activities, pumping tests, equipment installation, and sampling results. Section 5 documents the USGS logging effort commissioned by CSSA under separate contract, and logistically supported by Parsons under this project. Interpretive results of this effort are being incorporated into a postwide visualization model by the USGS. The physical results of the USGS well inspections are included for completeness and documentation purposes only. Parsons assisted with the emergency rehabilitation of water supply well CS-1, and those activities are presented in Section 6. Finally, the inspection and replacement of damaged Westbay well B3-WB07 is presented Section 7. Supporting data and electronic data DVDs are included in the appendices.

SECTION 2 LOWER GLEN ROSE FORMATION WELL INSTALLATION

2.1 DETERMINATION OF WELL LOCATIONS

An LGR well was drilled and installed at each of two locations within the CSSA facility, one on the west side of AOC-65 (CS-MW36-LGR) and one south, southeast of AOC-65 (CS-MW35-LGR). The well locations, shown on **Figure 1.1**, were chosen to aid in the delineation of VOC contamination within the primary drinking water aquifer for CSSA and the surrounding communities, and may support future activities such as tracer testing to determine groundwater flowpaths and velocities.


Well CS-MW35-LGR was drilled east of the warehouse section, and southeast of AOC-65 (Building 90), shown in **Figure 2.1**. The well is located approximately 250 feet northeast of the former CSSA Wastewater Treatment Plant (WWTP). This site had been selected to fill in data gaps between areas of groundwater contamination known to be above the maximum contaminant level (MCL) thresholds for tetrachloroethene (PCE) and trichloroethene (TCE), and the CSSA southern boundary, where contaminant concentrations are increasing at off-post well LS-1. The well is also located in the vicinity of significant structural features (faulting) mapped by the USGS, and confirmed by previous drilling at the CS-MW11 well cluster location.

Well CS-MW36-LGR was drilled west of Building 90, in the vicinity of the AOC-65 Weather Station. The intent of this well is to monitor the LGR production zone within the aquifer during the steam injection treatability study, as well as to monitor the VOC levels in the vicinity of AOC-65. This well will be routinely monitored for changes in condition or contaminant characteristics or concentrations during the study.

2.2 DRILLING NARRATIVE

Monitoring well installation at each location began with establishment of a safety and quality assurance/quality control (QA/QC) exclusion zone created around the drilling rig and work area. The size of each exclusion zone depended on the well location and anticipated volume of water and cuttings that might be produced. A containment area consisting of 2 feet by 10 feet wood planks and heavy gauge plastic sheeting was constructed to surround the wellhead and the drilling table to capture drilling fluids and solid cuttings.

Each well was drilled using air rotary methods in accordance with the Sampling and Analysis Plan (SAP). The subcontractor for drilling operations was GeoProjects International, Inc. (GPI). Non-chlorinated water used for fluid injection during drilling was obtained from CSSA water supply well CS-10. Drilling through the dry portions of the limestone formation requires small amounts of injected water for lubrication, cooling, and to assist in lifting the drill cuttings out of the hole.

Boreholes were drilled with a $7^{-7}/_{8}$ inch diameter tri-cone roller bit to their total depths. Drilling depth was based on direct observations of cuttings and geophysical logs from previously drilled wells were used to estimate total depth of each new well. Continuous observation of cuttings was performed to provide indication of unusual or unexpected changes in rock characteristics. The boreholes were intended to penetrate several feet into the top of the underlying Bexar Shale (BS) to accommodate logging of the entire thickness of the LGR.

A "TOTCO" single shot declination tool was used during drilling after every 50 feet of borehole advancement to check borehole plumbness. Borehole declination did not deviate more than 2 degrees from true vertical. A summary of results for the declination surveys is included in **Appendix C**.

For safety purposes, air at active wellheads was periodically screened by photoionization detector (PID) to monitor for the presence of VOCs. Water, soil, and cuttings generated during well construction were characterized by laboratory analysis prior to final disposition. IDM generated during drilling and development included solids and liquids.

2.2.1 CS-MW35-LGR

The borehole drilling for well CS-MW35-LGR began March 14, 2011 and the total depth of 440 feet below ground surface (bgs) was reached on March 21, 2011. The lithology was monitored and logged by observing the rock cuttings collected at predetermined drilling intervals or when suspected changes occurred as noted by the driller. The well penetrates approximately 107 feet of Upper Glen Rose (UGR) and 325 feet of LGR, making contact with the Bexar Shale at 432 feet below grade. Well construction was completed April 14, 2011 and an aboveground locking well cover was added for the surface completion (**Photo 2.1**). Additional well construction details are provided in Section 2.5.

2.2.2 CS-MW36-LGR

The borehole drilling for well CS-MW36-LGR began March 23, 2011 and the total depth of 385 feet bgs was reached on March 30, 2011 (**Photo 2.2**). Like CS-MW35-LGR, the lithology was logged by rock cuttings. The well penetrates approximately 43 feet of UGR and 328 feet of LGR, making contact with the Bexar Shale at 371 below grade. Well construction was completed April 15, 2011 and a flush mount locking well cover was added for the surface completion. Additional well construction details are provided in Section 2.5.

2.3 GEOPHYSICAL LOGGING

Geophysical logs are useful for identifying fractures and other geologic features that might intersect the boreholes. These characteristics aid evaluations of lithologic and hydraulic correlation between wells and the correlation of the lithology in these wells with transmissive zones across CSSA. Geophysical logging of the well boreholes was performed by the USGS between May and June 2011 and is described in Section 5 of this report.

Photo 2.1 – Installation of CS-MW35-LGR.

Photo 2.2 – Installation of CS-MW36-LGR.

2.4 DISCRETE INTERVAL GROUNDWATER SAMPLING

Analytical data provide information for plume delineation and potential migration pathways for groundwater contamination. Discrete intervals were selected based on interpretation of the geologic and geophysical logs. Samples were collected to gather groundwater data from saturated, permeable zones in the local LGR, and to determine differences in vertical contamination, if present. Yield of these zones is dependent on many factors, such as porosity, permeability, and transmissivity. Other major factors affecting sample collection are seasonal effects on groundwater levels. Some zones that could be easily sampled during wet seasons may be dry during the summer and fall months. The operation of the GPI straddle packer system was the same as previous sampling efforts (see *RL83* and *TO42 Well Installation Reports* and *Sampling Plans* in the CSSA *Encyclopedia*, *Volume 5*).

Each sampling interval was purged of three volumes of water prior to sample collection. Occasionally, low yielding zones and/or turbidity problems caused samples to be collected before the normal purging quantity and quality standards were satisfied. In some instances, purging was carried out over an extended period of time for critically located intervals with poor yield. In those cases, a sample was collected after alternate periods of pumping and recovery. The data generated by discrete interval groundwater (DIGW) sampling is considered screening data and is not for compliance purposes. Some sampling prerequisites of the *CSSA Quality Assurance Project Plan* (QAPP) (*Volume 1-4.1*, *Encyclopedia*) such as field-parameter stabilization were bypassed for DIGW samples sample intervals with low yield (see Table 2.1 for volumes purged).

The DIGW samples were collected in 7-7/8-inch diameter boreholes utilizing a dual packer apparatus with an open interval of 12 feet. The system was raised and lowered in the borehole by the drilling rig and the isolation packers were inflated by compressed nitrogen gas. A 1.5 horsepower (hp) pump was installed between the packers on a 1.25-inch diameter pipe string. The packer systems were assembled, maintained, and operated by GPI. Parsons project geologists selected the intervals, collected the samples, and supervised the effort. Table 2.1 summarizes the data collected at each selected zone during groundwater sampling. Analytical results of the groundwater samples show PCE and toluene detections, and in some intervals at levels above the reporting limits, in all three samples collected in CS-MW35-LGR (Table 2.2). Due to the exceptional drought conditions, groundwater samples were only collected from two intervals in well CS-MW36-LGR although four intervals were isolated in an attempt to obtain samples. During the video survey, perched water was observed entering the borehole at 120 feet bgs at several gallons per minute (gpm), which was unexpected considering the drought A groundwater sample was collected from that interval. The presence of chloroform and chloromethane may be indicative of a potable waterline leak. Both samples showed reportable levels of PCE and TCE and detections of cis-1,2-dichloroethene (cis-1,2-DCE), chloroform, and chloromethane. A complete list of all analytical results for the DIGW sampling is shown in **Appendix E**.

Table 2.1 Discrete Interval Groundwater Samples March and April 2011

Well ID	Date	Sampled	12-foot Interval Depth	Rock Unit	Interval Volume	Interval Volumes Purged	Total Purged	Average Purging Rate	Pumping Duration
		(Y/N)	(ft bgs)	Formation	(gal)		(gal)	(gpm)	(minutes)
CS-	3/31/2011	Y	259-271	LGR	31.9	0	25	1.0	25
MW35-	4/1/2011	Y	374-386	LGR	31.9	8.15	260	2.9	90
LGR	4/1/2011	Y	414-426	LGR	31.9	6.6	210	7	30
	4/8/2011	Y	320-332	LGR	31.9	10.3	330	8.3	40
CS-	4/8/2011	N	294-306	LGR	31.9	0	14	1	15
MW36- LGR	4/8/2011	N	270-282	LGR	31.9	0	1	0.5	120
Lok	4/11/2011	Y	0-142	UGR	71.8 ^a	2.5	181	9	20

 $a = Top \ packer \ disabled$, water level at 115 bgs after 48 hours of recharge with bottom packer set.

Table 2.2 Summary of LGR Wells Analytical Results

Well ID	Sample Interval	Date	Chlorofo	orm	Chlorometha	ane	cis-1,2 Dichloroet		PCI	E	Tolue	ne	TCF	£
110	ft bgs		μg/L	,	μg/L		μg/L		μg/l	Ĺ	μg/I	١. ١	μg/L	_
CS-	259-271	3/31/2011	0.060	U	0.16	U	0.070	U	0.30	F	5.4		0.050	U
MW35-	374-386	4/1/2011	0.060	U	0.16	U	0.070	U	2.8		0.58	F	0.050	U
LGR	414-426	4/1/2011	0.060	U	0.16	U	0.070	U	2.7		0.30	F	0.050	U
CS- MW36-	320-332	4/8/2011	0.11	F	0.16	U	0.34	F	23		0.060	U	15	
LGR	0-142	4/11/2011	0.060	U	0.44	F	0.32	F	25		0.060	U	13	

2.5 WELL CONSTRUCTION

Monitoring well design and construction followed CSSA specifications and met TCEQ requirements. Construction materials for each well included 4-inch diameter Schedule 80 polyvinyl chloride (PVC) risers, 25 feet of 40-slot, 4-inch diameter stainless steel well screen, clean 8/16 silica sand, bentonite, and Volclay™ grout. Volclay was selected as the grouting material rather than Portland cement to eliminate a possibility of elevated pH. The PVC casing utilizes threaded joints without glues, screws, or other adhesives. Surface completions were constructed with concrete and steel protectors.

Stainless steel centralizers were attached every 50 feet. Using a decontaminated scoop and approximately 1 to 2 gpm of clean water, the sand pack was deposited downhole into the annulus between the well screen and the rock formation. Dehydrated bentonite chips were added to create a sealed plug above the sand. These uncoated chips were added by hand to prevent bridging in the upper portions of the well. The bentonite chips were allowed to hydrate per manufacturer's recommendations before proceeding with grouting of the annular space above. The annular space was pressure-grouted in lifts by the positive displacement exterior method from the bottom of the hole to 2 feet bgs. The remaining 2 feet were filled with cement during well pad construction to satisfy the TCEQ atmospheric barrier requirement. Grout mixtures consisted of clean water and Volclay, usually 160 gallons per lift, using 25 to 30 gallons of water per sack of Volclay according to the manufacturer's recommendations.

CS-MW35-LGR was completed with a riser extending approximately 2.5 feet above ground surface. A 6-inch square, steel, locking well protector housing was installed over the PVC riser (**Photo 2.1**). The housing is a 5-foot length of 1/8-inch square tubing. The protective cover was set 2 feet bgs into the annular concrete, leaving a remaining total stick-up of 3 feet. The top portion of the square well protector has a hinged lid and a locking hasp. The height difference between the terminal end of the 4-inch PVC riser and the outer protector allows for operation of low-flow sampling equipment.

Also at the CS-MW35-LGR wellhead, a 4-feet square and 6-inches thick concrete pad was poured, and a 2-inch diameter brass marker stamped with the well identification was set within (**Photo 2.3**). Protective bollards of 4-inch-diameter hollow carbon steel in 5-foot lengths were placed at the corners of the well pad to protect the wellhead. The bollards were set in concrete to 2 feet below grade, leaving 3 feet above grade. The steel well protector was painted white and the bollards are yellow. Surface completions meet standard TCEQ and industry specifications.

The surface completion for CS-MW36-LGR was constructed as a flush mount to minimize the number of well heads protruding from the ground in the vicinity of AOC-65 (**Photo 2.4**). The well riser was cut 0.5-feet bgs and a prefabricated steel vault with a 12-inch diameter manway was cemented over the riser.

Photo 2.3 - Installation of CS-MW35-LGR.

Photo 2.4 – Surface completion for CS-MW36-LGR.

2.6 WELL DEVELOPMENT

Well development was completed by pumping the well with a decontaminated GrundfosTM 1.5-hp submersible pump attached to 1.25-inch diameter galvanized steel pipe. The developed volume of each well was monitored by rate/time calculations. Field parameters including turbidity, odor, temperature, pH, and conductivity were periodically monitored. Field parameters were collected using an YSI-556 which includes probes for temperature, conductivity, dissolved oxygen, pH, and oxidation reduction potential unless otherwise noted in **Table 2.3**. Development continued until the water appeared clear, the field parameters had stabilized, and the volume withdrawn had equaled or surpassed the estimated volume of water injected during drilling. Stabilization was achieved when water appeared sediment-free, turbidity remained stable within 10 nephelometric turbidity units (NTUs), temperature was ±1.0 degree Celsius (°C), pH was ±0.1 units and within a range of 6.5 to 8, and conductivity was ±5 percent, for a period of at least 30 minutes. Extremely low water levels due to the regional drought affected some well development such that recharge rates were extremely slow and continuous pumping was not possible. All developed groundwater was contained as IDM and disposed following Waste Management Plan protocols.

Well ID	Date	Time	Turbidity	Temperature	Conductivity	Dissolved Oxygen	pН	Oxidation Reduction Potential	Volume Pumped
			(NTUs)	(*C)	(mS/cm)	(mg/L)		(mv)	(gal)
	4/21/2011	1445	>100	24.06	0.495	5.35	7.28	32.0	682
	4/22/2011	1146	80	24.32	0.466	4.88	7.11	-39.6	680
CS-	4/25/2011*	1330	5.3	24.6	0.618		6.72		28
MW35- LGR	4/25/2011	1652	20	26.27	0.700	2.68	6.93	-41.3	644
	4/25/2011	1713	18	23.57	0.685	2.71	6.88	-27.1	35
	4/26/2011*	0943	3.0	23.5	0.707		6.93		571
CS-	5/6/2011	1316	26	24.12	0.465	5.85	7.05	9.0	2,470
MW36-	5/6/2011	1504	36	24.24	0.466	5.00	7.04	-11.6	2,800
LGR	5/10/2011	0915		22.99	0.450	5.10	7.14	0.4	750

 Table 2.3
 Well Development Stabilization Parameters

2.7 WASTE DISPOSITION

All fluid and solid IDM was disposed according to *CSSA RCRA Facility Investigation* and *Interim Measures Waste Management Plan* (*Volume 1-1*, *Work Plan*) approved by USEPA and TCEQ. Fluids were captured in the containment pits then collected and transported by vacuum truck to the SWMU B-3 bioreactor for on-site treatment. All solid media were analyzed for the full list of VOCs using the EPA 8620B method. All solid media were below Texas Risk Reduction Program (TRRP) Tier 1 residential protective concentration levels (PCLs), and the media were used to augment the East Pasture Berm. Summary tables of IDM sample results can be found in **Appendix E**.

After each borehole was drilled, the drilling rig was driven to the decontamination pad and washed. All equipment that entered a borehole or could directly or indirectly contact samples was also washed in the designated decontamination area. IDM generated during the decontamination procedures were managed with the drilling fluid IDM in the bioreactor. Total volumes of IDM generated from each well are listed on **Table 2.4**.

^{*} Field parameters were collected using an YSI-63 which includes probes for temperature, conductivity and pH.

 Table 2.4
 Summary of LGR Well Construction

Well ID	CS-MW35-LGR	CS-MW36-LGR
Easting (meters)	535,913.650	535,673.212
Northing (meters)	3,283,233.943	3,283,702.697
Elevation (feet MSL)	1186.97	1218.74
Date drilled	3/15/2011 - 3/21/2011	3/23/2011 - 3/30/2011
Ground Elevation (feet MSL) (ground, asphalt, or vat base)	1183.89	1219.08
Total Depth of Borehole (feet bgs) (8-inch diameter)	440	385
Well set depth/ Open borehole depth (ft bgs)	430	370
Cement/grout	Volclay	Volclay
Date constructed	4/13/2011 - 4/15/2011	4/14/2011 - 4/15/2011
Casing (ft bgs)	0 - 405 PVC	0 - 345 PVC
Screened Interval/ Perforation Interval (ft bgs)	405 - 430	345 – 370
Grout (number of 50 lb bags)	43 (2 – 395 ft bgs)	$\frac{26}{(2-335 \text{ ft bgs})}$
Bentonite Chips (number of 50 lb bags)	3 (395 – 400 ft bgs)	3.5 (335 – 340 ft bgs)
Sand - 8/16 (number of 50 lb bags)	16 (400 – 432 ft bgs)	17 (340 – 372 ft bgs)
Backplug (holeplug) (number of 50 lb bags)	4 (432 – 440 ft bgs)	6 (385 – 372 ft bgs)
Drilling Rig	Gardner-Denver 1500	Gardner-Denver 1500

SECTION 3 AOC-65 WELL INSTALLATION

3.1 DETERMINATION OF WELL LOCATIONS

Two SIWs and five VEWs were installed at AOC-65 under this project as part of a treatability study at AOC-65 (Figure 2.1). The SIWs provide a means to inject steam into the shallow subsurface, to test if providing heat significantly increases the volatilization of contaminants. The VEWs provide a means to remove and monitor the volatilized contaminants. Drilling of the wells was performed by GPI under direct supervision of Parsons geologists. The wells were drilled to the base of the UGR or into the upper portion of the LGR in the Middle Trinity Aquifer. The SIWs are located in areas in AOC-65 that are suspected of having elevated contaminant levels. AOC-SIW01 is located in the northwest corner of the Building 90 solvent vat. The second potential source is a drainage ditch located outside Building 90 where drainage from the vat was released. AOC-SIW02 is located near a drainage ditch outside Building 90 and adjacent to the vat, 15 feet south of VMP-4B.

AOC-VEW29 through AOC-VEW33 were arranged to contain and remove vapors volatilized during steam injection activities, west of Building 90.

3.2 DRILLING NARRATIVE

Drilling operations began on April 5, 2011 and continued through May 11, 2011 when the last VEW was installed. Each of the SIWs and VEWs were continuously sampled via 2-inch core and subsequently reamed to an 8-inch diamter. The following description of each SIW or VEW is a narrative of the coring/drilling efforts. Photographs of the cores, well logs, and coring log forms are presented in (**Appendix D**).

GPI mobilized a modified Deeprock RAM10 on April 4, 2011 to drill one SIW at a former solvent vat located inside Building 90. A Gardner-Denver 1500 was already on location for other drilling activities as well as a CME-75, a Smead Pump Hoist truck, a 2,900-gallon vacuum truck, and several other smaller support vehicles, all of which were used to complete drilling activities at AOC-65. Two drill crews, operating two drill rigs concurrently, were utilized to complete the bulk of the drilling tasks located outside Building 90. The Deeprock RAM10 was modified so that it could be operated inside Building 90. Modifications included lowering the mast to 12 feet to fit inside a building with 13-foot-high ceilings and replacing the gas-powered engine with a 75-hp electric motor to drive the hydraulic system.

A rolloff container for IDM management was provided by USA Environmental, Inc., and all cuttings associated with reaming the SIWs and VEWs were kept within a containment built around each drilling location then transported to the rolloff. A decontamination area was maintained near the drilling area for core barrels and a decontamination pad for equipment was located to the southeast of AOC-65 near CS-MW35-LGR.

3.2.1 Steam Injection Wells

Drilling at AOC-SIW01, the location inside the Building 90 vat, began on April 5, 2011. No containment was built around the drilling location as the vat provided the containment for cuttings and drilling fluids associated with AOC-SIW01. A cement corer was initially used to cut through the base of the vat to expose the soil below. A PID was used to collect total volatile hydrocarbon (TVH) readings from beneath the cement plug (0.0 parts per million [ppm]) and soil samples were collected from 0 to 6 inches and 6 to 8 inches, and screened using the PID (0.0 ppm). A steel plate covering the vat required modifications so that it could remain over the vat during drilling (**Photo 3.1**). This reduced exposure to dust associated with drilling activities. A hot work permit was obtained to cut a 9-inch hole in the plate. The plate was ultimately bisected through the hole so that a smaller, lighter portion of the plate could be removed and accessed for well maintenance.

Photo 3.1 – Modified steel plate surrounding completed AOC-SIW01.

Coring began and was completed at AOC-SIW01 on April 6, 2011. The total depth of the 2-inch-diameter AOC-SIW01 corehole was 24.65 feet from the base of the vat. Samples were collected from the intervals 8 to 8.5 feet bgs and 24 to 24.5 feet bgs. The following day, the corehole was reamed to 8 inches in diameter down to 24.65 feet bgs. Cuttings derived from reaming that accumulated in the vat were removed by hand to the rolloff. The vat was rinsed, and the rinse water was vacuumed out using the vacuum truck and summarily managed in the bioreactor. Installation of the well materials was completed on April 12, 2011.

A CME-75 was used to core and ream AOC-SIW02 on May 3, 2011. Containment was constructed around the drilling location to manage cuttings and drilling fluids. The total depth of the 2-inch-diameter corehole was 26.5 feet bgs. The corehole was reamed to an 8-inch diameter down to 28.2 feet bgs. Cuttings were manually moved from the containment to the rolloff. TVH readings at AOC-SIW02 ranged from non-detect to 20.5 ppm with the highest

reading from depths 10 and 11 feet bgs, 20.5 and 13.9 ppm respectively. Drilling activities for both SIWs are summarized in **Table 3.1**.

SIW ID	Date Drilled	Total Depth (ft bgs)
AOC-SIW01	4/6/2011	24.65
AOC-SIW02	5/3/2011	28.2

Table 3.1 Summary of SIW Drilling

3.2.2 Vapor Extraction Wells

Five VEWs were cored and reamed between April 28 and May 5, 2011. Two drill crews operating a CME-75 and a Gardner-Denver 1500 concurrently to core and ream VEWs located outside Building 90. VEWs 29, 30, and 31 were drilled with the GD-1500, and VEWs 32 and 33 were drilled with the CME-75. Two-inch cores were collected at each VEW, and the coreholes were subsequently reamed to 8 inches to total depth. Containments were constructed at each VEW location to manage cuttings derived from reaming. Cuttings were manually removed from the containment and placed in the rolloff for waste characterization and eventual management. VEW drilling is summarized in **Table 3.2**.

VEW ID	Date Drilled	Total Depth (ft bgs)
AOC-VEW29	5/4/2011	44
AOC-VEW30	5/5/2011	30
AOC-VEW31	5/3/2011	45
AOC-VEW32	4/28/2011	28
AOC-VEW33	5/4/2011	32

Table 3.2 Summary of VEW Drilling

Previous data from the SVE system at AOC-65 has indicated that the most productive VEWs are screened shallow (6 to 20 feet bgs) wells. Total depths (TDs) for the new VEWs are based on these data. Three of the VEWs have TDs of 25 feet bgs and the other two VEWs have TDs of 40 feet bgs. These deeper VEWs provide two additional monitoring points for the upper portion of the LGR formation while also being screened in the shallow more productive portion of the UGR.

3.3 GEOPHYSICAL LOGGING

Downhole video, caliper and natural gamma logging was completed for each new VEW and AOC-SIW02. Logging was conducted by GeoCam on May 6, 2011. The downhole videos are located in the accompanying DVDs and the logs for each of the VEWs are included in **Appendix B**.

3.4 WELL CONSTRUCTION

Construction of SIWs and VEWs occurred between April 11 and May 11, 2011. SIW construction was completed by GPI with surface completion installed by USA Environmental. VEWs were set by GPI and wellhead construction was completed by USA Environmental. The

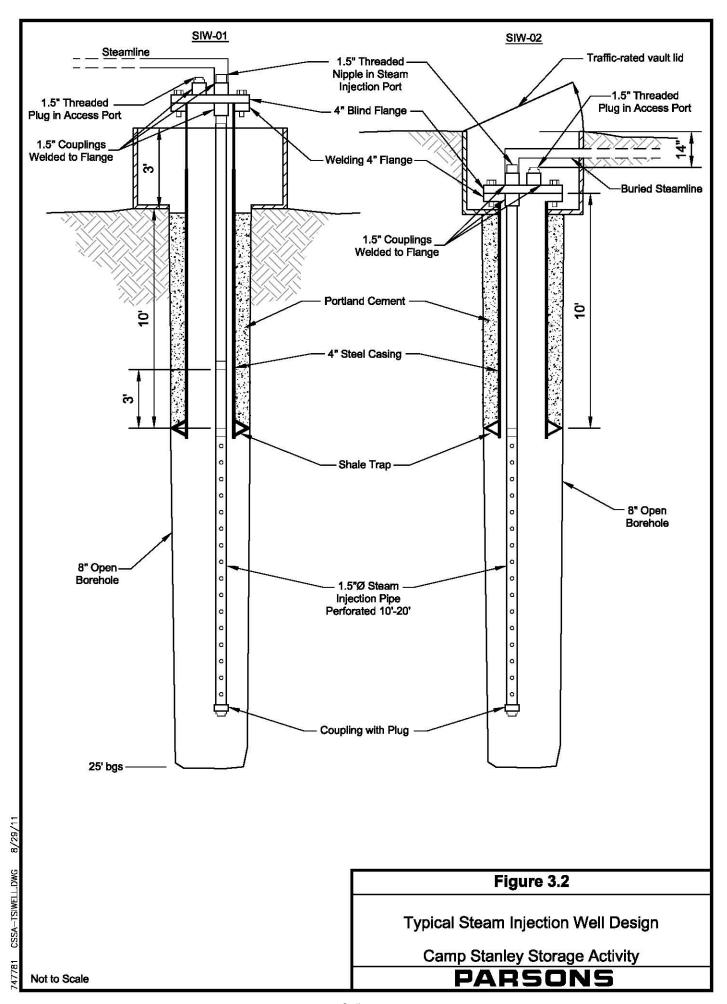

VEWs are 4-inch, flush-mount completed wells either roughly 25 or 40 feet in depth. SIWs are cased with 4-inch steel casing, and the wellheads were prefabricated and welded to the casing prior to installation. The wellheads are essentially two flanges bolted together: one welded to the casing and the second, a blind flange, bolted to the first. The blind flange has two 1.5-inch, threaded access ports, to attach the perforated steam injection pipe and steam line, and for access to the well for sampling or water level collection. A summary of the well construction details for SIWs and VEWs are provided in **Table 3.3**.

Table 3.3 Summary of SIW and VEW Well Construction

Well ID	AOC- SIW01	AOC- SIW02	AOC- VEW29	AOC- VEW30	AOC- VEW31	AOC- VEW32	AOC- VEW33
Easting (meters)	535,710.358	535,688.635	535,694.814	535,694.612	535,697.010	535,702.087	535,694.421
Northing (meters)	3,283,733.729	3,283,716.207	3,283,734.530	3,283,724.661	3,283,720.691	3,283,716.081	3,283,709.681
Elevation (ft MSL)	1223.37	1216.36	1218.30	1218.15	1218.44	1218.73	1218.10
Ground Elevation (ft MSL) (ground, asphalt, or vat base)	1220.12	1217.61	1218.17	1218.57	1218.86	1219.08	1218.55
Total Depth of Borehole (ft bgs) (8-inch diameter)	24.65	28.2	44	30	45	27.89	32
Well set depth/Open borehole depth (ft bgs)	24.65	28.2	40	25	40	25	25
Backplug (holeplug) (ft bgs)			42 - 44		42 - 45		
Cement/grout	portland	portland	cement	cement	cement	cement	cement
Date drilled	4/7/2011	5/3/2011	5/4/2011	5/5/2011	5/3/2011	4/28/2011	5/4/2011
Date constructed	4/11/2011 - 4/12/2011	5/10/2011 - 5/11/2011	5/10/2011	5/9/2011	5/11/2011	5/9/2011	5/9/2011
Casing	13' steel (4"Ø)	10' steel (4"Ø)	5' sch. 40 PVC (4"Ø)	5' sch. 40 PVC (4"Ø)	5' sch. 40 PVC (4"Ø)	5' sch. 40 PVC (4"Ø)	5' sch. 40 PVC (4"Ø)
Screened Interval/ Perforation Interval (ft bgs)	10 - 20 (8-inch open borehole)	11.17 - 21.17 (8-inch open borehole)	5 - 40 (4-inch 0.040- slot PVC)	5 - 20 (4-inch 0.040- slot PVC)	5 - 40 (4-inch 0.040- slot PVC)	5 - 20 (4-inch 0.040- slot PVC)	5 - 20 (4-inch 0.040- slot PVC)
Sand - 8/16 (# bags to fill to 3 ft bgs)			19.5	13.75	19.5	10.5	16
Drilling Rig	Deeprock Ram10 (modified)	CME-75	Gardner- Denver 1500	Gardner- Denver 1500	Gardner- Denver 1500	CME-75	CME-75

3.4.1 Steam Injection Wells

The general design of the two SIWs is provided in **Figure 3.1**. Construction of these two wells was completed by GPI, however, the surface completion for AOC-SIW02 and the connection of the steam lines to each well were completed by USA Environmental and their subcontractors.

Construction of AOC-SIW01 was completed on April 12, 2011. Originally, the well was due to be set inside the vat (below the floor level), but due to access concerns, the wellhead was instead installed above the top of the vat. To accommodate this, a 3-foot section of well casing was welded to the base of the 10-foot section of casing prior to installation (**Photo 3.2**). Similarly, an additional 3-foot section of black-iron pipe was added to the steam injection pipe. The casing was set 10 feet bgs (13 feet below the top of the vat) and a shale trap was used to cement the 4-inch steel casing in place. Portland cement was used rather than volclay to seal the well due to concerns regarding the effects the steam-injection operational temperatures might have on the integrity of Volclay. The cement was added in two lifts over a two-day period, and a total of 3.5 bags were used to cement up to ground surface. The upper portion of the wellhead consists of a 4-inch blind flange with a 1.5-inch-diameter, 23-foot-long steam injection pipe attached. The 23-foot-long black-iron, steam injection pipe is perforated from 13 to 23 feet to deliver steam to the open borehole (from 10 to 25 feet bgs). The top portion of the well head, with steam injection pipe attached, was lowered over the casing and bolted in place.

Photo 3.2 - Wellhead construction for AOC-SIW01.

Construction of AOC-SIW02 was completed on May 11, 2011. The area around the borehole was excavated to a depth of 18 inches to accommodate a 3-by-3-foot vault to house the wellhead and steam line, and to provide a slope for condensate in the steam line to drain into the well (**Photo 3.3**). The casing was set 11.17 feet bgs, with the top of casing at 14 inches bgs, and cemented in place with the aid of a shale trap. The cement was added in two lifts over a two-day period, and a total of 3 bags were used to cement up to the base of the excavation. The wellhead consists of a 4-inch flange with a 1.5-inch steam injection pipe attached. The black-iron, steam injection pipe is perforated from 10 to 20 feet to deliver steam to the open borehole (from 11.17 to 25 feet bgs).

The installation of the 3-by-3-foot traffic-rated vault at AOC-SIW02 and steam lines to both AOC-SIW01 and AOC-SIW02 were completed on June 10, 2011 (**Photo 3.4**). The height of the vault

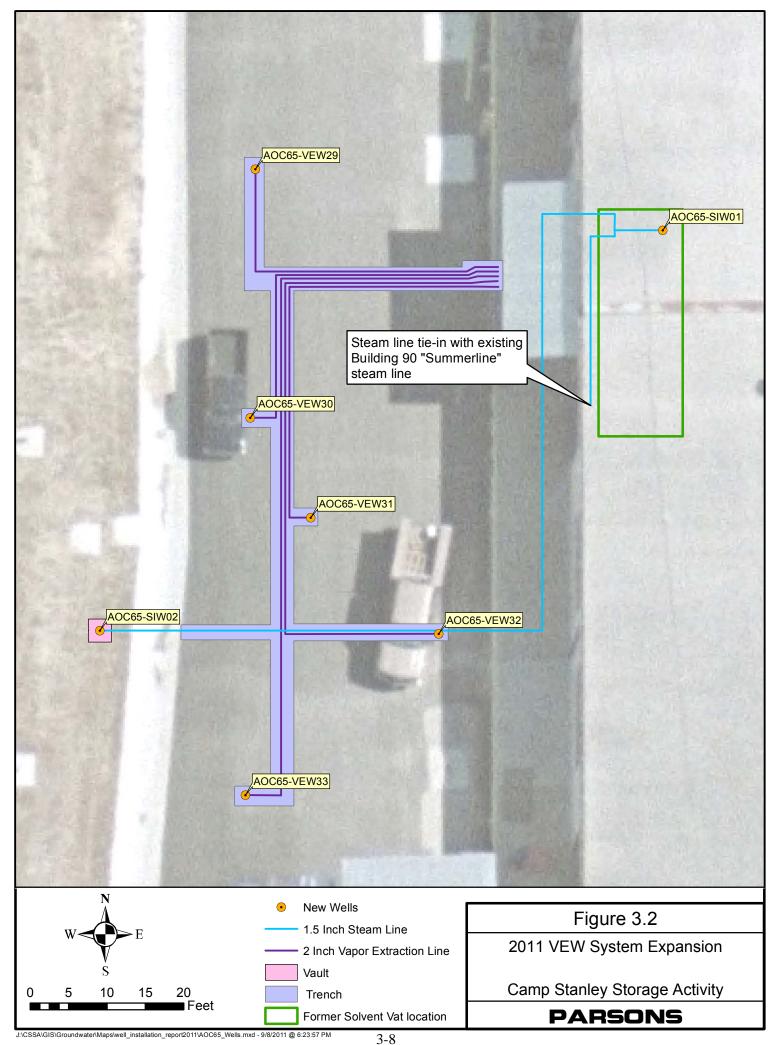


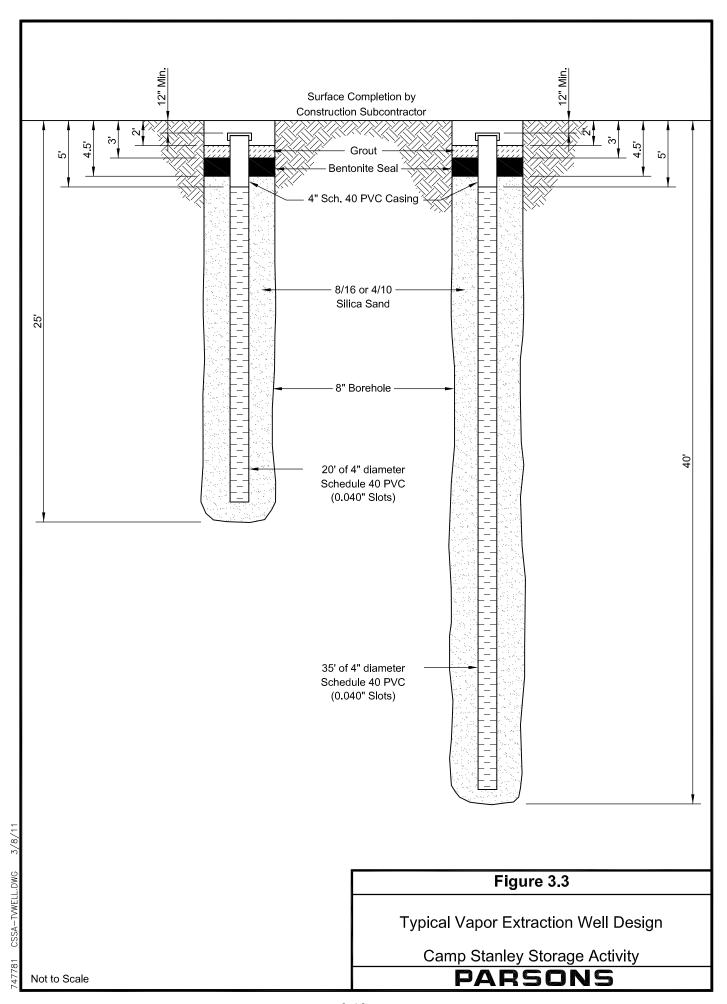
Photo 3.3 - Wellhead construction for AOC-SIW02.

Photo 3.4 – Vault covering AOC-SIW01.

was cut down from 3 feet to 2 feet to fit within the excavation around AOC-SIW02, and a hole was cut in the side of the vault to allow access for the steam line. The steam line originates inside Building 90 where it taps into the existing "Summer" line near the vat (**Figure 3.2**). The steam line then enters the vat where it splits to each of the SIWs. The steam line exits Building 90 through a drain line within the vat. Once outside, the steam line runs south underneath the loading dock before it turns west toward AOC-SIW02. The steam line is buried within the trench excavated for the installation of the VEWs 32 and 33. The steam line is insulated where above ground to prevent burns from incidental contact.

3.4.2 Vapor Extraction Wells

VEWs were constructed in two phases. The first phase included setting the well materials and adding sand and bentonite up to 3 feet bgs. This phase was completed for all VEWs by May 11, 2011. The typical VEW design for both the 25-foot and 40-foot VEWs is provided on **Figure 3.3**. The second phase of construction included excavation of a trench for the installation of vapor extraction lines, wellhead construction, and surface completion; and this phase was completed for all VEWs by June 10, 2011. The typical VEW wellhead construction design is provided on **Figure 3.4**.


AOC-VEW29 (**Photo 3.3**) is installed in a 44-foot-deep, 8-inch-diameter borehole. One bag of holeplug was used to fill the bottom of the borehole to 42 feet bgs. 8/16 sand was then added to 40 feet bgs. The well material consisted of 35 feet of 4-inch schedule 40 PVC with 0.040-inch factory-slotted screen followed by 5 feet of 4-inch schedule 40 PVC casing. The annulus was filled with 19.5 bags of sand up to 4.5 feet bgs. One-half bag of bentonite chips was then added to 3 feet bgs.

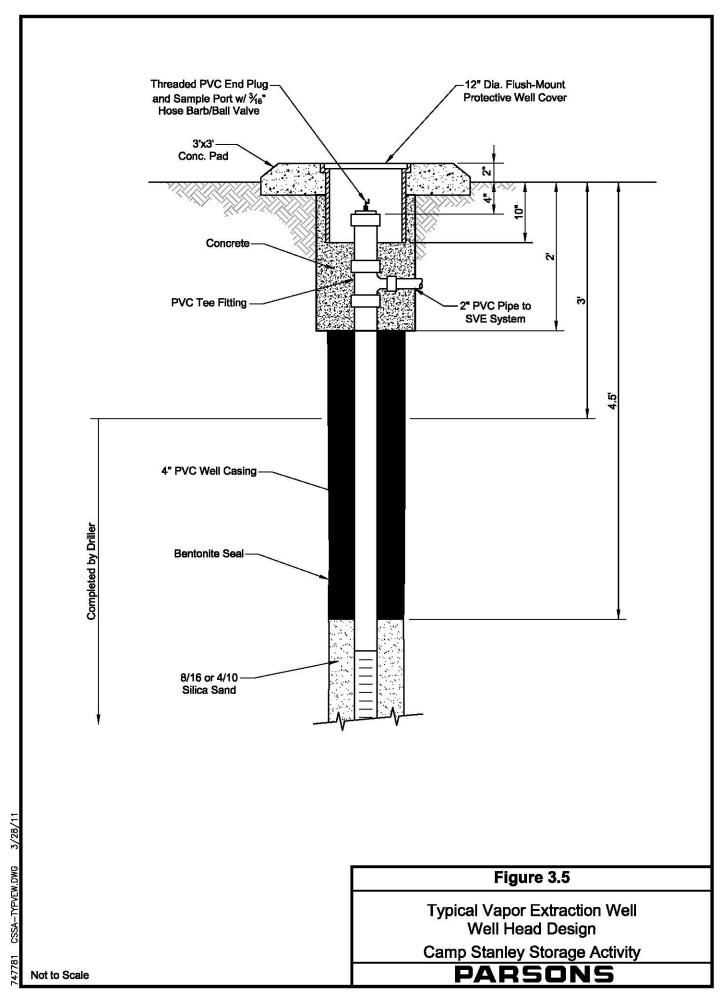


Photo 3.3 - Installation of AOC-VEW29 (photo is representative of all VEWs in this report).

AOC-VEW30 is installed in a 30-foot-deep, 8-inch-diameter borehole. 8/16 sand was added to 25 feet bgs. The well material consisted of 20 feet of 4-inch schedule 40 PVC with 0.040-inch factory-slotted screen followed by 5 feet of 4-inch schedule 40 PVC casing. The annulus was filled with 13.75 bags of sand up to 4.5 feet bgs. One-quarter bag of bentonite chips was then added to 3 feet bgs.

AOC-VEW31 is installed in a 44.7-foot-deep, 8-inch-diameter borehole. 1.25 bags of holeplug were used to fill the bottom of the borehole to 42 feet. 8/16 sand was then added to 40 feet bgs. The well material consisted of 35 feet of 4-inch schedule 40 PVC with 0.040-inch factory-slotted screen followed by 5 feet of 4-inch schedule 40 PVC casing. The annulus was filled with 19.5 bags of sand to 4.5 feet bgs. One-half bag of bentonite chips was added to 3 feet bgs.

AOC-VEW32 is installed in a 27.89-foot-deep, 8-inch-diameter borehole. 8/16 sand was then added to 25 feet bgs. The well material consisted of 20 feet of 4-inch schedule 40 PVC with 0.040-inch factory-slotted screen followed by 5 feet of 4-inch schedule 40 PVC casing. The annulus was filled with 10.5 bags of sand up to 4.5 feet bgs. One-half bag of bentonite chips was then added to 3 feet bgs.

AOC-VEW33 is installed in a 33-foot-deep, 8-inch-diameter borehole. 8/16 sand was then added to 25 feet bgs. The well material consisted of 20 feet of 4-inch schedule 40 PVC with 0.040-inch factory-slotted screen followed by 5 feet of 4-inch schedule 40 PVC casing. The annulus was filled with 16 bags of sand up to 4.5 feet bgs. One-half bag of bentonite chips was then added to 3 feet bgs.

During the second phase of construction, a trench was excavated originating from the Exterior SVE system manifold to each of the new VEWs (**Photos 3.4 and 3.5**). The trench was excavated such that the PVC connecting each VEW to the manifold maintained a grade toward the well allowing any condensate generated would drain to a VEW and not remain in the lines.

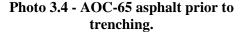


Photo 3.5- PVC lines to VEWs originating from Building 90 exterior manifold.

The PVC well casing was cut at various depths (depending on the depth of the trench) and a 4-inch-to-2-inch PVC tee fitting was attached to each. Two-inch PVC pipe was installed connecting each VEW at the tee connection to the manifold located on the western dock at Building 90 (Figure 3.2). The trench was backfilled with road base and 1.5 bags of bentonite chips were added at each VEW location. The bentonite chips were hydrated and 12-inch-diameter traffic rated flush-mount vaults were cemented in place. The vaults extend 2 inches above the road surface, and the top of casing for each VEW lie 6 inches below the vault lid. A

threaded PVC end plug is affixed to the tops of the casing; a sample port was drilled through the plug and a 3/16-inch hose barb and ball-valve was attached.

3.5 SAMPLING RESULTS

After the vat was cored to expose the soil, and prior to initiating drilling inside the vat, two soil samples were collected. The two samples were collected from 0 to 6 inches and from 6 to 8 inches, and analyzed for VOCs. Results of the two samples indicated PCE concentrations of 0.015 and 0.010 milligrams per kilogram (mg/kg), respectively. Two samples of the core were also sent for VOC analysis. As the core was recovered, each section was screened using a PID. Two sections indicated TVH readings of 1.5 and 9.1 ppm. These two sections were from 8 to 8.5 and 23.5 to 24 feet. Both sections of core were sent for VOC analysis and both resulted in non-detect results for PCE.

One water sample was collected from AOC-SIW01. This last sample was collected from accumulated water in the borehole following reaming and sent for VOC analysis. The results of the water sample indicated a positive result for PCE (272.71 micrograms per liter $[\mu g/L]$). These data are included in Appendix E and are summarized in **Table 3.4**.

PCE Date Depth (ft) Media 0 - 0.54/5/2011 Soil 0.015 mg/kg4/5/2011 0.5 - 0.75Soil 0.010 mg/kgBDL (0.008 mg/kg)4/6/2011 8-8.5 Core 4/6/2011 23.5-24 Core BDL (0.008 mg/kg)4/11/2011 20.5 Groundwater $272.71 \,\mu g/L$

Table 3.4 Summary of AOC-SIW01 Sampling

BDL = Below detection limits, the detection limits are shown in parentheses.

Cuttings derived from drilling activities associated with the five VEWs and AOC-SIW02 were managed at Covel Gardens Landfill, along with asphalt and construction debris resulting from trenching and VEW installation activities, following waste characterization.

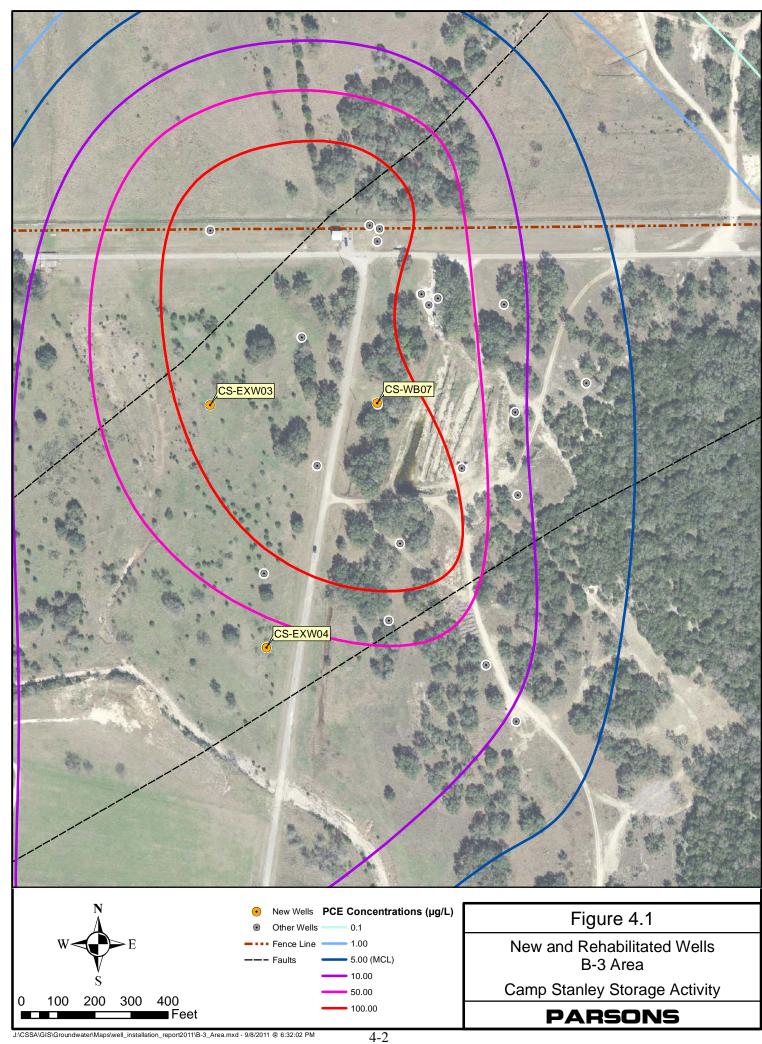
SECTION 4 SWMU B-3 WELL INSTALLATION

4.1 DETERMINATION OF WELL LOCATIONS

Two additional extraction wells, B3-EXW03-LGR and B3-EXW04-LGR, were installed on the west side of the SWMU B-3 bioreactor as part of this drilling effort. The purpose of these wells is to capture additional contaminated groundwater for the bioreactor. Previous analytical samples collected west of the suspected source area have confirmed the migration of VOCs in that direction, and the new extraction wells were placed in locations that best utilized the local groundwater gradient and CSSA's geologic substructure. **Figure 4.1** shows the location of these wells and their relationship to the Bioreactor.

4.2 DRILLING AND GEOPHYSICAL LOGGING

The wells were drilled using the same methodology previously described in Section 2.2 of this report; however, since the purpose of the extraction wells is different than that of the monitoring wells, the final well design is different than was previously described. The well design of the extraction wells is described in Section 4.4.


Geophysical logging was conducted May 25, 2011 on well B3-EXW03-LGR and on June 16, 2011 for well B3-EXW04-LGR. The logging was performed by GeoCam, Inc of San Antonio. GeoCam deployed tools that collected spontaneous potential, resistivity, natural gamma, and a caliper. A separate borehole camera survey was also performed on each of the borings.

4.2.1 B3-EXW03-LGR

Drilling for B3-EXW03-LGR began on May 18, 2011 and was completed on May 24, 2011. The total drilled depth of the well was 350 feet bgs even though the planned depth was approximately 330 feet. The reason for the additional footage was because the true location of the BS/LGR contact could not be determined by the drill cuttings that were recovered. The area surrounding the proposed drilling locations is highly faulted and the field geologist, as well as the experienced driller, had difficulty visually identifying the true contact.

The well was geophysically logged on May 25, 2011 and the contact between the BS and the LGR was determined to be at 321 feet bgs. The boring was backfilled to 340 feet bgs and the surface casing was set on May 26, 2011. A pump test was performed on June 15, 2011 to determine the best pump application for the treatment system.

The survey data showed that the chosen well locations intersect subsurface fault features as both the caliper and borehole camera data indicated many fractured zones throughout the boring. The video confirmed that the borehole was highly faulted with large vertical fractures that intersected with the lithologic contact of the Bexar Shale.

4.2.2 B3-EXW04-LGR

Drilling for B3-EXW04-LGR began on June 1, 2011 and was completed on June 10, 2011. The total drilled depth of the well was 335 feet and the BS/LGR contact was determined to be 317 feet bgs. The contact was identified by the geophysical logging that was conducted on June 13, 2011. The camera survey conducted at that time also showed a shallow weeping cavity at 21 feet bgs. A grab sample of this fluid was collected from the shallow cavity after the reaming for the surface casing was completed. After several unsuccessful attempts were made on June 14th and 15th, the field team was successful at obtaining a sample from the zone.

The surface casing was set on June 15, 2011 and well development began the following day. A pump test was performed on June 21, 2011 to determine the best pump application for the treatment system.

4.3 WELL CONSTRUCTION

Extraction wells, unlike monitoring wells, are designed to remove large volumes of media from the subsurface and not just the small quantities needed for analytical evaluation. Therefore, the wells were designed in an "open borehole" fashion with the only installed well material consisting of Schedule 80 PVC surface casing to protect against surface contamination. A summary of well construction details is provided in **Table 4.1**.

Each well was initially drilled with an 8-inch bit and later reamed with a 12-inch bit to facilitate the installation of the 8-inch diameter surface casing. The surface casing was set in place by utilizing a shale trap to hold the Volclay grout that was placed into the annular space with a tremmie pipe.

Well B3-EXW03-LGR (**Photo 4.1**) was designed with a surface casing of 55 feet bgs, and well B3-EXW04-LGR (**Photo 4.2**) was designed with a 65 foot (bgs) surface casing. The final surface completion for each will be constructed under a separate contract, and will include a 10-foot square pad, equipment stanchion, and operational controls for inclusion into the SWMU B-3 bioreactor.

Photo 4.1 - Completed B3-EXW03-LGR

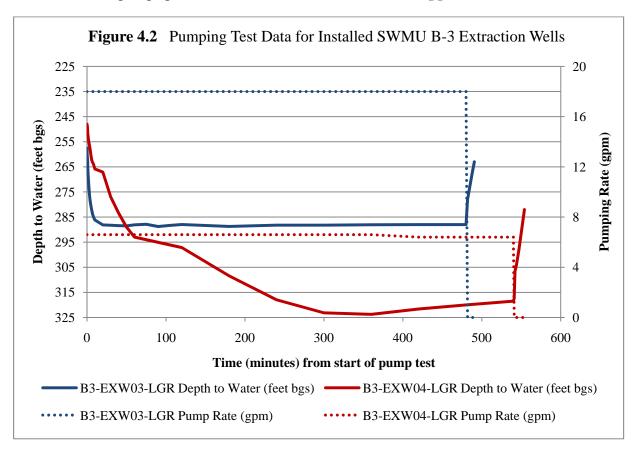

Photo 4.2 – Completed B3-EXW04-LGR

Table 4.1 Summary of Extraction Well Construction

Well ID	EXW-03	EXW-04
Easting (meters)	537,145.031	537,191.735
Northing (meters)	3,286,694.994	3,286,493.127
Elevation (ft MSL)	1234.73	1228.14
Ground Elevation (ft MSL) (ground, asphalt, or vat base)	1229.78	1222.94
Total Depth of Borehole (ft bgs) (8-inch diameter)	350	335
Well set depth/Open borehole depth (ft bgs)	340	335
Backplug (holeplug) (ft bgs)	340 - 350	
Casing Cement	Volclay	Volclay
Date drilled	5/18/2011 - 5/24/2011	6/1/2011 - 6/14/2011
Date constructed	5/26/2011 - 6/1/2011	6/15/2011 - 6/16/2011
Casing	65 ft PVC (8-inch diameter)	55 ft PVC (8-inch diameter)
Open Interval	65-340 (8-inch open borehole)	55-335 (8-inch open borehole)
Drilling Rig	Gardner-Denver 1500	Gardner-Denver 1500

4.4 PUMPING TESTS

Pump tests were performed at each of the newly drilled extraction wells at SWMU B-3. Pump tests provide data essential to understand the general hydraulic properties of the aquifer at that location, and ultimately aid in the decision making process for pump selection for each well. For each of these tests, a submersible pump, capable of pumping up to 75 gpm, was installed approximately 10 feet above the bottom of the borehole. An initial water level measurement was collected prior to pumping and multiple measurements were collected during the test. The pump test at B3-EXW03-LGR was conducted on June 15, 2011 and included the sustained pumping of the well at 18 gpm for eight hours. The pump test at B3-EXW04-LGR was conducted on June 21, 2011 and was initially pumped at 6.6 gpm, but the rate was lowered to 6.4 gpm during the latter stages of the test due to continued drawdown. The pump test at B3-EXW04-LGR lasted for nine hours. Results of the two pump tests are graphically depicted in **Figure 4.2**. Based on the results of the pump tests, a Grundfos 5-hp pump was selected for both wells. The pump specifications for each well are listed in **Appendix F**.

4.5 SAMPLING RESULTS

One analytical sample was collected from the groundwater in the extraction wells, and that was the sidewall sample collected in B3-EXW04-LGR at 21 feet. The sample was analyzed for VOCs, and results showed no detectable contaminants of concern (COCs) were present. All other analytical data were for the characterization of the IDM. The analytical results of those samples are listed in **Appendix E**.

SECTION 5 USGS WELL LOGGING SERVICES

5.1 BOREHOLE GEOPHYSICS

Under direct contract with CSSA, the USGS conducted borehole geophysics in a select number of on- and off-post wells in order to further define the hydrostratigraphic model of the Middle Trinity Aquifer (**Figure 5.1**). The borehole logging activities included the standard suite of geophysical methods, advanced video imaging, and nuclear logging tools to aid in the estimation of stratigraphy, porosity, and permeability. Parsons and their subcontractors provided logistical support for activity coordination and well access. In order to facilitate such access, pumps were pulled from wells LS-5, B3-EXW02-LGR, and OFR-1. Pulling pumps from wells for USGS provided an opportunity for well servicing including the replacement of the pump and well controls at LS-5. While this work was not directly contracted by Parsons, the results are included in this report for completeness and documentation purposes. USGS is combining this newly-acquired data with existing geologic data from CSSA to build a three-dimensional (3D) visualization model using the EarthVision software. Geophysical logs and associated video for the surveyed wells are included in **Appendix B**.

Louged Laying Departit Actual West Depth Ut has Off-Post Cased Open Borehole Off-Post 472 300 6 LS-5 Cased Open Borehole 481 204 6 Cased Open Borehole Off-Post 15-4 On-Post MW27 **PVC Monitoring Well** 17 7 4 4 On-Post **PVC Manitoring Well** 56 26 a 0 2 0 0 1 **B3-EXW02** Cased Open Borehole 358 65 On-Post On-Post CS-11 Cased Open Borehole 553 378 12.5 MW35-LGR **PVC Monitoring Well** 440 2 8 On-Post On-Post **PVC Monitoring Well** 385 2 8 Off-Post JW-15 Cased Open Borehole 34 350

Figure 5.1 CSSA Wells Surveyed by USGS in 2011

SECTION 6 CS-1 PUMP REPLACEMENT

6.1 FIELD NARRATIVE

CS-1 is one of three (also CS-10 and CS-12) public supply wells that provide water to CSSA. On June 8, 2011 the pump at CS-1 began to malfunction resulting in periodic pump shut downs. At least two of the supply wells are required to maintain the reservoir at CSSA at any given time to ensure service. At the time CS-1 began to malfunction, CS-12 was experiencing chlorinator problems and was not in service. GPI visited CS-1 and identified deficiencies in the electrical panel controlling the CS-1 pump; specifically, the thermal overload conductors were not operating correctly. CSSA decided to continue to use CS-1 until the chlorinator at CS-12 could be repaired before replacing the pump and pump motor at CS-1.

Following the repair of CS-12 and at the direction of CSSA, repairs for well CS-1 began on June 21, 2011. The pump, pump motor, and 19 joints of 21-foot column pipe were pulled and inspected. New column pipe was ordered to replace all existing pipe. Once the pump was pulled, GeoCam collected downhole imaging of CS-1, and USGS collected various geophysical data to create a comprehensive log of the well (**Appendix B**). A new 15-hp Franklin Electric pump motor and submersible pump was installed with new THW4 double-jacketed wire and the new column pipe. The pump was set at 399 feet bgs, the same depth at which it was originally set, with the pump motor at 404 feet bgs. The electrical panel and well control panel are scheduled to be replaced following a redesign of the pump house and chlorination system at CS-1. The new design calls for the same electrical panels and chlorinator system that were installed at CS-12.

Prior to returning CS-1 to service, the borehole and column pipe were disinfected with sodium hypochlorite. National Sanitation Foundation (NSF)-approved chlorine was mixed with approximately 3,000 gallons of water from CS-10. One half of the chlorine batch was pumped into CS-1, and the rest was allowed to gravity feed overnight into the well. The following morning, approximately 11,760 gallons of water was purged from the well, reducing the chlorine concentration. Following the initial 11,760-gallon purge, the chlorine concentration was 2.9 ppm and the nearby fire suppression line was charged with purged well water so that it could be accessed for use via a nearby fire hydrant for construction efforts onpost. The well continued to pump through the afternoon at which time the chlorine concentration had been reduced to 0.03 ppm at the well and 0.9 ppm at the fire hydrant. Purging continued the following two days with 12,000 and 9,962 gallons purged, respectively, each day and chlorine concentrations ranging from 0.02 to 0.08 ppm. The next day the chlorine concentration at the well was 0.0 ppm, the pump was set to auto, and CSSA staff continued to sample for chlorine.

In accordance with TCEQ regulations, the raw well water was sampled for the presence of coliforms and *Escherichia coli* (*e.coli*) bacteria for 3 consecutive days (June 27-29, 2011) following the purging of the disinfection treatment. All three samples confirmed that coliforms

were not present in the CS-1 borehole and groundwater. The well was returned to service on July 1, 2011.

6.2 GEOPHYSICAL LOGGING

Geophysical logging at CS-1 was completed on June 22, 2011 by the USGS, and included gamma, resistivity, spontaneous potential, caliper, and optical televiewer logs. Prior to geophysical logging, GeoCam conducted a borehole video survey to inspect the condition of the well, from which no anomalies were noted at the time. Both the downhole video and geophysical log are located in **Appendix B**.

6.3 EQUIPMENT REPLACEMENT

The replacement pump motor is a 15-hp Franklin Electric, Sand Fighter type motor (model number 2366038120). The replacement pump is also a Franklin Electric brand (model number 70SR15F6A-1563). New wire was installed with the new pump and pump motor. The wire is type THW4, double-jacketed wire (#4-3 with ground). Nineteen new joints of 3-inch galvanized steel pipe were installed with the new pump, motor, and wire. Two, one-inch diameter PVC access tubes were installed to 399 feet bgs to provide access for water level instrumentation to gauge the level of the groundwater. Specifications for the pump and pump motor are included in **Appendix F**.

SECTION 7 CS-WB07 REPAIR

7.1 BACKGROUND

In May 2011, during the course of normal monthly groundwater sampling at Westbay well CS-WB07 (Figure 4.1), the communication cable, which connects the sample probe and four full sampling tubes to the reel, broke off within the cablehead housing. The separated probe, sample tubes, and cablehead housing fell approximately 50 feet into the casing before hitting water at approximately 254 feet bgs. Per standard Westbay well construction, the water inside the casing was added at the time of original installation to submerge the fully-constructed well into the water column within the borehole and verify the materials were leak-proof. When the sampling assembly struck the interior water column, its components (probe and tubes) broke apart and became wedged within the well casing.

Initially, field staff believed that no damage had occurred to the well, and that retrieval of the probe and sample tubes would allow CS-WB07 to be returned to service. Retrieval tools designed to latch onto the spearhead (located at the top of the cablehead housing) were shipped from the manufacturer (Schlumberger Water Services [SWS]), and the recovery of the probe and all sample tubes was achieved.

Following the retrieval effort, and as part of returning CS-WB07 to service, normal pressure profiling was conducted. While the probe was being lowered, resistance was met near the location where the tool and tubes were recovered, however, with some effort, the probe was lowered to the bottom zone (LGR-04) and profiling commenced. It was noted at that time that the inside pressure at that zone was significantly different from previous profile readings. Similarly, both the inside and zone pressure readings for the next zone (LGR-03B) were different from previous profiles. These pressure differences suggested that the casing had been compromised. Upon reeling the probe up to the next zone, the probe again became wedged within the casing. As the probe was still attached to the reel, retrieval tools were not required.

In order to free the probe, the reel was removed from the tripod and bolted onto a trailer approximately one foot off the ground. A second pulley was attached to the protective well cover, also approximately one foot off the ground, and the communication cable was run through both pulleys. Cranking the reel with the mechanical advantage of two pulleys freed the probe from the obstruction. Once the probe was freed the second time, the decision was made to remove CS-WB07 from service until the integrity of the well could be investigated.

Downhole imaging was performed by GeoCam to ascertain the condition of the well and determine the source of the obstruction that caused the probe to become stuck the second time (**Appendix B**). Nothing unusual was noted until the camera reached the water inside the casing, at which point pieces of PVC well material were observed floating in the water column. It was also noted that there appeared to be a section that had a slightly larger diameter than the rest of the well near the original water level. Several of these pieces of PVC were curved such that, as the camera pushed them down the well, they would lie flat against the inner wall of the well. When this occurred, the camera would have to knock it loose in order to proceed. It is

theorized that, when profiling, the probe was able to move past the pieces of PVC material, but as the probe was reeled in, one of the larger pieces laid flat against the casing, and the additional thickness caused the 1.25-inch probe to become wedged inside the 1.5-inch-diameter well. Pieces of PVC and a section with an apparently larger diameter indicated the casing had separated, and the increase in water within the casing (noted during profiling and observed in downhole imaging) confirmed that the casing was compromised and would require replacement.

7.2 CS-WB07 REMOVAL/RECOVERY

Efforts to remove the damaged casing began on July 18, 2011. Earth Data Northeast, Inc. (EDN) was subcontracted to provide technical support for the removal and installation of the well components, and GPI was subcontracted to remove the damaged casing and install the new well materials. Efforts to remove the damaged well were supervised by a Parsons geologist. A specialized packer deflation tool, provided by SWS, was attached to the communication cable reel and sent downhole. Arriving at the top packer location (5 to 10 feet bgs), the tool was pulled up, deploying a small blade that perforated the casing thereby deflating the packer. Sagging of the well casing at the surface provided visual confirmation of packer deflation. The casing was suspended by a water well service rig (SMEAL) to ensure that no further sagging would occur as subsequent packers were deflated. Three other packers (located 25 to 30, 100 to 105, and 185 to 190 feet bgs) all above the damaged section were similarly deflated. Attempts to perforate the deepest packer, located 267 to 272 feet bgs, with the entire well material still in place were unsuccessful, as the separated sections were no longer aligned and the perforation tool could not be lowered to the appropriate depth.

The upper section of intact well material was pulled so the lower section could be accessed. Inspection of the casing indicated that the inside portion of the coupler located at 247 feet bgs had broken off. The break compromised the integrity of the well and allowed formation water to enter the casing. Accessing the lower section of well material required GPI to fabricate a recovery "fishing" tool that would engulf the casing so the perforation tool could be lowered to the final packer location. Once perforated, a second fishing tool was used to retrieve the rest of the damaged well materials. The last joint of well material contained pieces of PVC, seen in the downhole video, indicating that little, if any, foreign objects were left in the borehole. By July 22, 2011, all components of the Westbay well had been removed leaving and open borehole, approximately 336 feet deep.

7.3 CS-WB07 REPLACEMENT

Replacement of well materials in CS-WB07 began on July 22, 2011 by EDN with assistance from GPI and supervision by a Parsons geologist. Prior to installation, all well components were arranged from deepest to shallowest and numbered in order of installation following the original well design. Each casing component was visually inspected for any damage or defect, and all couplings were pressure tested to confirm a hydraulic seal prior to installation.

Once all well components were lowered, the water level inside the casing was monitored for over an hour to confirm hydraulic integrity. Assured that there were no leaks, the casing string was positioned for final emplacement and secured for packer inflation. Prior to packer

inflation, a pressure profile was performed to ensure proper operation and location of sample ports and magnetic collars. Schlumberger's vented inflation tool and clean water was used to inflate the packers sequentially, beginning at the bottom. Following packer inflation, a second pressure profile was conducted to ensure intervals between packers were isolated. The EDN completion report for the installation of CS-WB07 well components is provided in **Appendix C**.

APPENDIX A State of Texas Well Reports

Owner: **Camp Stanley Storage Activity** Owner Well #: CS-MW35-LGR

Address: 25800 Ralph Fair Road Grid #: 68-19-6

Boerne , TX 78015

25800 RALPH FAIR ROAD 29° 40' 43" N Well Location: Latitude: Boerne, TX 78015

098° 37' 43" W Well County: Bexar Longitude:

1178 ft. GPS Brand Used: Garmin Elevation:

Type of Work: **New Well** Proposed Use: Monitor

Drilling Date: Started: 3/15/2011 Completed: 3/21/2011

Diameter of Hole: Diameter: 7-7/8 in From Surface To 440 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 400 ft to 432 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 395 ft with 44-Bent. Grout (#sacks and material) 3rd Interval: From 395 ft to 400 ft with 4-BentonitePlug (#sacks and material)

Method Used: Pumped via Tremie

Cemented By: Lee Gebbert

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: **Surface Slab Installed**

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Casing left in well: Cement/Bentonite left in well: Plugging Info:

From (ft) To (ft) From (ft) To (ft) Cem/Bent Sacks Used

Plug Back with 4 sks Bentonite Plug from 440 to 432

Type Of Pump: No Data Well Tests: No Data

Water Quality: Type of Water: Fresh Depth of Strata: No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin, TX 78736

Driller License Number: 2525

Licensed Well Driller Signature: Lee Gebbert Registered Driller Apprentice Signature: No Data

Apprentice Registration Number: No Data Comments: No Data Well Report: Tracking #:265236 Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #265236) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 102 Limestone, Upper Glen Rose Formation 102 to 432 Limestone, Lower Glen Rose Formation 432 to 440 Shale, Bexar Shale Formation Dia. New/Used Type Setting From/To 4 New SCH 80 Flush Joint Threaded (FJT) PVC Casing set from +3 to 405 4 New 304SSWWRB FJT Screen set from 405 to 430 with 0.040-inch slot

Owner: Camp Stanley Storage Activity Owner Well #: CS-MW36-LGR

Address: 25800 Ralph Fair Road Grid #: 68-19-6

Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 40' 59" N
Boerne , TX 78015

Well County: Bexar Longitude: 098° 37' 52" W

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 3/23/2011 Completed: 3/30/2011

Completed: **Group**

Diameter of Hole: Diameter: 7-7/8 in From Surface To 385 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 372 ft to 340 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 335 ft with 33-Bent. Grout (#sacks and material)
3rd Interval: From 335 ft to 340 ft with 4-BentonitePlug (#sacks and material)

Method Used: Pumped via Tremie Cemented By: Lee Gebbert

Distance to Septic Field or other Concentrated Contamination: **No Data**

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing left in well: Cement/Bentonite left in well:

From (ft) To (ft) From (ft) To (ft) Cem/Bent Sacks Used

Plug Back with 6 sks Bentonite Plug from 385 to 372

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: Fresh

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

No Data

Driller License Number: 2525

Apprentice Registration Number:

Licensed Well Driller Signature: Lee Gebbert
Registered Driller Apprentice Signature: No Data

Comments: No Data

Well Report: Tracking #:265239

Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #265239) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 38 Limestone, Upper Glen Rose Formation 38 to 371 Limestone, Lower Glen Rose Formation 371 to 385 Shale, Bexar Shale Formation Dia. New/Used Type Setting From/To 4 New SCH 80 Flush Joint Threaded (FJT) PVC Casing set from +3 to 345 4 New 304SSWWRB FJT Screen set from 345 to 370 with 0.040-inch slot

Owner: Camp Stanley Storage Activity Owner Well #: SIW-01

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Boerne, IX 78015

Well Location: 25800 Ralph Fair Road Latitude: 29° 40' 59" N
Boerne , TX 78015

Well County: Bexar Longitude: 098° 37' 52" W

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Injection

Drilling Date: Started: 4/5/2011

Completed: **4/7/2011**

Diameter of Hole: Diameter: 7-7/8 in From Surface To 25 ft

Drilling Method: Air Rotary

Borehole Completion: Open Hole

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 13 ft with 2-Bent. Grout (#sacks and material)

3rd Interval: No Data

Method Used: Pumped from surface

Cemented By: Lee Gebbert

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data
Artesian flow: No Data

Packers: Rubber Shale Trap at 13-ft

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: **No Data**

Depth of Strata: No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc. 8834 Circle Drive

Austin , TX 78736

Driller License Number: 2525

Licensed Well Driller Signature: Lee Gebbert

Registered Driller Apprentice Signature: No Data

Apprentice Registration Number: No Data

Comments: No Data

Well Report: Tracking #:264621 Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #264621) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 25 Limestone, Lower Glen Rose Formation

Dia. New/Used Type Setting From/To 4 New Steel Casing 0.25-inch wall set from 0 to 10

29° 40' 59" N

STATE OF TEXAS WELL REPORT for Tracking #264593

Owner: **Camp Stanley Storage Activity** Owner Well #: SIW-02

Address: 25800 Ralph Fair Road Grid #: 68-19-6 Boerne , TX 78015

Well Location:

25800 Ralph Fair Road Boerne , TX 78015

Well County: Longitude: 098° 37' 52" W Bexar

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: **New Well** Proposed Use: Injection

Drilling Date: Started: 5/3/2011

Completed: 5/3/2011

Diameter of Hole: Diameter: 7-7/8 in From Surface To 27 ft

Drilling Method: Air Rotary Borehole Completion: **Open Hole**

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 10 ft with 2-Bent. Grout (#sacks and material)

Latitude:

3rd Interval: No Data

Method Used: Pumped from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data Artesian flow: No Data

Packers: Rubber Shale Trap at 10-ft

Casing or Cement/Bentonite left in well: No Data Plugging Info:

Type Of Pump: No Data Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal

Company Information: Geoprojects International, Inc. 8834 Circle Drive

Austin , TX 78736

Driller License Number: 2551

Licensed Well Driller Signature: Jose Landeros

Registered Driller Apprentice Signature: No Data Apprentice Registration Number: No Data Comments: No Data Well Report: Tracking #:264593 Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #264593) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description **0-27 Limestone, Upper Glen Rose Formation**

Owner: Camp Stanley Storage Activity Owner Well #: VEW-29

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 40' 59" N

Boerne , TX 78015

Well County: Bexar Longitude: 098° 37' 52" W

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 5/4/2011

Completed: 5/4/2011

Diameter of Hole: Diameter: 7-7/8 in From Surface To 45 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 4.5 ft to 42 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 3 ft with 1-Cement (#sacks and material)

2nd Interval: From 3 ft to 4.5 ft with 1-Bentonite (#sacks and material) 3rd Interval: From 42 ft to 45 ft with 2-Bentonite (#sacks and material)

Method Used: Poured from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: No Data

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: \mathbf{No}

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

Driller License Number: 2525

Licensed Well Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice Registration Number:

No Data

No Data

Well Report: Tracking #:264901

Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #264901) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 35 Limestone, Upper Glen Rose Formation 35 to 45 Limestone, Lower Glen Rose Formation Dia. New/Used Type Setting From/To 4 New SCH 40 PVC Flush Joint Threaded (FJT) Casing set from 0 to 5 4 New SCH 40 PVC (FJT) Mill Slot Screen set from 5 to 40 with 0.040-inch slot

Bexar

Well County:

098° 37' 52" W

STATE OF TEXAS WELL REPORT for Tracking #264904

Owner: Camp Stanley Storage Activity Owner Well #: VEW-30

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 40' 59" N

Boerne , TX 78015

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 5/5/2011

Completed: **5/5/2011**

Diameter of Hole: Diameter: 7-7/8 in From Surface To 30 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 4.5 ft to 30 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 3 ft with 1-Cement (#sacks and material)

2nd Interval: From 3 ft to 4.5 ft with 1-Bentonite (#sacks and material)

Longitude:

3rd Interval: No Data

Method Used: Poured from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: **No Data**

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: \mathbf{No}

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

No Data

Driller License Number: 2525

Comments:

Licensed Well Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice Registration Number:

No Data

Well Report: Tracking #:264904

Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #264904) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 30 Limestone, Upper Glen Rose Formation

Dia. New/Used Type Setting From/To 4 New SCH 40 PVC Flush Joint Threaded (FJT) Casing set from 0 to 5 4 New SCH 40 PVC (FJT) Mill Slot Screen set from 5 to 25 with 0.040-inch slot

Bexar

Well County:

098° 37' 52" W

STATE OF TEXAS WELL REPORT for Tracking #264904

Owner: Camp Stanley Storage Activity Owner Well #: VEW-30

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 40' 59" N

Boerne , TX 78015

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 5/5/2011

Completed: **5/5/2011**

Diameter of Hole: Diameter: 7-7/8 in From Surface To 30 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 4.5 ft to 30 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 3 ft with 1-Cement (#sacks and material)

2nd Interval: From 3 ft to 4.5 ft with 1-Bentonite (#sacks and material)

Longitude:

3rd Interval: No Data

Method Used: Poured from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: **No Data**

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: \mathbf{No}

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

No Data

Driller License Number: 2525

Comments:

Licensed Well Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice Registration Number:

No Data

Well Report: Tracking #:264904

Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #264904) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 30 Limestone, Upper Glen Rose Formation

Dia. New/Used Type Setting From/To 4 New SCH 40 PVC Flush Joint Threaded (FJT) Casing set from 0 to 5 4 New SCH 40 PVC (FJT) Mill Slot Screen set from 5 to 25 with 0.040-inch slot

Bexar

Well County:

098° 37' 52" W

STATE OF TEXAS WELL REPORT for Tracking #265243

Owner: Camp Stanley Storage Activity Owner Well #: VEW-32

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Well Location: 25800 Ralph Fair Road Latitude: 29° 40' 59" N

Boenre , TX 78015

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 4/28/2011 Completed: 4/28/2011

Completed: 4/28/201

Diameter of Hole: Diameter: 8 in From Surface To 28 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 4.5 ft to 28 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 3 ft with 1-Cement (#sacks and material)

2nd Interval: From 3 ft to 4.5 ft with 1-Bent. Grout (#sacks and material)

Longitude:

3rd Interval: No Data

Method Used: Poured from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: **No Data**

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

Driller License Number: 2551

Licensed Well Driller Signature: Jose Landeros

Registered Driller Apprentice Signature:

Apprentice Registration Number:

No Data

Comments:

No Data

Well Report: Tracking #:265243

Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #265243) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description **0-28 Limestone, Upper Glen Rose Formation** Dia. New/Used Type Setting From/To 4 New SCh 40 PVC Flush Joint Threaded (FJT) Casing set from 0 to 5

4 New SCh 40 PVC (FJT) Mill Slotted Screen set from 5 to 25 with 0.040-inch slot

29° 40' 58" N

STATE OF TEXAS WELL REPORT for Tracking #265244

Owner: Camp Stanley Storage Activity Owner Well #: VEW-33

Address: 25800 Ralph Fair Road Grid #: 68-19-6
Boerne , TX 78015

Well Location: 25800 Ralph Fair Road

Boerne , TX 78015

Well County: Bexar Longitude: 098° 37' 52" W

Elevation: 1220 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 5/4/2011

Completed: **5/4/2011**

Diameter of Hole: Diameter: 8 in From Surface To 32 ft

Drilling Method: Air Rotary

Borehole Completion: Gravel Packed From: 4.5 ft to 32 ft

Gravel Pack Size: 8/16

Annular Seal Data: 1st Interval: From 0 ft to 3 ft with 1-Cement (#sacks and material)

2nd Interval: From 3 ft to 4.5 ft with 1-Bent. Grout (#sacks and material)

Latitude:

3rd Interval: No Data

Method Used: Poured from Surface Cemented By: Evan Schaefer TDLR # 58772

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data
Artesian flow: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: **No Data**Depth of Strata: **No Data**

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained undesirable constituents: \mathbf{No}

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

Driller License Number: 2551

Licensed Well Driller Signature: Jose Landeros

Registered Driller Apprentice Signature:

Apprentice Registration Number:

No Data

Comments:

No Data

Well Report: Tracking #:265244 Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #265244) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description **0-32 Limestone, Upper Glen Rose Formation** Dia. New/Used Type Setting From/To 4 New SCh 40 PVC Flush Joint Threaded (FJT) Casing set from 0 to 5

4 New SCh 40 PVC (FJT) Mill Slotted Screen set from 5 to 25 with 0.040-inch slot

Owner: Camp Stanley Storage Activity Owner Well #: B3-EXW-03

Address: 25800 Ralph Fair Road Grid #: 68-20-1 Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 42' 36" N

Boerne , TX 78015

Well County: Bexar Longitude: 098° 36' 55" W

Elevation: 1230 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 5/18/2011 Completed: 5/27/2011

Diameter of Hole: Diameter: 12-3/4 in From Surface To 65 ft

Diameter: 7-7/8 in From 65 ft To 350 ft

Drilling Method: Air Rotary

Borehole Completion: Open Hole

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 63 ft with 15-Bent. Grout (#sacks and material) 3rd Interval: From 63 ft to 65 ft with 1-Bentonite Plu (#sacks and material)

Method Used: Pumped via Tremie Cemented By: Lee Gebbert

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: Rubber Shale Trap at 65-ft

Plugging Info: Casing left in well: Cement/Bentonite left in well:

From (ft) To (ft) From (ft) To (ft) Cem/Bent Sacks Used

Back Plugged with 6 sks Bentonite Hole Plug from 350 to 340

Type Of Pump: Submersible

Depth to pump bowl: 333 ft

Well Tests: No Data

Water Quality: Type of Water: Fresh

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

Driller License Number: 2525

Licensed Well Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice Registration Number:

No Data

Well Report: Tracking #:265231 Page 2 of 2

Comments: No Data

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #265231) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 6 Limestone, Upper Glen Rose Formation 6 to 321 Limestone, Lower Glen Rose Formation 321 to 350 Shale, Bexar Shale Formation Dia. New/Used Type Setting From/To 8 New SDR-17 PVC Certalock Casing set from +3 to 65

Owner: Camp Stanley Storage Activity Owner Well #: B3-EXW-04

Address: 25800 Ralph Fair Road Grid #: 68-20-4
Boerne , TX 78015

Well Location: 25800 RALPH FAIR ROAD Latitude: 29° 42' 26" N

Boerne , TX 78015

Well County: Bexar Longitude: 098° 36' 56" W

Elevation: 1217 ft. GPS Brand Used: Garmin

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 6/1/2011 Completed: 6/14/2011

Completed. W14/201

Diameter of Hole: Diameter: 12-3/4 in From Surface To 55 ft

Diameter: 7-7/8 in From 55 ft To 335 ft

Drilling Method: Air Rotary

Borehole Completion: Open Hole

Annular Seal Data: 1st Interval: From 0 ft to 2 ft with 1-Cement (#sacks and material)

2nd Interval: From 2 ft to 55 ft with 27-Bent. Grout (#sacks and material)

3rd Interval: **No Data**Method Used: **Pumped via Tremie**Cemented By: **Lee Gebbert**

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: Rubber Shale Trap at 55-ft

Plugging Info: Casing or Cement/Bentonite left in well: **No Data**

Type Of Pump: Submersible

Depth to pump bowl: 328 ft

Well Tests: No Data

Water Quality: Type of Water: Fresh

Depth of Strata: **No Data** Chemical Analysis Made: **No**

Did the driller knowingly penetrate any strata which contained undesirable constituents: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Information: Geoprojects International, Inc.

8834 Circle Drive Austin , TX 78736

No Data

Driller License Number: 2525

Licensed Well Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice Registration Number:

No Data

Comments:

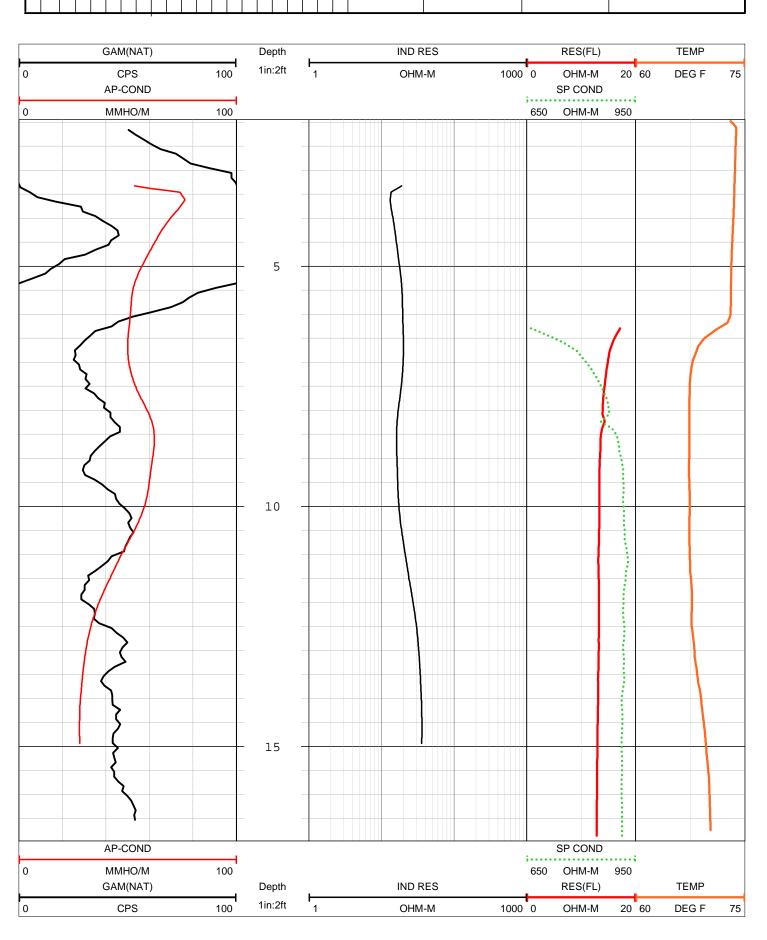
Well Report: Tracking #:265233 Page 2 of 2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

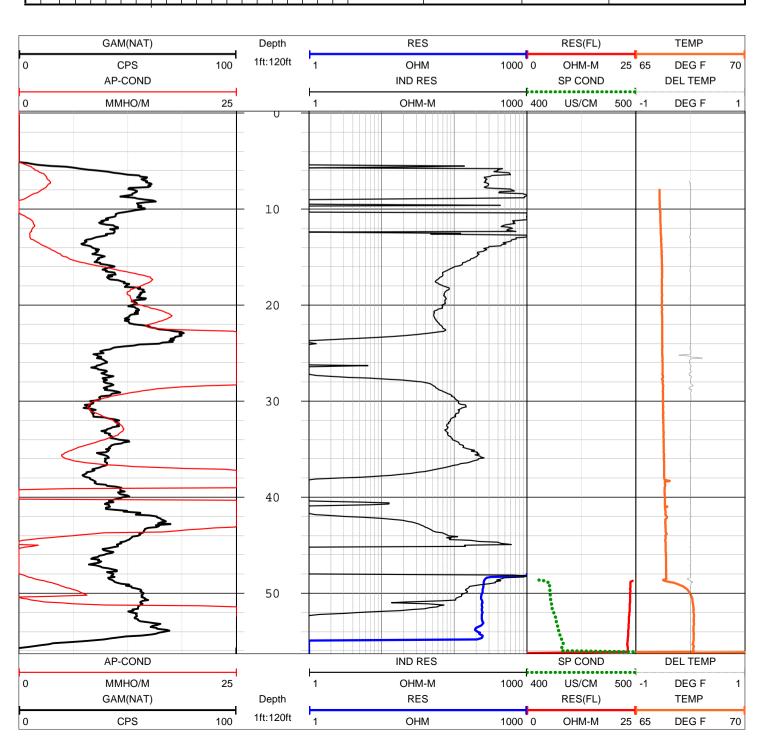
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

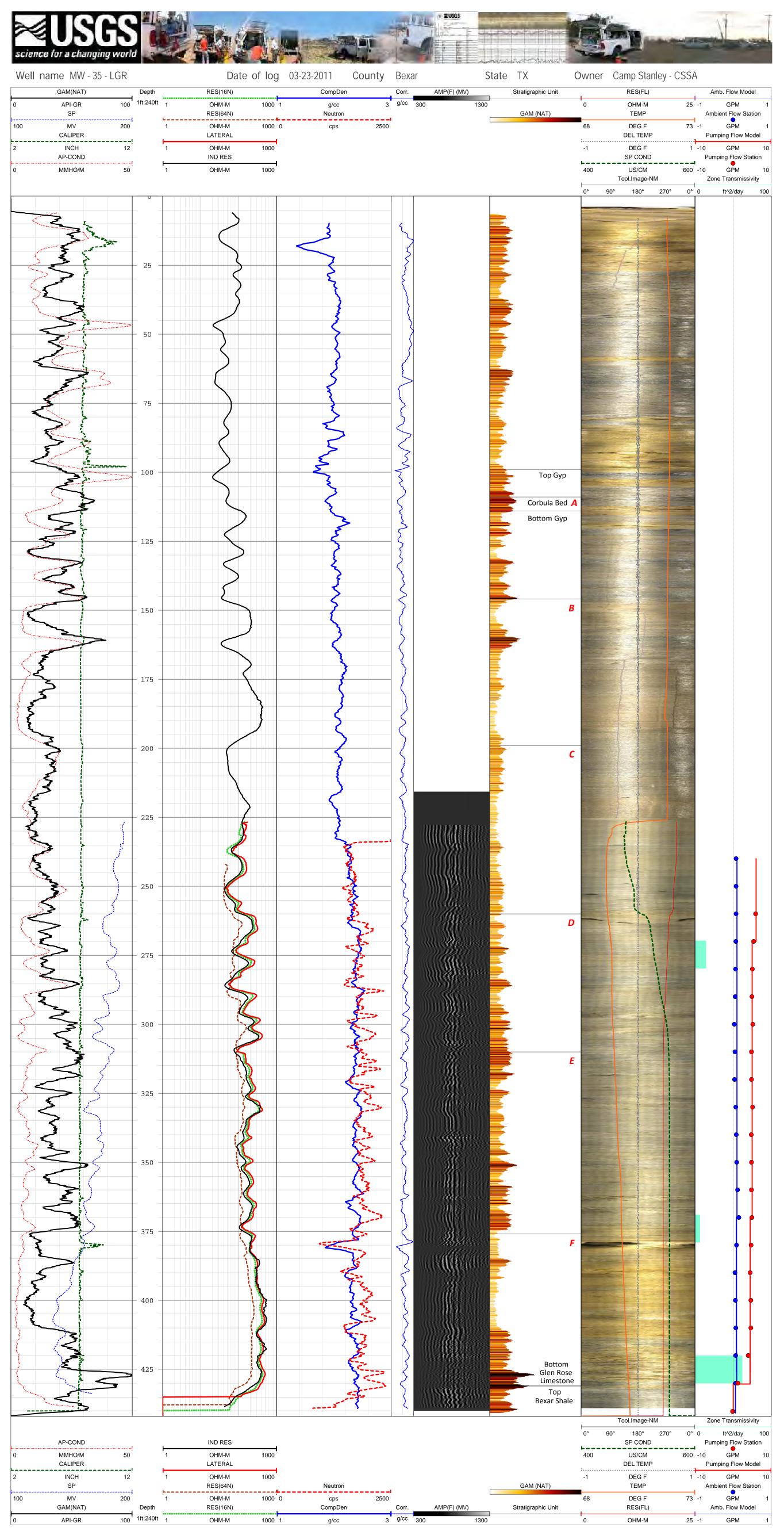
Please include the report's Tracking number (Tracking #265233) on your written request.

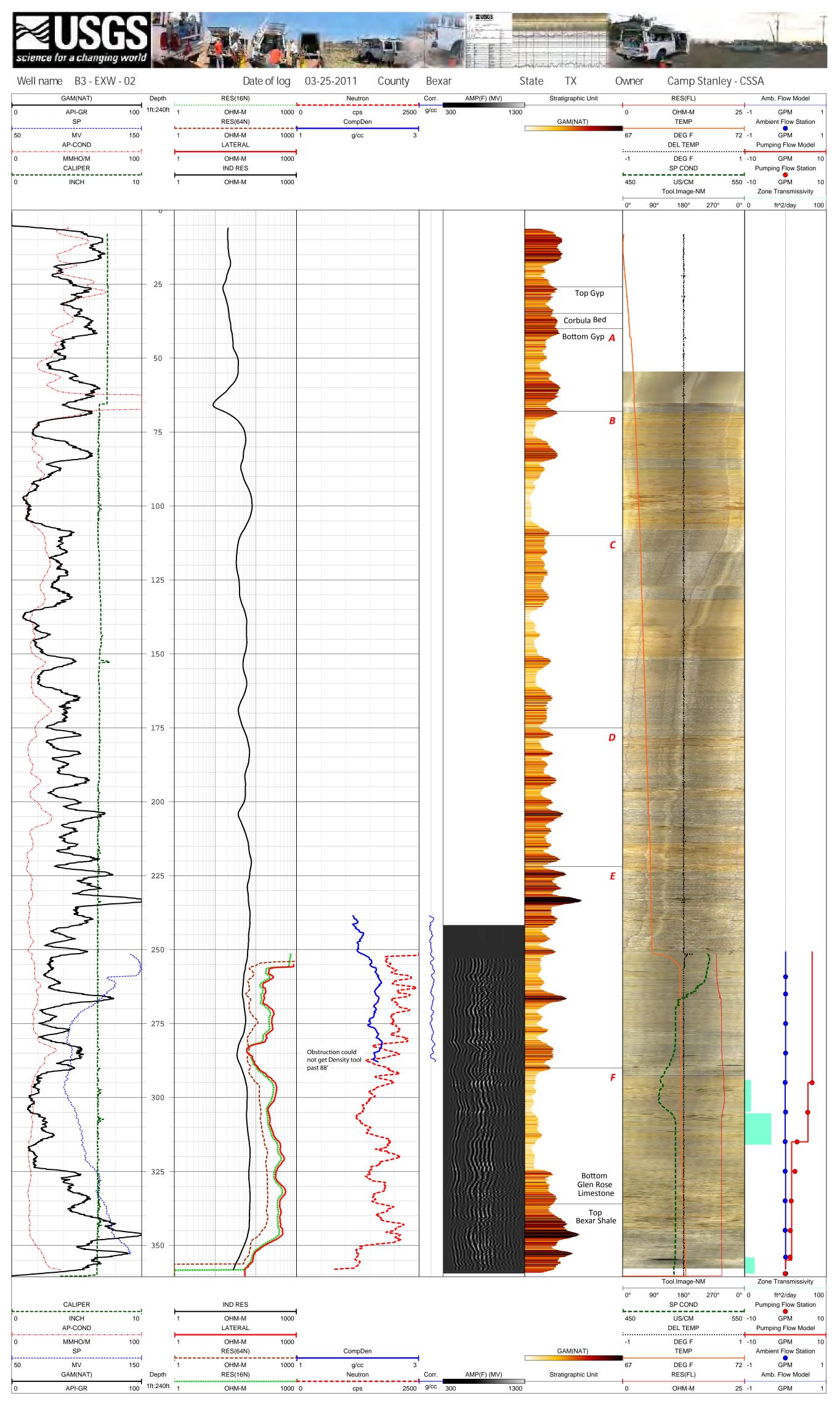
Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

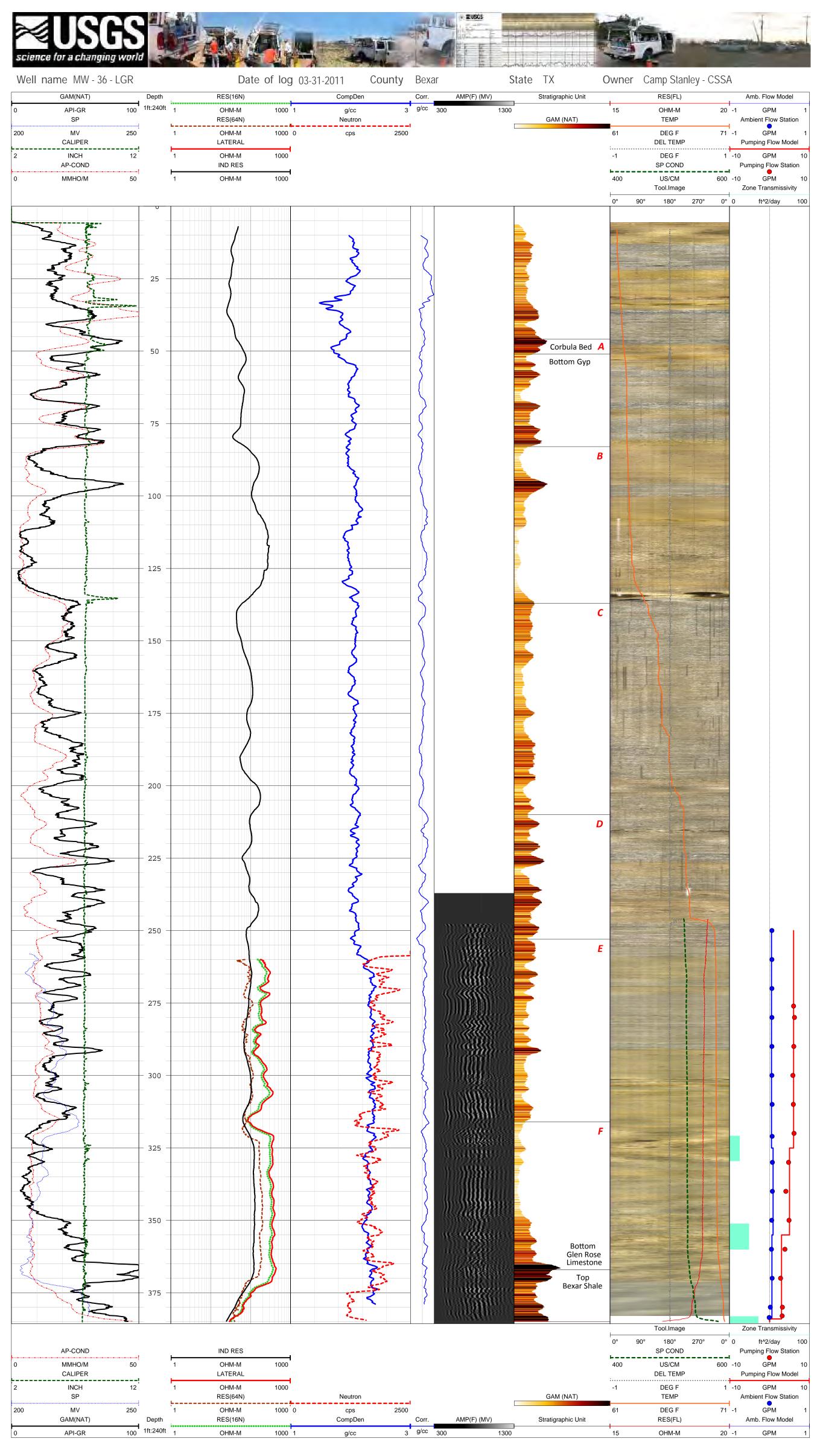

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

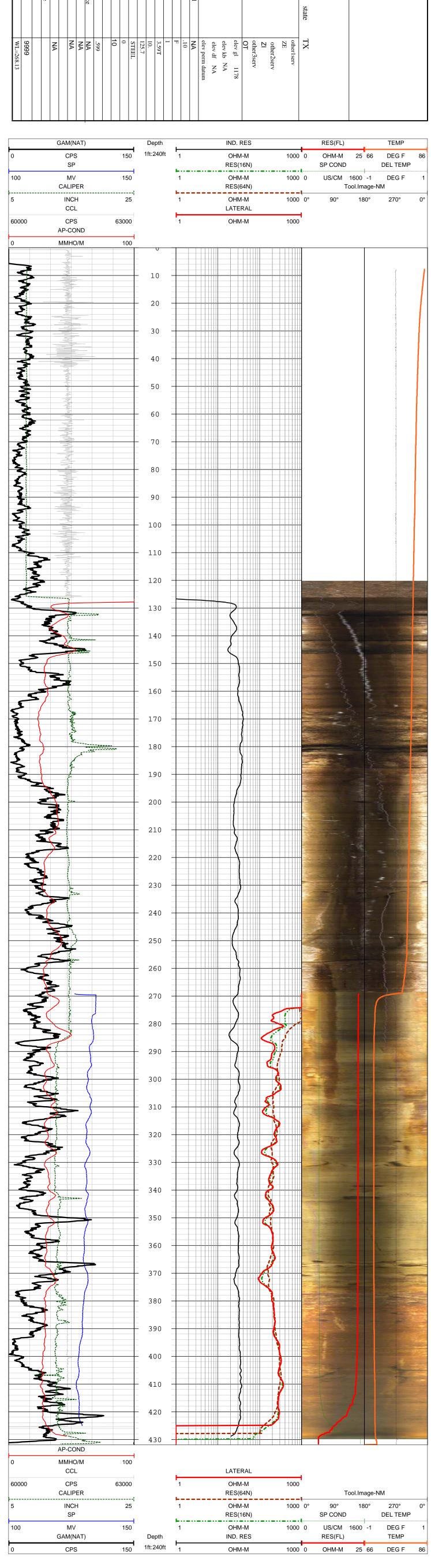

From (ft) To (ft) Description 0 to 319 Limestone, Lower Glen Rose Formation 319 to 335 Shale, Bexar Shale Formation Dia. New/Used Type Setting From/To 8 New SDR-17 PVC Certalock Casing set from +3 to 55

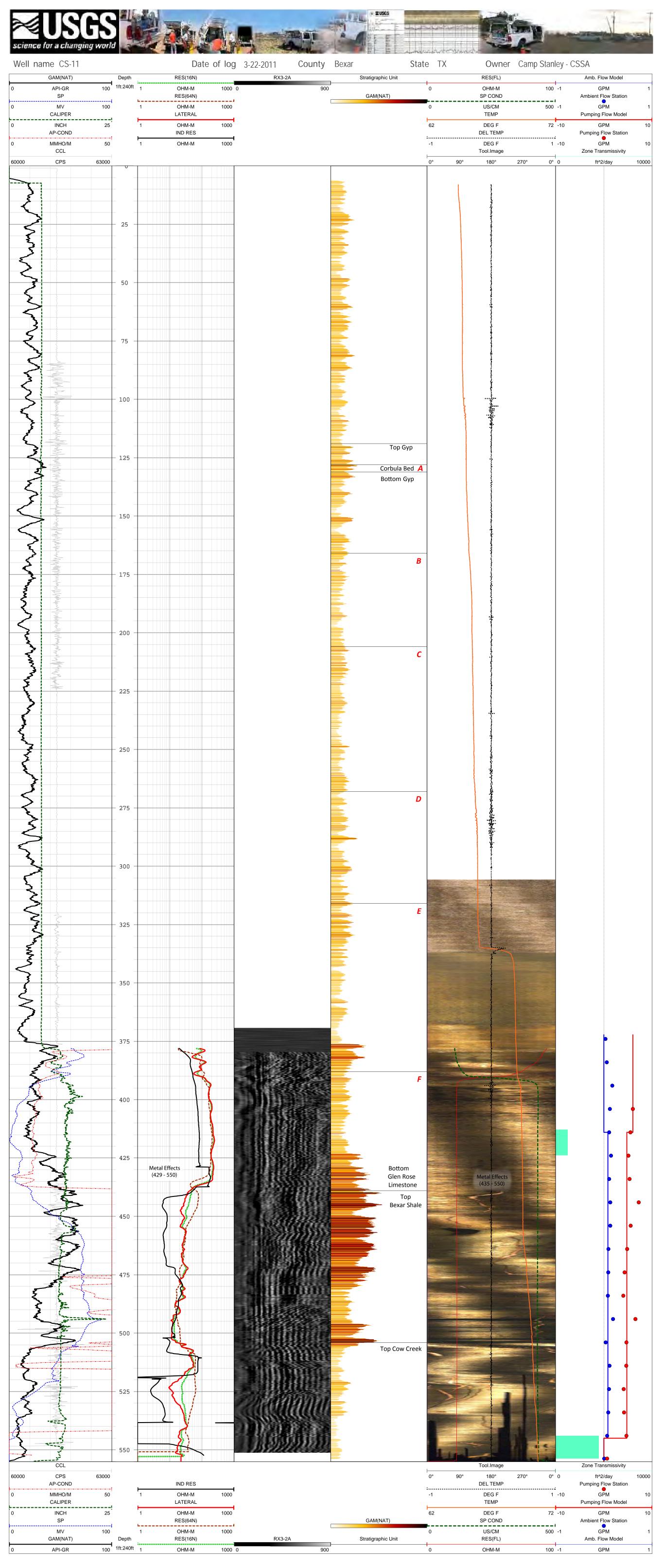

APPENDIX B Geophysical Logs

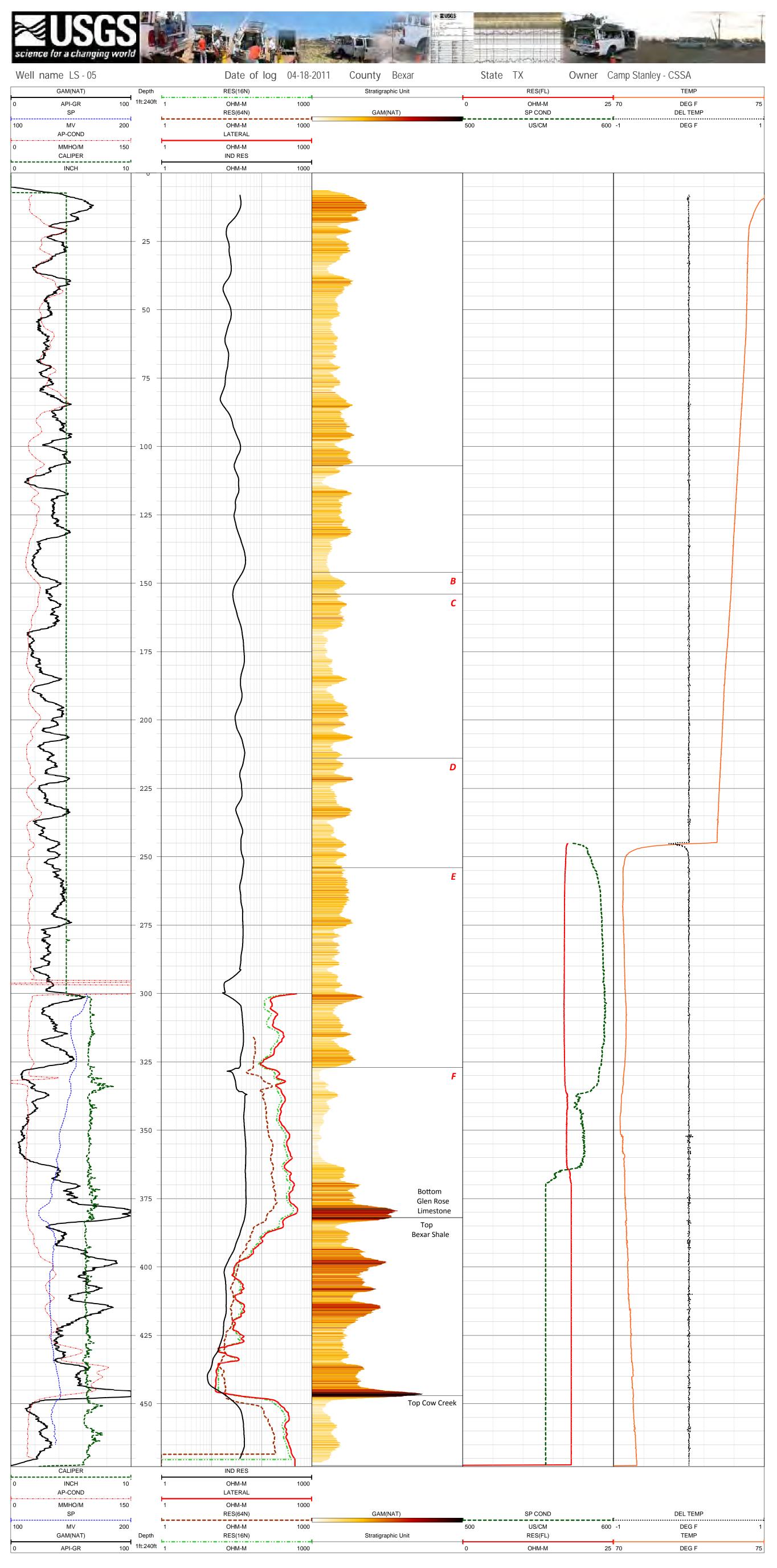

Company CSSA - U.S. GEOLOGICAL SURVEY USGS Company CSSA - U.S. GEOLOGICAL SURVEY USGS Company CSSA MW - 27 Field office TWSC - AUSTION Inteld office TWSC - AUSTION Department datum GL UNIQUE WELL ID Other1serv PROVINCE PROVINCE FOUNDINGE Other3serv logament from GL UPDN Itime circ stopped Other3serv logatication GL PROVINCE Other3serv logatication GL IT Other3serv logatication GL IT Other3serv logatication IT Itime circ stopped Other3serv logatication IT Sesting diameter Other3serv logatication IT Sys version Other3serv logatication IT Sys version Other3serv logation time IT Sys version Other3serv logation time IT Sys version	Science for a changing world Science for a changing world CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 Field CSSA MW - 27 Field CSSA County BEXAR Ingunit FI LOCATION Beas from GL The eas from eter feet or meter feet or	WI : 7.05 ft below lsd	remarks 1		remarks2
Company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27	Science for a changing world COMPANY		elect cutoff		fluid ph
Company CSSA - U.S. GEOLOGICAL SURVEY	science for a changing world Science for a changing world		temp mud cake		deltat fluid
Company CSSA - U.S. GEOLOGICAL SURVEY	Science for a changing world COMPANY CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 field CSSA COUNTY BEXAR UNIQUE WELL ID LOCATION PROVINCE LOCATION PROVINCE LOCATION PROVINCE LOCATION PROVINCE LOCATION PROVINCE LOCATION PROVINCE LOCATION LOCATION LOCATION LOCATION PROVINCE LOCATION PROVINCE LOCATION LOCATION LOCATION LOCATION PROVINCE LOCATION		temp mud filtrate		deltat matrix
Company CSSA - U.S. GEOLOGICAL SURVEY	Science for a changing world Science for a changing world		res mud cake		neutron matrix
Company CSSA - U.S. GEOLOGICAL SURVEY	Science for a changing world company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 filed CSSA county BEXAR state UNIQUE WELL ID cong units or cps UNIQUE WELL ID county BEXAR coun		res mud filtrate		density matrix
company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27	science for a changing world company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field office TWSC - AUSTIN latitude 1998 36 53.10 company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR state UNIQUE WELL ID LOCATION long unit FT lang unit FT lang unit FT lang unit FT long units or cps long units		mud temp		mag declination
company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27	science for a changing world company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 longitude -098 36 53.10 longitude proposed longitude longitude longitude longitude received longitude received longitude lo		mud res		temp gradient
company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27	science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY		mud sample source	mp	mean surface ter
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 well MW - 27 field office 29 42 32.90 field office 29 42 32.90 latitude -098 36 53.10 latitude -098 36 53.10 latitude -098 36 53.10 latitude -098 36 53.10 longitude -098 36	science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY	503	truck cal num		Name Pm AP
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 well MW - 27 field office TWSC - AUSTIN field office TWSC - SA county BEXAR county CST county CST county BEXAR county BEXAR county CST county CST casing diameter casing thick casing thick bit size county CST casing thick casing th	Science for a changing world company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR count		fluid viscosity		fluid density
company CSSA - U.S. GEOLOGICAL SURVEY Company CSSA - U.S. GEOLOGICAL SURVEY	science for a changing world company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR count	NK	bit size	NA	tool serial num
company CSSA - U.S. GEOLOGICAL SURVEY Company CSSA - U.S. GEOLOGICAL SURVEY	Science for a changing world Science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 Field CSSA County BEXAR Inig unit FT reas from GL Ing unit FT reas from GL Indiller I7 Spe id UP/DN I7 Ing unit P/DN I7 Casing dameter OCST CORDINAL Company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 Itine circ stopped In field office TWSC - AUSTIN In the circ stopped In time circ stop	40	casing thick	THOMAS	recorded by
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR township range rmanent datum GL gring unit FT I meas from GL gring unit FT I meas from GL gring id type id phth driller pth driller grop or Casing diameter grop company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA COUNTY BEXAR township range time circ stopped grange fine circ stopped sys version gys version casing diameter casing bottom	Science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 Field CSSA County BEXAR Count	PVC	casing type	CST	time
company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27	Science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY Well MW - 27 Field CSSA County BEXAR County BEXAR County BEXAR Inceas from GL Inceas from GL THE INCEATION PROVINCE Inceas from GL THE INCEATION Inceas from GL THE INCEATION Inceas from GL THE Inceas from GL Section Township Frange State Stat	7'	casing bottom	0	log top
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR county CSSA county CS	science for a changing world Company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps UNIQUE WELL ID meas from GL ging unit FT Incas from GL VIE	2"	casing diameter	17'	log bottom
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 well MW - 27 well MW - 27 field office county BEXAR township range tow	Science for a changing world Scienc		sys version	H2O	fluid type
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR UNIQUE WELL ID latitude longitude eng units g meas from GL section township range rmanent datum GL gdirection GL vppe id CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA UNIQUE WELL ID LOCATION range time circ stopped log sample int feet or meter	science for a changing world CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 filed CSSA County BEXAR UNIQUE WELL ID LOCATION geneas from GL geneas from GL geneas from GL TIME O2-16-2011 LOCATION UP/DN UP/DN Indiction UP/DN Indiction UP/DN Unine circ stopped Indiction Iog sample int		sys serial	17'	depth driller
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR field office 29 42 32.90 longitude -098 36 53.10 rmanent datum GL geness from GL attraction GL company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA UNIQUE WELL ID LOCATION proposition township range fine type or cps LOCATION range fine type or cps LOCATION field CSSA UNIQUE WELL ID county BEXAR township range fine type or cps LOCATION giffice type or cps LOCATION fine circ stopped log sample int log sample int	science for a changing world Scienc		feet or meter		file type id
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 well CSSA field CSSA county BEXAR state UNIQUE WELL ID longitude ong units or cps gmeas from GL gmeas from GL vertical company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR township range range range range time circ stopped	science for a changing world File type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps gmeas from GL VIE O2-16-2011 time circ stopped Science for a changing world time circ stopped Science for a changing world Science for a changing world time circ stopped	0.1	log sample int	UP/DN	log direction
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 well CSSA well CSSA field CSSA county BEXAR county BEXAR state UNIQUE WELL ID longitude ong units or cps LOCATION province rmanent datum GL g meas from GL meas from GL company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR township range	file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps g meas from GL file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps LOCATION PROVINCE section township range		time circ stopped	02-16-2011	DATE
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR UNIQUE WELL ID latitude longitude -098 36 53.10 cmanent datum GL gmeas from GL gmeas from GL gmeas from GL company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA UNIQUE WELL ID cother1 serv other2ser other3ser elev gl elev kb N elev df elev gl	science for a changing world Science for a changing world	elev perm datum1219		GL	
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field office TWSC - AUSTIN field office 29 42 32.90 latitude longitude -098 36 53.10 eng units or cps LOCATION PROVINCE province other1serv other2ser other3ser elev g1 elev kb N	file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps UNIQUE WELL ID LOCATION PROVINCE section township range elev gl elev kb N elev kb N elev kb N			FT	logging unit
file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps LOCATION FROVINCE Well MW - 27 UNIQUE WELL ID LOCATION FROVINCE wection township range elev gl	file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps UNIQUE WELL ID FROVINCE Company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 UNIQUE WELL ID Other1serv other2ser other2ser other3ser			GL	
file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps UNIQUE WELL ID LOCATION PROVINCE section township range	file type ORIGINAL field office TWSC - AUSTIN latitude 29 42 32.90 longitude -098 36 53.10 eng units or cps section township range Science for a changing world Science for a changing world Science for a changing world State Table 1 or 1 o				permanent datum
company CSSA - U.S. GEOLOGICAL SURVEY de 29 42 32.90 dude -098 36 53.10 mits or cps UNIQUE WELL ID PROVINCE	pe ORIGINAL office TWSC - AUSTIN de 29 42 32.90 cude -098 36 53.10 mits or cps UNIQUE WELL ID LOCATION State The original of the company o	other3serv		eng u	file ty
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR UNIQUE WELL ID COMPANY CSSA - U.S. GEOLOGICAL SURVEY MW - 27 Field CSSA COUNTY COMPANY CSSA - U.S. GEOLOGICAL SURVEY COMPANY COMPAN	ORIGINAL TWSC - AUSTIN 29 42 32.90 -098 36 53.10 or cps UNIQUE WELL ID CORRIGINAL State ORIGINAL TWSC - AUSTIN 29 42 32.90 -098 36 53.10 SCIENCE for a changing world SCIENCE for a changing world SCIENCE for a changing world STATE OF THE ORIGINAL SURVEY SCIENCE for a changing world STATE OF THE ORIGINAL SURVEY STATE OF THE O	other2serv		nits (pe office
Company CSSA - U.S. GEOLOGICAL SURVEY	GINAL WSC - AUSTIN 29 42 32.90 8 36 53.10 See UNIQUE WELL ID SEE THE STATE OF THE	·		or cp	ORI T
company CSSA - U.S. GEOLOGICAL SURVEY well MW - 27 field CSSA county BEXAR state	Science for a changing world C - AUSTIN 2 32.90 6 53.10 county BEXAR State	other1serv		os	IGI WS
AUSTIN 90 10 company well I field CSSA	AUSTIN 90 10 company well field CSSA	TEXAS		county	NAL C - A
company well	TIIN company well well			field C	AUS'
company	science for		W - 27		
			SSA - U.S. GEOLOGICAL SURVEY		
	TENT OF Z.		SGS	ROHALITA	O.U.S DEPAR
					MENT OF

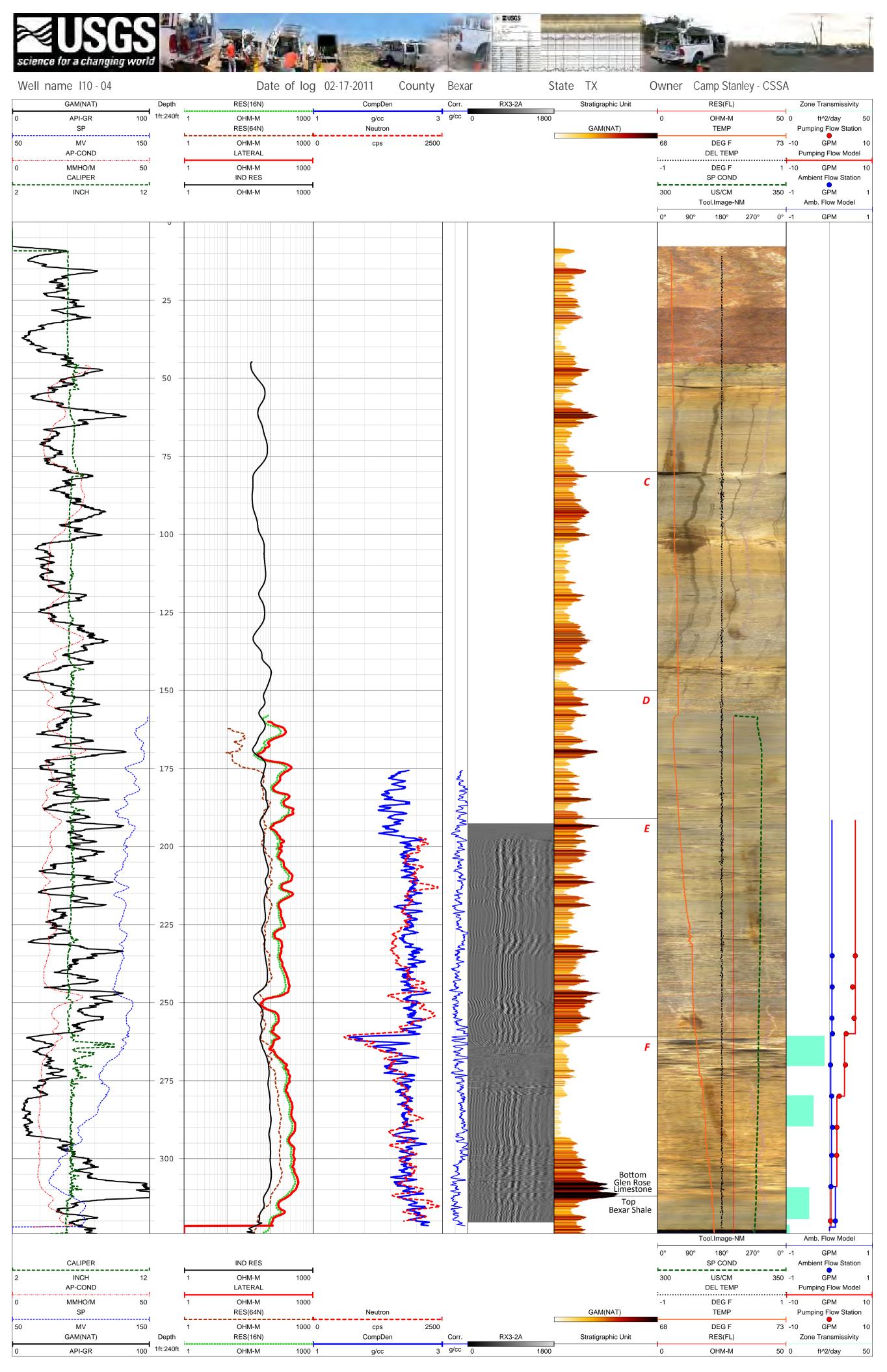


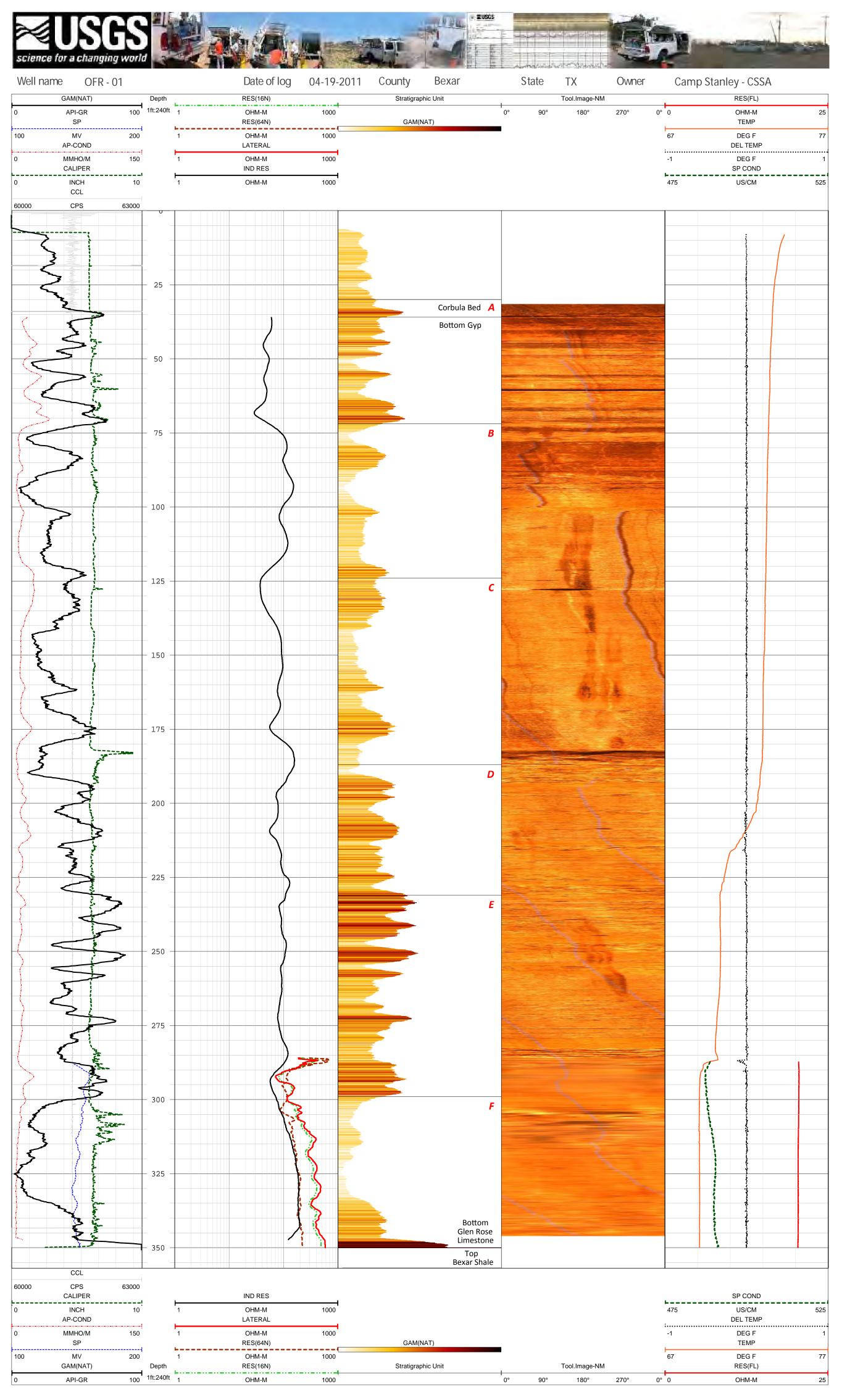
remarks2 N	fluid ph	deltat fluid	deltat matrix 44	neutron matrix D(density matrix 2.1	mag declination 0	temp gradient 0	mean surface temp	Name Prn AP	fluid density	tool serial num	recorded by Ti	time 10		log bottom		depth driller 56		log direction U	DATE 02	drl meas from NA	logging unit 302	log meas from LSD	permanent datum LSD	fi fi la		ype offi ide tud	ice le	ORI TV 29 -09	GIN WS0 42 8 36	ANY NAL C - A 35.0 6 44.	AUS'		S		COGICAL SUR	* * * * * * * * * * * * * * * * * * * *	A A A A A A A A A A A A A A A A A A A	BIMENT OF THE	<u> </u>
NONE			4	DOLOMITE	2.85						919	THOMAS	10:36:	0.20	56.30	H2O	5	8144A		02/16/11					section NA township NA					UNIQUE WELL ID	county BEXAR	field CAMP STANLEY	well MW-32	company CSSA - U.S. G		science for a changing world				
remarks1	elect cutoff	temp mud cake	temp mud filtrate	res mud cake	res mud filtrate	mud temp	mud res	mud sample source	truck cal num	fluid viscosity	bit size	casing thick	casing type	casing bottom	casing diameter	sys version	sys serial	feet or meter	log sample int	time circ stopped					range NA	•					state			U.S. GEOLOGICAL SURVEY	,) WORLD			j)
	9999			NA		NA	Z	NA	0.50081		6.125	0	PVC	26	10.	3.58R	1	F	.10	NA	elev perm datum1282	elev df NA	elev kb NA	elev gl 1282	ZE	other3serv	ZI	other2serv	ZW	other1serv	TX									










re	tlu	3 3	de	de	ne	de	ma	te1	Ĭ	ž	flı	too	rec	time	log	log	flui	de	file	log	DA	drl	301	301	Į.	nei	SE	RV	ICE	C	ON	IP	۱N۲	7 L	JSG	S					
remarks2	fluid ph	:	deltat fluid	deltat matrix	neutron matrix	density matrix	mag declination	temp gradient	mean surface temp	Name Prn AP	fluid density	tool serial num	recorded by	le	log top	log bottom	fluid type	depth driller	file type id	log direction	DATE	drl meas from	logging unit	log meas from	permanent damm	rmar	file	ty	pe	OI	RIC	ΞIN	AL					_	.u.sñ	EPARIMENT OF 7	
ks2	Ď		fluid	matı	n m	y me	clin	radi	surf	Prn	lensi	ial ni	d by			mo	ре	irille	bi e	ction		s fro	uni.	as fro		ent (office					US'	TIN			TO TOGICAL SURVE	* *	* APIE	
		'	-	Σ. Ε	atrix	atrix	atio	ient	ace 1	ΑP	ity	mm						r		-		Ř	•	m	au	datu	lati						08.				(:	ري مور×		> *肾	1
							ľ		emp													NA		Ļ	-								25.				/	55		* * / F	/
				_					ľ	<u> </u>	-	-	_					Ļ	_	L			302	LSD	5 5	LSD		_	ude 					3				124	F. ROIR	TIM 3	
				44	DOI	2.85	0	0				4393	HT	14:08:	0	43	H2O	434	8144A	U	06/2							g u	nits (or (cps		E								
					DOLOMITE							3	THOMAS	8:	0.90	432.30			A		06/22/11						section NA township NA		PROVINCE	LOCATION	TOCATION TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TH	UNIOUE WELL ID	county BEXAR	field CSSA	well CS-MW	company USGS		science for a changing world			
remarks1	elect cutoff		temp mud cake	temp mud filtrate	res mud cake	res mud filtrate	mud temp	mud res	mud sample source	truck cal num	fluid viscosity	bit size	casing thick	casing type	casing bottom	casing diameter	sys version	sys serial	feet or meter	log sample int	time circ stopped						ip NA range NA								CS-MW-01-LGR		•	anging world		つつつ	
				,					e																								state								
WL=268.13	9999				NA		NA	NA	NA NA	.599		10	0	STEEL	125.7	10.	3.59T	1	'n	.10	NA	elev perm datum	elev df NA			elev gl 1178	OT	other3serv	other2serv	2	ZE	other1serv	TX								
0					((M(N CPS	3)				15	—			pth 240		 -	1					OH	НМ	ES-M				1(000	0		OHN	(FL) И-М OND	25 6	66	TEI DEC	G F	86
100)						ΜV						15	50					١	••• 1	•••				-	` _ HM		•••		•••		000	0				 00 -	.1	DE		1
							LIP		2											•							4N)						ŭ		00,		l.Ima				·
5							NCI CCI						2	¦ 25						1	-					HM TEF	-M RAL				10	000	0°		9	0°	180	0	270)°	0°
600	00						CPS)			6	300	00					•	1					OF	НМ	-M				10	000	•								
)						M۱	ИHC	D/IV	1				1(00																											
						-	<u>~</u>		,								U																								
_	_	_				-																																			
-	5	>				=									_	1	0		#						+	+		₩		+			1						1		
-	Ş	•																	+														1								- [
4																_	_		+														1						- Andrews		
	₹	1				=									-	2	0		Ŧ											1									arrange and a		
	7	Z			-	i		=																									1						to and the state of the state o		
_	\$	-	_												-	3	0		Ŧ									₩					1						Personal		
	W CAN A	}		_											_	4	0													100											
1							MANINIME									_	0																								

Logs: GAMMA, CALIPER

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121 Water Well Logging & Video Recording Services

Project: CAMP STANLEY BUILDING 90

Client:

GEO PROJECTS

Location:

Date: 05-06-11

State: TX County: BEXAR

Drilling Contractor: GEO PROJECTS

Driller T.D. (ft): 26.5'

Logger T.D. (ft) : 27' Date Drilled: NA

Depth Ref: G.L. Elevation: NA

J	2	1	RUN	
		8	RUN BIT SIZE (in)	ВІТ
		. 0	FROM (ft)	BIT RECORD
		26.5	TO (ft)	
		NONE	SIZE/WGT/THK FROM (ft)	
			FROM (ft)	CASING RECORD
			TO (ft))RD
	1		1	I

ω

Hole Medium:

Viscosity:

Drill Method: AIR ROTARY

Weight: Mud Type:

Fluid Level (ft): 25'

Time Since Circ:

<u>a</u>:: Deg C

Unit/Truck: 05

Logged by: Kelly Tuten

	CALIPER	GAMMA	LOG TYPE	Witness: Samantha Elliot
				amantha Ell
			RUN NO	iot
	15	15	RUN NO SPEED (ft/min)	
٠	26	21.5	FROM (ft)	
	5.2	.7	TO (ft)	
	20	20	FT./ IN.	

	Gamma		Depth	I.	Caliper		
0	cps	100	1ft:120ft	5	In		10
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		_			\(\)	A
						}	
			- 20 -			}	
						1	

Logs: **GAMMA, CALIPER**

Water Well Logging & Video Recording Services

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY BUILDING 90 Client: **GEO PROJECTS**

Location:

Date: County: BEXAR 05-06-11

State: TX

Elevation: NA Drilling Contractor: GEO PROJECTS Driller T.D. (ft): 45' Logger T.D. (ft): 45'

Depth Ref: G.L.

BIT RECORD

Date Drilled: NA

CASING RECORD

RUN BIT SIZE (in) FROM (ft) ထ္ 0 TO (ft) 45 SIZE/WGT/THK | FROM (ft) NONE TO (ft)

ω N

Hole Medium:

Viscosity:

Drill Method: AIR ROTARY

Weight:

Fluid Level (ft): 41.7'

Mud Type: Deg C Time Since Circ:

Unit/Truck: 05

<u>a</u>::

Logged by: Kelly Tuten

Witness: Samantha Elliot

LOG TYPE CALIPER GAMMA RUN NO SPEED (ft/min) 5 5 FROM (ft) 39.3 43.8 TO (ft) <u>.</u> . ი FT./IN. 20 20

\circ
``
O
_
≺
=
\rightarrow
_
OD.
<u>=</u>
_
_
ഗ
•

	Gamma		Depth	-			iper			
)	cps	100	1ft:120ft	0		li	n			12
			_							
V	3							}		
								}		
	W									
			– 20 –					}		
			40					}		
			– 40 –					}		

Logs: **GAMMA, CALIPER**

Water Well Logging & Video Recording Services

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY BUILDING 90 GEO PROJECTS County: BEXAR Date: 05-06-11

Client:

Location:

State: TX

Drilling Contractor: GEO PROJECTS Driller T.D. (ft): 30'

Logger T.D. (ft): 30'

Date Drilled: NA

CASING RECORD

Depth Ref: G.L. Elevation: NA

BIT RECORD

رد.	2	1	RUN
		& <u>"</u>	RUN BIT SIZE (in)
		. 0	FROM (ft)
		30	TO (ft)
		NONE	SIZE/WGT/THK
			FROM (ft)
			TO (ft)

ω N

Fluid Level (ft): NA

Time Since Circ:

<u>a</u>:: Deg C

Hole Medium:

Viscosity:

Drill Method: AIR ROTARY

Weight: Mud Type:

Unit/Truck: 05

Logged by: Kelly Tuten

-					
20	5.1	29	15		CALIPER
20	.6	24.5	15	_	GAMMA
FT./ IN.	TO (ft)	FROM (ft)	RUN NO SPEED (ft/min)	RUN NO	LOG TYPE
		-		liot	Witness: Samantha Elliot

		Gamma		Depth				Cal	liper			
		cps	100	1ft:120ft	0			I	n			12
	7											
				Ļ _						,		
•	5									ζ		
	\geq									}		
	_ }			L _						}		
										>		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									7		
	ح کے									\		
	<u> </u>			Γ -								
	5									(
										1		
	\geq			20 -						(
)		
										<		
				† -								
										7		
								l .		ע		

Water Well Logging & Video Recording Services

Logs:

GAMMA, CALIPER

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY BUILDING 90 Client: **GEO PROJECTS**

Location:

County: BEXAR Date: 05-06-11

State: TX

RUN BIT SIZE (in) FROM (ft) Depth Ref: G.L. Elevation: NA Drilling Contractor: GEO PROJECTS ထ္ BIT RECORD 0 TO (#) 45 SIZE/WGT/THK | FROM (ft) NONE Driller T.D. (ft): 45' Logger T.D. (ft): 45' Date Drilled: NA CASING RECORD

ω N

Mud Type: Deg C Time Since Circ:

Hole Medium:

Viscosity:

Drill Method: AIR ROTARY

Weight:

<u>a</u>::

Logged by: Kelly Tuten

LOG TYPE Witness: Samantha Elliot CALIPER **GAMMA** RUN NO SPEED (ft/min) 5 5 FROM (ft) 39.3 43.8 TO (ft) 4.9 4

VELL NO. VEW-31		12		
AMMA, CALIPER				
1 e: 05-06-11				
inty: BEXAR ie: TX			>	
D. (ft): 45'	Caliper	In		
.D. (ft) : 45' led: NA	С			
ASING RECORD				
FROM (ft) TO (ft)				
Fluid Level (ft): 39.7'				
Time Since Circ:				
C		4		
Unit/Truck: 05	Depth	1ft:120ft	20	- 40 -
1 (ft) TO (ft) FT./ IN.		100		
	Gamma	cps		
			May my	,5
		0		

Logs: **GAMMA, CALIPER**

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121 Water Well Logging & Video Recording Services

Project: CAMP STANLEY BUILDING 90 Client:

GEO PROJECTS

Date: 05-06-11

County: BEXAR

State: TX

Drilling Contractor: GEO PROJECTS

Location:

Depth Ref: G.L. Elevation: NA

BIT RECORD

Driller T.D. (ft): 35'

Logger T.D. (ft): 27.4'

Date Drilled: NA

CASING RECORD

RUN BIT SIZE (in) FROM (ft) TO (#) 35 SIZE/WGT/THK | FROM (ft) NONE TO (ft)

ထ္

0

Drill Method: AIR ROTARY Weight: Mud Type:

Hole Medium:

Viscosity:

ω N

Time Since Circ:

Fluid Level (ft): 17.2'

<u>a</u>::

GENERAL DATA Deg C

Unit/Truck: 05

Logged by: Kelly Tuten

LOG TYPE Witness: Samantha Elliot CALIPER GAMMA RUN NO SPEED (ft/min) 5 5 FROM (ft) 21.9 26.4 TO (ft) 5.2 .7 FT./IN. 20 20

			-							
		Gamma		Depth	1		Cali	per		
0		cps	100	1ft:120ft	4		Ir	1		12
	W W									
								3		
	***	A						}		
	>			– 20 –						
								7		

Logs: GAMMA, CALIPER

Water Well Logging & Video Recording Services

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY BUILDING 90
Client: GEO PROJECTS

Date: 05-06-11

County: BEXAR

State: TX

Drilling Contractor: GEO PROJECTS Driller T.D. (ft): 32'

Location:

Logger T.D. (ft) : 32'

Date Drilled: NA

	0
	32
	NONE
•	

ωΝ

RUN BIT SIZE (in) FROM (ft)

TO (ft)

SIZE/WGT/THK | FROM (ft)

TO (ft)

CASING RECORD

BIT RECORD

ထ္

Elevation: NA

Depth Ref: G.L.

Fluid Level (ft): 31

Time Since Circ:

Rm: at:

Hole Medium:

Viscosity:

Drill Method: AIR ROTARY

Weight:

Mud Type:

at: Deg C

Unit/Truck: 05

Logged by: Kelly Tuten

LOG TYPE Witness: Samantha Elliot CALIPER GAMMA RUN NO SPEED (ft/min) 5 5 FROM (ft) 26.5 $\overline{\alpha}$ TO (ft) 4.9 4 FT./IN. 20 20

															_
	Gamma		Depth						Cal	iper					
	cps	100	1ft:120ft	0					lı	n					12
2															
>_												,			
A												}			
												{			
	2											}			
<												}			
3			- 20 -												
			20												
	<u> </u>											<u> </u>			
>												>			
	My M			40.4000	cps 100 1ft:120ft 0 I	cps 100 1ft:120ft 0 In									

Borehole: B3 EXW03

Logs: GAMMA, RESISTIVITY, CALIPER

Water Well Logging & Video Recording Services

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY STORAGE FACILITY Date: 05-25-11

Location: **GEOPROJECTS INTERNATIONAL** N 29* 42' 35.4", W 98* 36' 57.5" County: BEXAR

Client:

State: TX

Driller T.D. (ft): 350'

Logger T.D. (ft):350.8'

Elevation: 1,215'

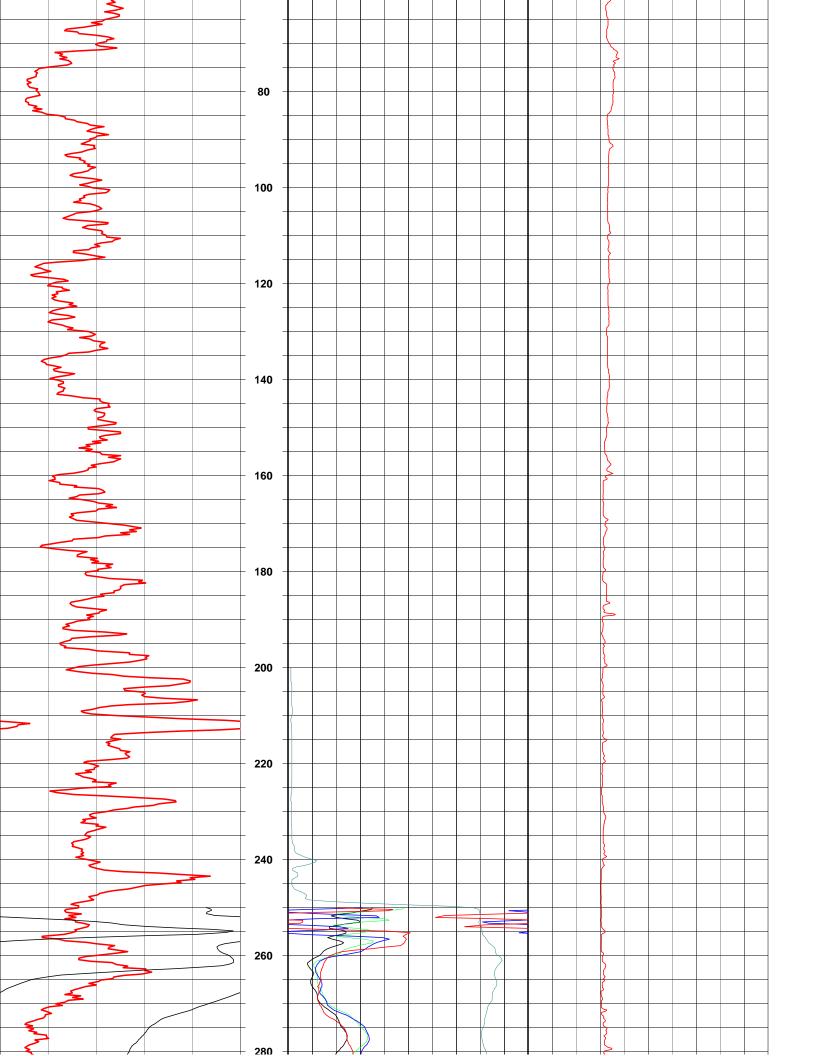
Drilling Contractor: G.P.I.

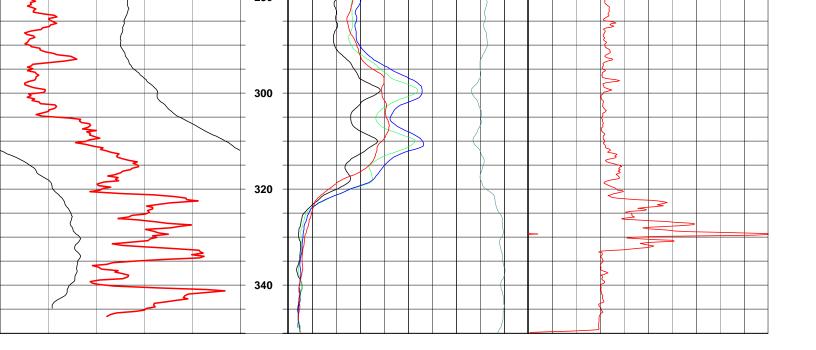
N RUN BIT SIZE (in) FROM (ft) Depth Ref: G.L. 7 7/8" BIT RECORD Q TO (ft) 350' SIZE/WGT/THK NIPPLE Date Drilled: 05-24-11 FROM (ft) CASING RECORD 1 FT. TO (ft)

ω

Drill Method: AIR ROTARY Weight: Fluid Level (ft): 250.4'

Hole Medium: Viscosity: Rm: Mud Type: <u>a</u> Deg C Time Since Circ:


Logged by: Michael G. Miller GENERAL DATA-


Unit/Truck: 05

Witness: BRAD MARTIN, LEE GEBERT

			-		
LOG TYPE	RUN NO	RUN NO SPEED (ft/min)	FROM (ft)	TO (ft)	FT./ IN.
 GAMMA	2	25'	346'	4'	20
RESISTIVITY	2	25'	350'	249'	02
CALIPER		25'	350'	5'	20
		-			

	0		D#								-					⊣	
	Gamma		Depth			Cur	rent			_			C	aliper			
0	CPS	100	1ft:240ft	-1		m			20	5				In			15
	SP					R	.8			_							
-50	mV	50	,	0		Ohr	n-m		700	,							
						R	16										
				0		Ohr	n-m		700	⊣)							
							32										
				0		Ohr	n-m		700	⊣)							
						R											
				0		Ohr	n-m		700	⊣)							
		_	+ 0 -														
	_		1 -										_				
													=	\pm			
	5		† -									{)				
		_	+ -							-		- '	_				-
		>	20										کم				
			20									[>				
			+ -														
			∔ -	⊢					_	╀			\leftarrow				_
	2												۲				
			T)				
			40	\vdash													
												1					
	5		T										{				
			+ -							1			\nearrow				\dashv
			60	_						1			/			\perp	_

Borehole: B-3 EXWO4

Logs: GAMMA, RESISITIVITY, CALIPER

Water Well Logging & Video Recording Services

Geo Cam, Inc. 126 Palo Duro, San Antonio, TX 210-495-9121

Project: CAMP STANLEY STORAGE FACILITY Date:

GEOPROJECTS INTERNATIONAL N29* 42' 29.07" W98* 36' 55.9"

Location:

Client:

County: BEXAR

State: TX

06-13-11

Driller T.D. (ft): 335'

Date Drilled: 06-10-11

Logger T.D. (ft) : 335'

Depth Ref: G.L.

Elevation: 1140' GPS

Drilling Contractor: G.P.I.

RUN BIT SIZE (in) FROM (ft) 7 7/8' BIT RECORD Q TO (ft) J SIZE/WGT/THK | FROM (ft) $\frac{1}{2}$ CASING RECORD TO (ft)

Drill Method: AIR ROTARY Weight: Fluid Level (ft): 242' ω N

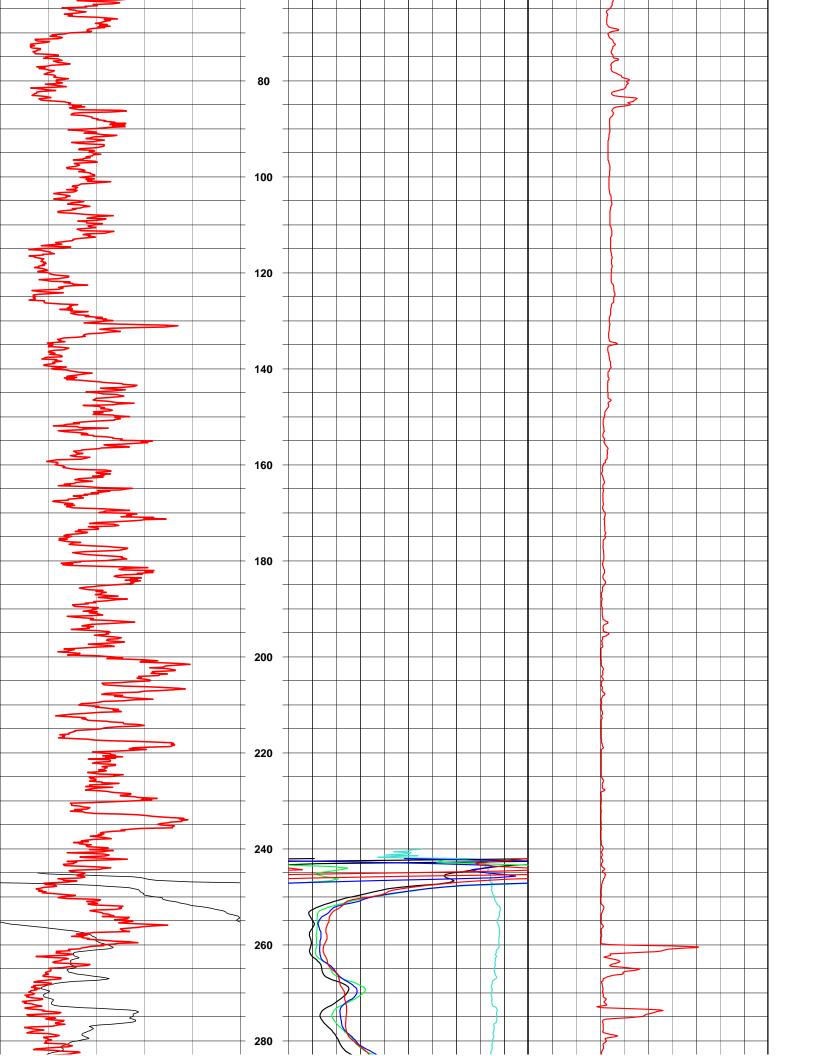
Deg C

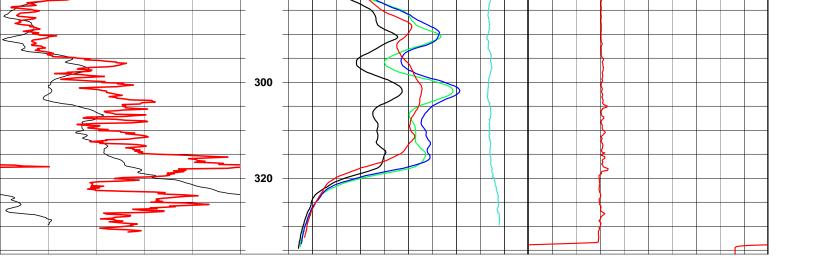
Mud Type:

Time Since Circ:

Hole Medium:

Viscosity:


Logged by: Robert Becknal


Unit/Truck: 05

Witness:		-
LOG TYPE RUN NO SPEED (ft/min)	FROM (ft)	TO (ft)
GAMMA 2 25'	331	3
RESISITIVITY 2 25'	335	82
		227

Comments:	

	SP		Depth			Cur	rent					Calip	er		
-50	mV Gamma	50	1ft:240ft	0		m R			10	5		In			15
0	cps	100		0		Ohn R			700						
				0		Ohn R3			700						
				0		Ohn Ré			700						
				0		Ohn	n-m		700						
															<u> </u>
	3		_								٤				
											5				
											2				
			- 20 -							_	5	_		+	-
											\ <u></u>				
=	E										{				
_			40								{				
			- 40 -								5				
	5										}				
- -	•										\				
			60								5				
			60 -								}				

APPENDIX CWell Completion Logs

BOREHOLE NO.: CS-MW35-LGR

TOTAL DEPTH: 430 feet

PROJECT INFORMATION

CSSA DRILLING COMPANY:

SITE LOCATION: CSSA

PROJECT:

JOB NUMBER: **747781.04000**

LOGGING GEOLOGIST: Adrien Lindley

PROJECT MANAGER: Scott Pearson

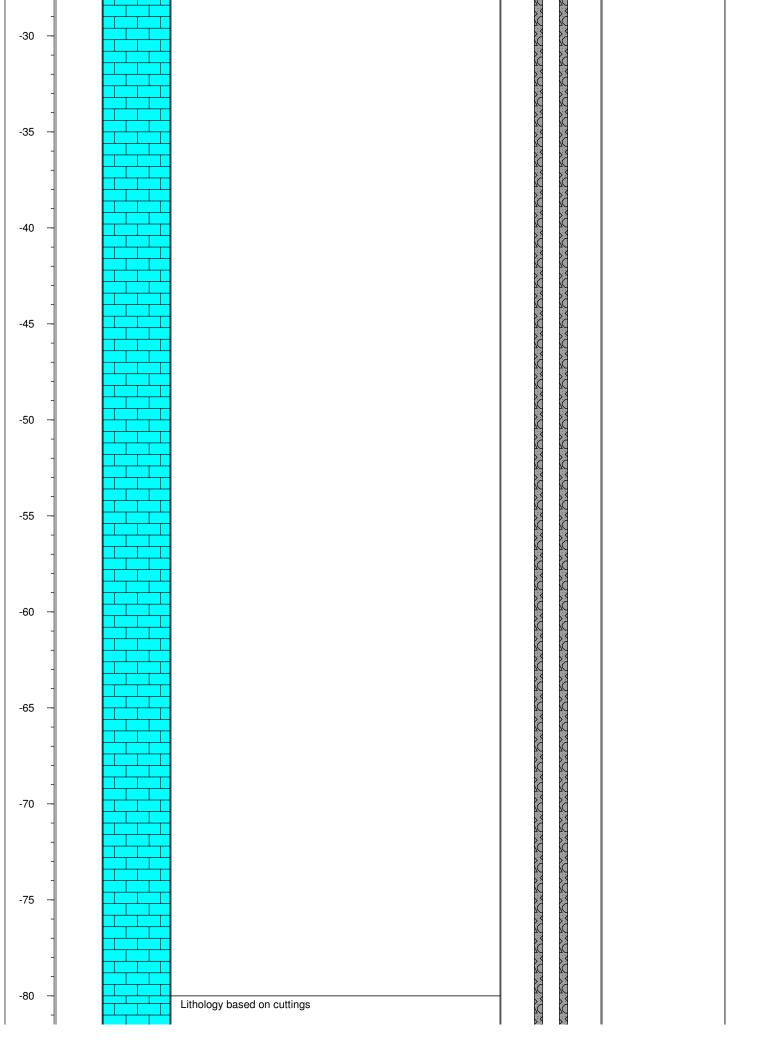
DATES DRILLED: March 15, 2011

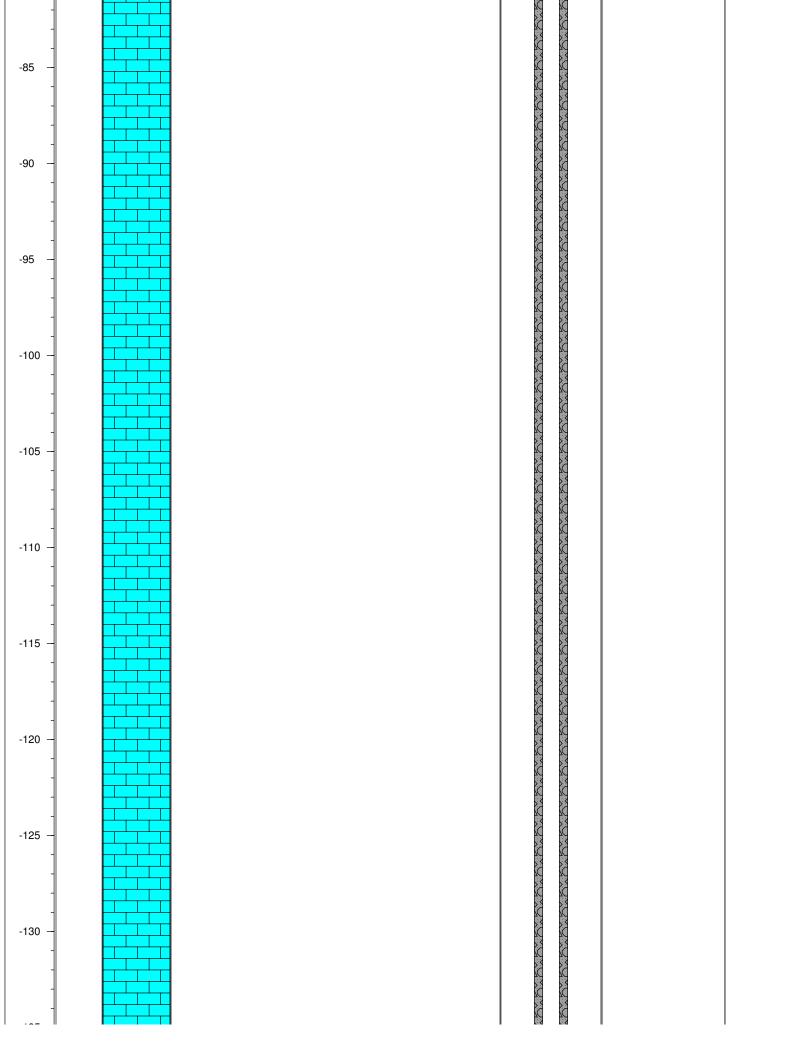
NOTES: Located in the southern area of CSSA, near WWTP

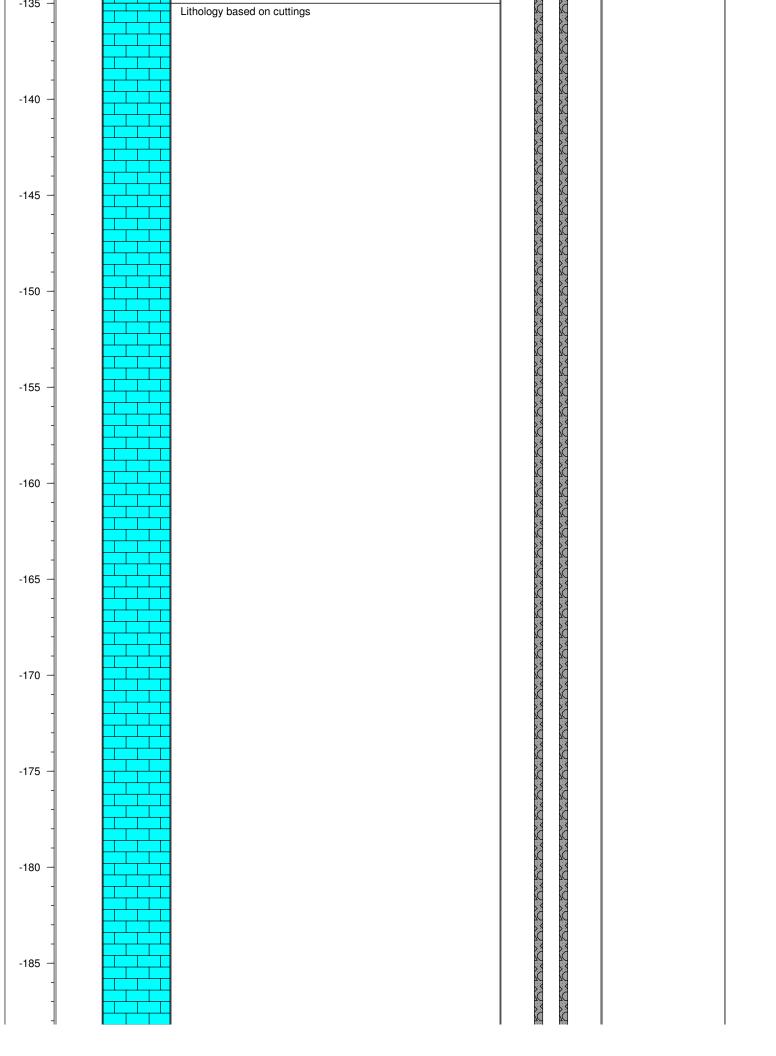
DRILLING INFORMATION

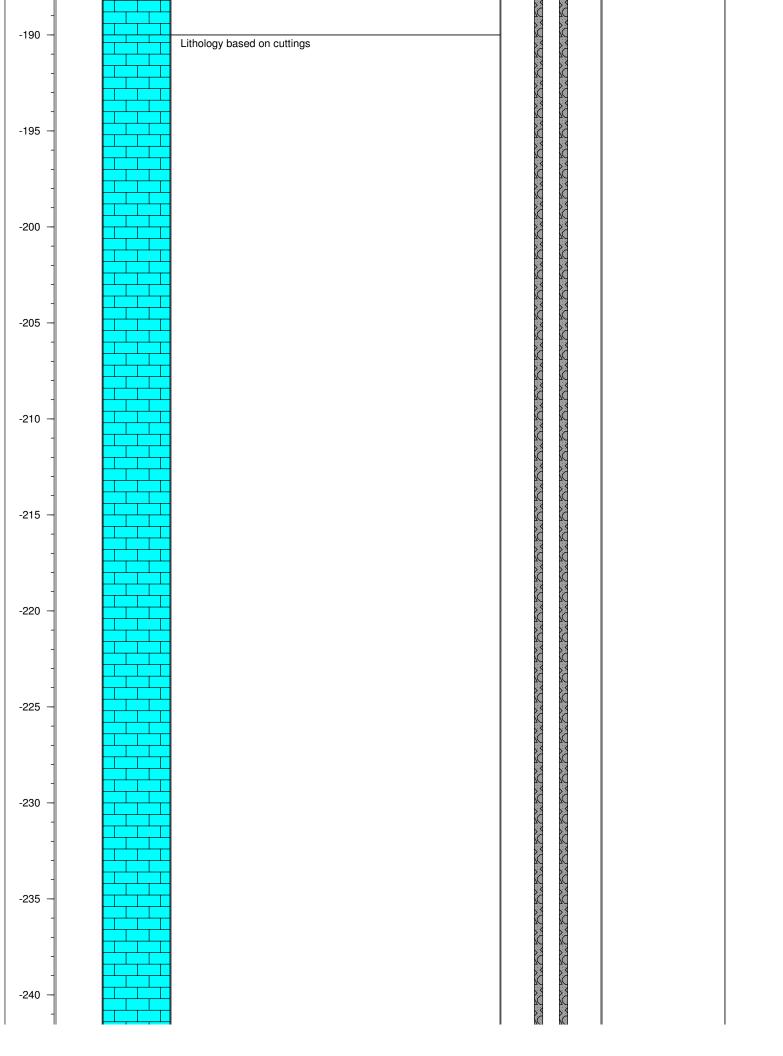
DRILLING COMPANY: GeoProjects Intl., Inc.

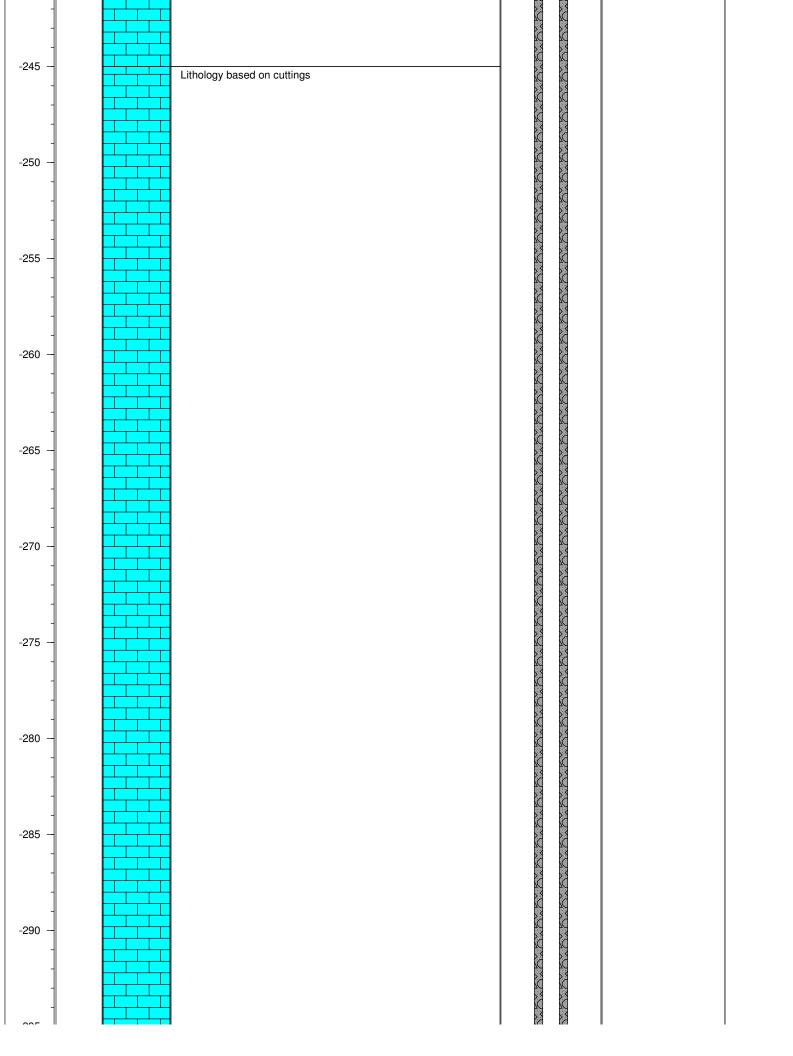
LEAD DRILLER: Lee Gebbert

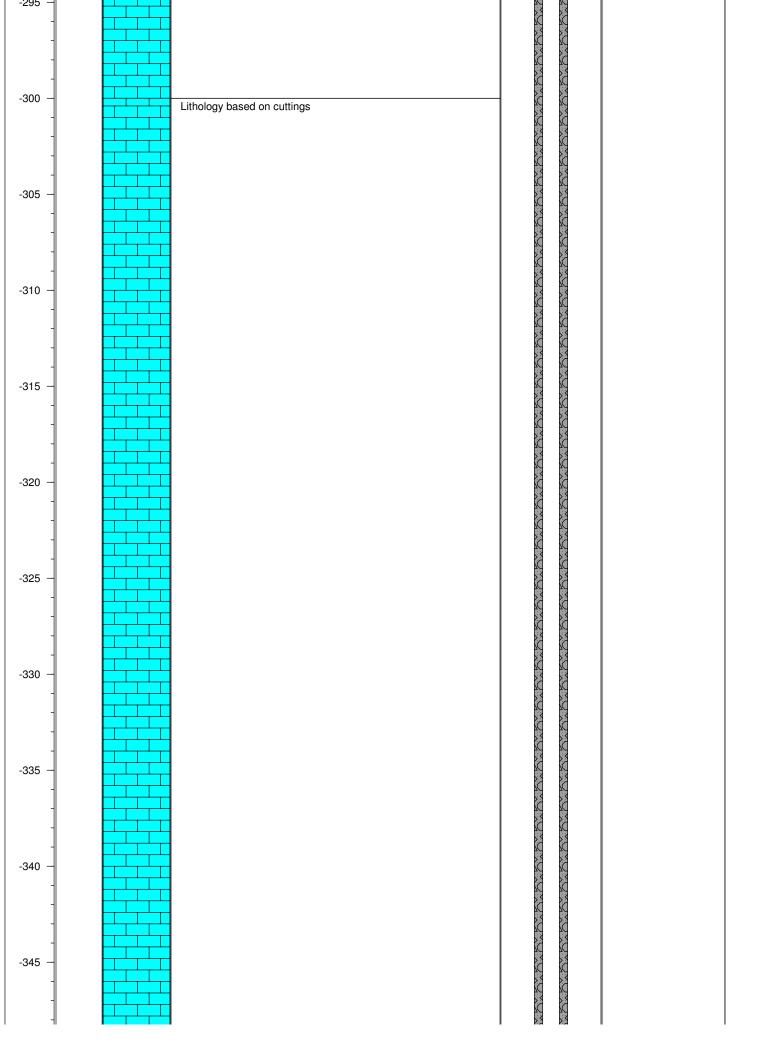

RIG TYPE: CME-75

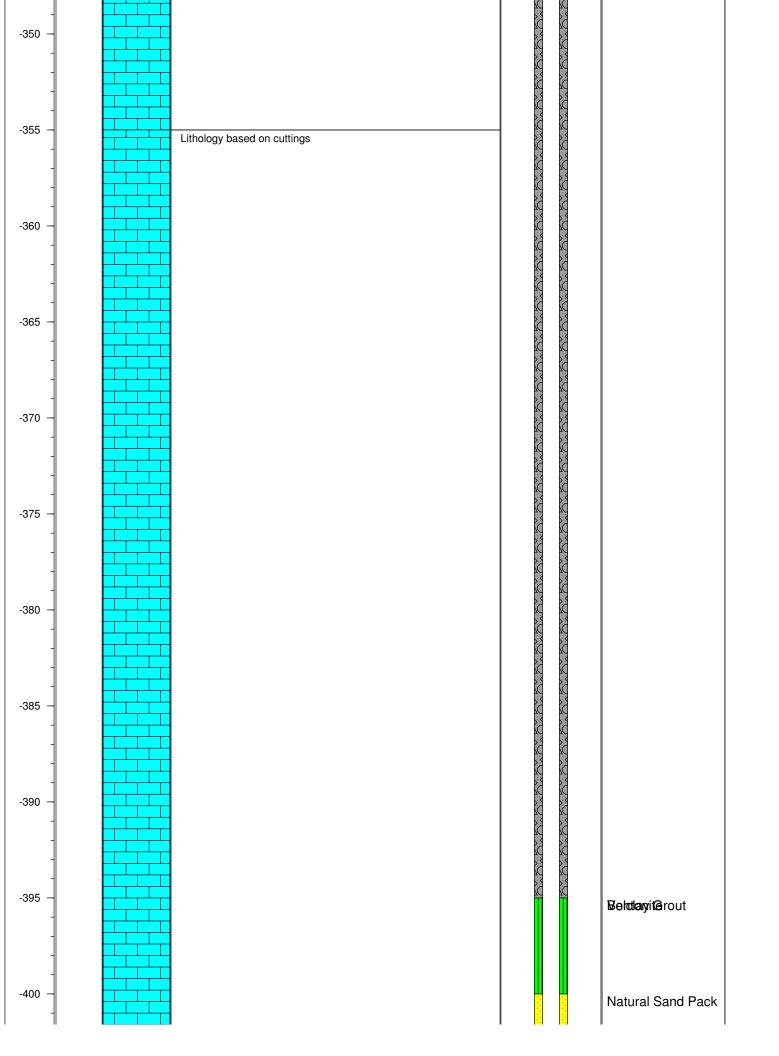

METHOD OF DRILLING: Air-Rotary

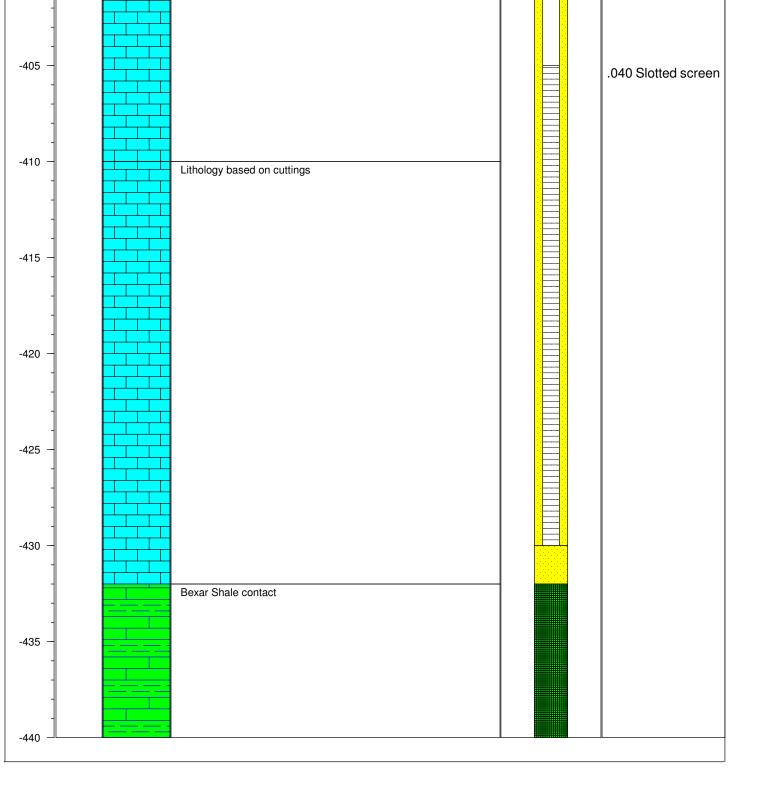

SAMPLING METHOD: Core


BORING DIAMETER 8 in.


NOTES	S: Loca	ted in the sou	uthern area of CSSA, near WWTP			
Depth (ft.)	PID (ppm)	Graphic Log	Lithologic Description	С	Well Construction	Notes
0 -			Lithology based on cuttings			Cement
-10 -					* D* D* D* D* D* X X X X X X X X X X X X	4" PVC Casing
-15 — -15 - -					KK, Ky, Ky, Ky, Ky, Ky, Ky, Ky, Ky, Ky,	
-20 -					24 57 24 57 24 57 24 57 24 57	
-25 -			Lithology based on cuttings			







BOREHOLE NO.: CS-MW36-LGR

TOTAL DEPTH: 370 feet

PROJECT INFORMATION

PROJECT: CSSA

SITE LOCATION: CSSA

JOB NUMBER: 747781.04000

LOGGING GEOLOGIST: Julie Bouch

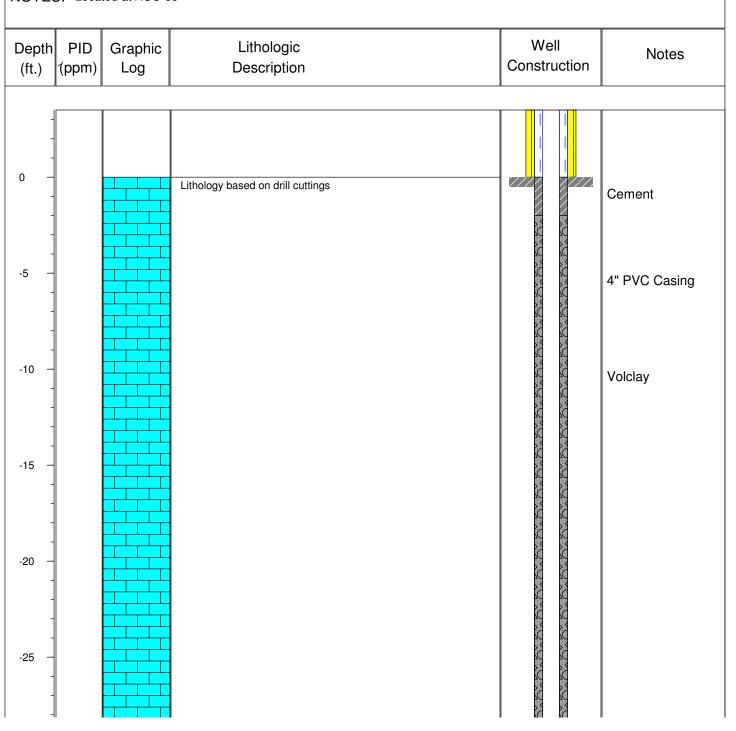
PROJECT MANAGER: Scott Pearson

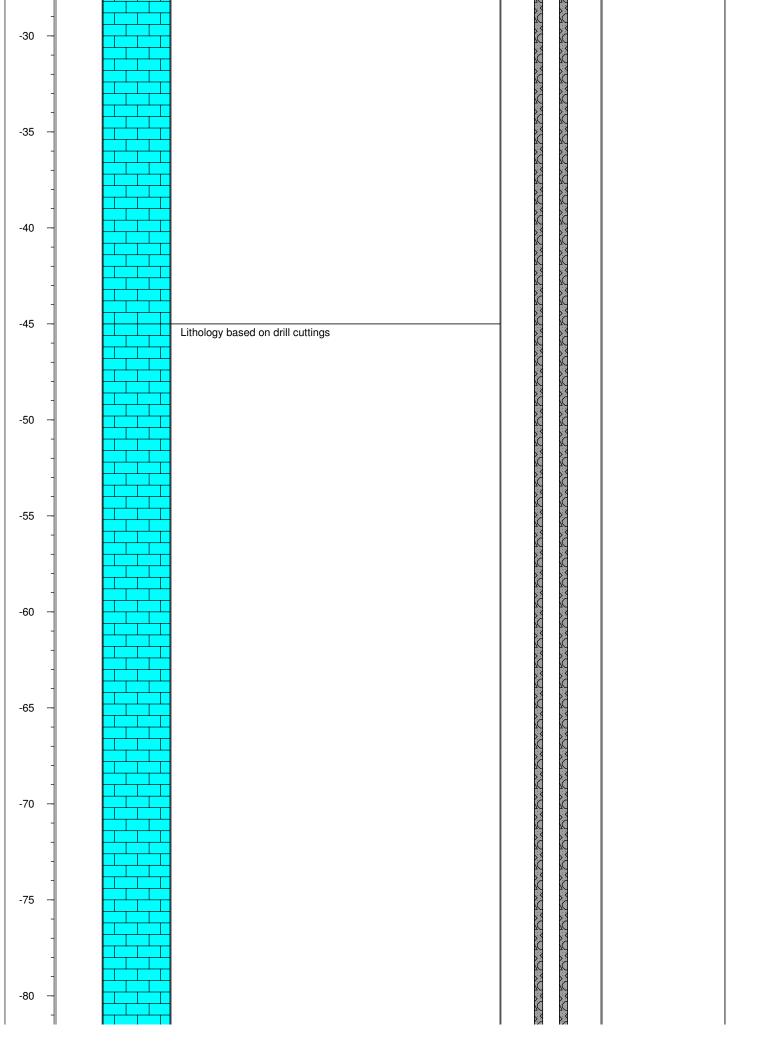
DATES DRILLED: March 23, 2011

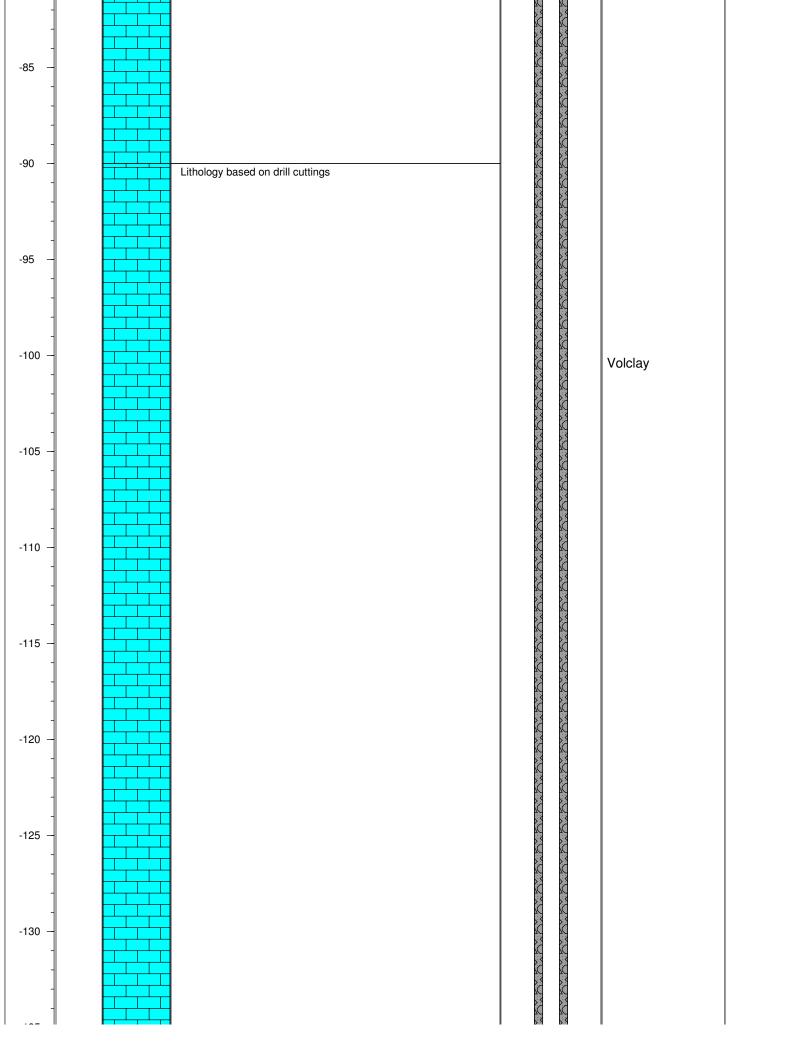
NOTES: Located at AOC-65

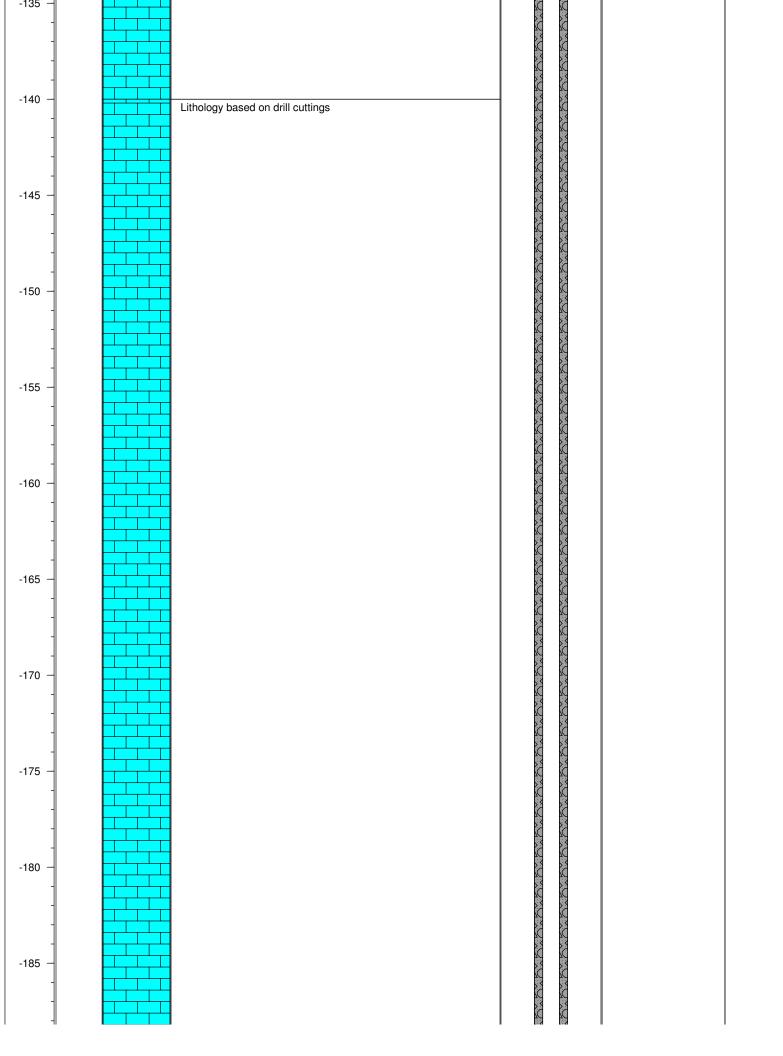
DRILLING INFORMATION

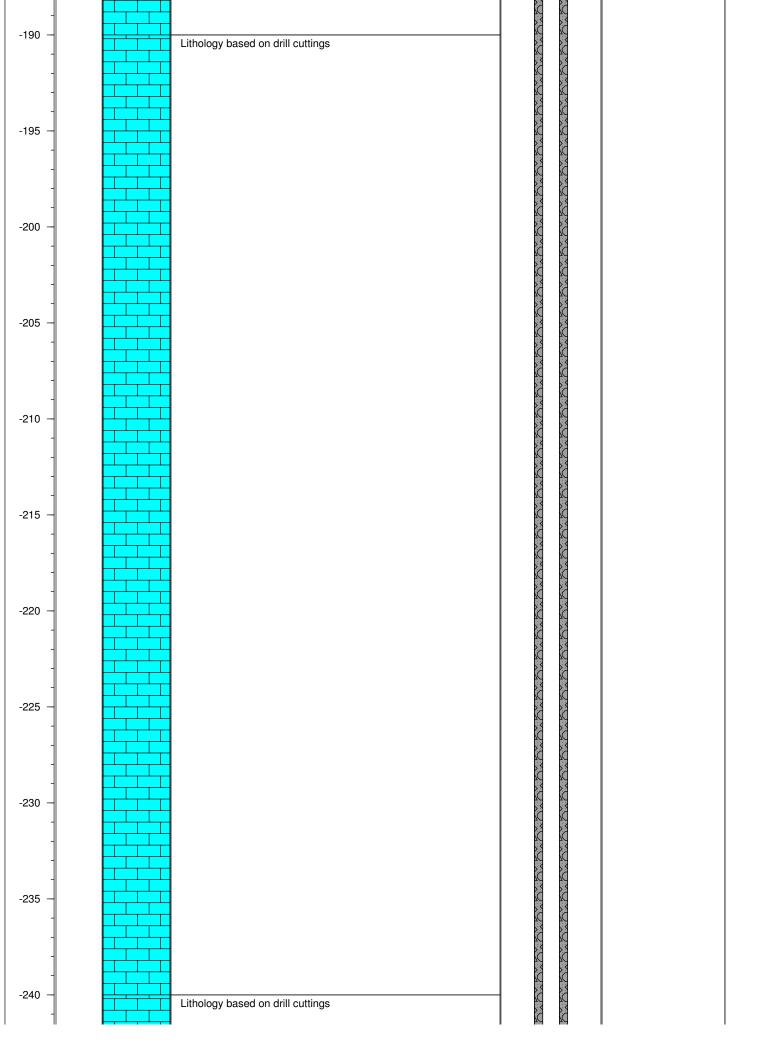
DRILLING COMPANY: GeoProjects Intl., Inc.

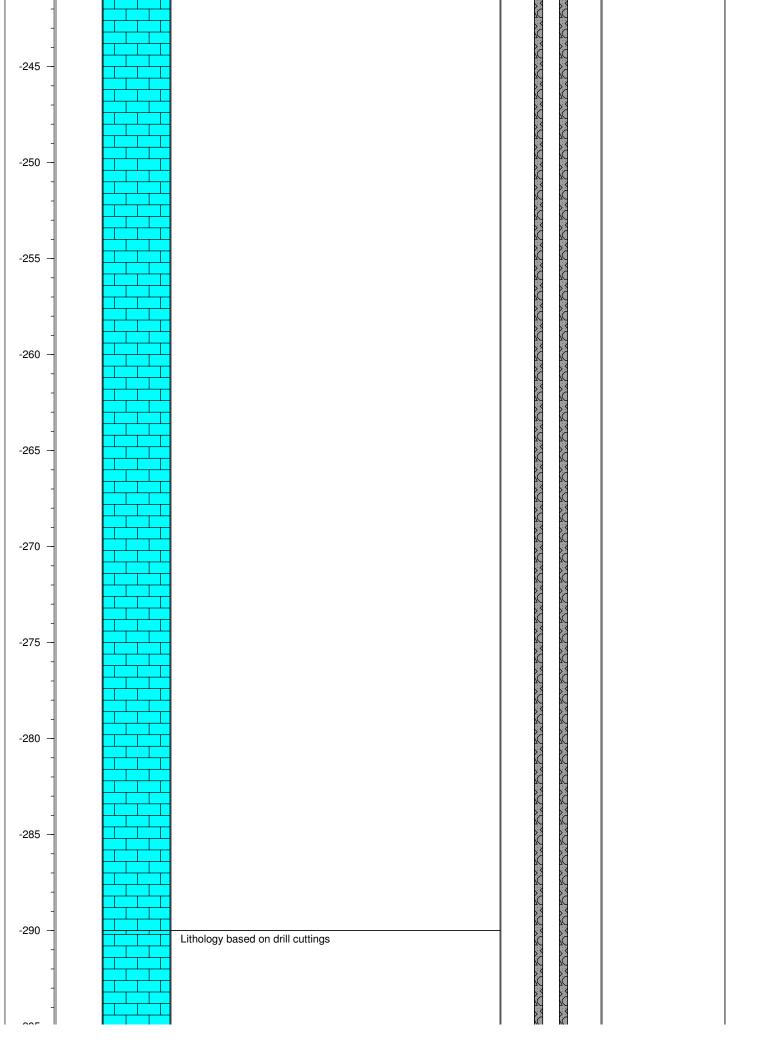

LEAD DRILLER: Lee Gebbert

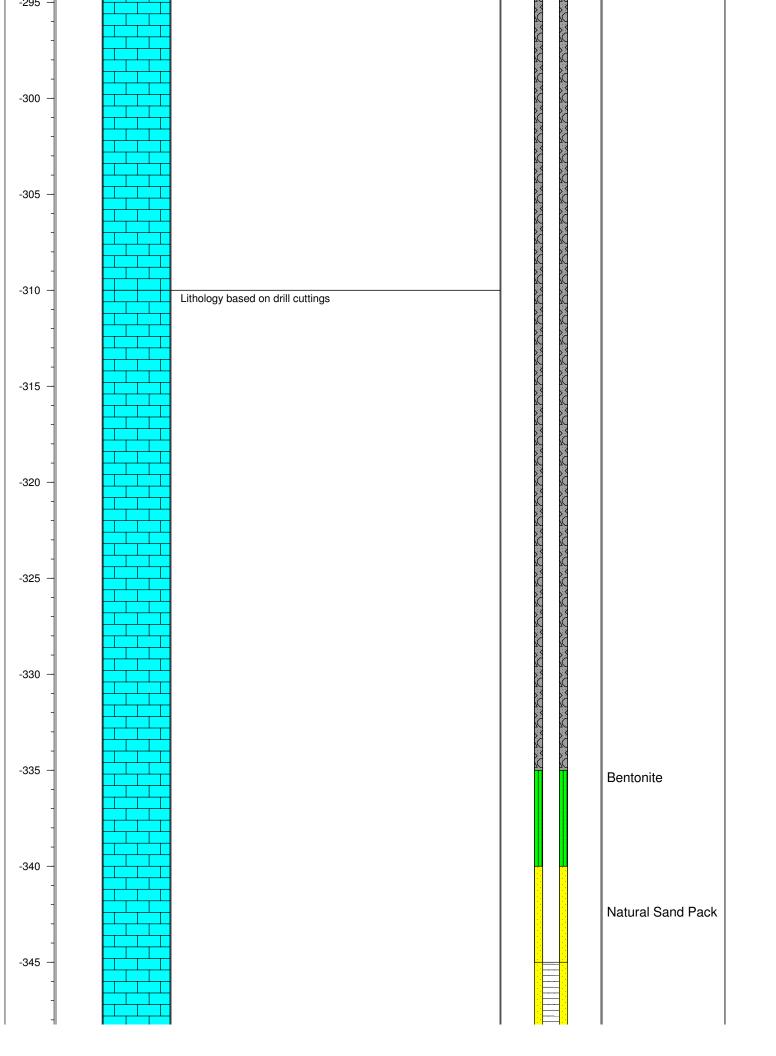

RIG TYPE: CME-75

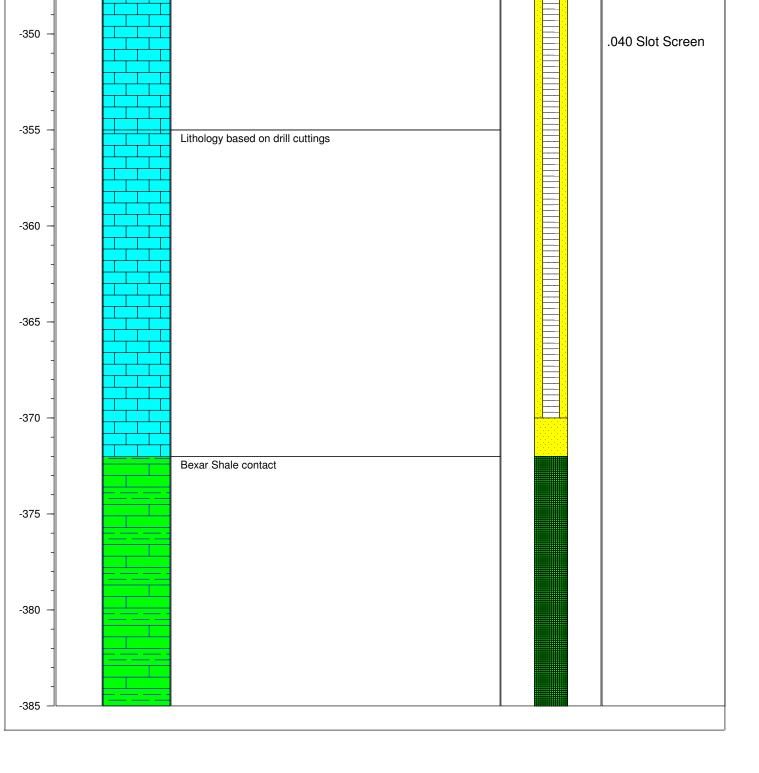

METHOD OF DRILLING: Air-Rotary


SAMPLING METHOD: Core


BORING DIAMETER 8 in.







BOREHOLE NO.: SIW-01 TOTAL DEPTH: 25 feet

PROJECT INFORMATION DRILLING INFORMATION

PROJECT: CSSA DRILLING COMPANY: GeoProjects Intl., Inc.

SITE LOCATION: AOC-65 LEAD DRILLER: Lee Gebbert

JOB NUMBER: 747781.04000 RIG TYPE: Deeprock Ram10 (modified)

LOGGING GEOLOGIST: Adrien Lindley METHOD OF DRILLING: Air-Rotary

PROJECT MANAGER: Scott Pearson SAMPLING METHOD: Core
DATES DRILLED: April 6, 2011 BORING DIAMETER 8 in.

NOTES: SIW-01 drilled in former solvent vat inside Building 90.

				We	
Depth (ft.)	PID (ppm)	Graphic Log	Lithologic Description	Constru	Notes
-			Massive limestone, grey, with increased interbedded white clay layers with lighter colored mottling		3.5' stickup with protective cover
0 –	0.1		Loose, rubbly, Wackestone, 10YR 7/6, light tan, limestone		Cement
	2.0		Solid packstone with some iron staining, limestone, shell fragments, 10 YR 8/2		
-5 -	0.0		Solid limestone, wackstone, noted 8" soft intervel at 4', small disolution features, black staining inside fracture, 10 YR 8/2		Steel Casing
	0.0		Limestone, wackestone, black staining, 10 YR 7/4		
-	1.50 9:3 0.8		Wackstone with a mud layer, interbedded mudtone and fractures Laminated mudstone with limestone, few interbedded fractures, few dissolution features, bioturbation, 10 YR 8/1 to 10 YR 6/4		
-10 — - -	0.0		Massive limestone with interbedded clay layers and bedding plane partings with manganese and iron oxide staining, becomes more yellow and clayier with depth, 10 YR 7/8		Shale Trap
-	0.8		10 YR 6/4		Open Borehole
-15 — -	0.0		Abrupt lithology change at 12.7', 10 YR 6/1, massive limestone, grey with few fractures, some bioturbation visible, oxidation halo around fracture from 14.1' to 14.65'		Steam Injection
-	0.0				Pipe
-20 -	2.8		Increasing clay content at 22'		
-	1.6				
-	9.1				
-25 ^l					

BOREHOLE NO.: SIW-02 TOTAL DEPTH: 25 feet

PROJECT INFORMATION

CSSA

SITE LOCATION: AOC-65

PROJECT:

JOB NUMBER: 747781.04000

LOGGING GEOLOGIST: Adrien Lindley

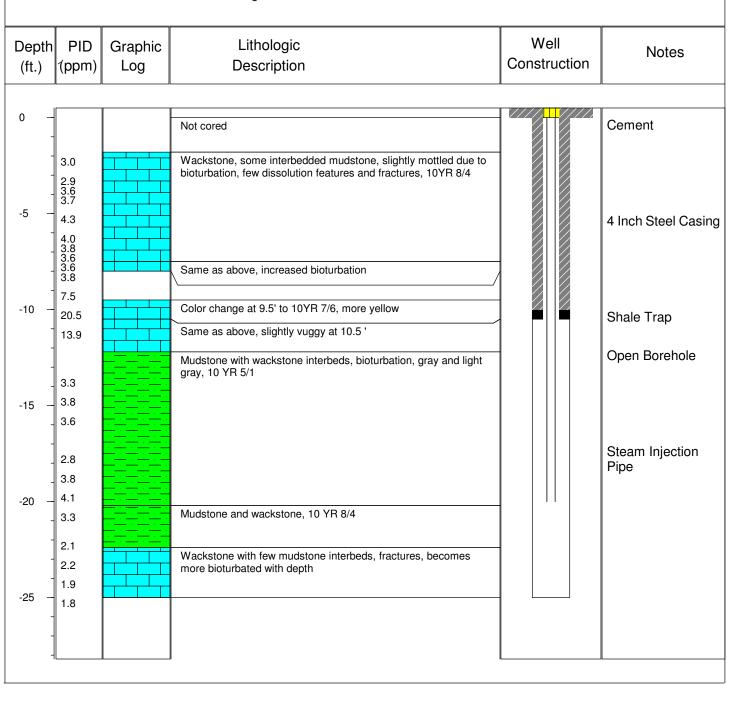
PROJECT MANAGER: Scott Pearson

DATES DRILLED: April 6, 2011

NOTES: SIW-02 is located west of Building 90

DRILLING INFORMATION

DRILLING COMPANY: GeoProjects Intl., Inc.


LEAD DRILLER: Lee Gebbert

RIG TYPE: CME-75

METHOD OF DRILLING: Air-Rotary

SAMPLING METHOD: Core

BORING DIAMETER 8 in.

BOREHOLE NO.: **VEW-29** TOTAL DEPTH: **40 feet**

PROJECT INFORMATION

CSSA

NECHIVIATION

SITE LOCATION: AOC-65

PROJECT:

JOB NUMBER: **747781.04000**

LOGGING GEOLOGIST: Julie Bouch

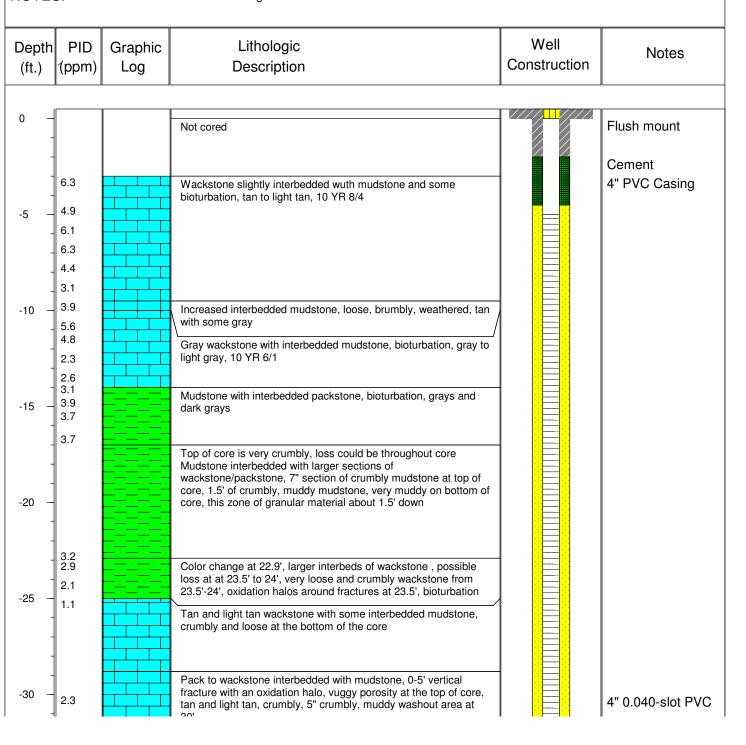
PROJECT MANAGER: Scott Pearson

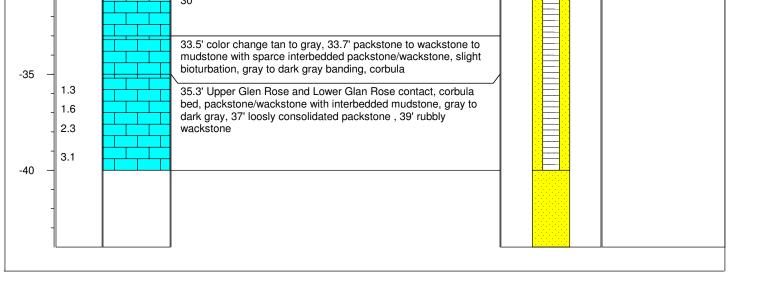
DATES DRILLED: May 4, 2011

NOTES: VEW-29 is located west of Building 90

DRILLING INFORMATION

DRILLING COMPANY: GeoProjects Intl., Inc.


LEAD DRILLER: Lee Gebbert


RIG TYPE: Gardner-Denver 1500

METHOD OF DRILLING: Air-Rotary

SAMPLING METHOD: Core

BORING DIAMETER 8 in.

BOREHOLE NO.: **VEW-30** TOTAL DEPTH: **25 feet**

PROJECT INFORMATION

CSSA

SITE LOCATION: AOC-65

PROJECT:

JOB NUMBER: 747781.04000

LOGGING GEOLOGIST: Brad Martin

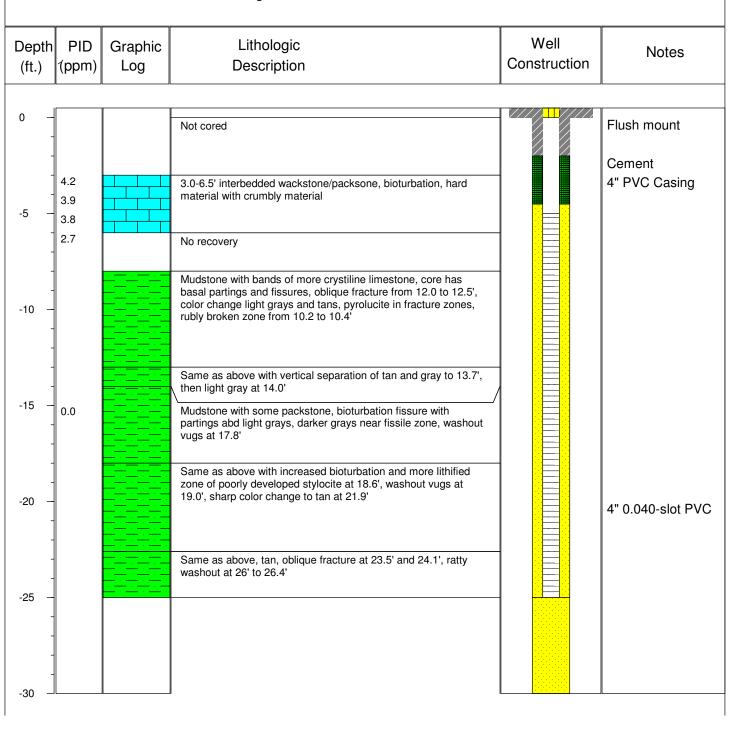
PROJECT MANAGER: Scott Pearson

DATES DRILLED: May 5, 2011

NOTES: VEW-30 is located west of Building 90

DRILLING INFORMATION

DRILLING COMPANY: GeoProjects Intl., Inc.


LEAD DRILLER: Lee Gebbert

RIG TYPE: Gardner-Denver 1500

METHOD OF DRILLING: Air-Rotary

SAMPLING METHOD: Core

BORING DIAMETER 8 in.

•			

BOREHOLE NO.: VEW-31 TOTAL DEPTH: 40 feet

DRILLING INFORMATION

PROJECT INFORMATION

AOC-65

747781.04000

May 3, 2011

DRILLING COMPANY:

GeoProjects Intl., Inc.

Gardner-Denver 1500

PROJECT: **CSSA**

SITE LOCATION:

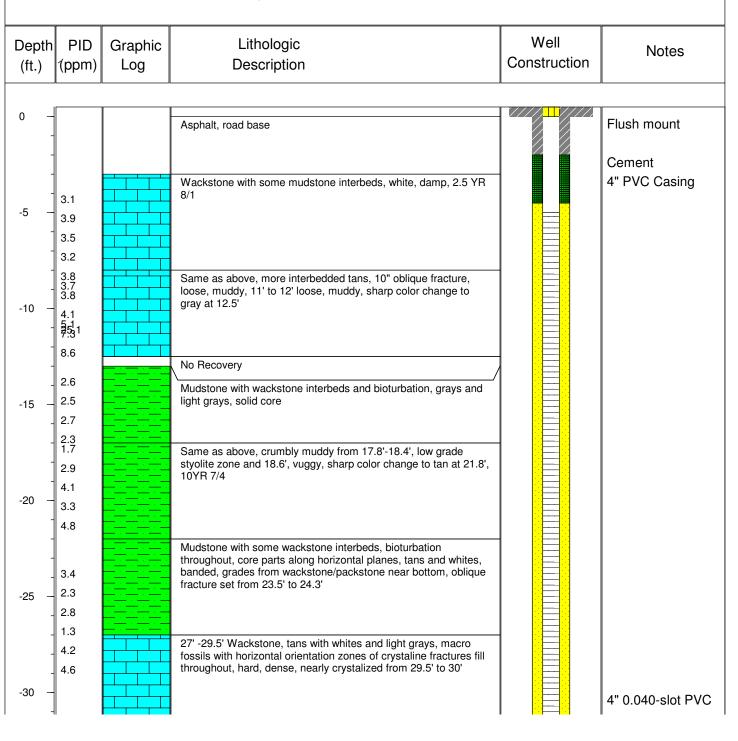
LEAD DRILLER: Lee Gebbert

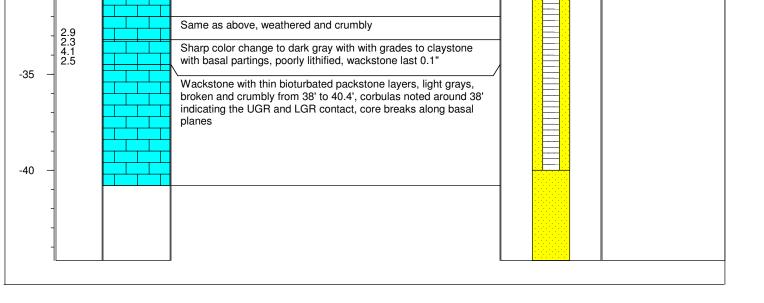
JOB NUMBER:

LOGGING GEOLOGIST: Julie Bouch

METHOD OF DRILLING: Air-Rotary

PROJECT MANAGER: Scott Pearson


SAMPLING METHOD:


RIG TYPE:

DATES DRILLED:

Core **BORING DIAMETER** 8 in.

NOTES: VEW-31 is located west of Building 90

BOREHOLE NO.: **VEW-32** TOTAL DEPTH: **25 feet**

PROJECT INFORMATION

CSSA

SITE LOCATION: AOC-65

PROJECT:

JOB NUMBER: **747781.04000**

LOGGING GEOLOGIST: Julie Bouch

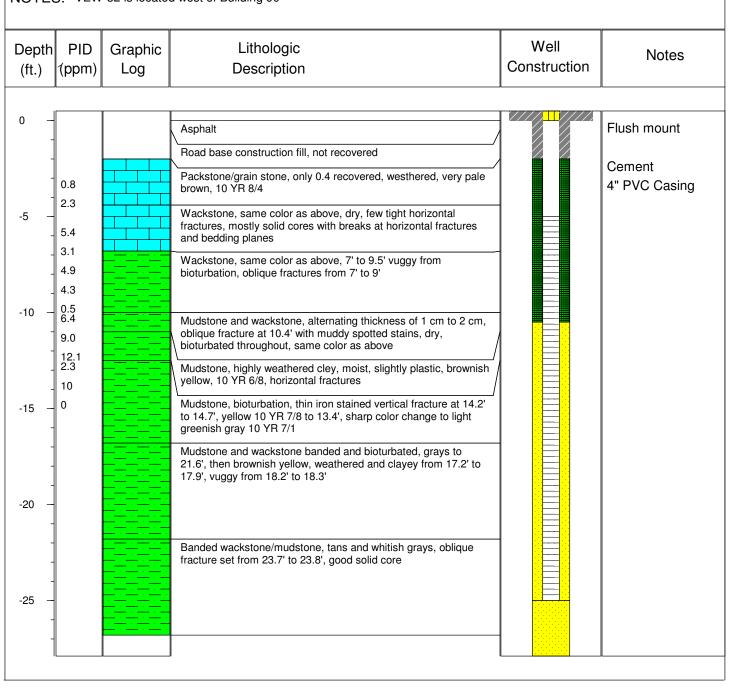
PROJECT MANAGER: Scott Pearson

DATES DRILLED: April 28, 2011

NOTES: VEW-32 is located west of Building 90

DRILLING INFORMATION

DRILLING COMPANY: GeoProjects Intl., Inc.


LEAD DRILLER: Lee Gebbert

RIG TYPE: Gardner-Denver 1500

METHOD OF DRILLING: Air-Rotary

SAMPLING METHOD: Core

BORING DIAMETER 8 in.

BOREHOLE NO.: VEW-33 TOTAL DEPTH: 25 feet

PROJECT INFORMATION **CSSA**

SITE LOCATION: **AOC-65**

PROJECT:

JOB NUMBER: 747781.04000

LOGGING GEOLOGIST: Brad Martin

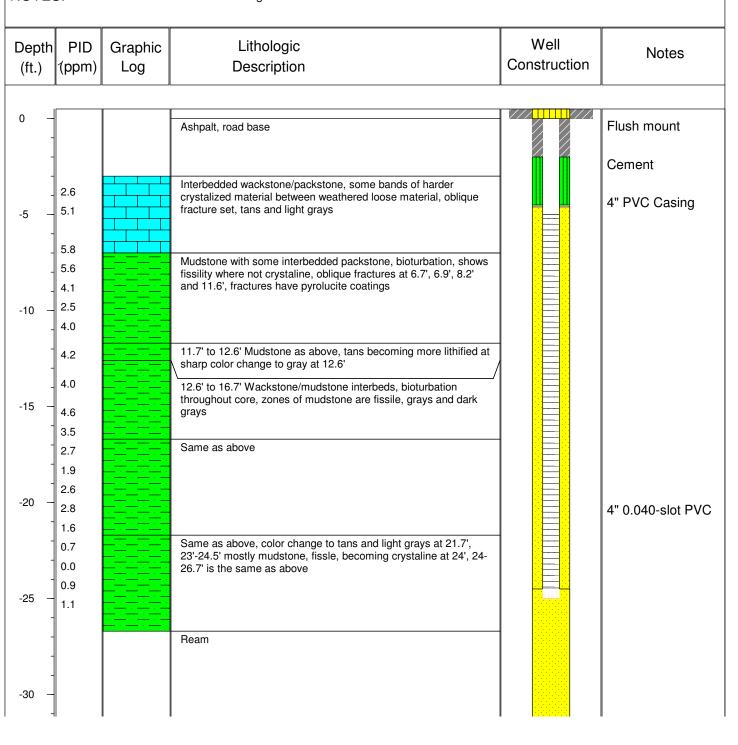
PROJECT MANAGER: Scott Pearson

May 4, 2011 DATES DRILLED:

NOTES: VEW-33 is located west of Building 90

DRILLING INFORMATION

DRILLING COMPANY: GeoProjects Intl., Inc.


LEAD DRILLER: Lee Gebbert

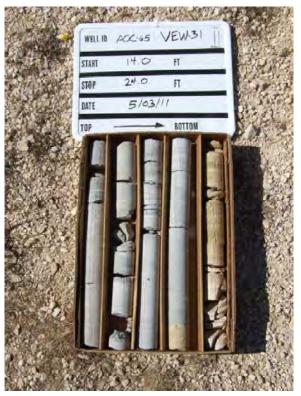
RIG TYPE: Gardner-Denver 1500

METHOD OF DRILLING: Air-Rotary

SAMPLING METHOD: Core

BORING DIAMETER 8 in.

APPENDIX D Core Photographs



APPENDIX E Laboratory Results

Laboratory Report

Parsons

CSSA

Project #: 747781.04000 CSSA #22

ARF: 64211

Samples collected: March 22, 2011

APPL, Inc.

EPA METHOD 8260B Volatile Organic Compounds

Data Validation Package for

EPA METHOD 8260B Volatile Organic Compounds

TABLE OF CONTENTS

LABORATORY NAME: APPL, Inc.

Case Narrative	4
Chain of Custody and ARF	I
QC Summary	<u>13</u>
Sample Data	33
Calibration Data	37
Raw Data	48

EPA METHOD 8260B Volatile Organic Compounds Case Narrative

Volatile Organic Compounds EPA Method 8260B Case Narrative

ARF: 64211

Project: 747781.04000 CSSA MW 35 Drilling

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW) Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The samples were received March 23, 2011, at 3.0°C. The samples were assigned Analytical Request Form (ARF) number 64211. The sample numbers and requested analysis were compared to the chain of custody. The VOC analyte list was revised, as instructed. No other exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
MW35-WC-01	AY34315	WATER	03/22/11	03/23/11
MW35-WC-02	AY34316	SOIL	03/22/11	03/23/11

Percent moisture was determined using CLP 4.0.

Sample Preparation:

The water sample was purged according to EPA method 5030B and the soil sample was purged according to EPA method 5035. All holding times were met.

Sample Analysis Information:

The samples were analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

Quality Control/Assurance

Spike Recovery

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard was used for the LCSs. All recoveries were acceptable.

No sample was designated by the client for MS/MSD analysis.

Surrogates

All surrogate recoveries met acceptance criteria.

Method blanks

No target compound was detected above the reporting limit in the method blanks.

Calibration

Initial and continuing calibrations were analyzed according to the method. All acceptance criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D, Laboratory Director / Date

EPA METHOD 8260B
Volatile Organic Compounds
Chain of Custody and ARF

Client:	Parsons	Received by: TBV	
Address:	8000 Centre Park Drive Ste 200	Date Received: 03/23/11 Time:	10:25
	Austin, TX 78754	Delivered by: FED EX	
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N): Y	
Phone: 5	12-719-6092 Fax: 512-719-6099	Chest Temp(s): 3.0°C	
Job: 7477	781.04000 CSSA MW35 DRILLING	Color: VOA FRIG	
PO #: 74	17780.30002	Samples Chilled until Placed in Refrig/Fre	ezer: Y
Chain of C	Custody (Y/N): Y # 032211APPFA	Project Manager: Diane Anderson	
RAD Scre	en (Y/N): Y pH (Y/N): N	QC Report Type: DVP3/AFCEE/ERPIMS	S/TX
Turn Arou	nd Type: 24 HOURS	Due Date: 03/24/11	

Comments:

pdf ARF to Tammy & Pam; send 2 DVP3 to Tammy

Data screening project: analyze samples ONCE; report deficiencies; do NOT re-analyze.

Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested.

Use AFCEE forms with AFCEE flagging to report sample & QC data only.

APPL forms for everything else and APPL DVP3.

EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

Samples are SOAPY.

Sample Distribution: /OA: 1-\$826AW, 1-\$826AF		Charges	<u>3:</u>	Invoice To:
Vetlab: 1-MOIST				8000 Centre Park Drive Ste 200 Austin, TX 78754-5140 Attn: Ellen Felfe
Client ID	APPL ID	Sampled	Analyses	Requested
1. MW35-WC-01	AY34315W	03/22/11 08:10	\$826AW	Soapy sample
2. MW35-WC-02	AY34316S	03/22/11 14:00	\$826AF,	MOIST Soapy sample

Page 1

Initials _____ Date ____

APPL Sample Receipt Form

ARF# 64211

Count

Sample	Container Type	Count pH		Sample	Container Type	
AY34315	¹³ VOAs - HCL	3	\times		-1	
1 372 422 4	20.4	1				

h Date:	Ca
2/33/3044	mp Si
4	tanley
	Camp Stanley Storage Activity Chain Of Custody
	Activity
	Chain
	Õ
The contract of	Custody

CIS-1,2-DIC, ILOSOETHY	SW8260B SW8260B SW8260B	TOLUENE trans-1,2-DICHTOROETH TETBACHLOROETHYLE	SW8260B 1 SW8260B SW8260B	Containers:	ABLOT: EBLOT:	SMCODE: G	N 211_N140	FLDSAMPID MW35-WC-02_032211_N1400	п Б	SED: Remarks:
		Analysis Required	Analysis		TBLOT:	MATRIX: SD	LOGDATE: 3/22/2011 MATRIX: SD		MW35-WC-02	LOCID:
			ω	Containers:	EBLOT:		-01_032211_N0810	FLUSAMPID MW35-WC-01_032211_N0810		Remarks:
		VOLATILE ORGANIC CO	SW8260		ABLOT:	SMCCDE: G		ELECTIVIET STORY SACOURE N	1 (257
		Analysis Required:	Analysis		TBLOT:	MATRIX: LD	22/2011	Π Β	MW35-WC-01	SBD:
		Adrien (holly)	[N -	A APPF FedEx 873526388225 24 Hour TAT	Cooler ID: LabCode: Carrier: Airbill Carrier: TAT:	AL 5:00 PM AL AL Screening	Relinquish_Time: 5:00 PM Relinquish_Time: 5:00 PM Collection Team: AL Sample Data Type Screening		on.	Project Location Project Location Number: Creation Date: Task Manager

Date_ Date

Page 1 of 1 _Time_ Time

2 2145 6170

Receiving

From:

"Renee Patterson" <rpatterson@applinc.com>

To:

<receiving@applinc.com>

Sent: Attach: Wednesday, March 23, 2011 10:10 AM COC MW-35-WC-01, MW-35-WC-02.pdf

Subject:

FW: COC MW-35

Though VOA-land has been warned, please warn them again to analyze these two samples at a

dilution. They are soapy.

From: Chang, Tammy [mailto:Tammy.Chang@parsons.com]

Sent: Wednesday, March 23, 2011 10:09 AM

To: Renee Patterson; Diane Anderson

Cc: Pearson, William Scott Subject: FW: COC MW-35

Please run VOC full list for both samples. Watch out for foaming.

Thanks Tammy

From: Lindley, Adrien

Sent: Wednesday, March 23, 2011 7:04 AM

To: Chang, Tammy

Subject: FW: COC MW-35

Tammy-

Here's the pdf of the COC from yesterday.

Thanks,

Adrien Lindley, P.G.

512.719.6052

From: Brenda Shirley [mailto:shirleyb@cssamma.com]

Sent: Tuesday, March 22, 2011 4:31 PM

To: Lindley, Adrien Cc: Bouch, Julie Subject: COC MW-35

As requested!

1) Project		S Drilling	AL I FURNI	D	ate Received:	3/2	3/11
2) Coolers:	Number of Coolers: 1) Dirinis			-1.0 1.1000/1.001		
3/YES NO	Were coolers and sample	s screened for ra	dioactivity?		ادر شوید در شوید	e w energy of the	A PROPERTY AND A STATE OF THE SEC.
4) (ES) NO	Were custody seals on ou			1 D	ate on seal? _	3/22	111
5)	Name on seal? Sce	ebel (see	below Des	fictervier)	- 1113 3113 311		н
6) YES NO NA					VIII I		
7) TES NO	Did the cooler come with a				: FWE)	4	
8)	Shipping slip numbers:1)_				3)		
ON THE NO NA	Was the shipping slip scar						
10) VES NOW	Alf cooler belongs to APPL,	has it been loog	ed into the ic	e chest data	base?		
11) Describe to	pe of packing in cooler (bubb	la wran noncorr	type of ice.	etc.): 6	651 man. 1	- t + T	ce
11) Describe ty	pe of paoring in ooolo, (basis	no map, popus.	., .,,,,		1 11/2		
12) YES NO N	A)For hand delivered sample	s was sufficient	ice present to	o start the co	ooling process	?	
13) (ES) NO	Was a temperature blank i				3.6		
14) Serial numb	er of certified NIST thermon			Co	rection factor:	0	
	o(s): 1) 3,0°(2) 3)	4)	5)	6)	7)	8)	
Chain of custo		- '/-					
16) (YES NO	Was a chain of custody rec	eived?					
17) YES NO	Were the custody papers s		ropriate place	es?			
18) YES NO	Was the project identifiable		Company of the last section of the last	2 H C			
19) YES NO	Did the chain of custody in			ina?			A 10
20) (YES) NO	Is location where sample w				×1:		77
Sample Labels					4		2
21) XES NO	Were container labels in go	ood condition?					SEA
22) (YES) NO	Was the client ID on the lat						(60
23) (ES) NO	Was the date of sampling of						;O.,
24) YES NO	Was the time of sampling of						
25) YES NO	Did all container labels agre		apers?				0
Sample Contai		*			+		, <u>o</u>
26) YES NO	Were all containers sealed	in separate bags	?				
27) YES NO	Did all containers arrive unl						S
28) YES (NO	Was there any leakage from						⊅ ₹
29) YES (10)	Were any of the lids cracke					, a	U
30) (ES NO	Were correct containers us		ndicated?				•
31) YES NO	Was a sufficient amount of			ed?			
32) YES NO WA	Were bubbles present in vo				received with	air bub	bles:
	а реа:				1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1		20221
	a pea:		- E				
Preservation &					*	1	
	Was a sufficient amount of	holding time rem	aining to an	alvze the san	noles?		
	Do the sample containers c					OC?	0.0
SELVES NO MA	Was the pH taken of all nor	-VOA preserved	samples an	d written on	the sample cor	tainer	,
	Was the pH of acid preserved						
30) IES NO MA	Lab notified if pH was not aded	ruste'					
Deficiencies:	Costady seal seal was	wet and	1,461,11	la' marader	for for	Ver e	eccint
Deficiencies:		400	WITTENET.	La A BIOACI	Tat 1 90	11	5551p7
rorm. N	ame hard to reade						
		1/1 /1/	/	Mad and decision	-		
	connel receiving samples:	ym m		nd reviewer:		_	
	ect manager notified:	1/			ne of notificatio		
	otified:	/		Date and Tin	ne of notificatio	n:	
Information giver	to client:				4		
P.		a a		by w	hom (Initials):		A

EPA METHOD 8260B Volatile Organic Compounds QC Summary

Analytical Method: EPA 8260B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110323AM-BLK

Initial Calibration ID: M110322

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1.3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64211, Sample: AY34315

Analytical Method: EPA 8260B

AAB #: 110323AM-153425

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110323AM-BLK

Initial Calibration ID: M110322

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0,4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	108	69-139	
SURROGATE: 4-BROMOFLUOROBE	93.2	75-125	
SURROGATE: DIBROMOFLUOROME	104	75-125	
SURROGATE: TOLUENE-D8 (S)	96.5	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64211, Sample: AY34315

Analytical Method: EPA 8260B

AAB #: 110324AT-153500

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110324AT-BLK

Initial Calibration ID: T110324

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64211, Sample: AY34316

Analytical Method: EPA 8260B AAB #: 110324AT-153500

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: mg/kg Method Blank ID: 110324AT-BLK

Initial Calibration ID: T110324

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	Ü
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	106	52-149	-0-0-0
SURROGATE: 4-BROMOFLUOROBE	87.9	65-135	
SURROGATE: DIBROMOFLUOROME	101	65-135	
SURROGATE: TOLUENE-D8 (S)	95.4	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64211, Sample: AY34316

Surrogate Recovery

 Lab Name: APPL, Inc.
 SDG No: 64211

 Case No: 64211
 Date Analyzed: 3/24/11

 Matrix: SOIL
 Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110324AT-LCS	Lab Control Spike	95.6	107
110324AT-BLK	Blank	106	87.9
AY34316	MW35-WC-02	108	91.7

Comments: Batch: #826AF-110324AT

Surrogate Recovery

SDG No: 64211	
Date Analyzed: 3/24/11	
Instrument: Thor	
	Date Analyzed: 3/24/11

APPL ID. Client Sample No. 110324AT-LCS Lab Control Spike		이 가장 하고 있다.		SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
		96.0	103		
110324AT-BLK	Blank	101	95.4		
AY34316	MW35-WC-02	107	99.4		

Comments: Batch: #826AF-110324AT

Surrogate Recovery

 Lab Name: APPL, Inc.
 SDG No: 64211

 Case No: 64211
 Date Analyzed: 3/23/11

 Matrix: WATER
 Instrument: Max

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110323AM-LCS	Lab Control Spike	93.7	114
110323AM-BLK	Blank	108	93.2
AY34315	MW35-WC-01	105	100

Comments: Batch: #826AW-110323AM

Surrogate Recovery

 Lab Name: APPL, Inc.
 SDG No: 64211

 Case No: 64211
 Date Analyzed: 3/23/11

 Matrix: WATER
 Instrument: Max

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110323AM-LCS Lab Control Spike		101	105
110323AM-BLK	Blank	104	96.5
AY34315	MW35-WC-01	103	97.8

Comments: Batch: #826AW-110323AM

Analytical Method: EPA 8260B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110323AM LCS Initial Calibration ID: M110322

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.55	106	72-125	
1,1,1-TCA	10.00	10.80	108	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	9.72	97.2	74-125	38 4
1,1,2-TCA	10.00	9.93	99.3	75-127	1414
1,1-DCA	10.00	10.21	102	75-125	
1,1-DCE	10.00	10.39	104	75-125	
1,1-DICHLOROPROPENE	10.00	11.05	111	75-125	
1,2,3-TRICHLOROBENZENE	10.00	9.66	96.6	75-137	
1,2,3-TRICHLOROPROPANE	10.00	9.25	92.5	75-125	
1,2,4-TRICHLOROBENZENE	10.00	9.39	93.9	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.15	102	75-125	
1,2-DCA	10.00	9.87	98.7	68-127	
1,2-DCB	10.00	10.52	105	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	8.42	84.2	59-125	
1,2-DICHLOROPROPANE	10.00	10.07	101	70-125	
1,2-EDB	10.00	10.02	100	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.28	103	72-125	
1,3-DCB	10.00	10.63	106	75-125	
1,3-DICHLOROPROPANE	10.00	10.42	104	75-125	
1,4-DCB	10.00	9.72	97.2	75-125	
1-CHLOROHEXANE	10.00	10.38	104	75-125	
2,2-DICHLOROPROPANE	10.00	11.80	118	75-125	
2-CHLOROTOLUENE	10.00	10.17	102	73-125	
4-CHLOROTOLUENE	10.00	10.38	104	74-125	
BENZENE	10.00	10.64	106	75-125	
BROMOBENZENE	10.00	11.33	113	75-125	
BROMOCHLOROMETHANE	10.00	10.03	100	73-125	
BROMODICHLOROMETHANE	10.00	10.40	104	75-125	
BROMOFORM	10.00	9.69	96.9	75-125	
BROMOMETHANE	10.00	11.59	116	72-125	
CARBON TETRACHLORIDE	10.00	10.75	108	62-125	
CHLOROBENZENE	10.00	10.27	103	75-125	
CHLOROETHANE	10.00	10.57	106	65-125	
CHLOROFORM	10.00	10.36	104	74-125	
CHLOROMETHANE	10.00	10.60	106	75-125	
CIS-1,2-DCE	10.00	11.16	112	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.59	95.9	74-125	
DIBROMOCHLOROMETHANE	10.00	10.10	101	73-125	
DIBROMOMETHANE	10.00	9.87	98.7	69-127	
DICHLORODIFLUOROMETHANE	10.00	11.83	118	72-125	

Comments:

ARF: 64211, QC Sample ID: AY34315

Analytical Method: EPA 8260B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110323AM LCS Initial Calibration ID: M110322

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	11.46	115	75-125	
HEXACHLOROBUTADIENE	10.00	10.55	106	75-125	
ISOPROPYLBENZENE	10.00	9.92	99.2	75-125	
M&P-XYLENE	20.00	20.65	103	75-125	
METHYLENE CHLORIDE	10.00	10.51	105	75-125	
N-BUTYLBENZENE	10.00	10.20	102	75-125	
N-PROPYLBENZENE	10.00	10.26	103	75-125	
NAPHTHALENE	10.00	8.29	82.9	75-125	
O-XYLENE	10.00	9.89	98.9	75-125	
P-ISOPROPYLTOLUENE	10.00	10.23	102	75-125	
SEC-BUTYLBENZENE	10.00	10.24	102	75-125	
STYRENE	10.00	9.74	97.4	75-125	
TCE	10.00	10.18	102	71-125	
TERT-BUTYLBENZENE	10.00	10.08	101	75-125	
TETRACHLOROETHENE	10.00	10.89	109	71-125	1
TOLUENE	10.00	11.97	120	74-125	
TRANS-1,2-DCE	10.00	10.30	103	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	9.28	92.8	66-125	
TRICHLOROFLUOROMETHANE	10.00	10.86	109	67-125	
VINYL CHLORIDE	10.00	11.05	111	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	93.6	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	114	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	105	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64211, QC Sample ID: AY34315

Analytical Method: EPA 8260B AAB #: 110324AT-153500

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110324AT LCS Initial Calibration ID: T110324

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0532	106	62-125	
1,1,1-TCA	0.0500	0.0477	95.4	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0450	90.0	64-135	
1,1,2-TCA	0.0500	0.0474	94.8	65-135	10
1,1-DCA	0.0500	0.0501	100	62-135	
1,1-DCE	0.0500	0.0463	92.6	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0490	98.0	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0405	81.0	65-147	+
1,2,3-TRICHLOROPROPANE	0.050	0.049	98.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0419	83.8	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0431	86.2	65-135	
1,2-DCA	0.0500	0.0494	98.8	58-137	
1,2-DCB	0.0500	0.0508	102	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.047	94.0	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0500	100	60-135	
1,2-EDB	0.0500	0.0464	92.8	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0424	84.8	62-135	
1,3-DCB	0.0500	0.0414	82.8	65-135	Ų.
1,3-DICHLOROPROPANE	0.0500	0.0454	90.8	65-135	1
1,4-DCB	0.0500	0.0438	87.6	65-135	
1-CHLOROHEXANE	0.0500	0.0496	99.2	65-135	
2,2-DICHLOROPROPANE	0.050	0.051	102	65-135	
2-CHLOROTOLUENE	0.0500	0.0436	87.2	63-135	
4-CHLOROTOLUENE	0.0500	0.0423	84.6	64-135	
BENZENE	0.0500	0.0493	98.6	65-135	
BROMOBENZENE	0.0500	0.0462	92.4	65-135	
BROMOCHLOROMETHANE	0.0500	0.0452	90.4	63-135	
BROMODICHLOROMETHANE	0.0500	0.0526	105	65-135	
BROMOFORM	0.0500	0.0434	86.8	65-135	
BROMOMETHANE	0.0500	0.0537	107	62-135	
CARBON TETRACHLORIDE	0.050	0.047	94.0	52-135	
CHLOROBENZENE	0.0500	0.0480	96.0	65-135	
CHLOROETHANE	0.0500	0.0463	92.6	55-135	
CHLOROFORM	0.0500	0.0501	100	64-135	
CHLOROMETHANE	0.0500	0.0482	96.4	65-135	
CIS-1,2-DCE	0.0500	0.0504	101	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0540	108	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0450	90.0	63-135	
DIBROMOMETHANE	0.050	0.050	100	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0481	96.2	65-135	

Comments: ARF: 64211, QC Sample ID: AY34316

Analytical Method: EPA 8260B AAB #: 110324AT-153500

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110324AT LCS Initial Calibration ID: T110324

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0489	97.8	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0444	88.8	65-135	
ISOPROPYLBENZENE	0.0500	0.0431	86.2	65-135	
M&P-XYLENE	0.1000	0.0847	84.7	65-135	
METHYLENE CHLORIDE	0.0500	0.0448	89.6	65-135	
N-BUTYLBENZENE	0.0500	0.0450	90.0	65-135	
N-PROPYLBENZENE	0.0500	0.0420	84.0	65-135	
NAPHTHALENE	0.0500	0.0439	87.8	65-135	
O-XYLENE	0.0500	0.0484	96.8	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0419	83.8	65-135	
SEC-BUTYLBENZENE	0.0500	0.0404	80.8	65-135	
STYRENE	0.0500	0.0417	83.4	65-135	
TCE	0.0500	0.0492	98.4	61-135	
TERT-BUTYLBENZENE	0.0500	0.0423	84.6	65-135	
TETRACHLOROETHENE	0.0500	0.0454	90.8	61-135	
TOLUENE	0.0500	0.0540	108	64-135	
TRANS-1,2-DCE	0.0500	0.0476	95.2	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0519	104	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0454	90.8	57-135	
VINYL CHLORIDE	0.0500	0.0542	108	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	95.6	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	108	65-135	
SURROGATE: DIBROMOFLUOROMETH	95.7	65-135	
SURROGATE: TOLUENE-D8 (S)	102	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64211, QC Sample ID: AY34316

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64211

Case No: 64211

Date Analyzed: 3/23/11

Matrix: WATER

Instrument: Max

WIGHTA, WATER

III Strainfortt, Wax

Blank ID: 110323AM-BLK

Time Analyzed: 0952

APPL ID.	Client Sample No.	File ID.	Date Analyzed	
110323AM-LCS Lab Contro	Lab Control Spike	0323M01	3/23/11 0744	
110323AM-BLK	Blank	0323M04	3/23/11 0952	
AY34315	MW35-WC-01	0323M21	3/23/11 1752	

Comments: Batch: #826AW-110323AM

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64211

Case No: 64211

Date Analyzed: 3/24/11

Matrix: SOIL

Instrument: Thor

Blank ID: 110324AT-BLK

Time Analyzed: 2202

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110324AT-LCS	Lab Control Spike	0324T16	3/24/11 2034
110324AT-BLK	Blank	0324T18	3/24/11 2202
AY34316	MW35-WC-02	0324T21	3/24/11 2308

Comments: Batch: #826AF-110324AT

Form 5 Tune Summary

 Lab Name: APPL Inc.
 SDG No: 64211

 Case No: 64211
 Date Analyzed: 3/23/11

 Matrix: Water
 Instrument: Max

 ID: 20ug/mL BFB Std 03-11-11A
 Time Analyzed: 7:02

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1 Lab Control Spike	110323A LCS-1WM	0323M01W.D	3/23/11 7:44
2 Blank	110321A BLK-1WM	0323M04W.D	3/23/11 9:52
3 MW35-WC-01	AY34315W02	0323M21W.D	3/23/11 17:52
4			
5			
6			
7			
8			
9		9	
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			

m/e	
50 15 - 40% of mass 95	17.2
75 30 - 60% of mass 95	45.3
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	7.0
173 0 - 2% of mass 174	0.1
174 50 - 100% of mass 95	84.4
175 5 - 9% of mass 174	7.1
176 95 - 101% of mass 174	96.8
177 5 - 9% of mass 176	6.9

Form 5 Tune Summary

 Lab Name: APPL Inc.
 SDG No: 64211

 Case No: 64211
 Date Analyzed: 3/24/11

 Matrix: Soil
 Instrument: Thor

 ID: 20ug/mL BFB Std 03-23-11A
 Time Analyzed: 19:06

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1 Lab Control Spike	110324A LCS-1ST(SS)	0324T16S.D	3/24/11 20:34
2 Blank	110324A BLK-1ST	0324T18S.D	3/24/11 22:02
3 MW35-WC-02	AY34316S01 5.047	0324T21S.D	3/24/11 23:08
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14		1 1	
15			
16			
17			
18			
19			
20			
21			
22			

m/e	
50 15 - 40% of mass 95	24.4
75 30 - 60% of mass 95	57.5
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	8.9
173 0 - 2% of mass 174	0.8
174 50 - 100% of mass 95	65.7
175 5 - 9% of mass 174	6.8
176 95 - 101% of mass 174	95.9
177 5 - 9% of mass 176	5.5

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: R	teview
Lab Code:		SDG No.: _	64211
Lab File ID (Standard): 0322M08W.D		Date Analyzed: _	03/22/11
Instrument ID: Max		Time Analyzed: _	18:10
GC Column:	ID:	Heated Purge: (Y/N)_	

AREA # 696256 1392512 348128 651584 576448 558592	6.74 6.74 6.24 6.74 6.74	AREA # 629824 1259648 314912 586816	RT # 10.62 11.12 10.12	AREA # 494976 989952 247488	RT 12.44 12.94 11.94
1392512 348128 651584 576448	7.24 6.24 6.74	1259648 314912	11.12	989952	12.94
348128 651584 576448	6.24	314912	10.12		
651584 576448	6.74			247488	11.94
576448		586816			
576448		586816	10.00		
576448		586816	10.00		
	6.74		10.62	467968	12.44
558592	011	548736	10.62	368064	12.44
	6.75	507904	10.62	383232	12.44
			11		

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: R	Review
Lab Code:		SDG No.: _	64211
Lab File ID (Standard): 0324T07S.D		Date Analyzed: _	03/24/11
Instrument ID: Thor		Time Analyzed: _	16:53
GC Column:	ID:	Heated Purge: (Y/N)_	

Fluc	probenzene (IS)	Chloro	benzene-D5 (I	S) 1,4-Dich	lorobenzene-D	(IS)
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	733376	6.79	657152	10.67	876352	12.48
UPPER LIMIT	1466752	7.29	1314304	11.17	1752704	12.98
LOWER LIMIT	366688	6.29	328576	10.17	438176	11.98
SAMPLE						
NO.						
110324A LCS-1ST(SS)	830720	6.79	808256	10.67	1110210	12.48
110324A BLK-1ST	607808	6.79	576960	10.67	649728	12.48
AY34316S01 5.047	560512	6.79	518400	10.67	549248	12.48
				3		
3						
2						

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Sample Data

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: MW35-WC-01 Lab Sample ID: AY34315 Matrix: Water

% Solids: NA Initial Calibration ID: M110322

Date Received: 23-Mar-11 Date Prepared: 23-Mar-11 Date Analyzed: 23-Mar-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		L
1,1,1-TCA	0.03	0.8	0.03	1		ĭ
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1	10	U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.16	1		U

~						
C	n.	m	w	101	nti	a .
0	U.		ш.	C.	LLL	D .

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: MW35-WC-01 Lab Sample ID: AY34315 Matrix: Water

% Solids: NA Initial Calibration ID: M110322

Date Received: 23-Mar-11 Date Prepared: 23-Mar-11 Date Analyzed: 23-Mar-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		U
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.33	1		F
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	2.37	1		
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	1.29	1		
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	0.06	1		U
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	105	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	100	75-125	
SURROGATE: DIBROMOFLUOROMETH	103	75-125	
SURROGATE: TOLUENE-D8 (S)	97.8	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:		

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 110324AT-153500

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Lab Sample ID: AY34316

5035

Field Sample ID: MW35-WC-02

Matrix: Soil

% Solids: 83.6

Initial Calibration ID: T110324

Date Prepared: 24-Mar-11

Date Analyzed: 24-Mar-11

Date Received: 23-Mar-11 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	_ 1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		Ü
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		Ŭ
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		Ü
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	I		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		, U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	i		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

C	or	nr	ne	n	ts	•

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110324AT-153500

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: MW35-WC-02 Lab Sample ID: AY34316 Matrix: Soil

% Solids: 83.6 Initial Calibration ID: T110324

Date Received: 23-Mar-11 Date Prepared: 24-Mar-11 Date Analyzed: 24-Mar-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1.		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	- 1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	-1		U
M&P-XYLENE	0.0018	0.007	0.0018	- 1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		Ú
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		IJ
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		IJ
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		IJ
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	108	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	91.7	65-135	
SURROGATE: DIBROMOFLUOROMETH	107	65-135	
SURROGATE: TOLUENE-D8 (S)	99.4	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~	
Comments	
Committee	

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

Initial Calibration Form 6

SDG No: 64211 Initial Cal. Date: 3/22/11 Instrument: Max Lab Name: APPL, Inc.

Matrix:

0.999 1,000 0.999 0.999 TM* Z M E Z N N *WL Z Z Z * ≥ TM TM Ā Z Z Σ SEE SEE M Σ M %RSD 10 7.5 12 7.2 4.9 5.2 6.2 6.8 6.0 5.6 7.2 19 9.2 8.1 13 6.7 8.1 6.3 2 23 25 4.9 15 Ξ 32 Initials: 0.47 0.60 0.54 0.90 0.53 0.14 0.86 0.26 0.51 0.68 0.55 0.56 0.55 2.0 0.50 0.42 0.50 2.0 0.50 Avg 0.67 0.27 0.59 1.9 0.49 0.35 0322M11W.D 0.8653 0.5073 0.5057 0.8619 0.1516 0.8456 0.2520 0.5873 0.5978 2.145 0.4903 0.6979 0.6497 0.6192 0.5236 0.2963 0.7001 0.5193 0.6444 0.2631 0.7930 2.390 0.6781 0.3642 2.294 0.4680 0.5131 0.4536 0.5911 0.5201 0.5197 19 0322M10W.D 0.5300 0.7765 0.7017 0.1532 0.8745 0.2600 0.5445 0.7200 0.6176 0.5612 0.5869 0.6302 2.158 2.396 0.6415 0.3697 0.3225 0.9050 0.5328 0.5187 0.5360 0.6372 0.2723 2.369 0.5172 0.6071 0.5418 0.7637 0.4628 40 0322M09W.D 0.8615 0.5276 0.5128 0.8939 0.1470 0.8572 0.2559 0.4902 0.7764 0.6818 0.5779 0.5533 2.182 0.4373 0.3286 0.4214 0.5295 0.6058 0.2654 2.269 0.5673 0.3565 0.4920 0.4486 0.5816 0.5180 2.080 0.5085 0.6974 20 0322M0BW.D 0.5244 0.4613 0.7326 0.3473 0.3820 0.8402 0.4269 0.5077 0.4854 0.8254 0.1342 0.8057 0.2377 0.4752 0.6348 0.5130 0.5901 1.894 0.4680 0.5532 0.5656 1.952 0.3980 0.4699 0.5287 0.4766 0.4981 2.072 10 0322M07W.D 0.4026 0.8424 0.4385 0.5603 0.5291 0.8543 0.5353 0.1353 0.2564 0.6600 0.5292 0.5422 0.5214 0.6594 1.936 0.4848 0.5383 0.2756 0.4304 0.5124 0.6825 0.5414 2.043 0.4668 0.3551 1.911 0.4372 2 0322M06W.D 0.9127 0.6044 0.5158 0.8415 0.4593 0.2350 0.4964 0.6401 0.4943 0.5401 0.6077 1.807 0.4620 0.2585 1.554 0.3717 0.4877 0.5818 0.5064 0.8280 0.3991 0.1322 0.5364 0.5233 0.4439 0.5207 1.619 2 0322M05W.D 0.8549 0.6488 0.5234 0.1322 0.8443 0.2564 0.5091 0.6523 0.4843 0.5840 0.6074 1.820 0.4720 0.3456 0.5830 0.9104 0.5481 0.8850 0.4732 0.5179 0.5623 0.5196 0.4133 0.6485 0.5104 1.354 0322M04W.D 0.7015 0.9822 0.4503 0.6073 0.9098 0.7668 0.6995 0.5072 0.5472 0.1565 0.8890 0.2953 0.5514 0.7235 0.5607 0.6541 0.6935 1.992 0.5264 0.6167 0.3410 0.3902 0.5874 0.5209 0.9123 0.6008 0.4923 0.5 0322M03W.D 0.5625 0.9471 1.028 ISTD 0.3 (STD 2.101 Trans-1,3-Dichloropropene Dibromofluoromethane(S) Dichlorodifluoromethane Cis-1,3-Dichloropropene TM Bromodichloromethane Trichlorofluoromethane Chlorobenzene-D5 (IS) Bromochloromethane Carbon Tetrachloride 2,2-Dichloropropane 1,1-Dichloropropene 1,2-Dichloropropane Methylene chloride Fluorobenzene (IS) Tetrachloroethene Dibromomethane 1-Chlorohexane Chloromethane Bromomethane 1,2-DCA-D4(S) Trans-1,2-DCE Toluene-D8(S) Chloroethane Vinyl chloride Cis-1,2-DCE TM* Chloroform 1,1,1-TCA 1.1-DCA 1.2-DCA Benzene Toluene 1,2-EDB TMT TML TM** TM* TML Σ TM** S TM. TML TM TM TM TM* MT TML TML M S S TM 28. 28.25 25 25 26 27 9 13 14 15 18 33 33 12 17 23 28 9 6 33 8 8

1.000

0.8694

0.8552

0.7679

0.6984

Form 6 Initial Calibration

Lab Name: APPL, Inc.
Case No:
Matrix:

SDG No: 64211 Initial Cal. Date: 3/22/11 Instrument: Max

Initials:

TML	Dipodilo	0.3	0.5		2	2	10	20	40	400	- · · ·	20070		
T	TM 1,1,1,2-Tetrachloroethane		0.5128	0.5147	0.5181	0.5718	0 5318	0 5700	20020	001	Avg	%RSD		
	-		0.7163	0.7248	0.8551	1115	1 088	4 100	0.0200	4.200	0.56	8.3	TM	
F	TML lo-Xylene		0.5706	0 6096	0.6890	0 000	0.0546	1,102	1.242	1.260	1.0	22	TML	1.000
1	$\overline{}$	0.9277	0.9183	0 9941	1 228	1 044	4 702	1.119	1.215	1.220	0.91	29	TML	1.000
S	$\overline{}$		200	0.004	0.5404	1.011	1.783	2.009	2.182	2.260	1.6	35	TWL	0.999
F	Т	0.6058	0.6538	0.6222	0.048	0.7870	0.7823	0.8613	0.9460	0.9431	0.83	14	S	
F		0.0300	0.0000	0.0022	0.0004	0.7858	0.7484	0.8225	0.8780	0.8672	0.75	13	MT	
F		1.021	0.4012	0.3933	0.3828	0.4548	0.4235	0.4886	0.5320	0.5472	0.45	14	TM	
2	Chiloropenzene	1.8/4	1.847	1.741	1.732	1.844	1.685	1.785	1.863	1.857	1.8	38	TM**	
=	IM Ethylbenzene		1.915	1.932	2.153	2.652	2.611	2.918	3.146	3.276	26	21	TM*	
2	IM** Bromotorm		0.2510	0.2317	0.2372	0.2707	0.2497	0.2819	0.3227	0.3498	12.0	12	TA4**	
-1	\neg	ISTD								2	0.51	2	IN I	
TMF			1.622	1.760	2.032	2.756	3.049	3.524	3.833	3 949	2.8	22	7840	000
TM**		0.6921	0.7041	0.6302	0.6055	0.6994	0.6435	0.6587	0.6970	0.7120	0.2	32	IMI	1.000
Σ	M 1,2,3-Trichloropropane		0.2849	0.2116	0.2269	0.2476	0.2281	0.2361	0.2423	0.2328	0.07	2.0	. W	
Σ		0.6926	0.7416	0.7317	0.7874	0.9383	0.9038	0.9569	1 002	0.9772	90.0	9.0	N.	
TML	1L n-Propylbenzene	2.023	2.202	2.420	2.909	4.057	4.146	4 535	4 841	A 755	0.00	± 56	2	
TML		1.659	1.750	1.989	2.366	2.900	2.821	3.018	3.141	3.160	2.5	36	THE	1.000
M	\neg		1.424	1.825	2.383	3.076	3.014	3.239	3.380	3 446	2.7	4.7	TRAI	1.000
TML			1.816	2.159	2.660	3.117	2.960	3.094	3.255	3.262	286	10	TAN	000
TML	IL Tert-Butylbenzene		1.382	1.477	1.673	2.240	2.440	2.747	3 007	3 1 1 4	23	600	IMI	000
TML			1.387	1.664	2.143	3.049	3 028	3 281	3 520	3,618	2.7	00	IMI	1.000
TML	-		1.953	2.257	2.724	3.516	3 643	4.052	4 478	0.010	2.1	32	IML	1.000
TML	_		1 597	1 833	2 320	3 180	3 306	2005	2000	4.333	3.4	87.	TML	1.000
M			1 688	1685	1 777	2010	1 070	3.003	3.935	4.040	3.0	32	TML	1.000
M	1	2 569	2 303	2 146	1 082	2 140	1.012	1.303	2.085	2.126	1.9	9.1	MT.	
E	$\overline{}$		1 718	1 757	4 000	25.143	1.939	2.047	2.149	2.153	2.2	8.5	IM	
IN	A 12-DCB	1 604	4 747	17.131	1.003	2.540	2.735	3.032	3.366	3.487	2.6	28	TML	0.999
TAAL		1	11.1.1	CITY	1.725	1.925	1.842	1.887	1.998	1.971	1.8	9.9	M	
TAME		1	0.1019	0.1137	0.1083	0.1203	0.1243	0.1395	0.1583	0.1681	0.13	18	TML	0.999
2	IL 1,2,4-1 richiorobenzene	0.8397	0.8979	0.8380	0.8324	1.056	1,112	1.326	1.476	1.461	1.1	25	TML	0.999
Σ			0.6363	0.5844	0.5482	0.6134	0.5885	0.6358	0.6864	0.6794	0.62	7.7	M	
Z	\rightarrow	1.085	1.100	1.099	1.203	1.894	2.271	2.752	3.092	3.080	2.0	45	TMI	0 999
M	L 1,2,3-Trichlorobenzene	0.8386	0.8847	0.8727	0.9216	1.172	1.200	1.301	1.394	1.331	1.1	20	TMI	1000
1												2	Time	000.1
1											1			
1											1			

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/22/11
Matrix:	Instrument: Max
	Initial Cal. Date: 3/22/11
	Data File: 0322M15W D

		Compound	MEAN	CCRF	%D	C	%Drif
1	*	Fluorobenzene (IS)	ISTD				100
	TM	Dichlorodifluoromethane	0.5044	0.5012	0.64	TM	
3	TM**	Chloromethane	0.7937	0.7975	0.48	TM**	
4	TM*	Vinyl chloride	0.6678	0.6583	1.4	TM*	
5	TML	Bromomethane	0.4180	0.4015	3.9	TML	18
6	TM	Chloroethane	0.4209	0.4165	1.1	TM	
7	TM	Trichlorofluoromethane	0.9042	0.8534	5.6	TM	
	TML	Freon-113	1.000	1.000	0.00	TML	4.2
9	TM*	1,1-DCE	0.4692	0.4362	7.0	TM*	
10	TML	Methylene chloride	0.6001	0.5239	13	TML	2.2
11	TML	Methyl t-butyl ether (MtBE)	1.000	1.000	0.00	TML	11
	TM	Trans-1,2-DCE	0.5396	0.4869	9.8	ТМ	
13	TM**	1,1-DCA	0.8971	0.8192	8.7	TM**	
	TM	Cis-1,2-DCE	0.5283	0.5478	3.7	TM	
15	TM*	Chloroform	0.8636	0.8252	4.5	TM*	
16	S	Dibromofluoromethane(S)	0.5143	0.5006	2.7	S	
	TM	1,1,1-TCA	0.6766	0.6492	4.0	TM	
18		1,2-DCA-D4(S)	0.5571	0.5240	5.9	S	
19	TM	Carbon Tetrachloride	0.5495	0.5345	2.7	TM	
20	TM	1,2-DCA	0.6258	0.5889	5.9	TM	
21	TM	Benzene	1.993	1.975	0.89	TM	-
22	TM	TCE	0.4978	0.4852	2.5	TM	
23	TM*	1,2-Dichloropropane	0.5360	0.5108	4.7	TM*	
24	TM	Bromodichloromethane	0.5920	0.5637	4.8	TM	
25	TM	Dibromomethane	0.2700	0.2472	8.4	TM	
26	TML	2-Chloroethyl vinyl ether	1.000	1.000	0.00	TML	5.6
27	TML	Cis-1,3-Dichloropropene	0.5894	0.5848	0.78	TML	13
28	TM*	Toluene	1.931	2.092	8.3	TM*	
29	TML	Trans-1,3-Dichloropropene	0.4866	0.4741	2.6	TML	14
30	TM	1,1,2-TCA	0.3499	0.3302	5.6	TM	
31	1	Chlorobenzene-D5 (IS)	ISTD			1	
32	S	Toluene-D8(S)	2.044	2.175	6.4	S	
33	TM	Tetrachloroethene	0.4993	0.4936	1.1	TM	
34	TM	1,1,1,2-Tetrachloroethane	0.5593	0.5623	0.54	TM	
35	TML	m&p-Xylene	1.023	1.143	12	TML	2.3
	TML	o-Xylene	0.9124	1.019	12	TML	6.6
37		4-Bromofluorobenzene(S)	0.8271	0.9645	17	S	3,5
	TM	Dibromochloromethane	0.4529	0.4371	3.5	TM	
39	TM**	Chlorobenzene	1.803	1.769	1.9	TM**	
40	TM*	Ethylbenzene	2.575	2.794	8.5	TM*	

Average 4.8

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/22/11
Matrix: 0	Instrument: Max
	Cal. Date: 3/22/11
	Data File: 0322M15W D

		Compound	MEAN	CCRF	%D	9	6Dri
41	TM**	Bromoform	0.2743	0.2472	9.9	TM**	
42		1,4-Dichlorobenzene-D (IS)	ISTD			- 1	
43	TM**	1,1,2,2-Tetrachloroethane	0.6715	0.6210	7.5	TM**	
44	TM	Bromobenzene	0.8591	0.9548	11	TM	
45	TM	1,3-DCB	1.902	1.994	4.9	TM	
46	TM	1,4-DCB	2.162	2.085	3.5	TM	
47	TM	1,2-DCB	1.830	1.910	4.3	TM	
	TML	1,2-Dibromo-3-chloropropane	0.1293	0.1150	11	TML	17
49	TML	Naphthalene	1.953	2.194	12	TML	16
50							
51							
52			- 11				
53							
54							
55							
56							
57							
58							
59							
60							
61							
62							
63							
64							
65							
66							
67							
68							
69							
70							
71							
72							
73							
74							
75							
76			- 4				
77							
78				1			
79							
80						-	

Average 8.0

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/23/11
Matrix:	Instrument: Max
	Initial Cal. Date: 3/22/11
	Data File: 0323M01W.D

		Compound	MEAN	CCRF	%D		%Drif
	1	Fluorobenzene (IS)	ISTD	1		- 1	
	TM	Dichlorodifluoromethane	0.5044	0.5966	18	TM	
3	TM**	Chloromethane	0.7937	0.8413	6.0	TM**	
4	TM*	Vinyl chloride	0.6678	0.7382	11	TM*	
5	TML	Bromomethane	0.4180	0.3895	6.8	TML	16
6	TM	Chloroethane	0.4209	0.4447	5.7	TM	
7	TM	Trichlorofluoromethane	0.9042	0.9822	8.6	TM	
8	TM*	1,1-DCE	0.4692	0.4875	3.9	TM*	
9	TML	Methylene chloride	0,6001	0.5607	6.6	TML	5.1
10	TM	Trans-1,2-DCE	0.5396	0.5556	3.0	ТМ	
11	TM**	1,1-DCA	0.8971	0.9163	2.1	TM**	
12	TM	Cis-1,2-DCE	0.5283	0.5896	12	TM	
13	TM	2,2-Dichloropropane	0.1428	0.1685	18	TM	
14	TM*	Chloroform	0.8636	0.8945	3.6	TM*	
15	TM	Bromochloromethane	0.2555	0.2562	0.27	TM	
16	S	Dibromofluoromethane(S)	0.5143	0.5178	0.68	S	
17	TM	1,1,1-TCA	0.6766	0.7310	8.0	TM	
18	TM	1,1-Dichloropropene	0.5509	0.6089	11	TM	
19	S	1,2-DCA-D4(S)	0.5571	0.5228	6.2	S	
20	TM	Carbon Tetrachloride	0.5495	0.5906	7.5	TM	
21	TM	1,2-DCA	0.6258	0.6175	1.3	TM	
22	TM	Benzene	1.993	2.121	6.4	TM	
23	TM	TCE	0.4978	0.5068	1.8	ТМ	
24	TM*	1,2-Dichloropropane	0.5360	0.5398	0.72	TM*	
25	TM	Bromodichloromethane	0.5920	0.6157	4.0	TM	
26	TM	Dibromomethane	0.2700	0.2665	1.3	TM	
27	TML	Cis-1,3-Dichloropropene	0.5894	0.6529	11	TML	4.1
28	TM*	Toluene	1.931	2.311	20	TM*	74.0
29	TML	Trans-1,3-Dichloropropene	0.4866	0.5235	7.6	TML	7.2
30	TM	1,1,2-TCA	0.3499	0.3475	0.68	TM	1.12
31	1	Chlorobenzene-D5 (IS)	ISTD		3,50	1	
32	S	Toluene-D8(S)	2.044	2.137	4.6	S	
	TM	1,2-EDB	0.4140	0.4146	0.16	TM	
	TM	Tetrachloroethene	0.4993	0.5439	8.9	TM	
	TML	1-Chlorohexane	0.6949	0.8163	17	TML	3.8
	TM	1,1,1,2-Tetrachloroethane	0.5593	0.5900	5.5	TM	0.0
	TML	m&p-Xylene	1.023	1.213	19	TML	3.3
	TML	o-Xylene	0.9124	1.087	19	TML	1.1
	TML	Styrene	1.568	1.972	26	TML	2.6
40		4-Bromofluorobenzene(S)	0.8271	0.9422	14	S	2.0

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/23/11
Matrix: 0	Instrument: Max
	Cal. Date: 3/22/11
	Data File: 0323M01W D

	7.1	Compound	MEAN	CCRF	%D	7 (2)	%Drif
	TM	1,3-Dichloropropane	0.7489	0.7801	4.2	TM	
	TM	Dibromochloromethane	0.4529	0.4573	0.96	ТМ	
	TM**	Chlorobenzene	1.803	1.851	2.7	TM**	
	TM*	Ethylbenzene	2.575	2.952	15	TM*	
	TM**	Bromoform	0.2743	0.2657	3.1	TM**	
46		1,4-Dichlorobenzene-D (IS)	ISTD	1 1 1		- 4	
	TML	Isopropylbenzene	2.816	3.430	22	TML	0.82
	TM**	1,1,2,2-Tetrachloroethane	0.6715	0.6527	2.8	TM**	
	TM	1,2,3-Trichloropropane	0.2388	0.2210	7.5	ТМ	
	TM	Bromobenzene	0.8591	0.9731	13	TM	
	TML	n-Propylbenzene	3.543	4.634	31	TML	2.6
	TML	2-Chlorotoluene	2.534	3.067	21	TML	1.7
	TML	1,3,5-Trimethylbenzene	2.723	3.299	21	TML	2.8
	TML	4-Chlorotoluene	2.790	3.239	16	TML	3.8
55	TML	Tert-Butylbenzene	2.260	2.757	22	TML	0.83
56	TML	1,2,4-Trimethylbenzene	2.711	3.325	23	TML	1.5
57	TML	Sec-Butylbenzene	3.363	4.141	23	TML	2.4
58	TML	p-Isopropyltoluene	2.977	3.704	24	TML	2.3
59	TM	1,3-DCB	1.902	2.021	6.3	TM	
	TM	1,4-DCB	2.162	2.101	2.8	TM	
61	TML	n-Butylbenzene	2.565	3.123	22	TML	2.0
62	TM	1,2-DCB	1.830	1.926	5.2	TM	
63	TML	1,2-Dibromo-3-chloropropane	0.1293	0.1171	9.4	TML	16
64	TML	1,2,4-Trichlorobenzene	1.093	1.246	14	TML	6.1
65	TM	Hexachlorobutadiene	0.6216	0.6559	5.5	TM	
66	TML	Naphthalene	1.953	2.206	13	TML	17
67	TML	1,2,3-Trichlorobenzene	1.102	1.253	14	TML	3.4
68							0
69							
70							
71							
72							
73							
74							
75							
76							
77							
78							
79				11			-
80							

Form 6 Initial Calibration

Initials: 0324T09S.D 0324T07S.D 0324T08S.D SDG No: 64211 Initial Cal. Date: 3/24/11 Instrument: Thor 0324T05S.D 0324T06S.D 0324T04S.D Lab Name: APPL, Inc. Case No: 0324T03S.D Matrix:

					0.997											766.0												0.999		0.999	0.998			0.991	
		TM	TM**	TM*	TML	TM	TM	TM*	TM	TM	TM	TM**	TM	TM	TM*	TME	S	TM	MT	S	TM	TM	TM	MT	TM.	TM	TM	TML	TM*	TML	TML		S	TML	TM
%RSD		6.8	5.8	12	27	13	11	8.7	12	14	9.7	8.9	15	15	18	39	13	11	12	7.0	11	10	14	11	12	15	10	27	25	31	24		15	16	0.6
Avg)	0.45	77.0	0.62	1.2	0.55	1.0	0.50	0.74	1.9	0.56	1.1	0.47	0.50	62'0	0.20	0.44	0.56	0.49	99:0	0.44	0.77	1.7	0.43	0.58	0.63	0.34	0.52	1.8	0.46	0.40		1.7	0.47	0.30
0.2		0.4177	0.7018	0.5489	0.8547			0.5099	0.6792	2.134	0.5490	1.121	0.5444	0.5923	0.8541	0.2356	0.5135	0.6201	0.5570	0.6926	0.4835	0,7999	1.945	0.4659	0.6187	0.7286	0.3638		2.236		0.4857		1.848	0.4943	0.2906
0.1		0.4708	0.7729	0.6068	0.9671	0.4786	1.110	0.5488	0.7460	2.256	0.5969	1.263	0.5670	0.6109	0.9118	0.2525	0.4826	0.6440	0.5846	0.6833	0.5164	0.8666	2.062	0.5097	0.6893	0.7748	0.3889		2.320		0.5132		1.964	0.5883	0.3463
0.05		0.4516	0.7380	0.6670	0.9484	0.5143	0.9494	0.4150	0.6243	1.792	0.4855	1.057	0.4463	0.4647	0.7510	0.2074	0.4060	0.5156	0.4572	0.5879	0.3979	0.7298	1.621	0.4025	0.5568	0.6179	0.3166	6299'0	1.828	0.6169	0.4190		1.640	0.4849	0.3010
0.02	*	0.4724	0.8139	0.5430	1.114	0.5260	1.171	0.5099	0.7150	2.011	0.5812	1.059	0.4845	0.4970	0.8342	0.2382	0.4856	0.5590	0.4838	0.6825	0.4338	0.8174	1.730	0.4495	0.5762	0.6449	0.3473	0.6092	1.857	0.5831	0.4545		1,818	0.5202	0.3318
0.01		0.4565	0.8173	0.6223	1.361	0.6030	1.112	0.5100	0.7172	1.862	0.5738	1.181	0.4556	0.4843	0.8302	0.2370	0.3639	0.5332	0.4439	0.6041	0.3980	0.8037	1.692	0.4148	0.6196	2009'0	0.3359	0.5496	1.601	0.4734	0.4083		1.448	0.4359	0.3013
0.005		0.4813	0.7701	0.7378	1.695	0.6704	1.014	0.5280	0.8247	1.857	0.6067	1.221	0.4250	0.4738	0.8476	0.2176	0.4474	0.5555	0.4698	0.6760	0.4244	0.7313	1.706	0.3966	0.5662	0.5717	0.3250	0.4664	1,500	0.3737	0.2420		1.292	0.3890	0.2782
0.002		0.3988			1,558	0.4947	0.8791	0.4756	0.8870	1.459	0.5278	0.9839	0.3538	0.3875	0.4799	0.0258	0.3883	0.4692	0.4200	0.7081		0.6228	1.310	0.3760	0.4675	0.4938	0.2818	0.3100	1.059	0.2672	0.3003			0.3835	0.2718
Compound	Fluorobenzene (IS)	Dichlorodifluoromethane	TM** Chloromethane	TM* Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-DCE	Methylene chloride	Methyl t-butyl ether (MtBE)	Trans-1,2-DCE	1,1-DCA	Cis-1,2-DCE	2,2-Dichloropropane	TM* Chloroform	Bromochloromethane	Dibromofluoromethane(S)	1,1,1-TCA	1,1-Dichloropropene	1,2-DCA-D4(S)	Carbon Tetrachloride	1,2-DCA	Benzene	TCE	TM* 1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	Cis-1,3-Dichloropropene	Toluene	Trans-1,3-Dichloropropene	1,1,2-TCA	Chlorobenzene-D5 (IS)	Toluene-D8(S)	1,2-EDB	Tetrachloroethene
	-	TM	TM**	±W⊥	TML	TM	M	TM+	M		1/2	TM**	TM	TM	TM*	TML	S	M	MT	S		TM	M	TM	-	TM	MH	TML	*ML		TML	-	S	TML	TM
	-	2	3	4	2	9	1	80	6	10	11	12	13	14	15	16	17	18	19	20	221	22	23	24	25	26	27	28	29	30	31	32	33	34	35

Form 6 Initial Calibration

Lab Name: APPL, Inc. Case No: Matrix:

SDG No: 64211 Initial Cal. Date: 3/24/11 Instrument: Thor

Initials:

Avg %RSD			32 TML	32	38	15	1	20	42	-	22	36	14 34 TM	18	65	17	29	27	30	23	33	33		31	16	9.2	24	13	. 20	22		.25 9.6 TM
Avg	0.52	0.44	0.87	0.72	1,5	0.63	00.0	0.00	1.45	23	0.27	170	14	0.52	0.17	0.42	2.0	1.4	1.5	1.6	1.1	1.5	1.7	1.5	0.89	0.99	1.4	0.85	0.08	0.45	0.25	23.0
																																-
0.2			1.099		2.085		0.9627	0.5333	1.555	2.598	0.3533		1.832	0.6086	0.1671	0.4611		1.652	1.838	1.931	1.404	1.806		1.816	0.9822	1.027			0.0955		0.2580	
0.1			1.197		2.272		1.137	0.6020	1.785	2.946	0.3899		2.065	0.6717	0.2019	0.5320	2.823	1.893	2.082	2.165	1.547	2.066	2.533	2.110	1.105	1.156			0.1071		0.2889	
0.05	0.6078	0.4745	0.9573	0.9517	1.737	0.6848	0.9468	0.4819	1.484	2.384	0.2875		1.630	0.5347	0.1718	0.4445	2.310	1.583	1.629	1.739	1.215	1.691	1.997	1.659	0.9020	0.9548	1.734	0.9548	0.0858	0.5386	0.2380	
0.02	0.6045	0.5084	0.9696	0.8878	1.708	0.7771	0.9852	0.4411	1.432	2.404	0.2734		1.335	0.4994	0.1717	0.4023	2:052	1.461	1.461	1.652	1.026	1.579	1.777	1.531	0.8848	0.9786	1.574	0.9396	0.0761	0.5191	0.2469	
0.01	0.5463	0.4776	0.8472	0.7514	1.366	0.5753	0.8982	0.4144	1.506	2.059	0.2405		1.153	0.4833	0.1604	0.3947	1.916	1.384	1.374	1.555	0.9138	1.343	1.512	1.352	0.8595	0.9479	1.377	0.8559	0.0749	0.4825	0.2381	
0.005	0.4957	0.4065	0.0034	0.6043	1.062	0.5924	0.7683	0.3641	1.320	1.821	0.1939		1.010	0.4635	0.1577	0.3956	1.660	1.219	1.198	1.511	0.8456	1.104	1.371	1.123	0.8130	0.9838	1.192	0.8099	0.0592	0.3982	0.2426	
2000	0.3569	0.3460	0.3013	0.3833	0.5702	0.5360	0.5781	0.2844	1.254	1.944	0.1451		0.7263	0.3881		9908.0	1.117	0.7084	0.7400	0.9372	0.4962	0.6416	0.8056	0.7272	0.6534	0.8588	0.9157	0.6777		0.2961	0.2105	
Compound	1-Chloronexane	m.g.n. Yydono				4-Bromofluorobenzene(S)	1,3-Dichloropropane	TML Dibromochloromethane	TM** Chlorobenzene	TM* Ethylbenzene	TM**L Bromoform	1,4-Dichlorobenzene-D (IS)	TML Isopropylbenzene	TM**L 1,1,2,2-Tetrachloroethane	TM 1,2,3-Trichloropropane	Bromobenzene	TML n-Propylbenzene	Z-Chlorotoluene	IML 1,3,5-I nmethylbenzene	4-Chlorotoluene	lert-Butylbenzene	1,2,4-1 rimethylbenzene	Sec-Butylbenzene	p-IsopropyItoluene	1,3-DCB	1,4-DCB	n-Butylbenzene	1,2-DCB	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	
TAA	TW	38 TIM	+	+	1	+	-	43 TML	_	-		-	_	\rightarrow	+	-	-	+	-	S 45	M	IML	M	59 IML	W	2	W	2	PA TML	4	WI 99	

Form 7 Second Source Calibration/CCV

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/24/11
Matrix:	Instrument: Thor
	Initial Cal. Date: 3/24/11
	Data File: 0324T16S D

		Compound	MEAN	CCRF	%D		%Dri
1		Fluorobenzene (IS)	ISTD				
	TM	Dichlorodifluoromethane	0.4499	0.4323	3.9	TM	
	TM**	Chloromethane	0.7690	0.7417	3.6	TM**	
	TM*	Vinyl chloride	0.6210	0.6728	8.3	TM*	
	TML	Bromomethane	1.214	1.009	17	TML	7.3
	TM	Chloroethane	0.5478	0.5076	7.3	TM	
	TM	Trichlorofluoromethane	1.039	0.9430	9.3	TM	
	TM*	1,1-DCE	0.4996	0.4630	7.3	TM*	
	TM	Methylene chloride	0.7419	0.6653	10	TM	
10	TM	Methyl t-butyl ether (MtBE)	1.910	1.944	1.8	TM	
	TM	Trans-1,2-DCE	0.5601	0.5327	4.9	TM	
12	TM**	1,1-DCA	1.126	1.130	0.28	TM**	
13	TM	Cis-1,2-DCE	0.4681	0.4715	0.73	TM	
14	TM	2,2-Dichloropropane	0.5015	0.5076	1.2	TM	
15	TM*	Chloroform	0.7870	0.7892	0.29	TM*	
	TML	Bromochloromethane	0.2020	0.2117	4.8	TML	9.7
17	S	Dibromofluoromethane(S)	0.4410	0.4234	4.0	S	
18	TM	1,1,1-TCA	0.5567	0.5316	4.5	TM	
19	TM	1,1-Dichloropropene	0.4880	0.4782	2.0	TM	
20	S	1,2-DCA-D4(S)	0.6621	0.6322	4.5	S	
21	TM	Carbon Tetrachloride	0.4423	0.4172	5.7	TM	
22	TM	1,2-DCA	0.7674	0.7582	1.2	TM	
23	TM	Benzene	1.724	1.699	1.5	TM	
24	TM	TCE	0.4307	0.4236	1.7	TM	
25	TM*	1,2-Dichloropropane	0.5849	0.5847	0.04	TM*	
26	TM	Bromodichloromethane	0.6332	0.6663	5.2	TM	
27	TM	Dibromomethane	0.3371	0.3360	0.32	TM	
28	TML	Cis-1,3-Dichloropropene	0.5206	0.7196	38	TML	8.1
29	TM*	Toluene	1.771	1.914	8.0	TM*	
30	TML	Trans-1,3-Dichloropropene	0.4628	0.6395	38	TML	3.7
31	TML	1,1,2-TCA	0.4033	0.4483	11	TML	5.3
32		Chlorobenzene-D5 (IS)	ISTD			1	0.0
33	S	Toluene-D8(S)	1.668	1.716	2.8	S	
34	TML	1,2-EDB	0.4709	0.4788	1.7	TML	7.3
35		Tetrachloroethene	0.3030	0.2753	9.2	TM	7.0
	TML	1-Chlorohexane	0.5223	0.6041	16	TML	0.79
37		1,1,1,2-Tetrachloroethane	0.4430	0.4717	6.5	TM	0.73
	TML	m&p-Xylene	0.8722	0.9066	3.9	TML	15
	TML	o-Xylene	0.7161	0.9182	28	TML	3.1
	TML	Styrene	1.543	1.661	7.7	TML	17

Average 7.4

Form 7 Second Source Calibration/CCV

Lab Name: APPL, Inc.	SDG No: 64211
Case No:	Date Analyzed: 3/24/11
Matrix: 0	Instrument: Thor
	Cal. Date: 3/24/11
	Data File: 0324T16S.D

		Compound	MEAN	CCRF	%D		%Drif
41		4-Bromofluorobenzene(S)	0.6331	0.6767	6.9	S	702111
	TML	1,3-Dichloropropane	0.8966	0.9104	1.5	TML	9.2
	TML	Dibromochloromethane	0.4459	0.4770	7.0	TML	9.9
44	TM**	Chlorobenzene	1.477	1.418	3.9	TM**	0.0
	TM*	Ethylbenzene	2.308	2.258	2.2	TM*	
46	TM**L	Bromoform	0.2691	0.2941	9.3	TM**L	13
47	1	1,4-Dichlorobenzene-D (IS)	ISTD			1	- 10
	TML	Isopropylbenzene	1.393	1.536	10	TML	14
49	TM**L	1,1,2,2-Tetrachloroethane	0.5213	0.5391	3.4	TM**L	10.0
50	TM	1,2,3-Trichloropropane	0.1718	0.1671	2.7	TM	10.0
	TML	Bromobenzene	0.4196	0.4344	3.5	TML	7.6
52	TML	n-Propylbenzene	1.980	2.177	10.0	TML	16
53	TML	2-Chlorotoluene	1.414	1.456	3.0	TML	13
54	TML	1,3,5-Trimethylbenzene	1.475	1.533	4.0	TML	15
55		4-Chlorotoluene	1.641	1.620	1.3	TML	15
56	TML	Tert-Butylbenzene	1.064	1.140	7.2	TML	15
57		1,2,4-Trimethylbenzene	1.462	1.556	6.5	TML	14
58	TML	Sec-Butylbenzene	1.666	1.845	11	TML	19
59		p-Isopropyltoluene	1.474	1.520	3.1	TML	16
60		1,3-DCB	0.8857	0.8175	7.7	TML	17
		1,4-DCB	0.9868	0.8645	12	TM	-"
		n-Butylbenzene	1.359	1.543	14	TML	10
		1,2-DCB	0.8476	0.8619	1.7	TM	-10
		1,2-Dibromo-3-chloropropane	0.0831	0.0892	7.4	TML	5.2
65		1,2,4-Trichlorobenzene	0.4469	0.4495	0.58	TML	16
66		Hexachlorobutadiene	0.2462	0.2188	11	TM	10
67		Naphthalene	1.462	1.594	9.1	TML	12
68		1,2,3-Trichlorobenzene	0.5352	0.4888	8.7	TML	19
69	15 10			0.1000	0,7	TIVIL	19
70						-	-
71							
72							-
73							-
74							
75	- 1					-	_
76						-	
77						-	-
78							
79						-+	-
80						_	-

Average 6.2

EPA METHOD 8260B Volatile Organic Compounds Raw Data

Concentration Units: ug/L Method Blank ID: 110323AM-BLK

Initial Calibration ID: M110322

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0,5	J
1,1,1-TCA	< RL	0.8	Į
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	ι
1,1,2-TCA	< RL	1.0	I
1,1-DCA	< RL	0.4	J
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	I
1,2,3-TRICHLOROBENZENE	< RL	0.3	I
1,2,3-TRICHLOROPROPANE	< RL	3.2	Į
1,2,4-TRICHLOROBENZENE	< RL	0.4	l
1,2,4-TRIMETHYLBENZENE	< RL	1.3	L
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	ι
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	ι
1,2-DICHLOROPROPANE	< RL	0.4	I
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	l
1,3-DCB	< RL	1.2	I
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments: ARF: 64211, Sample: AY34315

Analytical Method: EPA 8260B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110323AM-BLK

Initial Calibration ID: M110322

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0.4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	108	69-139	
SURROGATE: 4-BROMOFLUOROBE	93.2	75-125	
SURROGATE: DIBROMOFLUOROME	104	75-125	
SURROGATE: TOLUENE-D8 (S)	96.5	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64211, Sample: AY34315

Analytical Method: EPA 8260B

AAB #: 110324AT-153500

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110324AT-BLK

Initial Calibration ID: T110324

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	L
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64211, Sample: AY34316

Analytical Method: EPA 8260B

AAB #: 110324AT-153500

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110324AT-BLK

Initial Calibration ID: T110324

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	106	52-149	
SURROGATE: 4-BROMOFLUOROBE	87.9	65-135	POL.
SURROGATE: DIBROMOFLUOROME	101	65-135	
SURROGATE: TOLUENE-D8 (S)	95.4	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64211, Sample: AY34316

Analytical Method: EPA 8260B AAB #: 110323AM-153425

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110323AM LCS Initial Calibration ID: M110322

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.55	106	72-125	. 1
1,1,1-TCA	10.00	10.80	108	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	9.72	97.2	74-125	
1,1,2-TCA	10.00	9.93	99.3	75-127	
1,1-DCA	10.00	10.21	102	75-125	
1,1-DCE	10.00	10.39	104	75-125	
1,1-DICHLOROPROPENE	10.00	11.05	111	75-125	
1,2,3-TRICHLOROBENZENE	10.00	9.66	96.6	75-137	
1,2,3-TRICHLOROPROPANE	10.00	9.25	92.5	75-125	
1,2,4-TRICHLOROBENZENE	10.00	9.39	93.9	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.15	102	75-125	
1,2-DCA	10.00	9.87	98.7	68-127	
1,2-DCB	10.00	10.52	105	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	8.42	84.2	59-125	
1,2-DICHLOROPROPANE	10.00	10.07	101	70-125	
1,2-EDB	10.00	10.02	100	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.28	103	72-125	
1,3-DCB	10.00	10.63	106	75-125	
1,3-DICHLOROPROPANE	10.00	10.42	104	75-125	
1,4-DCB	10.00	9.72	97.2	75-125	
1-CHLOROHEXANE	10.00	10.38	104	75-125	
2,2-DICHLOROPROPANE	10.00	11.80	118	75-125	-
2-CHLOROTOLUENE	10.00	10.17	102	73-125	
4-CHLOROTOLUENE	10.00	10.38	104	74-125	11 -
BENZENE	10.00	10.64	106	75-125	11
BROMOBENZENE	10.00	11.33	113	75-125	Ti -
BROMOCHLOROMETHANE	10.00	10.03	100	73-125	
BROMODICHLOROMETHANE	10.00	10.40	104	75-125	
BROMOFORM	10.00	9.69	96.9	75-125	
BROMOMETHANE	10.00	11.59	116	72-125	
CARBON TETRACHLORIDE	10.00	10.75	108	62-125	
CHLOROBENZENE	10.00	10.27	103	75-125	
CHLOROETHANE	10.00	10.57	106	65-125	
CHLOROFORM	10.00	10.36	104	74-125	
CHLOROMETHANE	10.00	10.60	106	75-125	
CIS-1,2-DCE	10.00	11.16	112	75-125	J.
CIS-1,3-DICHLOROPROPENE	10.00	9.59	95.9	74-125	
DIBROMOCHLOROMETHANE	10.00	10.10	101	73-125	
DIBROMOMETHANE	10.00	9.87	98.7	69-127	
DICHLORODIFLUOROMETHANE	10.00	11.83	118	72-125	

Comments: ARF: 64211, QC Sample ID: AY34315

Analytical Method: EPA 8260B

AAB #: 110323AM-153425

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110323AM LCS

Initial Calibration ID: M110322

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	11.46	115	75-125	
HEXACHLOROBUTADIENE	10.00	10.55	106	75-125	-
ISOPROPYLBENZENE	10.00	9.92	99.2	75-125	
M&P-XYLENE	20.00	20.65	103	75-125	
METHYLENE CHLORIDE	10.00	10.51	105	75-125	
N-BUTYLBENZENE	10.00	10.20	102	75-125	
N-PROPYLBENZENE	10.00	10.26	103	75-125	
NAPHTHALENE	10.00	8.29	82.9	75-125	
O-XYLENE	10.00	9.89	98.9	75-125	
P-ISOPROPYLTOLUENE	10.00	10.23	102	75-125	
SEC-BUTYLBENZENE	10.00	10.24	102	75-125	
STYRENE	10.00	9.74	97.4	75-125	
TCE	10.00	10.18	102	71-125	
TERT-BUTYLBENZENE	10.00	10.08	101	75-125	
TETRACHLOROETHENE	10.00	10.89	109	71-125	
TOLUENE	10.00	11.97	120	74-125	
TRANS-1,2-DCE	10.00	10.30	103	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	9,28	92.8	66-125	
TRICHLOROFLUOROMETHANE	10.00	10.86	109	67-125	
VINYL CHLORIDE	10.00	11.05	111	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	93.6	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	114	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	105	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	- 14"-

Comments:

ARF: 64211, QC Sample ID: AY34315

Analytical Method: EPA 8260B

AAB #: 110324AT-153500

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110324AT LCS

Initial Calibration ID: T110324

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0532	106	62-125	
1,1,1-TCA	0.0500	0.0477	95.4	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0450	90.0	64-135	
1,1,2-TCA	0.0500	0.0474	94.8	65-135	
1,1-DCA	0.0500	0.0501	100	62-135	
1,1-DCE	0.0500	0.0463	92.6	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0490	98.0	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0405	81.0	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.049	98.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0419	83.8	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0431	86.2	65-135	. 1
1,2-DCA	0.0500	0.0494	98.8	58-137	
1,2-DCB	0.0500	0.0508	102	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.047	94.0	49-135	11.
1,2-DICHLOROPROPANE	0.0500	0.0500	100	60-135	
1,2-EDB	0.0500	0.0464	92.8	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0424	84.8	62-135	
1,3-DCB	0.0500	0.0414	82.8	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0454	90.8	65-135	
1,4-DCB	0.0500	0.0438	87.6	65-135	
1-CHLOROHEXANE	0.0500	0.0496	99.2	65-135	
2,2-DICHLOROPROPANE	0.050	0.051	102	65-135	
2-CHLOROTOLUENE	0.0500	0.0436	87.2	63-135	(- T
4-CHLOROTOLUENE	0.0500	0.0423	84.6	64-135	1
BENZENE	0.0500	0.0493	98.6	65-135	1
BROMOBENZENE	0.0500	0.0462	92.4	65-135	
BROMOCHLOROMETHANE	0.0500	0.0452	90.4	63-135	
BROMODICHLOROMETHANE	0.0500	0.0526	105	65-135	1
BROMOFORM	0.0500	0.0434	86.8	65-135	1.1
BROMOMETHANE	0.0500	0.0537	107	62-135	
CARBON TETRACHLORIDE	0.050	0.047	94.0	52-135	
CHLOROBENZENE	0.0500	0.0480	96.0	65-135	1
CHLOROETHANE	0.0500	0.0463	92.6	55-135	
CHLOROFORM	0.0500	0.0501	100	64-135	
CHLOROMETHANE	0.0500	0.0482	96.4	65-135	1
CIS-1,2-DCE	0.0500	0.0504	101	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0540	108	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0450	90.0	63-135	
DIBROMOMETHANE	0.050	0.050	100	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0481	96.2	65-135	

Comments:

ARF: 64211, QC Sample ID: AY34316

Analytical Method: EPA 8260B AAB #: 110324AT-153500

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110324AT LCS Initial Calibration ID: T110324

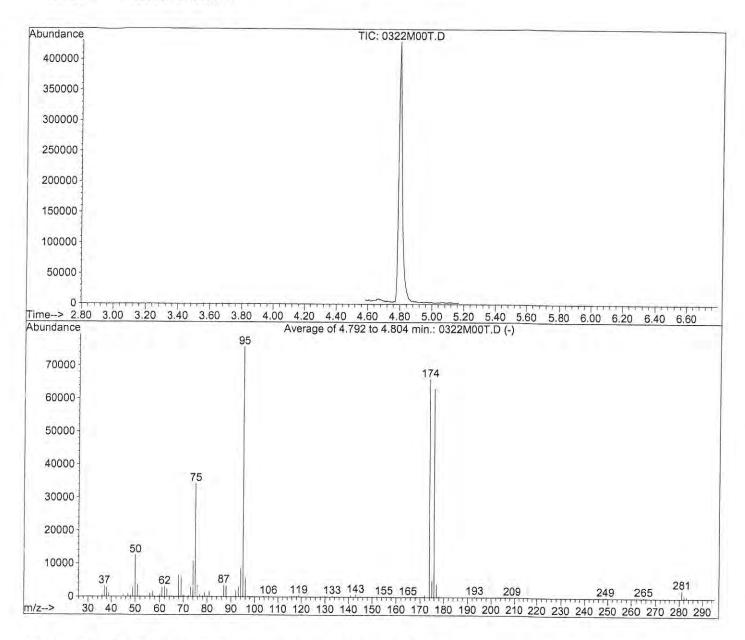
Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0489	97.8	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0444	88.8	65-135	
ISOPROPYLBENZENE	0.0500	0.0431	86.2	65-135	
M&P-XYLENE	0.1000	0.0847	84.7	65-135	
METHYLENE CHLORIDE	0.0500	0.0448	89.6	65-135	
N-BUTYLBENZENE	0.0500	0.0450	90.0	65-135	
N-PROPYLBENZENE	0.0500	0.0420	84.0	65-135	
NAPHTHALENE	0.0500	0.0439	87.8	65-135	
O-XYLENE	0.0500	0.0484	96.8	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0419	83.8	65-135	
SEC-BUTYLBENZENE	0.0500	0.0404	80.8	65-135	
STYRENE	0.0500	0.0417	83.4	65-135	
TCE	0.0500	0.0492	98.4	61-135	
TERT-BUTYLBENZENE	0.0500	0.0423	84.6	65-135	- 1
TETRACHLOROETHENE	0.0500	0.0454	90.8	61-135	
TOLUENE	0.0500	0.0540	108	64-135	
TRANS-1,2-DCE	0.0500	0.0476	95.2	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0519	104	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0454	90.8	57-135	
VINYL CHLORIDE	0.0500	0.0542	108	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	95.6	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	108	65-135	
SURROGATE: DIBROMOFLUOROMETH	95.7	65-135	
SURROGATE: TOLUENE-D8 (S)	102	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

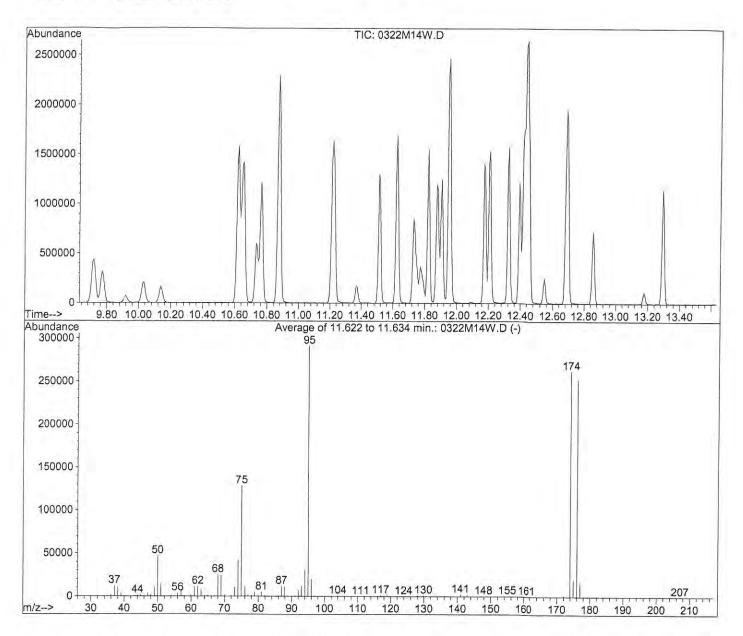
Comments: ARF: 64211, QC Sample ID: AY34316


Vial: 1

Data File : M:\MAX\DATA\M110322\0322M00T.D

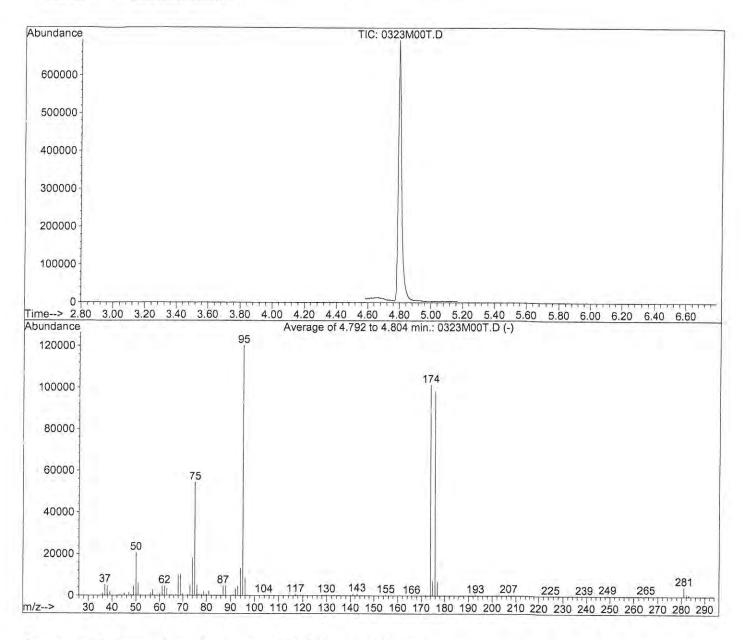
Acq On

: 22 Mar 11 14:46 : 20ug/mL BFB Std 03-11-11A : 2uL Operator: RP Sample Inst : Max Misc Multiplr: 1.00


: M:\MAX\DATA\M110322\M826AW.M (RTE Integrator)

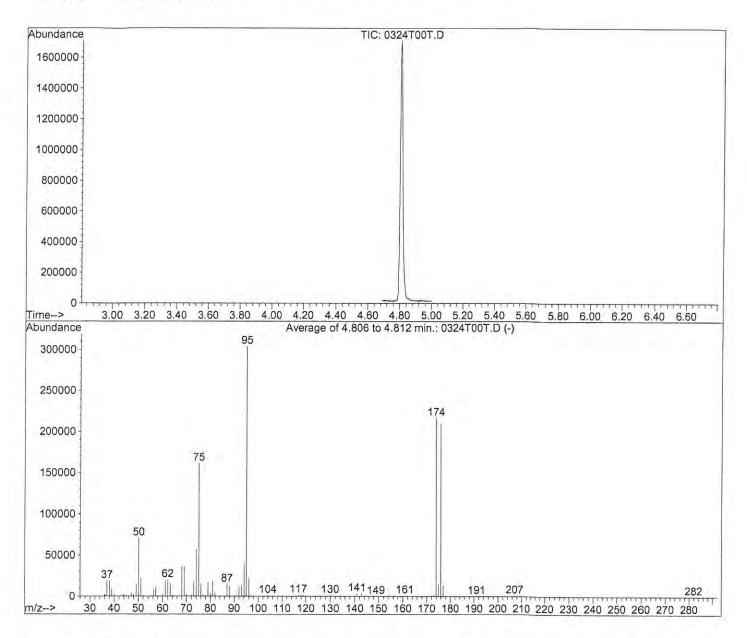
Spectrum Information: Average of 4.792 to 4.804 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.5	12499	PASS
75	95	30	60	45.2	34253	PASS
95	95	100	100	100.0	75749	PASS
96	95	5	9	7.5	5703	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	87.3	66096	PASS
175	174	5	9	7.5	4937	PASS
176	174	95	101	95.5	63131	PASS
177	176	5	9	6.1	3841	PASS


Method : M:\MAX\DATA\M110322\M826AW.M (RTE Integrator)

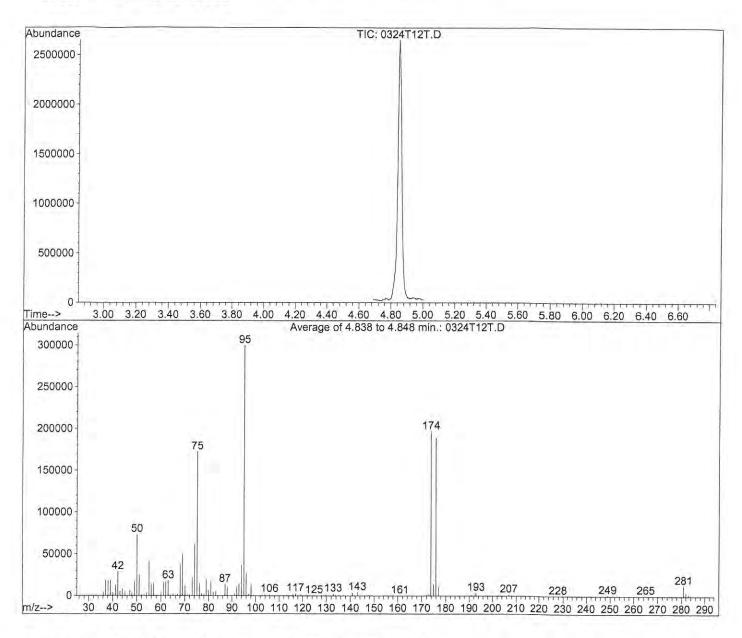
Spectrum Information: Average of 11.622 to 11.634 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.1	46844	PASS
75	95	30	60	44.1	128328	PASS
95	95	100	100	100.0	290837	PASS
96	95	5	9	6.7	19393	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	90.1	262101	PASS
175	174	5	9	7.5	19584	PASS
176	174	95	101	96.3	252395	PASS
177	176	5	9	6.4	16106	PASS


Method : M:\MAX\DATA\M110322\M826AW.M (RTE Integrator)

Spectrum Information: Average of 4.792 to 4.804 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	17.2	20668	PASS
75	95	30	60	45.3	54459	PASS
95	95	100	100	100.0	120187	PASS
96	95	5	9	7.0	8387	PASS
173	174	0.00	2	0.1	151	PASS
174	95	50	100	84.4	101395	PASS
175	174	5	9	7.1	7201	PASS
176	174	95	101	96.8	98120	PASS
177	176	5	9	6.9	6789	PASS


Method : M:\THOR\DATA\T110324\T826AS.M (RTE Integrator)

Spectrum Information: Average of 4.806 to 4.812 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	23.3	70931	PASS
75	95	30	60	53.1	161451	PASS
95	95	100	100	100.0	304043	PASS
96	95	5	9	7.0	21241	PASS
173	174	0.00	2	0.5	994	PASS
174	95	50	100	71.3	216725	PASS
175	174	5	9	6.7	14521	PASS
176	174	95	101	96.7	209536	PASS
177	176	5	9	5.9	12276	PASS

Method : M:\THOR\DATA\T110324\T826AS.M (RTE Integrator)

Spectrum Information: Average of 4.838 to 4.848 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	24.4	73136	PASS
75	95	30	60	57.5	172288	PASS
95	95	100	100	100.0	299696	PASS
96	95	5	9	8.9	26604	PASS
173	174	0.00	2	0.8	1586	PASS
174	95	50	100	65.7	196946	PASS
175	174	5	9	6.8	13364	PASS
176	174	95	101	95.9	188938	PASS
177	176	5	9	5.5	10395	PASS

Injection Log

Directory:	M:\MAX\DATA\M110322\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0322M00T.D	1	20ug/mL BFB Std 03-11-11A	2uL	22 Mar 11 14:46
2	3	0322M03W.D	1	Vol Std 03-22-11@0.3ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 16:01
3	4	0322M04W.D	1	Vol Std 03-22-11@0.5ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 16:27
4	5	0322M05W.D	1	Vol Std 03-22-11@1.0ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 16:53
5	6	0322M06W.D	1	Vol Std 03-22-11@2.0ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 17:18
6	7	0322M07W.D	1	Vol Std 03-22-11@5.0ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 17:44
7	8	0322M08W.D	1	Vol Std 03-22-11@10ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 18:10
8	9	0322M09W.D	1	Vol Std 03-22-11@20ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 18:36
9	10	0322M10W.D	1	Vol Std 03-22-11@40ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 19:01
10	11	0322M11W.D	1	Vol Std 03-22-11@100ug/L	10ml w/ IS: 5ul of 03-03-11	22 Mar 11 19:27
11	14	0322M14W.D	1	20ug/ml BFB Std	2ul	22 Mar 11 21:35
12	15	0322M15W.D	1	110322A LCS-1WM (SS)	10ml w/ IS&S: 5ul of 03-03-11	22 Mar 11 22:00
13	1	0323M00T.D	1	20ug/mL BFB Std 03-11-11A	2uL	23 Mar 11 7:02
14	1	0323M01W.D	1	110323A LCS-1WM	10ml w/ IS&S: 5ul of 03-03-11	23 Mar 11 7:44
15	4	0323M04W.D	1	110321A BLK-1WM	10ml w/ IS&S: 5ul of 03-03-11	23 Mar 11 9:52
16	21	0323M21W.D	1	AY34315W02	10ml w/ IS&S: 5ul of 03-03-11	23 Mar 11 17:52

Pa₆₂1 4/4/11

Injection Log

Directory:	M:\THOR\DATA\T110324
DIFECTORY:	W. VITORIDATAVI I 10324

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected	
1	1	0324T00T.D	1	20ug/mL BFB Std 03-23-11A	2uL	24 Mar 11	14:09
2	3	0324T03S.D	1	Vol Std 03-24-11@2.0ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	15:25
3	4	0324T04S.D	1	Vol Std 03-24-11@5.0ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	15:47
4	5	0324T05S.D	1	Vol Std 03-24-11@10ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	16:09
5	6	0324T06S.D	1	Vol Std 03-24-11@20ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	16:32
6	7	0324T07S.D	1	Vol Std 03-24-11@50ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	16:53
7	8	0324T08S.D	1	Vol Std 03-24-11@100ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	17:16
8	9	0324T09S.D	1	Vol Std 03-24-11@200ug/kg	5ml w/5ul of IS: 03-02-11C	24 Mar 11	17:38
9	12	0324T12T.D	1	20ug/mL BFB Std 03-23-11A	2ul	24 Mar 11	19:06
10	16	0324T16S.D	1	110324A LCS-1ST(SS)	5ml w/5ul of IS&S: 03-02-11C&D	24 Mar 11	20:34
11	18	0324T18S.D	1	110324A BLK-1ST	5ml w/5ul of IS&S: 03-02-11C&D	24 Mar 11	22:02
12	21	0324T21S.D	1	AY34316S01 5.047	5ml w/5ul of IS&S: 03-02-11C&D	24 Mar 11	23:08

Paç₆₃1 3/29/11

Wetlab Results

ARF: 64211

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyt	e	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: AY	34316	-Client Sample ID: MW35-WC-02		-Sample Collection Da	ate: 03/22/11	Project: 74778	1.04000 CSSA M
CLP MOIST	МО	ISTURE	16.4	2.0	%	03/24/11	03/24/11

Printed: 03/24/11 1:51:11 PM

WETLAB

Sample/Sample Duplicate Results

8000 Centre Park Drive Ste 200 Austin, TX 78754

Parsons

Sample ID: AY34316 Client ID: MW35-WC-02

APPL Inc. 908 North Temperance Avenu

Clovis, CA 93611

j

Attn: Tammy Chang Project: 747781.04000 CSSA MW35 DRILLING

ARF: 64211

			Sample	Sample Dup		RPD			Sample	Sample	Sample Dup Sample Dup	Sample Dup
Method	Analyte	Sample ID	Result	Result	RPD	Max	POL	Units	Extract Date	Analysis Date	Units Extract Date Analysis Date Extract Date Analysis Date	Analysis Date
CLP MOIS	S MOISTURE	AY34316	16.4	16.9	3.0	20	2.0	%	03/24/11	03/24/11	03/24/11	03/24/11

Laboratory Report

Parsons

CSSA

Project #: 747781.04000 CSSA

ARF: 64314

Samples collected: March 31, 2011 and April 1, 2011

APPL, Inc.

EPA METHOD 8260B Volatile Organic Compounds

Data Validation Package for

EPA METHOD 8260B Volatile Organic Compounds

TABLE OF CONTENTS

LABORATORY NAME: APPL, Inc.

Case Narrative	4
Chain of Custody and ARF	7
QC Summary	12
Sample Data	22
Calibration Data	29
Raw Data	36

EPA METHOD 8260B Volatile Organic Compounds Case Narrative

Volatile Organic Compounds EPA Method 8260B

Case Narrative

ARF:

64314

Project: 747781.04000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)

Texas Certificate Number: T104704242-10-3

Results in this report apply to the sample analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The sample was received April 5, 2011, at 5.0°C. The samples were assigned Analytical Request Form (ARF) number 64314. The sample numbers and requested analysis were compared to the chains of custody. The sample ID's were amended as per the client's request on April 6, 2011. No other exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
CS-MW35LGR-259-271	AY35093	WATER	03/31/11	04/05/11
CS-MW35LGR-374-386	AY35094	WATER	04/01/11	04/05/11
CS-MW35LGR-414-426	AY35095	WATER	04/01/11	04/05/11

Sample Preparation:

The samples were purged according to EPA method 5030B. All holding times were met.

Sample Analysis Information:

The samples were analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. The pH of the samples was measured after analysis. The vials used for analysis had a pH of 2. All holding times were met.

Quality Control/Assurance

Spike Recovery

A Laboratory Control Spike (LCS) was used for quality assurance. A second-source standard was used for the LCS. All LCS criteria were met.

No sample was designated by the client for MS/MSD analysis.

Surrogates

Surrogate recoveries are summarized on the form 2 & 8. All surrogate recoveries met acceptance criteria.

Method blanks

No target analyte was detected above the reporting limits in the method blanks.

Calibration

Initial and continuing calibrations were analyzed according to the method. All calibration criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D, Laboratory Director / Date

4 1100 0011 mid. . M. . 2 10 - 1000 M/4014 000 L 1700. 3.

EPA METHOD 8260B
Volatile Organic Compounds
Chain of Custody and ARF

Client:	Parsons	Received by: TBV
Address:	8000 Centre Park Drive Ste 200	Date Received: 04/05/11 Time: 09:30
	Austin, TX 78754	Delivered by: FED EX
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N): Y
Phone: 5	12-719-6092 Fax: 512-719-6099	Chest Temp(s): 2.5°C
Job: 7477	781.04000 CSSA	Color: VOA
PO#: 74	47780.30002	Samples Chilled until Placed in Refrig/Freezer: Y
Chain of C	Custody (Y/N): Y # 040411APPFA	Project Manager: Diane Anderson
	en (Y/N): Y pH (Y/N): N	QC Report Type: DVP3/AFCEE/ERPIMS/TX
Turn Arou	ind Type: 1 WEEK	Due Date: 04/12/11

Comments:

pdf ARF to Tammy & Pam; send 2 DVP3 to Tammy

Data screening project: analyze samples ONCE; report deficiencies; do NOT re-analyze.

Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested.

Use AFCEE forms with AFCEE flagging to report sample & QC data only.

APPL forms for everything else and APPL DVP3.

Sont ARF

EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

The -SBD-SED was added to sample IDs, per Tammy. 4-6-11 rp

	mple Distribution:		Austin, TX 7		Invoice To:	
/0/	A: 3-\$826AW					8000 Centre Park Drive Ste 200 Austin, TX 78754-5140 Attn: Ellen Felfe
-	Client,ID	APPL ID	Sample	ed	Analyses	Requested
1.	CS-MW35LGR-259-271	AY35093W	03/31/11	16:15	\$826AW	
2.	CS-MW35LGR-374-386	AY35094W	04/01/11	10:12	\$826AW	
		I INNI DIL INNI COST WA FIL DI MILLI WA	118 1811) BIN 1 1861		******	

Dann 1

Initials _____ Date ____

APPL Sample Receipt Form

ARF# 64314

Sample	Container Type	Count	pH
AY35093	13 VOAs - HCL	3	NA
AY35094	13 VOAs - HCL	3	NA
AY35095	13 VOAs - HCL	3	NA

Sample Container Type Co

Count pH

100	0
Joto.	Camp S
111	9
440044	Stank
)	ey
	np Stanley Storage Activity Chain Of Custod
	Activity
	Chain
	오
	Custo
	1

Job Number: 74778 Creation Date: 4/4/20 Task Manager Scott	Project Location: CSSA Relinquished_By: JDB Job Number: 747781.04000 Relinquish_Time: 5:00 PM Creation Date: 4/4/2011 Collection Team: JDB Task Manager Scott Pearson Sample Data Type Screening	JDB 5:00 PM JDB Screening	. LabCode: Carrier: Airbill Carrier: TAT:	APPF FedEx 873526387641 7 Day TAT	Sampler(s): Jan (Jubell)
LOCID: CS-N SED: 259 SED: 271 Remarks:	CS-MW35LGR LOGDATE: 3/31/2011 MATRIX: WG TBLOT: 259 LOGTIME: 16:15 SACODE: N SMCODE: G ABLOT: 271 FLDSAMPID CS-MW35LGR_033111_N1615 EBLOT:	MATRIX: WG SMCODE: G	TBLOT: ABLOT: EBLOT:	Containers:	Analysis Required:
LOCID: CS-IV SBD: 374 SED: 386 Remarks:	CS-MW35LGR LOGDATE: 4/1/2011 374 LOGTIME: 10:12 SACODE. N SI 386 FLDSAMPID CS-MW35LGR_040111_N1012	MATRIX: WG TBLOT: SMCODE: G ABLOT: 12 EBLOT:	TBLOT: ABLOT: EBLOT:	Containers:	Analysis Required: SW8260B VOC Full List
LOCID: CS-M SBD: 414 SED: 426 Remarks:	CS-MW35LGR LOGDATE: 4/1/2011 4/14 LOGTIME: 11:28 SACODE: N SI 426 FLDSAMPID CS-MW35LGR_040111_N1128	MATRIX: WG TBLOT: SMCODE: G ABLOT: 28 EBLOT:	TBLOT: ABLOT: EBLOT:	ontainers:	Analysis Required: SW8260B VOC Full List

necieved by:Date 4/5/ #ime	Relinquished by: Date4.4.11 Time 1201
O Recieved by:	Relinquished by:
Date	Date
Time Recieved	Time Relingu
ed by:	ished by:

Time_____Page 1 of 1

COOLER RECEIPT FORM	1 1
1) Project: 347781. 04000 CSSA	_ Date Received: 4/5/11
2) Coolers: Number of Coolers:	
3) (ES NO Were coolers and samples screened for radioactivity?	I = I
4) YES NO Were custody seals on outside of cooler? How many?	Date on seal? 4/4/1_
5) Name on seal? See (abil help w	
6) YES NO NA Were custody seals unbroken and intact at the time of arrival?	
7) (TES) NO Did the cooler come with a shipping slip (air bill, etc.)? Carrier na	ame Fed Fy
8) Shipping slip numbers:1) 8 + 3 5 2 6 3 8 7 6 42)	3)
9) YES NO NA Was the shipping slip scanned into the database?	
10) YES NONA If cooler belongs to APPL, has it been logged into the ice chest	database?
11) Describe type of packing in cooler (bubble wrap, popcorn, type of ice, etc.):	
Bubble wrapped wet ike	
12) YES NONA For hand delivered samples was sufficient ice present to start th	o cooling process?
13) YES NO Was a temperature blank included in the cooler?	e cooling process?
12010	Commention ()
	Correction factor:
15) Cooler temp(s): 1) <u>2.5c2)</u> 3) 4) 5) 6)	7)8)
Chain of custody:	
16) YES NO Was a chain of custody received?	75
17) Es NO Were the custody papers signed in the appropriate places?	S E 275-21
18) ES NO Was the project identifiable from custody papers?	10 5 3
19) YES NO Did the chain of custody include date and time of sampling?	2 27
20) (ES NO Is location where sample was taken listed on the chain of custod	SS
Sample Labels:	
21) YES NO Were container labels in good condition?	
22) YES NO Was the client ID on the label?	0
23) FES NO Was the date of sampling on the label?	2,20
24) FES NO Was the time of sampling on the label?	
25) YES NO Did all container labels agree with custody papers?	Sign
Sample Containers:	5 8
26) (ES NO Were all containers sealed in separate bags?	CC
27) YES NO Did all containers arrive unbroken?	
28) YES MO Was there any leakage from samples?	
29) YES TO Were any of the lids cracked or broken?	
30) YES NO Were correct containers used for the tests indicated?	
31) YES NO Was a sufficient amount of sample sent for tests indicated?	
32) YES NO NA Were bubbles present in volatile samples? If yes, the following w	ere received with air bubbles:
Larger than a pea:	and the state of t
Smaller than a pea: Au 35095 wol -was was	
Preservation & Hold time:	
33) YES NO NA Was a sufficient amount of holding time remaining to analyze the	samples?
34) YES NO NA Do the sample containers contain the same preservative as what	
35) YES NO NA Was the pH taken of all non-VOA preserved samples and written	
36) YES NO NA Was the pH taken of all non-VOA preserved samples and written	
Lab notified if pH was not adequate:	e preserved samples > 10?
Deficiencies: 3 identical IDs.	
Signature of personnel receiving samples:Second review	ver: You NIN
[2] 한 경험 : [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	Time of notification: 4-6-11
	Time of notification: 4-6-11
information given to client: Per TE add -SBD-SED to 1D.	4-6-11 m
	y whom (Initials):

EPA METHOD 8260B Volatile Organic Compounds QC Summary

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110405AC-BLK

Initial Calibration ID: C110328

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64314, Sample: AY35093

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B AAB #: 110405AC-154155

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110405AC-BLK

Initial Calibration ID: C110328

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0.4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	115	69-139	
SURROGATE: 4-BROMOFLUOROBE	106	75-125	
SURROGATE: DIBROMOFLUOROME	109	75-125	
SURROGATE: TOLUENE-D8 (S)	96.8	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64314, Sample: AY35093

Form 2 & 8

Surrogate Recovery

 Lab Name: APPL, Inc.
 SDG No: 64314

 Case No: 64314
 Date Analyzed: 4/5/11

 Matrix: WATER
 Instrument: Chico

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110405AC-LCS	Lab Control Spike	109	111
110405AC-BLK	Blank	115	106
AY35093	CS-MW35LGR-259-271	104	106
AY35094	CS-MW35LGR-374-386	106	108
AY35095	CS-MW35LGR-414-426	112	104

Comments: Batch: #826AW-110405AC

Form 2 & 8

Surrogate Recovery

 Lab Name: APPL, Inc.
 SDG No: 64314

 Case No: 64314
 Date Analyzed: 4/5/11

 Matrix: WATER
 Instrument: Chico

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110405AC-LCS	Lab Control Spike	107	101
110405AC-BLK	Blank	109	96.8
AY35093	CS-MW35LGR-259-271	104	98.4
AY35094	CS-MW35LGR-374-386	104	103
AY35095	CS-MW35LGR-414-426	111	96.3

Comments: Batch: #826AW-110405AC

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110405AC LCS

Initial Calibration ID: C110328

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.56	106	72-125	. 1.
1,1,1-TCA	10.00	11.46	115	75-125	7
1,1,2,2-TETRACHLOROETHANE	10.00	10.09	101	74-125	-
1,1,2-TCA	10.00	10.63	106	75-127	
1,1-DCA	10.00	10.83	108	75-125	
1,1-DCE	10.00	10.31	103	75-125	
1.1-DICHLOROPROPENE	10.00	10.52	105	75-125	
1,2,3-TRICHLOROBENZENE	10.00	10.86	109	75-137	
1,2,3-TRICHLOROPROPANE	10.00	11.30	113	75-125	
1,2,4-TRICHLOROBENZENE	10.00	10.51	105	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	9.98	99.8	75-125	
1,2-DCA	10.00	11.12	111	68-127	
1,2-DCB	10.00	10.27	103	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	10.90	109	59-125	
1,2-DICHLOROPROPANE	10.00	10.46	105	70-125	
1,2-EDB	10.00	9.78	97.8	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	9.67	96.7	72-125	
1,3-DCB	10.00	10.26	103	75-125	1 - 1
1,3-DICHLOROPROPANE	10.00	10.54	105	75-125	11
1,4-DCB	10.00	10.47	105	75-125	
1-CHLOROHEXANE	10.00	10.55	106	75-125	
2,2-DICHLOROPROPANE	10.00	11.56	116	75-125	11-1
2-CHLOROTOLUENE	10.00	10.48	105	73-125	
4-CHLOROTOLUENE	10.00	10.35	104	74-125	
BENZENE	10.00	9.53	95.3	75-125	
BROMOBENZENE	10.00	9.89	98.9	75-125	
BROMOCHLOROMETHANE	10.00	10.09	101	73-125	
BROMODICHLOROMETHANE	10.00	10.72	107	75-125	
BROMOFORM	10.00	9.83	98.3	75-125	
BROMOMETHANE	10.00	8.57	85.7	72-125	
CARBON TETRACHLORIDE	10.00	11.28	113	62-125	
CHLOROBENZENE	10.00	10.33	103	75-125	
CHLOROETHANE	10.00	9.66	96.6	65-125	
CHLOROFORM	10.00	10.84	108	74-125	
CHLOROMETHANE	10.00	7.97	79.7	75-125	
CIS-1,2-DCE	10.00	10.55	106	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	11.58	116	74-125	
DIBROMOCHLOROMETHANE	10.00	10.80	108	73-125	
DIBROMOMETHANE	10.00	10.75	108	69-127	
DICHLORODIFLUOROMETHANE	10.00	8.98	89.8	72-125	

Comments:

ARF: 64314, QC Sample ID: AY35093

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110405AC LCS

Initial Calibration ID: C110328

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	9.95	99.5	75-125	
HEXACHLOROBUTADIENE	10.00	10.87	109	75-125	
ISOPROPYLBENZENE	10.00	10.54	105	75-125	
M&P-XYLENE	20.00	19.19	96.0	75-125	
METHYLENE CHLORIDE	10.00	10.46	105	75-125	
N-BUTYLBENZENE	10.00	10.47	105	75-125	
N-PROPYLBENZENE	10.00	10.19	102	75-125	
NAPHTHALENE	10.00	11.34	113	75-125	
O-XYLENE	10.00	10.24	102	75-125	
P-ISOPROPYLTOLUENE	10.00	10.48	105	75-125	
SEC-BUTYLBENZENE	10.00	10.50	105	75-125	
STYRENE	10.00	10.28	103	75-125	
TCE	10.00	10.84	108	71-125	
TERT-BUTYLBENZENE	10.00	10.22	102	75-125	
TETRACHLOROETHENE	10.00	10.21	102	71-125	
TOLUENE	10.00	9.93	99.3	74-125	
TRANS-1,2-DCE	10.00	10.47	105	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	10.75	108	66-125	
TRICHLOROFLUOROMETHANE	10.00	11.04	110	67-125	
VINYL CHLORIDE	10.00	8.18	81.8	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	110	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	112	75-125	
SURROGATE: DIBROMOFLUOROMETH	107	75-125	
SURROGATE: TOLUENE-D8 (S)	100	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64314, QC Sample ID: AY35093

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc. SDG No: 64314

Case No: 64314 Date Analyzed: 4/5/11

Matrix: WATER Instrument: Chico

Blank ID: 110405AC-BLK Time Analyzed: 1350

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110405AC-LCS	Lab Control Spike	0405C01	4/5/11 1017
110405AC-BLK	Blank	0405C05	4/5/11 1350
AY35093	CS-MW35LGR-259-271	0405C09	4/5/11 1728
AY35094	CS-MW35LGR-374-386	0405C10	4/5/11 1803
AY35095	CS-MW35LGR-414-426	0405C11	4/5/11 1839

Comments: Batch: #826AW-110405AC

Form 5 Tune Summary

Lab Name: APPL Inc.

Case No: 64314

Matrix: Water

ID: 20ug/ml BFB STD 03-11-11A

SDG No: 64314

Date Analyzed: 4/5/11

Instrument: Chico

Time Analyzed: 9:12

	Client Sample No.	APPL ID.	File ID.	Date Analyzed
	Lab Control Spike	110405A LCS-1WC	0405C01W.D	4/5/11 10:17
	Blank	110405A BLK-1WC	0405C05W.D	4/5/11 13:50
3	CS-MW35LGR-259-271	AY35093W01	0405C09W.D	4/5/11 17:28
	CS-MW35LGR-374-386	AY35094W01	0405C10W.D	4/5/11 18:03
5	CS-MW35LGR-414-426	AY35095W01	0405C11W.D	4/5/11 18:39
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19			7.17	
20				
21				
22				

m/e	
50 14.9 - 40% of mass 95	22.2
75 30 - 60% of mass 95	47.3
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.3
173 0 - 2% of mass 174	0.0
174 50 - 100% of mass 95	86.2
175 5 - 9% of mass 174	7.3
176 95 - 101% of mass 174	100.4
177 5 - 9% of mass 176	6.6

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: Review	
Lab Code:		SDG No.:	64314
Lab File ID (Standard): 0328C09W.D		Date Analyzed: _	03/28/11
Instrument ID: Chico		Time Analyzed: _	22:33
GC Column:	ID:	Heated Purge: (Y/N)_	

F	uorobenzene (IS) Chlore	benzene-D5 (I	S) 1,4-Dich	lorobenzene-D	(IS)
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	629440	12.88	436288	18.07	230848	22.27
UPPER LIMIT	1258880	13.38	872576	18.57	461696	22.77
LOWER LIMIT	314720	12.38	218144	17.57	115424	21.77
SAMPLE						
NO.		33			-	
110405A LCS-1WC	551616	12.91	391680	18.09	212352	22.29
110405A BLK-1WC	547968	12.91	396800	18.11	207168	22.30
AY35093W01	555520	12.92	387200	18.12	202944	22.30
AY35094W01	563072	12.92	385088	18.12	215296	22.30
AY35095W01	550144	12.92	411776	18.11	218624	22.31
	1 1 1 1 1 1 1					
		- 1				

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Sample Data

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

5030B

Field Sample ID: CS-MW35LGR-259-271

Lab Sample ID: AY35093

Matrix: Water

% Solids: NA

Initial Calibration ID: C110328

Date Received: 05-Apr-11

Date Prepared: 05-Apr-11

Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		Ü
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1	1	U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1.		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1	1.1	U
CHLOROMETHANE	0.16	1.3	0.16	1		U

-	-	-	-	-	-	tc.

ARF: 64314

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: CS-MW35LGR-259-271

Lab Sample ID: AY35093

5030B

Matrix: Water

% Solids: NA

Initial Calibration ID: C110328

Date Received: 05-Apr-11

Date Prepared: 05-Apr-11

Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		I
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	4		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		Ū
TETRACHLOROETHENE	0.06	1.4	0.30	1		F
TOLUENE	0.06	1.1	5.38	1		
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		Ü
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	104	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	106	75-125	
SURROGATE: DIBROMOFLUOROMETH	104	75-125	
SURROGATE: TOLUENE-D8 (S)	98.4	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

-			
Γ_{α}		200	to.
CU	mn	ICI	ILS.

ARF: 64314

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110405AC-154155

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: CS-MW35LGR-374-386 Lab Sample ID: AY35094 Matrix: Water

% Solids: NA Initial Calibration ID: C110328

Date Received: 05-Apr-11 Date Prepared: 05-Apr-11 Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.16	1		U

~				1000	
('C	ITT	117	101	ats:	٠

Analytical Method: EPA 8260B

Preparatory Method:

5030B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: CS-MW35LGR-374-386

Lab Sample ID: AY35094

Matrix: Water

% Solids: NA

Initial Calibration ID: C110328

Date Received: 05-Apr-11

Date Prepared: 05-Apr-11

Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		I
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		τ
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		I
DIBROMOMETHANE	0.06	2.4	0.06	1		I
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1	1	Ţ
ETHYLBENZENE	0.05	0.6	0.05	1		ı
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		I
ISOPROPYLBENZENE	0.04	0.5	0.04	1		ı
M&P-XYLENE	0.07	0.5	0.07	1		l
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		Ü
TETRACHLOROETHENE	0.06	1.4	2.84	1		
TOLUENE	0.06	1.1	0.58	1		F
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	106	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	108	75-125	
SURROGATE: DIBROMOFLUOROMETH	104	75-125	
SURROGATE: TOLUENE-D8 (S)	103	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

O-				its:
	111	\mathbf{III}	IC.F	118

Analytical Method: EPA 8260B

Preparatory Method:

5030B A

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: CS-MW35LGR-414-426

Lab Sample ID: AY35095

Matrix: Water

% Solids: NA

Initial Calibration ID: C110328

Date Received: 05-Apr-11

Date Prepared: 05-Apr-11

Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1	7	U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1	- 1	U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		Ü
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.16	1		U

Comments:

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110405AC-154155

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: CS-MW35LGR-414-426 Lab Sample ID: AY35095 Matrix: Water

% Solids: NA Initial Calibration ID: C110328

Date Received: 05-Apr-11 Date Prepared: 05-Apr-11 Date Analyzed: 05-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		T.
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		τ
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	2.66	1		
TOLUENE	0.06	1.1	0.30	1		F
TRANS-1,2-DCE	0.08	0.6	0.08	1	- 1	U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	112	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	104	75-125	
SURROGATE: DIBROMOFLUOROMETH	111	75-125	
SURROGATE: TOLUENE-D8 (S)	96.3	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

\cap	200	Q.J.,		1.03	Carlot Barrer
α	m	m	ρ	nı	c.

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

Form 6 Initial Calibration

SDG No: 64314 Initial Cal. Date: 3/28/11 Instrument: Chico 0328C04W.D 0328C05W.D

Initials:

						1,000				100																										
		1	Σ	I.W.*	TM*	TML	TM	TM	TM*	TMI	N.	TM**	TM	MT	T.B.4*	TW	0	TW	TAN .	2	O L	IN A	N.	M	TAA*	TM	NI.	TW	TM*	TW	TAN	I svi	o	0	Σ	M
0/DCD	UCNO/	0.7	3.7	(,5	7.2	18	7.0	7.4	7.4	31	6.7	7.0	80	66	00	0.0	3.8	0.0	0.0	2 4	0.0	2.0	2.5	77	6.3	9.4	5.6	8.6	6.0	8.0	0.0	0.0	87	0.4	3.7	5.4
Ave	BAU	0.87	0.07	0.37	0.77	0.16	0.16	1.3	0.65	0.49	0.46	1.0	0.64	0.27	12	0.50	0.70	10.	0.68	0.55	0.80	0.03	2.1	0.83	0.52	0.27	0.23	0.70	24	0.57	0.05	0.60	3.5	200	4.0	0.73
200		0.8187	0.3442	7445.0		0.1820	0.1444	1.119	0.5976	0.3605	0.4338	0.8982	0.5756		0.9933	0.1837	0.6540	0.9240	0.6308	0.4809	0.7813	0.4570	1 853	0.5657	0.4620	0.2272	0.2184	0.6939	2.167	0.5300	0.2390		3 250	0.4144	0.7347	
100		0.8869	0.3420	0.075		0.1884	0.1495	1.194	0.6130	0.3608	0.4249	0.9189	0.5788	0.2201	1.048	0.1916	0.6815	0.9805	0.6356	0.5296	0.8415	0.4981	1.845	0.5938	0.4827	0.2407	0.2282	0.7173	2.187	0.5586	0.2489		3.424	0.4346	0.7502	70010
20		0.9084	0.3533	0.6640	0.0019	0.1879	0.1538	1.274	0.6632	0.3922	0.4618	0.9922	0.6334	0.2387	1.131	0.1921	0.6942	1.054	0.6669	0.5361	0.8745	0.5288	1.907	0.6354	0.5036	0.2603	0.2334	0.7300	2.317	0.5516	0.2542		3,479	0.4574	0.8120	4 400
10		0.9376	0.3494	0.8077	0.000	0.1717	0.1589	1.376	0.7006	0.4142	0.4737	1.092	0.6597	0.2520	1.203	0.2016	0.7168	1.109	0.7003	0.5509	0.9237	0.5568	2.027	0.6707	0.5183	0.2632	0.2523	0.7525	2.479	0.5772	0.2723		3.529	0.4459	0.8159	1 200
2		0.7942	0.3579	0.7801	0.170	0.1728	0.1752	1.327	0.6859	0.4388	0.4969	1.101	0.6710	0.2792	1.227	0.1943	0.7478	1.103	0.7188	0.6073	0.9385	0.5936	2.139	0.6901	0.5502	0.2645	0.2518	0.7954	2.539	0.6161	0.2783		3.735	0.4698	0.8556	1 120
7		0.9593	0.3513	0.7833	0 4050	0.1330	0.1582	1.411	0.6762	0.5275	0.4370	1.043	0.6250	0.2904	1.143	0.1898	0.6962	1,113	0.7077	0.5751	0.9099	0.5553	1.972	0.6195	0.5176	0.2706	0.2292	0.7245	2.429	0.5860	0.2774		3,533	0.3726	0.8088	1416
		0.9762	0.4033	0.7609	0 1995	0.1223	0.1710	1.330	0.6775	0.5963	0.4785	1.029	0.6423	0.2842	1.201	0.1907	0.6848	1.064	0.6946	0.5582	0.9628	0.5618	2.016	0.6259	0.5318	0.2685	0.2411	0.7398	2.380	0.4964	0.2055		3.701	0.5054	0.7752	1350
0.5		0.7165	0.3997	0.8120	0.1103	0.1746	1,000	1.200	1760.0	0.8063	0.4141	0/0.1	0.6467	0.2692	1.244	0.2055	0.7182	1.065	0.6803	0.5749	0.8626	0.5575	2.255	0.5669	0.5657	9008.0	0.2172	0.5809	2.476	0.5706	0.2409		3.485	0.4121	0.7508	1 419
0.3	ISTD	0.8604	0.4095			0 1721	4 075	0.550	60000	,,,,,,	0.4944	0.9985	0.7487	0.2931	1.342	0.2064	0.6990	1.022	0.6701	0.5730	0.9005	0.6100	2.611	0.6938	0.5278	0.3058	0.2256	0.6053	2.559	0.6512	0.2386	GTSI	3.749		0.8454	1.355
Collipourid	Fluorobenzene (IS)			Vinyl chloride	Bromomethane	Chloroethana	Trichlorofluoromothono	1 1 DOE	Mothidone oploside	Trans 1.2 DOF	11 DCA	1, 1-UCA	CIS-1,2-DCE	2,2-Dichloropropane	Chlorotorm	Bromochloromethane	Dibromofluoromethane(S)	1,1,1-TCA	1,1-Dichloropropene	1,2-DCA-D4(S)	Carbon Tetrachloride	1,2-DCA	Benzene	TCE	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	Cis-1,3-Dichloropropene	Toluene	Trans-1,3-Dichloropropene	1,1,2-TCA	Chlorobenzene-D5 (IS)	Toluene-D8(S)	1,2-EDB	Tetrachloroethene	1-Chlorohexane
		M_	TM**	TM*	TML	MH	TW	TAA*	TAAL	TAA	TA.4*	INI -	2	Σ.	Σ	Σ	Ó	Σ	M	S	TM	TM	M	M	*M⊥	Σ	Σ	Σ	Σ	Σ	Z.		S	TM	Σ	Σ
	-	7	က	4	5	9	1	α	0	2 6	1,1	- 4	7 5	2 3	14	15	16	17	18	19	3	7-	22	23	24	25	97	17	87	23	8	31	32	33	K	35

Form 6 Initial Calibration

Lab Name: APPL, Inc. Case No: Matrix:

SDG No: 64314 Initial Cal. Date: 3/28/11 Instrument: Chico

Initials:

	1													I										I	I					I				
	TAN	TRA	N.	N.	× (0	Σ.	Σ	LM**	.W.		TAN	TRA**	TAN T	TW	TW	TW	TM		TM	TW	TM	TW	TM	TW.	TW.	TW	TW.	TM	TW	TW	TW	-	
WRSD	5.5	27	1 0	0.4	0.0	6.5	9.6	5.0	5.0	8.4	0.0	7.3	208	13	8.4	57	8.5	7.2	6.7	5.8	11	5.9	5.5	5.2	52	6.2	0.9	13	8.0	14	6.2	9.5		
Ava	0.88	17		2.0	4.0	71.0	0.77	0.00	2.4	4.5	4.0	20	0.80	0.08	19	10	6.8	7.1	5.7	7.1	7.3	9.3	9.2	3.8	3.5	6.9	3.1	0.12	2.6	0.50	1.0	2.0		
200	0.8178	1.233	1 497	2.281	1 110	0.7464	0.7104	2 100	2,000	3.900		7.793	0.7561	0.0790		10.6	5.675	6.281	5.197	6.575	6.320	8.478	7.046	3.482	3.318	6.210	2.847	0.1345	2.273	0.4074	1.047	1.801		
100	0.8683	1.604	1.588	2 430	1 105	0.7556	0.6757	2 284	1 166	0 1444		7.925	0.7437	0.0779	1.703	9.269	6.058	6.356	5.210	6.679	6.435	8.899	7.237	3.597	3.425	6.342	2.919	0.1366	2.367	0.4357	1.086	1.889		
20	0.9204	1.690	1.663	2.583	1 190	0.8029	0.7047	2410	4 404	0 1465		8.809	0.7637	0.0785	1.809	10.3	6.760	7.042	5.690	7.361	7.030	9.688	7.793	3.904	3.632	6.972	3.136	0.1306	2.561	0.4719	1.057	2.025		
10	0.9175	1.692	1.639	2.618	1.194	0.7803	0.6691	2 430	1 537	0.1438		9.063	0.7984	0.0926	1.837	10.5	6.894	7.235	6.079	7.456	7.339	9.791	8.067	4.034	3.674	7.200	3.278	0.1287	2.558	0.4879	1.077	1.972		
വ	0.9562	1.794	1.679	2.719	1.221	0.8094	0.7255	2.552	4617	0,1299		9.679	0.8763	0.0714	2.121	11.2	7.466	7.742	6.290	7.803	7.760	10.3	8.275	4.205	3.907	7.426	3.363	0.1221	2.818	0.4986	1.090	2.081		
2	0.8163	1.655	1.617	2.458	1.155	0.8238	0.6468	2.408	4 454	0.1098		8.416	0.7510	0.0864	1.890	9.873	6.807	6.927	5.671	6.843	6.974	9.210	7.141	3.792	3.362	6.791	3.063	0.1117	2.336	0.4835	0.9491	1.868		
-	0.8770	1.802	1.537	2.363	1.189	0.7466	0.6470	2.251	4 710	0.1334		8.690	0.8240	0.0692	2.071	10.7	7.313	7.459	5.878	7.423	7.573	9.129	7.547	3.728	3.443	7.393	2.932	0.1020	2.719	0.5557	0.9895	1.697		
0.5	0.9206	1.870	1.550	2.425	1.254	0.7003	0.6416	2.243	4.549	0.1289		8.371	0.7408	0.1023	1.723	9.740	7.092	7.417	5.777	6.839	7.849	9.456	7.489	3.938	3.556	7.015	3.085	0.0933	2.823	0.5107	1.109	2.237		
0.3	0.8545	2.142	1.655	2.349	1.475	0.8018	0.7430	2.413	5.333	0.1478	ISTD	7.913	0.9473		2.036	10.5	7.034	7.511	5.348	7.272	8.828	9.003	7.785	3.879	3.517	7.158	2.849		2.599	0.6468	0.9341	2.207		
Compound	1,1,1,2-Tetrachloroethane	m&p-Xylene	o-Xylene	Styrene	4-Bromofluorobenzene(S)	1,3-Dichloropropane	Dibromochloromethane	Chlorobenzene	Ethylbenzene	Bromoform	1,4-Dichlorobenzene-D (IS)	Isopropylbenzene	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethylbenzene	4-Chlortoluene	Tert-Butylbenzene	1,2,4-1 rimethylbenzene	Sec-Butylbenzene	p-Isopropyltoluene	1,3-DCB	1,4-DCB	n-Butylbenzene	1,2-DCB	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	1,2,3-Trichlorobenzene		
	Σ	Σ.	Σ	M	S	TM	TM	TM**	TM*	TM**	-	M	**MT	Σ L		Σ	Σ	Σ		Σ	2	Σ	Σ				\neg		Σ	Σ	Σ	Σ		
	36	37	38	33	40	41	42	43	44	45	46	47	48	49	20	51	52	53	45	313	2	57	8	29	09	6	29	63	4 2	65	99	19	8	23

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64314
Case No:	Date Analyzed: 3/29/11
Matrix:	Instrument: Chico
-	Initial Cal. Date: 3/28/11
	Data File: 0328C15W D

	1	Compound	MEAN	CCRF	%D		%Drit
1	1	Fluorobenzene (IS)	ISTD			1	
	TM	Dichlorodifluoromethane	0.8731	0.9233	5.7	TM	
3	TM**	Chloromethane	0.3679	0.3643	1.00	TM**	
4	TM*	Vinyl chloride	0.7676	0.7677	0.01	TM*	
5	TML	Bromomethane	0.1599	0.1662	3.9	TML	9.2
6	TM	Chloroethane	0.1617	0.1653	2.2	TM	
7	TM	Trichlorofluoromethane	1.283	1.301	1.4	TM	
8	TM*	1,1-DCE	0.6474	0.6594	1.8	TM*	
9	TML	Methylene chloride	0.4871	0.4225	13	TML	7.
10	TM	Trans-1,2-DCE	0.4572	0.4857	6.2	TM	
11	TM**	1,1-DCA	1.016	1.063	4.6	TM**	
12	TM	Cis-1,2-DCE	0.6424	0.6657	3.6	TM	
13	TM	2,2-Dichloropropane	0.2659	0.2326	13	TM	
14	TM*	Chloroform	1.170	1.179	0.75	TM*	
15	TM	Bromochloromethane	0.1951	0.1919	1.6	TM	
16	S	Dibromofluoromethane(S)	0.6992	0.6911	1.2	S	
	TM	1,1,1-TCA	1.048	1.060	1.1	TM	
18	TM	1,1-Dichloropropene	0.6783	0.6894	1.6	TM	
19	S	1,2-DCA-D4(S)	0.5540	0.5171	6.7	S	
20	TM	Carbon Tetrachloride	0.8884	0.8594	3.3	TM	
	TM	1,2-DCA	0.5465	0.5416	0.90	TM	
	TM	Benzene	2.070	2.055	0.72	TM	
23	TM	TCE	0.6291	0.6720	6.8	TM	
24	TM*	1,2-Dichloropropane	0.5178	0.5186	0.17	TM*	
25	TM	Bromodichloromethane	0.2668	0.2463	7.7	TM	
26	TM	Dibromomethane	0.2330	0.2296	1.5	TM	
27	TM	Cis-1,3-Dichloropropene	0.7044	0.7211	2.4	TM	
28	TM*	Toluene	2.393	2.393	0.01	TM*	
29	TM	Trans-1,3-Dichloropropene	0.5709	0.5409	5.2	TM	
30	TM	1,1,2-TCA	0.2506	0.2446	2.4	TM	
31	1	Chlorobenzene-D5 (IS)	ISTD			1	
32	S	Toluene-D8(S)	3.543	3.524	0.55	S	
	TM	1,2-EDB	0.4390	0.4490	2.3	MT	
	TM	Tetrachloroethene	0.7949	0.8449	6.3	TM	
	TM	1-Chlorohexane	1.386	1.425	2.8	TM	
	TM	1,1,1,2-Tetrachloroethane	0.8832	0.9157	3.7	TM	
	TM	m&p-Xylene	1.720	1.726	0.31	TM	
38	TM	o-Xylene	1.603	1.678	4.7	TM	
39	TM	Styrene	2.470	2.571	4.1	TM	
40	S	4-Bromofluorobenzene(S)	1.220	1.229	0.70	S	

Average 3.3

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64314
Case No:	Date Analyzed: 3/29/11
Matrix: 0	Instrument: Chico
	Cal. Date: 3/28/11
	Data File: 0328C15W.D

		Compound	MEAN	CCRF	%D	%Di
	TM	1,3-Dichloropropane	0.7708	0.7842	1.7	TM
	TM	Dibromochloromethane	0.6770	0.6757	0.19	TM
	TM**	Chlorobenzene	2.354	2.434	3.4	TM**
	TM*	Ethylbenzene	4.536	4.513	0.51	TM*
45	TM**	Bromoform	0.1351	0.1278	5.4	TM**
46		1,4-Dichlorobenzene-D (IS)	ISTD			
	TM	Isopropylbenzene	8.518	8.998	5.6	ТМ
	TM**	1,1,2,2-Tetrachloroethane	0.8001	0.7473	6.6	TM**
49	TM	1,2,3-Trichloropropane	0.0822	0.0839	2.1	TM
50	TM	Bromobenzene	1.899	1.878	1.1	TM
51	TM	n-Propylbenzene	10.3	10.6	2.5	TM
52	TM	2-Chlorotoluene	6.789	7.027	3.5	ТМ
53	TM	1,3,5-Trimethylbenzene	7.108	7.330	3.1	TM
54		4-Chlortoluene	5.682	6.002	5.6	
55	TM	Tert-Butylbenzene	7.146	7.542	5.5	ТМ
	TM	1,2,4-Trimethylbenzene	7.345	7.269	1.0	TM
	TM	Sec-Butylbenzene	9.331	9.836	5.4	TM
	TM	p-Isopropyltoluene	7.598	7.996	5.2	TM
	TM	1,3-DCB	3.840	3.995	4.0	TM
	TM	1,4-DCB	3.537	3.792	7.2	TM
	TM	n-Butylbenzene	6.945	7.100	2.2	TM
	TM	1,2-DCB	3.053	3.243	6.2	TM
	TM	1,2-Dibromo-3-chloropropane	0.1199	0.1160	3.3	TM
	TM	1,2,4-Trichlorobenzene	2.562	2.562	0.01	TM
	TM	Hexachlorobutadiene	0.4998	0.4818	3.6	TM
	TM	Naphthalene	1.038	1.045	0.72	TM
	TM	1,2,3-Trichlorobenzene	1.975	2.009	1.7	TM
68		,-,-		2.000	- "	Tivi
69						
70						
71						
72						
73						
74	-					
75						
76						
77						
78						
79						
80						

Average

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64314
Case No:	Date Analyzed: 5 Apr 11 10:17
Matrix:	Instrument: Chico
	Initial Cal. Date: 3/28/11
	Data File: 0405C01W.D

		Compound	MEAN	CCRF	%D	C	%Drif
1		Fluorobenzene (IS)	ISTD			-1	
	TM	Dichlorodifluoromethane	0.8731	0.7842	10	TM	
3	TM**	Chloromethane	0.3679	0.2932	20	TM**	
4	TM*	Vinyl chloride	0.7676	0.6278	18	TM*	
5	TML	Bromomethane	0.1599	0.1569	1.9	TML	14
6	TM	Chloroethane	0.1617	0.1562	3.4	TM	
7	TM	Trichlorofluoromethane	1.283	1.416	10	TM	
8	TM*	1,1-DCE	0.6474	0.6672	3.1	TM*	
9	TML	Methylene chloride	0.4871	0.4136	15	TML	4.6
	TM	Trans-1,2-DCE	0.4572	0.4786	4.7	TM	
11	TM**	1,1-DCA	1.016	1.100	8.3	TM**	
	TM	Cis-1,2-DCE	0.6424	0.6777	5.5	TM	
	TM	2,2-Dichloropropane	0.2659	0.3075	16	TM	
14	TM*	Chloroform	1.170	1.268	8.4	TM*	
	TM	Bromochloromethane	0.1951	0.1969	0.92	TM	
16		Dibromofluoromethane(S)	0.6992	0.7509	7.4	S	
17	TM	1,1,1-TCA	1.048	1.201	15	TM	
	TM	1,1-Dichloropropene	0.6783	0.7133	5.2	TM	
19		1,2-DCA-D4(S)	0.5540	0.6070	9.6	S	
	TM	Carbon Tetrachloride	0.8884	1.002	13	TM	
21	TM	1,2-DCA	0.5465	0.6078	11	TM	
	TM	Benzene	2.070	1.972	4.7	ТМ	
	TM	TCE	0.6291	0.6818	8.4	TM	
	TM*	1,2-Dichloropropane	0.5178	0.5418	4.6	TM*	
	TM	Bromodichloromethane	0.2668	0.2861	7.2	ТМ	
26	TM	Dibromomethane	0.2330	0.2506	7.5	TM	
	TM	Cis-1,3-Dichloropropene	0.7044	0.8159	16	ТМ	
28	TM*	Toluene	2.393	2.375	0.72	TM*	
29	TM	Trans-1,3-Dichloropropene	0.5709	0.6136	7.5	ТМ	
30	TM	1,1,2-TCA	0.2506	0.2664	6.3	TM	
31	1	Chlorobenzene-D5 (IS)	ISTD			1	
32	S	Toluene-D8(S)	3.543	3.557	0.39	S	
	TM	1,2-EDB	0.4390	0.4294	2.2	TM	
	TM	Tetrachloroethene	0.7949	0.8119	2.1	TM	
	TM	1-Chlorohexane	1.386	1.462	5.5	TM	
	TM	1,1,1,2-Tetrachloroethane	0.8832	0.9325	5.6	ТМ	
	TM	m&p-Xylene	1.720	1.651	4.0	TM	
	TM	o-Xylene	1.603	1.642	2.4	TM	
	TM	Styrene	2.470	2.537	2.8	TM	
40		4-Bromofluorobenzene(S)	1.220	1.358	11	S	

Average 7.5

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64314
Case No:	Date Analyzed: 5 Apr 11 10:17
Matrix: 0	Instrument: Chico
	Cal. Date: 3/28/11
	Data File: 0405C01W.D

		Compound	MEAN	CCRF	%D	%	Drif
	TM	1,3-Dichloropropane	0.7708	0.8128	5.4	TM	
	TM	Dibromochloromethane	0.6770	0.7314	8.0	TM	
	TM**	Chlorobenzene	2.354	2.433	3.3	TM**	
	TM*	Ethylbenzene	4.536	4.515	0.46	TM*	
45	TM**	Bromoform	0.1351	0.1329	1.7	TM**	
46		1,4-Dichlorobenzene-D (IS)	ISTD			- 1	
	TM	Isopropylbenzene	8.518	8.980	5.4	TM	
	TM**	1,1,2,2-Tetrachloroethane	0.8001	0.8070	0.86	TM**	
	TM	1,2,3-Trichloropropane	0.0822	0.0929	13	TM	
	TM	Bromobenzene	1.899	1.878	1.1	TM	
	TM	n-Propylbenzene	10.3	10.5	1.9	TM	
	TM	2-Chlorotoluene	6.789	7.113	4.8	TM	
53	TM	1,3,5-Trimethylbenzene	7.108	6.876	3.3	TM	
54		4-Chlortoluene	5.682	5.880	3.5		
55	TM	Tert-Butylbenzene	7.146	7.300	2.2	TM	
	TM	1,2,4-Trimethylbenzene	7.345	7.330	0.21	TM	
57	TM	Sec-Butylbenzene	9.331	9.802	5.0	TM	
58	TM	p-Isopropyltoluene	7.598	7.966	4.8	TM	
59	TM	1,3-DCB	3,840	3.939	2.6	ТМ	
60	TM	1,4-DCB	3.537	3.702	4.7	TM	
61	TM	n-Butylbenzene	6.945	7.270	4.7	ТМ	
62	TM	1,2-DCB	3.053	3.134	2.7	TM	
	TM	1,2-Dibromo-3-chloropropane	0.1199	0.1307	9.0	TM	
64	TM	1,2,4-Trichlorobenzene	2.562	2.691	5.1	ТМ	
65	TM	Hexachlorobutadiene	0.4998	0.5432	8.7	TM	
66	TM	Naphthalene	1.038	1.177	13	TM	
67	TM	1,2,3-Trichlorobenzene	1,975	2.145	8.6	TM	
68							
69							
70							
71							
72							
73							
74						-11	
75							
76							
77							
78							13
79	1						
80							

Average 4.8

EPA METHOD 8260B Volatile Organic Compounds Raw Data

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110405AC-BLK

Initial Calibration ID: C110328

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64314, Sample: AY35093

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110405AC-BLK

Initial Calibration ID: C110328

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0.4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	115	69-139	
SURROGATE: 4-BROMOFLUOROBE	106	75-125	
SURROGATE: DIBROMOFLUOROME	109	75-125	
SURROGATE: TOLUENE-D8 (S)	96.8	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64314, Sample: AY35093

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110405AC LCS

Initial Calibration ID: C110328

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.56	106	72-125	
1,1,1-TCA	10.00	11.46	115	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	10.09	101	74-125	
1,1,2-TCA	10.00	10.63	106	75-127	
1,1-DCA	10.00	10.83	108	75-125	
1,1-DCE	10.00	10.31	103	75-125	
1,1-DICHLOROPROPENE	10.00	10.52	105	75-125	
1,2,3-TRICHLOROBENZENE	10.00	10.86	109	75-137	
1,2,3-TRICHLOROPROPANE	10.00	11.30	113	75-125	
1,2,4-TRICHLOROBENZENE	10.00	10.51	105	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	9.98	99.8	75-125	
1,2-DCA	10.00	11.12	111	68-127	
1,2-DCB	10.00	10.27	103	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	10.90	109	59-125	
1,2-DICHLOROPROPANE	10.00	10.46	105	70-125	
1,2-EDB	10.00	9.78	97.8	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	9.67	96.7	72-125	
1,3-DCB	10.00	10.26	103	75-125	
1,3-DICHLOROPROPANE	10.00	10.54	105	75-125	
1,4-DCB	10.00	10.47	105	75-125	
1-CHLOROHEXANE	10.00	10.55	106	75-125	
2,2-DICHLOROPROPANE	10.00	11.56	116	75-125	
2-CHLOROTOLUENE	10.00	10.48	105	73-125	
4-CHLOROTOLUENE	10.00	10.35	104	74-125	
BENZENE	10.00	9.53	95.3	75-125	
BROMOBENZENE	10.00	9.89	98.9	75-125	
BROMOCHLOROMETHANE	10.00	10.09	101	73-125	
BROMODICHLOROMETHANE	10.00	10.72	107	75-125	
BROMOFORM	10.00	9.83	98.3	75-125	
BROMOMETHANE	10.00	8.57	85.7	72-125	
CARBON TETRACHLORIDE	10.00	11.28	113	62-125	
CHLOROBENZENE	10.00	10.33	103	75-125	7 -
CHLOROETHANE	10.00	9.66	96.6	65-125	
CHLOROFORM	10.00	10.84	108	74-125	
CHLOROMETHANE	10.00	7.97	79.7	75-125	
CIS-1,2-DCE	10.00	10.55	106	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	11.58	116	74-125	
DIBROMOCHLOROMETHANE	10.00	10.80	108	73-125	
DIBROMOMETHANE	10.00	10.75	108	69-127	
DICHLORODIFLUOROMETHANE	10.00	8.98	89.8	72-125	

Comments:

ARF: 64314, QC Sample ID: AY35093

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110405AC-154155

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110405AC LCS

Initial Calibration ID: C110328

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	9.95	99.5	75-125	_
HEXACHLOROBUTADIENE	10.00	10.87	109	75-125	
ISOPROPYLBENZENE	10.00	10.54	105	75-125	
M&P-XYLENE	20.00	19.19	96.0	75-125	-
METHYLENE CHLORIDE	10.00	10.46	105	75-125	1.1.1
N-BUTYLBENZENE	10.00	10.47	105	75-125	
N-PROPYLBENZENE	10.00	10.19	102	75-125	
NAPHTHALENE	10.00	11.34	113	75-125	-
O-XYLENE	10.00	10.24	102	75-125	
P-ISOPROPYLTOLUENE	10.00	10.48	105	75-125	
SEC-BUTYLBENZENE	10.00	10.50	105	75-125	
STYRENE	10.00	10.28	103	75-125	
TCE	10.00	10.84	108	71-125	
TERT-BUTYLBENZENE	10.00	10.22	102	75-125	
TETRACHLOROETHENE	10.00	10.21	102	71-125	
TOLUENE	10.00	9.93	99.3	74-125	
TRANS-1,2-DCE	10.00	10.47	105	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	10.75	108	66-125	
TRICHLOROFLUOROMETHANE	10.00	11.04	110	67-125	
VINYL CHLORIDE	10.00	8.18	81.8	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	110	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	112	75-125	
SURROGATE: DIBROMOFLUOROMETH	107	75-125	
SURROGATE: TOLUENE-D8 (S)	100	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

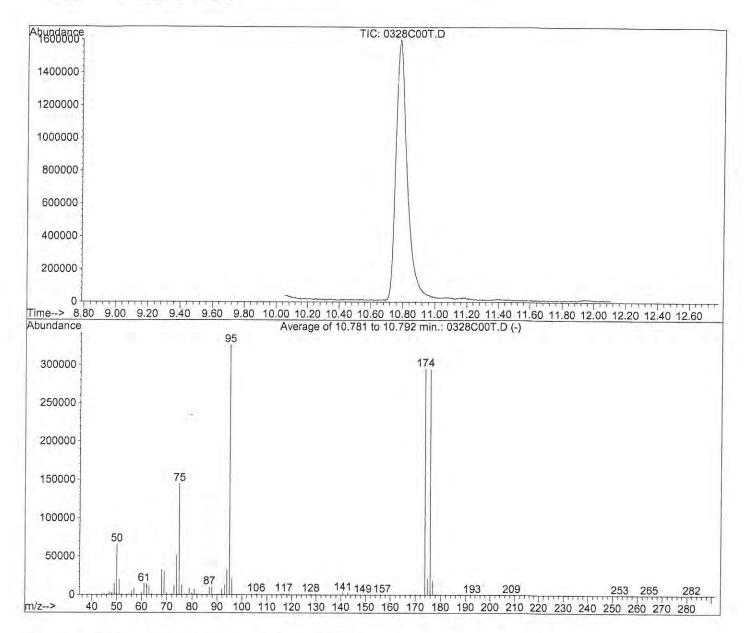
Comments:

ARF: 64314, QC Sample ID: AY35093

Data File : M:\CHICO\DATA\C110328\0328C00T.D

: 28 Mar 11 17:34 : 20ug/ml BFB STD 03-11-11A Acq On Sample

Operator: RS : Chico Inst


Misc

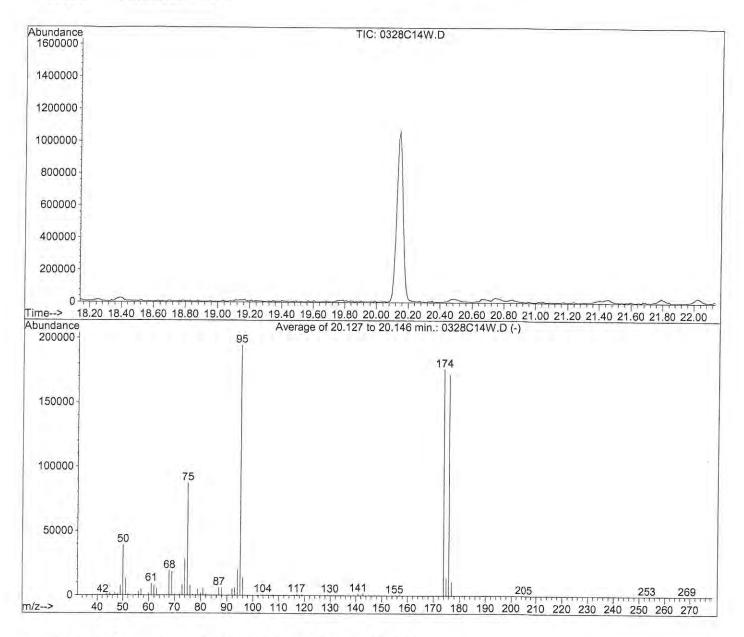
Multiplr: 1.00

Vial: 1

Method : M:\CHICO\DATA\C110328\C826AW.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 10.781 to 10.792 min.

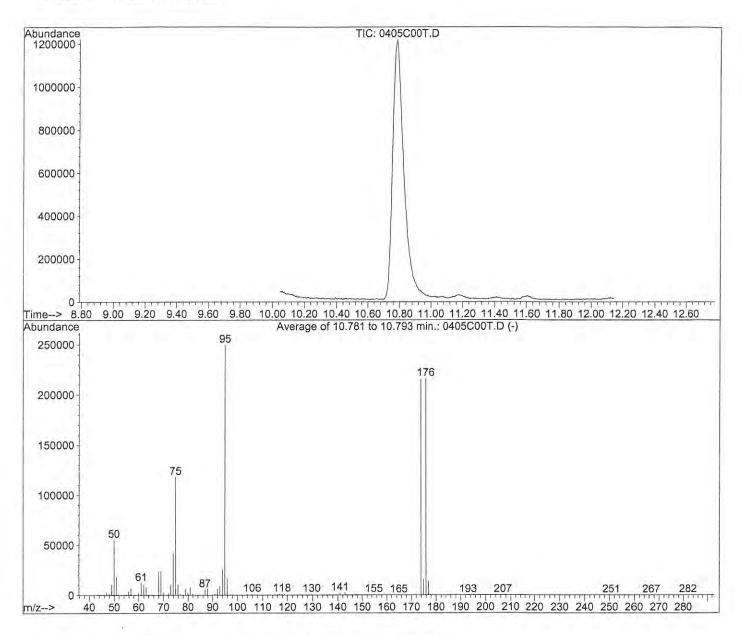

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	20.2	65913	PASS
75	95	30	60	44.4	144811	PASS
95	95	100	100	100.0	326343	PASS
96	95	5	9	6.6	21487	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	90.5	295424	PASS
175	174	5	9	7.3	21533	PASS
176	174	95	101	99.6	294101	PASS
177	176	5	9	6.4	18944	PASS

Data File: M:\CHICO\DATA\C110328\0328C14W.D

Vial: 1 : 29 Mar 11 2:38 : 20ug/ml BFB STD 03-11-11A Acq On Operator: RS Sample : Chico Inst Misc : 2uL Multiplr: 1.00

Method : M:\CHICO\DATA\C110328\C826AW.M (RTE Integrator)

: METHOD 8260B Title



Spectrum Information: Average of 20.127 to 20.146 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	20.2	39205	PASS
75	95	30	60	44.9	87256	PASS
95	95	100	100	100.0	194432	PASS
96	95	5	9	7.0	13707	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	90.6	176096	PASS
175	174	5	9	7.5	13239	PASS
176	174	95	101	97.6	171821	PASS
177	176	5	9	6.2	10646	PASS

Method : M:\CHICO\DATA\C110328\C826AW.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 10.781 to 10.793 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	22.2	55312	PASS
75	95	30	60	47.3	118000	PASS
75 95	95	100	100	100.0	249600	PASS
96	95	5	9	6.3	15771	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	86.2	215275	PASS
175	174	5	9	7.3	15679	PASS
176	174	95	101	100.4	216064	PASS
177	176	5	9	6.6	14168	PASS

Injection Log

		Directory:	M:\CHICO	D\DATA\C110328\		
Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0328C00T.D	1	20ug/ml BFB STD 03-11-11A	2uL	28 Mar 11 17:34
2	1	0328C04W.D	1	Vol Std 03-28-11@0.3ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 19:37
3	1	0328C05W.D	1	Vol Std 03-28-11@0.5ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 20:13
4	1	0328C06W.D	1	Vol Std 03-28-11@1.0ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 20:48
5	1	0328C07W.D	1	Vol Std 03-28-11@2.0ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 21:23
6	1	0328C08W.D	1	Vol Std 03-28-11@5.0ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 21:58
7	1	0328C09W.D	1	Vol Std 03-28-11@10ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 22:33
8	1	0328C10W.D	1	Vol Std 03-28-11@20ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 23:08
9	1	0328C11W.D	1	Vol Std 03-28-11@100ug/L	Water 10ml w/IS: 03-18-11C	28 Mar 11 23:43
10	1	0328C12W.D	1	Vol Std 03-28-11@200ug/L	Water 10ml w/IS: 03-18-11C	29 Mar 11 00:18
11	1	0328C14W.D	1	20ug/ml BFB STD 03-11-11A	2uL	29 Mar 11 2:38
12	1	0328C15W.D	1	110328A LCS-1WC (SS)	Water 10ml w/IS&S: 03-18-11C&D	29 Mar 11 3:13
13	1	0405C00T.D	1	20ug/ml BFB STD 03-11-11A	2uL	5 Apr 11 9:12
14	1	0405C01W.D	1	110405A LCS-1WC	Water 10ml w/IS&S: 03-18-11C&D	5 Apr 11 10:17
15	1	0405C05W.D	1	110405A BLK-1WC	Water 10ml w/IS&S: 03-18-11C&D	5 Apr 11 13:50
16	1	0405C09W.D	1	AY35093W01	Water 10ml w/IS&S: 03-18-11C&D	5 Apr 11 17:28
17	1	0405C10W.D	1	AY35094W01	Water 10ml w/IS&S: 03-18-11C&D	5 Apr 11 18:03
18	1	0405C11W.D	1	AY35095W01	Water 10ml w/IS&S: 03-18-11C&D	5 Apr 11 18:39

4/27/11

DIV

Parsons

CSSA

Project #: 747781.04000 CSSA

ARF: 64352

Samples collected: April 6, 2011

APPL, Inc.

Summary Data Package for

Project #: 747781.04000

ARF 64352

TABLE OF CONTENTS

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	3
Chain of Custody and ARF	6
Method 8260B, AFCEE Forms	12

CASE NARRATIVE

Volatile Organic Compounds EPA Method 8260B Case Narrative

ARF: 64352

Project: 747781.04000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)
Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The samples were received April 8, 2011, at 3.0°C. The samples were assigned Analytical Request Form (ARF) number 64352. The sample numbers and requested analysis were compared to the chain of custody. The sample IDs were revised, as instructed. No other exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
TB-1	AY35295	WATER	04/06/11	04/08/11
ACC65-SIW-01(0-0.6)	AY35296	WATER	04/06/11	04/08/11
ACC65-SIW-01(0-0.6) FD	AY35297	WATER	04/06/11	04/08/11
ACC65-SIW-01(0.6-0.8)	AY35298	WATER	04/06/11	04/08/11
ACC65-SIW-01(8-8.5)	AY35299	WATER	04/06/11	04/08/11
ACC65-SIW-01(23.5-24)	AY35300	WATER	04/06/11	04/08/11

Percent moisture was determined using CLP 4.0.

Sample Preparation:

The water sample was purged according to EPA method 5030B and the soil samples were purged according to EPA method 5035. All holding times were met.

Sample Analysis Information:

The samples were analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

Quality Control/Assurance

Spike Recovery

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard was used for the LCSs. All recoveries were acceptable.

Sample ACC65-SIW-01(0.6-0.8) was designated by the client for MS/MSD analysis. Forty-nine analytes recovered outside the control limits; they were flagged with a "M" in the parent sample in accordance with CSSA and AFCEE 3.1 QAPP.

Surrogates

All surrogate recoveries met acceptance criteria.

Method blanks

No target compound was detected above the reporting limit in the method blanks.

Calibration

Initial and continuing calibrations were analyzed according to the method. All acceptance criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No other analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D. (aboratory Director / Date

CHAIN OF CUSTODY AND ARF

Client:	Parsons	Received by:	TBVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Address:	8000 Centre Park Drive Ste 20	00 Date Received:	04/08/11 Time: 10:10
	Austin, TX 78754	Delivered by:	FED EX
Attn:	Tammy Chang	Shuttle Custody	Seals (Y/N): Y
Phone: 5	12-719-6092 Fax: 512-719	9-6099 Chest Temp(s):	3.0°C
Job: 7477	781.04000 CSSA	Color:	VOA
PO #: 74	7780.30002	Samples Chilled	until Placed in Refrig/Freezer: Y
Chain of C	Custody (Y/N): Y # 040711APP	PFB Project Manage	: Diane Anderson
RAD Scre	en (Y/N): Y pH (Y/N):	N QC Report Type	: DVP4/AFCEE/ERPIMS/TX
Turn Arou	nd Type: STD	Due Date:	04/29/11

Comments:

pdf ARF to Tammy & Pam; send 1 DVP4 & 2 DVP3 to Tammy

21-day TAT for final package

New contract: definitive data needs DVP 4; needs AFCEE forms and package. Case Narrative. CSSA + AFCEE 3.1 QAPP; Only report MS/MSD when requested.

EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

See attached email for revised sample IDs

Soil/rock samples may require special preparation. Consult Leonard or Diane.

VO	mple Distribution: A: 1-\$826AW, 5-\$826AF tlab: 5-MOIST 4-15		Charges		8000 Centre Park Drive Ste 200 Austin, TX 78754-5140 Attn: Ellen Felfe
	Client ID	APPL ID	Sampled	Analyses	Requested
1.	TB-1	AY35295W	04/06/11 08:00	\$826AW	1
2.	ACC65-SIW-01(0-0.6)	AY35296S	04/06/11 11:00	\$826AF,	MOIST
3.	ACC65-SIW-01(0-0.6) FD	AY35297S	04/06/11 11:00	\$826AF,	MOIST
4.	ACC65-SIW-01(0.6-0.8)	AY35298S	04/06/11 11:45	\$826AF,	MOIST
5.	ACC65-SIW-01(8-8.5)	AY35299S	04/06/11 13:54	\$826AF,	MOIST
6.	ACC65-SIW-01(23.5-24)	AY35300S	04/06/11 15:25	\$826AF,	MOIST

Client Code: PES-STAN

Computer: PM-ASSISTANT

Initials ____ Date ___

APPL Sample Receipt Form

Sample Container Type

ARF# 64352

pН

Sample	Container Type	Count	pH	
AY35295	13 VOAs - HCL	2	NA	
AY35296	²⁰ 40z Jar	1	NA	
AY35297	²⁰ 4oz Jar	1	NA	
AY35298	²⁰ 4oz Jar	2	NA	
AY35299	21 8oz Jar	1	NA	
AY35300	21 8oz Jar	1	NA	

record description of the second

Count

Receiving

From:

"Renee Patterson" <rpatterson@applinc.com>

To:

<receiving@applinc.com>

Cc:

"'Chue Moua" <cmoua@applinc.com>

Sent:

Friday, April 08, 2011 12:26 PM

Subject:

FW: CSSA Log In Followup

From: Ford, Pamela [mailto:Pamela.Ford@parsons.com]

Sent: Thursday, April 07, 2011 12:54 PM **To:** Renee Patterson; Diane Anderson

Cc: Pearson, William Scott; Chang, Tammy; Jeremy Hale; rwise

Subject: CSSA Log In Followup

Hi Renee

Follow up to today's phone calls:

For CSSA samples collected at the same LOCID but at different depths, please log in the samples as LOCID(begdepth-enddepth).

For example:

LOCID	Depth	Field Sample ID Log In	As:
SB-01	0-10	SB-01 040811 N1400	SB-01(0-10)
SB-01	10-15	SB-01 040811 N1415	SB-01(10-15)
SB-01	15-20	SB-01_040811_N1430	SB-01(15-20)

This will apply to the soil boring samples and also to monitoring well samples collected at different depths.

<u>Jeremy</u> - This will not affect EDDS. Continue to report the Field Sample IDs in the EDDs just as you have been doing. The SBD and SED are not carried in the Lab Format file. However, as long as the sample collection date/times are unique, then our field sample IDs will be unique for different depths, and we should be OK in the EDD.

Thanks for your assistance, Pam

Analysis Required: Analysis Required: Analysis Required: Swezzob voc Full List Analysis Required: Ana		Containers: Date	7.	shed by	Relinquished by:	Time 1010	Date 4.2.11 Time		Relinquished by	ieve
Required: Required: VOC FUILLIST Required:	4 4 4	Containers Date		shed by	Relinqui	at the	工	M	shed by	inqui
Required: Required: VOC Full List Required: VOC Full List Required: VOC Full List Acfinitive Acfinitive Acfinitive Acfinitive Acfinitive Acfinitive Acfinitive		Containers							43. 11	<u>.</u>
Required: Required: VOC Full List Required: VOC Full List Required: Acfinitive Acfinitive Acfinitive Acfinitive	- m -	01	TBLOT: 06040001 ABLOT: EBLOT:	o SD	MATRIX: SMCODE: 525	4/6/2011 N 040611_N15	SIW-01 LOGDATE: 4/6/2011 I OGTIME: 15:25 SACODE: N SI FLDSAMPID AOC65-SIW-01_040611_N1525	AOC65-SIW-01 23.5 LOGTIME: 1 24 FLDSAMPID	1 10 000 00000	SBD: SED: Remarks:
definitive definitive definitive		Containers:	ABLOT: DEGRAPOOT	စ ရ	SMCODE:	N 040611_N13	OGTIME: 13:54 SACODE: N SI FLDSAMPID AOC65-SIW-01_040611_N1354	LOGTIME: 1 FLDSAMPID	HILLSTON D. J.	SBD: SED: Remarks
definitive	<u> </u>	Containers:		G SD	MATRIX: SMCODE: 1145	MS 040611_MS	OGTIME: 11:45 SACODE: MS SMC FLDSAMPID AOC65-SIW-01_040611_MS1145	0.6 LOGTIME: 1 0.8 FLDSAMPID 0.8 FLDSAMPID		SBD: SED: Remarks
Required:	<u> </u>	Containers:	TBLOT: 06040001 ABLOT: EBLOT:	e SD	MATRIX: SMCODE: 145	4/6/2011 N 040611_N1	SIW-01 LOGDATE: 4/6/2011 I OGTIME: 11:45 SACODE: N SI FLDSAMPID AOC65-SIW-01_040611_N1145	ACC65-SIW-01 0.6 LOGTIME: 1 0.8 FLDSAMPID	2.50	SBD: SED: Remarks:
Analysis Required: SYNEZEOB VOC FUILLIST ALFinitive data		01 Containers:	TBLOT: 06041101 ABLOT: EBLOT:	e S	MATRIX: SMCODE:	4/6/2011 SD 040611_SE	SIW-01 LOGDATE: 4/6/2011 M OGTIME: 11:45 SACODE: SD SM FLDSAMPID AOC65-SIW-01_040611_SE*145	AOC65-SIW-01 0.6 LOGTIME: 1 0.8 FLDSAMPID		SBD: SED: Remarks
Analysis Required: Standard TAT SW826175 VOC Full List Aufinitive data		Containers:	TBLOT: 06041101 ABLOT: EBLOT:	o S	MATRIX: SMFODE:	4/6/2011 FD 040611_FD	SIW-01 LOGDATE: 4/6/2011 M OGTIME: 11:00 SACODE: FD SW FLDSAMPID AOC65-SIW-01_040611_FD1100	AOC65-SIW-01 n LOGTIME: 1 C.E FLDSAMPID		SBD: SED: Remarks:
Analysis Required: Standard TAT Shouse Vici Full List definitive data	-4	Containers:	TBLOT: 06040001 ABLOT: EBLOT:	e SD	MATRIX: SMCODE:	040611_N1	OGTIME: 11:00 SACODE: N SIFLDSAMPID AOC65-SIW-01_040611_N1:00	0 LOGTIME:	The section	SBD: SED: Remarks:
Analysis Required: Standard TH Swezeob voc Full List definitive data	Ν	Containers:	ABLO:	NA WO	MATRIX: SMCODE:	TB B0800	LOGDATE: 4/6. OGTIN:E: 8:00 SACODE: TB FLDSAMPID TB-1_040611_TB0800	LOGTIME: 1	(v)	SBD: SED: Remarks:
Sampler(s): Julie Bouch Adviced Lindley		B APPF FedEx 873526388199	Cooler ID: LabCode: Carrier: Airbill Carrier: TAT: 544	K	te: 4/7/2011 By: JDB: ne: 5:00 PM m: JB-AL ype See	Relinquish_Date: Relinquished_By: Relinquish_Time: Collection Team: Sample Data Type		CSSA 747781.04000 4/7/2011 Scott Pearson	B 1 1 1 1 1 1 1	Project L Job Num Creation Task Ma

EPA METHOD 8260B Volatile Organic Compounds AFCEE Forms

AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8260B AAB #: 110413AC-154245 Lab Name: APPL, Inc Contract #: 2010*1286022*000 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID TB-1 AY35295 Comments: ARF: 64352 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data

the Manager's designee, as verified by the following signature.

Signature: Name: Diane Anderson

Date: Title: Project Manager

package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8260B AAB #: 110411AN-154242
Lab Name: APPL, Inc Contract #: 2010*1286022*000
Base/Command: CSSA Prime Contractor: Parsons

Field Sample ID	Lab Sample ID
ACC65-SIW-01(0-0.6)	AY35296
ACC65-SIW-01(0-0.6) FD	AY35297
ACC65-SIW-01(0.6-0.8)	AY35298
ACC65-SIW-01(8-8.5)	AY35299
ACC65-SIW-01(23.5-24)	AY35300

Comments:	ARF: 64352		
completeness, package and in	for other than the conditions de	etailed above. Rele abmitted on diskette	anditions of the contract, both technically and for ase of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	Lawy & tor Da	Name:	Diane Anderson
Date:	51611	Title:	Project Manager

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AC-154245

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: TB-1 Lab Sample ID: AY35295 Matrix: Water

% Solids: NA Initial Calibration ID: C110412

Date Received: 08-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1	7	U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1	ti —	υ
1,2-EDB	0.06	0.6	0.06	1	(U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1	VIII I	υ
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1	(U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.16	1	1-	U

Comments:

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AC-154245

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: TB-1 Lab Sample ID: AY35295 Matrix: Water

% Solids: NA Initial Calibration ID: C110412

Date Received: 08-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		I
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	. 0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	1	4	U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	- 1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		IJ
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		T)
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		II
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	0.06	1		U
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	_ 1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		IJ
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	111	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	86.3	75-125	
SURROGATE: DIBROMOFLUOROMETH	104	75-125	
SURROGATE: TOLUENE-D8 (S)	93.9	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~				
Co	1771	me	nt	C.
	1111	110	111	0.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0-0.6) Lab Sample ID: AY35296 Matrix: Soil

% Solids: 79.6 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		Ŭ
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		Ü
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		Ü
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	-1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		Ū
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007			Ū
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	- 1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	- 1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

~			100
Con	3777	an	to:
COLL	1111		LO.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0-0.6) Lab Sample ID: AY35296 Matrix: Soil

% Solids: 79.6 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		I
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		I
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		ī
DIBROMOMETHANE	0.001	0.010	0.001	1		τ
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		τ
ETHYLBENZENE	0.0010	0.003	0.0010	1		τ
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1	1	ı
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		ι
M&P-XYLENE	0.0018	0.007	0.0018	1		L
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1	14.	U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	_1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0151	1		
TOLUENE	0.0010	0.005	0.0021	1		F
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	118	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	91.1	65-135	
SURROGATE: DIBROMOFLUOROMETH	116	65-135	
SURROGATE: TOLUENE-D8 (S)	104	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~							
('	0	m	m	101	ni	C	٠

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0-0.6) FD Lab Sample ID: AY35297 Matrix: Soil

% Solids: 75.4 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	- 1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		Ü
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1.		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1/		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

~				
0	m	ne	nt	C.
\sim	1111	110	111	о.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0-0.6) FD Lab Sample ID: AY35297 Matrix: Soil

% Solids: 75.4 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0131	1		
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		IJ
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1	-11	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	115	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	95.9	65-135	
SURROGATE: DIBROMOFLUOROMETH	114	65-135	
SURROGATE: TOLUENE-D8 (S)	97.6	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~				200		
Co	m	m	P	nt		
$ \cup$	111	uı.	LV.	111	o.	

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0.6-0.8) Lab Sample ID: AY35298 Matrix: Soil

% Solids: 77.1 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		M
1,1,1-TCA	0.0009	0.004	0.0009	1		M
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		M
1,1,2-TCA	0.0009	0.005	0.0009	1		М
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		M
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	$-\tilde{1}$		M
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		M
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	Î		M
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		M
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		M
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		M
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	-1		M
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		M
1,3-DCB	0.0011	0.006	0.0011	1		M
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		M
1,4-DCB	0.0008	0.002	0.0008	1		M
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		M
2,2-DICHLOROPROPANE	0.001	0.020	0,001	1		M
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		M
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		M
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		M
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		M
BROMOFORM	0.0011	0.006	0.0011	1		M
BROMOMETHANE	0.0007	0.005	0.0007	1		M
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		M
CHLOROBENZENE	0.0007	0.002	0.0007	1		M
CHLOROETHANE	0.0015	0.005	0.0015	1		M
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		M

Comments: M = Matrix effect.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(0.6-0.8) Lab Sample ID: AY35298 Matrix: Soil

% Solids: 77.1 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		M
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		M
DIBROMOMETHANE	0.001	0.010	0.001	1)		M
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		M
ETHYLBENZENE	0.0010	0.003	0.0010	1		M
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		М
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		M
M&P-XYLENE	0.0018	0.007	0.0018	1		M
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		M
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		M
NAPHTHALENE	0.0010	0.020	0.0010	1		М
O-XYLENE	0.0007	0.005	0.0007	1		M
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		M
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		M
STYRENE	0.0009	0.002	0.0009	1		M
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		M
TETRACHLOROETHENE	0.0008	0.007	0.0107	1		M
TOLUENE	0.0010	0.005	0.0013	1		M
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		M
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		M
VINYL CHLORIDE	0.0013	0.009	0.0013	1		M

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	124	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	91.1	65-135	
SURROGATE: DIBROMOFLUOROMETH	122	65-135	
SURROGATE: TOLUENE-D8 (S)	106	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

M = Matrix effect.

Analytical Method: EPA 8260B

Preparatory Method:

5035

AAB #: 110411AN-154242

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(8-8.5)

Lab Sample ID: AY35299

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: N110407B

Date Received: 08-Apr-11

Date Prepared: 11-Apr-11

Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	- 1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	i		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

~			
('01	mm	en	to.
Co	LILL.	ω_{11}	w.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(8-8.5) Lab Sample ID: AY35299 Matrix: Soil

% Solids: 95.8 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1	41	U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1	·	U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		υ
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1	7	U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	i i		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1	-	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	124	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	95.9	65-135	
SURROGATE: DIBROMOFLUOROMETH	116	65-135	
SURROGATE: TOLUENE-D8 (S)	95.4	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~					93.		
	0	m	177	ne	111	C	٠
	v	11.	ш	10	111	w	

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(23.5-24) Lab Sample ID: AY35300 Matrix: Soil

% Solids: 92.7 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		ı
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		Į
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		Ü
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1	1	Ü
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		Ū
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		Ü
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007			U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

~	Li Si			4000
	αn	nn	10°	its:

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110411AN-154242

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: ACC65-SIW-01(23.5-24) Lab Sample ID: AY35300 Matrix: Soil

% Solids: 92.7 Initial Calibration ID: N110407B

Date Received: 08-Apr-11 Date Prepared: 11-Apr-11 Date Analyzed: 11-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		1
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		11
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		II.
DIBROMOMETHANE	0.001	0.010	0.001	1	1	11
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		II
ETHYLBENZENE	0.0010	0.003	0.0010	1		I.I
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		II
ISOPROPYLBENZENE	0.0010	0.008	0.0010	- 1		II
M&P-XYLENE	0.0018	0.007	0.0018	1		II
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		IJ
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		IJ
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		II
O-XYLENE	0.0007	0.005	0.0007	1		TI.
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		II
STYRENE	0.0009	0.002	0.0009	1	7	U
TCE	0.0012	0.010	0.0012	I		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1	***	II
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		II.
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		11
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		TI U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	122	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	91.1	65-135	
SURROGATE: DIBROMOFLUOROMETH	120	65-135	
SURROGATE: TOLUENE-D8 (S)	97.6	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~				100
Co	m	m	211	tc.
-	LIL	ш	\sim 11	LO.

Analytical Method:	METHOD 8260B	AAB #: 110413AC-154245
Lab Name:	APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID:	Chico	Date of Initial Calibration: 12-Apr-11
Initial Calibration ID:	C110412	Concentration Units (ug/L or mg/kg): ug/L

Analyte	Std	RF	Std	RF	Std	RF	Std	RF	Std	RF	Std	PF	Std	RF	Std	RF	Std	RF
	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9
Chloromethane *	5.0	0.142	0.5	0.191	1.0	0.196	2.0	0.146	10.0	0.130	100.0	0.128	20.0	0.135	40.0	0.132	0.3	
Vinyl chloride #	5.0	0.308	0.5	0.395	1.0	0.306	2.0	0.322	10.0	0.299	100.0		20.0	0.27	40.0		0.3	0.344
1,1-DCE #	5.0	0.958	0.5	1.104	1.0	0.976	2.0	1,122	10.0	1.103	100.0	0.881	20.0	1.018	40.0	0.958	0.3	1.067
1,1-DCA *	5.0	1.228	0.5	1.270	1.0	1.298	2.0	1.227	10.0	1.310	100.0	1.032	20.0	1.187	40.0	1.102	0.3	1.150
Chloroform#	5.0	1.316	0.5	1.383	1.0	1.367	2.0	1.351	10.0	1.422	100.0	1.147	20.0	1.307	40.0	1.206	0.3	1.508
1,2-Dichloropropane #	5.0	0.557	0.5	0.579	1.0	0.487	2.0	0.580	10.0	0.588	100.0	0.517	20.0	0.565	40.0	0.529	0.3	0.516
Toluene #	5.0	2.708	0.5	2.894	1.0	2.823	2.0	2.834	10.0	2.935	100.0	2.557	20.0	2.787	40.0	2.662	0.3	3,198
Chlorobenzene *	5.0	2.866	0.5	2.840	1.0	2.809	2.0	2.710	10.0	3.075	100.0	2.682	20.0	2.745	40.0	2.758	0.3	2.923
Ethylbenzene #	5.0	4.825	0.5	4.741	1.0	4.671	2.0	4.823	10.0	5,269	100.0	4.497	20.0	4.639	40.0	4.656	0.3	5.265
Bromoform *	5.0	0.172	0.5	0.114	1.0	0.149	2.0	0.137	10.0	0.179	100.0	0.167	20.0	0.151	40.0	0.163	0.3	0.154
1,1,2,2-Tetrachloroethane *	5.0	0.703	0.5	0.612	1.0	0.810	2.0	0.685	10.0	0.761	100.0	0.762	20.0	0.746	40.0	0.72	0.3	0.887
* SPCCs	# CCCs			F 1							- (1)							

AFCEE FORM O-3A Page ____ of ___

Analy	tical Method:	метно	D 8260B						AAB #:	110411A	N-154242			
	Lab Name:	APPL, Ir	ic.					C	Contract #:	2010*12	86022*00	0		
Ir	strument ID:	Neo					Date o	of Initial C	alibration:	8 Apr 11				
Initial C	Initial Calibration ID: N110407B						Concentration Units (ug/L or mg/kg): mg/kg							
Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std 6	RF 6	Std 7	RF 7
Chloromethane *	0.002	0.918	0.050	0.739	0.010	0.786	0.005	0.887	0.020	0.725	0.200	0.874		
Vinyl chloride #	0.002	0.107	0.050	0.129	0.010	0.122	0.005	0.134	0.020	0.130	0.200	0.156	-	
1,1-DCE #	0.002	0.485	0.050	0.521	0.010	0.479	0.005	0.510	0.020	0.451	0.200	0.564		
1,1-DCA *	0.002	0.650	0.050	0.651	0.010	0.615	0.005	0.596	0.020	0.575	0.200	0.664		
Chloroform#	0.002	0.577	0.050	0.559	0.010	0.551	0.005	0.585	0.020	0.520	0.200	0.587		
1,2-Dichloropropane #	0.002		0.050	0.266	0.010	0.253	0.005	0.253	0.020	0.246	0.200	0.289		
Toluene #	0.002	0.693	0.050	0.680	0.010	0.672	0.005	0.711	0.020	0.592	0.200	0.694		
Chlorobenzene *	0.002	1.316	0.050	1.067	0.010	1.100	0.005	1,100	0.020	1.038	0.200	1.153		
Ethylbenzene #	0.002	2.316	0.050	1.983	0.010	1.921	0.005	2.092	0.020	1.805	0.200	2.091		
Bromoform *	0.002	0.323	0.050	0.314	0.010	0.302	0.005	0.287	0.020	0.323	0.200	0.325		
1,1,2,2-Tetrachloroethane *	0.002	1,128	0.050	1.119	0.010	1.071	0.005	1.083	0.020	1.110	0.200	1.174		
* SPCCs	# CCCs													
Commer	nts:				-									
				AFCEE	FORM O-	3A Page	of_							

Lab Name: APPL, Inc.				Contract #: 2010*1286022*000								
nstrument ID: Chico		Date of Initial Calibration: 12-Apr-11										
Calibration ID: C110412			Cor	Concentration Units (ug/L or mg/kg): ug/L								
	Analyte	% RSD	mean %RSD	r	COD	Q	1					
	Chloromethane *	18.4	76KSD	1.0000			1					
	1,1-DCA *	7.7					1					
	Bromoform *	12.8					1					
	Chlorobenzene *	4.3	0		-							
	1,1,2,2-TCA *	10.5					1					
	1,1-DCE #	8.2			7							
	Chloroform#	8.1										
	1,2-DCP #	6.5										
	Toluene #	6.5										
	Ethylbenzene #	5.6										
	Vinyl chloride #	12.5										
			U P				1					

AFCEE FORM O-3A Page ____ of ___

Instrument ID: Neo				D	ite of Initial i	Calibration	: 8 Apr 11
matument 15. 1460				2,	it of finelia	Cunoration	· OTHER
ial Calibration ID: N110407B			Con	centration	Units (ug/L	or mg/kg)	mg/kg
	Analyte	7 %	mean	1	COD	Q	7
		RSD	%RSD		- 25	- 1	1
	Chloromethane *	10.0					1
	1,1-DCA *	5.7					1
	Bromoform *	4.8		-			1
	Chlorobenzene *	8.8					
	1,1,2,2-TCA *	3.3					1
	1,1-DCE #	7.9					1
	Chloroform#	4.6	11 =				
	1,2-DCP #	6.6					
	Toluene #	6.3					
	Ethylbenzene #	8.6	T. a				1
	Vinyl chloride #	12.3					1
							1
					1		1
CCs # CCCs							

Analytical Method: METHOD 8260B	AAB #: 110413AC-154245
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Chico	Date of Initial Calibration: 12-Apr-11
nitial Calibration ID: C110412	Concentration Units (ug/L or mg/kg): ug/L

1.1,1-TCA 1,1,2-TCA 1,1,2-TCA 1,1,2-TCA 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-5-Trimethylbenzene 1,3-DCB 1,3-DCB	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.031 1.334 0.264 0.895 2.507 0.080 3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.034 1.414 0.269 1.032 3.022 0.121 3.726 7.392 0.574 3.466	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.000 1.297 0.283 0.951 2.771 0.126 3.419 7.096 0.579	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.005 1.405 0.277 0.929 2.638 0.109 3.099	10.0 10.0 10.0 10.0	1.142 1.456 0.300 1.021	100.0 100.0 100.0	0.992 1.132 0.270	20.0 20.0 20.0	1.028	40.0 40.0	1.030	0.3	1.003 1.266
1,1,2-TCA 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2,4-Trimethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-Frimethylbenzene 1,3-FCB 1,3-DCB	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.264 0.895 2.507 0.080 3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.269 1.032 3.022 0.121 3.726 7.392 0.574	1.0 1.0 1.0 1.0 1.0 1.0	0.283 0.951 2.771 0.126 3.419 7.096	2.0 2.0 2.0 2.0 2.0	0.277 0.929 2.638 0.109	10.0 10.0 10.0	0.300	-					1,235	0,3	
1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-DCA 1,2-DCB 1,2-DDbromo-3-chloropropane 1,2-EDB 1,3-Trimethylbenzene 1,3-DCB 1,3-DCB 1,3-DCB	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.895 2.507 0.080 3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.032 3.022 0.121 3.726 7.392 0.574	1.0 1.0 1.0 1.0 1.0	0,951 2,771 0,126 3,419 7,096	2.0 2.0 2.0 2.0	0.929 2.638 0.109	10.0		100.0	0.270	20.0	0.005	40.0	-	-	-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trinethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-S-Trimethylbenzene 1,3-DCB	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2.507 0.080 3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	3.022 0.121 3.726 7.392 0.574	1.0 1.0 1.0 1.0	2.771 0.126 3.419 7.096	2.0 2.0 2.0	2.638 0.109	10.0	1.021			20.0	0.285	40.0	0.272	0.3	0.241
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-5-Trimethylbenzene 1,3-DCB	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.080 3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.121 3.726 7.392 0.574	1.0 1.0 1.0 1.0	0.126 3.419 7.096	2.0	0.109			100.0	0.819	20.0	0.918	40.0	0.866	0.3	1.049
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-5-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.115 7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5 0.5	3.726 7.392 0.574	1.0 1.0 1.0	3.419 7.096	2.0			2.771	100.0	2.505	20.0	2.549	40.0	2.533	0.3	4.076
1,2,4-Trimethylbenzene 1,2-DCA 1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3,5-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.684 0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5 0.5	7.392 0.574	1.0	7.096		2 000	10.0	0.101	100.0		20.0	0.087	40.0	0.085	0.3	
1,2-DCA 1,2-DCB 1,2-Dbromo-3-chloropropane 1,2-EDB 1,3-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0 5.0 5.0 5.0	0.640 3.596 0.138 0.535 7.595	0.5 0.5 0.5 0.5	0.574	1.0		2.0	3.099	10.0	3.284	100.0	3.043	20.0	3.229	40.0	3.095	0.3	4.658
1,2-DCB 1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-S-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0 5.0 5.0	3.596 0.138 0.535 7.595	0.5 0.5 0.5			0.570		7.662	10.0	8.341	100.0	6.969	20.0	7.337	40.0	7.053	0.3	9.273
1,2-Dibromo-3-chloropropane 1,2-EDB 1,3-5-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0 5.0	0.138 0.535 7.595	0.5	3.466	1.0	1 0.010	2.0	0.623	10.0	0.658	100.0	0.542	20.0	0.589	40.0	0.574	0.3	0.536
1,2-Dibromo-3-chloropropane 1,2-EDB 1,3,5-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0 5.0	0.535 7.595	0.5			3.358	2.0	3.436	10.0	3.940	100.0	3.440	20.0	3.605	40.0	3.504	0.3	3.792
1,3,5-Trimethylbenzene 1,3-DCB 1,3-Dichloropropane	5.0 5.0	7.595			1.0	0.083	2.0	0.162	10.0	0.173	100.0	0.166	20.0	0.150	40.0	0.157	0.3	0.752
1,3-DCB 1,3-Dichloropropane	5.0		-	0.485	1.0	0.517	2.0	0.520	10.0	0.572	100.0	0.534	20.0	0.528	40.0	0.535	0.3	0.436
1,3-DCB 1,3-Dichloropropane		4 200	0.5	7.809	1.0	7.104	2.0	7.657	10.0	8.166	100.0	6.944	20.0	7.309	40.0	6.853	0.3	8,433
1,3-Dichloropropane			0.5	4.513	1.0	4.327	2.0	4.324	10.0	4.713	100.0	4.084	20.0	4.284	40.0	4.137	0.3	5.022
		0.830	0.5	0.774	1.0	0.867	2.0	0.778	10.0	0,920	100.0	0.825	20.0	0.819	40.0	0.813	0.3	0.881
1.4-DCB	5.0	4.093	0.5	4.256	1.0	3,965	2.0	4.125	10.0	4.410	100.0	3.973	20.0	4.043	40.0	3.948	0.3	4,553
	5.0	1.229	0.5	1.321	1.0	1.178	2.0	1.278	10.0	1.329	100.0	1.226	20.0	1.240	40.0	1.279	0.3	1.258
	5.0	1.110	0.5	1.264	1.0	1,167	2.0	1.227	10.0	1.219	100.0	0.922	20.0	1.104	40.0	1.026	0.3	1.506
	5.0	7,040	0.5	7.277	1.0	6.686	2.0	6.690	10.0	7.429	100.0	6.216	20.0	6.663	40.0	6,365	0.3	8.025
	5.0	2.545	0.5	2.976	1.0	2.611	2.0	2.527	10.0	2.648	100.0	2.340	20.0	2.496	40.0	2.381	0.3	3.215
	5.0	2.071	0.5	2.144	1.0	2.055	2.0	2.062	10.0	2.272	100.0	1.960	20.0	2.490	40.0	1.993	0.3	2.457
	5.0	0.281	0.5	0.337	1.0	0.266	2.0	0.304	10.0	0.311	100.0	0.273	20.0	0.302	40.0	0.276	0.3	0.233
	5.0	0.279	0.5	0.287	1.0	0.262	2.0	0.294	10.0	0.304	100.0	0.263	20.0					-
	5.0	0.100	0.5	0.080	1.0	0.074	2.0	0.091	10.0	0.090	100.0	0.096	20.0	0.280	40.0	0.260	0.3	0.319
	5.0	1.189	0.5	1.189	1.0	1.108	2.0	1,288	10.0	1.327	100.0	1.041	20.0	0.097	40.0	0.102	0.3	0.123
	5.0	0.102	0.5	0.143	1.0	0.096	2.0	0.093	10.0	0.083	100.0	0.085	20.0	1.206	40.0	1.131	0.3	1.084
	5.0	0.868	0.5	0.977	1.0	0.834	2.0	0.887	10.0	0.921	100.0	0.745	20.0	0.093	40.0	0.090	0.3	FARM
	5.0	0.815	0.5	0.887	1.0	0.777	2.0	0.773	10.0	0.913	100.0	0.786	20.0	0.849	40.0	0.778	0.3	1.097
	5.0	0.838	0.5	0.760	1.0	0.744	2.0	0.762	10.0	0.913	100.0	0.804	20.0	0.856	40.0	0.811	0,3	0.786
	5.0	0.294	0.5	0.700	1.0	0.296	2.0	0.307	10.0	0.314	100.0	0.281	20.0	0.821	40.0	0.814	0.3	0.860
	5.0	0.419	0.5	0.502	1.0	0.492	2.0	0.521	10.0	0.459	100.0	0.432		0.304	40.0	0.290	0.3	0,319
	5.0	0.419	0.5	0.502	1.0	0.492	2.0	0.521	10.0	0.606	100.0	0.432	20.0	0.479	40.0	0.463	0.3	0.442
	5.0		_	9.583			_	-					20.0	0.591	40.0	0.562	0.3	
	_	9.373	0.5		1.0	8.896	2.0	9.166	10.0	10.202	100.0	8.545	20.0	9.059	40.0	8.624	0.3	9.550
	5.0	1.990	0.5	2.028	1.0	1.788	2.0	1.957	10.0	2,099	100.0	1.840	20.0	1.923	40.0	1.886	0.3	2.092
	5.0	0.586	0.5	1.010	1.0	0.795	2.0	0.657	10.0	0.630	100.0	0.514	20,0	0.591	40.0	0.548	0.3	-
	5.0	6.785	0.5	7.851	1.0	7.377	2.0	6.957	10.0	7.867	100.0	6,642	20.0	6.928	40.0	6,757	0.3	9.156
	5.0	10.331	0.5	11.031	1.0	9.642	2.0	10.283	10.0	11,583	100.0	9.543	20.0	10.141	40.0	9.991	0,3	11.211
	5.0	1,378	0.5	1.512	1.0	1.544	2.0	1.284	10.0	1.422	100.0	2000	20.0	1.390	40.0	1.330	0.3	2.078
	5.0	1.952	0.5	1.840	1.0	1.796	2.0	1.863	10.0	2.108	100.0	1.849	20.0	1.867	40.0	1,883	0,3	2.029
	5.0	8.338	0.5	8.602	1.0	8,015	2.0	8.528	10.0	9.057	100.0	8.108	20.0	8.330	40.0	8.200	0.3	9.599
	5.0	9.831	0.5	9.985	1.0	9.771	2.0	9.839	10.0	11.224	100.0	9.555	20.0	9.977	40.0	9.630	0.3	11.040
	5.0	2.946	0.5	2.718	1,0	2,731	2.0	2.730	10.0	3.155	100.0	2.813	20,0	2.902	40.0	2.906	0.3	2.615
	5.0	0.811	0.5	0.937	1.0	0.834	2.0	0.877	10.0	0,922	100.0	0.750	20.0	0.851	40.0	0.809	0.3	0.680
	5.0	7.912	0.5	7.826	1.0	7.801	2.0	7.585	10.0	8.730	100.0	7.408	20.0	7,914	40.0	7.607	0.3	8.142
	5.0	1.102	0.5	1.008	1.0	1.077	2.0	1.074	10.0	1,189	100.0	1.020	20.0	1.064	40.0	1.061	0.3	1.165
	5.0	0.772	0.5	0.998	1.0	0.765	2.0	0.787	10.0	0.836	100.0	0.687	20.0	0.794	40.0	0.723	0.3	0.872
	5.0	0.595	0.5	0.737	1.0	0.571	2.0	0.659	10.0	0.655	100.0	0.589	20.0	0.620	40.0	0.614	0.3	0.568
	5.0	0.881	0.5	0.901	1.0	0.892	2.0	0.893	10.0	0.857	100.0	0.776	20.0	0.871	40.0	0.847	0.3	0.919
	5.0	0.536	0.5	0.567	1.0	0.552	2.0	0.562	10.0	0.529	100.0	0.479	20.0	0.523	40.0	0.512	0.3	0.616
	5.0	1.217	0.5	1,378	1.0	1.247	2.0	1.256	10.0	1.213	100.0	1.197	20.0	1.200	40,0	1.231	0,3	1.654
	5.0	0.738	0.5	0.791	1.0	0.791	2.0	0.782	10.0	0.733	100.0	0.703	20.0	0.738	40.0	0.726	0.3	0.926
Foluene-D8(S)	5.0	3.599	0.5	3.634	1.0	3.579	2.0	3.645	10.0	3.532	100.0	3.489	20.0	3.466	40.0	3.491	0,3	3,821

Comments:	

Analytical Method: METHOD 8260B	AAB #: 110411AN-154242
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Neo	Date of Initial Calibration: 8 Apr 11
nitial Calibration ID: N110407B	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std 6	RF 6	Std 7	RF 7
1,1,1,2-Tetrachloroethane	0.002	0.488	0.050	0.399	0.010	0.403	0.005	0.452	0.020	0.394	0.200	0.427		
1,1,1-TCA	0.002	0.488	0.050	0.409	0.010	0.423	0.005	0.432	0.020	0.402	0.200	0.473		
1,1,2-TCA	0.002	0.222	0.050	0.223	0.010	0.232	0.005	0.228	0.020	0.199	0.200	0.221		
1,1-Dichloropropene	0.002	0.464	0.050	0.398	0.010	0.400	0.005	0.452	0.020	0.404	0.200	0.464		
1,2,3-Trichlorobenzene	0.002	1.082	0.050	0.824	0.010	0.839	0.005	0.844	0.020	0.839	0.200	0.901		
1,2,3-Trichloropropane	0.002	0.170	0.050	0.247	0.010	0.233	0.005	0.262	0.020	0.283	0.200			
1,2,4-Trichlorobenzene	0.002	1.407	0.050	0.895	0.010	0.903	0.005	1.019	0.020	0.969	0.200	0.997		
1,2,4-Trimethylbenzene	0.002	3.350	0.050	2,916	0.010	2.767	0.005	3.211	0.020	2.886	0.200	3.394		
1,2-DCA	0.002	0.474	0.050	0.437	0.010	0.413	0.005	0.409	0.020	0.419	0.200	0.448		
1,2-DCB	0.002	1.821	0.050	1,570	0.010	1.546	0.005	1.638	0.020	1.581	0.200	1.647		
,2-Dibromo-3-chloropropane	0.002	0.248	0.050	0.219	0.010	0.198	0.005	0.214	0.020	0.216	0.200	0.214		-
1,2-EDB	0.002	0.458	0.050	0.409	0.010	0.398	0.005	0.380	0.020	0.386	0.200	0.393		
1,3,5-Trimethylbenzene	0.002	3,175	0.050	2.789	0.010	2.880	0.005	3.304	0.020	2.701	0.200	3.250		
.3-DCB	0.002	2.063	0.050	1.643	0.010	1.732	0.005	1.779	0.020	1.660	0.200	1.766		
,3-Dichloropropane	0.002	0.713	0.050	0.654	0.010	0.642	0.005	0.697	0.020	0.665	0.200	0.709		
,4-DCB	0.002	2.073	0.050	1.690	0.010	1.546	0.005	1.784	0.020	1.598	0.200	1.789		
I-Chlorohexane	0.002	0.674	0.050	0.565	0.010	0.604	0.005	0.655	0.020	0.558	0.200	0.677		
2,2-Dichloropropane	0.002	0.096	0.050	0.097	0.010	0.095	0.005	0.127	0.020	0.096	0.200	0,132		
2-Chlorotoluene	0.002	3.838	0.050	3,137	0.010	3.170	0.005	3.641	0.020	3.048	0.200	3.583		
4-Chlorotoluene	0.002	3.211	0.050	2.711	0.010	2.784	0.005	2.952	0.020	2.666	0.200	3.129		
Acetone	0.002	0.127	0.050	0,157	0.010	0.161	0.005	0.257	0,020	0.145	0.200	0.129	1	
Benzene	0.002	1.129	0.050	1.152	0.010	1.103	0.005	1.183	0.020	1.049	0.200	1,290		
Bromobenzene	0.002	1,080	0.050	0.977	0.010	0.919	0.005	1.053	0.020	0.947	0.200	1,006		
Bromochloromethane	0.002	0,035	0.050	0.028	0.010	0.030	0.005	0.027	0.020	0.026	0.200	0.030		
Bromodichloromethane	0.002	0.454	0.050	0.434	0.010	0.410	0.005	0.413	0.020	0.396	0.200	0.477		-
Bromomethane	0.002	0.454	0.050	0.025	0.010	0.019	0.005	0.021	0.020	0.023	0,200	0.030		
Carbon tetrachloride	0.002		0.050	0.323	0.010	0.295	0.005	0.252	0.020	0.307	0.200	0.396		
Chloroethane	0.002	0.261	0.050	0.235	0.010	0.223	0.005	0.215	0.020	0.210	0.200	0.237		
Cis-1,2-DCE	0.002	0.370	0.050	0.336	0.010	0.336	0.005	0.337	0.020	0.310	0.200	0.352		_
Cis-1,3-Dichloropropene	0.002	0.527	0.050	0,516	0.010	0.502	0.005	0.503	0.020	0.485	0.200	0.558		
Dibromochloromethane	0.002	0.497	0.050	0.472	0.010	0.487	0.005	0.445	0.020	0.446	0.200	0.486		
Dibromomethane	0.002	0.191	0.050	0.195	0.010	0.206	0.005	0.187	0.020	0.173	0.200	0.193		
Dichlorodifluoromethane	0.002	0.336	0.050	0.289	0.010	0.301	0.005	0.314	0.020	0.293	0.200	0.331		
Hexachlorobutadiene	0.002	0.894	0.050	0.743	0.010	0.748	0.005	0.419	0.020	0.717	0.200	0.849		
Isopropylbenzene	0.002	4.045	0.050	3.450	0.010	3.416	0.005	3.813	0.020	3.460	0.200	4.438		_
	0.002	0.809	0.050	0.659	0.010	0.688	0.005	0.744	0.020	0.645	0.200	0.754		-
n&p-Xylene	0.002	0.489	0.050	0.332	0.010	0.353	0.005	0.434	0.020	0.334	0.200	0.104		
Methylene chloride	0.002	0.736	0.050	0.847	0.010	0.333	0.005	0.696	0.020	0.755	0.200	0.798		
Methyl t-butyl ether (MTBE)	-		0.050	0.347	0.010	0.289	0.005	0.329	0.020	0.297	0.200	0.730		_
MEK (2-Butanone)	0.002	0.393	0.050	1.379	0.010	0.966	0.005	1.145	0.020	0.988	0.200	0.521		
MIBK (methyl isobutyl ketone)	0.002	1.187	0.050	2,906	0.010	3,022	0.005	3,573	0.020	2.880	0.200	3.573		_
n-Butylbenzene	0.002				0.010		0.005	5.288	0.020	4.621	0.200	5.542	-	_
n-Propylbenzene	0.002	5,208 1,638	0.050	4.763 1.452	0.010	4.667 1.427	0.005	1.372	0.020	1.520	0,200	1.594		
Naphthalene							0.005	0.705	0.020	0.649	0.200	0.721		-
o-Xylene	0.002	0.781	0.050	0.659	0.010	0.689					0.200	3,380		
o-Isopropyltoluene	0.002	3.785	0.050	2.904	0.010	3.017	0.005	3.564	0.020	2.876	-		-	-
Sec-Butylbenzene	0.002	4.411	0.050	3.922	0.010	3.804	0.005	4.468	0.020	3.812	0.200	4.607		-
Styrene	0.002	0.190	0.050	0.198	0.010	0.196	0.005	0.198	0.020	0.192	0.200	0,220		
rce	0.002	0.279	0.050	0,266	0.010	0.292	0.005	0.268	0.020	0.263	0.200	0.326	-	-
Fert-Butylbenzene	0.002	3.173	0.050	2.695	0.010	2.710	0.005	3.108	0.020	2.714	0,200	3.114		
Tetrachloroethene	0.002	0.333	0.050	0.298	0.010	0.318	0.005	0.343	0.020	0.288	0.200	0.363	-	_
Frans-1,2-DCE	0.002	0.351	0.050	0.293	0.010	0.272	0.005	0.312	0.020	0.272	0.200	0.307	-	_
Frans-1,3-Dichloropropene	0.002	0.478	0.050	0,468	0.010	0.483	0.005	0.436	0.020	0.401	0.200	0.468	-	-
Trichlorofluoromethane	0.002	0.075	0.050	0.061	0.010	0.057	0.005	0.065	0.020	0.060	0.200	0,068	-	
1,2-DCA-D4(S)	0.002	0,375	0.050	0.384	0.010	0,366	0.005	0.352	0.020	0.371	0.200	0.377	-	-
1-Bromofluorobenzene(S)	0.002	0.743	0.050	0.553	0.010	0.583	0.005	0.633	0.020	0.572	0.200	0.557		
Dibromofluoromethane(S)	0.002	0,362	0.050	0.352	0.010	0.336	0.005	0.336	0.020	0.323	0.200	0.335	-	-
Toluene-D8(S)	0.002	1,572	0.050	1.472	0.010	1.437	0.005	1.487	0.020	1.353	0.200	1.579		

Comments:			
The state of the s	 		

Analytical Method: METHOD 8260B	AAB #: 110413AC-154245
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Chico	Date of Initial Calibration: 12-Apr-11
Initial Calibration ID: C110412	Concentration Units (ug/L or mg/kg): ug/L

Analyte	% RSD	mean %RSD	r	COD	Q
1,1,1,2-Tetrachloroethane	4.4				
1,1,1-TCA	7.6				
1,1,2-TCA	6.0				
1,1-Dichloropropene	8.4				
1,2,3-Trichlorobenzene	18		1.0000		
1,2,3-Trichloropropane	18		0.9980		
1,2,4-Trichlorobenzene	15				
1,2,4-Trimethylbenzene	9.7				
1,2-DCA	7.1				
1,2-DCB	5.3	X			
,2-Dibromo-3-chloropropane	21		0.9990		-
1,2-EDB	7.4		-		
1,3,5-Trimethylbenzene	7.2				
1,3-DCB	6.7				
1,3-Dichloropropane	5.7		-		
1,4-DCB	5.1				
1-Chlorohexane	3.8				
2,2-Dichloropropane	14				
2-Chlorotoluene	8.2				
Benzene	11				
Bromobenzene	7.4				
Bromochloromethane	11	1 2 2			
Bromodichloromethane	7.1				
Bromomethane	15				
Carbon Tetrachloride	8.0				
Chloroethane	19		0.9990		
Cis-1,2-DCE	12				
Cis-1,3-Dichloropropene	6.2				
Dibromochloromethane	5.8				
Dibromomethane	4.3				
Dichlorodifluoromethane	7.3				1
Hexachlorobutadiene	9.9		5		
Isopropylbenzene	5.7				
m&p-Xylene	5.5				
Methylene chloride	24		0.9990		F. 5
n-Butylbenzene	11				
n-Propylbenzene	6.8				
Naphthalene	17		0.9990		0
o-Xylene	5.3	100	3200		
p-Isopropyltoluene	5.9		T		u = -
Sec-Butylbenzene	6.0				1. +
Styrene	5.7				
TCE	9.7	7		Production of	R The
Tert-Butylbenzene	4.9	1			
Tetrachloroethene	5.5				100
Trans-1,2-DCE	11				
Trans-1,3-Dichloropropene	8.7				C 4
Trichlorofluoromethane	4.8				
1,2-DCA-D4(S)	7.2				
4-Bromofluorobenzene(S)	11				
Dibromofluoromethane(S)	8.6				
Toluene-D8(S)	3.1				

Analytical Method: METHOD 8260B	AAB #: 110411 AN-154242
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Neo	Date of Initial Calibration: 8 Apr 11
Initial Calibration ID: N110407B	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	% RSD	mean %RSD	r	COD	Q
1,1,1,2-Tetrachloroethane	8.6	7011015			
1,1,1-TCA	8.0				
1,1,2-TCA	5.2				
1,1-Dichloropropene	7.7	-			
1,2,3-Trichlorobenzene	11				
1,2,3-Trichloropropane	18		0.9950		
1,2,4-Trichlorobenzene	18		0.9930		
1,2,4-Trimethylbenzene	8.6				
1,2,4-11mediyiberizene	5.8		-		_
1,2-DCB	-	-			_
1,2-Dibromo-3-chloropropane	6.1				
	7.5	-			
1,2-EDB	7.0			+	
1,3,5-Trimethylbenzene	8.6				
1,3-DCB	8.6				
1,3-Dichloropropane	4.5				
1,4-DCB	11				
1-Chlorohexane	8.7		2.0012		
2,2-Dichloropropane	16		0.9960		
2-Chlorotoluene	9.6				
4-Chlorotoluene	7.8				
Acetone	30		0.9970		
Benzene	7.1				
Bromobenzene	6.2	1			
Bromochloromethane	11				
Bromodichloromethane	7.1				
Bromomethane	18	1	0.9980		
Carbon tetrachloride	17		0.9980		
Chloroethane	8.1				
Cis-1,2-DCE	5.8				
Cis-1,3-Dichloropropene	5.0				
Dibromochloromethane	4.7				
Dibromomethane	5.7	7			
Dichlorodifluoromethane	6.3				
Hexachlorobutadiene	23		0.9990		
Isopropylbenzene	11				
m&p-Xylene	8.8				
Methylene chloride	18		1.0000		
Methyl t-butyl ether (MTBE)	6.8				
MEK (2-Butanone)	11			4	
MIBK (methyl isobutyl ketone)	15				
n-Butylbenzene	11				
n-Propylbenzene	7.6				
Naphthalene	6.8				
o-Xylene	6.8				
p-Isopropyltoluene	12	- L			
Sec-Butylbenzene	8.7	10	- 1		Level
Styrene	5.4				-
TCE	8.4				
Tert-Butylbenzene	8.0		1		
Tetrachloroethene	8.7	1			
Trans-1,2-DCE	9.8				
Trans-1,3-Dichloropropene	6.8				_
Trichlorofluoromethane	10				
1,2-DCA-D4(S)	3.0				
4-Bromofluorobenzene(S)	12				

Instrument ID: Neo				8 Apr 11		
tial Calibration ID	: N110407B		Concentra	tion Units	(ug/L or mg/kg):	mg/kg
	Analyte	% RSD	mean %RSD	r	COD	Q
	Dibromofluoromethane(S)	4.1				
	Toluene-D8(S)	5.7				

Analytical Method: METHOD 8260B	AAB #: 110413AC-154245
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Chico	Initial Calibration ID: C110412
2nd Source ID: 110412A LCS-1WC (SS)	Concentration Units (ug/L or mg/kg): ug/L

Analyte	Expected	Found	%D	Q
1,1,1,2-Tetrachloroethane	10.00	10.10	1.3	
1,1,1-TCA	10.00	10.20	2.3	
1,1,2,2-Tetrachloroethane	10.00	8.98	10	
1,1,2-TCA	10.00	10.60	5.6	
1,1-DCA	10.00	10.50	4.7	
1,1-DCE	10.00	10.20	2.2	
1,1-Dichloropropene	10.00	10.20	2.4	
1,2,3-Trichlorobenzene	10.00	10.20	2.5	
1,2,3-Trichloropropane	10.00	10.90	8.7	
1,2,4-Trichlorobenzene	10.00	9.79	2.1	
1,2,4-Trimethylbenzene	10.00	9.97	0.3	
1,2-DCA	10.00	11.00	10	
1,2-DCB	10.00	10.30	3.2	
1,2-Dibromo-3-chloropropane	10.00	9.22	7.8	
1,2-Dichloropropane	10.00	10.20	2.1	
1,2-EDB	10.00	10.40	3.8	
1,3,5-Trimethylbenzene	10.00	9.80	2.0	
1.3-DCB	10.00	9.97	0.3	
1,3-Dichloropropane	10.00	9.93	0.7	-
1.4-DCB	10.00	10.10	0.5	
1-Chlorohexane	10.00	10.40	3.7	
2,2-Dichloropropane	10.00	9.03	9.7	
2-Chlorotoluene	10.00	10.10	1.1	
Benzene	10.00	9.60	4.0	-
Bromobenzene	10.00	10.00	0.3	_
Bromochloromethane	10.00	10.80	8.2	
Bromodichloromethane	10.00	10.60	6.1	_
Bromoform	10.00	10.40	3.7	
Bromomethane	10.00	9.60	4.0	_
Carbon Tetrachloride	10.00	10.50	4.8	
Chlorobenzene	10.00	10.30	2.8	
Chloroethane	10.00	11.50	15	
Chloroform	10.00	10.00	0.4	
Chloromethane	10.00	10.70	6.8	
Cis-1,2-DCE	10.00	9.92	0.8	-
Cis-1,3-Dichloropropene	10.00	10.10	1.4	-
Dibromochloromethane			4.6	
Dibromocnioromethane Dibromomethane	10.00	10.50	2.8	
Dichlorodifluoromethane	10.00	10.30		
	10.00	10.60	5.8	
Ethylbenzene	10.00	10.40	3.9	
Hexachlorobutadiene	10.00	10.20	2.0	
sopropylbenzene	10.00	10.20	2.0	
n&p-Xylene	20.00	20.20	1.2	
Methylene chloride	10.00	10.70	6.5	
n-Butylbenzene	10.00	9.96	0.4	
n-Propylbenzene	10.00	10.00	0.5	
Naphthalene	10.00	10.00	0.0	

Analytical Method: METHOD 8260B	AAB #: 110413AC-154245
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Chico	Initial Calibration ID: C110412
2nd Source ID: 110412A LCS-1WC (SS)	Concentration Units (ug/L or mg/kg): ug/L

Analyte	Expected	Found	%D	Q
o-Xylene	10.00	10.00	0.4	
p-Isopropyltoluene	10.00	10.40	3.9	
Sec-Butylbenzene	10.00	10.30	3.0	
Styrene	10.00	10.70	6.5	
TCE	10.00	11.30	13	
Tert-Butylbenzene	10.00	10.20	2.3	
Tetrachloroethene	10.00	10.60	5.8	
Toluene	10.00	10.10	1.2	
Trans-1,2-DCE	10.00	9.86	1.4	
Trans-1,3-Dichloropropene	10.00	9.85	1.5	
Trichlorofluoromethane	10.00	10.70	7.5	
Vinyl chloride	10.00	10.50	4.7	

nments:		
	AFCEE FORM O-4 Page of	

Analytical Method: METHOD 8260B	AAB #: 110411AN-154242
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID: Neo	Initial Calibration ID: N110407B
2nd Source ID: 110411A LCS-1SN (SS)	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	Expected	Found	%D	Q
1,1,1,2-Tetrachloroethane	0.050	0.04	15	
1,1,1-TCA	0.050	0.06	14	
1,1,2,2-Tetrachloroethane	0.050	0.04	13	
1,1,2-TCA	0.050	0.06	17	
1,1-DCA	0.050	0.06	17	
1,1-DCE	0.050	0.06	11	
1,1-Dichloropropene	0.050	0.05	9.4	
1,2,3-Trichlorobenzene	0.050	0.05	6.6	
1,2,3-Trichloropropane	0.050	0.05	8.0	
1,2,4-Trichlorobenzene	0.050	0.05	6.4	
1,2,4-Trimethylbenzene	0.050	0.04	13	
1,2-DCA	0.050	0.06	13	
1,2-DCB	0.050	0.04	14	
1,2-Dibromo-3-chloropropane	0.050	0.04	11	
1,2-Dichloropropane	0.050	0.06	20	
1,2-EDB	0.050	0.04	12	
1,3,5-Trimethylbenzene	0.050	0.04	14	
1,3-DCB	0.050	0.04	15	
1,3-Dichloropropane	0.050	0.04	13	7
1,4-DCB	0.050	0.04	14	
1-Chlorohexane	0.050	0.04	12	-
2,2-Dichloropropane	0.050	0.05	1.3	_
2-Chlorotoluene	0.050	0.04	16	-
4-Chlorotoluene	0.050	0.04	17	
Acetone	0.050	0.06	19	-
Benzene	0.050	0.06	16	
Bromobenzene	0.050	0.04	19	
Bromochloromethane	0.050	0.04	20	
Bromodichloromethane	0.050	0.06	18	
Bromoform	0.050	0.04	11	
Bromomethane	0.050	0.04	19	
Carbon tetrachloride	0.050	0.05	4.2	-
Chlorobenzene	0.050	0.03	13	-
Chloroethane	0.050	0.04	2.6	
Chloroform	0.050	0.05	11	-
Chloromethane	0.050	0.06	16	_
Cis-1,2-DCE	0.050	0.06	13	_
Cis-1,3-Dichloropropene	0.050	0.06	19	
Dibromochloromethane	0.050	0.06	19	
Dibromomethane	0.050	0.06	18	-
Dichlorodifluoromethane	0.050	0.05		
Ethylbenzene	0.050	0.04	12	-
Hexachlorobutadiene	0.050	0.04	15	
Isopropylbenzene	0.050	0.04	13	
m&p-Xylene	0.100	80.0	16	
Methylene chloride	0.050	0.06	15	
Methyl t-butyl ether (MTBE)	0.050	0.06	18	

Analytical Method:	METHOD 8260B	AAB #: 110411AN-154242
Lab Name:	APPL, Inc.	Contract #: 2010*1286022*000
Instrument ID:	Neo	Initial Calibration ID: N110407B
2nd Source ID:	110411A LCS-1SN (SS)	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	Expected	Found	%D	Q
MEK (2-Butanone)	0.050	0.06	15	
MIBK (methyl isobutyl ketone)	0.050	0.05	2.5	
n-Butylbenzene	0.050	0.05	7.2	
n-Propylbenzene	0.050	0.04	12	
Naphthalene	0.050	0.05	2.2	
o-Xylene	0.050	0.04	13	
p-Isopropyltoluene	0.050	0.04	14	
Sec-Butylbenzene	0.050	0.04	17	
Styrene	0.050	0.05	5.2	
TCE	0.050	0.06	12	
Tert-Butylbenzene	0.050	0.04	18	
Tetrachloroethene	0.050	0.04	17	
Toluene	0.050	0.06	11	
Trans-1,2-DCE	0.050	0.05	7.3	
Trans-1,3-Dichloropropene	0.050	0.06	18	
Trichlorofluoromethane	0.050	0.05	7.1	
Vinyl chloride	0.050	0.06	17	
			1	

Analytical Method: METHOD 8260B		AAB#: 110413AC-154245
Lab Name: APPL, Inc.		Contract #: 2010*1286022*000
Instrument ID: Chico		Initial Calibration ID: C110412
ICV ID: 110413A LCS-1WC	CCV #1 ID:	CCV #2 ID:

Analyte	ICV %D or % drift	CCV#1 %D or % drift	CCV#2 %D or % drift	o
1,1,1,2-Tetrachloroethane	7.2			-
1,1,1-TCA	3.0			
1,1,2-TCA	3.4			
1,1-Dichloropropene	2.1			
1,2,3-Trichlorobenzene	11			
1,2,3-Trichloropropane	7.5			/
1,2,4-Trichlorobenzene	15			
1,2,4-Trimethylbenzene	3.7			
1,2-DCA	4.8			
1,2-DCB	7.6			
1,2-Dibromo-3-chloropropane	16			
1,2-EDB	12			
1,3,5-Trimethylbenzene	2.2			
1,3-DCB	6.9			
1,3-Dichloropropane	10			
1,4-DCB	5.1			
1-Chlorohexane	2.3			
2,2-Dichloropropane	6.9			
2-Chlorotoluene	3.3			
Benzene	9.3			
Bromobenzene	8.3			
Bromochloromethane	11			
Bromodichloromethane	3.1			
Bromomethane	15			
Carbon Tetrachloride	1.5			
Chloroethane	1.1			
Cis-1,2-DCE	8.8		3	
Cis-1,3-Dichloropropene	6.5			
Dibromochloromethane	1.1	12		
Dibromomethane	10			
Dichlorodifluoromethane	0.9			
Hexachlorobutadiene	4.3			1
Isopropylbenzene	1.0			
m&p-Xylene	6.5			
Methylene chloride	15		TT =	
n-Butylbenzene	2.2			
n-Propylbenzene	2.0			
Naphthalene	13			

Analytical Method: METHOD 8260B		AAB #: 110413AC-154245
Lab Name: APPL, Inc.		Contract #: 2010*1286022*000
Instrument ID: Chico		Initial Calibration ID: C110412
ICV ID: 110413A LCS-1WC	CCV #1 ID:	CCV #2 ID:

Analyte	ICV %D or % drift	CCV#1 %D or % drift	CCV#2 %D or % drift	0
o-Xylene	6.1	70D 01 70 dille	70D O1 78 dilit	Q
p-Isopropyltoluene	0.2			-
Sec-Butylbenzene	2.8			
Styrene	3.1			
TCE	2.7			
Tert-Butylbenzene	1.8			
Tetrachloroethene	5.2			
Trans-1,2-DCE	7.8			
Trans-1,3-Dichloropropene	14			
Trichlorofluoromethane	2.7			

mments:			

Analytical Method: METHOD 8260E		AAB #: 110411AN-154242		
Lab Name: APPL, Inc.		Contract #: 2010*1286022*000		
Instrument ID: Neo		Initial Calibration ID: N110407B		
ICV ID: 110411A LCS-1SN	CCV #1 ID:	CCV #2 ID:		

100	ICV	CCV#1	CCV#2	
Analyte	%D or % drift	%D or % drift	%D or % drift	Q
1,1,1,2-Tetrachloroethane	15			
1,1,1-TCA	14			
1,1,2-TCA	17			
1,1-Dichloropropene	9.4			
1,2,3-Trichlorobenzene	6.6			
1,2,3-Trichloropropane	8.0			
1,2,4-Trichlorobenzene	6.4			
1,2,4-Trimethylbenzene	13			
1,2-DCA	13			
1,2-DCB	14			
1,2-Dibromo-3-chloropropane	- 11			
1,2-EDB	12			
1,3,5-Trimethylbenzene	14			
1,3-DCB	15			-
1,3-Dichloropropane	13			_
1,4-DCB	14			
1-Chlorohexane	12			
2,2-Dichloropropane	1.3			
2-Chlorotoluene	16			
4-Chlorotoluene	17			
Acetone	0.1			
Benzene	16			_
Bromobenzene	19			
Bromochloromethane	20			
Bromodichloromethane	18			
Bromomethane	19			
Carbon tetrachloride	4.2			
Chloroethane	2.6			_
Cis-1,2-DCE	13			
Cis-1,3-Dichloropropene	19			
Dibromochloromethane	12			
Dibromomethane	18			
Dichlorodifluoromethane	1.4			
Hexachlorobutadiene	15			
sopropylbenzene	13			
n&p-Xylene	16			
Methylene chloride	15			_
Methyl t-butyl ether (MTBE)	18	-		
MEK (2-Butanone)	15			
MIBK (methyl isobutyl ketone)	2.5			
a-Butylbenzene	7.2			
n-Propylbenzene	12			
Naphthalene	2.2			

Instrument ID: Neo	 Initial Calibration ID: N110407B
Lab Name: APPL, Inc.	Contract #: 2010*1286022*000
Analytical Method: METHOD 8260B	 AAB #: 110411AN-154242

Analyte	ICV %D or % drift	CCV#1 %D or % drift	CCV#2 %D or % drift	Q
o-Xylene	13			
p-Isopropyltoluene	14			
Sec-Butylbenzene	17			
Styrene	5.2			
TCE	12			
Tert-Butylbenzene	18			
Tetrachloroethene	17			
Trans-1,2-DCE	7.3			
Trans-1,3-Dichloropropene	18			
Trichlorofluoromethane	7.1			

ents:		
		

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

lytical Method: METHOD 8260)B			- 1		110413AC-	
Lab Name: APPL, Inc.					Contract #:	2010*12860	22*000
Instrument ID: Chico				_ Initial Cali	bration ID:	C110412	
CV ID: 110413A LCS-1WC		CCV #1 ID:				CCV #2 ID:	
	IC	v I	CC	V #1	CC	EV #2	
Analyte	RF	% D	RF	% D	RF	% D	Q
Chloromethane *	0.115021	15.6024					
	1 2 2 2 2 2 2 2 2			1			

	IC	V	CCV #1		CCV #2			
Analyte	RF	% D	RF	% D	RF	%D	Q	
Chloromethane *	0.115021	15.6024						
1,1-DCA *	1.14414	4.68645	-					
Bromoform *	0.13889	9.81335						
Chlorobenzene *	2.66877	5.46677						
1,1,2,2-Tetrachloroethane *	0.719003	3.20963		7				
1,1-DCE #	0.980145	3.98553						
Chloroform#	1.22087	8.49419			1			
1,2-Dichloropropane #	0.51755	5.28435						
Toluene #	2.77179	1.78064						
Ethylbenzene #	4.68563	2.80066						
Vinyl chloride#	0.30584	4.53374						
	1							

^{*} SPCCs # CCCs

Comments:				
		AFCEE FORM	O-5A Page of	

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

ytical Method: METHOD 8260B				AAB #: 110411AN-154			
Lab Name: APPL, Inc. Instrument ID: Neo				Contract #: 2010*1286022*00			22*000
				_ Initial Cali			
V ID: 110411A LCS-1SN	C	CCV #1 ID: _				_CCV #2 ID:	
	IC			CV #1		CV #2	
Analyte	RF	% D	RF	% D	RF	% D	Q
Chloromethane *	0.949628	15.6088					
1,1-DCA *	0.732879	17.201		7			
Bromoform *	0.278357	10.9094					
Chlorobenzene *	0.981646	13.0499					
1,1,2,2-Tetrachloroethane *	0.972346	12.7349					
1,1-DCE #	0.557503	11.1173					
Chloroform#	0.623549	10.7201					
1,2-Dichloropropane#	0.314671	20.362					
Toluene #	0.746912	10.8813					
Ethylbenzene #	1.78067	12.4813					
V		3 2 3 3 3					

* SPCCs # CCCs

Commental		
Comments:		
	AFCEE FORM O-5A Page of	

Analytical Method: EPA 8260B

Initial Calibration ID: C110412

AAB #: 110413AC-154245

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110413A &-BLK-Iwc

p5-6-11

Analyte	Method Blank	RL	Q	
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U	
1,1,1-TCA	< RL	0.8	U	
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U	
1,1,2-TCA	< RL	1.0	U	
1,1-DCA	< RL	0.4	U	
1,1-DCE	< RL	1.2	U	
1,1-DICHLOROPROPENE	< RL	1.0	U	
1,2,3-TRICHLOROBENZENE	< RL	0.3	U	
1,2,3-TRICHLOROPROPANE	< RL	3.2	U	
1,2,4-TRICHLOROBENZENE	< RL	0.4	U	
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U	
1,2-DCA	< RL	0.6	U	
1,2-DCB	< RL	0.3	U	
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U	
1,2-DICHLOROPROPANE	< RL	0.4	U	
1,2-EDB	< RL	0.6	U	
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U	
1,3-DCB	< RL	1.2	U	
1,3-DICHLOROPROPANE	< RL	0.4	U	
1,4-DCB	< RL	0.3	U	
1-CHLOROHEXANE	< RL	0.5	U	
2,2-DICHLOROPROPANE	< RL	3.5	U	
2-CHLOROTOLUENE	< RL	0.4	U	
4-CHLOROTOLUENE	< RL	0.6	U	
BENZENE	< RL	0.4	U	
BROMOBENZENE	< RL	0.3	U	
BROMOCHLOROMETHANE	< RL	0.4	U	
BROMODICHLOROMETHANE	< RL	0.8	U	
BROMOFORM	< RL	1.2	U	
BROMOMETHANE	< RL	1.1	U	
CARBON TETRACHLORIDE	< RL	2.1	U	
CHLOROBENZENE	< RL	0.4	U	
CHLOROETHANE	< RL	1.0	U	
CHLOROFORM	< RL	0.3	U	
CHLOROMETHANE	< RL	1.3	U	
CIS-1,2-DCE	< RL	1.2	U	
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U	
DIBROMOCHLOROMETHANE	< RL	0.5	U	
DIBROMOMETHANE	< RL	2.4	U	
DICHLORODIFLUOROMETHANE	< RL	1.0	U	
ETHYLBENZENE	< RL	0.6	U	

Comments:

ARF: 64352, Sample: AY35295

Analytical Method: EPA 8260B

Initial Calibration ID: C110412

AAB #: 110413AC-154245

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110413A &-BLK-1WC

705-6-4

Analyte	Method Blank	RL	Q	
HEXACHLOROBUTADIENE	< RL	1.1	U	
ISOPROPYLBENZENE	< RL	0.5	U	
M&P-XYLENE	< RL	0.5	U	
METHYLENE CHLORIDE	< RL	1.0	U	
N-BUTYLBENZENE	< RL	1.1	U	
N-PROPYLBENZENE	< RL	0.4	U	
NAPHTHALENE	< RL	0.4	U	
O-XYLENE	< RL	1.1	U	
P-ISOPROPYLTOLUENE	< RL	1.2	U	
SEC-BUTYLBENZENE	< RL	1.3	U	
STYRENE	< RL	0.4	U	
TCE	< RL	1.0	IJ	
TERT-BUTYLBENZENE	< RL	1.4	U	
TETRACHLOROETHENE	< RL	1.4	U	
TOLUENE	< RL	1.1	IJ	
TRANS-1,2-DCE	< RL	0.6	U	
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U	
TRICHLOROFLUOROMETHANE	< RL	0.8	U	
VINYL CHLORIDE	< RL	1.1	U	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	103	69-139	
SURROGATE: 4-BROMOFLUOROBE	84.2	75-125	
SURROGATE: DIBROMOFLUOROME	98.8	75-125	
SURROGATE: TOLUENE-D8 (S)	90.2	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	The second
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64352, Sample: AY35295

Analytical Method: EPA 8260B AAB #: 110411AN-154242

Contract #: 2010*1286022*000 Lab Name: APPL, Inc

Method Blank ID: 110411AN-BLK-15N Concentration Units: mg/kg

Initial Calibration ID: N110407B

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1.3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	Ū
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64352, Sample: AY35298

Analytical Method: EPA 8260B AAB #: 110411AN-154242

Contract #: 2010*1 286022*000 Lab Name: APPL, Inc

Concentration Units: mg/kg Method Blank ID: 110411AN-BLK-15N

Initial Calibration ID: N110407B

VINYL CHLORIDE

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	L
METHYLENE CHLORIDE	< RL	0.005	U

< RL

0.009

M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	1.1

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	118	52-149	
SURROGATE: 4-BROMOFLUOROBE	93.5	65-135	
SURROGATE: DIBROMOFLUOROME	110	65-135	
SURROGATE: TOLUENE-D8 (S)	102	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64352, Sample: AY35298

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110411AN-154242

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110411AN/LCS-15 N P 6-6-N Concentration Units: mg/kg

Initial Calibration ID: N110407B

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0424	84.8	62-125	-
1,1,1-TCA	0.0500	0.0569	114	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0436	87.2	64-135	
1,1,2-TCA	0.0500	0.0587	117	65-135	
1,1-DCA	0.0500	0.0586	117	62-135	
1,1-DCE	0.0500	0.0556	111	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0547	109	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0467	93.4	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.046	92.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0494	98.8	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0434	86.8	65-135	
1,2-DCA	0.0500	0.0567	113	58-137	
1,2-DCB	0.0500	0.0428	85.6	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.045	90.0	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0602	120	60-135	
1,2-EDB	0.0500	0.0442	88.4	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0429	85.8	62-135	
1,3-DCB	0.0500	0.0427	85.4	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0436	87.2	65-135	
1,4-DCB	0.0500	0.0428	85.6	65-135	
1-CHLOROHEXANE	0.0500	0.0442	88.4	65-135	
2,2-DICHLOROPROPANE	0.050	0.051	102	65-135	
2-CHLOROTOLUENE	0.0500	0.0421	84.2	63-135	
4-CHLOROTOLUENE	0.0500	0.0417	83.4	64-135	
BENZENE	0.0500	0.0582	116	65-135	
BROMOBENZENE	0.0500	0.0405	81.0	65-135	
BROMOCHLOROMETHANE	0.0500	0.0600	120	63-135	
BROMODICHLOROMETHANE	0.0500	0.0588	118	65-135	_
BROMOFORM	0.0500	0.0445	89.0	65-135	
BROMOMETHANE	0.0500	0.0594	119	62-135	
CARBON TETRACHLORIDE	0.050	0.052	104	52-135	
CHLOROBENZENE	0.0500	0.0435	87.0	65-135	
CHLOROETHANE	0.0500	0.0487	97.4	55-135	
CHLOROFORM	0.0500	0.0554	111	64-135	
CHLOROMETHANE	0.0500	0.0578	116	65-135	
CIS-1,2-DCE	0.0500	0.0566	113	65-135	-
CIS-1,3-DICHLOROPROPENE	0.0500	0.0593	119	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0442	88.4	63-135	
DIBROMOMETHANE	0.050	0.059	118	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0507	101	65-135	

Comments:

ARF: 64352, QC Sample ID: AY35298

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110411AN-154242

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Initial Calibration ID: N110407B

LCS ID: 110411AN LCS - 15 N no 6-16-11 Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0438	87.6	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0427	85.4	65-135	
ISOPROPYLBENZENE	0.0500	0.0437	87.4	65-135	
M&P-XYLENE	0.1000	0.0843	84.3	65-135	-
METHYLENE CHLORIDE	0.0500	0.0575	115	65-135	1,77
N-BUTYLBENZENE	0.0500	0.0464	92.8	65-135	
N-PROPYLBENZENE	0.0500	0.0438	87.6	65-135	
NAPHTHALENE	0.0500	0.0511	102	65-135	
O-XYLENE	0.0500	0.0433	86.6	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0431	86.2	65-135	1
SEC-BUTYLBENZENE	0.0500	0.0413	82.6	65-135	
STYRENE	0.0500	0.0474	94.8	65-135	
TCE	0.0500	0.0562	112	61-135	
TERT-BUTYLBENZENE	0.0500	0.0412	82.4	65-135	
TETRACHLOROETHENE	0.0500	0.0415	83.0	61-135	
TOLUENE	0.0500	0.0554	111	64-135	
TRANS-1,2-DCE	0.0500	0.0537	107	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0591	118	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0536	107	57-135	
VINYL CHLORIDE	0.0500	0.0583	117	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	120	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	92.9	65-135	
SURROGATE: DIBROMOFLUOROMETH	117	65-135	
SURROGATE: TOLUENE-D8 (S)	97.8	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64352, QC Sample ID: AY35298

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B AAB #: 110413AC-154245

Contract #: 2010*1286022*000 Lab Name: APPL, Inc LCS ID: 110413AQ'LCS-1WC W 5-16-N Concentration Units: ug/L Initial Calibration ID: C110412

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	9.28	92.8	72-125	
1,1,1-TCA	10.00	9.70	97.0	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	9.68	96.8	74-125	
1,1,2-TCA	10.00	9.66	96.6	75-127	12 1
1,1-DCA	10.00	9.53	95.3	75-125	
1,1-DCE	10.00	9.60	96.0	75-125	
1,1-DICHLOROPROPENE	10.00	9.79	97.9	75-125	
1,2,3-TRICHLOROBENZENE	10.00	8.93	89.3	75-137	
1,2,3-TRICHLOROPROPANE	10.00	10.75	108	75-125	
1,2,4-TRICHLOROBENZENE	10.00	8.54	85.4	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	9.63	96.3	75-125	
1,2-DCA	10.00	9.52	95.2	68-127	
1,2-DCB	10.00	9.24	92.4	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	8.36	83.6	59-125	1
1,2-DICHLOROPROPANE	10.00	9.47	94.7	70-125	
1,2-EDB	10.00	8.83	88.3	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	9.78	97.8	72-125	
1,3-DCB	10.00	9.31	93.1	75-125	
1,3-DICHLOROPROPANE	10.00	9.00	90.0	75-125	
1,4-DCB	10.00	9.49	94.9	75-125	
1-CHLOROHEXANE	10.00	9.77	97.7	75-125	1
2,2-DICHLOROPROPANE	10.00	9.31	93.1	75-125	
2-CHLOROTOLUENE	10.00	9.67	96.7	73-125	1
4-CHLOROTOLUENE	10.00	9.94	99.4	74-125	
BENZENE	10.00	9.07	90.7	75-125	
BROMOBENZENE	10.00	9.17	91.7	75-125	
BROMOCHLOROMETHANE	10.00	8.88	88.8	73-125	1
BROMODICHLOROMETHANE	10.00	9.69	96.9	75-125	
BROMOFORM	10.00	9.02	90.2	75-125	
BROMOMETHANE	10.00	8.53	85.3	72-125	71 1
CARBON TETRACHLORIDE	10.00	10.15	102	62-125	
CHLOROBENZENE	10.00	9.45	94.5	75-125	
CHLOROETHANE	10.00	10.11	101	65-125	
CHLOROFORM	10.00	9.15	91.5	74-125	
CHLOROMETHANE	10.00	8.44	84.4	75-125	
CIS-1,2-DCE	10.00	9.12	91.2	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.35	93.5	74-125	
DIBROMOCHLOROMETHANE	10.00	8.86	88.6	73-125	
DIBROMOMETHANE	10.00	8.95	89.5	69-127	
DICHLORODIFLUOROMETHANE	10.00	9.91	99.1	72-125	

Comments:

ARF: 64352, QC Sample ID: AY35295

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110413AC-154245

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110413A LCS - 1 W C W 5 - 6 - 11 Concentration Units: ug/L

Initial Calibration ID: C110412

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	9.72	97.2	75-125	_
HEXACHLOROBUTADIENE	10.00	9.57	95.7	75-125	
ISOPROPYLBENZENE	10.00	10.10	101	75-125	
M&P-XYLENE	20.00	18.69	93.5	75-125	
METHYLENE CHLORIDE	10.00	8.47	84.7	75-125	
N-BUTYLBENZENE	10.00	9.78	97.8	75-125	
N-PROPYLBENZENE	10.00	10.20	102	75-125	
NAPHTHALENE	10.00	8.72	87.2	75-125	
O-XYLENE	10.00	9.39	93.9	75-125	
P-ISOPROPYLTOLUENE	10.00	10.02	100	75-125	
SEC-BUTYLBENZENE	10.00	10.28	103	75-125	
STYRENE	10.00	9.69	96.9	75-125	
TCE	10.00	9.73	97.3	71-125	
TERT-BUTYLBENZENE	10.00	10.18	102	75-125	
TETRACHLOROETHENE	10.00	9.48	94.8	71-125	
TOLUENE	10.00	9.82	98.2	74-125	
TRANS-1,2-DCE	10.00	9.22	92.2	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	8.62	86.2	66-125	
TRICHLOROFLUOROMETHANE	10.00	10.27	103	67-125	
VINYL CHLORIDE	10.00	9.55	95.5	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	104	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	86.7	75-125	
SURROGATE: DIBROMOFLUOROMETH	102	75-125	
SURROGATE: TOLUENE-D8 (S)	94.2	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64352, QC Sample ID: AY35295

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Initial Calibration ID: N110407B Analytical Method: EPA 8260B

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: mg/kg

% Solids: 77.1 A-Ay 01 MS ID: 110411,35298S,MS-1NS MSD ID: 110411,35298S,MSD-1 NS Parent Field Sample ID: ACC65-SIW-01(0.6-0.8)

	-		1990				16 2-8-11			
Analyte			Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RP D	Control Limits % R	Control Limits % RPD	Q
1,1,1,2-TETRACHLOROETHANE		0.0642	0.0307	47.8	0.0273	42.5	11.7	62-125	30	M
1,1,1-TCA		0.0642		81.3			33.6		30	M
1,1,2,2-TETRACHLOROETHANE		0.0642		50.3		51.4	2.1	64-135	30	
1,1,2-TCA		0.0642	0.0476	74.1	0.0400	62.3	17.4		30	M
1,1-DCA		0.0642	0.0536	83.5			5.8		30	4112
1,1-DCE		0.0642	0.0583	90.8			8.4		30	
1,1-DICHLOROPROPENE		0.0642	0.0487	75.9			21.1		30	M
1,2,3-TRICHLOROBENZENE		0.0642	0.0129	20.1	0.0001	0.2	196.9		30	M
1,2,3-TRICHLOROPROPANE		0.065	0.031	47.7		55.4	14.9		30	M
1,2,4-TRICHLOROBENZENE		0.0642		22.4		6.5	109.7	65-145	30	M
1,2,4-TRIMETHYLBENZENE		0.0642	0.0219	34.1	0.0107	16.7	68.7	65-135	30	M
1,2-DCA		0.0642	0.0556	86.6		88.5	2.1	58-137	30	
1,2-DCB		0.0642	0.0189	29.4		14.2	70.0	65-135	30	M
1,2-DIBROMO-3-CHLOROPROPAN		0.065	0.032	49.2		41.5	16.9	49-135	30	M
1,2-DICHLOROPROPANE		0.0642	0.0542	84.4		76.8	9.5	60-135	30	
1,2-EDB		0.0642	0.0378	58.9			183.8	65-135	30	M
1,3,5-TRIMETHYLBENZENE		0.0642	0.0226	35.2			70.7	62-135	30	M
1,3-DCB		0.0642		29.0			60.1	65-135	30	M
1,3-DICHLOROPROPANE		0.0642		58.6			54.5	65-135	30	M
1,4-DCB		0.0642	0.0198	30.8			62.3	65-135	30	M
1-CHLOROHEXANE		0.0642	0.0260	40.5			88.9	65-135	30	M
2,2-DICHLOROPROPANE		0.065	0.042	64.6		16.9	117.0	65-135	30	M
2-CHLOROTOLUENE		0.0642	0.0209	32.6	-	18.5	54.9	63-135	30	M
4-CHLOROTOLUENE		0.0642	0.0223	34.7			46.4	64-135	30	M
BENZENE		0.0642	0.0539	84.0		68.2	20.7	65-135	30	
BROMOBENZENE		0.0642	0.0229	35.7	0.0180	28.0	24.0	65-135	30	M
BROMOCHLOROMETHANE		0.0642	0.0547	85.2		65.6	26.0	63-135	30	
BROMODICHLOROMETHANE		0.0642		81.9		49.1	50.2	65-135	30	M
BROMOFORM		0.0642		52.3		34.6	40.9	65-135	30	M
BROMOMETHANE		0.0642	0.0507	79.0			111.5	62-135	30	M
CARBON TETRACHLORIDE		0.065	0.044	67.7			114.3	52-135	30	M
CHLOROBENZENE		0.0642	0.0287	44.7			19.9	65-135	30	M
CHLOROETHANE		0.0642	0.0590	91.9			47.6	55-135	30	M
CHLOROFORM		0.0642	0.0497	77.4			5.8	64-135	30	-,,2
CHLOROMETHANE		0.0642		80.1	0.0198		88.8	65-135	30	M
CIS-1,2-DCE		0.0642		86.9			12.6	65-135	30	-,4
CIS-1,3-DICHLOROPROPENE		0.0642		77.9			148.4	64-135	30	M

Comments:

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8260B

Initial Calibration ID: N110407B

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

% Solids: 77.1

Parent Field Sample ID: ACC65-SIW-01(0.6-0.8)

MS ID: 110411,352985,MS-1NS

MSD ID: 110411,35298S,MSD-1NS

	14 2-9-11								p 5-6-11		
Analyte	Parent Sample Result			% R	Duplicate Spiked Sample Result	% R	%RP D	Control Limits % R	Control Limits % RPD	Q	
DIBROMOCHLOROMETHANE		0.0642	0.0359	55.9	0.0167	26.0	73.0	63-135	30	M	
DIBROMOMETHANE		0.065	0.055	84.6	0.030	46.2	58.8	59-137	30	-	
DICHLORODIFLUOROMETHANE	1	0.0642	0.0647	101	0.0183	28.5	111.8	65-135	30		
ETHYLBENZENE	11 1	0.0642	0.0313	48.8	0.0219	34.1	35.3	65-135	30	M	
HEXACHLOROBUTADIENE		0.0642	0.0150	23.4	0.0063	9.8	81.7	65-135	30	M	
ISOPROPYLBENZENE		0.0642	0.0244	38.0	0.0130	20.2	61.0	65-135	30	M	
M&P-XYLENE		0.0642	0.0550	85.7	0.0397	61.8	32.3	65-135	30	M	
METHYLENE CHLORIDE		0.0642	0.0530	82.6	0.0520	81.0	1.9	65-135	30	- 114	
N-BUTYLBENZENE		0.0642	0.0179	27.9	0.0058	9.0	102.1	65-135	30	M	
N-PROPYLBENZENE		0.0642	0.0220	34.3	0.0105	16.4	70.8	65-135	30	M	
NAPHTHALENE		0.0642	0.0193	30.1	0.0098	15.3	65.3	65-135	30	M	
O-XYLENE		0.0642	0.0281	43.8	0.0208	32.4	29.9	65-135	30	M	
P-ISOPROPYLTOLUENE		0.0642	0.0186	29.0	0.0061	9.5	101.2	65-135	30	M	
SEC-BUTYLBENZENE		0.0642	0.0193	30.1	0.0064	10.0	100.4	65-135	30	M	
STYRENE		0.0642	0.0317	49.4	0.0247	38.5	24.8	65-135	30	M	
TCE		0.0642	0.0508	79.1	0.0425	66.2	17.8	61-135	30		
TERT-BUTYLBENZENE		0.0642	0.0207	32.2	0.0080	12.5	88.5	65-135	30	M	
TETRACHLOROETHENE	0.0107	0.0642	0.0339	36.1	0.0209	15.9	47.4	61-135	30	M	
TOLUENE	0.0013	0.0642	0.0436	65.9	0.0396	59.7	9.6	64-135	30	M	
TRANS-1,2-DCE		0.0642	0.0505	78.7	0.0465	72.4	8.2	65-135	30		
TRANS-1,3-DICHLOROPROPENE		0.0642	0.0502	78.2	0.0055	8.6	160.5	56-135	30	M	
TRICHLOROFLUOROMETHANE		0.0642	0.0647	101	0.0186	29.0	110.7	57-135	30	M	
VINYL CHLORIDE		0.0642	0.0723	113	0.0218	34.0	107.3	36-144	30	M	

Analyte	Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RP D	Control Limits % R	Control Limits % RPD	Q
SURROGATE: 1,2-DICHLOROETHA	0.046	0.058	126	0.052	113		52-149		
SURROGATE: 4-BROMOFLUOROB	0.042	0.040	95.2	0.041	97.6	7	65-135		
SURROGATE: DIBROMOFLUORO	0.047	0.059	126	0.051	109		65-135		
SURROGATE: TOLUENE-D8 (S)	0.045	0.046	102	0.046	102		65-135		

Comments:		

AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8260B

AAB#: 110411AN-154242

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID	Date Collected	Date Received	Date Extracted	Max. Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
ACC65-SIW-01(0-0.6)	06-Apr-11	08-Apr-11	11-Apr-11			11-Apr-11	14	5	
ACC65-SIW-01(0-0.6) F	06-Apr-11	08-Apr-11	11-Apr-11			11-Apr-11	14	5	
ACC65-SIW-01(0.6-0.8)	06-Apr-11	08-Apr-11	11-Apr-11			11-Apr-11	14	5	
ACC65-SIW-01(23.5-24	06-Apr-11	08-Apr-11	11-Apr-11			11-Apr-11	14	5	
ACC65-SIW-01(8-8.5)	06-Apr-11	08-Apr-11	11-Apr-11			11-Apr-11	14	5	

Comments:

ARF: 64352

AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8260B

AAB#: 110413AC-154245

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID	Date Collected	Date Received		Holding	Date	Max. Holding Time A	Time Held Anal.	Q
TB-1	06-Apr-11	08-Apr-11	13-Apr-11		13-Apr-11	14	7	

Comments:

ARF: 64352

AFCEE ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: METHOD 8260B

Lab Name: APPL, Inc. Contract #: 2010*1286022*000

Instrument ID #: Chico ICAL ID: C110412

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
20ug/ml BFB STD 03-11-11A	12-Apr-11	10:41	12-Apr-11	10:53
Vol Std 04-12-11@0.3ug/L	12-Apr-11	13:00	12-Apr-11	13:28
Vol Std 04-12-11@0.5ug/L	12-Apr-11	13:35	12-Apr-11	14:04
Vol Std 04-12-11@1.0ug/L	12-Apr-11	14:10	12-Apr-11	14:39
Vol Std 04-1211@2.0ug/L	12-Apr-11	14:46	12-Apr-11	15:14
Vol Std 04-12-11@5.0ug/L	12-Apr-11	15:21	12-Apr-11	15:49
Vol Std 04-12-11@10ug/L	12-Apr-11	15:56	12-Apr-11	16:24
Vol Std 04-12-11@20ug/L	12-Apr-11	16:31	12-Apr-11	16:59
Vol Std 04-12-11@40ug/L	12-Apr-11	17:06	12-Apr-11	17:35
Vol Std 04-1211@100ug/L	12-Apr-11	17:42	12-Apr-11	18:10
20ug/ml BFB STD 03-11-11A	12-Apr-11	19:27	12-Apr-11	19:55
110412A LCS-1WC(SS)	12-Apr-11	20:38	12-Apr-11	21:07
20ug/ml BFB STD 03-11-11A	13-Apr-11	10:59	13-Apr-11	11:27
110413A LCS-1WC	13-Apr-11	13:55	13-Apr-11	14:23
110413A BLK-1WC	13-Apr-11	15:40	13-Apr-11	16:08
AY35295W01	13-Apr-11	16:14	13-Apr-11	16:43

Comments:			

Injection Log

Directory: W.\Chico\DATA\CTT04T	Directory:	M:\CHICO\DATA\C110412
---------------------------------	------------	-----------------------

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0412C00T.D	1	20ug/ml BFB STD 03-11-11A	2uL	12 Apr 11 10:41
2	1	0412C04W.D	1	Vol Std 04-12-11@0.3ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 13:00
3	1	0412C05W.D	1	Vol Std 04-12-11@0.5ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 13:35
4	1	0412C06W.D	1	Vol Std 04-12-11@1.0ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 14:10
5	1	0412C07W.D	1	Vol Std 04-1211@2.0ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 14:46
6	1	0412C08W.D	1	Vol Std 04-12-11@5.0ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 15:21
7	1	0412C09W.D	1	Vol Std 04-12-11@10ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 15:56
8	1	0412C10W.D	1	Vol Std 04-12-11@20ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 16:31
9	1	0412C11W.D	1	Vol Std 04-12-11@40ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 17:06
10	1	0412C12W.D	1	Vol Std 04-1211@100ug/L	Water 10ml w/IS: 04-12-11	12 Apr 11 17:42
11	1	0412C15W.D	1	20ug/ml BFB STD 03-11-11A	Water 10ml w/IS&S: 04-12-11	12 Apr 11 19:27
12	1	0412C17W.D	1	110412A LCS-1WC(SS)	Water 10ml w/IS&S: 04-12-11	12 Apr 11 20:38
13	1	0413C00T.D	1	20ug/ml BFB STD 03-11-11A	2uL	13 Apr 11 10:59
14	1	0413C05W.D	1	110413A LCS-1WC	Water 10ml w/IS&S: 04-12-11	13 Apr 11 13:55
15	1	0413C07W.D	1	110413A BLK-1WC	Water 10ml w/IS&S: 04-12-11	13 Apr 11 15:40
16	1	0413C08W.D	1	AY35295W01	Water 10ml w/IS&S: 04-12-11	13 Apr 11 16:14

Pagg 1 5/4/11

AFCEE ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: METHOD 8260B

Lab Name: APPL, Inc.

Contract #: 2010*1286022*000

Instrument ID #: Neo

ICAL ID: <u>N110407B</u>

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
20ug/ml BFB Std 03-21-11A	7-Apr-11	22:38	7-Apr-11	22:49
Vol Std 04-07-11@2.0ug/kg	8-Apr-11	00:52	8-Apr-11	1:24
Vol Std 04-07-11@5.0ug/kg	8-Apr-11	1:30	8-Apr-11	2:02
Vol Std 04-07-11@10ug/kg	8-Apr-11	2:08	8-Apr-11	2:40
Vol Std 04-07-11@20ug/kg	8-Apr-11	2:47	8-Apr-11	3:18
Vol Std 04-07-11@50ug/kg	8-Apr-11	3:25	8-Apr-11	3:56
Vol Std 04-07-11@200ug/kg	8-Apr-11	4:41	8-Apr-11	5:13
20ug/ml BFB Std 03-21-11A	11-Apr-11	10:08	11-Apr-11	10:18
110411A LCS-1SN (SS)	11-Apr-11	12:23	11-Apr-11	12:55
110411A BLK-1SN	11-Apr-11	13:38	11-Apr-11	14:10
AY35296S01 5.050	11-Apr-11	15:31	11-Apr-11	16:03
AY35298S01 5.032	11-Apr-11	16:47	11-Apr-11	17:19
AY35299S01 5.018	11-Apr-11	17:25	11-Apr-11	17:57
AY35300S01 5.031	11-Apr-11	18:03	11-Apr-11	18:34
AY35298S01 MS-1NS	11-Apr-11	18:41	11-Apr-11	19:12
AY35298S01 MSD-1NS	11-Apr-11	19:18	11-Apr-11	19:50
AY35297S01 5.038	11-Apr-11	21:51	11-Apr-11	22:22

Comments:		

Injection Log

Directory: M:\NEO\DATA\N110407B\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0407N00T.D	1	20ug/ml BFB Std 03-21-11A	2ul	7 Apr 11 22:38
2	1	0407N04S.D	1	Vol Std 04-07-11@2.0ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 00:52
3	1	0407N05S.D	1	Vol Std 04-07-11@5.0ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 1:30
4	1	0407N06S.D	1	Vol Std 04-07-11@10ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 2:08
5	1	0407N07S.D	1	Vol Std 04-07-11@20ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 2:47
6	1	0407N08S.D	1	Vol Std 04-07-11@50ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 3:25
7	1	0407N10S.D	1	Vol Std 04-07-11@200ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11 4:41
8	1	0411N00T.D	1	20ug/ml BFB Std 03-21-11A	2ul	11 Apr 11 10:08
9	1	0411N04S.D	1	110411A LCS-1SN (SS)	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 12:23
10	1	0411N05S.D	1	110411A BLK-1SN	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 13:38
11	1	0411N07S.D	0.990099	AY35296S01 5.050	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 15:31
12	1	0411N09S.D	0.993641	AY35298S01 5.032	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 16:47
13	1	0411N10S.D	0.996413	AY35299S01 5.018	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 17:25
14	1	0411N11S.D	0.993838	AY35300S01 5.031	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 18:03
15	1	0411N12S.D	0.99226	AY35298S01 MS-1NS	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 18:41
16	1	0411N13S.D	0.993641	AY35298S01 MSD-1NS	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 19:18
17	1	0411N17S.D	0.992457	AY35297S01 5.038	Soil 5mL w/IS&S: 04-07-11	11 Apr 11 21:51

Pa₆₁ 1 5/4/11

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B	- 5.		
Lab Name: APPL, Inc.	Contract #: 2010*1	286022*000	
Instrument ID: Chico	Compound: BFB	Injection Date/Time:	12-Apr-11 10:41
Initial Calibration ID: C110412	_		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	14.9 - 40% of mass 95	18.2	PASS
75	30 - 60% of mass 95	46.8	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	7.3	PASS
173	0 - 2% of mass 174	0.0	PASS
174	50 - 100% of mass 95	98.4	PASS
175	5 - 9% of mass 174	7.5	PASS
176	95 - 101% of mass 174	98.7	PASS
177	5 - 9% of mass 176	7.1	PASS

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method:	METHOD 8260B	<u>-</u> /-		
Lab Name:	APPL, Inc.	Contract #:	2010*1286022*000	
Instrument ID:	Chico	Compound: BFB	Injection Date/Time:	12-Apr-11 19:27
sitial Calibration ID:	G110412		0 4 1 2 2 2 2 2 2	

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	14.9 - 40% of mass 95	17.0	PASS
75	30 - 60% of mass 95	44.0	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.7	PASS
173	0 - 2% of mass 174	0.3	PASS
174	50 - 100% of mass 95	97.7	PASS
175	5 - 9% of mass 174	7.0	PASS
176	95 - 101% of mass 174	98.4	PASS
177	5 - 9% of mass 176	6.6	PASS
		17	

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B	_		
Lab Name: APPL, Inc.	Contract #: 2010*	1286022*000	
Instrument ID: Chico	Compound: BFB	Injection Date/Time:	13-Apr-11 10:59
Initial Calibration ID: C110412			

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	14.9 - 40% of mass 95	17.1	PASS
75	30 - 60% of mass 95	42.5	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.8	PASS
173	0 - 2% of mass 174	0.2	PASS
174	50 - 100% of mass 95	96.9	PASS
175	5 - 9% of mass 174	6.8	PASS
176	95 - 101% of mass 174	98.5	PASS
177	5 - 9% of mass 176	7.1	PASS
		4.1	

AFCEE ORGANIC ANALYSES DATA SHEET II INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B	-		
Lab Name: APPL, Inc.	Contract #:	2010*1286022*000	
Instrument ID: Neo	Compound: BFB	Injection Date/Time:	7 Apr 11 22:38
Initial Calibration ID: N110407B			

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	23.9	PASS
75	30 - 60% of mass 95	47.8	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	7.0	PASS
173	0 - 2% of mass 174	0.3	PASS
174	50 - 100% of mass 95	84.5	PASS
175	5 - 9% of mass 174	7.1	PASS
176	95 - 101% of mass 174	96.1	PASS
177	5 - 9% of mass 176	6.5	PASS

AFCEE ORGANIC ANALYSES DATA SHEET II INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B	_		
Lab Name: APPL, Inc.	Contract #:	2010*1286022*000	
Instrument ID: Neo	Compound: BFB	Injection Date/Time:	11-Apr-11 10:08
Initial Calibration ID: N110407B	<u>.</u>		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	23.5	PASS
75	30 - 60% of mass 95	46.3	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	5.4	PASS
173	0 - 2% of mass 174	0.6	PASS
174	50 - 100% of mass 95	75.7	PASS
175	5 - 9% of mass 174	6.9	PASS
176	95 - 101% of mass 174	98.9	PASS
177	5 - 9% of mass 176	6.5	PASS

Form 5 Tune Summary

 Lab Name: APPL Inc.
 SDG No: 64352

 Case No: 64352
 Date Analyzed: 4/13/11

 Matrix: Water
 Instrument: Chico

 ID: 20ug/ml BFB STD 03-11-11A
 Time Analyzed: 10:59

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1 Lab Control Spike	110413A LCS-1WC	0413C05W.D	4/13/11 13:55
2 Blank	110413A BLK-1WC	0413C07W.D	4/13/11 15:40
3 TB-1	AY35295W01	0413C08W.D	4/13/11 16:14
4			
5			
6			
7			
8			
9			
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
0			
21			
2			

m/e	
50 14.9 - 40% of mass 95	17.1
75 30 - 60% of mass 95	42.5
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.8
173 0 - 2% of mass 174	0.2
174 50 - 100% of mass 95	96.9
175 5 - 9% of mass 174	6.8
176 95 - 101% of mass 174	98.5
177 5 - 9% of mass 176	7.1

Form 5 Tune Summary

 Lab Name: APPL Inc.
 SDG No: 64352

 Case No: 64352
 Date Analyzed: 4/11/11

Matrix: Soil Instrument: Neo

ID: 20ug/ml BFB Std 03-21-11A Time Analyzed: 10:08

	Client Sample No.	APPL ID.	File ID.	Date Analyzed
1	Lab Control Spike	110411A LCS-1SN (SS)	0411N04S.D	4/11/11 12:23
2	Blank	110411A BLK-1SN	0411N05S.D	4/11/11 13:38
3	ACC65-SIW-01(0-0.6)	AY35296S01 5.050	0411N07S.D	4/11/11 15:31
4	ACC65-SIW-01(0.6-0.8)	AY35298S01 5.032	0411N09S.D	4/11/11 16:47
5	ACC65-SIW-01(8-8.5)	AY35299S01 5.018	0411N10S.D	4/11/11 17:25
6	ACC65-SIW-01(23.5-24)	AY35300S01 5.031	0411N11S.D	4/11/11 18:03
7		AY35298S01 MS-1NS	0411N12S.D	4/11/11 18:41
8		AY35298S01 MSD-1NS	0411N13S.D	4/11/11 19:18
9	ACC65-SIW-01(0-0.6) FD	AY35297S01 5.038	0411N17S.D	4/11/11 21:51
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				

m/e	
50 15 - 40% of mass 95	23.5
75 30 - 60% of mass 95	46.3
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	5.4
173 0 - 2% of mass 174	0.6
174 50 - 100% of mass 95	75.7
175 5 - 9% of mass 174	6.9
176 95 - 101% of mass 174	98.9
177 5 - 9% of mass 176	6.5

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: Review	
Lab Code:		SDG No.:	64352
Lab File ID (Standard): 0412C09W.D		Date Analyzed: _	04/12/11
Instrument ID: Chico		Time Analyzed:	15:56
GC Column:	ID:	Heated Purge: (Y/N)	

FI	uorobenzene (IS)	Chloro	benzene-D5 (I	S) 1,4-Dich	lorobenzene-D	(IS)
	AREA #	RT #	AREA #	RT #	AREA #	RT
12 HOUR STD	390464	12.90	263424	18.09	147840	22.28
UPPER LIMIT	780928	13.40	526848	18.59	295680	22.78
LOWER LIMIT	195232	12.40	131712	17.59	73920	21.78
SAMPLE						
NO.				7		
110413A LCS-1WC	406144	12.87	288448	18.06	156032	22.26
110413A BLK-1WC	417472	12.87	291328	18.06	147200	22.26
AY35295W01	381696	12.87	265984	18.06	145408	22.26
					7.6.60	
			=========			
	2.5					
				200		

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.	Contract: Review		Review	
Lab Code:		SDG No.:	643	52
Lab File ID (Standard): 0407N08S.D		Date Analyzed:	8 Apr 11	3:25
Instrument ID: Neo		Time Analyzed:	8 Apr 11	3:25
GC Column:	ID:	Heated Purge: (Y/N)		

Flu	orobenzene(IS)	Chlore	obenzene-D5(I	S) 1,4-Dich	lorobenzene-l	D(IS)
	AREA #	RT #	AREA #	RT #	AREA #	
12 HOUR STD	500830	13.32	341280	18.49	161414	22.69
UPPER LIMIT	1001660	13.82	682560	18.99	322828	23.19
LOWER LIMIT	250415	12.82	170640	17.99	80707	22.19
SAMPLE						
NO.						
110411A LCS-1SN (SS)	365261	13.25	320197	18.44	154047	22.64
110411A BLK-1SN	373094	13.27	294746	18.44	134677	22.65
AY35296S01 5.050	316320	13.28	239562	18.45	98523	22.65
AY35298S01 5.032	289545	13.27	209586	18.46	82230	22.66
AY35299S01 5.018	357031	13.28	292145	18.45	141793	22.64
AY35300S01 5.031	340501	13.28	278384	18.46	130943	22.65
AY35298S01 MS-1NS	350511	13.28	297644	18.45	148371	22.65
AY35298S01 MSD-1NS	351894	13.31	304091	18.46	143781	22.65
AY35297S01 5.038	461783	13.27	383116	18.46	160378	22.66
- I I						
		3			i	
				4.1		

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Laboratory Report

*33

Parsons

CSSA

Project #: 747781.04000 CSSA

ARF: 64353

Sample collected: April 7, 2011

APPL, Inc.

EPA METHOD 8260B Volatile Organic Compounds

Data Validation Package for

EPA METHOD 8260B Volatile Organic Compounds

TABLE OF CONTENTS

LABORATORY NAME: APPL, Inc.

Case Narrative	<u> </u>
Chain of Custody and ARF	\mathcal{L}
QC Summary	15
Sample Data	22
Calibration Data	25
Raw Data	31

EPA METHOD 8260B Volatile Organic Compounds Case Narrative

Volatile Organic Compounds EPA Method 8260B

Case Narrative

ARF:

64353

Project: 747781.04000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)
Texas Certificate Number: T104704242-10-3

Results in this report apply to the sample analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The sample was received April 8, 2011, at 3.0°C. The sample was assigned Analytical Request Form (ARF) number 64353. The sample numbers and requested analysis were compared to the chain of custody. No exception was noted.

Sample Table

	CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
1	MW36-WC-02	AY35294	SOIL	04/07/11	04/08/11

Sample Preparation:

The sample was purged according to EPA method 5035. All holding times were met.

Sample Analysis Information:

The sample was analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

Quality Control/Assurance

Spike Recovery

A Laboratory Control Spike (LCS) was used for quality assurance. A second-source standard was used for the LCS. All LCS criteria were met.

No sample was designated by the client for MS/MSD analysis.

Surrogates

Surrogate recoveries are summarized on the form 2 & 8. All surrogate recoveries met acceptance criteria.

Method blanks

No target analyte were detected above the reporting limits in the method blank.

Calibration

Initial and continuing calibrations were analyzed according to the method. All calibration criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D., Laboratory Director / Date

EPA METHOD 8260B
Volatile Organic Compounds
Chain of Custody and ARF

Client:	Parsons	Received by: TBV	. 1001/0 03311 0/000 11/0/01/00 13/1 100
Address:	8000 Centre Park Drive Ste 200	Date Received: 04/08/11	Time:10:10
	Austin, TX 78754	Delivered by: FED EX	
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N):	Υ
Phone: 5	512-719-6092 Fax: 512-719-6099	Chest Temp(s): 3.0°C	
Job: 7477	781.04000 CSSA	Color: VOA	
PO #: 7	47780.30002	Samples Chilled until Placed in	Refrig/Freezer: Y
Chain of (Custody (Y/N): Y # 040711APPFB	Project Manager: Diane And	
RAD Scre	een (Y/N): Y pH (Y/N): N	QC Report Type: DVP3/AFC	EE/ERPIMS/TX V
Turn Arou	and Type: 3 DAYS		1/11/11

Comments:

pdf ARF to Tammy & Pam; send 2 DVP3 to Tammy

Data screening project: analyze samples ONCE; report deficiencies; do NOT re-analyze.

Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested. √ √

Use AFCEE forms with AFCEE flagging to report sample & QC data only. √ 🛒

APPL forms for everything else and APPL DVP3. J J EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

1. MW36-WC-02	5	AY35294S	04/07/11 07:25	\$826AW		
Client ID		APPL ID	Sampled	Analyses	Requested	
					Attn: Ellen Felfe	
-					8000 Centre Park Drive Ste 200 Austin, TX 78754-5140	
/OA: 1-\$826AW					2000 Contro Bodo Balan Sto 200	
Sample Distribution:			Charges	5.	Invoice To:	

Date _____ APPL Sample Receipt Form

ARF# 64353

Sample Container Type Count pH

AY35294 21 80z Jar 1 NA

Sample Container Type Count pH

Camp Stanley Storage Activity Chain Of Custody

643

040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ccation: CSSA Relinquish_Ed_By: JDB LabCode: APPF per: 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx Date: 4/7/2011 Alrbill Carrier: 873526388199 pager Scott Pearson Sample Data Type Set TAT: Set MV36-WC-02 LOGDATE: 4/7/2011 MATRIX: SD TBLOT: 0 LOGTIME: 7:25 SACODE: N SMCODE: CS ABLOT: 0 FLDSAMPID MW36-WC-02_040711_N0725 EBLOT: Containers: 1	,										NS.	Vellidiks.
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B fon: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx #47/2011 Collection Team: AL Airbill Carrier: 873526388199 #36-WC-02 LOGDATE: 4/7/2011 MATRIX: SD TBLOT: AI LOGTIME: 7:25 SACODE: N SMCODE: CS ABLOT: AI		_	Containers:	EBLOT:		725	0711_NO	6-WC-02_04	MPID MW3	FLDSA	0	SED:
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx 147/2011 Collection Team: AL Airbill Carrier: 873526388199 Sample Data Type Set TAT: Set Communication Aug6-WC-02 LOGDATE: 4/7/2011 MATRIX: SD TBLOT: A		SW8260B VOC Full List		ABLOT:	ODE: CS	SMCC	Z	SACODE:	E: 7:25	LOGTIME	0	SBD
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx 147/2011 Collection Team: AL Scott Pearson Sample Data Type See TAT: See TAT: Scott Pearson		Analysis Required:		TBLOT:	TRIX: SD	MAT	4/7/201	LOGDATE:		36-WC-02		LOCID
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx ** 4/7/2011 Collection Team: AL Airbill Carrier: 873526388199	,	6	nusts	COM	1) Sadki	pie Data	oall	SOIL	ocott Legi		
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx :: 4/7/2011 Collection Team: AL Airbill Carrier: 873526388199	-			101		1	חולה	200	200	COR DOS		Tack N
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx	X	1	873526388199	Airbill Carrier:		am: AL	ection Tea	Colle		4/7/2011	n Date:	Creation
040711APPFB Relinquish_Date: 4/7/2011 Cooler ID: B ion: CSSA Relinquished_By: JDB LabCode: APPF	Y	- 6	FedEx	Carrier:	DO PM	me: 5:0	nquish_Ti	Relin	000	747781.040	mber:	ob Nu
040711APPFB Relinquish_Date: 4/7/2011	1.1.1	Sampler(s):	APPF	LabCode:	8	By: JD	quished_	Reli		: CSSA	Location	rojec
			œ	Cooler ID:	7/2011		nquish_D	Reli	PFB	040711API	Ų	1 300

Date_

__Time____ Page 2 of 2

EPA METHOD 8260B Volatile Organic Compounds QC Summary

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110408AS-153977

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110408AS-BLK

Initial Calibration ID: S110407

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	ι
1,1,1-TCA	< RL	0.004	Ţ
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	L
1,1,2-TCA	< RL	0.005	L
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	L
1,2,3-TRICHLOROPROPANE	< RL	0.020	L
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64353, Sample: AY35294

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: mg/kg Method Blank ID: 110408AS-BLK

Initial Calibration ID: S110407

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	100	52-149	
SURROGATE: 4-BROMOFLUOROBE	103	65-135	
SURROGATE: DIBROMOFLUOROME	102	65-135	
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64353, Sample: AY35294

Form 2 & 8

Surrogate Recovery

Lab Name: APPL, Inc.	SDG No: 64353	
Case No: 64353	Date Analyzed: 4/8/11	
Matrix: SOIL	Instrument: Sweetpea	

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110408AS-LCS	Lab Control Spike	103	100
110408AS-BLK	Blank	100	103
AY35294	MW36-WC-02	103	103

Comments: Batch: #826AF-110408AS

Form 2 & 8

Surrogate Recovery

Lab Name: APPL, Inc.	SDG No: 64353
Case No: 64353	Date Analyzed: 4/8/11
Matrix: SOIL	Instrument: Sweetpea

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110408AS-LCS	Lab Control Spike	102	97.9
110408AS-BLK	Blank	102	103
AY35294	MW36-WC-02	99.9	100

Comments: Batch: #826AF-110408AS

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110408AS LCS Initial Calibration ID: S110407

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0469	93.8	62-125	
1,1,1-TCA	0.0500	0.0463	92.6	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0523	105	64-135	
1,1,2-TCA	0.0500	0.0472	94.4	65-135	
1,1-DCA	0.0500	0.0458	91.6	62-135	
1,1-DCE	0.0500	0.0459	91.8	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0467	93.4	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0493	98.6	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.055	110	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0502	100	65-145	-
1,2,4-TRIMETHYLBENZENE	0.0500	0.0476	95.2	65-135	
1,2-DCA	0.0500	0.0501	100	58-137	
1,2-DCB	0.0500	0.0474	94.8	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.053	106	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0481	96.2	60-135	
1,2-EDB	0.0500	0.0496	99.2	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0465	93.0	62-135	
1,3-DCB	0.0500	0.0473	94.6	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0483	96.6	65-135	
1,4-DCB	0.0500	0.0496	99.2	65-135	
1-CHLOROHEXANE	0.0500	0.0501	100	65-135	
2,2-DICHLOROPROPANE	0.050	0.047	94.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0473	94.6	63-135	
4-CHLOROTOLUENE	0.0500	0.0478	95.6	64-135	
BENZENE	0.0500	0.0467	93.4	65-135	
BROMOBENZENE	0.0500	0.0488	97.6	65-135	
BROMOCHLOROMETHANE	0.0500	0.0516	103	63-135	
BROMODICHLOROMETHANE	0.0500	0.0479	95.8	65-135	
BROMOFORM	0.0500	0.0502	100	65-135	
BROMOMETHANE	0.0500	0.0414	82.8	62-135	
CARBON TETRACHLORIDE	0.050	0.045	90.0	52-135	
CHLOROBENZENE	0.0500	0.0470	94.0	65-135	
CHLOROETHANE	0.0500	0.0473	94.6	55-135	
CHLOROFORM	0.0500	0.0457	91.4	64-135	
CHLOROMETHANE	0.0500	0.0447	89.4	65-135	
CIS-1,2-DCE	0.0500	0.0462	92.4	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0461	92.2	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0494	98.8	63-135	1
DIBROMOMETHANE	0.050	0.050	100	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0478	95.6	65-135	

Comments: ARF: 64353, QC Sample ID: AY34954

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110408AS LCS Initial Calibration ID: S110407

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0451	90.2	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0460	92.0	65-135	
ISOPROPYLBENZENE	0.0500	0.0463	92.6	65-135	
M&P-XYLENE	0.1000	0.0945	94.5	65-135	
METHYLENE CHLORIDE	0.0500	0.0470	94.0	65-135	
N-BUTYLBENZENE	0.0500	0.0481	96.2	65-135	
N-PROPYLBENZENE	0.0500	0.0475	95.0	65-135	
NAPHTHALENE	0.0500	0.0482	96.4	65-135	1 - 1
O-XYLENE	0.0500	0.0451	90.2	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0467	93.4	65-135	1 1
SEC-BUTYLBENZENE	0.0500	0.0458	91.6	65-135	
STYRENE	0.0500	0.0471	94.2	65-135	
TCE	0.0500	0.0461	92.2	61-135	
TERT-BUTYLBENZENE	0.0500	0.0464	92.8	65-135	
TETRACHLOROETHENE	0.0500	0.0486	97.2	61-135	
TOLUENE	0.0500	0.0450	90.0	64-135	
TRANS-1,2-DCE	0.0500	0.0454	90.8	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0477	95.4	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0486	97.2	57-135	
VINYL CHLORIDE	0.0500	0.0402	80.4	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	103	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	103	65-135	
SURROGATE: TOLUENE-D8 (S)	97.7	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARE: 64353 OC S

ARF: 64353, QC Sample ID: AY34954

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64353

Case No: 64353

Date Analyzed: 4/8/11

Matrix: SOIL

Instrument: Sweetpea

Blank ID: 110408AS-BLK

Time Analyzed: 0957

APPL ID.	Client Sample No.	File ID.	Date Analyzed					
110408AS-LCS	Lab Control Spike	0408S01	4/8/11 0702					
110408AS-BLK	Blank	0408S04	4/8/11 0957					
AY35294	MW36-WC-02	0408S15	4/8/11 1622					

Comments: Batch: #826AF-110408AS

Form 5 Tune Summary

 Lab Name:
 APPL Inc.
 SDG No:
 64353

 Case No:
 64353
 Date Analyzed:
 4/8/11

 Matrix:
 Soil
 Instrument:
 Sweetpea

 ID:
 20uL/mL BFB Std 03-11-11A
 Time Analyzed:
 6:43

Client Sample No.								
1 Lab Control Spike	110408A LCS-1SS (SS)	0408S01S.D	4/8/11 7:02					
2 Blank	110408A BLK-1SS	0408S04S.D	4/8/11 9:57					
3 MW36-WC-02	AY35294S01 5.026	0408S15S.D	4/8/11 16:22					
4								
5								
6								
7		12						
8								
9		1 1 -						
10								
11								
12								
13								
14								
15								
16								
17	A							
18								
19								
20								
21								
22								

m/e	
50 15 - 40% of mass 95	18.7
75 30 - 60% of mass 95	43.7
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.7
173 0 - 2% of mass 174	0.2
174 50 - 100% of mass 95	88.4
175 5 - 9% of mass 174	7.2
176 95 - 101% of mass 174	97.0
177 5 - 9% of mass 176	6.6

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract:	Review	
Lab Code:		SDG No.:	643	53
Lab File ID (Standard): 0407S07S.D		Date Analyzed:	8 Apr 11	2:29
Instrument ID: Sweetpea		Time Analyzed:	8 Apr 11	2:29
GC Column:	ID:	Heated Purge: (Y/N)		

AREA # 540360 1080720 270180	9.81 10.31 9.31	AREA # 290429 580858	RT # 14.84	AREA # 136723	RT #
1080720	10.31			136723	18.94
		580858	45 24		10.01
270180	9.31		15.34	273446	19.44
	0.0.	145215	14.34	68362	18.44
545218	9.81	291569	14.84	129064	18.93
496426	9.80	259923	14.84	113067	18.94
523444	9.81	275899	14.84	121949	18.93
		1			
			1		
	496426	496426 9.80	496426 9.80 259923	496426 9.80 259923 14.84	496426 9.80 259923 14.84 113067

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Sample Data

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: MW36-WC-02 Lab Sample ID: AY35294 Matrix: Soil

% Solids: 87.8 Initial Calibration ID: S110407

Date Received: 08-Apr-11 Date Prepared: 08-Apr-11 Date Analyzed: 08-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1	1.2	U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	_1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1	1	U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Co	m	ne	nt	S	

ARF: 64353

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: MW36-WC-02 Lab Sample ID: AY35294 Matrix: Soil

% Solids: 87.8 Initial Calibration ID: S110407

Date Received: 08-Apr-11 Date Prepared: 08-Apr-11 Date Analyzed: 08-Apr-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1	1	U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1	1	U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	- 1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	103	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	103	65-135	
SURROGATE: DIBROMOFLUOROMETH	99.9	65-135	
SURROGATE: TOLUENE-D8 (S)	100	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~		270.76	200	
Co	mm	ทคา	ntc	٠
	1111	1101	1100	•

ARF: 64353

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 6 Initial Calibration

0407S09S.D SDG No: 64353
Initial Cal. Date: 4/7/11
Instrument: Sweetpea
S.D QUOTSOR.D QUOTSORS.D 0407S05S,D 0407S06S,D 0407S04S.D 0407S03S.D Lab Name: APPL, Inc. Case No: Matrix:

								0.997			1,000																								
		MT	TM**	TM*	MT	TM	TM	tmL	TM*	TM	TML	TM	TM	TM**	M	×.	MT	*MT	M	S	TM	TM	S	ΨL	M	TM	M	TM*	TM	TM	M	TM*	MT	TM	
%RSD		4.4	3.8	12	12	7.9	8.9	33	5.0	6.1	23	5.9	4.7	4.5	15	3.2	3.2	1.6	7.4	7.6	9.9	4.6	9.1	5.0	4.4	3.3	4.1	4.5	4.5	4.4	3.7	3.3	5.8	11	
Avg		0.29	0.43	0.11	90:0	0.22	0.11	0.03	0.47	0.27	0.27	0.32	0:30	0.52	60.0	0:30	0.43	0.43	80:0	0.25	0.40	0.42	0.17	0.35	0.19	1.1	0.28	0.25	0.27	0.10	0.33	99'0	0.23	0.11	
0.2		0.2887	0.4114		0.0677	0.2306	0.1027	0.0228	0.4977	0.2914		0.3377	0.3182	0.5496	0.0854	0.3011	0.4564	0.4421	0.0864	0.2471	0.4201	0.4482	0.1618	0.3708	0.2009	1.176	0.2926	0.2550	0.2798	0.0979	0.3380	0.6772	0.2309	0.1092	
0.1		0.2971	0.4550		0.0711	0.2426	0.1228	0.0254	0.4962	0.2814	0.2301	0.3417	0.3142	0.5495	0.0867	0.2999	0.4469	0.4392	0.0923	0.2534	0.4165	0.4440	0.1680	0.3605	0.1937	1.184	0.2974	0.2556	0.2838	0.0973	0.3393	2989.0	0.2391	0.1101	
0.05		0.2863	0.4423	0.1199	0.0697	0.2344	0.1157	0.0255	0.4850	0.2741	0.2274	0.3271	0.3015	0.5165	0.0866	0.2926	0.4330	0.4348	9680.0	0.2389	0.4130	0.4382	0.1721	0.3633	0.1862	1.142	0.2861	0.2493	0.2650	0.0952	0.3368	0.6508	0.2209	0.1021	
0.02		0.2777	0.4155	0.1307	0.0540	0.2279	0.1026	0.0259	0.4635	0.2738	0.2396	0.3119	0.2836	0.5140	0.0809	0.2766	0.4170	0.4271	0.0851	0.2287	0.3975	0.4116		0.3511	0.1844	1.112	0.2684	0.2527	0.2574	0.0969	0.3231	0.6591	0.2295	0.1007	
0.01		0.2836	0.4153	0.1157	0.0601	0.2066	0.0988	0.0289	0.4452	0.2709	0.2635	0.3032	0.2947	0.4842	0.0781	0.2960	0.4307	0.4224	0.0758	0.2386	0.3823	0.4157	0.1518	0.3319	0.1990	1.089	0.2690	0.2264	0.2535	0.0865	0.3065	0.6263	0.2121	0.0862	17
0.005		0.2816	0.4314	0.0949	0.0513	0.1922	0.1073	0.0418	0.4923	0.2540	0.2878	0.2896	0.2840	0.5201	0.0997	0.2977	0.4349	0.4351	0.0764	0.2507	0.3999	0.3954	0.1730	0.3517	0.1800	1.097	0.2827	0.2481	0.2590	0.0953	0.3183	0.6886	0.2076	0.1063	
0.002		0.3155	0.4355	0.1095	0.0632	0.2154	0.0963	0.0509	0.4428	0.2424	0.3949	0.3173	0.3123	0.5063	0.1171	0.3070	0.4192	0.4324	0.0853	0.2879	0,3452	0.4178	0.1987	0.3222	0.1825	1.117	0.2933	0.2612	0.2583	0.0989	0.3323	0.6581	0.2428	0.1258	
Compound	Fluorobenzene(IS)	Dichlorodifluoromethane	Chloromethane	TM* Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	Acetone	1,1-DCE	Freon-113	Methylene chloride	Methyl t-butyl ether (MTBE)	Trans-1,2-DCE	1,1-DCA	MEK (2-Butanone)	Cis-1,2-DCE	2,2-Dichloropropane	Chloroform	Bromochloromethane	Dibromofluoromethane(S)	1,1,1-TCA	1,1-Dichloropropene	1,2-DCA-D4(S)	Carbon tetrachloride	1,2-DCA	Benzene	TCE	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	Cis-1,3-Dichloropropene	Toluene	Trans-1,3-Dichloropropene	1,1,2-TCA	Chlorobenzene-D5(IS)
		TM	TM**	TM*	TM		TM	tmL	TM.	TM	TML	TM	TM	TM**	TM	TM	TM	TM*	TM	S	OF I		S	TM	MT	TM	M	TM*	TM	M	TM	TM*	TM	TM	-
	-	7	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	320	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 6 Initial Calibration

Lab Name: APPL, Inc. Case No: Matrix:

SDG No: 64353 Initial Cal, Date: 4/7/11 Instrument: Sweetpea

Initials:

	S	TM	TM	ML	Wi	MT	TM	TM	S	MT	ML	**MT	TM*	TM**		TM	TM	TM**	MI	TM	MT	TM	TM	TM	ML	TM	TM	TM	TM	TM	MT	TM	TM	ML	TW
%RSD	4.6	8.9	5.4	4.5	5.2	3.0	3.0	7.5	11	4.1	9.7	2.4	2.3	7.8		9.8	3.1	7.6	7.5	4.4	4.3	3.7	2.1	7.1	1.7	3.1	2.7	1.6	5.7	7.3	2.8	2.6	10.0	9.3	5.6
Avg	1.6	0.20	0.43	0.79	0.39	0.83	92'0	0.16	0.47	0.39	0.30	1.1	2.3	0.15		0.29	4.8	0.46	0.10	0.94	0.9	3.8	3.6	3.0	3.7	3.3	5.3	4.2	1.9	1.8	3.9	1,4	90:0	0.87	0.83
0.2	1.647	0.2129	0.4461	0.8262	0.4118	0.8152	0.7694	0.1620	0,4575	0.3939	0.3152	1.150	2.311	0.1556		0.3176	4.609	0.4845	0.1013	0.9207	5.962	3.647	3.538	2.845	3.814	3.290	5.279	4.288	1.811	1.665	3.948	1.427	0.0587	0.8738	0.8674
0.1	1.706	0.2168	0.4632	0.8413	0.4148	0.8538	0.7638	0.1587	0.4858	0.4043	0.3290	1.192	2.312	0.1643		0.3211	4.764	0.4787	0.1023	0.9466	6.019	3.711	3.582	2.879	3.687	3.294	5.318	4.226	1.847	1,749	3.981	1.422	0.0598	0.8643	0.8490
0.05	1.721	0.2020	0.4516	0.8053	0.3885	0.8200	0.7595	0.1601	0.4778	0.3903	0.3081	1.116	2.196	0.1521		0.3034	4.537	0.4533	0.1006	0.8840	5.571	3.640	3.489	2.739	3.659	3.156	5.073	4.106	1.716	1.681	3.709	1.378	0.0502	0.7722	0.7697
0.02	1.606	0.1993	0.4373	0.7725	0.3916	0.8112	0.7464	0.1565	0.4408	0.3876	0.3011	1.154	2.241	0.1424		0.2678	4.943	0.5000	0.0965	0.9691	6.137	3.928	3.668	3.026	3.796	3.436	5.467	4.245	1.817	1.763	3.921	1.429	0.0580	0.8000	0.7947
0.01	1.577	0.1909	0.3980	0.7706	0.3693	0.8365	0.7209	0.1604	0.4281	0.3813	0.2578	1.131	2.211	0.1540		0.2559	4.723	0.3930	0.0943	1.009	6.084	3.986	3.624	2.922	3.731	3.352	5.309	4.246	1.807	1.693	3.895	1.455	0.0644	0.8761	0.8161
0.005	1.514	0.1765	0.4326	0.7369	0.3605	0.7908	0.7473	0.1368	0.4364	0.3648	0.2986	1.110	2,255	0.1279		0.2748	4.751	0.4681	0.0822	6906.0	5.856	3.699	3,559	3.270	3.668	3.262	5.137	4.118	1.938	1.776	3,819	1.434	0.0501	0.8501	0.8071
0.002	1.685	0.2044	0.4084	0.7925	0.4001	0.8619	0.7935	0.1774	0.5812	0.4141	0.2866	1.136	2.324	0.1478		0.2583	4.924	0.4457	0.1023	0.9470	6.408	3.846	3.711	3.293	3.782	3.455	5.433	4.175	2.042	2.042	4.037	1.500		1.025	0.9047
Compound	Toluene-D8(S)	1,2-EDB	Tetrachloroethene	1-Chlorohexane	1,1,1,2-Tetrachloroethane	+-	o-Xylene				Dibromochloromethane	Chlorobenzene	Ethylbenzene	Bromaform	1,4-Dichlorobenzene-D(IS)	MIBK (methyl isobutyl ketone)	Isopropylbenzene	-	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethylbenzene	4-Chlorotoluene	Tert-Butylbenzene						n-Butylbenzene			1,2,4-Trichlorobenzene	TM Hexachlorobutadiene
	S		TM	TW.	M.	M	MT.	TM	-		-	TM**	-	TM**	-	MT	M	TM**	TW	-	TM	TW	-	TM	-	-	-	TW 1	-	-	3 TM		3 TM		
	36	37	38	39	40	41	42	43	4	45	46	47	48	49	20	51	52	53	3	25	196	5	58	35	9	61	62	63	64	65	9	29	68	69	20

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 6 Initial Calibration

SDG No: 64353 Initial Cal. Date: 4/7/11 Instrument: Sweetpea Lab Name: APPL, Inc. Case No: Matrix:

Initials:

	71 T		_	92	77	1	0/2	+	08	84			84	85	98		88		91	92		H	-	-	66	100	101	102	3	-
Compound	TM Naphthalene	TM 1,2,3-Trichlorobenzene																												
0.002	0.6811	0.6486																												
0.005	0.6786	0.7380																												
0.01	0.6587	0.6135																												
0.02	0.6897	0.6599																												
0.05	0.7464	0.6432																												
0.1	0.8677	0.7005																												
0.2	0.9426	0.7241		3																										
													5																	
	7																													
+	0.75	89.0																1	1											
%RSD	15	8.9							1																					
	TM	TM																	TA STATE OF THE ST											
		- 1	- 1							_	_	$\overline{}$	\neg	\neg		\neg	\neg												- 1	

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 7 Second Source Calibration/CCV

Lab Name: APPL, Inc.	SDG No: 64353
Case No:	Date Analyzed: 8 Apr 11 7:02
Matrix:	Instrument: Sweetpea
	Initial Cal. Date: 4/7/11
	Data File: 0408S01S.D

		Compound	MEAN	CCRF	%D	9	6Drif
1	1	Fluorobenzene(IS)	ISTD			- 1	
2	TM	Dichlorodifluoromethane	0.2901	0.2772	4.5	TM	
	TM**	Chloromethane	0.4295	0.3843	11	TM**	
4	TM*	Vinyl chloride	0.1141	0.0917	20	TM*	
	TM	Bromomethane	0.0624	0.0517	17	TM	
	TM	Chloroethane	0.2214	0.2093	5.5	TM	
7	TM	Trichlorofluoromethane	0.1066	0.1036	2.8	TM	
8	tmL	Acetone	0.0316	0.0250	21	tmL	1.5
9	TM*	1,1-DCE	0.4747	0.4354	8.3	TM*	
10	TM	Freon-113	0.2697	0.2558	5.2	TM	
	TML	Methylene chloride	0.2739	0.2182	20	TML	6.1
	TM	Methyl t-butyl ether (MTBE)	0.3184	0.3191	0.22	TM	
	TM	Trans-1,2-DCE	0.3012	0.2735	9.2	TM	
	TM**	1,1-DCA	0.5200	0.4766	8.3	TM**	
	TM	MEK (2-Butanone)	0.0907	0.0825	9.0	TM	
	TM	Cis-1,2-DCE	0.2958	0.2733	7.6	TM	
	TM	2,2-Dichloropropane	0.4340	0.4098	5.6	TM	
	TM*	Chloroform	0.4333	0.3957	8.7	TM*	
	TM	Bromochloromethane	0.0844	0.0871	3.1	TM	
20		Dibromofluoromethane(S)	0.2493	0.2543	2.0	S	
	TM	1,1,1-TCA	0.3964	0.3670	7.4	TM	
	TM	1,1-Dichloropropene	0.4244	0.3961	6.7	TM	
23		1,2-DCA-D4(S)	0.1689	0.1726	2.2	S	
	TM	Carbon tetrachloride	0.3502	0.3149	10	TM	
	TM	1,2-DCA	0.1895	0.1899	0.17	TM	
	TM	Benzene	1.131	1.057	6.5	TM	
	TM	TCE	0.2842	0.2620	7.8	TM	
	TM*	1,2-Dichloropropane	0.2498	0.2404	3.8	TM*	
	TM	Bromodichloromethane	0.2652	0.2540	4.2	TM	
2 20 20	TM	Dibromomethane	0.0954	0.0953	0.20	TM	
31	TM	Cis-1,3-Dichloropropene	0.3278	0.3021	7.8	TM	
	TM*	Toluene	0.6638	0.5974	10	TM*	
	TM	Trans-1,3-Dichloropropene	0.2261	0.2158	4.6	TM	
	TM	1,1,2-TCA	0.1058	0.0998	5.6	TM	
35		Chlorobenzene-D5(IS)	ISTD		1		
36		Toluene-D8(S)	1.637	1.596	2.5	s	
	TM	1,2-EDB	0.2004	0.1987	0.84	TM	
	TM	Tetrachloroethene	0.4339	0.4214	2.9	TM	
	TM	1-Chlorohexane	0.7922	0.7946	0.30	TM	
	TM	1,1,1,2-Tetrachloroethane	0.3909	0.3664	6.3	TM	

Average 6.8

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 7 Second Source Calibration/CCV

Lab Name: APPL, Inc.	SDG No: 64353
Case No:	Date Analyzed: 8 Apr 11 7:02
Matrix: 0	Instrument: Sweetpea
-	Cal. Date: 4/7/11
	Data File: 0408S01S D

		Compound	MEAN	CCRF	%D	%D
41	TM	m&p-Xylene	0.8270	0.7816	5.5	TM
42	TM	o-Xylene	0.7573	0.6834	9.8	TM
43	TM	Styrene	0.1588	0.1497	5.7	TM
44	S	4-Bromofluorobenzene(S)	0.4725	0.4690	0.74	S
45	TM	1,3-Dichloropropane	0.3909	0,3772	3.5	TM
46	TM	Dibromochloromethane	0.2995	0.2957	1.3	TM
	TM**	Chlorobenzene	1.141	1.074	5.9	TM**
48	TM*	Ethylbenzene	2.264	2.042	9.8	TM*
49	TM**	Bromoform	0.1492	0.1497	0.38	TM**
50		1,4-Dichlorobenzene-D(IS)	ISTD			
51	TM	MIBK (methyl isobutyl ketone)	0.2856	0.3162	11	TM
52	TM	Isopropylbenzene	4.750	4.396	7.4	TM
	TM**	1,1,2,2-Tetrachloroethane	0.4605	0.4819	4.6	TM**
	TM -	1,2,3-Trichloropropane	0.0971	0.1063	9.5	TM
55	TM	Bromobenzene	0.9404	0.9184	2.3	TM
	TM	n-Propylbenzene	6.005	5.702	5.0	TM
	TM	2-Chlorotoluene	3.780	3.572	5.5	TM
	TM	1,3,5-Trimethylbenzene	3.596	3.345	7.0	TM
	TM	4-Chlorotoluene	2.996	2.862	4.5	TM
	TM	Tert-Butylbenzene	3.734	3.462	7.3	ТМ
	TM	1,2,4-Trimethylbenzene	3.321	3.159	4.9	ТМ
	TM	Sec-Butylbenzene	5.288	4.840	8.5	TM
	TM	p-Isopropyltoluene	4.200	3.920	6.7	ТМ
	TM	1,3-DCB	1.854	1.752	5.5	ТМ
	TM	1,4-DCB	1.767	1.752	0.84	TM
	TM	n-Butylbenzene	3.902	3.756	3.7	ТМ
	TM	1,2-DCB	1.435	1.361	5.2	ТМ
	TM	1,2-Dibromo-3-chloropropane	0.0569	0.0607	6.8	TM
	TM	1,2,4-Trichlorobenzene	0.8659	0.8693	0.39	ТМ
	TM	Hexachlorobutadiene	0.8298	0.7630	8.0	ТМ
	TM	Naphthalene	0.7521	0.7249	3.6	TM
	TM	1,2,3-Trichlorobenzene	0.6754	0.6653	1.5	ТМ
73		,,_,				
74						
75						
76						
77						
78						
79						
80						

Average 5.2

EPA METHOD 8260B Volatile Organic Compounds Raw Data

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B AAB #: 110408AS-153977

Lab Name: APPL, Inc Contract #: 2010*1286022*000
Concentration Units: mg/kg Method Blank ID: 110408AS-BLK

Initial Calibration ID: S110407

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	J
1,1,1-TCA	< RL	0.004	Į
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	Ţ
1,1,2-TCA	< RL	0.005	τ
1,1-DCA	< RL	0.002	Ţ
1,1-DCE	< RL	0.006	Į
1,1-DICHLOROPROPENE	< RL	0.005	ι
1,2,3-TRICHLOROBENZENE	< RL	0.004	I
1,2,3-TRICHLOROPROPANE	< RL	0.020	L
1,2,4-TRICHLOROBENZENE	< RL	0.004	I
1,2,4-TRIMETHYLBENZENE	< RL	0.007	I
1,2-DCA	< RL	0.003	I
1,2-DCB	< RL	0.002	J
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	Ţ
1,2-DICHLOROPROPANE	< RL	0.002	Į
1,2-EDB	< RL	0.003	L
1,3,5-TRIMETHYLBENZENE	< RL	0.003	I
1,3-DCB	< RL	0.006	L
1,3-DICHLOROPROPANE	< RL	0.002	J
1,4-DCB	< RL	0.002	J
1-CHLOROHEXANE	< RL	0.003	I
2,2-DICHLOROPROPANE	< RL	0.020	I
2-CHLOROTOLUENE	< RL	0.002	I
4-CHLOROTOLUENE	< RL	0.003	I
BENZENE	< RL	0.002	L
BROMOBENZENE	< RL	0.002	L
BROMOCHLOROMETHANE	< RL	0.002	L
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	Į
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	J
CHLOROBENZENE	< RL	0.002	Ţ
CHLOROETHANE	< RL	0.005	ι
CHLOROFORM	< RL	0.002	J
CHLOROMETHANE	< RL	0.007	ι
CIS-1,2-DCE	< RL	0.006	ι
CIS-1,3-DICHLOROPROPENE	< RL	0.005	J
DIBROMOCHLOROMETHANE	< RL	0.003	L
DIBROMOMETHANE	< RL	0.010	Ţ
DICHLORODIFLUOROMETHANE	< RL	0.005	Ţ
ETHYLBENZENE	< RL	0.003	Į

Comments: ARF: 64353, Sample: AY35294

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110408AS-153977

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110408AS-BLK

Initial Calibration ID: S110407

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	100	52-149	
SURROGATE: 4-BROMOFLUOROBE	103	65-135	
SURROGATE: DIBROMOFLUOROME	102	65-135	
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64353, Sample: AY35294

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110408AS-153977

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110408AS LCS

Initial Calibration ID: S110407

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0469	93.8	62-125	
1,1,1-TCA	0.0500	0.0463	92.6	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0523	105	64-135	
1,1,2-TCA	0.0500	0.0472	94.4	65-135	
1,1-DCA	0.0500	0.0458	91.6	62-135	
I,1-DCE	0.0500	0.0459	91.8	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0467	93.4	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0493	98.6	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.055	110	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0502	100	65-145	_
1,2,4-TRIMETHYLBENZENE	0.0500	0.0476	95.2	65-135	
1,2-DCA	0.0500	0.0501	100	58-137	
1,2-DCB	0.0500	0.0474	94.8	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.053	106	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0481	96.2	60-135	_
1,2-EDB	0.0500	0.0496	99.2	65-135	_
1,3,5-TRIMETHYLBENZENE	0.0500	0.0465	93.0	62-135	
1,3-DCB	0.0500	0.0473	94.6	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0483	96.6	65-135	1
1,4-DCB	0.0500	0.0496	99.2	65-135	
1-CHLOROHEXANE	0.0500	0.0501	100	65-135	
2,2-DICHLOROPROPANE	0.050	0.047	94.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0473	94.6	63-135	
4-CHLOROTOLUENE	0.0500	0.0478	95.6	64-135	
BENZENE	0.0500	0.0467	93.4	65-135	
BROMOBENZENE	0.0500	0.0488	97.6	65-135	
BROMOCHLOROMETHANE	0.0500	0.0516	103	63-135	
BROMODICHLOROMETHANE	0.0500	0.0479	95.8	65-135	
BROMOFORM	0.0500	0.0502	100	65-135	
BROMOMETHANE	0.0500	0.0414	82.8	62-135	J.
CARBON TETRACHLORIDE	0.050	0.045	90.0	52-135	
CHLOROBENZENE	0.0500	0.0470	94.0	65-135	
CHLOROETHANE	0.0500	0.0473	94.6	55-135	
CHLOROFORM	0.0500	0.0457	91.4	64-135	
CHLOROMETHANE	0.0500	0.0447	89.4	65-135	
CIS-1,2-DCE	0.0500	0.0462	92.4	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0461	92.2	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0494	98.8		
DIBROMOMETHANE	0.050	0.050	100		7
DICHLORODIFLUOROMETHANE	0.0500	0.0478	95.6	65-135	

Comments: ARF: 64353, QC Sample ID: AY34954

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 110408AS-153977

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110408AS LCS

Initial Calibration ID: S110407

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0451	90.2	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0460	92.0	65-135	
ISOPROPYLBENZENE	0.0500	0.0463	92.6	65-135	
M&P-XYLENE	0.1000	0.0945	94.5	65-135	
METHYLENE CHLORIDE	0.0500	0.0470	94.0	65-135	
N-BUTYLBENZENE	0.0500	0.0481	96.2	65-135	
N-PROPYLBENZENE	0.0500	0.0475	95.0	65-135	
NAPHTHALENE	0.0500	0.0482	96.4	65-135	
O-XYLENE	0.0500	0.0451	90.2	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0467	93.4	65-135	
SEC-BUTYLBENZENE	0.0500	0.0458	91.6	65-135	
STYRENE	0.0500	0.0471	94.2	65-135	
TCE	0.0500	0.0461	92.2	61-135	
TERT-BUTYLBENZENE	0.0500	0.0464	92.8	65-135	
TETRACHLOROETHENE	0.0500	0.0486	97.2	61-135	
TOLUENE	0.0500	0.0450	90.0	64-135	
TRANS-1,2-DCE	0.0500	0.0454	90.8	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0477	95.4	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0486	97.2	57-135	
VINYL CHLORIDE	0.0500	0.0402	80.4	36-144	

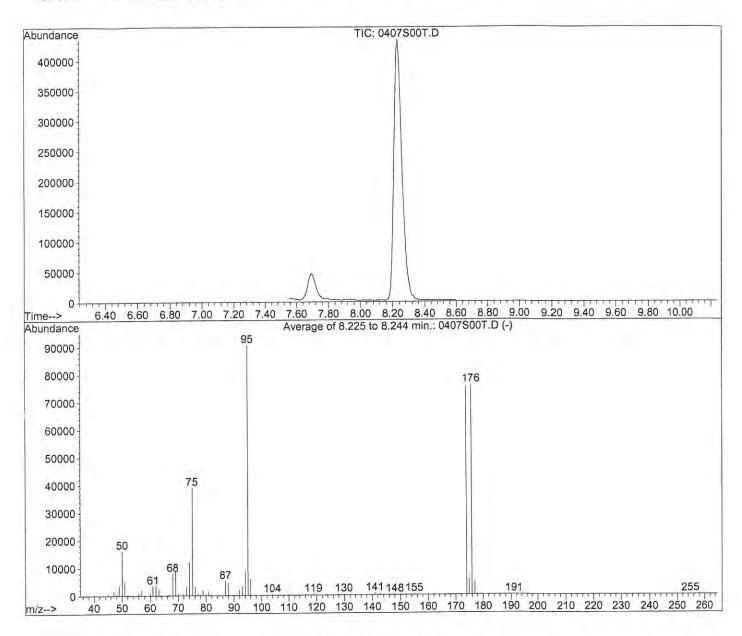
Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	103	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	103	65-135	
SURROGATE: TOLUENE-D8 (S)	97.7	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	11/2
FLUOROBENZENE (IS)	

Comments:

ARF: 64353, QC Sample ID: AY34954

Vial: 1


Data File : M:\SWEETPEA\DATA\S110407\0407S00T.D

: 7 Apr 11 22:42 : 20uL/mL BFB Std 03-11-11A Operator: RS

: Sweetpea Sample Multiplr: 1.00 : 2uL Misc

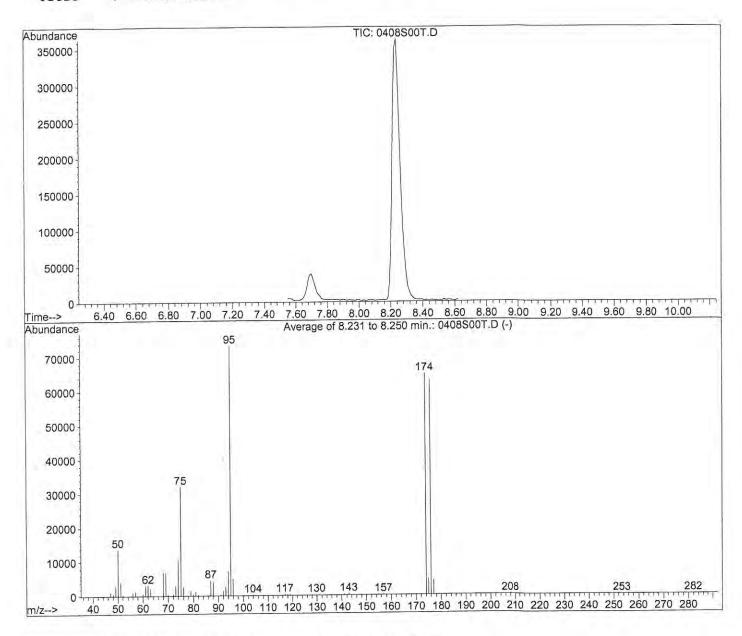
Method : M:\SWEETPEA\DATA\S110407\S826AFS.M (RTE Integrator)

: METHOD 8260B Title

Spectrum Information: Average of 8.225 to 8.244 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	l 95	15	40	17.8	16123	PASS
75	95	30	60	42.9	38904	PASS
95	95	100	100	100.0	90605	PASS
96	95	5	9	6.6	5968	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	83.1	75296	PASS
175	174	5	9	7.5	5623	PASS
176	174	95	101	101.0	76027	PASS
177	176	5	9	6.1	4649	PASS

Vial: 1


Data File : M:\SWEETPEA\DATA\S110407\0408S00T.D

Acq On : 8 Apr 11 6:43 Operator: RS

Sample : 20uL/mL BFB Std 03-11-11A Inst : Sweetpea Misc : 2uL Multiplr: 1.00

Method : M:\SWEETPEA\DATA\S110407\S826AFS.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 8.231 to 8.250 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	 l 95	15	40	18.7	13746	PASS
75	95	30	60	43.7	32075	PASS
95	95	100	100	100.0	73472	PASS
96	95	5	9	6.7	4933	PASS
173	174	0.00	2	0.2	135	PASS
174	95	50	100	88.4	64947	PASS
175	174	5	9	7.2	4662	PASS
176	174	95	101	97.0	63005	PASS
177	176	5	9	6.6	4184	PASS

Injection Log

Directory:	M:\SWEETPEA\DATA\S110407\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected	
1	1	0407S00T.D	1	20uL/mL BFB Std 03-11-11A	2uL	7 Apr 11	22:42
2	3	0407S03S.D		Vol Std 04-07-11@2.0ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	00:10
3	4	0407S04S.D		Vol Std 04-07-11@5.0ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	00:44
4	5	0407S05S.D		Vol Std 04-07-11@10ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	1:19
5	6		1	Vol Std 04-07-11@20ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	1:54
6	7	0407S07S.D	1	Vol Std 04-07-11@50ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	2:29
7	8	0407S08S.D	1	Vol Std 04-07-11@100ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	3:04
8	9	0407S09S.D		Vol Std 04-07-11@200ug/kg	Soil 5mL w/IS: 04-07-11	8 Apr 11	3:39
9	1	0408S00T.D	1	20uL/mL BFB Std 03-11-11A	2uL	8 Apr 11	6:43
10	1	0408S01S.D	1	110408A LCS-1SS (SS)	Soil 5mL w/IS&S: 04-07-11	8 Apr 11	7:02
11	4	0408S04S.D	1	110408A BLK-1SS	Soil 5mL w/IS&S: 04-07-11	8 Apr 11	9:57
12	15	0408S15S.D	0.994827		Soil 5mL w/IS&S: 04-07-11	8 Apr 11	16:22

Pagg 1 5/9/11

Wetlab Results

ARF: 64353

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte		Result	PQL	Units	Prep Date	Analysis Date
APPL ID: AY	35294	-Client Sample ID: MW36-WC-02		-Sample Collection D	Date: 04/07/11	Project: 74778	1.04000 CSSA
CLP MOIST		STURE	12.2	2.0	%	04/13/11	04/14/11

Printed: 04/14/11 10:29:56 AM

% Moisture

Batch: QCG 110413-M002923

CLP 4.0

Method: Pan+Wet Pan+Dry 2 Moisture Comments Pan+Dry 1 Container Sample (g) (%) (g) (g) (g) 9.6844 8.5189 8.5189 13.158 ay35294s01 S01 0.8265 AY35294D 04/13/11 10:46 04/13/11 10:47 04/14/11 09:04 04/14/11 09:04 12,179 ay35294s01 8.5817 8.5816 S01 0.8165 9.6585 AY35294 04/13/11 10:46 04/13/11 10:49 04/14/11 09:03 04/14/11 09:03

Date/Time	Date/Time	Date/Time	Date/Time
InOven@104°C	OutOven@104°C	InOven@104°C	OutOven@104°C
04/13/11 10:50:00 AM			04/14/11 9:02:00 AM

Date: 04/13/11 10:46

Laboratory Report

Parsons

CSSA

Project #: 747781.04000 CSSA

ARF: 64378

Samples collected: April 8 and 11, 2011

APPL, Inc.

EPA METHOD 8260B Volatile Organic Compounds

Data Validation Package for

EPA METHOD 8260B Volatile Organic Compounds

TABLE OF CONTENTS

LABORATORY NAME: APPL, Inc.

Case Narrative	4
Chain of Custody and ARF	7
QC Summary	15
Sample Data	27
Calibration Data	<u>35</u>
Raw Data	40

EPA METHOD 8260B Volatile Organic Compounds Case Narrative

Volatile Organic Compounds EPA Method 8260B

Case Narrative

ARF: 64378

Project: 747781.04000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)

Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The samples were received April 13, 2011, at 3.0°C. The sample was assigned Analytical Request Form (ARF) number 64378. The sample numbers and requested analysis were compared to the chains of custody. No exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
CS-MW36-LGR(320-332)	AY35518	WATER	04/08/11	04/13/11
AOC65-SIW-01	AY35519	WATER	04/11/11	04/13/11
CS-MW36-LGR(0-142)	AY35520	WATER	04/11/11	04/13/11

Sample Preparation:

The samples were purged according to EPA method 5030B. All holding times were met.

Sample Analysis Information:

The sampleswere analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. The pH of the sample was measured after analysis. The vials used for analysis had a pH of 2. All holding times were met.

Quality Control/Assurance

Spike Recovery

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard was used for the LCS. All LCS criteria were met.

No sample were designated by the client for MS/MSD analysis.

Surrogates

Surrogate recoveries are summarized on the form 2 & 8. All surrogate recoveries met acceptance criteria.

Method blanks

No target analyte were detected above the reporting limits in the method blanks.

Calibration

Initial and continuing calibrations were analyzed according to the method. All calibration criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D, Laboratory Director / Date

EPA METHOD 8260B
Volatile Organic Compounds
Chain of Custody and ARF

APPL - Analysis Request Form

Client:	Parsons	Received by: TBV	
Address:	8000 Centre Park Drive Ste 200	Date Received: 04/13/11	Time: 10:20
	Austin, TX 78754	Delivered by: FED EX	
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N): Y	
Phone: 5	612-719-6092 Fax: <u>512-719-6099</u>	Chest Temp(s): 3.0°C	
Job: 7477	781.04000 CSSA	Color: VOA	
PO #: 74	47780.30002	Samples Chilled until Placed in Re	frig/Freezer: Y
Chain of C	Custody (Y/N): Y # 041111APPFA	Project Manager: Diane Anderso	on DA
RAD Scre	en (Y/N): Y pH (Y/N): N	QC Report Type: DVP3/AFCEE/I	ERPIMS/TX
Turn Arou	nd Type: STD	Due Date: 05/04	1/11

Comments:

pdf ARF to Tammy & Pam; send 2 DVP3 to Tammy

Data screening project: analyze samples ONCE; report deficiencies; do NOT re-analyze.

Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested.

Use AFCEE forms with AFCEE flagging to report sample & QC data only.

APPL forms for everything else and APPL DVP3.

EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

	mple Distribution: A: 3-\$826AW		Charges	<u>S.</u>	Invoice To:
	· · · · · · · · · · · · · · · · · · ·				8000 Centre Park Drive Ste 200 Austin, TX 78754-5140 Attn: Ellen Felfe
Client ID		APPL ID	Sampled	Analyses	Requested
1.	CS-MW36-LGR(320-332)	AY35518W	04/08/11 09:44	\$826AW	
	AOC65-SIW-01	AY35519W	04/11/11 10:45	\$826AW	/
2.					

Computer: RECEIVING-02

Initials _____ Date ____

APPL Sample Receipt Form

ARF# 64378

Sample	Container Type	Count	pH
AY35518	13 VOAs - HCL	3	NA
AY35519	13 VOAs - HCL	3	NA
AY35520	13 VOAs - HCL	3	NA

Sample Container Type Count pH

9

		1					
	Containers:	EBLOT:		417 :11106	FLDSAMPID CS-MW36-LGR 0417: :11106	FLDSAMPID	142
SW0260B VOC Full List		ABLOT:	ACODE: G	N	LOGITIME: 11:06 SACODE:	LOGITIME: 11	•
Analysis Required:		TBLOT:	LOGDATE: 4/13/2011 MATRIX: WG TBLOT:	4/13/2011	LOGDATE:	CS-MW36-LGR	CS-N
							Remarks:
ω	Containers:	EBLOT:		41111_N1045	FLUSAMPIU AOC65-SIW-01_041111_N1045	FLUSAMPID,	c
S'W8260B VOC Full List		ABLOT:	SMCODE: G		CONTRACTOR NACCODE: N	בי ספרואוב.	
Analysis Required:		TBLOT:	G	4/11/2011	LOGDATE:	AOC65-SIW-01	SBI): AOC
SW8260B VOC Full List	Containers:	EBLOT:	SMCODE: G	10811_N09	FLDSAMPID CS-MW36-LGR_040811_N0944	FLDSAMPID	SED: 332 Remarks:
Analysis Required:		TBLOT:	LOGDATE: 4/8/2011 MATRIX: WS	4/8/2011	LOGDATE:	CS-MW36-LGR	SBD: 320
O.Bh. Dimbe	873526388188 Standard TAT	Airbill Carrier: TAT:	JB-AL Screening	· · ·	Colle Samı	Creation Date: 4/11/2011 Task Manager Scott Pearson	Creation Date: Task Manager
Sampler(s): Julie Bouch Auticalia	APPE	LabCode:	JDB 5:00 PM	Relinquished_By: Relinquish Time:	Relin	CSSA 747781.04000	Job Number: 74778
•	A	Cooler ID:	4/11/2011	Relinquish_Date:	Relin	041111APPFA	COC ID:

2/11	11/6		Recieved by	Date Time	Recieved by:
Relinquished by:	Time	Date	Relinquished by:	Date 4:11.11 Time BV	telinquished by:

Date Date

Page 1 of 1 Time_ _Time_

7	47781.0400 (SS &	Date Received:	4/13/11
/		Date Received	11 911
2) Coolers:	Number of Coolers:		
31 YES NO	Were coolers and samples screened for radioactivity?	Date as seed	retulu
4) VES 40	Were custody seals on outside of cooler? How many?	Date on seal?	4[11]
5)		ralf.	***
	Were custody seals unbroken and intact at the time of arrival	?	
7 (YES NO)	Did the cooler come with a shipping slip (air bill, etc.)? Carried	rname: I-CA EX	
8) 4/13	Shipping slip numbers:1) 8735 2638882) 8735-2	2638-81993)	to to
9) YES NO WA	Was the shipping slip scanned into the database? 4/13/4	8188 40 4	13/11
10) YES NON	A) If cooler belongs to APPL, has it been logged into the ice che	st database?	
11) Describe ty	pe of packing in cooler (bubble wrap, popcorn, type of ice, etc.):	: Bubble wrap	, bult Ice,
12) YES NO N	For hand delivered samples was sufficient ice present to start	the cooling process?	
13) YES NO	Was a temperature blank included in the cooler?		-
	per of certified NIST thermometer used: 434267	Correction factor:	0
15) Cooler tem		5)	(8)
Chain of custo		· · · · · · · · · · · · · · · · · · ·	
16YYES NO	Was a chain of custody received?		
17) YES NO	Were the custody papers signed in the appropriate places?		
100	Was the project identifiable from custody papers?		
	Did the chain of custody include date and time of sampling?		
19) YES NO		tody?	•
20) (YES NO	Is location where sample was taken listed on the chain of cus	louyr	
Sample Labels			
21) YES NO	Were container labels in good condition?		5
22) YES NO	Was the client ID on the label?		1
23) (YES NO	Was the date of sampling on the label?		
24) (YES NO	Was the time of sampling on the label?		
25) YES NO	Did all container labels agree with custody papers?		
Sample Contain	ners:		
26) (ES NO	Were all containers sealed in separate bags?		_
27) (YES NO	Did all containers arrive unbroken?		
28) YES (NO)	Was there any leakage from samples?		
29) YES NO	Were any of the lids cracked or broken?		
30) YES NO	Were correct containers used for the tests indicated?		
31) YES NO	Was a sufficient amount of sample sent for tests indicated?		
32) YES NO NA	Were bubbles present in volatile samples? If yes, the following	a were received with a	air bubbles:
		• Nets seasoner Winns	
Larger than	a pea		
Smaller than	a pea: A+ 3118 Woz-Voy, A+35119 W7		
Preservation &		the semalar	
33) YES NO NA	Was a sufficient amount of holding time remaining to analyze	trie samples?	000
34) YES NO NA	Do the sample containers contain the same preservative as w	nat is stated on the Co	00?
35) YES NO (UA)	Was the pH taken of all non-VOA preserved samples and writ	ten on the sample cor	ntainer?
36) YES NO NA	Was the pH of acid preserved non-VOA samples < 2 & sodium hydro	oxide preserved sample	s > 10?
	Lab notified if pH was not adequate:		,
Deficiencies: C	ould only saved all of the Custody	Seal - Bo mu	ch tupe
over it a	nd it got wet.		
A110 C200 C 0 20 C C	sonnel receiving samples: [[]] Second re	viewer:	
Signature of proj	701000000000000000000000000000000000000	and Time of notificatio	
Name of client n	otified:Date a	and Time of notificatio	n:
Information give	to client:		
A STATE OF THE STA		by whom (Initials):	

EPA METHOD 8260B Volatile Organic Compounds QC Summary

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 110413AT-154412

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110413AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2,4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64378, Sample: AY35518

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110413AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0.4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	101	69-139	
SURROGATE: 4-BROMOFLUOROBE	86.8	75-125	
SURROGATE: DIBROMOFLUOROME	93.6	75-125	
SURROGATE: TOLUENE-D8 (S)	94.1	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64378, Sample: AY35518

Analytical Method: EPA 8260B

AAB #: 110414AT-154413

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110414AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q	
TETRACHLOROETHENE	< RL	1.4	L	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	97.7	69-139	
SURROGATE: 4-BROMOFLUOROBE	85.7	75-125	
SURROGATE: DIBROMOFLUOROME	95.3	75-125	
SURROGATE: TOLUENE-D8 (S)	91.4	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64378, Sample: AY35519

Surrogate Recovery

Lab Name: APPL, Inc.

SDG No: 64378

Case No: 64378

Date Analyzed: 04/13/11

Matrix: WATER

Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110413AT-LCS	Lab Control Spike	94.8	97.2
110413AT-BLK	Blank	101	86.8
AY35518	CS-MW36-LGR(320-332)	103	83.1
AY35519	AOC65-SIW-01	98.2	86.6
AY35520	CS-MW36-LGR(0-142)	102	87.2

Comments: Batch: #826AW-110413AT

Surrogate Recovery

Lab Name: APPL, Inc.

SDG No: 64378

Case No: 64378

Date Analyzed: 04/13/11

Matrix: WATER

Instrument: Thor

APPL ID. Client Sample No.		SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S	
110413AT-LCS	Lab Control Spike	101	106	
110413AT-BLK	Blank	93.6	94.1	
AY35518	CS-MW36-LGR(320-332)	100	88.1	
AY35519	AOC65-SIW-01	98.4	91.9	
AY35520	CS-MW36-LGR(0-142)	97.0	92.8	

Comments: Batch: #826AW-110413AT

Surrogate Recovery

Lab Name: APPL, Inc.	SDG No: 64378	
Case No: 64378	Date Analyzed: 04/14/11	
Matrix: WATER	Instrument: Thor	

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110414AT-LCS	Lab Control Spike	96.8	103
110414AT-BLK	Blank	97.7	85.7
AY35519	AOC65-SIW-01	98.3	87.1

Comments: Batch: #826AW-110414AT

Surrogate Recovery

Lab Name: APPL, Inc.	SDG No: 64378
Case No: 64378	Date Analyzed: 04/14/11
Matrix: WATER	Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110414AT-LCS	Lab Control Spike	111	112
110414AT-BLK	Blank	95.3	91.4
AY35519	AOC65-SIW-01	97.1	92.9

Comments: Batch: #826AW-110414AT

Analytical Method: EPA 8260B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110413AT LCS Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	9.65	96.5	72-125	
1,1,1-TCA	10.00	10.22	102	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	10.18	102	74-125	
1,1,2-TCA	10.00	9.59	95.9	75-127	
1,1-DCA	10.00	9.67	96.7	75-125	
1,1-DCE	10.00	9.57	95.7	75-125	
1,1-DICHLOROPROPENE	10.00	9.78	97.8	75-125	-
1,2,3-TRICHLOROBENZENE	10.00	10.13	101	75-137	
1,2,3-TRICHLOROPROPANE	10.00	10.47	105	75-125	-
1,2,4-TRICHLOROBENZENE	10.00	9.41	94.1	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.40	104	75-125	
1,2-DCA	10.00	9.95	99.5	68-127	
1,2-DCB	10.00	10.68	107	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	9.02	90.2	59-125	
1,2-DICHLOROPROPANE	10.00	9.90	99.0	70-125	
1,2-EDB	10.00	9.04	90.4	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.57	106	72-125	
1,3-DCB	10.00	10.38	104	75-125	-
1,3-DICHLOROPROPANE	10.00	9.27	92.7	75-125	
1,4-DCB	10.00	10.10	101	75-125	
1-CHLOROHEXANE	10.00	9.39	93.9	75-125	
2,2-DICHLOROPROPANE	10.00	10.11	101	75-125	
2-CHLOROTOLUENE	10.00	11.01	110	73-125	
4-CHLOROTOLUENE	10.00	10.57	106	74-125	
BENZENE	10.00	9.98	99.8	75-125	
BROMOBENZENE	10.00	10.45	105	75-125	
BROMOCHLOROMETHANE	10.00	9.69	96.9	73-125	
BROMODICHLOROMETHANE	10.00	9.73	97.3	75-125	
BROMOFORM	10.00	8.66	86.6	75-125	
BROMOMETHANE	10.00	11.25	113	72-125	
CARBON TETRACHLORIDE	10.00	10.09	101	62-125	
CHLOROBENZENE	10.00	9.65	96.5	75-125	
CHLOROETHANE	10.00	9.30	93.0	65-125	
CHLOROFORM	10.00	9.67	96.7	74-125	
CHLOROMETHANE	10.00	8.28	82.8	75-125	
CIS-1,2-DCE	10.00	9.98	99.8	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.08	90.8	74-125	
DIBROMOCHLOROMETHANE	10.00	8.78	87.8	73-125	13.
DIBROMOMETHANE	10.00	9.89	98.9	69-127	
DICHLORODIFLUOROMETHANE	10.00	9.45	94.5	72-125	

Comments:

Analytical Method: EPA 8260B

AAB #: 110413AT-154412

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110413AT LCS

Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	10.62	106	75-125	
HEXACHLOROBUTADIENE	10.00	10.88	109	75-125	
ISOPROPYLBENZENE	10.00	10.35	104	75-125	
M&P-XYLENE	20.00	18.84	94.2	75-125	
METHYLENE CHLORIDE	10.00	9.15	91.5	75-125	
N-BUTYLBENZENE	10.00	10.01	100	75-125	
N-PROPYLBENZENE	10.00	10.83	108	75-125	
NAPHTHALENE	10.00	9.51	95.1	75-125	
O-XYLENE	10.00	9.27	92.7	75-125	
P-ISOPROPYLTOLUENE	10.00	10.49	105	75-125	
SEC-BUTYLBENZENE	10.00	10.30	103	75-125	
STYRENE	10.00	9.04	90.4	75-125	
TCE	10.00	9.44	94.4	71-125	
TERT-BUTYLBENZENE	10.00	10.36	104	75-125	
TETRACHLOROETHENE	10.00	9.98	99.8	71-125	
TOLUENE	10.00	11.21	112	74-125	
TRANS-1,2-DCE	10.00	9.45	94.5	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	8.86	88.6	66-125	
TRICHLOROFLUOROMETHANE	10.00	8.92	89.2	67-125	
VINYL CHLORIDE	10.00	9.09	90.9	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	94.8	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	97.2	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	106	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 110414AT-154413

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110414AT LCS

Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
TETRACHLOROETHENE	10.00	10.44	104	71-125	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	96.8	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	103	75-125	
SURROGATE: DIBROMOFLUOROMETH	111	75-125	
SURROGATE: TOLUENE-D8 (S)	112	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64378

Case No: 64378

Date Analyzed: 04/13/11

Matrix: WATER

Instrument: Thor

Blank ID: 110413AT-BLK

Time Analyzed: 1340

APPL ID.	Client Sample No.	File ID.	Date Analyzed		
110413AT-LCS	Lab Control Spike	0413T04	04/13/11 1131		
110413AT-BLK	Blank	0413T07	04/13/11 1340		
AY35518	CS-MW36-LGR(320-332)	0413T15	04/13/11 1708		
AY35519	AOC65-SIW-01	0413T16	04/13/11 1733		
AY35520	CS-MW36-LGR(0-142)	0413T17	04/13/11 1759		

Comments: Batch: #826AW-110413AT

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64378

Case No: 64378

Date Analyzed: 04/14/11

Matrix: WATER

Instrument: Thor

Blank ID: 110414AT-BLK

Time Analyzed: 1153

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110414AT-LCS	Lab Control Spike	0414T04	04/14/11 1010
110414AT-BLK	Blank	0414T06	04/14/11 1153
AY35519	AOC65-SIW-01	0414T07	04/14/11 1219

Comments: Batch: #826AW-110414AT

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.	Contract: Review		
Lab Code:		SDG No.: _	64378
Lab File ID (Standard): 0412T08W.D		Date Analyzed: _	04/12/11
Instrument ID: Thor		Time Analyzed: _	14:03
GC Column:	ID:	Heated Purge: (Y/N)_	

	Fluorobenzene (IS)	Chloro	benzene-D5 (I	S) 1,4-Dich	lorobenzene-D	(IS)
	AREA #	RT #	AREA #	RT #	AREA #	RT 7
12 HOUR STD	1748480	6.79	1245180	10.67	840896	12.48
UPPER LIMIT	3496960	7.29	2490360	11.17	1681792	12.98
LOWER LIMIT	874240	6.29	622590	10.17	420448	11.98
SAMPLE						
NO.						
110413A LCS-1WT	1676290	6.79	1236990	10.67	812032	12.48
110413A BLK-1WT	1643010	6.79	1134080	10.67	677952	12.48
AY35518W01	1506300	6.79	1122300	10.67	649472	12.48
AY35519W01	1597440	6.79	1123840	10.67	667520	12.48
AY35520W01	1574910	6.79	1080830	10.67	687616	12.48
				1		
				, A		
				1 7		

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.	Contract: R	Review	
Lab Code:		SDG No.: _	64378
Lab File ID (Standard): 0412T08W.D		Date Analyzed: _	04/12/11
Instrument ID: Thor		Time Analyzed: _	14:03
GC Column:	ID:	Heated Purge: (Y/N)_	

F	Fluorobenzene (IS)	Chlore	benzene-D5 (I	S) 1,4-Dich	lorobenzene-D	(IS)
Carlotte Communication	AREA #	RT #	AREA #	RT #	AREA #	RT
12 HOUR STD	1748480	6.79	1245180	10.67	840896	12.48
UPPER LIMIT	3496960	7.29	2490360	11.17	1681792	12.98
LOWER LIMIT	874240	6.29	622590	10.17	420448	11.98
SAMPLE						
NO.						
110414A LCS-1WT	1997310	6.79	1458690	10.67	983232	12.48
110414A BLK-1WT	1746430	6.79	1218560	10.67	728064	12.48
AY35519W02 DF5	1724420	6.79	1195010	10.67	700224	12.48
	2 1					
				1		
						-
						_

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Sample Data

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: CS-MW36-LGR(320-332) Lab Sample ID: AY35518 Matrix: Water

% Solids: NA Initial Calibration ID: T110412

Date Received: 13-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1	4	U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		Ü
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		Ü
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.11	1		F
CHLOROMETHANE	0.16	1.3	0.16	1		U

~				
Co	m	mo	120 \$	
UU	\mathbf{H}	HIC	51 I L	3.

Analytical Method: EPA 8260B

Preparatory Method:

5030B

AAB #: 110413AT-154412

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: CS-MW36-LGR(320-332)

Lab Sample ID: AY35518

Matrix: Water

% Solids: NA

Initial Calibration ID: T110412

Date Received: 13-Apr-11

Date Prepared: 13-Apr-11

Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.34	1		F
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	15.45	1		
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1,4	22.91	1		
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1	* - '	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	103	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	83.1	75-125	
SURROGATE: DIBROMOFLUOROMETH	100	75-125	
SURROGATE: TOLUENE-D8 (S)	88.1	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

6.51				
Co	m	m	PT	its.

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: AOC65-SIW-01 Lab Sample ID: AY35519 Matrix: Water

% Solids: NA Initial Calibration ID: T110412

Date Received: 13-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1.2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	- 1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1.3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.37	1		
CHLOROMETHANE	0.16	1.3	0.16	1		U

Comments: J = Estimated value.

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: AOC65-SIW-01 Lab Sample ID: AY35519 Matrix: Water

% Solids: NA Initial Calibration ID: T110412

Date Received: 13-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.64	1		F
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.35	1		F
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	272.71	1		J
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	98.2	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	86.6	75-125	
SURROGATE: DIBROMOFLUOROMETH	98.4	75-125	
SURROGATE: TOLUENE-D8 (S)	91.9	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:	J = Estimated value

Analytical Method: EPA 8260B

Preparatory Method:

5030B

AAB #: 110414AT-154413

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: AOC65-SIW-01

Lab Sample ID: AY35519

Matrix: Water

% Solids: NA

Initial Calibration ID: T110412

Date Received: 13-Apr-11

Date Prepared: 14-Apr-11

Date Analyzed: 14-Apr-11

Concentration Units: ug/L

Analyt	e	MDL	RL	Concentr	ation	Dilution	Confirm	Qualifier
TETRA	CHLOROETHENE	0.30	7.0		289.28	5		1
	Surrogate		Re	covery	Con	trol Limits	Qualif	ier
	SURROGATE: 1,2-DICHLORO	DETHANE-		98.3		69-1	39	
	SURROGATE: 4-BROMOFLU	OROBENZ		87.1		75-1:	25	
	SURROGATE: DIBROMOFLU	OROMETH		97.1		75-12	25	
	SURROGATE; TOLUENE-D8	(S)		92.9		75-13	25	
	Tu days al C	4.3	,		10	1:0	-	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	2 C 2
FLUOROBENZENE (IS)	

~			-	
Co	mi	me	m	C
-u	111		111	o.

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: CS-MW36-LGR(0-142) Lab Sample ID: AY35520 Matrix: Water

% Solids: NA Initial Calibration ID: T110412

Date Received: 13-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1	500	I
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		τ
1,1,2-TCA	0.06	1,0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		U
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	- 1		U
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.44	1		F

C	4.	 224	 -2	

Analytical Method: EPA 8260B Preparatory Method: 5030B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: CS-MW36-LGR(0-142) Lab Sample ID: AY35520 Matrix: Water

% Solids: NA Initial Calibration ID: T110412

Date Received: 13-Apr-11 Date Prepared: 13-Apr-11 Date Analyzed: 13-Apr-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.32	1		F
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		U
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	-1	-	U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1	1	U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1	1.4-	U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	12.64	1		
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	24.93	1		
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	102	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	87.2	75-125	
SURROGATE: DIBROMOFLUOROMETH	97.0	75-125	
SURROGATE: TOLUENE-D8 (S)	92.8	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

-						
	-	-	m	-	4	
1	n	ш	111		111	100

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 6 Initial Calibration

Initials: 0412T11W.D 0412T10W.D 0412T09W.D SDG No: 64/37 F Initial Cal. Date: 04/12/11 Instrument: Thor 0412T06W.D 0412T05W.D 0412T04W.D Lab Name: APPL, Inc. Case No: Matrix: 0412T03W.D

					0.999				0.998																		0.997		966.0			0.999	0.999		
		TM	TM**	TM*	TML	TM	TM	TM*	TML	TM	TM**	MT	MT	TM*	TM	S	TM	TM	s	MT	MT	TM	TM	TM*	MT	MT	TML	TM*	TML	TM		SF	TML	MH	TM
%RSD		8.4	14	11	52	5.8	4.6	9.4	20	6.4	4.0	9.0	8.6	5.5	6.1	7.8	12	7.3	7.5	10	0.9	8.6	9.7	5.9	11	7.0	27	23	26	9.6		17	18	11	42
Avg		0.15	0.27	0.23	0.17	0.18	0.41	0.34	0.54	0.39	0.78	0.44	0.43	0.74	0.16	0.35	0.46	0.47	0.49	0.32	0.57	1.7	0.40	0.49	0.50	0.22	0.51	1.5	0.42	0:30		1.6	0.37	0.27	0.55
100		0.1365	0.2351	0.2282	0.1317		0.4462	0.3486		0.3898	0.7930	0.4948	0.4920	0.7843	0.1634	0.3816	0.5449	0.5182	0.4727	0.3759	0.5822	1.868	0.4447	0.5198	0.5932	0.2386	0.7036		0.5949	0.3346			0.4371	0.2941	0.6397
40		0.1462	0.2294	0.2271	0.1381		0.4171	0.3193		0.3590	0.7342	0.4517	0.4323	0.7164	0.1527	0.3488	0.4928	0.4763	0.4551	0.3401	0.5461	1.665	0.4005	0.4808	0.5251	0.2199	0.6090	1.732	0.5021	0.3062		1.969	0.4082	0.2833	0.5813
50		0.1448	0.2352	0.2306	0.1493	0.1752	0.4045	0.3287	0.4603	0.3802	0.7653	0.4640	0.4382	0.7417	0,1571	0.3424	0.4941	0.4805	0.4616	0.3365	0.5728	1.727	0.4066	0.4929	0.5271	0.2285	0.5920	1.763	0.4708	0.3163		1.829	0.3965	0.2749	0.5379
10		0.1367	0.2319	0.2171	0.1701	0.1703	0.3954	0.3424	0.5017	0.4108	0.8467	0.4966	0.4741	0.8084	0.1680	0.3330	0.5297	0.5113	0.4608	0.3537	0.6426	1.860	0.4377	0.5360	0.5564	0.2549	0.5994	1.894	0,4714	0.3470		1,923	0.4360	0.3104	0.6022
2		0.1311	0.2743	0.2290	0.2036	0.1940	0.3848	0.3107	0.4695	0.3728	0.7913	0.4516	0.4170	0.7396	0.1574	0.3362	0.4467	0.4423	0.4647	0.3066	9009.0	1.694	0.3774	0.5045	0.4953	0.2297	0.4745	1.674	0.3922	0.3158		1.707	0.3782	0.2715	0.4896
2		0.1537	0.2798	0.2311	0.2577	0.1952	0.4200	0.3355	0.5090	0.3777	0.7597	0.4286	0.4205	0.6988	0.1482	0.3332	0.4471	0.4421	0.4870	0.2885	0.5768	1.563	0.3634	0.4832	0.4573	0.2229	0.3876	1.368	0.3063	0.2977		1.501	0.3060	0.2468	0.4338
		0.1588	0.2852	0.2033	0.2949	0.1796	0.4028	0.3329	0.5276	0.4130	0.77717	0.3928	0.3730	0.6843	0.1366	0.3091	0.4067	0.4294	0.4796	0.2877	0.5275	1.462	0.3635	0.4605	0.4253	0.2135	0.3540	1.109	0.3242	0.2602		1.370	0.2905	0.3003	0.5204
0.5		0.1385	0.3316	0.2302	0.0077	0.1920	0.4191	0.3025	0.7462	0.3888	0.7963	0.4175	0.4381	0.7497	0.1646	0.3490	0.3818	0.4790	0.5251	0.3021	0.5514	1.514	0.3768	0.4490	0.4588	0.2011	0.3519	1.019	0.2779	0.2716		1.308	0.2695	0.2426	0.5953
0.3	ISTD	0.1688	0.3121	0.2969			0.3913	0.4118		0.4409	0.7965	0.3860	0.3907	0.7762	0.1575	0.3993	0.4316	0.4266	0.5645	0.2919	0.5488	1.604	0.4733	0.5204	0.4659	0.2138				0.2766	ISTD	1.336		0.2148	
Compound	Fluorobenzene (IS)	Dichlorodifluoromethane	Chloromethane	Vinyl chloride	Bromomethane	Chloroethane				Trans-1,2-DCE	1,1-DCA	Cis-1,2-DCE	2,2-Dichloropropane	Chloroform	Bromochloromethane	Dibromofluoromethane(S)	1,1,1-TCA	1,1-Dichloropropene	1,2-DCA-D4(S)		1,2-DCA	Benzene	TCE	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	Cis-1,3-Dichloropropene	Toluene	Trans-1,3-Dichloropropene	1,1,2-TCA	Chlorobenzene-D5 (IS)	Toluene-D8(S)	1,2-EDB		1-Chlorohexane
	1	TM	TM**	TM*	TMI	TM	TM	TM*	TML	-		_			I.	S	TM	TM	S	TM	T	M	M	M⊥	M T	M	-	±W.	TML	-	+			-	N.
	~	7	က	4	2	9	^	8	6	10	11	12	13	14	15	16	17	18	19	S 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	C

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 6 Initial Calibration

	Case No:				Initi	Initial Cal. Date: 04/12/11	04/12/11							
	Matrix:					Instrument: Thor	Thor					Initials:		-0
L	Compound	0.3	0.5	·	2	2	10	20	40	100	Avg	%RSD		
36 T	TM 1,1,1,2-Tetrachloroethane	0.3239	0.3698	0.3852	0.3509	0.4002	0.4677	0.4107	0.4381	0.4844	0.40	13	MT	
	TML m&p-Xylene		0.5897	0.6320	0.7873	0.9085	1.072	0.9395	0.9983		0.85	22	TML	0.998
38 TI			0.5431	0.5072	0.6498	0.8375	1.024	0.9214	0.9726	1.096	0.82	27	TML	0.998
	TML Styrene	0.6137	0.7521	0.8675	1,187	1.516	1.883	1.685	1.801	1.867	1.4	37	TML	1.000
40 8	SL 4-Bromofluorobenzene(S)	0.5142	0.5050	0.5344	0.6080	0.6613	0.7294	0.7021	0.7744	0.8369	0.65	18	SL	0.996
41 TI	TML 1,3-Dichloropropane	0.5808	0.6564	0.7584	0.7380	0.8325	0.9825	0.8511	0.8806	0.9478	0.80	16	TML	0.999
-	TML Dibromochloromethane		0.2393	0.2817	0.2625	0.3346	0.4047	0.3582	0.3933	0.4418	0.34	21	TML	0.998
43 TI	TM** Chlorobenzene	1.509	1.436	1.362	1.364	1.481	1,623	1.419	1,455	1.594	1.5	6.2	TM**	
44 T	TM* Ethylbenzene		1.805	1.929	2.178	2.456	3.026	2.680	2.816	2.338	2.4	18	TM*	
45 TN	TM**L Bromoform		0.1351	0.1147	0.1382	0.1354	0.1854	0.1652	0.1872	0.2278	0.16	23	TW**L	0.994
46	I (4-Dichlorobenzene-D (IS)	ISTD												
47 T		1	1.652	1.795	2.205	2.893	3.645	3.353	3.594	2.900	2.8	29	TML	0.991
-		0.7672	0.7847	0.7783	0.7111	0.8426	0.8659	0.7376	0.7732	0.8522	62'0	6.7	TM**	
-		0.2163	0.2145	0.2106	0.2387	0.2300	0.2626	0.2229	0.2353	0.2425	0.23	7.2	TM	
-	TML Bromobenzene	0.4667	0.5958	0.5631	0.6442	0.7454	0.8319	0.7020	0.7360	0.7822	29.0	17	TML	0.999
-	TML n-Propylbenzene	2.003	2.190	2.668	3.124	3.501	3.914	3.387	3.633	2.912	3.0	21	TML	0.991
52 T	TML 2-Chlorotoluene	1.849	1.898	2.507	2.806	3.289	3.642	3.162	3.335	3.048	2.8	22	TML	0.998
-			1.427	1.850	2.537	3.058	3.483	3.061	3.290	2.690	2.7	27	TML	0.992
	TML 4-Chlorotoluene		2.153	2.668	3.124	3,501	3.914	3.387	3.633	2.912	3.2	18	TML	0.990
€ 55 T	TML Tert-Butylbenzene		1.379	1.588	1.809	2.240	2.823	2.514	2.742	2.717	2.2	25	TML	1.000
-	TML 1,2,4-Trimethylbenzene		1.285	1.683	2.434	2.992	3.508	3.162	3.392		2.6	33	TML	0.999
-	TML Sec-Butylbenzene		1.858	2.341	2.906	3.448	4.196	3.771	4.130		3.2	28	TML	0.998
58 T	1	1.310	1.596	1.895	2.230	2.713	3,261	2.886	3.188	2.613	2.4	29	TML	0.993
	TM 1,3-DCB	1.145	1.818	1.645	1.434	1.584	1.753	1.515	1.602	1.753	1.6	13	TM	
-	TM 1,4-DCB	1.925	1.818	1.645	1.615	1.643	1.830	1.551	1.664	1.807	1.7	7.3	MT	
_	TML n-Butylbenzene		1.793	2.081	2.357	2.936	3.632	3.319	3.742		2.8	27	TML	166.0
Ш		1.274	1.237	1,340	1.449	1.596	1,717	1.486	1.547	1.709	1.5	12	MT	
63 T	TML 1,2-Dibromo-3-chloropropane			0.0801	0.0657	0.0805	0.0922	0.0896	0.1050	0.1196	60'0	20	TML	266.0
Н		0.6510	0.5666	0.6100	0.6028	0.7452	0.9102	0.8435	0.9555	1.069	0.77	23	TML	0.997
65 1	TM Hexachlorobutadiene	0.3308	0.2766	0.2835	0.3255	0.3279	0.3758	0.3289	0.3618	0.3919	0.33	12	MT	
		0.9574	0.9613	0.9361	1.136	1.828	2.382	2.209	2.493	2.398	1.7	41	TML	0.999
F T	TML 1,2,3-Trichlorobenzene	0.6499	0.5095	0.5933	0.6121	0.8096	0.9363	0.8254	0.8926	0.9703	0.76	22	TML	0.999
69			Ī											
70														

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64378
Case No:	Date Analyzed: 04/12/11
Matrix:	Instrument: Thor
	Initial Cal. Date: 04/12/11
	Data File: 0412T16W.D

		Compound	MEAN	CCRF	%D		%Drif
1		Fluorobenzene (IS)	ISTD			- 1	
	TM	Dichlorodifluoromethane	0.1461	0.1451	0.71	TM	
	TM**	Chloromethane	0.2683	0.2291	15	TM**	
4	TM*	Vinyl chloride	0.2326	0.2127	8.6	TM*	
5	TML	Bromomethane	0.1691	0.1681	0.59	TML	10.0
	TM	Chloroethane	0.1844	0.1700	7.8	TM	
	TM	Trichlorofluoromethane	0.4090	0.3791	7.3	TM	
	TM*	1,1-DCE	0.3369	0.3002	11	TM*	
	TML	Methylene chloride	0.5357	0.4263	20	TML	10
	TM	Trans-1,2-DCE	0.3926	0.3529	10	TM	
	TM**	1,1-DCA	0.7839	0.7168	8.6	TM**	
	TM	Cis-1,2-DCE	0.4426	0.4307	2.7	TM	
	TM	2,2-Dichloropropane	0.4307	0.3495	19	TM	
	TM*	Chloroform	0.7444	0.6737	9.5	TM*	
	TM	Bromochloromethane	0.1562	0.1424	8.8	TM	
16		Dibromofluoromethane(S)	0.3480	0.3528	1.4	s	
	TM	1,1,1-TCA	0.4639	0.4457	3.9	TM	
_	TM	1,1-Dichloropropene	0.4673	0.4276	8.5	TM	
19		1,2-DCA-D4(S)	0.4857	0.4659	4.1	S	
	TM	Carbon Tetrachloride	0.3203	0.2957	7.7	TM	
	TM	1,2-DCA	0.5721	0.5286	7.6	TM	
	TM	Benzene	1.662	1.572	5.4	TM	
	TM	TCE	0,4049	0.3874	4.3	TM	
	TM*	1,2-Dichloropropane	0.4941	0.4654	5.8	TM*	
	TM	Bromodichloromethane	0.5005	0.4777	4.6	TM	
	TM	Dibromomethane	0.2248	0.2118	5.8	TM	
	TML	Cis-1,3-Dichloropropene	0.5090	0.4969	2.4	TML	1
	TM*	Toluene	1.508	1.619	7.3	TM*	-
	TML	Trans-1,3-Dichloropropene	0.4175	0.3854	7.7	TML	1
	TM	1,1,2-TCA	0.3029	0.2928	3.3	TM	
31	I	Chlorobenzene-D5 (IS)	ISTD			1	
-	SL	Toluene-D8(S)	1.618	2.095	29	SL	9.
	TML	1.2-EDB	0.3653	0.3832	4.9	TML	4.
	TM	Tetrachloroethene	0.2710	0.2628	3.0	TM	
	TM	1-Chlorohexane	0.5500	0.4872	11	TM	
	TM	1,1,1,2-Tetrachloroethane	0.4034	0.3982	1.3	TM	
	TML	m&p-Xylene	0.8468	0.8997	6.2	TML	7.
_	TML	o-Xylene	0,8189	0.8477	3.5	TML	8.
	TML	Styrene	1.353	1.583	17	TML	8.
	SL	4-Bromofluorobenzene(S)	0.6517	0.7664	18	SL	0.1

Average 8.0

VOLATILE ORGANIC ANALYSIS BY EPA METHOD 8260B

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64378
Case No:	Date Analyzed: 04/12/11
Matrix: 0	Instrument: Thor
	Cal. Date: 04/12/11
	Data File: 0412T16W.D

	1	Compound	MEAN	CCRF	%D		%Drift
41	TML	1,3-Dichloropropane	0.8031	0.8319	3.6	TML	6.0
	TML	Dibromochloromethane	0.3395	0.3373	0.64	TML	9.2
	TM**	Chlorobenzene	1.471	1.411	4.1	TM**	
44	TM*	Ethylbenzene	2,403	2.498	3.9	TM*	
		Bromoform	0.1611	0.1491	7.5	TM**L	12
46		1,4-Dichlorobenzene-D (IS)	ISTD			1	
47	TML	Isopropylbenzene	2.755	3.152	14	TML	6.6
	TM**	1,1,2,2-Tetrachloroethane	0.7903	0.7206	8.8	TM**	
	TM	1,2,3-Trichloropropane	0.2304	0.2378	3.2	TM	
	TML	Bromobenzene	0.6741	0.7260	7.7	TML	2.2
	TML	n-Propylbenzene	3.037	3.383	11	TML	1.4
		2-Chlorotoluene	2.837	3.196	13	TML	1.3
		1,3,5-Trimethylbenzene	2.675	2.982	11	TML	5.6
	TML	4-Chlorotoluene	3.161	3.383	7.0	TML	4.0
	TML	Tert-Butylbenzene	2.227	2.404	8.0	TML	7.1
		1,2,4-Trimethylbenzene	2.637	3.055	16	TML	5.6
	TML	Sec-Butylbenzene	3.236	3.594	11	TML	7.7
	TML	p-Isopropyltoluene	2,410	2.807	16	TML	4.6
	TM	1,3-DCB	1.583	1.519	4.1	TM	
	TM	1,4-DCB	1.722	1.590	7.7	TM	
		n-Butylbenzene	2.837	3.055	7.7	TML	11
	TM	1,2-DCB	1.484	1.472	0.80	TM	
		1,2-Dibromo-3-chloropropane	0.0904	0.0856	5.2	TML	5.7
	TML	1,2,4-Trichlorobenzene	0.7726	0.7811	1.1	TML	13
	TM	Hexachlorobutadiene	0.3336	0.3286	1.5	TM	
		Naphthalene	1.700	2.060	21	TML	9.2
	TML	1,2,3-Trichlorobenzene	0.7554	0.8078	6.9	TML	7.2
68							
69							
70	,			N			
71							
72			-71-				
73			7				
74							
75							
76							
77							
78							
79							
80							

Average 7.8

EPA METHOD 8260B Volatile Organic Compounds Raw Data

Analytical Method: EPA 8260B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110413AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1.1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1.2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1.2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1.2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1.3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1.4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2.2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1,2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments: ARF: 64378, Sample: AY35518

Analytical Method: EPA 8260B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110413AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q	
HEXACHLOROBUTADIENE	< RL	1.1	U	
ISOPROPYLBENZENE	< RL	0.5	U	
M&P-XYLENE	< RL	0.5	U	
METHYLENE CHLORIDE	< RL	1.0	U	
N-BUTYLBENZENE	< RL	1.1	U	
N-PROPYLBENZENE	< RL	0.4	U	
NAPHTHALENE	< RL	0.4	U	
O-XYLENE	< RL	1.1	U	
P-ISOPROPYLTOLUENE	< RL	1.2	U	
SEC-BUTYLBENZENE	< RL	1.3	U	
STYRENE	< RL	0.4	U	
TCE	< RL	1.0	U	
TERT-BUTYLBENZENE	< RL	1.4	U	
TETRACHLOROETHENE	< RL	1.4	U	
TOLUENE	< RL	1,1	U	
TRANS-1,2-DCE	< RL	0.6	U	
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U	
TRICHLOROFLUOROMETHANE	< RL	0.8	U	
VINYL CHLORIDE	< RL	1.1	U	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	101	69-139	
SURROGATE: 4-BROMOFLUOROBE	86.8	75-125	
SURROGATE: DIBROMOFLUOROME	93.6	75-125	
SURROGATE: TOLUENE-D8 (S)	94.1	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64378, Sample: AY35518

Analytical Method: EPA 8260B AAB #: 110414AT-154413

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110414AT-BLK

Initial Calibration ID: T110412

Analyte	Method Blank	RL	Q	
TETRACHLOROETHENE	< RL	1.4	U	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	97.7	69-139	
SURROGATE: 4-BROMOFLUOROBE	85.7	75-125	
SURROGATE: DIBROMOFLUOROME	95.3	75-125	
SURROGATE: TOLUENE-D8 (S)	91.4	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64378, Sample: AY35519

Analytical Method: EPA 8260B

AAB #: 110413AT-154412

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110413AT LCS

Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	9.65	96.5	72-125	
1,1,1-TCA	10.00	10.22	102	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	10.18	102	74-125	
1,1,2-TCA	10.00	9.59	95.9	75-127	
1,1-DCA	10.00	9.67	96.7	75-125	
1,1-DCE	10.00	9.57	95.7	75-125	
1,1-DICHLOROPROPENE	10.00	9.78	97.8	75-125	1: 1
1,2,3-TRICHLOROBENZENE	10.00	10.13	101	75-137	
1,2,3-TRICHLOROPROPANE	10.00	10.47	105	75-125	-I
1,2,4-TRICHLOROBENZENE	10.00	9.41	94.1	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.40	104	75-125	
1,2-DCA	10.00	9.95	99.5	68-127	_
1,2-DCB	10.00	10.68	107	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	9.02	90.2	59-125	1
1,2-DICHLOROPROPANE	10.00	9.90	99.0	70-125	
1.2-EDB	10.00	9.04	90.4	75-125	7
1,3,5-TRIMETHYLBENZENE	10.00	10.57	106	72-125	7 = 7
1,3-DCB	10.00	10.38	104	75-125	
1,3-DICHLOROPROPANE	10.00	9.27	92.7	75-125	
1,4-DCB	10.00	10.10	101	75-125	
1-CHLOROHEXANE	10.00	9.39	93.9	75-125	
2,2-DICHLOROPROPANE	10.00	10.11	101	75-125	
2-CHLOROTOLUENE	10.00	11.01	110	73-125	
4-CHLOROTOLUENE	10.00	10.57	106	74-125	
BENZENE	10.00	9.98	99.8	75-125	
BROMOBENZENE	10.00	10.45	105	75-125	
BROMOCHLOROMETHANE	10.00	9.69	96.9	73-125	
BROMODICHLOROMETHANE	10.00	9.73	97.3	75-125	
BROMOFORM	10.00	8.66	86.6	75-125	
BROMOMETHANE	10.00	11.25	113	72-125	
CARBON TETRACHLORIDE	10.00	10.09	101	62-125	= =
CHLOROBENZENE	10.00	9.65	96.5	75-125	
CHLOROETHANE	10.00	9.30	93.0	65-125	
CHLOROFORM	10.00	9.67	96.7	74-125	
CHLOROMETHANE	10.00	8.28	82.8	75-125	
CIS-1,2-DCE	10.00	9.98	99.8	75-125	_
CIS-1,3-DICHLOROPROPENE	10.00	9.08	90.8	74-125	
DIBROMOCHLOROMETHANE	10.00	8.78	87.8	73-125	_
DIBROMOMETHANE	10.00	9.89	98.9	69-127	
DICHLORODIFLUOROMETHANE	10.00	9.45	94.5	72-125	

Comments:

Analytical Method: EPA 8260B AAB #: 110413AT-154412

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110413AT LCS Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	10.62	106	75-125	
HEXACHLOROBUTADIENE	10.00	10.88	109	75-125	
ISOPROPYLBENZENE	10.00	10.35	104	75-125	
M&P-XYLENE	20.00	18.84	94.2	75-125	
METHYLENE CHLORIDE	10.00	9.15	91.5	75-125	
N-BUTYLBENZENE	10.00	10.01	100	75-125	
N-PROPYLBENZENE	10.00	10.83	108	75-125	
NAPHTHALENE	10.00	9.51	95.1	75-125	
O-XYLENE	10.00	9.27	92.7	75-125	
P-ISOPROPYLTOLUENE	10.00	10.49	105	75-125	
SEC-BUTYLBENZENE	10.00	10.30	103	75-125	
STYRENE	10.00	9.04	90.4	75-125	
TCE	10.00	9.44	94.4	71-125	
TERT-BUTYLBENZENE	10.00	10.36	104	75-125	
TETRACHLOROETHENE	10.00	9.98	99.8	71-125	
TOLUENE	10.00	11.21	112	74-125	
TRANS-1,2-DCE	10.00	9.45	94.5	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	8.86	88.6	66-125	
TRICHLOROFLUOROMETHANE	10.00	8.92	89.2	67-125	
VINYL CHLORIDE	10.00	9.09	90.9	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	94.8	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	97.2	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	106	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 110414AT-154413

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110414AT LCS

Initial Calibration ID: T110412

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
TETRACHLOROETHENE	10.00	10.44	104	71-125	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	96.8	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	103	75-125	
SURROGATE: DIBROMOFLUOROMETH	111	75-125	
SURROGATE: TOLUENE-D8 (S)	112	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	21

Comments:

Injection Log

Directory: M:\THOR\DATA\T110412\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected	
1	1	0412T00T.D	1	20ug/mL BFB Std 03-23-11A	2uL	12 Apr 11 10:	:41
2	3	0412T03W.D	1	Vol Std 04-12-11@0.3ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 11:	:54
3	4	0412T04W.D	1	Vol Std 04-12-11@0.5ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 12:	:19
4	5	0412T05W.D	1	Vol Std 04-12-11@1.0ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 12:	:45
5	6	0412T06W.D	1	Vol Std 04-12-11@2.0ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 13:	:11
6	7	0412T07W.D	1	Vol Std 04-12-11@5.0ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 13:	:37
7	8	0412T08W.D	1	Vol Std 04-12-11@10ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 14:	:03
8	9	0412T09W.D	1	Vol Std 04-12-11@20ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 14:	:29
9	10	0412T10W.D	1	Vol Std 04-12-11@40ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 14:	:55
10	11	0412T11W.D	1	Vol Std 04-12-11@100ug/L	10ml w/5ul of IS: 03-02-11C	12 Apr 11 15:	:21
11	15	0412T15W.D	1	20ug/mL BFB Std 03-23-11A	2ul	12 Apr 11 17:	:56
12	16	0412T16W.D	1	110412A LCS-1WT(SS)	10ml w/5ul of IS&S: 03-02-1	12 Apr 11 18:	:22
13	1	0413T00T.D	1	20ug/mL BFB Std 03-23-11A	2uL	13 Apr 11 9:5	50
14	4	0413T04W.D	1	110413A LCS-1WT	10ml w/5ul of IS&S: 03-02-1	13 Apr 11 11:	:31
15	7	0413T07W.D	1	110413A BLK-1WT	10ml w/5ul of IS&S: 03-02-1	13 Apr 11 13:	:40
16	15	0413T15W.D	1	AY35518W01	10ml w/5ul of IS&S: 03-02-1	13 Apr 11 17:	.08
17	16	0413T16W.D	1	AY35519W01	10ml w/5ul of IS&S: 03-02-1	13 Apr 11 17:	:33
18	17	0413T17W.D	1	AY35520W01	10ml w/5ul of IS&S: 03-02-1	13 Apr 11 17:	:59
19	1	0414T00T.D	1	20ug/mL BFB Std 03-23-11A	2uL	14 Apr 11 8:3	31
20	4	0414T04W.D	1	110414A LCS-1WT	10ml w/5ul of IS&S: 03-02-1	14 Apr 11 10:	:10
21	6	0414T06W.D	1	110414A BLK-1WT	10ml w/5ul of IS&S: 03-02-1		
22	7	0414T07W.D	5	AY35519W02 DF5	10ml w/5ul of IS&S: 03-02-1	14 Apr 11 12:	19

 $P s_{\widehat{47}} 1$ 04/22/11

Laboratory Report

Parsons

rec. 7/8/2011

CSSA

#63

Project #: 747781.04000 CSSA

ARF: 64923

Samples collected: June 15, 2011

APPL, Inc.

EPA METHOD 8260B Volatile Organic Compounds

Data Validation Package for

EPA METHOD 8260B Volatile Organic Compounds

TABLE OF CONTENTS

LABORATORY NAME: <u>APPL, Inc.</u>

Case Narrative	4	
Chain of Custody and ARF	1	
QC Summary	13	
Sample Data	40	
Calibration Data	46	
Raw Data	62	

EPA METHOD 8260B Volatile Organic Compounds Case Narrative

Volatile Organic Compounds EPA Method 8260B Case Narrative

ARF: 64923

Project: 747781.04000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)
Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The samples were received June 17, 2011, at 3.0°C. The samples were assigned Analytical Request Form (ARF) number 64923. The sample numbers and requested analysis were compared to the chain of custody. No exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
B3-EXW03-WC02	AY39993	WATER	06/15/11	06/17/11
B3-EXW03-WC01	AY39994	SOIL	06/15/11	06/17/11

Percent moisture was determined using CLP 4.0.

Sample Preparation:

The water sample was purged according to EPA method 5030B and the soil sample was purged according to EPA method 5035. All holding times were met.

Sample Analysis Information:

The samples were analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

Quality Control/Assurance

Spike Recovery

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard was used for the LCSs. All recoveries were acceptable.

No sample was designated by the client for MS/MSD analysis.

Surrogates

All surrogate recoveries met acceptance criteria.

Method blanks

No target compound was detected above the reporting limit in the method blanks.

Calibration

Initial and continuing calibrations were analyzed according to the method. All acceptance criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No analytical exception is noted. All data are acceptable.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Leonard Fong, Ph.D, Laboratory Director / Date

EPA METHOD 8260B Volatile Organic Compounds Chain of Custody and ARF

Client:	Parsons	Received by: TBV	
Address:	8000 Centre Park Drive Ste 200	Date Received: 06/17/11	Time: 10:25
	Austin, TX 78754	Delivered by: FED EX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N):	Υ
Phone: 5	12-719-6092 Fax: 512-719-6099	Chest Temp(s): 3.0°C	
Job: 7477	781.04000 CSSA	Color: VOA	
PO #: 74	47780.30002	Samples Chilled until Placed in	Refrig/Freezer: Y
Chain of C	Custody (Y/N): Y # 061611APPFB	Project Manager: Diane And	erson TA
RAD Scre	en (Y/N): Y pH (Y/N): N	QC Report Type: DVP3/AFC	EE/ERPIMS/TX
Turn Arou	nd Type: 3 DAYS /	Due Date: 06	6/20/11 /

Comments:

pdf ARF to Tammy & Pam; send 2 DVP3 to Tammy

Data screening project: analyze samples ONCE; report deficiencies; do NOT re-analyze

Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested.

Use AFCEE forms with AFCEE flagging to report sample & QC data only.

APPL forms for everything else and APPL DVP9.

EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

6-17 Sent ARF

Sample Distribution: VOA: 1-\$826AW, 1-\$826AF			Charges	Invoice To:
	ettab: 1-MOIST			Austin, TX 78754-5140 Attn: Ellen Felfe
-	Client ID	APPL ID	Sampled	Analyses Requested
1.	B3-EXW03-WC02	AY39993W	06/15/11 14:40	\$826AW
2.	B3-EXW03-WC01	2V30004S	06/15/11 14:45	\$826AF, MOIST

Sample	Container Type	Count	pН
AY39993	13 VOAs - HCL	3	NA
AY39994	21 8oz Jar	1	NA

Sample Container Type

Count pH

Receiving

From:

"Renee Patterson" <rpatterson@applinc.com>

To:

<receiving@applinc.com>

Cc:

"'Chue Moua" <cmoua@applinc.com>

Sent:

Friday, June 17, 2011 9:34 AM

Attach:

Subject:

061611APPFB_SAMPLES.TXT; 061611_APPL.pdf; 061611.pdf; 061611APPFB_SAMPLES.TXT

Tom,

FW: Cooler

note change in TAT for two samples.

Thank you, Renée

From: Chang, Tammy [mailto:Tammy.Chang@parsons.com]

Sent: Friday, June 17, 2011 9:24 AM

To: Ford, Pamela

Cc: Jeremy Hale; Robert Wise; Renee Patterson

Subject: FW: Cooler

Pam:

Can you help Jeremy on this one?

Jeremy and Renee:

Also, on the COC with only three samples, the first one has normal TAT and the other two (WC samples) require 3 days TAT.

Tammy

From: Jeremy Hale [mailto:jeremy@applinc.com]

Sent: Friday, June 17, 2011 11:19 AM

To: Chang, Tammy

Cc: 'rwise'

Subject: FW: Cooler

Hi Tammy,

We noticed that these two files had the same name which stood out as a bit odd. Is one supposed to be "A" or maybe they 17th by chance?

Thanks,

-Jeremy

From: Chang, Tammy [mailto:Tammy.Chang@parsons.com]

Sent: Thursday, June 16, 2011 1:21 PM

To: Renee Patterson; Diane Anderson; Robert Wise; Jeremy Hale

Subject: FW: Cooler

From: Bouch, Julie

LOGID: B3-EXW04 LOGDATE: 6/15/2011 MATRIX: WG TBLOT: γηρημιαλ Analysis	COC ID: 061611APPFB Relinquish_Date: 6/16/2011 Cooler ID: B Project Location: CSSA Relinquished_By: JDB LabCode: APPF Job Number: 747781.04000 Relinquish_Time: 5:00 PM Carrier: FedEx Creation Date: 6/16/2011 Collection Team: SP-BM Airbill Carrier: 875893858772 Task Manager Scott Pearson Sample Data Type Screening TAT:
lysis Required: 260B VOC Full List	Sampler(s): WIS WARTING

64923

SED:

FLDSAMPID B3-EXW04_061511_N1415

EBLOT: ABLOT:

Containers:

Page 1 of 1 Time Time_

1	COOLER RECEIPT FO	RM .	1
1) Project: 7	1/21,04000 CSSA	Date Received:	117/11
2) Coolers:	Number of Coolers:		
3) (ES) NO	Were coolers and samples screened for radioactive	vity?	1
4) YES NO	Were custody seals on outside of cooler? How ma	iny?Date on seal?_6	116/11
5)	Name on seal?) (2 / 26 (10,700	
6) (YES) NO NA	Were custody seals unbroken and intact at the time	e of arrival?	10/16
7) YES NO	Did the cooler come with a shipping slip (air bill, et	c.)? Carrier name: Ful Ex &	758-6117/11
8)	Solitablished and transfer of the solitable and	3/	
9) YES NO NA	Was the shipping slip scanned into the database?		
10) YES NO (NA	Olf cooler belongs to APPL, has it been longed into	the ice chest databases	
11) Describe typ	be of packing in cooler (bubble wrap, popcorn, type	of ice, etc.): Bubble wrap,	wet ice.
12) YES NO NA	A For hand delivered samples was sufficient ice pres	sent to start the cooling process?	
13) (ES NO	was a temperature plank included in the cooler?		
14) Serial number	er of certified NIST thermometer used: #39	Correction factor:	de
15) Cooler temp	(s): 1) 3.0(2) 3) 4) 5)		8)
Chain of custo	dy:		_0)
16) (ES) NO	Was a chain of custody received?	e-	a
17) (ES NO	Were the custody papers signed in the appropriate	places?	
18) (YES NO	Was the project identifiable from custody papers?	Place.	000
19) (ES NO	Did the chain of custody include date and time of s	ampling?	MA
20) (ES NO	Is location where sample was taken listed on the c	hain of custody?	The second
Sample Labels:	The same of the sa	nam or ouslody:	5 0
21) (YES NO	Were container labels in good condition?		1 2 3
22) VES NO	Was the client ID on the label?		7.5
23) (ES NO	Was the date of sampling on the label?		
24) (ES)NO	Was the time of sampling on the label?		99
25) (YES) NO	Did all container labels agree with custody papers?		E
Sample Contain	lers		Person Collecting Sample
26) (ES NO	Were all containers sealed in separate bags?		ig
27) (ES) NO	Did all containers arrive unbroken?		ect
28) YES (NO	Was there any leakage from samples?		5 5
29) YES (NO)	Were any of the lids cracked or broken?		5
30) (ES NO	Were correct containers used for the tests indicate	do	l size
31) (ES) NO	Was a sufficient amount of sample sent for tests in	diested?	4 6
32) YES NONA	Were hubbles present in volatile camples? If you	bo following were	- L
Larger than a	Were bubbles present in volatile samples? If yes,	ine following were received with a	ir bubbles:
Smaller than		13	
Preservation &			
33) VES NO NA	Was a sufficient amount of holding time remaining	to analyze the servet - a	
34) VES NO NA	Do the sample containers contain the same preser	to analyze the samples?	52.0
35) VES NO LA	Mae the pH taken of all non VOA presented come	valive as what is stated on the CC	C?
36) VEC NOWN	Was the pH taken of all non-VOA preserved samp	es and written on the sample con	tainer?
37) VESAIONA	Was the pH of acid preserved non-VOA samples < 2 &	sodium hydroxide preserved samples	> 10?
30) VECKIONIA	Unpreserved VOA Vials received?	PER N	
_	Are unpreserved VOA vials noted in the ADD TEST		
Lab notified if pH w	vas not adequate:		
Deticiencies:			
Signature of per-	connel receiving complex.	0	
Signature of pers	connel receiving samples:	Second reviewer:	
Name of client as	wiffod:	Date and Time of notification	n:
Information diver	otified:	Date and Time of notification	1:
iniornation given	to oligin.		
		by whom (Initials):	

EPA METHOD 8260B Volatile Organic Compounds QC Summary

Analytical Method: EPA 8260B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110617AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1.1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	· U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B AAB #: 110617AT-156223

Lab Name: APPL, Inc Contract #: 2010*1286022*000
Concentration Units: ug/L Method Blank ID: 110617AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	U
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	U
STYRENE	< RL	0.4	U
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	U
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	105	69-139	
SURROGATE: 4-BROMOFLUOROBE	96.5	75-125	
SURROGATE: DIBROMOFLUOROME	103	75-125	
SURROGATE: TOLUENE-D8 (S)	99.6	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B

AAB #: 110619AT-156278

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110619AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank	RL	Q
CIS-1,2-DCE	< RL	1.2	U
TCE	< RL	1.0	U
TETRACHLOROETHENE	< RL	1.4	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	110	69-139	
SURROGATE: 4-BROMOFLUOROBE	95.6	75-125	6,00
SURROGATE: DIBROMOFLUOROME	104	75-125	
SURROGATE: TOLUENE-D8 (S)	99.1	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B

AAB #: 110620AS-156276

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110620AS-BLK

Initial Calibration ID: S110620

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64923, Sample: AY39994

Analytical Method: EPA 8260B AAB #: 110620AS-156276

Lab Name: APPL, Inc Contract #: 2010*1286022*000
Concentration Units: mg/kg Method Blank ID: 110620AS-BLK

Initial Calibration ID: S110620

Analyte	Method Blank	RL	Q	
HEXACHLOROBUTADIENE	< RL	0.005	U	
ISOPROPYLBENZENE	< RL	0.008	U	
M&P-XYLENE	< RL	0.007	U	
METHYLENE CHLORIDE	< RL	0.005	U	
N-BUTYLBENZENE	< RL	0.005	U	
N-PROPYLBENZENE	< RL	0.002	U	
NAPHTHALENE	< RL	0.020	U	
O-XYLENE	< RL	0.005	U	
P-ISOPROPYLTOLUENE	< RL	0.006	U	
SEC-BUTYLBENZENE	< RL	0.007	U	
STYRENE	< RL	0.002	U	
TCE	< RL	0.010	U	
TERT-BUTYLBENZENE	< RL	0.007	U	
TETRACHLOROETHENE	< RL	0.007	U	
TOLUENE	< RL	0.005	U	
TRANS-1,2-DCE	< RL	0.003	U	
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U	
TRICHLOROFLUOROMETHANE	< RL	0.004	U	
VINYL CHLORIDE	< RL	0.009	U	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	97.9	52-149	
SURROGATE: 4-BROMOFLUOROBE	92.9	65-135	
SURROGATE: DIBROMOFLUOROME	97.3	65-135	
SURROGATE: TOLUENE-D8 (S)	101	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64923, Sample: AY39994

Surrogate Recovery

Lab Name: APPL, Inc.	SDG No: 64923	
Case No: 64923	Date Analyzed: 06/20/11	
Matrix: SOIL	Instrument: Sweetpea	

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110620AS-LCS	Lab Control Spike	101	99.1
110620AS-BLK	Blank	97.9	92.9
AY39994	B3-EXW03-WC01	95.6	95.2

Comments: Batch: #826AF-110620AS

Surrogate Recovery

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/20/11

Matrix: SOIL

Instrument: Sweetpea

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110620AS-LCS	Lab Control Spike	101	104
110620AS-BLK	Blank	97.3	101
AY39994	B3-EXW03-WC01	97.3	101

Comments: Batch: #826AF-110620AS

Surrogate Recovery

Lab Name: APPL, Inc.
Case No: 64923

Matrix: WATER

SDG No: 64923

Date Analyzed: 06/17/11

Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110617AT-LCS	Lab Control Spike	91.2	110
110617AT-BLK	Blank	105	96.5
AY39993	B3-EXW03-WC02	104	94.7

Comments: Batch: #826AW-110617AT

Surrogate Recovery

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/17/11

Matrix: WATER

Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110617AT-LCS	Lab Control Spike	94.5	103
110617AT-BLK	Blank	103	99.6
AY39993	B3-EXW03-WC02	100	97.7

Comments: Batch: #826AW-110617AT

Surrogate Recovery

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/20/11

Matrix: WATER

Instrument: Thor

APPL ID.	Client Sample No.	SURROGATE: 1,2- DICHLOROETHANE-D4 (S)	SURROGATE: 4- BROMOFLUOROBENZENE (S)
110619AT-LCS	Lab Control Spike	100	116
110619AT-BLK	Blank	110	95.6
AY39993	B3-EXW03-WC02	108	95.9

Comments: Batch: #826AW-110619AT

Surrogate Recovery

SDG No: 64923	
Date Analyzed: 06/20/11	
Instrument: Thor	
	Date Analyzed: 06/20/11

APPL ID.	Client Sample No.	SURROGATE: DIBROMOFLUOROMETHANE (S)	SURROGATE: TOLUENE-D8 (S)
110619AT-LCS	Lab Control Spike	101	105
110619AT-BLK	Blank	104	99.1
AY39993	B3-EXW03-WC02	108	97.5

Comments: Batch: #826AW-110619AT

Analytical Method: EPA 8260B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110617AT LCS

Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.27	103	72-125	-
1,1,1-TCA	10.00	10.21	102	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	9.40	94.0	74-125	
1,1,2-TCA	10.00	9.42	94.2	75-127	
1,1-DCA	10.00	10.74	107	75-125	
1,1-DCE	10.00	9.54	95.4	75-125	
1,1-DICHLOROPROPENE	10.00	9,56	95.6	75-125	enothine)
1,2,3-TRICHLOROBENZENE	10.00	9.67	96.7	75-137	
1,2,3-TRICHLOROPROPANE	10.00	9.87	98.7	75-125	
1,2,4-TRICHLOROBENZENE	10.00	10.25	103	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.02	100	75-125	
1,2-DCA	10.00	9.36	93.6	68-127	
1,2-DCB	10.00	10.72	107	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	9.61	96.1	59-125	
1,2-DICHLOROPROPANE	10.00	9.49	94.9	70-125	
1,2-EDB	10.00	10.35	104	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.35	104	72-125	
1,3-DCB	10.00	10.62	106	75-125	-
1,3-DICHLOROPROPANE	10.00	10.51	105	75-125	
1,4-DCB	10.00	9.46	94.6	75-125	
I-CHLOROHEXANE	10.00	9.83	98.3	75-125	**************************************
2,2-DICHLOROPROPANE	10.00	9.41	94.1	75-125	
2-CHLOROTOLUENE	10.00	10.15	102	73-125	
4-CHLOROTOLUENE	10.00	10.13	101	74-125	
BENZENE	10.00	10.57	106	75-125	
BROMOBENZENE	10.00	10.02	100	75-125	
BROMOCHLOROMETHANE	10.00	9.75	97.5	73-125	ero se
BROMODICHLOROMETHANE	10.00	9.48	94.8	75-125	
BROMOFORM	10.00	9.80	98.0	75-125	etter loca
BROMOMETHANE	10.00	9.79	97.9	72-125	_
CARBON TETRACHLORIDE	10.00	10.06	101	62-125	-
CHLOROBENZENE	10.00	10.10	101	75-125	
CHLOROETHANE	10.00	10.58	106	65-125	
CHLOROFORM	10.00	9.67	96.7	74-125	_
CHLOROMETHANE	10.00	9.29	92.9	75-125	
CIS-1,2-DCE	10.00	10.05	101	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.11	91.1	74-125	
DIBROMOCHLOROMETHANE	10.00	9.80	98.0	73-125	
DIBROMOMETHANE	10.00	9.37	93.7	69-127	
DICHLORODIFLUOROMETHANE	10.00	9.83	98.3	72-125	-

Comments:

Analytical Method: EPA 8260B AAB #: 110617AT-156223

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110617AT LCS Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	11.42	114	75-125	
HEXACHLOROBUTADIENE	10.00	10.26	103	75-125	-
ISOPROPYLBENZENE	10.00	9.78	97.8	75-125	
M&P-XYLENE	20.00	21.15	106	75-125	
METHYLENE CHLORIDE	10.00	9.24	92.4	75-125	
N-BUTYLBENZENE	10.00	9.79	97.9	75-125	
N-PROPYLBENZENE	10.00	10.04	100	75-125	
NAPHTHALENE	10.00	8.26	82.6	75-125	
O-XYLENE	10.00	9.82	98.2	75-125	
P-ISOPROPYLTOLUENE	10.00	9.92	99.2	75-125	
SEC-BUTYLBENZENE	10.00	10.12	101	75-125	
STYRENE	10.00	10.04	100	75-125	
TCE	10.00	10.06	101	71-125	
TERT-BUTYLBENZENE	10.00	10.96	110	75-125	
TETRACHLOROETHENE	10.00	10.90	109	71-125	
TOLUENE	10.00	10.88	109	74-125	
TRANS-1,2-DCE	10.00	9.86	98.6	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	8.82	88.2	66-125	
TRICHLOROFLUOROMETHANE	10.00	9.00	90.0	67-125	
VINYL CHLORIDE	10.00	10.21	102	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	91.1	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	111	75-125	
SURROGATE: DIBROMOFLUOROMETH	94.6	75-125	
SURROGATE: TOLUENE-D8 (S)	103	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 110619AT-156278

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110619AT LCS

Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
CIS-1,2-DCE	10.00	10.66	107	75-125	
TCE	10.00	10.15	102	71-125	
TETRACHLOROETHENE	10.00	11.39	114	71-125	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	100	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	116	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	105	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 110620AS-156276

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110620AS LCS

Initial Calibration ID: S110620

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0487	97.4	62-125	
1,1,1-TCA	0.0500	0.0470	94.0	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0494	98.8	64-135	
1,1,2-TCA	0.0500	0.0539	108	65-135	and General Char
1,1-DCA	0.0500	0.0506	101	62-135	
1,1-DCE	0.0500	0.0457	91.4	65-135	-
1,1-DICHLOROPROPENE	0.0500	0.0460	92.0	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0445	89.0	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.049	98.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0445	89.0	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0452	90.4	65-135	
1,2-DCA	0.0500	0.0514	103	58-137	
1,2-DCB	0.0500	0.0454	90.8	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.048	96.0	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0527	105	60-135	
1,2-EDB	0.0500	0.0505	101	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0444	88.8	62-135	
1,3-DCB	0.0500	0.0433	86.6	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0507	101	65-135	
1,4-DCB	0.0500	0.0455	91.0	65-135	
1-CHLOROHEXANE	0.0500	0.0415	83.0	65-135	
2,2-DICHLOROPROPANE	0.050	0.048	96.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0454	90.8	63-135	
4-CHLOROTOLUENE	0.0500	0.0441	88.2	64-135	40-10-
BENZENE	0.0500	0.0484	96.8	65-135	el lee
BROMOBENZENE	0.0500	0.0470	94.0	65-135	
BROMOCHLOROMETHANE	0.0500	0.0544	109	63-135	
BROMODICHLOROMETHANE	0.0500	0.0536	107	65-135	
BROMOFORM	0.0500	0.0477	95.4	65-135	
BROMOMETHANE	0.0500	0.0472	94.4	62-135	
CARBON TETRACHLORIDE	0.050	0.047	94.0	52-135	
CHLOROBENZENE	0.0500	0.0466	93.2	65-135	
CHLOROETHANE	0.0500	0.0470	94.0	55-135	
CHLOROFORM	0.0500	0.0498	99.6	64-135	-
CHLOROMETHANE	0.0500	0.0496	99.2	65-135	
CIS-1,2-DCE	0.0500	0.0503	101	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0534	107	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0501	100	63-135	
DIBROMOMETHANE	0.050	0.056	112	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0426	85.2	65-135	

Comments:

Analytical Method: EPA 8260B AAB #: 110620AS-156276

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110620AS LCS Initial Calibration ID: S110620

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0456	91.2	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0421	84.2	65-135	
ISOPROPYLBENZENE	0.0500	0.0423	84.6	65-135	
M&P-XYLENE	0.1000	0.0926	92.6	65-135	
METHYLENE CHLORIDE	0.0500	0.0559	112	65-135	
N-BUTYLBENZENE	0.0500	0.0409	81.8	65-135	
N-PROPYLBENZENE	0.0500	0.0425	85.0	65-135	
NAPHTHALENE	0.0500	0.0508	102	65-135	7
O-XYLENE	0.0500	0.0473	94.6	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0429	85.8	65-135	110
SEC-BUTYLBENZENE	0.0500	0.0423	84.6	65-135	
STYRENE	0.0500	0.0502	100	65-135	
TCE	0.0500	0.0476	95.2	61-135	
TERT-BUTYLBENZENE	0.0500	0.0434	86.8	65-135	
TETRACHLOROETHENE	0.0500	0.0422	84.4	61-135	
TOLUENE	0.0500	0.0501	100	64-135	
TRANS-1,2-DCE	0.0500	0.0478	95.6	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0535	107	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0477	95.4	57-135	
VINYL CHLORIDE	0.0500	0.0557	111	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	100	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	100	65-135	
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/21/11

Matrix: SOIL

Instrument: Sweetpea

Blank ID: 110620AS-BLK

Time Analyzed: 0014

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110620AS-LCS	Lab Control Spike	0620S17	06/20/11 2043
110620AS-BLK	Blank	0620S21	06/21/11 0014
AY39994	B3-EXW03-WC01	0620S29	06/21/11 0455

Comments: Batch: #826AF-110620AS

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/18/11

Matrix: WATER

Instrument: Thor

Blank ID: 110617AT-BLK

Time Analyzed: 0528

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110617AT-LCS	Lab Control Spike	0617T17	06/17/11 1931
110617AT-BLK	Blank	0617T38	06/18/11 0528
AY39993	B3-EXW03-WC02	0617T39	06/18/11 0554

Comments: Batch: #826AW-110617AT

EPA 8260B

Form 4

Blank Summary

Lab Name: APPL, Inc.

SDG No: 64923

Case No: 64923

Date Analyzed: 06/20/11

Matrix: WATER

Instrument: Thor

WIGHTA. VVATETA

mstrument. Tho

Blank ID: 110619AT-BLK

Time Analyzed: 1659

APPL ID.	Client Sample No.	File ID.	Date Analyzed
110619AT-LCS	Lab Control Spike	0619T02	06/20/11 1515
110619AT-BLK	Blank	0619T04	06/20/11 1659
AY39993	B3-EXW03-WC02	0619T16	06/20/11 2210

Comments: Batch: #826AW-110619AT

Lab Name: APPL Inc. SDG No: 64923

Case No: 0617T00T.D Date Analyzed: 06/17/11

Matrix: Water Instrument: Thor

ID: 20ug/ml BFB Std 05-25-11A Time Analyzed: 12:19

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1	Vol Std 06-17-11@0.3	0617T04W.D	06/17/11 13:54
2	Vol Std 06-17-11@0.5	0617T05W.D	06/17/11 14:20
3	Vol Std 06-17-11@1.0	0617T06W.D	06/17/11 14:46
4	Vol Std 06-17-11@2.0	0617T07W.D	06/17/11 15:12
5	Vol Std 06-17-11@5.0	0617T08W.D	06/17/11 15:38
6	Vol Std 06-17-11@10u	0617T09W.D	06/17/11 16:04
7	Vol Std 06-17-11@20u	0617T10W.D	06/17/11 16:30
8	Vol Std 06-17-11@40u	0617T11W.D	06/17/11 16:56
9	Vol Std 06-17-11@100	0617T12W.D	06/17/11 17:22
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			

m/e	
50 15 - 40% of mass 95	38.5
75 30 - 60% of mass 95	58.5
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.1
173 0 - 2% of mass 174	1.0
174 50 - 100% of mass 95	51.4
175 5 - 9% of mass 174	7.0
176 95 - 101% of mass 174	95.7
177 5 - 9% of mass 176	6.2

Lab Name: APPL Inc. SDG No: 64923

Case No: 0617T15W.D Date Analyzed: 06/17/11

Matrix: Water Instrument: Thor

ID: 20ug/ml BFB Std 05-25-11A Time Analyzed: 18:40

Client Sample	No. APPL ID.	File ID.	Date Analyzed
1	Vol Std 06-17-11@10u	0617T16W.D	06/17/11 19:05
2 Lab Control Spike	110617A LCS-1WT	0617T17W.D	06/17/11 19:31
3 Blank	110617A BLK-1WT	0617T38W.D	06/18/11 5:28
4 B3-EXW03-WC02	AY39993W01	0617T39W.D	06/18/11 5:54
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			

m/e	
50 15 - 40% of mass 95	38.5
75 30 - 60% of mass 95	57.9
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.2
173 0 - 2% of mass 174	0.8
174 50 - 100% of mass 95	53.3
175 5 - 9% of mass 174	7.2
176 95 - 101% of mass 174	95.8
177 5 - 9% of mass 176	6.6

Lab Name: APPL Inc. SDG No: 64923

Case No: 0619T00T.D Date Analyzed: 06/20/11

Matrix: Water Instrument: Thor

ID: 20ug/ml BFB Std 05-25-11A Time Analyzed: 14:08

ŀ	Client Sample No.	APPL ID.	File ID.	Date Analyzed
1		Vol Std 06-19-11@10u	0619T01W.D	06/20/11 14:50
2	Lab Control Spike	110619A LCS-1WT	0619T02W.D	06/20/11 15:15
3	Blank	110619A BLK-1WT	0619T04W.D	06/20/11 16:59
4	B3-EXW03-WC02	AY39993W02 DF5	0619T16W.D	06/20/11 22:10
5				
6				
7				
8				
9				
10				
11				01
12				
13				
14			A 10	
15				
16			A -	
17				
18				
19				
20				
21				
22				

m/e	
50 15 - 40% of mass 95	38.1
75 30 - 60% of mass 95	56.9
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.5
173 0 - 2% of mass 174	0.8
174 50 - 100% of mass 95	51.9
175 5 - 9% of mass 174	6.9
176 95 - 101% of mass 174	96.5
177 5 - 9% of mass 176	6.3
	,

Lab Name: APPL Inc. SDG No: 64923

Case No: 0620S00T.D Date Analyzed: 06/20/11

Matrix: Soil Instrument: Sweetpea

ID: 20ug/L BFB Std 05-25-11A Time Analyzed: 10:48

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1	Vol Std 06-20-11@2.0	0620S04S.D	06/20/11 12:55
2	Vol Std 06-20-11@5.0	0620S05S.D	06/20/11 13:30
3	Vol Std 06-20-11@10u	0620S06S.D	06/20/11 14:05
4	Vol Std 06-20-11@20u	0620S07S.D	06/20/11 14:40
5	Vol Std 06-20-11@50u	0620S08S.D	06/20/11 15:16
6	Vol Std 06-20-11@100	0620S09S.D	06/20/11 15:51
7	Vol Std 06-20-11@200	0620S10S.D	06/20/11 16:26
8			
9			
10			
11			
12			
13			
14			
15	1/1/		
16			
17			
18			
19			
20			
21			
22		7 =	

m/e	
50 15 - 40% of mass 95	18.1
75 30 - 60% of mass 95	44.4
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.7
173 0 - 2% of mass 174	0.0
174 50 - 100% of mass 95	80.6
175 5 - 9% of mass 174	7.3
176 95 - 101% of mass 174	97.1
177 5 - 9% of mass 176	7.0

Lab Name: APPL Inc. SDG No: 64923

Case No: 0620S15S.D Date Analyzed: 06/20/11

Matrix: Soil Instrument: Sweetpea

ID: 20ug/L BFB Std 05-25-11A Time Analyzed: 19:33

	Client Sample No.	APPL ID.	File ID.	Date Analyzed
1		Vol Std 06-20-11@50u	0620S16S.D	06/20/11 20:08
2	Lab Control Spike	110620A LCS-1SS	0620S17S.D	06/20/11 20:43
3	Blank	110620A BLK-1SS	0620S21S.D	06/21/11 0:14
4	B3-EXW03-WC01	AY39994S01 5.020	0620S29S.D	06/21/11 4:55
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18			111	
19				
20				
21				
22		The state of the s		

m/e	
50 15 - 40% of mass 95	17.6
75 30 - 60% of mass 95	42.6
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	5.9
173 0 - 2% of mass 174	0.0
174 50 - 100% of mass 95	91.0
175 5 - 9% of mass 174	6.9
176 95 - 101% of mass 174	95.2
177 5 - 9% of mass 176	7.2

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.	Contract: Review		
Lab Code;		SDG No.: _	64923
Lab File ID (Standard): 0617T09W.D		Date Analyzed: _	06/17/11
Instrument ID: Thor		Time Analyzed: _	16:04
GC Column:	ID:	Heated Purge: (Y/N)	

Fluo	Chlorobenzene-D5 (IS) 1,4-Dichlorobenzene-D (IS				(IS)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	500672	6.73	397632	10.61	264000	12.43
UPPER LIMIT	1001344	7.23	795264	11.11	528000	12.93
LOWER LIMIT	250336	6.23	198816	10.11	132000	11.93
SAMPLE						
NO.						
Vol Std 06-17-11@0.3ug	444544	6.73	322560	10.61	190080	12.43
Vol Std 06-17-11@0.5ug	422720	6.73	315776	10.61	196160	12.43
Vol Std 06-17-11@1.0ug	433216	6.73	306496	10.61	201600	12.43
Vol Std 06-17-11@2.0ug	452352	6.73	341824	10.61	223872	12.43
Vol Std 06-17-11@5.0ug	460352	6.73	349056	10.61	224320	12.43
Vol Std 06-17-11@10ug	500672	6.73	397632	10.61	264000	12.43
Vol Std 06-17-11@20ug	544512	6.72	416640	10.61	297728	12.43
Vol Std 06-17-11@40ug	542976	6.73	411776	10.61	299776	12.43
Vol Std 06-17-11@100u	570496	6.72	485312	10.61	323072	12.43
Vol Std 06-17-11@10ug	508224	6.72	376448	10.61	252224	12.43
110617A LCS-1WT	555136	6.72	401600	10.61	277312	12.43
110617A BLK-1WT	435456	6.73	336448	10.61	193792	12.43
AY39993W01	446336	6.73	337344	10.61	195392	12.43
Vol Std 06-19-11@10ug	461248	6.73	364992	10.61	247296	12.43
110619A LCS-1WT	450752	6.73	330368	10.61	222144	12.43
110619A BLK-1WT	404864	6.73	298304	10.61	163968	12.43
AY39993W02 DF5	395776	6.73	306560	10.61	179008	12.43
						1

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.	Contract: Review		
Lab Code:		SDG No.: _	64923
Lab File ID (Standard): 0620S08S.D		Date Analyzed: _	06/20/11
Instrument ID: Sweetpea		Time Analyzed: _	15:16
GC Column:	ID:	Heated Purge: (Y/N)	

	Fluorobenzene(IS)		Chlorobenzene-D5(IS) 1,4-Dichlorobenzene-D(IS)				
	AREA #	RT #	AREA #	RT #	AREA #	RT #	
12 HOUR STD	360669	9.81	209235	14.85	100176	18.93	
UPPER LIMIT	721338	10.31	418470	15.35	200352	19.43	
LOWER LIMIT	180335	9.31	104618	14.35	50088	18.43	
SAMPLE				A			
NO.							
01 Vol Std 06-20-11@2		9.81	207161	14.84	93796	18.93	
02 Vol Std 06-20-11@5	5.0ug 379237	9.81	211916	14.85	98712	18.93	
03 Vol Std 06-20-11@1	Oug 366923	9.81	203301	14.85	93712	18.94	
04 Vol Std 06-20-11@2	Oug 369379	9.81	211100	14.84	97277	18.93	
05 Vol Std 06-20-11@5		9.81	209235	14.85	100176	18.93	
06 Vol Std 06-20-11@1	00u 363559	9.82	207210	14.85	96346	18.94	
07 Vol Std 06-20-11@2	00u 369810	9.82	207847	14.85	94438	18.94	
08 Vol Std 06-20-11@5	Oug 340160	9.82	207896	14.85	98977	18.93	
09 110620A LCS-1SS	333450	9.82	202853	14.85	99354	18.93	
10 110620A BLK-1SS	316884	9.82	192311	14.85	88970	18.94	
11 AY39994S01 5.020	382482	9.81	231974	14.84	112268	18.93	
12					1		
13							
14							
15							
16							
17	- 1						
18							
19							
20							
21							
22			- T			4	

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Sample Data

Analytical Method: EPA 8260B

Preparatory Method:

5030B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: B3-EXW03-WC02

Lab Sample ID: AY39993

Matrix: Water

% Solids: NA

Initial Calibration ID: T110617

Date Received: 17-Jun-11

Date Prepared: 18-Jun-11

Date Analyzed: 18-Jun-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1	1	U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1		
1,1-DCA	0.07	0.4	0.07	1		U U
1,1-DCE	0.12	1.2	0.12	1		Ü
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		Ü
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		Ü
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		Ü
1,2-EDB	0.06	0.6	0.06	1		
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1.2	0.03	1		Ü
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U U U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		Ū
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		Ü
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	- 1		Ü
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		
CHLOROETHANE	0.07	1.0	0.07	1		U
CHLOROFORM	0.06	0.3	0.13	1		U U F
CHLOROMETHANE	0.16	1.3	0.16	1		Ü

Comments:

J = Estimated value.

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: B3-EXW03-WC02

Lab Sample ID: AY39993

5030B

Matrix: Water

% Solids: NA

Initial Calibration ID: T110617

Date Received: 17-Jun-11

Date Prepared: 18-Jun-11

Date Analyzed: 18-Jun-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	198.15	1		
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		i i
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		I I
DIBROMOMETHANE	0.06	2.4	0.06	1		
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		ī
ETHYLBENZENE	0.05	0.6	0.05	1		Ü
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		T.
ISOPROPYLBENZENE	0.04	0.5	0.04	1		Ü
M&P-XYLENE	0.07	0.5	0.07	1		T t
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	I		U
O-XYLENE	0.06	1.1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1		i i
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	190.18	1		1
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	175.46	1		
TOLUENE	0.06	1.1	1.14	1		
TRANS-1,2-DCE	0.08	0.6	1.52	1		149
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		Ü
VINYL CHLORIDE	0.08	1.1	0.08	1		Ū

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	104	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	94.7	75-125	
SURROGATE: DIBROMOFLUOROMETH	100	75-125	
SURROGATE: TOLUENE-D8 (S)	97.7	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

J = Estimated value.

Analytical Method: EPA 8260B

Preparatory Method: 5030B

AAB #: 110619AT-156278

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Field Sample ID: B3-EXW03-WC02

Lab Sample ID: AY39993

Matrix: Water

% Solids: NA

Initial Calibration ID: T110617

Date Received: 17-Jun-11

Date Prepared: 20-Jun-11

Date Analyzed: 20-Jun-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.35	6.0	183.18	5		
TCE	0.25	5.0	180.88	5		41,06
TETRACHLOROETHENE	0.30	7.0	153.75	5		

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	108	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	95.9	75-125	
SURROGATE: DIBROMOFLUOROMETH	108	75-125	
SURROGATE: TOLUENE-D8 (S)	97.5	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

247					
\sim	-	-	100	nta	
Co	111	ш		ILS	

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110620AS-156276

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: B3-EXW03-WC01 Lab Sample ID: AY39994 Matrix: Soil

% Solids: 100 Initial Calibration ID: S110620

Date Received: 17-Jun-11 Date Prepared: 21-Jun-11 Date Analyzed: 21-Jun-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009			U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010]		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		Ü
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		Ü
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		Ü
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

~			
10	mm	1011	te.
UU.	mn	ICII	LO.

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 110620AS-156276

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Field Sample ID: B3-EXW03-WC01 Lab Sample ID: AY39994 Matrix: Soil

% Solids: 100 Initial Calibration ID: S110620

Date Received: 17-Jun-11 Date Prepared: 21-Jun-11 Date Analyzed: 21-Jun-11

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		Ü
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		Ü
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		Ü
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		Ü
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	95.6	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	95.2	65-135	
SURROGATE: DIBROMOFLUOROMETH	97.3	65-135	
SURROGATE: TOLUENE-D8 (S)	101	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

Initial Calibration

SDG No: 64923 Initial Cal. Date: 06/17/11 Instrument: Thor Lab Name: APPL, Inc.

Matrix: Water Case No:

0.995 0.999 1.000 0.999 0.998 0.997 . M⊥ TML IN. Σ ¥ ₹ TML TM TML TML Σ %RSD 6.5 5.3 7.5 7.5 113 112 112 5.0 8.5 6.8 9.6 = 22 19 22 32 Initials: 0.60 0.38 1.0 1.2 0.31 0.56 0.28 0.89 0.69 0.85 0.67 0.49 Avg 0.64 0.37 0.57 0.43 0.23 0617T12W.D 0.1970 0.8740 0.2894 0.5754 0.8444 0.9610 0.7083 0.8425 0.6543 0.6228 0.4257 0.9006 0.5301 0.4025 0.9732 0.7063 0.4106 0.5376 1.596 0.7123 0.3207 0.6712 0.3704 0.7112 100 0617T11W.D 0.5005 2.028 0.6839 0.2341 0.3675 0.8027 0.6335 0.2839 0.5708 0.8476 0.9602 0.6935 0.8440 0.6710 0.4132 0.6262 0.4033 0.9183 0.3990 0.9831 1.311 0.3520 0.5495 0.6792 0.2273 0.6562 0.6411 0.3138 40 0617T10W.D 0.6273 0.2378 0.3476 0.7502 0.6075 0.2815 0.5523 0.8249 0.8716 0.8144 0.6365 0.4024 0.5879 0.3714 0.8830 0.3784 0.9453 1.200 0.3198 0.5218 0.6304 0.2168 0.6617 0.5584 0.5422 0.2907 1.880 20 0617T09W.D 0.2635 0.3635 0.7953 0.6147 0.5701 0.8528 0.8938 0.5937 0.3557 0.9276 0.3819 90290 0.4119 1.019 1.205 0.3146 0.4804 0.6124 0.8457 0.4989 1.848 0.3496 0.5397 0.6352 1.363 0.5131 0.2781 10 0617T08W.D 0.6075 0.9180 0.9080 0.6775 0.8733 0.7079 0.4122 0.3735 1.043 1.218 0.3298 1.904 0.2520 0.3635 0.7682 0.6526 0.3879 0.3700 0.6810 0.2359 0.4889 0.2998 0.3777 0.6429 0.5920 0617T07W.D 0.4809 0.6557 0.8043 0.6807 0.4298 0.5589 0.3408 1.026 0.3829 2.197 0.6022 0.3264 0.3225 0.8073 0.6595 0.4068 0.5576 0.8274 0.8205 0.5503 0.6644 0.2379 0.4023 1.042 1.043 0.3011 0.9902 0.4267 0617T06W.D 0.4890 0.7725 0.6579 0.3846 0.6819 0.8911 0.7052 0.4544 0.5737 0.3491 1.110 0.3858 0.6014 0.8365 0.8033 1.093 1.086 0.3256 0.5658 0.6507 0.2540 0.3008 0.4512 0.5381 0.2754 0.9422 0617T05W.D 0.5012 2.868 0.5695 0.3563 0.3090 0.8873 0.6096 0.5433 0.5448 0.6696 0.9652 0.4789 0.5111 0.4505 1.208 0.3511 1.132 0.1486 0.6423 0.7724 0.2836 0.4670 1.076 0.9045 0.5 0617T04W.D 0.5588 0.8136 0.6625 0.7348 1.063 0.3 ISTD Trans-1,3-Dichloropropene Dibromofluoromethane(S) Dichlorodifluoromethane Cis-1,3-Dichloropropene Trichlorofluoromethane Bromodichloromethane Cis-1,2-DCE 2,2-Dichloropropane Chloroform Bromochloromethane 1,2-DCA-D4(S) Carbon Tetrachloride 1,1-Dichloropropene 1,2-Dichloropropane Methylene chloride Fluorobenzene (IS) Dibromomethane Chloromethane Bromomethane Trans-1,2-DCE Chloroethane Vinyl chloride 1,1,1-TCA 1,2-DCA Benzene 1.1-DCA Toluene *WL TW**L TM* MH M TM* TML TM TM TM* M Σ TM-Σ TML TM* Σ S TML TML TM TML TM* ωŽ 18 8 2 47-24 27 19 22 25 26 29

0.999

TML

SE

11 8.6 25 17

0.33

1.836 0.3673

0.17

0.6883

0.6839

0.1923

2.003 0.3790 0.2048 0.7481

1.865 0.3419 0.1923

1.759 0.3342 0.1712 0.6249

1.674 0.3349 0.1835 0.6155

1.482 0.2969 0.1882 0.4515

0.3231 0.0713 0.5903

1.504 0.3005 0.1708 0.4761

ISTD

Chlorobenzene-D5 (IS)

Toluene-D8(S)

32

33

Tetrachloroethene 1-Chlorohexane

TML

35

Form 6 Initial Calibration

Lab Name: APPL, Inc. Case No: Matrix: Water

SDG No: 64923 Initial Cal. Date: 06/17/11 Instrument: Thor

Initials:

		266.0	0.998	0 998								666 0			1.000	1 000	1.000	1.000	1,000	0.999	1.000	0.999	1.000			1,000		0.996			0.993	1 000	200		
	MT.	TML	TML	TMI	S	M	ML	TM**	*W±	TM**		TMI	TM**	M	TMI	TMI	TML	TML	TML	TML	TML	TML	TML	M	TM	TML	TM	TML	TM	M	TML	IMI			
%RSD	3.1	20	27	28	14	12	10	5.8	18	15	2	29	6.6	8.3	19	29	28	24	23	30	29	28	27	8.4	10	23	6.9	20	15	9.2	29	21		Ī	
Avg	0.42	0.70	0.66	1.3	0.86	0.75	0.37	1.3	2.2	0.16		2.5	0.93	0.26	0.54	3.9	3.1	2.7	3.4	1.8	2.8	3.1	2.5	1.3	1.5	3.0	1,3	60.0	0.65	0.28	1.6	0,63			
100	0.4237	0.7578	0.8036	1.564	0.9571	0.8279	0.3873	1.175	2.582	0.1912		3.475	0.8623	0.2589	0.6224	5.175	3.942	3.212	3.959	2.464	3.589	4.061	3.180	1.411	1.452	3.765	1.273	0.1130	0.8031	0.2996	2.342	0.7627			
40	0.4428	0.8684	0.8846	1.724	1,016	0.8896	0.4046	1,315	2.802	0.1848		3.338	0.8822	0.2502	0.6215	5.085	3.855	3.225	3.957	2.393	3.502	3.867	3.093	1.428	1,455	3,774	1.355	0.0964	0.8020	0.3065	2.279	0.7777			
20	0.4201	0.8094	0.7878	1.576	0.9210	0.8271	0.3637	1.231	2.499	0.1616		2.975	0.8031	0.2516	0.5817	4.649	3.546	3.063	3.727	2.148	3.259	3.581	2.835	1.322	1.380	3.424	1.265	0.0855	2669.0	0.2632	1.968	0.6994			
10	0.4078	0.7614	0.7202	1.471	0.8714	0.7520	0.3322	1.242	2.315	0.1632		2.722	0.8736	0.2610	0.5872	4.642	3.631	3.044	3.802	1.918	3.229	3.422	2.773	1.356	1.437	3.273	1.336	0.0904	0.6305	0.2652	1.761	0.6929			
5	0.4337	0.7579	0.6772	1.487	0.8289	0.7839	0.3683	1.313	2.277	0.1739	10.00	2.596	1.020	0.2995	0.6472	4.675	3.853	3.320	4.206	1.859	3.302	3.377	2.721	1.446	1.607	3.152	1.453	0.0949	0.6630	0.2753	1.629	0.6794			
2	0.4090	0.5959	0.5252	0.9117	0.7285	0.6979	0.2973	1.175	1.835	0.1512		1.859	0.9531	0.2597	0.5074	3.044	2.786	2.441	3.321	1.393	2.169	2.283	1.950	1.154	1.426	2.212	1.239	0.0635	0.5526	0.2714	1.308	0.5771			
-	0.4307	0.5218	0.4435	0.9332	0.6981	0.7135	0.3979	1.371	1.786	0.1688		1.729	0.9551	0.2607	0.5463	2.836	2.760	2.049	2.122	1.247	1.717	2.099	1.627	1.289	1.557	2.191	1.321	0.0663	0.5264	0.2408	1.277	0.5556	iii		
0.5	0.4076	0.4935	0.4061	0.8862		0.7342	0.3979	1.360	1.755	0.1112		1.592	7606.0	0.2215	0.3209	2.634	2.024	1.541	2.302	1.012	1.608	1.782	1.557	1.176	1.764	2.248	1.170		0.6082	0.2786	1.126	0.5735			
0.3				0.8476		0.5648		1.309			ISTD		1.107		0.4621	2.549	1.558			n					1.821		1.184		0.5980		1.078	0.3573			
\neg			. o-Xylene			\neg	Dibromochloromethane	Chlorobenzene			1,4-Dichlorobenzene-D (IS)		1,1,2,2-Tetrachloroethane					$\overline{}$				Sec-Butylbenzene	-		1,4-DCB							1,2,3-Trichlorobenzene			
+	+	-	+		+	-	-	-	-	45 TM**	-			-	-	-	52 TML	-	-	1 25 TML	-	-		-	+	-	-	+	-	-	-	67 TML	89	69	02

Form 6 Initial Calibration

SDG No; 64923 Initial Cal. Date: 06/20/11 Instrument: Sweetner Lab Name: APPL, Inc. Case No: Matrix: Soil

					1 000					0.998																											
				M	TM**	TM*	M	TM	MT	TMI	TM*	TM	TM	M	M	TM**	TM	M	TM	TM.	TM	S	TM	TM	S	TM	TM	TM	TM	TM*	TM	MF	MT	TM*	TM	TW	-
Initials:		USG%	2000	0.6	17	17	6.4	12	8.6	57	3.9	5.3	10	4.5	8.8	3.4	5.3	4.9	4.3	6.2	5.4	4.5	4.8	4.5	8.7	3.0	7.1	8.8	6.1	5.9	4.1	6.2	4.3	4.8	4.3	7.5	
_		Δνο	Back	0.45	0.51	0.38	60.0	0.28	0.14	0.05	0.35	0.40	0.19	0.39	0.22	0.47	0.10	0.25	0.42	0.41	0.07	0.27	0.38	0.35	0.18	0.32	0.17	86.0	0.25	0.23	0.27	80.0	0.30	09.0	0.21	0.11	
	D620S10S.D	0.2		0.4343	0.4859		0.0849	0.2691	0.1207	0.0237	0.3433	0.3983		0.3870	0.2119	0.4621	0.0954	0.2517	0.4157	0.4027	0.0666	0.2632	0.3853	0.3350	0.1691	0.3173	0.1688	0.9250	0.2490	0.2328	0.2655	0.0854	0.3056	0.5794	0.2147	0.1045	
weetpea	0620S09S.D	0.1		0.4358	0.4815	0.3238	0.0902	0.2763	0.1447	0.0260	0.3679	0.4295	0.1815	0.4133	0.2255	0.4945	0.1017	0.2689	0.4426	0.4253	0.0771	0.2751	0.4046	0.3558	0.1797	0.3382	0.1787	0.9842	0.2599	0.2467	0.2846	0.0908	0.3194	0.6248	0.2209	0.1158	
Instrument: Sweetpea	0620S08S.D	0.05		0.4908	0.4952	0.4436	0.0887	0.2753	0.1510	0.0276	0.3516	0.4189	0.1703	0.4089	0.2142	0.4773	7660.0	0.2590	0.4283	0.4186	0.0768	0.2721	0.3813	0.3468	0.1807	0.3261	0.1705	0.9560	0.2517	0.2372	0.2740	0.0909	0.3123	0.6127	0.2233	0.1144	
	0620S07S.D	0.02		0.4072	0.4736	0.3082	0.0780	0.2544	0.1362	0.0381	0.3327	0.3839	0.1821	0.3773	0.2054	0.4585	0.0956	0.2377	0.4079	0.3991	0.0747	0.2705	0.3679	0.3384	0.1773	0.3195	0.1680	0.9330	0.2405	0.2280	0.2532	0.0838	0.2941	0.5803	0.2077	0.1037	
	0620S06S.D	0.01		0.4426	0.4559	0.3908	0.0837	0.2727	0.1457	0.0543	0.3418	0.3929	0.1866	0.3647	0.2055	0.4655	0.0960	0.2463	0.3971	0.4014	0.0738	0.2644	0.3642	0.3456	0.1794	0.3148	0.1752	0.9524	0.2458	0.2136	0.2719	92200	0.2821	0.5890	0.2034	0.1027	-
	06208058.0	0.005		0.4393	0.4688	0.4398	0.0907	0.2581	0.1449	0.0701	0.3356	0.3754	0.2218	0.3790	0.2136	0.4443	0.0863	0.2383	0.4143	0.3784	0.0783	0.2718	0.3649	0.3504	0.1662	0.3087	0.1443	0.9313	0.2312	0.2248	0.2718	0.0826	0.3016	0.5578	0.2062	0.0940	
Soil	0620S04S.D	0.002		0.5270	0.6980		0.0950	0.3526	0.1674	0.0978	0.3629	0.4261		0.3891	0.2603	0.4684	0.0920	0.2653	0.4470	0.4589	0.0777	0.2998	0.4082	0.3823	0.2144	0.3244	0.1797	1.168	0.2795	0.2552	0.2561	0.0792	0.3156	0.6384	0.1996	0.1144	
Matrix: Soil		Compound	Fluorobenzene(IS)	Dichlorodifluoromethane	Chloromethane	Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	Acetone	1,1-DCE	Freon-113	Methylene chloride	Methyl t-butyl ether (MTBE)	Trans-1,2-DCE	1,1-DCA	MEK (2-Butanone)	Cis-1,2-DCE	2,2-Dichloropropane	Chloroform	Bromochloromethane	Dibromofluoromethane(S)	1,1,1-TCA	1,1-Dichloropropene	1,2-DCA-D4(S)	Carbon tetrachloride	1,2-DCA	Benzene	TCE	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	Cis-1,3-Dichloropropene	Toluene	Trans-1,3-Dichloropropene	1,1,Z-1CA	I NIONDANZANA-I ININI
				MT	1		N.	M			*WL	Σ	M	N.	M	TM*	Σ	M_	M			-	_	-	S	-	M	Z.	-	-	-	Σ	Ā	±W.	Z.	Σ.	
			۳	2	က	4	3	9	~	8	6	9	F	12	13	14	15	16	1	18	19	20	721	22	23	24	25	56	27	28	29	30	31	32	33	45 15	

Form 6 Initial Calibration

								I																	I									
		U	S T	INI.	TAA	TW.	I WI	¥.	T.W	S	TM	TM	TM**	TM*	TM**	1	TW	TM**	TM	ML	TW	M	TM	TM	TM	TM	TM	Σ	MT	M_	TM	TM	TM	-
Initials:	"PSD	78	7.4	7.5	8.9	6.0	3.0	4.8	10	10	5.1	4.3	7.4	4.8	=	0	0.0	9	7.0	7.7	6.1	7.4	5.8	7.9	9.6	4.7	7.7	5.8	8.6	4.9	7.7	9.3	12	
	Ave	٠ ٧	0.10	0.38	0.98	0.39	22.0	0.71	0.15	0.51	0.36	0.30	1.1	2.1	0.16	96.0	0.30	0.48	0.10	0.88	5.9	3.7	3.4	3.0	3.9	3.3	5.5	4.3	1,9	1.7	4.1	1.4	90.0	100
	0.5	1.708	0.1894	0.3809	0.9684	0.3855	0.7620	0.7087	0.1532	0.4859	0.3605	0.2992	1.066	2.070	0.15/1	0.3598	4.775	0.4842	0.1041	0.8887	6.068	3.725	3.464	2.849	3.843	3.244	5.457	4.460	1.819	1.698	4.151	1.442	0.0599	10000
Cal. Date: 06/20/11 strument: Sweetpea	0.1	1.787	0.2054	0.4005	0.9975	0.4136	0.8073	0.7480	0.1598	0.4857	0.3808	0.3238	1.118	2.256	0.1723	0.3475	4.847	0.5057	0.1057	0.9451	6.183	3.752	3.611	3.030	4.029	3.363	5.689	4.539	1.904	1.793	4.174	1.508	0.0603	00000
Initial Cal. Date: 06/20/11 Instrument: Sweetpea	0.05	1.727	0.1987	0.3627	0.9726	0.3967	0.7559	0.6969	0.1510	0.4627	0.3765	0.3008	1.056	2.049	0.1658	0.3424	4.395	0.4739	0.1001	0.8401	5.557	3.499	3.263	2.792	3.675	3.086	5.180	4.204	1.703	1.640	3.856	1.362	0.0605	0 7044
Initi	0.02	1.751	0.1728	0.3418	0.9264	0.3614	0.7512	0.6616	0.1478	0.4894	0.3375	0.2876	0.9/42	2.047	0.1384	0.3618	4.509	0.4707	0.1072	0.8126	5.616	3.614	3.335	2.829	3.625	3.194	5.189	3.977	1.704	1.692	3.958	1.349	0.0528	0 1010
	0.01	1.780	0.1862	0.4035	0.9342	0.3656	0.7753	0.7066	0.1661	0.4919	0.3379	0.3137	1.046	2.066	0.1400	0.4033	4.437	0.4748	0.0915	0.8607	5.782	3.598	3.465	3.019	3.762	3.270	5.292	4.124	1.857	1.663	4.052	1.378	0.0567	
	0.005	1.769	0.1669	0.3614	0.9416	0.3625	0.7424	0.6857	0.1203	0.5113	0.3397	0.2911	1.053	2.049	6.1	0.3441	4.724	0.4453	0.0933	0.8367	5.717	3.370	3.175	2.971	3.622	3.207	5.160	4.086	1.874	1.773	3.763	1.367	0.0428	3030
Soil	0.002	2.109	0.1967	0.4231	1.121	0.4241	0.7885	0.7590	0.1370	0.6220	0.3614	0.2933	2,752	2.200	00.100	0.3766	5.310	0.5365	0.1101	1.003	6.550	4.221	3.747	3.490	4.674	3.565	6.322	4.624	2.180	1.882	4.728	1.722	* 000	1 11110
Case No: Matrix: Soil	Compound	Toluene-D8(S)	1,2-EDB	Tetrachloroethene	1-Chlorohexane	1,1,1,2-Tetrachloroethane	m&p-Xylene	o-Xylene	Styrene	4-Bromotluorobenzene(S)	1,3-Dichioropropane	Chloropcomethane	$\overline{}$	_		MIBK (methyl isobutyl ketone)		-	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethylbenzene	4-Chlorotoluene	Tert-Butylbenzene	1,2,4-Trimethylbenzene	Sec-Butylbenzene	p-Isopropyitoluene	1,3-DCB	1,4-UCB	n-Butylbenzene	1,2-UCB	1.2.4 Trichlorohouses	1 / 4-1 HCHIOTOPPIZED
		S	TM	TM.	-	40 TM	+	M.	2	44 S	+	- IVI	48 TAA*	+	+	TM	TM	TM**	W.	-	56 TM	Σ	N.	Σ	W	Σ	Σ	Σ.	+	4	WI 99	N. A.	7	

Form 6 Initial Calibration Lab Name: APPL, Inc. Case No: Matrix: Soil

SDG No: 64923 Initial Cal. Date: 06/20/11 Instrument: Sweetpea

Initials:

			0.002	0.005	0.01	0.02	0.05	0.1	0.2	-	Avo	0,000		
71	TM	/ Naphthalene	0.8774	0.7321	0.7834	0.7393	0.7823	0.9440	0.9604		500	14 14	77.	
72	TM	1,2,3-Trichlorobenzene	0.9052	0.6695	0.6761	0 6494	0.6517	0.7207	0.7113		0.03	- 9	M	
73	_							0.1201	2.50		0.71	13	Σ	
74										-				
75														
9/														
77														
78														
79										-				
80						Î								
81										-				
82														
83														
84										-				
85														
86														
87														
88														
88														
96														
91														
92														
93														
94														
95														I
96														
97														
86														I
66														
100														
101														I
102														
103														
104														
105														
					-	-								

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/17/11
Matrix: Water	Instrument: Thor
	Initial Cal. Date: 06/17/11

Data File: 0617T17W.D

		Compound	MEAN	CCRF	%D		%Drif
1	1	Fluorobenzene (IS)	ISTD				
	TM	Dichlorodifluoromethane	0.4795	0.4712	1.7	TM	
3	TM**L	Chloromethane	2.135	1.827	14	TM**L	7.1
4	TM*	Vinyl chloride	0.6182	0.6312	2.1	TM*	
5	TML	Bromomethane	0.2793	0.2396	14	TML	2.1
	TM	Chloroethane	0.3351	0.3546	5.8	TM	_
7	TM	Trichlorofluoromethane	0.8072	0.7262	10	TM	
8	TM*	1,1-DCE	0.6383	0.6089	4.6	TM*	
9	TML	Methylene chloride	0.3659	0.2867	22	TML	7.6
	TM	Trans-1,2-DCE	0.5725	0.5647	1,4	TM	
	TM**	1,1-DCA	0.8093	0.8692	7.4	TM**	
12	TM	Cis-1,2-DCE	0.8918	0.8961	0.48	ТМ	
13	TM	2,2-Dichloropropane	0.6901	0.6491	5.9	TM	
	TM*	Chloroform	0.8461	0.8179	3.3	TM*	
15	TM	Bromochloromethane	0.6675	0.6507	2.5	TM	
16	S	Dibromofluoromethane(S)	0.4307	0.4063	5.7	S	
17	TM	1,1,1-TCA	0.6032	0.6161	2.1	TM	
	TM	1,1-Dichloropropene	0.3833	0.3666	4.4	TM	
19	S	1,2-DCA-D4(S)	0.9924	0.9047	8.8	S	
20	TM	Carbon Tetrachloride	0.3819	0.3842	0.62	TM	
21	TM	1,2-DCA	1.022	0.9570	6.4	TM	
22	TM	Benzene	1.174	1.241	5.7	TM	
23	TML	TCE	0.3078	0.3368	9.4	TML	0.61
	TM*	1,2-Dichloropropane	0.5620	0.5335	5.1	TM*	
25	TM	Bromodichloromethane	0.6775	0.6423	5.2	TM	
	TM	Dibromomethane	0.2339	0.2192	6.3	TM	
	TML	Cis-1,3-Dichloropropene	0.4856	0.5185	6.8	TML	8.9
		Toluene	1.263	1.375	8.8	TM*	
		Trans-1,3-Dichloropropene	0.5303	0.4959	6.5	TML	12
		1,1,2-TCA	0.2933	0.2764	5.8	TM	
31		Chlorobenzene-D5 (IS)	ISTD				
32		Toluene-D8(S)	1.705	1.759	3.2	S	
33	TM	1,2-EDB	0.3347	0.3464	3.5	TM	
		Tetrachloroethene	0.1718	0.2088	22	TML	9.0
		1-Chlorohexane	0.6098	0.6739	11	TML	1.7
36		1,1,1,2-Tetrachloroethane	0.4219	0.4333	2.7	TM	
		m&p-Xylene	0.6958	0.8483	22	TML	5.7
		o-Xylene	0.6560	0.7780	19	TML	1.8
		Styrene	1.267	1.580	25	TML	0.40
40	S	4-Bromofluorobenzene(S)	0.8601	0.9489	10	S	

Average 7.9

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/17/11
Matrix: Water	Instrument: Thor
	Cal. Date: 06/17/11
	Data File: 0617T17W D

		Compound	MEAN	CCRF	%D		%Drif
	TM	1,3-Dichloropropane	0.7546	0.7934	5.1	TM	
	TM	Dibromochloromethane	0.3687	0.3614	2.0	TM	
	TM**	Chlorobenzene	1.277	1.290	1.0	TM**	
	TM*	Ethylbenzene	2.231	2.547	14	TM*	
	TM**	Bromoform	0.1632	0.1599	2.0	TM**	
46		1,4-Dichlorobenzene-D (IS)	ISTD			1	
	TML	Isopropylbenzene	2.536	2.947	16	TML	2.2
	TM**	1,1,2,2-Tetrachloroethane	0.9296	0.8737	6.0	TM**	
	TM	1,2,3-Trichloropropane	0.2579	0.2544	1.3	ТМ	
	TML	Bromobenzene	0.5441	0.6049	11	TML	0.21
	TML	n-Propylbenzene	3.921	4.833	23	TML	0.36
	TML	2-Chlorotoluene	3.106	3.768	21	TML	1.5
	TML	1,3,5-Trimethylbenzene	2.737	3.219	18	TML	3.5
	TML	4-Chlorotoluene	3.425	3.885	13	TML	1.3
	TML	Tert-Butylbenzene	1.804	2.405	33	TML	9,6
	TML	1,2,4-Trimethylbenzene	2.797	3.315	19	TML	0.20
	TML	Sec-Butylbenzene	3.059	3.664	20	TML	1.2
	TML	p-Isopropyltoluene	2.467	2.864	16	TML	0.77
	TM	1,3-DCB	1.323	1.405	6.2	TM	
	TM	1,4-DCB	1.544	1.462	5.4	TM	
61	TML	n-Butylbenzene	3.005	3.400	13	TML	2.1
	TM	1,2-DCB	1.288	1.381	7.2	TM	
63	TML	1,2-Dibromo-3-chloropropane	0.0872	0.0842	3.4	TML	3.9
	TM	1,2,4-Trichlorobenzene	0.6537	0.6698	2.5	TM	
	TM	Hexachlorobutadiene	0.2751	0.2821	2.6	TM	
	TML	Naphthalene	1.641	1.782	8.6	TML	17
67	TML	1,2,3-Trichlorobenzene	0.6306	0.7044	12	TML	3.3
68							
69							
70	7						
71							
72							
73							
74							
75							
76							
77							
78							
79					- 7		
80							

Average 10.9

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Soil	Instrument: Sweetpea
	Initial Cal. Date: 06/20/11
	Data File: 06209179 D

		Compound	MEAN	CCRF	%D	1	%Dri
1	1	Fluorobenzene(IS)	ISTD			1	
	TM	Dichlorodifluoromethane	0.4538	0.3865	15	TM	
	TM**L	Chloromethane	0.5084	0.4814	5.3	TM**L	0.83
	TM*	Vinyl chloride	0.3812	0.4250	11	TM*	
	TM	Bromomethane	0.0873	0.0825	5.5	TM	
	TM	Chloroethane	0.2798	0.2627	6.1	TM	
7	TM	Trichlorofluoromethane	0.1444	0.1377	4.6	TM	
	tmL	Acetone	0.0482	0.0313	35	tmL	16
9	TM*	1,1-DCE	0.3480	0.3181	8.6	TM*	
	TM	Freon-113	0.4036	0,3454	14	TM	
11	TM	Methylene chloride	0.1885	0.2106	12	TM	
12	TM	Methyl t-butyl ether (MTBE)	0.3885	0.4335	12	TM	
13	TM	Trans-1,2-DCE	0.2195	0.2100	4.3	TM	
14	TM**	1,1-DCA	0.4672	0.4727	1.2	TM**	
15	TM	MEK (2-Butanone)	0.0952	0.1087	14	TM	
	TM	Cis-1,2-DCE	0.2525	0.2539	0.57	TM	
	TM	2,2-Dichloropropane	0.4219	0.4044	4.1	TM	
18	TM*	Chloroform	0.4121	0.4102	0.44	TM*	_
	TM	Bromochloromethane	0.0750	0.0815	8.7	TM	
	S	Dibromofluoromethane(S)	0.2738	0.2760	0.78	S	
21	TM	1,1,1-TCA	0.3823	0.3591	6.1	TM	
22		1,1-Dichloropropene	0.3506	0.3228	7.9	TM	
23		1,2-DCA-D4(S)	0.1809	0.1821	0.64	S	
24	TM	Carbon tetrachloride	0.3213	0.3005	6.5	ТМ	
25	TM	1,2-DCA	0.1693	0.1742	2.9	TM	
26	TM	Benzene	0.9786	0.9472	3.2	TM	
27		TCE	0.2511	0.2390	4.8	TM	
	TM*	1,2-Dichloropropane	0.2340	0.2467	5.4	TM*	- 1
29		Bromodichloromethane	0.2681	0.2875	7.2	TM	
		Dibromomethane	0.0843	0.0938	11	TM	
	TM	Cis-1,3-Dichloropropene	0.3044	0.3251	6.8	TM	
		Toluene	0.5975	0.5984	0.16	TM*	
	TM	Trans-1,3-Dichloropropene	0.2108	0.2255	7.0	TM	
		1,1,2-TCA	0.1071	0.1154	7.8	TM	
35		Chlorobenzene-D5(IS)	ISTD	7			
36		Toluene-D8(S)	1.804	1.870	3.6	S	
		1,2-EDB	0.1880	0.1898	0.92	TM	
		Tetrachloroethene	0.3820	0.3224	16	TM	
		1-Chlorohexane	0.9803	0.8143	17	TM	
40	TM	1,1,1,2-Tetrachloroethane	0.3870	0.3767	2.7	TM	

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Soil	Instrument: Sweetpea
	Cal. Date: 06/20/11
	Data File: 0620S17S.D

		Compound	MEAN	CCRF	%D	%Dri
	TM	m&p-Xylene	0.7689	0.7124	7.4	TM
	TM	o-Xylene	0.7095	0.6707	5.5	TM
	TM	Styrene	0.1479	0.1486	0.49	ТМ
44		4-Bromofluorobenzene(S)	0.5070	0.5024	0.91	S
	TM	1,3-Dichloropropane	0.3563	0.3616	1.5	ТМ
	TM	Dibromochloromethane	0.3013	0.3021	0.25	TM
47	TM**	Chlorobenzene	1.079	1.005	6.9	TM**
48	TM*	Ethylbenzene	2.115	1.927	8.9	TM*
49	TM**	Bromoform	0.1593	0.1520	4.6	TM**
50		1,4-Dichlorobenzene-D(IS)	ISTD			1
51	TM	MIBK (methyl isobutyl ketone)	0.3622	0.3543	2.2	TM
52	TM	Isopropylbenzene	4.714	3.993	15	TM
53	TM**	1,1,2,2-Tetrachloroethane	0.4844	0.4784	1.2	TM**
54	TM	1,2,3-Trichloropropane	0.1017	0.1004	1.3	TM
55	TM	Bromobenzene	0.8839	0.8312	6.0	TM
56	TM	n-Propylbenzene	5.925	5.034	15	TM
	TM	2-Chlorotoluene	3.683	3.347	9.1	TM
58	TM	1,3,5-Trimethylbenzene	3.437	3.052	11	TM
59	TM	4-Chlorotoluene	2.997	2.641	12	TM
60	TM	Tert-Butylbenzene	3.890	3.380	13	TM
	TM	1,2,4-Trimethylbenzene	3.276	2.958	9.7	TM
62	TM	Sec-Butylbenzene	5.470	4.628	15	TM
63		p-Isopropyltoluene	4.288	3.680	14	TM
64		1,3-DCB	1.863	1.612	13	TM
65		1,4-DCB	1.734	1.580	8.9	TM
66		n-Butylbenzene	4.098	3,353	18	TM
67		1,2-DCB	1.447	1.313	9.2	TM
68		1,2-Dibromo-3-chloropropane	0.0555	0.0528	4.9	TM
69		1,2,4-Trichlorobenzene	0.8511	0.7571	11	TM
70		Hexachlorobutadiene	0.8662	0.7286	16	TM
71		Naphthalene	0.8313	0.8449	1.6	TM
72		1,2,3-Trichlorobenzene	0.7120	0.6343		TM
73		1-1-1-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	0.7 120	0.0040	11	1 IVI
74						
75						
76						
77			-			
78						
79						
80						

Average 8.2

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/17/11
Matrix: Water	Instrument: Thor
	Initial Cal. Date: 06/17/11
	Data File: 0617T16W D

		Compound	MEAN	CCRF	%D		%Drit
1		Fluorobenzene (IS)	ISTD			i	
	TM	Dichlorodifluoromethane	0.4795	0.4556	5.0	ТМ	
	TM**L	Chloromethane	2.135	1.708	20	TM**L	13
4	TM*	Vinyl chloride	0.6182	0.5722	7.5	TM*	
5	TML	Bromomethane	0.2793	0.2395	14	TML	2.1
6	TM	Chloroethane	0.3351	0.3417	2.0	ТМ	
7	TM	Trichlorofluoromethane	0.8072	0.7264	10	ТМ	
8	TM*	1,1-DCE	0.6383	0.6335	0.76	TM*	
	TML	Methylene chloride	0.3659	0.2982	19	TML	3.6
10	TM	Trans-1,2-DCE	0.5725	0.6025	5.2	TM	
11	TM**	1,1-DCA	0.8093	0.9052	12	TM**	
12	TM	Cis-1,2-DCE	0.8918	0.9676	8.5	TM	
13	TM	2,2-Dichloropropane	0.6901	0.7045	2.1	TM	
14	TM*	Chloroform	0.8461	0.8810	4.1	TM*	
15	TM	Bromochloromethane	0.6675	0.7026	5.2	TM	
16	S	Dibromofluoromethane(S)	0.4307	0.4365	1.4	S	
17	TM	1,1,1-TCA	0.6032	0.6213	3.0	TM	
18	TM	1,1-Dichloropropene	0.3833	0.3862	0.76	TM	
19	S	1,2-DCA-D4(S)	0.9924	0.9579	3.5	S	
20	TM	Carbon Tetrachloride	0.3819	0.3853	0.89	TM	-
21	TM	1,2-DCA	1.022	1.032	0.96	TM	
22	TM	Benzene	1.174	1.286	9.5	TM	
23	TML	TCE	0.3078	0.3424	11	TML	2.1
24	TM*	1,2-Dichloropropane	0.5620	0.5527	1.7	TM*	
25	TM	Bromodichloromethane	0.6775	0.6618	2.3	ТМ	
26	TM	Dibromomethane	0.2339	0.2270	3.0	TM	
27	TML	Cis-1,3-Dichloropropene	0.4856	0.5270	8.5	TML	7.7
28	TM*	Toluene	1.263	1.456	15	TM*	
29	TML	Trans-1,3-Dichloropropene	0.5303	0.5291	0.23	TML	7.1
30	TM	1,1,2-TCA	0.2933	0.3087	5.3	ТМ	
31		Chlorobenzene-D5 (IS)	ISTD				
32	S	Toluene-D8(S)	1.705	1.821	6.8	S	7
33	TM	1,2-EDB	0.3347	0.3712	11	ТМ	
34		Tetrachloroethene	0.1718	0.1986	16	TML	3.8
		1-Chlorohexane	0.6098	0.6711	10	TML	2,1
36		1,1,1,2-Tetrachloroethane	0.4219	0.4484	6.3	TM	
37	TML	m&p-Xylene	0.6958	0.8540	23	TML	6.5
38		o-Xylene	0.6560	0.7837	19	TML	1.1
39		Styrene	1.267	1.616	28	TML	2.6
40		4-Bromofluorobenzene(S)	0.8601	0.9766	14	S	

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/17/11
Matrix: Water	Instrument: Thor
	Cal. Date: 06/17/11
	Data File: 0617T16W.D

		Compound	MEAN	CCRF	%D		%Drif
	TM	1,3-Dichloropropane	0.7546	0.8464	12	ТМ	
	TM	Dibromochloromethane	0.3687	0.3820	3.6	ТМ	
	TM**	Chlorobenzene	1.277	1.352	5.8	TM**	
	TM*	Ethylbenzene	2.231	2.558	15	TM*	
45	TM**	Bromoform	0.1632	0.1795	10.0	TM**	
46		1,4-Dichlorobenzene-D (IS)	ISTD				
47	TML	Isopropylbenzene	2.536	3.076	21	TML	1.4
48	TM**	1,1,2,2-Tetrachloroethane	0.9296	0.9295	0.01	TM**	
	TM	1,2,3-Trichloropropane	0.2579	0.2651	2.8	TM	
50	TML	Bromobenzene	0.5441	0.6746	24	TML	11
51	TML	n-Propylbenzene	3.921	5.047	29	TML	4.5
52	TML	2-Chlorotoluene	3.106	4.015	29	TML	7.7
53	TML	1,3,5-Trimethylbenzene	2.737	3.383	24	TML	8.6
54	TML	4-Chlorotoluene	3.425	4.209	23	TML	9.5
55	TML	Tert-Butylbenzene	1.804	2.234	24	TML	2.7
56	TML	1,2,4-Trimethylbenzene	2.797	3.532	26	TML	6.2
57	TML	Sec-Butylbenzene	3.059	3.684	20	TML	1.7
58	TML	p-Isopropyltoluene	2.467	2.981	21	TML	2.9
59	TM	1,3-DCB	1.323	1.464	11	TM	
60	TM	1,4-DCB	1.544	1.578	2.1	TM	
61	TML	n-Butylbenzene	3.005	3.548	18	TML	1.8
62	TM	1,2-DCB	1.288	1,479	15	TM	1.0
	TML	1,2-Dibromo-3-chloropropane	0.0872	0.0949	8.9	TML	5.5
64	TM	1,2,4-Trichlorobenzene	0.6537	0.7232	11	TM	0.0
65	TM	Hexachlorobutadiene	0.2751	0.2704	1.7	TM	
66	TML	Naphthalene	1.641	1.893	15	TML	12
	TML	1,2,3-Trichlorobenzene	0.6306	0.7119	13	TML	2.3
68			7337		10	TIVIL	2.0
69						-	
70							
71	-					-	
72							
73							
74						_	
75		*					
76							
77							-
78							
79							
80							

Average 14.8

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Water	Instrument: Thor
	Initial Cal. Date: 06/17/11
	Data File: 0619T01W D

		Compound	MEAN	CCRF	%D	(%Drif
1		Fluorobenzene (IS)	ISTD			- 4	
	TM	Dichlorodifluoromethane	0.4795	0.5670	18	TM	
3	TM**L	Chloromethane	2.135	1.777	17	TM**L	9.7
4	TM*	Vinyl chloride	0.6182	0.6244	1.0	TM*	
5	TML	Bromomethane	0.2793	0.2406	14	TML	1.6
	TM	Chloroethane	0.3351	0.3497	4.3	TM	
	TM	Trichlorofluoromethane	0.8072	0.8443	4.6	TM	
	TM*	1,1-DCE	0.6383	0.6484	1.6	TM*	
9	TML	Methylene chloride	0.3659	0.2981	19	TML	3.6
	TM	Trans-1,2-DCE	0.5725	0.5920	3.4	TM	
11	TM**	1,1-DCA	0.8093	0.8738	8.0	TM**	
	TM	Cis-1,2-DCE	0.8918	0.9212	3.3	ТМ	
13	TM	2,2-Dichloropropane	0.6901	0.7589	10.0	ТМ	
14	TM*	Chloroform	0.8461	0.8600	1.6	TM*	
15	TM	Bromochloromethane	0.6675	0.6803	1.9	TM	
16	S	Dibromofluoromethane(S)	0.4307	0.4483	4.1	S	
17	TM	1,1,1-TCA	0.6032	0.6388	5.9	TM	
18	TM	1,1-Dichloropropene	0.3833	0.3779	1.4	TM	
19	S	1,2-DCA-D4(S)	0.9924	1.010	1.8	S	
20	TM	Carbon Tetrachloride	0.3819	0.4235	11	TM	
21	TM	1,2-DCA	1.022	0.9964	2.5	TM	
22	TM	Benzene	1.174	1.199	2.1	TM	
23	TML	TCE	0.3078	0.3256	5.8	TML	2.4
		1,2-Dichloropropane	0.5620	0.5490	2.3	TM*	
25	TM	Bromodichloromethane	0.6775	0.6483	4.3	ТМ	
	TM	Dibromomethane	0.2339	0.2248	3.9	TM	
27	TML	Cis-1,3-Dichloropropene	0.4856	0.5227	7.6	TML	8.3
28	TM*	Toluene	1.263	1,358	7.5	TM*	
		Trans-1,3-Dichloropropene	0.5303	0.5196	2.0	TML	8.5
	TM	1,1,2-TCA	0.2933	0.2897	1.2	TM	- 0.0
_	1	Chlorobenzene-D5 (IS)	ISTD			1	
32	S	Toluene-D8(S)	1.705	1.694	0.67	S	
		1,2-EDB	0.3347	0.3296	1.5	TM	
		Tetrachloroethene	0.1718	0.1882	9.5	TML	1.6
		1-Chlorohexane	0.6098	0.6507	6.7	TML	5.0
36		1,1,1,2-Tetrachloroethane	0.4219	0.4207	0.28	TM	3.0
		m&p-Xylene	0.6958	0.7625	9.6	TML	5.4
		o-Xylene	0.6560	0.7033	7.2	TML	11
		Styrene	1.267	1.445	14	TML	8.1
40		4-Bromofluorobenzene(S)	0.8601	0.9777	14	S	0.1

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Water	Instrument: Thor
	Cal. Date: 06/17/11
	Data File: 0619T01W.D

		Compound	MEAN	CCRF	%D		%Drif
41	TM	1,3-Dichloropropane	0.7546	0.7567	0.28	TM	
42	TM	Dibromochloromethane	0.3687	0.3491	5.3	TM	-
	TM**	Chlorobenzene	1.277	1.204	5.7	TM**	
44	TM*	Ethylbenzene	2.231	2.281	2.2	TM*	
45	TM**	Bromoform	0.1632	0.1877	15	TM**	
46	1	1,4-Dichlorobenzene-D (IS)	ISTD			1	
47	TML	Isopropylbenzene	2.536	2.831	12	TML	5.5
48	TM**	1,1,2,2-Tetrachloroethane	0.9296	0.8739	6.0	TM**	0.0
49	TM	1,2,3-Trichloropropane	0.2579	0.2542	1.4	TM	
50	TML	Bromobenzene	0.5441	0.5923	8.9	TML	1.8
51	TML	n-Propylbenzene	3.921	4.674	19	TML	2.7
52	TML	2-Chlorotoluene	3.106	3.656	18	TML	1.4
53	TML	1,3,5-Trimethylbenzene	2.737	3.125	14	TML	0.55
54	TML	4-Chlorotoluene	3.425	3.815	11	TML	0.44
55	TML	Tert-Butylbenzene	1.804	2.025	12	TML	5.7
56	TML	1,2,4-Trimethylbenzene	2.797	3.207	15	TML	2.8
57	TML	Sec-Butylbenzene	3.059	3.483	14	TML	3.2
58	TML	p-Isopropyltoluene	2.467	2.769	12	TML	3.7
59	TM	1,3-DCB	1.323	1.326	0.23	TM	0.7
60	TM	1,4-DCB	1,544	1.407	8.9	ТМ	
61	TML	n-Butylbenzene	3.005	3.303	9.9	TML	4.6
62	TM	1,2-DCB	1.288	1.325	2.8	TM	
63	TML	1,2-Dibromo-3-chloropropane	0.0872	0.0904	3.7	TML	1.6
64	TM	1,2,4-Trichlorobenzene	0.6537	0.6967	6.6	TM	1.0
65	TM	Hexachlorobutadiene	0.2751	0.2861	4.0	TM	_
66	TML	Naphthalene	1.641	1.817	11	TML	16
67	TML	1,2,3-Trichlorobenzene	0.6306	0.6943	10	TML	4.6
68					- 10	TAVILL	4.0
69							
70							
71					- 57		
72							
73							
74							
75			7				
76							
77							
78							
79							
80						-	-

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Soil	Instrument: Sweetpea
	Initial Cal. Date: 06/20/11
	Data File: 0620S16S D

		Compound	MEAN	CCRF	%D	(%Dri
1		Fluorobenzene(IS)	ISTD			1	
2		Dichlorodifluoromethane	0.4538	0.3965	13	TM	
3	TM**L	Chloromethane	0.5084	0.5050	0.66	TM**L	4.0
4	TM*	Vinyl chloride	0.3812	0.4415	16	TM*	7.0
5	TM	Bromomethane	0.0873	0.0849	2.8	TM	
6	TM	Chloroethane	0.2798	0.2797	0.03	TM	
7	TM	Trichlorofluoromethane	0.1444	0.1439	0.32	TM	-
8	tmL	Acetone	0.0482	0.0302	37	tmL	11
9	TM*	1,1-DCE	0.3480	0.3121	10	TM*	
10	TM	Freon-113	0.4036	0.3438	15	TM	
11	TM	Methylene chloride	0.1885	0.2192	16	TM	-
12	TM	Methyl t-butyl ether (MTBE)	0.3885	0.4274	10	TM	-
13	TM	Trans-1,2-DCE	0.2195	0.2044	6.9	TM	_
14	TM**	1,1-DCA	0.4672	0.4846	3.7	TM**	
	TM	MEK (2-Butanone)	0.0952	0.1041	9.3	TM	-
16	TM	Cis-1,2-DCE	0.2525	0.2610	3.4	TM	
17	TM	2,2-Dichloropropane	0.4219	0.4076	3.4	TM	
18	TM*	Chloroform	0.4121	0.4081	0.97	TM*	-
19	TM	Bromochloromethane	0.0750	0.0846	13	TM	
20	S	Dibromofluoromethane(S)	0.2738	0.2725	0.49	S	-
21	TM	1,1,1-TCA	0.3823	0.3670	4.0	TM	
22		1,1-Dichloropropene	0.3506	0.3172	9.5	TM	
23		1,2-DCA-D4(S)	0.1809	0.1793	0.90	S	-
24	TM	Carbon tetrachloride	0.3213	0.3047	5.2	TM	-
25	TM	1,2-DCA	0.1693	0.1856	9.6	TM	_
26		Benzene	0.9786	0.9820	0.34	TM	-
27	TM	TCE	0.2511	0.2418	3.7	TM	
28	TM*	1,2-Dichloropropane	0.2340	0.2491	6.5	TM*	-
29		Bromodichloromethane	0.2681	0.2806	4.6	TM	-
30		Dibromomethane	0.0843	0.0933	11	TM	
31	TM	Cis-1,3-Dichloropropene	0.3044	0.3390	11	TM	
32	TM*	Toluene	0.5975	0.6018	0.73	TM*	
33	TM	Trans-1,3-Dichloropropene	0.2108	0.2398	14	TM	-
34		1,1,2-TCA	0.1071	0.1196	12	TM	-
35		Chlorobenzene-D5(IS)	ISTD	0.1100	12	TIVI	\dashv
36		Toluene-D8(S)	1.804	1.844	2.2	S	-
37		1,2-EDB	0.1880	0.1860	1.1	TM	_
38		Tetrachloroethene	0.3820	0.3407	11	TM	-
39		1-Chlorohexane	0.9803	0.8267	16		
40		1,1,1,2-Tetrachloroethane	0.3870	0.3809	1.6	TM	

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 64923
Case No:	Date Analyzed: 06/20/11
Matrix: Soil	Instrument: Sweetpea
	Cal. Date: 06/20/11
	Data File: 0620S16S.D

		Compound	MEAN	CCRF	%D	%Dri
	TM	m&p-Xylene	0.7689	0.7097	7.7	TM
	TM	o-Xylene	0.7095	0.6938	2.2	TM
	TM	Styrene	0.1479	0.1503	1.6	TM
44	S	4-Bromofluorobenzene(S)	0.5070	0.4935	2.7	S
	TM	1,3-Dichloropropane	0.3563	0.3647	2.4	TM
	TM	Dibromochloromethane	0.3013	0.2963	1.7	TM
47	TM**	Chlorobenzene	1.079	1.046	3.1	TM**
	TM*	Ethylbenzene	2.115	2.004	5.2	TM*
	TM**	Bromoform	0.1593	0.1588	0.35	TM**
50		1,4-Dichlorobenzene-D(IS)	ISTD			
	TM	MIBK (methyl isobutyl ketone)	0.3622	0.3494	3.5	TM
	TM	Isopropylbenzene	4.714	4.173	11	TM
	TM**	1,1,2,2-Tetrachloroethane	0.4844	0.4898	1.1	TM**
	TM	1,2,3-Trichloropropane	0.1017	0.1067	4.9	TM
55	TM	Bromobenzene	0.8839	0.8355	5.5	TM
	TM	n-Propylbenzene	5.925	5.120	14	TM
57	TM	2-Chlorotoluene	3.683	3.436	6.7	TM
58	TM	1,3,5-Trimethylbenzene	3.437	3.186	7.3	TM
59	TM	4-Chlorotoluene	2.997	2.670	11	TM
	TM	Tert-Butylbenzene	3.890	3.456	11	TM
61	TM	1,2,4-Trimethylbenzene	3.276	3.055	6.7	TM
62		Sec-Butylbenzene	5.470	4.824	12	TM
63		p-Isopropyltoluene	4.288	3.795	11	TM
64	TM	1,3-DCB	1.863	1.686	9.5	TM
65		1,4-DCB	1.734	1,640	5.4	TM
66		n-Butylbenzene	4.098	3.513	14	TM
67	TM	1,2-DCB	1.447	1.372	5.2	TM
68		1,2-Dibromo-3-chloropropane	0.0555	0.0503	9.4	TM
69		1,2,4-Trichlorobenzene	0.8511	0.7759	8.8	TM
70		Hexachlorobutadiene	0.8662	0.7299	16	TM
71		Naphthalene	0.8313	0.7757	6.7	TM
72	TM	1,2,3-Trichlorobenzene	0.7120	0.6512	8.5	TM
73						- 1
74			4			
75						
76						
77						
78			/			
79						
80						

Average 7.0

EPA METHOD 8260B Volatile Organic Compounds Raw Data

Analytical Method: EPA 8260B AAB #: 110617AT-156223

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110617AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	Ţ
1,1,1-TCA	< RL	0.8	L
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	U
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	U
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	U
1,2-DICHLOROPROPANE	< RL	0.4	U
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	U
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	U
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	U
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: ug/L

Method Blank ID: 110617AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank	RL	Q	
HEXACHLOROBUTADIENE	< RL	1.1	U	
ISOPROPYLBENZENE	< RL	0.5	U	
M&P-XYLENE	< RL	0.5	U	
METHYLENE CHLORIDE	< RL	1.0	U	
N-BUTYLBENZENE	< RL	1.1	U	
N-PROPYLBENZENE	< RL	0.4	U	
NAPHTHALENE	< RL	0.4	U	
O-XYLENE	< RL	1.1	U	
P-ISOPROPYLTOLUENE	< RL	1.2	U	
SEC-BUTYLBENZENE	< RL	1.3	U	
STYRENE	< RL	0.4	U	
TCE	< RL	1.0	U	
TERT-BUTYLBENZENE	< RL	1.4	U	
TETRACHLOROETHENE	< RL	1.4	U	
TOLUENE	< RL	1.1	U	
TRANS-1,2-DCE	< RL	0.6	U	
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U	
TRICHLOROFLUOROMETHANE	< RL	0.8	U	
VINYL CHLORIDE	< RL	1.1	U	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	105	69-139	
SURROGATE: 4-BROMOFLUOROBE	96.5	.5 75-125	
SURROGATE: DIBROMOFLUOROME	103	75-125	
SURROGATE: TOLUENE-D8 (S)	99.6	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B AAB #: 110619AT-156278

Lab Name: APPL, Inc Contract #: 2010*1286022*000

Concentration Units: ug/L Method Blank ID: 110619AT-BLK

Initial Calibration ID: T110617

Analyte	Method Blank RL		Q
CIS-1,2-DCE	< RL	1.2	U
TCE	< RL	1.0	U
TETRACHLOROETHENE	< RL	1.4	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	110	69-139	
SURROGATE: 4-BROMOFLUOROBE	95.6	75-125	
SURROGATE: DIBROMOFLUOROME	104	75-125	
SURROGATE: TOLUENE-D8 (S)	99.1	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	1.1
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments: ARF: 64923, Sample: AY39993

Analytical Method: EPA 8260B

AAB #: 110620AS-156276

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110620AS-BLK

Initial Calibration ID: S110620

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	U
DIBROMOMETHANE	< RL	0.010	U
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

ARF: 64923, Sample: AY39994

Analytical Method: EPA 8260B

AAB #: 110620AS-156276

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

Concentration Units: mg/kg

Method Blank ID: 110620AS-BLK

Initial Calibration ID: S110620

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	97.9	52-149	
SURROGATE: 4-BROMOFLUOROBE	92.9	65-135	
SURROGATE: DIBROMOFLUOROME	97.3	65-135	
SURROGATE: TOLUENE-D8 (S)	101	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 64923, Sample: AY39994

Analytical Method: EPA 8260B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110617AT LCS

Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.27	103	72-125	
1,1,1-TCA	10.00	10.21	102	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	9.40	94.0	74-125	
1,1,2-TCA	10.00	9.42	94.2	75-127	
1,1-DCA	10.00	10.74	107	75-125	
1,1-DCE	10.00	9.54	95.4	75-125	
1,1-DICHLOROPROPENE	10.00	9.56	95.6	75-125	
1,2,3-TRICHLOROBENZENE	10.00	9.67	96.7	75-137	
1,2,3-TRICHLOROPROPANE	10.00	9.87	98.7	75-125	
1,2,4-TRICHLOROBENZENE	10.00	10.25	103	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.02	100	75-125	
1,2-DCA	10.00	9.36	93.6	68-127	
1,2-DCB	10.00	10.72	107	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	9.61	96.1	59-125	
1,2-DICHLOROPROPANE	10.00	9.49	94.9	70-125	
1,2-EDB	10.00	10.35	104	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.35	104	72-125	
1,3-DCB	10.00	10.62	106	75-125	
1,3-DICHLOROPROPANE	10.00	10.51	105	75-125	
1,4-DCB	10.00	9.46	94.6	75-125	
1-CHLOROHEXANE	10.00	9.83	98.3	75-125	
2,2-DICHLOROPROPANE	10.00	9.41	94.1	75-125	
2-CHLOROTOLUENE	10.00	10.15	102	73-125	
4-CHLOROTOLUENE	10.00	10.13	101	74-125	
BENZENE	10.00	10.57	106	75-125	
BROMOBENZENE	10.00	10.02	100	75-125	
BROMOCHLOROMETHANE	10.00	9.75	97.5	73-125	
BROMODICHLOROMETHANE	10.00	9.48	94.8	75-125	
BROMOFORM	10.00	9.80	98.0	75-125	
BROMOMETHANE	10.00	9.79	97.9	72-125	
CARBON TETRACHLORIDE	10.00	10.06	101	62-125	
CHLOROBENZENE	10.00	10.10	101	75-125	7
CHLOROETHANE	10.00	10.58	106	65-125	
CHLOROFORM	10.00	9.67	96.7	74-125	
CHLOROMETHANE	10.00	9.29	92.9	75-125	
CIS-1,2-DCE	10.00	10.05	101	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.11	91.1	74-125	
DIBROMOCHLOROMETHANE	10.00	9.80	98.0	73-125	
DIBROMOMETHANE	10.00	9.37	93.7	69-127	
DICHLORODIFLUOROMETHANE	10.00	9.83	98.3	72-125	

Comments:

Analytical Method: EPA 8260B

AAB #: 110617AT-156223

Lab Name: APPL, Inc

Contract #: 2010*1286022*000

LCS ID: 110617AT LCS

Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	11.42	114	75-125	_
HEXACHLOROBUTADIENE	10.00	10.26	103	75-125	
ISOPROPYLBENZENE	10.00	9.78	97.8	75-125	
M&P-XYLENE	20.00	21.15	106	75-125	11
METHYLENE CHLORIDE	10.00	9.24	92.4	75-125	
N-BUTYLBENZENE	10.00	9.79	97.9	75-125	
N-PROPYLBENZENE	10.00	10.04	100	75-125	
NAPHTHALENE	10.00	8.26	82.6	75-125	
O-XYLENE	10.00	9.82	98.2	75-125	
P-ISOPROPYLTOLUENE	10.00	9.92	99.2	75-125	
SEC-BUTYLBENZENE	10.00	10.12	101	75-125	
STYRENE	10.00	10.04	100	75-125	
TCE	10.00	10.06	101	71-125	
TERT-BUTYLBENZENE	10.00	10.96	110	75-125	
TETRACHLOROETHENE	10.00	10.90	109	71-125	
TOLUENE	10.00	10.88	109	74-125	
TRANS-1,2-DCE	10.00	9.86	98.6	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	8.82	88.2	66-125	
TRICHLOROFLUOROMETHANE	10.00	9.00	90.0	67-125	
VINYL CHLORIDE	10.00	10.21	102	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	91.1	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	OMOFLUOROBENZ 111		
SURROGATE: DIBROMOFLUOROMETH	94.6	75-125	
SURROGATE: TOLUENE-D8 (S)	103	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B AAB #: 110619AT-156278

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110619AT LCS Initial Calibration ID: T110617

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
CIS-1,2-DCE	10.00	10,66	107	75-125	
TCE	10.00	10.15	102	71-125	
TETRACHLOROETHENE	10.00	11.39	114	71-125	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	100	69-139	
SURROGATE: 4-BROMOFLUOROBENZ	116	75-125	
SURROGATE: DIBROMOFLUOROMETH	101	75-125	
SURROGATE: TOLUENE-D8 (S)	105	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	1
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B AAB #: 110620AS-156276

Lab Name: APPL, Inc Contract #: 2010*1286022*000 LCS ID: 110620AS LCS Initial Calibration ID: S110620

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0487	97.4	62-125	
1,1,1-TCA	0.0500	0.0470	94.0	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0494	98.8	64-135	
1,1,2-TCA	0.0500	0.0539	108	65-135	
I,1-DCA	0.0500	0.0506	101	62-135	
1,1-DCE	0.0500	0.0457	91.4	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0460	92.0	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0445	89.0	65-147	f.E.
1,2,3-TRICHLOROPROPANE	0.050	0.049	98.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0445	89.0	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0452	90.4	65-135	
1,2-DCA	0.0500	0.0514	103	58-137	
1,2-DCB	0.0500	0.0454	90.8	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.048	96.0	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0527	105	60-135	
1,2-EDB	0.0500	0.0505	101	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0444	88.8	62-135	
1,3-DCB	0.0500	0.0433	86.6	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0507	101	65-135	
1,4-DCB	0.0500	0.0455	91.0	65-135	
1-CHLOROHEXANE	0.0500	0.0415	83.0	65-135	
2,2-DICHLOROPROPANE	0.050	0.048	96.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0454	90.8	63-135	
4-CHLOROTOLUENE	0.0500	0.0441	88.2	64-135	
BENZENE	0.0500	0.0484	96.8	65-135	
BROMOBENZENE	0.0500	0.0470	94.0	65-135	
BROMOCHLOROMETHANE	0.0500	0.0544	109	63-135	
BROMODICHLOROMETHANE	0.0500	0.0536	107	65-135	
BROMOFORM	0.0500	0.0477	95.4	65-135	
BROMOMETHANE	0.0500	0.0472	94.4	62-135	
CARBON TETRACHLORIDE	0.050	0.047	94.0	52-135	
CHLOROBENZENE	0.0500	0.0466	93.2	65-135	
CHLOROETHANE	0.0500	0.0470	94.0	55-135	
CHLOROFORM	0.0500	0.0498	99.6	64-135	
CHLOROMETHANE	0.0500	0.0496	99.2	65-135	
CIS-1,2-DCE	0.0500	0.0503	101	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0534	107	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0501	100	63-135	
DIBROMOMETHANE	0.050	0.056	112	59-137	7.1
DICHLORODIFLUOROMETHANE	0.0500	0.0426	85.2	65-135	

Comments: ARF: 64

Analytical Method: EPA 8260B

AAB #: 110620AS-156276

Lab Name: APPL, Inc

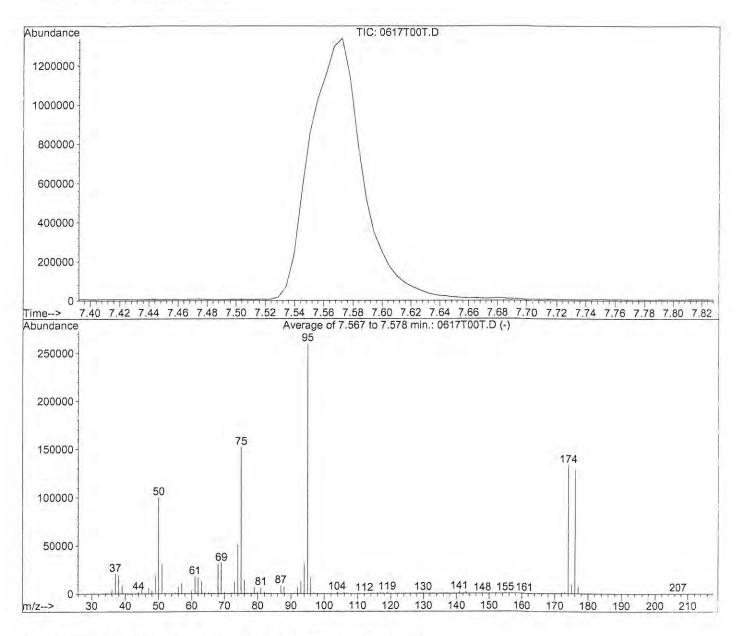
Contract #: 2010*1286022*000

LCS ID: 110620AS LCS

Initial Calibration ID: S110620

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0456	91.2	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0421	84.2	65-135	
ISOPROPYLBENZENE	0.0500	0.0423	84.6	65-135	
M&P-XYLENE	0.1000	0.0926	92.6	65-135	17.7
METHYLENE CHLORIDE	0.0500	0.0559	112	65-135	
N-BUTYLBENZENE	0.0500	0.0409	81.8	65-135	
N-PROPYLBENZENE	0.0500	0.0425	85.0	65-135	
NAPHTHALENE	0.0500	0.0508	102	65-135	
O-XYLENE	0.0500	0.0473	94.6	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0429	85.8	65-135	
SEC-BUTYLBENZENE	0.0500	0.0423	84.6	65-135	
STYRENE	0.0500	0.0502	100	65-135	
TCE	0.0500	0.0476	95.2	61-135	
TERT-BUTYLBENZENE	0.0500	0.0434	86.8	65-135	
TETRACHLOROETHENE	0.0500	0.0422	84.4	61-135	
TOLUENE	0.0500	0.0501	100	64-135	
TRANS-1,2-DCE	0.0500	0.0478	95.6	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0535	107	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0477	95.4	57-135	
VINYL CHLORIDE	0.0500	0.0557	111	36-144	

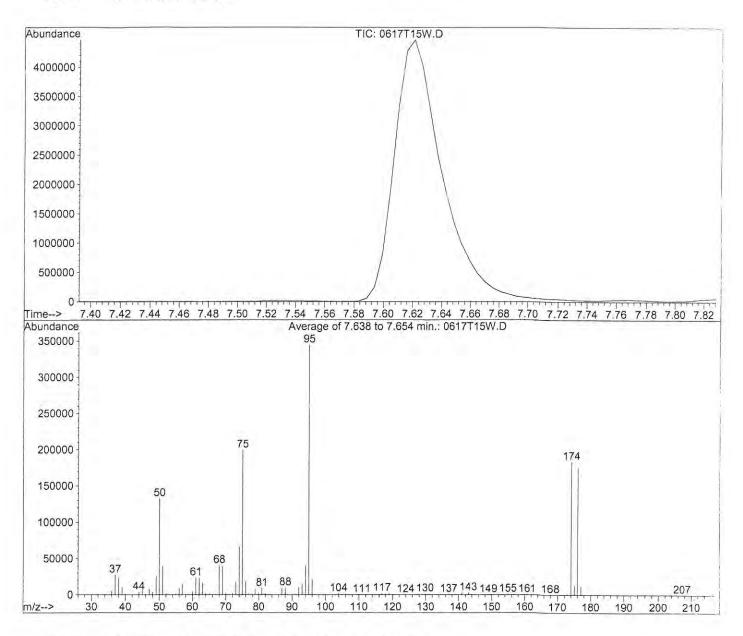

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	100	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	100	65-135	
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	3/1-2
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Method : M:\THOR\DATA\T110617\T826AW.M (RTE Integrator)

Title : METHOD 8260B


Spectrum Information: Average of 7.567 to 7.578 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	38.5	100029	PASS
75	95	30	60	58.5	151979	PASS
95	95	100	100	100.0	259669	PASS
96	95	5	9	6.1	15793	PASS
173	174	0.00	2	1.0	1379	PASS
174	95	50	100	51.4	133456	PASS
175	174	5	9	7.0	9362	PASS
176	174	95	101	95.7	127781	PASS
177	176	5	9	6.2	7965	PASS

Data File : M:\THOR\DATA\T110617\0617T15W.D Vial: 15
Acq On : 17 Jun 11 18:40 Operator: RP
Sample : 20ug/ml BFB Std 05-25-11A Inst : Thor
Misc : 2ul Multiplr: 1.00

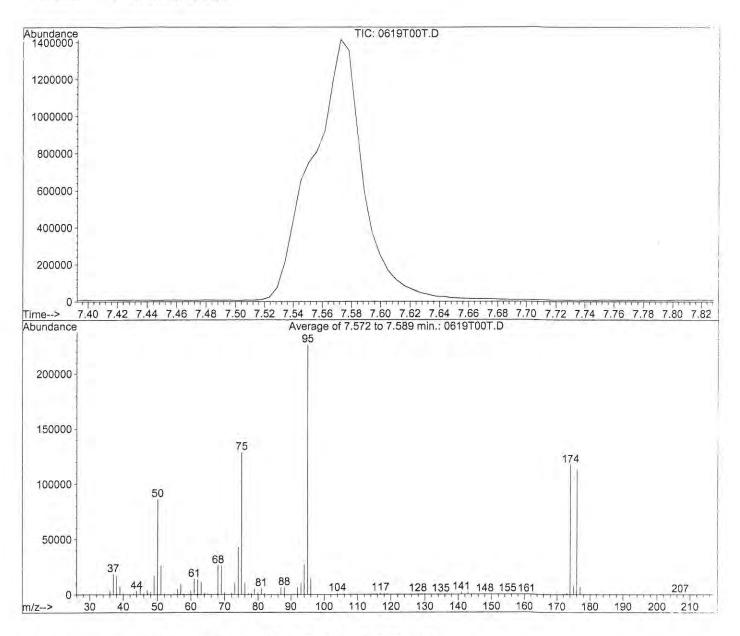
Method : M:\THOR\DATA\T110617\T826AW.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 7.638 to 7.654 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	38.5	132640	PASS
75	95	30	60	57.9	199406	PASS
95	95	100	100	100.0	344560	PASS
96	95	5	9	6.2	21532	PASS
173	174	0.00	2	0.8	1502	PASS
174	95	50	100	53.3	183610	PASS
175	174	5	9	7.2	13218	PASS
176	174	95	101	95.8	175916	PASS
177	176	5	9	6.6	11622	PASS

Vial: 1


Data File : M:\THOR\DATA\T110617\0619T00T.D

Acq On : 20 Jun 11 14:08 Sample

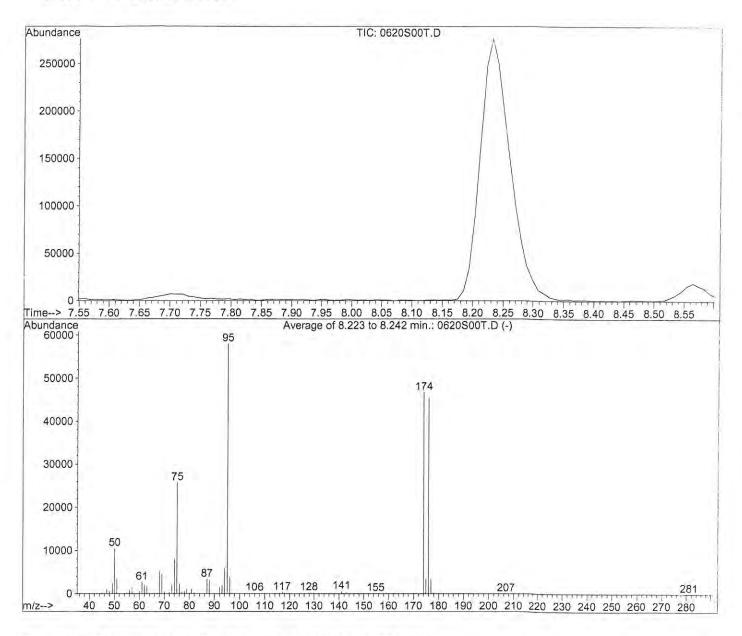
Operator: RP : 20ug/ml BFB Std 05-25-11A Inst : Thor Misc : 2ul Multiplr: 1.00

Method: M:\THOR\DATA\T110617\T826AW.M (RTE Integrator)

: METHOD 8260B Title

Spectrum Information: Average of 7.572 to 7.589 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	38.1	86244	PASS
75	95	30	60	56.9	128722	PASS
95	95	100	100	100.0	226124	PASS .
96	95	5	9	6.5	14716	PASS
173	174	0.00	2	0.8	986	PASS
174	95	50	100	51.9	117392	PASS
175	174	5	9	6.9	8047	PASS
176	174	95	101	96.5	113336	PASS
177	176	5	9	6.3	7128	PASS


Data File : M:\SWEETPEA\DATA\S110620\0620S00T.D

Vial: 1 Acq On : 20 Jun 11 10:48 Operator: DG

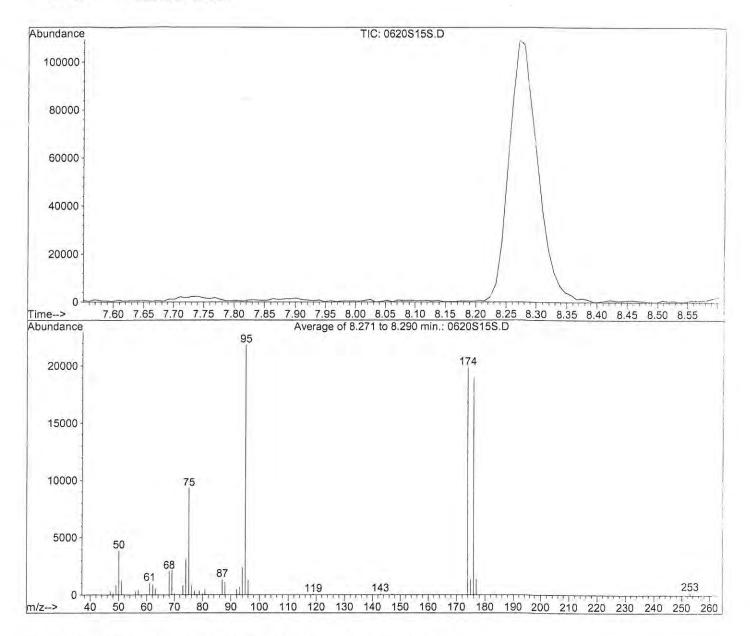
: 20ug/L BFB Std 05-25-11A : Sweetpea Sample Inst Misc 2uL Multiplr: 1.00

Method : M:\SWEETPEA\DATA\S110620\S826AFS.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 8.223 to 8.242 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	18.1	10492	PASS
75	95	30	60	44.4	25733	PASS
95	95	100	100	100.0	57949	PASS
96	95	5	9	6.7	3904	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	80.6	46704	PASS
175	174	5	9	7.3	3425	PASS
176	174	95	101	97.1	45363	PASS
177	176	5	9	7.0	3157	PASS


Data File : M:\SWEETPEA\DATA\S110620\0620S15S.D

Vial: 15 : 20 Jun 11 19:33 : 20ug/L BFB Std 05-25-11A Acq On Operator: DG

: Sweetpea Sample Inst : 2uL Misc Multiplr: 1.00

Method : M:\SWEETPEA\DATA\S110620\S826AFS.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 8.271 to 8.290 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	17.6	3848	PASS
75	95	30	60	42.6	9304	PASS
95	95	100	100	100.0	21843	PASS
96	95	5	9	5.9	1282	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	91.0	19869	PASS
175	174	5	9	6.9	1371	PASS
176	174	95	101	95.2	18912	PASS
177	176	5	9	7.2	1358	PASS

Date:	Initial	Sample ID		Weight (g)	Volume (ml)	Method	Balance
6/17/11	ARS	AY39994	S01	5.002	5 ml of P&T H20	8260	OHAUS/PIONEER
	ARS	AY39994 DUP	S01	5.025	5 ml of P&T H20	8260	OHAUS/PIONEER

Injection Log

Directory: M:\THOR\DATA\T110617

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
	1	0617T00T.D	1	20ug/ml BFB Std 05-25-11A 2	[u]	06/17/2011 12:19
	4	0617T04W.D	1	Vol Std 06-17-11@0.3ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 13:54
	5	0617T05W.D	1	Vol Std 06-17-11@0.5ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 14:20
	6	0617T06W.D	1	Vol Std 06-17-11@1.0ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 14:46
	7	0617T07W.D	1	Vol Std 06-17-11@2.0ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 15:12
	8	0617T08W.D	1	Vol Std 06-17-11@5.0ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 15:38
	9	0617T09W.D	1	Vol Std 06-17-11@10ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 16:04
	10	0617T10W.D	I	Vol Std 06-17-11@20ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 16:30
	11	0617T11W.D	1	Vol Std 06-17-11@40ug/L	Oml w/5ul of IS: 03-28-1	06/17/2011 16:56
C	12	0617T12W.D	1	Vol Std 06-17-11@100ug/L	0ml w/5ul of IS: 03-28-1	06/17/2011 17:22
I	15	0617T15W.D	1	20ug/ml BFB Std 05-25-11A 2	ul	06/17/2011 18:40
2	16	0617T16W.D	1	Vol Std 06-17-11@10ug/L	Oml w/5ul of IS&S: 03-2	06/17/2011 19:05
3	17	0617T17W.D	1	110617A LCS-1WT 1	0ml w/5ul of IS&S: 03-2	06/17/2011 19:31
4	38	0617T38W.D	1	110617A BLK-1WT	Oml w/5ul of IS&S: 03-2	06/18/2011 05;28
5	39	0617T39W.D	t	AY39993W01 1	0ml w/5ul of IS&S: 03-2	06/18/2011 05:54
5	1	0619T00T.D	T'	20ug/ml BFB Std 05-25-11A 2	ul	06/20/2011 14:08
7	1	0619T01W.D	1	Vol Std 06-19-11@10ug/L	0ml w/5ul of IS&S: 03-2	06/20/2011 14:50
3	2	0619T02W.D	1:	110619A LCS-1WT	0ml w/5ul of IS&S: 03-2	06/20/2011 15:15
)	4	0619T04W.D	1	110619A BLK-1WT	0ml w/5ul of IS&S: 03-2	06/20/2011 16:59
)	16	0619T16W.D	5	AY39993W02 DF5	0ml w/5ul of IS&S: 03-2	06/20/2011 22:10

Injection Log

Directory: M:\SWEETPEA\DATA\S110620

ine	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
	1	0620S00T.D	1	20ug/L BFB Std 05-25-11A	2uL	06/20/2011 10:48
	4	0620S04S.D	1	Vol Std 06-20-11@2.0ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 12:55
	5	0620S05S.D	1	Vol Std 06-20-11@5.0ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 13:30
	6	0620S06S.D	1	Vol Std 06-20-11@10ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 14:05
	7	0620S07S.D	1	Vol Std 06-20-11@20ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 14:40
	8	0620S08S.D	İ	Vol Std 06-20-11@50ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 15:16
	9	0620S09S.D	11	Vol Std 06-20-11@100ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 15:51
	10	0620S10S.D	1	Vol Std 06-20-11@200ug/kg	Soil 10mL w/IS:06-08-11	06/20/2011 16:26
	15	0620S15S.D	1	20ug/L BFB Std 05-25-11A	2uL	06/20/2011 19:33
	16	0620S16S.D	1	Vol Std 06-20-11@50ug/kg	Soil 10mL w/IS&S:06-08	06/20/2011 20:08
	17	0620S17S.D	1	110620A LCS-1SS	Soil 10mL w/IS&S:06-08	06/20/2011 20:43
	21	0620S21S.D	1	110620A BLK-1SS	Soil 10mL w/IS&S:06-08	06/21/2011 00:14
	29	0620S29S.D	0.996016	AY39994S01 5.020	Soil 10mL w/IS&S:06-08	06/21/2011 04:55

Wetlab Results

ARF: 64923

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

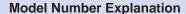
Method	Analyt	е	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: AY	39994	-Client Sample ID:	B3-EXW03-WC01	-Sample Collection D	Date: 06/15/11	Project: 74778	1.04000 CSSA
CLP MOIST	MOI	STURE	Not Detected	2.0	%	06/22/11	06/22/11

Printed: 06/22/11 1:25:39 PM

APPENDIX F Equipment Information

EXW03 and EXW04 200 V, 3 Phase, 5 HP Motor Grundfos Pump Model 40S50-15

CS-1 230 V, 3 Phase, 15 HP Motor Franklin Pump Model 70SR15F6A-1563


PAGE: SP-120

DATE: Jan 14, 2010

Stainless Steel Submersible Pumps

70 to 475 gpm

Example: 150SR10F6A-0443

150 = Gallons per Minute

SR = Series

10 = Horsepower

F = Stainless

6 = 6" Pump

A = Impeller Trim

04 = Number of Stages

4 = 4" Motor

3 = 3" Discharge

Designed for industrial and agricultural applications, the SR Series submersible pump utilizes high grade stainless steel materials for the most demanding applications.

- 6" to 300 gpm
- 8" to 475 gpm

Features:

- Stainless steel impellers and diffusers to resist corrosion.
- Heavy duty stainless steel shell assures permanent alignment of all components to increase longevity and enables higher pressures than strap designs.
- Teflon® floating wear ring, ceramic bearing journal and Nitrile rubber fluted bearing ensure durability against wear for long-lasting performance and reliability.
- Suited to operate in horizontal position.
- Built-in check valve to protect the pump against water hammer.
- Energy efficient hydraulic design for cost effective operation.
- Space-saving compact design.
- Easy to install and dismantle for service in the field if necessary.
- Maximum operating temperature 180 °F

Ordering Information

GPM	HP	Stages	Motor Size	Model No.	Order No.	Dimensions (inches)	Weight (lbs)
	5	5	4"	70SR5F6A-0543	96160070001	14.0	23.1
	5	5	6"	70SR5F6A-0563	96160070012	14.0	23.1
	7.5	8	4"	70SR7F6A-0843	96160070002	17.6	28.7
	7.5	8	6"	70SR7F6A-0863	96160070013	17.6	28.7
	10	11	6"	70SR10F6A-1163	96160070003	21.1	33.1
	15	13	6"	70SR15F6A-1363	96160070004	23.5	36.4
70	15	15	6"	70SR15F6A-1563	96160070005	25.8	39.7
	15	17	6"	70SR15F6A-1763	96160070006	28.2	43.0
	20	19	6"	70SR20F6A-1963	96160070007	30.6	46.3
	20	22	6"	70SR20F6A-2263	96160070008	34.1	50.7
	25	24	6"	70SR25F6A-2463	96160070009	36.5	54.0
	25	26	6"	70SR25F6A-2663	96160070010	38.8	57.3
	25	28	6"	70SR25F6A-2863	96160070011	41.3	61.7
	5	3	4"	100SR5F6A-0343	96160100001	13.3	19.8
	5	3	6"	100SR5F6A-0363	96160100013	13.3	19.8
	7.5	5	4"	100SR7F6A-0543	96160100002	16.3	24.3
	7.5	5	6"	100SR7F6A-0563	96160100014	16.3	24.3
	10	6	4"	100SR10F6A-0643	96160100003	17.7	26.5
	10	6	6"	100SR10F6A-0663	96160100015	17.7	26.5
	10	7	4"	100SR10F6A-0743	96160100004	19.2	27.6
400	10	7	6"	100SR10F6A-0763	96160100016	19.2	27.6
100	15	9	6"	100SR15F6A-0963	96160100005	22.1	30.9
	15	11	6"	100SR15F6A-1163	96160100006	25.1	35.3
	20	13	6"	100SR20F6A-1363	96160100007	28.0	38.6
	20	15	6"	100SR20F6A-1563	96160100008	31.0	41.9
	25	18	6"	100SR25F6A-1863	96160100009	35.4	47.4
	30	22	6"	100SR30F6A-2263	96160100010	41.3	55.1
	40	26	6"	100SR40F6A-2663	96160100011	47.2	61.7
	40	28	6"	100SR40F6A-2863	96160100012	50.1	66.1
	7.5	3	4"	150SR7F6A-0343	96160150001	14.4	23.1
	7.5	3	6"	150SR7F6A-0363	96160150011	14.4	23.1
	10	4	4"	150SR10F6A-0443	96160150002	16.2	25.4
	10	4	6"	150SR10F6A-0463	96160150012	16.2	25.4
	15	5	6"	150SR15F6A-0563	96160150003	18.0	27.6
450	15	7	6"	150SR15F6A-0763	96160150004	21.7	32.0
150	20	9	6"	150SR20F6A-0963	96160150005	25.3	36.4
	25	11	6"	150SR25F6A-1163	96160150006	29.0	40.8
	30	14	6"	150SR30F6A-1463	96160150007	34.5	47.4
	40	15	6"	150SR40F6A-1563	96160150008	36.3	48.5
	40	19	6"	150SR40F6A-1963	96160150009	43.6	57.3
	50	23	6"	150SR50F6A-2363	96160150010	50.9	66.1

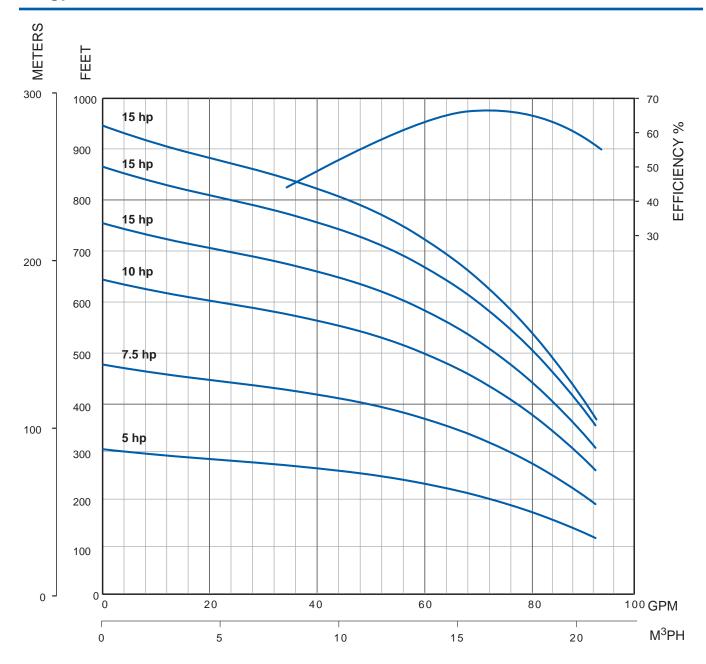
PAGE: SP-121

DATE: Jan 14, 2010

6" Stainless Steel Submersible Pumps

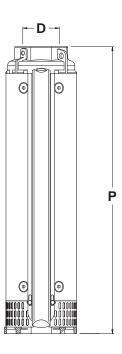
Ordering Information

GPM	НР	Stages	Motor Size	Model No.	Order No.	Dimensions (inches)	Weight (lbs)
	7.5	2	4"	240SR7F6A-0243	96160240001	14.4	24.3
	7.5	2	6"	240SR7F6A-0263	96160240011	14.4	24.3
	10	3	4"	240SR10F6A-0343	96160240002	18.0	29.8
	10	3	6"	240SR10F6A-0363	96160240012	18.0	29.8
	15	4	6"	240SR15F6A-0463	96160240003	21.7	35.3
240	20	5	6"	240SR20F6A-0563	96160240004	25.3	39.7
240	20	6	6"	240SR20F6A-0663	96160240005	29.0	45.2
	25	7	6"	240SR25F6A-0763	96160240006	32.6	49.6
	30	9	6"	240SR30F6A-0963	96160240007	39.9	59.5
	40	10	6"	240SR40F6A-1063	96160240008	43.6	65.0
	40	12	6"	240SR40F6A-1263	96160240009	50.9	75.0
	50	15	6"	240SR50F6A-1563	96160240010	61.9	90.4
	7.5	2	4"	300SR7F6A-0243	96160300001	14.4	25.4
	7.5	2	6"	300SR7F6A-0263	96160300013	14.4	25.4
	10	3	4"	300SR10F6A-0343	96160300002	18.0	29.8
	10	3	6"	300SR10F6A-0363	96160300014	18.0	29.8
	15	4	6"	300SR15F6A-0463	96160300003	21.7	35.3
	20	5	6"	300SR20F6A-0563	96160300004	25.3	39.7
200	20	6	6"	300SR20F6A-0663	96160300005	29.0	45.2
300	25	7	6"	300SR25F6A-0763	96160300006	32.6	50.7
	30	8	6"	300SR30F6A-0864	96160300007	36.3	55.1
	30	9	6"	300SR30F6A-0964	96160300008	39.9	59.5
	40	10	6"	300SR40F6A-1064	96160300009	43.6	66.1
	40	12	6"	300SR40F6A-1264	96160300010	50.9	75.0
	50	14	6"	300SR50F6A-1464	96160300011	58.2	86.0
	50	15	6"	300SR50F6A-1564	96160300012	61.9	90.4


Ordering Information

GPM	HP	Stages	Motor Size	Model No.	Order No.	Dimensions (inches)	Weight (lbs)
	15	2	6"	400SR15F8A-0264	96180400001	25.3	69
	25	3	6"	400SR25F8A-0364	96180400002	30.3	81
	30	4	6"	400SR30F8A-0464	96180400003	35.2	92
400	40	5	6"	400SR40F8A-0564	96180400004	40.2	103
400	50	7	6"	400SR50F8A-0764	96180400006	50.1	124
	60	8	6"	400SR60F8A-0864	96180400007	55.0	135
	75	10	8"	400SR75F8A-1084	96180400009	65.1	157
	100	13	8"	400SR100F8A-1384	96180400012	80.0	192
	30	3	6"	475SR30F8A-0366	96180475002	30.3	81
	40	4	6"	475SR40F8A-0466	96180475003	35.2	92
	50	6	6"	475SR50F8A-0666	96180475005	45.1	112
475	60	7	6"	475SR60F8A-0766	96180475006	50.1	124
	75	8	8"	475SR75F8A-0886	96180475007	55.2	138
	100	10	8"	475SR100F8A-1086	96180475009	65.1	159
	125	13	8"	475SR125F8A-1386	96180475012	80.0	192

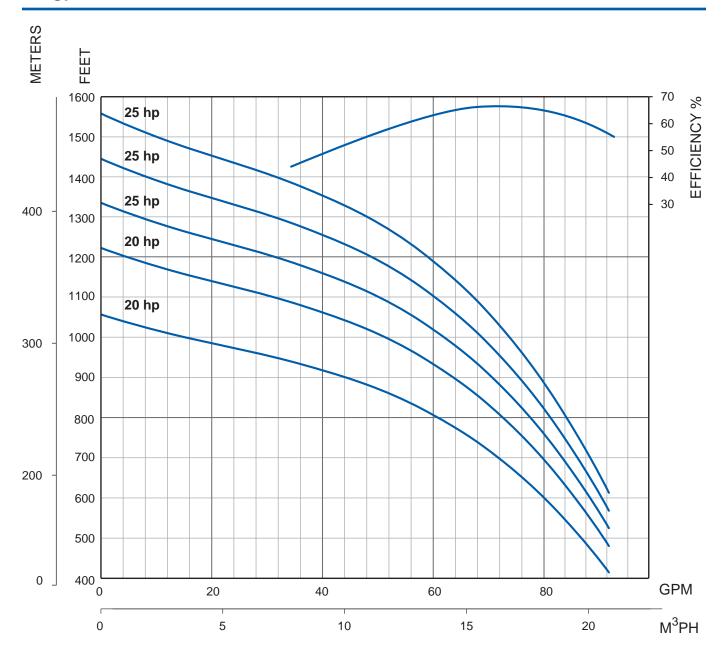
70 gpm Performance Curve


PAGE: SP-123 **DATE:** July 31, 2009

70 gpm Specifications

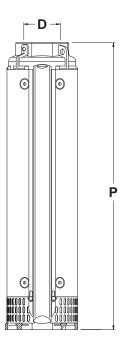
Dimension Information

НР	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
5	5	3"	4"	5.55"	14.0"	23.1
5	5	3"	6"	5.67"	14.0"	23.1
7.5	8	3"	4"	5.55"	17.6"	28.7
7.5	8	3"	6"	5.67"	17.6"	28.7
10	11	3"	6"	5.67"	21.1"	33.1
15	13	3"	6"	5.67"	23.5"	36.4
15	15	3"	6"	5.67"	25.8"	39.7
15	17	3"	6"	5.67"	28.2"	43.0



Douto Decovintion	Mat	erial
Parts Description	Type	AISI
Outer case with motor adapter	Stainless Steel	304
Discharge head with built-in check valve	Stainless Steel	304
Sealing O-ring	Nitrile Rubber (NBR)	N/A
Upper bowl	Stainless Steel	304
Upper bearing bushing	Nitrile Rubber (NBR)	N/A
Upper journal sleeve	Stainless Steel w/ ceramic coating	329
Pump shaft	Stainless Steel	431
Motor coupling	Stainless Steel	431/329
Diffuser	Stainless Steel	304
Floating neck ring	Teflon (PTFE)	N/A
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A
Secondary journal sleeve	Stainless Steel	304
Impeller	Stainless Steel	304
Cable guard	Stainless Steel	316
Suction strainer	Stainless Steel	316
Insert locking outer case	Stainless Steel	316
Upthrust washer	Stainless Steel	316
Upthrust disc	Teflon (PTFE)	N/A
Screws and washers	Stainless Steel	316

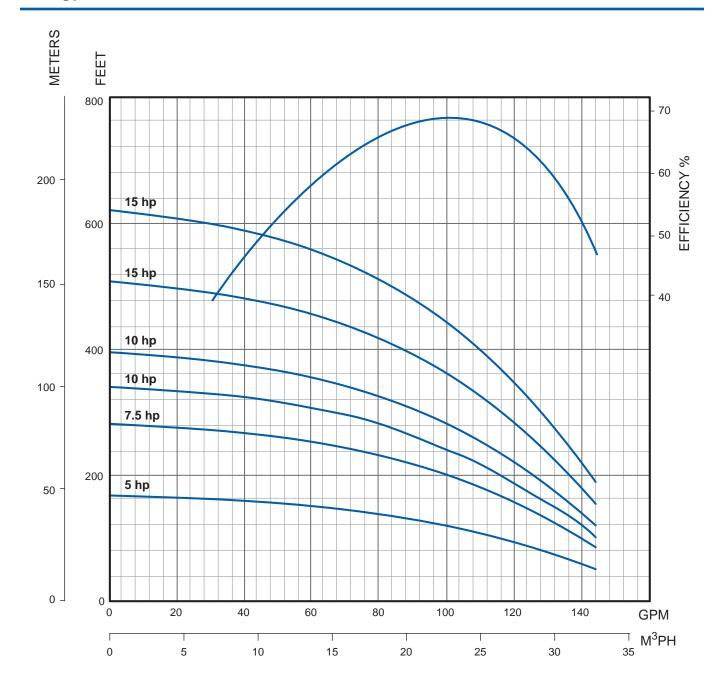
70 gpm Performance Curve


PAGE: SP-124 **DATE:** July 31, 2009

70 gpm Specifications

Dimension Information

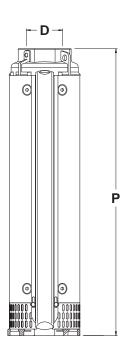
	_					
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
20	19	3"	6"	5.67"	30.6"	46.3
20	22	3"	6"	5.67"	34.1"	50.7
25	24	3"	6"	5.67"	36.5"	54.0
25	26	3"	6"	5.67"	38.8"	57.3
25	28	3"	6"	5.67"	41.3"	61.7


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

100 gpm Performance Curve

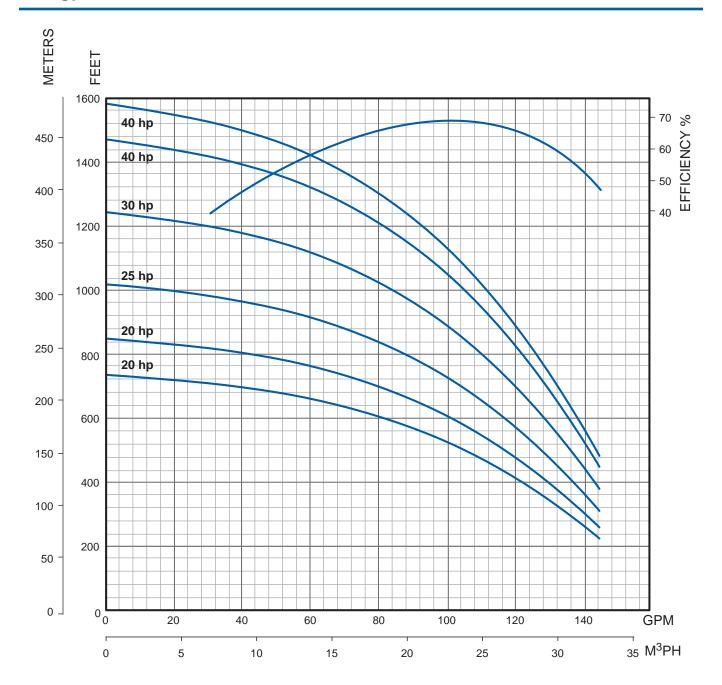
PAGE: SP-125 **DATE:** July 31, 2009



100 gpm Specifications

Dimension Information

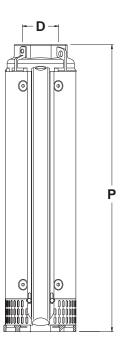
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
5	3	3"	4"	5.55"	12.5"	20
5	3	3"	6"	5.67"	12.5"	20
7.5	5	3"	4"	5.55"	15.5"	24
7.5	5	3"	6"	5.67"	15.5"	24
10	6	3"	4"	5.55"	17.0"	27
10	6	3"	6"	5.67"	17.0"	27
10	7	3"	4"	5.55"	18.4"	28
10	7	3"	6"	5.67"	18.4"	28
15	9	3"	6"	5.67"	21.4"	31
15	11	3"	6"	5.67"	24.4"	35


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

100 gpm Performance Curve

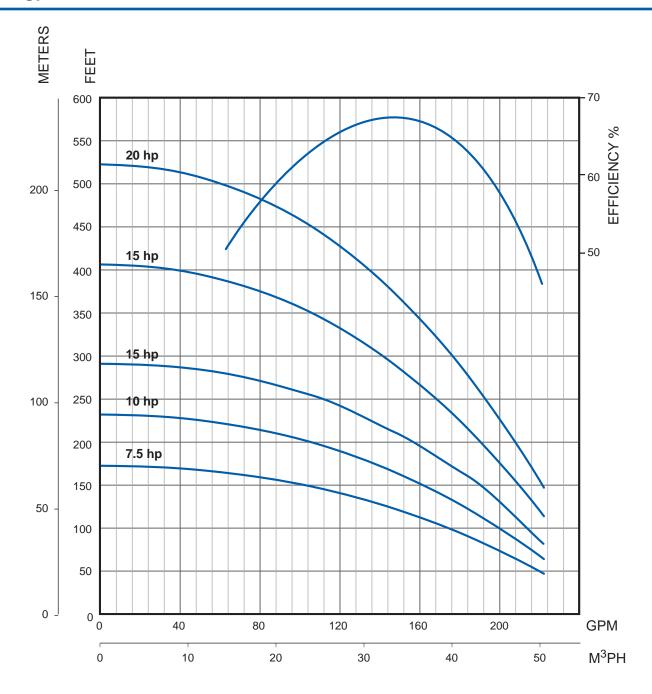
PAGE: SP-130 **DATE:** July 1, 2008



100 gpm Specifications

Dimension Information

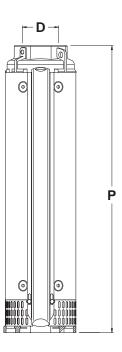
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
20	13	3"	6"	5.67"	27.3"	39
20	15	3"	6"	5.67"	30.3"	42
25	18	3"	6"	5.67"	35.2"	47
30	22	3"	6"	5.67"	40.6"	55
40	26	3"	6"	5.67"	46.5"	62
40	28	3"	6"	5.67"	49.4"	66


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

150 gpm Performance Curve

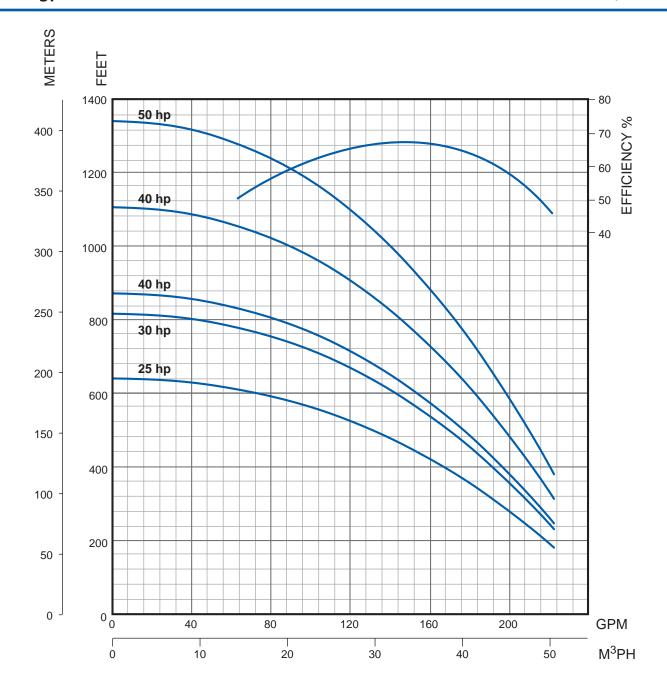
PAGE: SP-135 **DATE:** July 31, 2009



150 gpm Specifications

Dimension Information

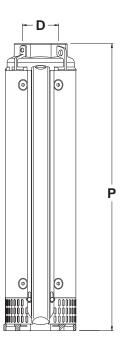
НР	Stages	D*	Motor Size	Diameter		Pump Weight
	Stuges		Wiotor Size	w/Cable Guard		Lbs.
7.5	3	3"	4"	5.55"	14.4"	23
7.5	3	3"	6"	5.67"	14.4"	23
10	4	3"	4"	5.55"	16.2"	25
10	4	3"	6"	5.67"	16.2"	25
15	5	3"	6"	5.67"	18.0"	28
15	7	3"	6"	5.67"	21.7"	32
20	9	3"	6"	5.67"	25.3"	36


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

150 gpm Performance Curve

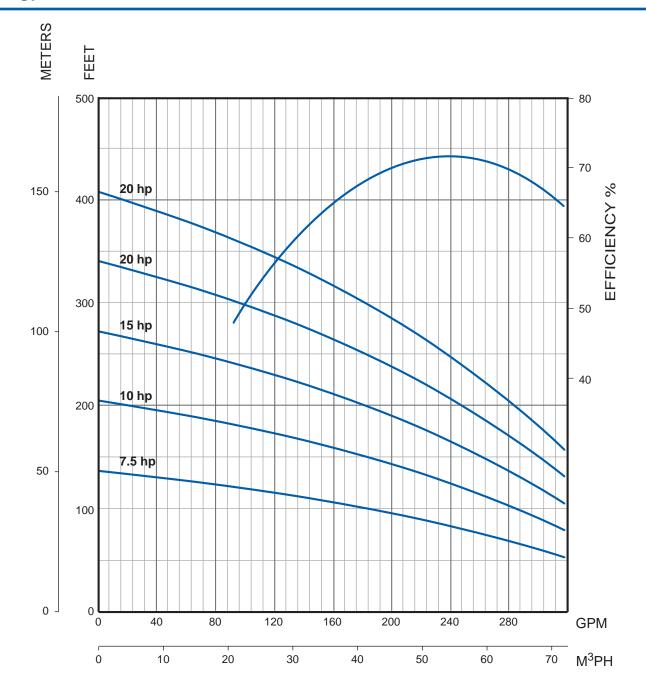
PAGE: SP-140 **DATE:** July 1, 2008



150 gpm Specifications

Dimension Information

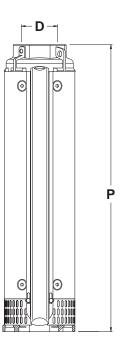
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
25	11	3"	6"	5.67"	29.0"	41
30	14	3"	6"	5.67"	34.5"	47
40	15	3"	6"	5.67"	36.8"	49
40	19	3"	6"	5.67"	43.7"	57
50	23	3"	6"	5.67"	51.0"	66


Parta Dagarintian	Material		
Parts Description	Type	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

240 gpm Performance Curve

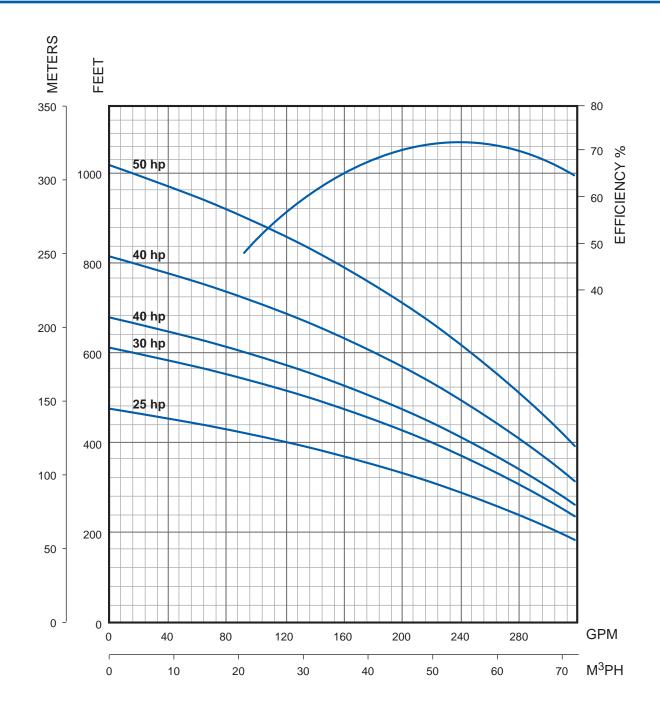
PAGE: SP-145 **DATE:** July 1, 2008



240 gpm Specifications

Dimension Information

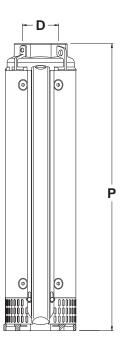
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
7.5	2	3"	4"	5.55"	14.4"	24
7.5	2	3"	6"	5.67"	14.4"	24
10	3	3"	4"	5.55"	18.1"	30
10	3	3"	6"	5.67"	18.1"	30
15	4	3"	6"	5.67"	21.7"	35
20	5	3"	6"	5.67"	25.3"	40
20	6	3"	6"	5.67"	29.0"	45


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

6" Stainless Steel Submersible Pumps

240 gpm Performance Curve

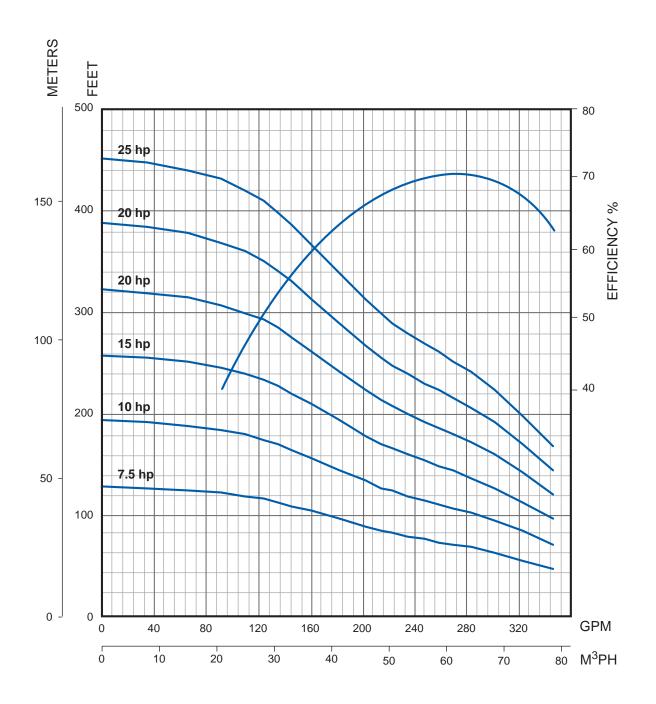
PAGE: SP-150 **DATE:** July 31, 2009



240 gpm Specifications

Dimension Information

HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
25	7	3"	6"	5.67"	32.6"	50
30	9	3"	6"	5.67"	39.9"	60
40	10	3"	6"	5.67"	43.6"	65
40	12	3"	6"	5.67"	50.9"	75
50	15	3"	6"	5.67"	61.9"	90

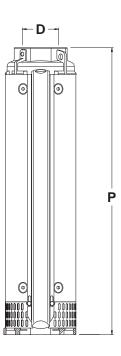


Davis Decariation	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

300 gpm Performance Curve

PAGE: SP-155 **DATE:** July 31, 2009

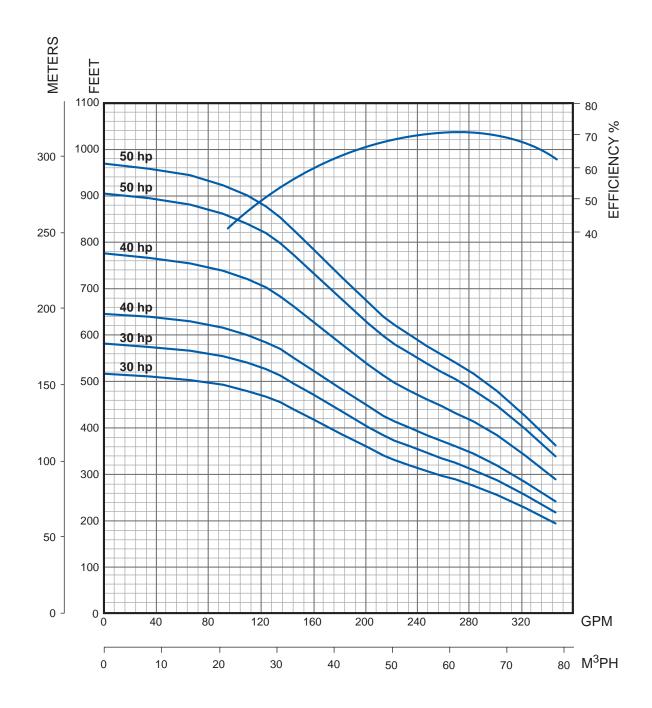




300 gpm Specifications

Dimension Information

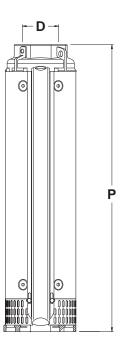
HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
7.5	2	3"	4"	5.55"	14.4"	25
7.5	2	3"	6"	5.67"	14.4"	25
10	3	3"	4"	5.55"	18.0"	30
10	3	3"	6"	5.67"	18.0"	30
15	4	3"	6"	5.67"	21.7"	35
20	5	3"	6"	5.67"	25.3"	40
20	6	3"	6"	5.67"	29.0"	45
25	7	3"	6"	5.67"	32.6"	51



Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

300 gpm Performance Curve

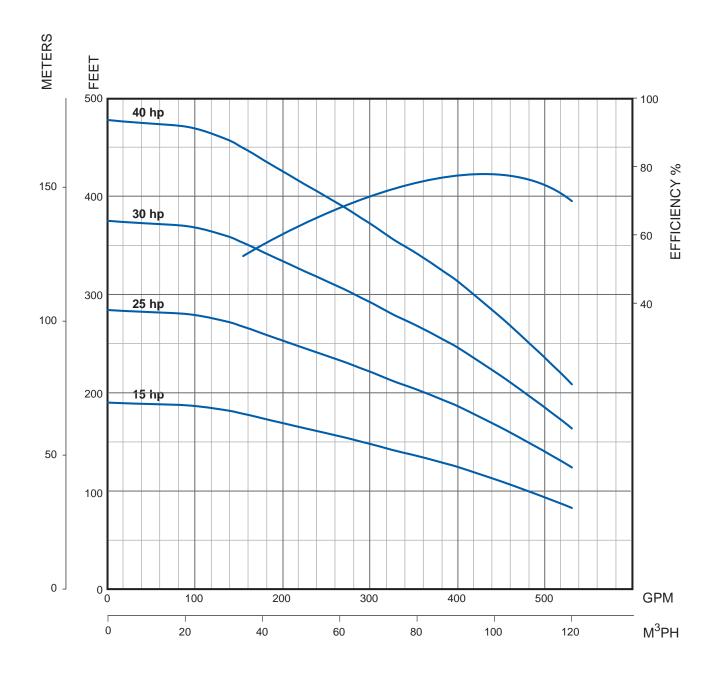
PAGE: SP-160 **DATE:** July 1, 2008



300 gpm Specifications

Dimension Information

HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight
				w/cable dualu		Lbs.
30	8	4"	6"	5.67"	36.3"	55
30	9	4"	6"	5.67"	39.9"	60
40	10	4"	6"	5.67"	43.6"	66
40	12	4"	6"	5.67"	50.9"	75
50	14	4"	6"	5.67"	58.2"	86
50	15	4"	6"	5.67"	61.9"	90


Darta Dagarintian	Material		
Parts Description	Туре	AISI	
Outer case with motor adapter	Stainless Steel	304	
Discharge head with built-in check valve	Stainless Steel	304	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Upper bowl	Stainless Steel	304	
Upper bearing bushing	Nitrile Rubber (NBR)	N/A	
Upper journal sleeve	Stainless Steel w/ ceramic coating	329	
Pump shaft	Stainless Steel	431	
Motor coupling	Stainless Steel	431/329	
Diffuser	Stainless Steel	304	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Secondary journal sleeve	Stainless Steel	304	
Impeller	Stainless Steel	304	
Cable guard	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	316	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

8" Stainless Steel Submersible Pumps

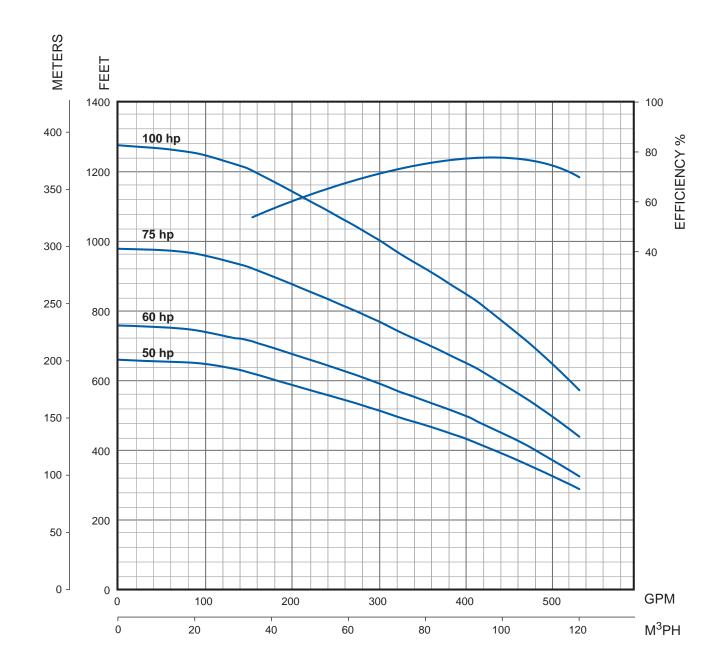
400 gpm Performance Curve

PAGE: SP-165 **DATE:** July 31, 2009

400 gpm Specifications

Dimension Information

HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
15	2	4"	6"	7.34"	25.3"	70
25	3	4"	6"	7.34"	30.3"	81
30	4	4"	6"	7.34"	35.2"	92
40	5	4"	6"	7.34"	40.2"	103


Douts Description	Mat	Material		
Parts Description	Type	AISI		
Outer case	Stainless Steel	316		
Motor adapter and flange	Stainless Steel	316		
Suction strainer	Stainless Steel	316		
Discharge head	Stainless Steel	316		
Check valve assembly	Stainless Steel	316		
Sealing O-ring	Nitrile Rubber (NBR)	N/A		
Stop ring	Stainless Steel	316		
Spring	Stainless Steel	316		
Pump shaft	Stainless Steel	329		
Upper journal sleeve	Silicon Carbide (SiC)	N/A		
Motor coupling	Stainless Steel	316/329		
Diffuser	Stainless Steel	316		
Floating neck ring	Teflon (PTFE)	N/A		
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A		
Flange clamping neck ring	Stainless Steel	316		
Impeller	Stainless Steel	316		
Collet	Stainless Steel	316		
Collet nut	Stainless Steel	316		
Cable guard	Stainless Steel	316		
Insert locking outer case	Stainless Steel	316		
Upthrust washer	Stainless Steel	329		
Upthrust disc	Teflon (PTFE)	N/A		
Screws and washers	Stainless Steel	316		

8" Stainless Steel Submersible Pumps

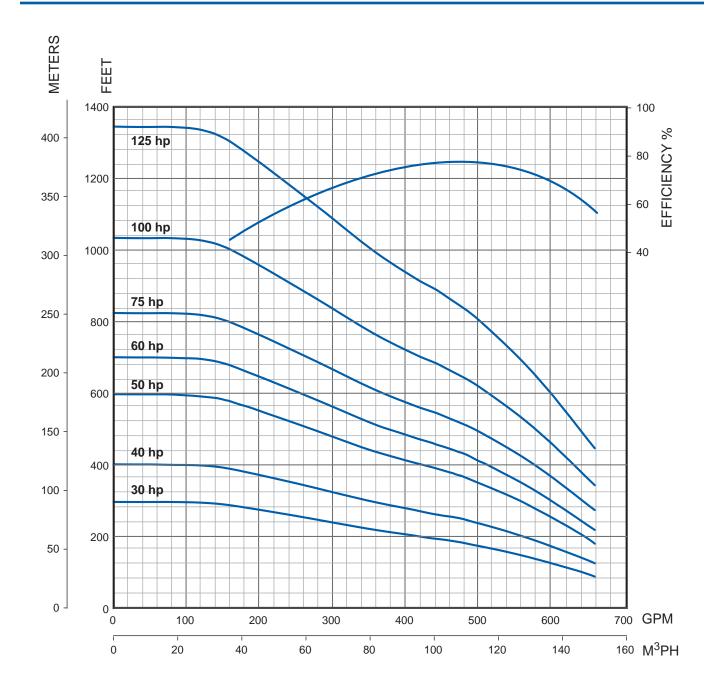
400 gpm Performance Curve

PAGE: SP-170 **DATE:** July 1, 2008

400 gpm Specifications

Dimension Information

HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
50	7	4"	6"	7.34"	50.1"	124
60	8	4"	8"	7.34"	55.0"	135
75	10	4"	8"	7.34"	65.1"	157
100	13	4"	8"	7.34"	80.0"	192



Davis Decariation	Material		
Parts Description	Туре	AISI	
Outer case	Stainless Steel	316	
Motor adapter and flange	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Discharge head	Stainless Steel	316	
Check valve assembly	Stainless Steel	316	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Stop ring	Stainless Steel	316	
Spring	Stainless Steel	316	
Pump shaft	Stainless Steel	329	
Upper journal sleeve	Silicon Carbide (SiC)	N/A	
Motor coupling	Stainless Steel	316/329	
Diffuser	Stainless Steel	316	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Flange clamping neck ring	Stainless Steel	316	
Impeller	Stainless Steel	316	
Collet	Stainless Steel	316	
Collet nut	Stainless Steel	316	
Cable guard	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	329	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

475 gpm Performance Curve

PAGE: SP-175 **DATE:** July 1, 2008

8" Stainless Steel Submersible Pumps

475 gpm Specifications

Dimension Information

HP	Stages	D*	Motor Size	Diameter w/Cable Guard	P*	Pump Weight Lbs.
30	3	6"	6"	7.34"	30.3"	81
40	4	6"	6"	7.34"	35.2"	92
50	6	6"	6"	7.34"	45.1"	112
60	7	6"	6"	7.34"	50.1"	124
75	8	6"	8"	7.68"	55.2"	138
100	10	6"	8"	7.68"	65.1"	159
125	13	6"	8"	7.68"	80.0"	192

*Note: D = Discharge, P = Pump Length

Davis Decariation	Material		
Parts Description	Туре	AISI	
Outer case	Stainless Steel	316	
Motor adapter and flange	Stainless Steel	316	
Suction strainer	Stainless Steel	316	
Discharge head	Stainless Steel	316	
Check valve assembly	Stainless Steel	316	
Sealing O-ring	Nitrile Rubber (NBR)	N/A	
Stop ring	Stainless Steel	316	
Spring	Stainless Steel	316	
Pump shaft	Stainless Steel	329	
Upper journal sleeve	Silicon Carbide (SiC)	N/A	
Motor coupling	Stainless Steel	316/329	
Diffuser	Stainless Steel	316	
Floating neck ring	Teflon (PTFE)	N/A	
Secondary bearing bushing	Nitrile Rubber (NBR)	N/A	
Flange clamping neck ring	Stainless Steel	316	
Impeller	Stainless Steel	316	
Collet	Stainless Steel	316	
Collet nut	Stainless Steel	316	
Cable guard	Stainless Steel	316	
Insert locking outer case	Stainless Steel	316	
Upthrust washer	Stainless Steel	329	
Upthrust disc	Teflon (PTFE)	N/A	
Screws and washers	Stainless Steel	316	

2011 AIM MANUAL

ATTENTION! IMPORTANT INFORMATION FOR INSTALLERS OF THIS EQUIPMENT!

THIS EQUIPMENT IS INTENDED FOR INSTALLATION BY TECHNICALLY QUALIFIED PERSONNEL. FAILURE TO INSTALL IT IN COMPLIANCE WITH NATIONAL AND LOCAL ELECTRICAL CODES, AND WITHIN FRANKLIN ELECTRIC RECOMMENDATIONS, MAY RESULT IN ELECTRICAL SHOCK OR FIRE HAZARD, UNSATISFACTORY PERFORMANCE, AND EQUIPMENT FAILURE. FRANKLIN INSTALLATION INFORMATION IS AVAILABLE FROM PUMP MANUFACTURERS AND DISTRIBUTORS, AND DIRECTLY FROM FRANKLIN ELECTRIC. CALL FRANKLIN TOLL FREE 800-348-2420 FOR INFORMATION.

WARNING

SERIOUS OR FATAL ELECTRICAL SHOCK MAY RESULT FROM FAILURE TO CONNECT THE MOTOR, CONTROL ENCLOSURES, METAL PLUMBING, AND ALL OTHER METAL NEAR THE MOTOR OR CABLE, TO THE POWER SUPPLY GROUND TERMINAL USING WIRE NO SMALLER THAN MOTOR CABLE WIRES. TO REDUCE RISK OF ELECTRICAL SHOCK, DISCONNECT POWER BEFORE WORKING ON OR AROUND THE WATER SYSTEM. DO NOT USE MOTOR IN SWIMMING AREAS.

ATTENTION! INFORMATIONS IMPORTANTES POUR L'INSTALLATEUR DE CET EQUIPEMENT.

CET EQUIPEMENT DOIT ETRE INTALLE PAR UN TECHNICIEN QUALIFIE. SI L'INSTALLATION N'EST PAS CONFORME AUX LOIS NATIONALES OU LOCALES AINSI QU'AUX RECOMMANDATIONS DE FRANKLIN ELECTRIC, UN CHOC ELECTRIQUE, LE FEU, UNE PERFORMANCE NON ACCEPTABLE, VOIRE MEME LE NON-FONCTIONNEMENT PEUVENT SURVENIR. UN GUIDE D'INSTALLATION DE FRANKLIN ELECTRIC EST DISPONIBLE CHEZ LES MANUFACTURIERS DE POMPES, LES DISTRIBUTEURS, OU DIRECTEMENT CHEZ FRANKLIN. POUR DE PLUS AMPLES RENSEIGNEMENTS, APPELEZ SANS FRAIS LE 800-348-2420.

AVERTISSEMENT

UN CHOC ELECTRIQUE SERIEUX OU MEME MORTEL EST POSSIBLE, SI L'ON NEGLIGE DE CONNECTER LE MOTEUR, LA PLOMBERIE METALLIQUE, BOITES DE CONTROLE ET TOUT METAL PROCHE DU MOTEUR A UN CABLE ALLANT VERS UNE ALIMENTATION D'ENERGIE AVEC BORNE DE MISE A LA TERRE UTILISANT AU MOINS LE MEME CALIBRE QUE LES FILS DU MOTEUR. POUR REDUIRE LE RISQUE DE CHOC ELECTRIQUE. COUPER LE COURANT AVANT DE TRAVAILLER PRES OU SUR LE SYSTEM D'EAU. NE PAS UTILISER CE MOTEUR DANS UNE ZONE DE BAIGNADE.

ATENCION! INFORMACION PARA EL INSTALADOR DE ESTE EQUIPO.

PARA LA INSTALACION DE ESTE EQUIPO, SE REQUIERE DE PERSONAL TECNICO CALIFICADO. EL NO CUMPLIR CON LAS NORMAS ELECTRICAS NACIONALES Y LOCALES, ASI COMO CON LAS RECOMENDACIONES DE FRANKLIN ELECTRIC DURANTE SU INSTALACION, PUEDE OCASIONAR, UN CHOQUE ELECTRICO, PELIGRO DE UN INCENDIO, OPERACION DEFECTUOSA E INCLUSO LA DESCOMPOSTURA DEL EQUIPO. LOS MANUALES DE INSTALACION Y PUESTA EN MARCHA DE LOS EQUIPOS, ESTAN DISPONIBLES CON LOS DISTRIBUIDORES, FABRICANTES DE BOMBAS O DIRECTAMENTE CON FRANKLIN ELECTRIC. PUEDE LLAMAR GRATUITAMENTE PARA MAYOR INFORMACION AL TELEFONO 800-348-2420.

ADVERTENCIA

PUEDE OCURRIR UN CHOQUE ELECTRICO, SERIO O FATAL DEBIDO A UNA ERRONEA CONECCION DEL MOTOR, DE LOS TABLEROS ELECTRICOS, DE LA TUBERIA, DE CUALQUIER OTRA PARTE METALICA QUE ESTA CERCA DEL MOTOR O POR NO UTILIZAR UN CABLE PARA TIERRA DE CALIBRE IGUAL O MAYOR AL DE LA ALIMENTACION. PARA REDUCIR EL RIESGO DE CHOQUE ELECTRIC, DESCONECTAR LA ALIMENTACION ELECTRICA ANTES DE INICIAR A TRABAJAR EN EL SISTEMA HIDRAULICO. NO UTILIZAR ESTE MOTOR EN ALBERCAS O AREAS EN DONDE SE PRACTIQUE NATACION.

Commitment to Quality

Franklin Electric is committed to provide customers with defect free products through our program of continuous improvement. Quality shall, in every case, take precedence over quantity.

Application • Installation • Maintenance Manual

The submersible motor is a reliable, efficient and troublefree means of powering a pump. Its needs for a long operational life are simple. They are:

- 1. A suitable operating environment
- 2. An adequate supply of electricity
- 3. An adequate flow of cooling water over the motor
- 4. An appropriate pump load

All considerations of application, installation, and maintenance of submersible motors relating to these four areas are presented in this manual. Franklin Electric's web page, www.franklin-electric.com, should be checked for the latest updates.

Contents

Application

All Motors	
Storage 3	Single-Phase Motor Fuse Sizing 14
Frequency of Starts 3	Auxiliary Running Capacitors
Mounting Position	Buck-Boost Transformers
Transformer Capacity 4	
Effects of Torque	Three-Phase Motors
Use of Engine Driven Generators5	Cable Selection - 60 °C Three-Wire16-17
Use of Check Valves 5	Cable Selection - 60 °C Six-Wire
Well Diameters, Casing, Top Feeding, Screens 6	Cable Selection - 75 °C Three-Wire19-20
Water Temperature and Flow6	Cable Selection - 75 °C Six-Wire
Flow Inducer Sleeve 6	Three-Phase Motor Specifications
Head Loss Past Motor 7	Overload Protection
Hot Water Applications7-8	Submersible Pump Installation Checklist (No. 3656)
Drawdown Seals9	Submersible Motor Installation Record (No. 2207)
Grounding Control Boxes and Panels9	Submersible Booster Installation Record (No. 3655)
Grounding Surge Arrestors9	SubMonitor32
Control Box and Panel Environment9	Power Factor Correction
Equipment Grounding9	Three-Phase Starter Diagrams
• •	Three-Phase Power Unbalance
Single-Phase Motors	Rotation and Current Unbalance
3-Wire Control Boxes 10	Three-Phase Motor Lead Identification
2-Wire Motor Solid State Controls 10	Phase Converters
QD Relays (Solid State)10	Reduced Voltage Starters
Cable Selection 2-Wire or 3-Wire11	Inline Booster Pump Systems
Two Different Cable Sizes	Variable Speed Operation
Single-Phase Motor Specifications	Variable Speed Operation40-41
Installation	
All Motors	
Submersible Motors - Dimensions	Pump to Motor Assembly43
Tightening Lead Connector Jam Nut	Shaft Height and Free End Play43
Pump to Motor Coupling	Submersible Leads and Cables
Maintenance	
All Motors	
System Troubleshooting	Integral hp Control Box Parts51-52
Preliminary Tests	Control Box Wiring Diagrams
Insulation Resistance	· ·
Resistance of Drop Cable	Electronic Products
1.00iotarios di Diop Gabie47	Pumptec-Plus Troubleshooting During Installation 58
Single-Phase Motors and Controls	Pumptec-Plus Troubleshooting After Installation
Identification of Cables48	QD Pumptec and Pumptec Troubleshooting
Single-Phase Control Boxes	SubDrive/MonoDrive Troubleshooting
Ohmmeter Tests	SubMonitor Troubleshooting
QD Control Box Parts50	Subtrol-Plus Troubleshooting

Storage

Franklin Electric submersible motors are a water-lubricated design. The fill solution consists of a mixture of deionized water and Propylene Glycol (a non-toxic antifreeze). The solution will prevent damage from freezing in temperatures to -40 °F (-40 °C); motors should be stored in areas that do not go below this temperature. The solution will partially freeze below 27 °F (-3 °C), but no damage occurs. Repeated freezing and thawing should be avoided to prevent possible loss of fill solution.

There may be an interchange of fill solution with well water during operation. Care must be taken with motors removed from wells during freezing conditions to prevent damage.

When the storage temperature does not exceed 100 °F (37 °C), storage time should be limited to two years. Where temperatures reach 100° to 130 °F, storage time should be limited to one year.

Loss of a few drops of liquid will not damage the motor as an excess amount is provided, and the filter check valve will allow lost liquid to be replaced by filtered well water upon installation. If there is reason to believe there has been a considerable amount of leakage, consult the factory for checking procedures.

Frequency of Starts

The average number of starts per day over a period of months or years influences the life of a submersible pumping system. Excessive cycling affects the life of control components such as pressure switches, starters, relays and capacitors. Rapid cycling can also cause motor spline damage, bearing damage, and motor overheating. All these conditions can lead to reduced motor life.

The pump size, tank size and other controls should be selected to keep the starts per day as low as practical for longest life. The maximum number of starts per 24-hour period is shown in table 3.

Motors should run a minimum of one minute to dissipate heat build up from starting current. Six inch and larger motors should have a minimum of 15 minutes between starts or starting attempts.

Table 3 Number of Starts

MOTOR I	RATING	MAXIMUM STARTS PER 24 HR PERIOD		
HP	KW	SINGLE-PHASE	THREE-PHASE	
Up to 0.75	Up to 0.55	300	300	
1 thru 5.5	0.75 thru 4	100	300	
7.5 thru 30	5.5 thru 22	50	100*	
40 and over	30 and over	i	100	

* Keeping starts per day within the recommended numbers provides the best system life. However, when used with a properly configured Reduced Voltage Starter (RVS) or Variable Frequency Drive (VFD), 7.5 thru 30 hp three-phase motors can be started up to 200 times per 24 hour period.

Mounting Position

Franklin submersible motors are designed primarily for operation in the vertical, shaft-up position.

During acceleration, the pump thrust increases as its output head increases. In cases where the pump head stays below its normal operating range during startup and full speed condition, the pump may create upward thrust. This creates upward thrust on the motor upthrust bearing. This is an acceptable operation for short periods at each start, but running continuously with upthrust will cause excessive wear on the upthrust bearing.

With certain additional restrictions as listed in this section and the Inline Booster Pump Systems sections of this manual, motors are also suitable for operation in positions from shaft-up to shaft-horizontal. As the mounting position becomes further from vertical and closer to horizontal, the probability of shortened thrust bearing life increases. For normal motor life expectancy with motor positions other than shaft-up, follow these recommendations:

- Minimize the frequency of starts, preferably to fewer than 10 per 24-hour period. Six and eight inch motors should have a minimum of 20 minutes between starts or starting attempts
- 2. Do not use in systems which can run even for short periods at full speed without thrust toward the motor.

Transformer Capacity - Single-Phase or Three-Phase

Distribution transformers must be adequately sized to satisfy the kVA requirements of the submersible motor. When transformers are too small to supply the load, there is a reduction in voltage to the motor.

Table 4 references the motor horsepower rating, singlephase and three-phase, total effective kVA required, and the smallest transformer required for open or closed three-phase systems. Open systems require larger transformers since only two transformers are used.

Other loads would add directly to the kVA sizing requirements of the transformer bank.

Table 4 Transformer Capacity

мото	R RATING	TOTAL	SMALLEST KVA RATIN	G-EACH TRANSFORMER
НР	KW	EFFECTIVE KVA REQUIRED	OPEN WYE OR DELTA 2- Transformers	CLOSED Wye or Delta 3- Transformers
1.5	1.1	3	2	1
2	1.5	4	2	1.5
3	2.2	5	3	2
5	3.7	7.5	5	3
7.5	5.5	10	7.5	5
10	7.5	15	10	5
15	11	20	15	7.5
20	15	25	15	10
25	18.5	30	20	10
30	22	40	25	15
40	30	50	30	20
50	37	60	35	20
60	45	75	40	25
75	55	90	50	30
100	75	120	65	40
125	93	150	85	50
150	110	175	100	60
175	130	200	115	70
200	150	230	130	75

NOTE: Standard kVA ratings are shown. If power company experience and practice allows transformer loading higher than standard, higher loading values may be used to meet total effective kVA required, provided correct voltage and balance is maintained.

Effects of Torque

During starting of a submersible pump, the torque developed by the motor must be supported through the pump, delivery pipe or other supports. Most pumps rotate in the direction which causes unscrewing torque on right-handed threaded pipe or pump stages. All threaded joints, pumps and other parts of the pump support system must be capable of withstanding the maximum torque repeatedly without loosening or breaking. Unscrewing joints will break electrical cable and may cause loss of the pump-motor unit.

To safely withstand maximum unscrewing torques with a minimum safety factor of 1.5, tightening all threaded joints to at least 10 lb-ft per motor horsepower is recommended (table 4A). It may be necessary to tack or strap weld pipe joints on high horsepower pumps, especially at shallower settings.

Table 4A Torque Required (Examples)

мото	MOTOR RATING				
HP	KW	TORQUE-LOAD			
1 hp & Less	0.75 kW & Less	10 lb-ft			
20 hp	15 kW	200 lb-ft			
75 hp	55 kW	750 lb-ft			
200 hp	150 kW	2000 lb-ft			

Use of Engine Driven Generators - Single-Phase or Three-Phase

Table 5 lists minimum generator sizes based on typical 80 °C rise continuous duty generators, with 35% maximum voltage dip during starting, for Franklin's three-wire motors, single- or three-phase.

This is a general chart. The generator manufacturer should be consulted whenever possible, especially on larger sizes.

There are two types of generators available: externally and internally regulated. Most are externally regulated. They use an external voltage regulator that senses the output voltage. As the voltage dips at motor start-up, the regulator increases the output voltage of the generator.

Internally regulated (self-excited) generators have an extra winding in the generator stator. The extra winding senses the output current to automatically adjust the output voltage.

Generators must be sized to deliver at least 65% of the rated voltage during starting to ensure adequate starting torque. Besides sizing, generator frequency is important as the motor speed varies with the frequency (Hz). Due to pump affinity laws, a pump running at 1 to 2 Hz below motor nameplate frequency design will not meet its performance curve. Conversely, a pump running at 1 to 2 Hz above may trip overloads.

Generator Operation

Always start the generator before the motor is started and always stop the motor before the generator is shut down. The motor thrust bearing may be damaged if the generator is allowed to coast down with the motor running. This same condition occurs when the generator is allowed to run out of fuel.

Follow generator manufacturer's recommendations for de-rating at higher elevations or using natural gas.

Table 5 Engine Driven Generators

NOTE: This chart applies to 3-wire or 3-phase motors. For best starting of 2-wire motors, the minimum generator rating is 50% higher than shown.

MOTOR	RATING	MINIMUM RATING OF GENERATOR						
···	ION	EXTERNALI	LY REGULATED	INTERNALLY	REGULATED			
HP	KW	KW	KVA	KW	KVA			
1/3	0.25	1.5	1.9	1.2	1.5			
1/2	0.37	2	2.5	1.5	1.9			
3/4	0.55	3	3.8	2	2.5			
1	0.75	4	5.0	2.5	3.13			
1.5	1.1	5	6.25	3	3.8			
2	1.5	7.5	9.4	4	5			
3	2.2	10	12.5	5	6.25			
5	3.7	15	18.75	7.5	9.4			
7.5	5.5	20	25.0	10	12.5			
10	7.5	30	37.5	15	18.75			
15	11	40	50	20	25			
20	15	60	75	25	31			
25	18.5	75	94	30	37.50			
30	22	100	125	40	50			
40	30	100	125	50	62.5			
50	37	150	188	60	75			
60	45	175	220	75	94			
75	55	250	313	100	125			
100	75	300	375	150	188			
125	93	375	469	175	219			
150	110	450	563	200	250			
175	130	525	656	250	313			
200	150	600	750	275	344			

WARNING: To prevent accidental electrocution, automatic or manual transfer switches must be used any time a generator is used as standby or back up on power lines. Contact power company for use and approval.

Use of Check Valves

It is recommended that one or more check valves always be used in submersible pump installations. If the pump does not have a built-in check valve, a line check valve should be installed in the discharge line within 25 feet of the pump and below the draw down level of the water supply. For deeper settings, check valves should be installed per the manufacturer's recommendations. More than one check valve may be required, but more than the recommended number of check valves should not be used.

Swing type check valves are **not** acceptable and should never be used with submersible motors/pumps. Swing type check valves have a slower reaction time which can cause water hammer (see next page). Internal pump check valves or spring loaded check valves close quickly and help eliminate water hammer.

Check valves are used to hold pressure in the system when the pump stops. They also prevent backspin, water

hammer and upthrust. Any of these can lead to early pump or motor failure.

NOTE: Only positive sealing check valves should be used in submersible installations. Although drilling the check valves or using drain-back check valves may prevent back spinning, they create upthrust and water hammer problems.

- A. Backspin With no check valve or a failed check valve, the water in the drop pipe and the water in the system can flow down the discharge pipe when the motor stops. This can cause the pump to rotate in a reverse direction. If the motor is started while it is backspinning, an excessive force is placed across the pump-motor assembly that can cause impeller damage, motor or pump shaft breakage, excessive bearing wear, etc.
- B. Upthrust With no check valve, a leaking check valve, or drilled check valve, the unit starts under

a zero head condition. This causes an uplifting or upthrust on the impeller-shaft assembly in the pump. This upward movement carries across the pumpmotor coupling and creates an upthrust condition in the motor. Repeated upthrust can cause premature failure of both the pump and the motor.

C. Water Hammer - If the lowest check valve is more than 30 feet above the standing (lowest static) water level, or a lower check valve leaks and the check valve above holds, a vacuum is created in the discharge piping. On the next pump start, water moving at very high velocity fills the void and strikes the closed check valve and the stationary water in the pipe above it, causing a hydraulic shock. This shock can split pipes, break joints and damage the pump and/or motor. Water hammer can often be heard or felt. When discovered, the system should be shut down and the pump installer contacted to correct the problem.

Wells - Large Diameter, Uncased, Top Feeding and Screened Sections

Franklin Electric submersible motors are designed to operate with a cooling flow of water over and around the full length of the motor.

If the pump installation does not provide the minimum flow shown in table 6, a flow inducer sleeve (flow sleeve) must be used. The conditions requiring a flow sleeve are:

- Well diameter is too large to meet table 6 flow requirements.
- Pump is in an open body of water.
- Pump is in a rock well or below the well casing.
- The well is "top-feeding" (a.k.a. cascading)
- Pump is set in or below screens or perforations.

Water Temperature and Flow

Franklin Electric's standard submersible motors, except Hi-Temp designs (see note below), are designed to operate up to maximum service factor horsepower in water up to 86 °F (30 °C). A flow of 0.25 ft/s for 4" motors rated 3 hp and higher, and 0.5 ft/s for 6" and 8" motors is required for proper cooling. Table 6 shows minimum flow rates, in gpm, for various well diameters and motor sizes.

If a standard motor is operated in water over 86 °F (30 °C), water flow past the motor must be increased to maintain safe motor operating temperatures. See HOT WATER APPLICATIONS on page 7.

NOTE: Franklin Electric offers a line of Hi-Temp motors designed to operate in water at higher temperatures or lower flow conditions. Consult factory for details.

Table 6 Required Cooling Flow

MINIMUM GPM	MINIMUM GPM REQUIRED FOR MOTOR COOLING IN WATER UP TO 86 °F (30 °C).						
CASING OR SLEEVE ID INCHES (MM)	4" MOTOR (3-10 HP) 0.25 FT/S GPM (L/M)	6" MOTOR 0.50 FT/S GPM (L/M)	8" MOTOR 0.50 FT/S GPM (L/M)				
4 (102)	1.2 (4.5)	-	-				
5 (127)	7 (26.5)	-	-				
6 (152)	13 (49)	9 (34)	-				
7 (178)	20 (76)	25 (95)	-				
8 (203)	30 (114)	45 (170)	10 (40)				
10 (254)	50 (189)	90 (340)	55 (210)				
12 (305)	80 (303)	140 (530)	110 (420)				
14 (356)	110 (416)	200 (760)	170 (645)				
16 (406)	150 (568)	280 (1060)	245 (930)				

0.25 ft/s = 7.62 cm/sec 0.50 ft/s = 15.24 cm/sec 1 inch = 2.54 cm

Flow Inducer Sleeve

If the flow rate is less than specified, then a flow inducer sleeve must be used. A flow sleeve is always required in an open body of water. FIG. 1 shows a typical flow inducer sleeve construction.

EXAMPLE: A 6" motor and pump that delivers 60 gpm will be installed in a 10" well.

From table 6, 90 gpm would be required to maintain proper cooling. In this case adding an 8" or smaller flow sleeve provides the required cooling.

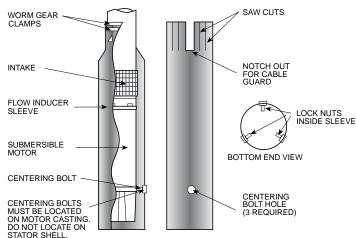


FIG. 1

Head Loss From Flow Past Motor

Table 7 lists the approximate head loss due to flow between an average length motor and smooth casing or flow inducer sleeve.

Table 7 Head Loss in Feet (Meters) at Various Flow Rates

мот	OR DIAMETER	4"	4"	4"	6"	6"	6"	8"	8"
CASING I	D IN INCHES (MM)	4 (102)	5 (127)	6 (152)	6 (152)	7 (178)	8 (203)	8.1 (206)	10 (254)
	25 (95)	0.3 (.09)							
	50 (189)	1.2 (.37)							
	100 (378)	4.7 (1.4)	0.3 (.09)		1.7 (.52)				
Ê	150 (568)	10.2 (3.1)	0.6 (.18)	0.2 (.06)	3.7 (1.1)				
Flow Rate in gpm (I/m)	200 (757)		1.1 (.34)	0.4 (.12)	6.3 (1.9)	0.5 (.15)		6.8 (2.1)	
n gpr	250 (946)		1.8 (.55)	0.7 (.21)	9.6 (2.9)	0.8 (.24)		10.4 (3.2)	
ate ii	300 (1136)		2.5 (.75)	1.0 (.30)	13.6 (4.1)	1.2 (.37)	0.2 (.06)	14.6 (4.5)	
ow R	400 (1514)				23.7 (7.2)	2.0 (.61)	0.4 (.12)	24.6 (7.5)	
正	500 (1893)					3.1 (.94)	0.7 (.21)	37.3 (11.4)	0.6 (0.2)
	600 (2271)					4.4 (1.3)	1.0 (.30)	52.2 (15.9)	0.8 (0.3)
	800 (3028)								1.5 (0.5)
	1000 (3785)								2.4 (0.7)

Hot Water Applications (Standard Motors)

Franklin Electric offers a line of Hi-Temp motors which are designed to operate in water with various temperatures up to 194 °F (90 °C) without increased flow. When a standard pump-motor operates in water hotter than 86 °F (30 °C), a flow rate of at least 3 ft/s is required. When selecting the motor to drive a pump in over 86 °F (30 °C) water, the motor horsepower must be de-rated per the following procedure.

 Using table 7A, determine pump gpm required for different well or sleeve diameters. If necessary, add a flow sleeve to obtain at least 3 ft/s flow rate.

Table 7A Minimum gpm (I/m) Required for 3 ft/s (.91 m/sec) Flow Rate

CASINO SLEEV			HIGH MOTOR	6" MOTOR		8" MOTOR	
INCHES	(MM)	GPM	(L/M)	GPM	(L/M)	GPM	(L/M)
4	(102)	15	(57)				
5	(127)	80	(303)				
6	(152)	160	(606)	52	(197)		
7	(178)			150	(568)		
8	(203)			260	(984)	60	(227)
10	(254)			520	(1970)	330	(1250)
12	(305)					650	(2460)
14	(356)					1020	(3860)
16	(406)					1460	(5530)

7 Continued on next page

2. Determine pump horsepower required from the pump manufacturer's curve.

FIG. 2 MANUFACTURER'S PUMP CURVE

3. Multiply the pump horsepower required by the heat factor multiplier from table 8.

Table 8 Heat Factor Multiplier at 3 ft/s (.91 m/sec) Flow Rate

MAXIMUM Water Temperature	1/3 - 5 HP .25 - 3.7 KW	7 1/2 - 30 HP 5.5 - 22 KW	OVER 30 HP OVER 22 KW
140 °F (60 °C)	1.25	1.62	2.00
131 °F (55 °C)	1.11	1.32	1.62
122 °F (50 °C)	1.00	1.14	1.32
113 °F (45 °C)	1.00	1.00	1.14
104 °F (40 °C)	1.00	1.00	1.00
95 °F (35 °C)	1.00	1.00	1.00

 Select a rated hp motor on table 8A whose Service Factor Horsepower is at least the value calculated in Item 3.

Table 8A Service Factor Horsepower

HP	KW	SFHP	HP	KW	SFHP	HP	KW	SFHP	HP	KW	SFHP
1/3	0.25	0.58	3	2.2	3.45	25	18.5	28.75	100	75	115.00
1/2	0.37	0.80	5	3.7	5.75	30	22.0	34.50	125	93	143.75
3/4	0.55	1.12	7.5	5.5	8.62	40	30.0	46.00	150	110	172.50
1	0.75	1.40	10	7.5	11.50	50	37.0	57.50	175	130	201.25
1.5	1.10	1.95	15	11.0	17.25	60	45.0	69.00	200	150	230.00
2	1.50	2.50	20	15.0	23.00	75	55.0	86.25			

Hot Water Applications - Example

EXAMPLE: A 6" pump end requiring 39 hp input will pump 124 °F water in an 8" well at a delivery rate of 140 gpm. From table 7A, a 6" flow sleeve will be required to increase the flow rate to at least 3 ft/s.

Using table 8, the 1.62 heat factor multiplier is selected because the hp required is over 30 hp and water

temperature is above 122 °F. Multiply 39 hp x 1.62 (multiplier), which equals 63.2 hp. This is the minimum rated service factor horsepower usable at 39 hp in 124 °F. Using table 8A, select a motor with a rated service factor horsepower above 63.2 hp. A 60 hp motor has a service factor horsepower of 69, so a 60 hp motor may be used.

Drawdown Seals

Allowable motor temperature is based on atmospheric pressure or higher surrounding the motor. "Drawdown seals," which seal the well to the pump above its intake

to maximize delivery, are not recommended, since the suction created can be lower than atmospheric pressure.

Grounding Control Boxes and Panels

The National Electrical Code requires that the control box or panel-grounding terminal always be connected to supply ground. If the circuit has no grounding conductor and no metal conduit from the box to supply panel, use a wire at least as large as line conductors and connect as required by the National Electrical Code, from the grounding terminal to the electrical supply ground.

WARNING: Failure to ground the control frame can result in a serious or fatal electrical shock hazard.

Grounding Surge Arrestors

An above ground surge arrestor must be grounded, metal to metal, all the way to the lowest draw down water strata for the surge arrestor to be effective. GROUNDING THE ARRESTOR TO THE SUPPLY GROUND OR TO A DRIVEN GROUND ROD PROVIDES LITTLE OR NO SURGE PROTECTION FOR THE MOTOR.

Control Box, Pumptec Products and Panel Environment

Franklin Electric control boxes, Pumptec products and three-phase panels meet UL requirements for NEMA Type 3R enclosures. They are suitable for indoor and outdoor applications within temperatures of +14 °F (-10 °C) to 122 °F (50 °C). Operating control boxes below +14 °F can cause reduced starting torque and loss of overload protection when overloads are located in control boxes.

Control boxes, Pumptec products and three-phase panels should never be mounted in direct sunlight or

high temperature locations. This will cause shortened capacitor life (where applicable) and unnecessary tripping of overload protectors. A ventilated enclosure painted white to reflect heat is recommended for an outdoor, high temperature location.

A damp well pit, or other humid location, accelerates component failure from corrosion.

Control boxes with voltage relays are designed for vertical upright mounting only. Mounting in other positions will affect the operation of the relay.

Equipment Grounding

WARNING: Serious or fatal electrical shock may result from failure to connect the motor, control enclosures, metal plumbing and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires.

The primary purpose of grounding the metal drop pipe and/or metal well casing in an installation is safety. It is done to limit the voltage between nonelectrical (exposed metal) parts of the system and ground, thus minimizing dangerous shock hazards. Using wire at least the size of the motor cable wires provides adequate current-carrying capability for any ground fault that might occur. It also provides a low resistance path to ground, ensuring that the current to ground will be large enough to trip any overcurrent device designed to detect faults (such as a ground fault circuit interrupter, or GFCI).

Normally, the ground wire to the motor would provide the

primary path back to the power supply ground for any ground fault. There are conditions, however, where the ground wire connection could become compromised. One such example would be the case where the water in the well is abnormally corrosive or aggressive. In this example, a grounded metal drop pipe or casing would then become the primary path to ground. However, the many installations that now use plastic drop pipes and/or casings require further steps to be taken for safety purposes, so that the water column itself does not become the conductive path to ground.

When an installation has abnormally corrosive water AND the drop pipe or casing is plastic, Franklin Electric recommends the use of a GFCI with a 10 mA set-point. In this case, the motor ground wire should be routed through the current-sensing device along with the motor power leads. Wired this way, the GFCI will trip only when a ground fault has occurred AND the motor ground wire is no longer functional.

3-Wire Control Boxes

Single-phase three-wire submersible motors require the use of control boxes. Operation of motors without control boxes or with incorrect boxes can result in motor failure and voids warranty.

Control boxes contain starting capacitors, a starting relay, and, in some sizes, overload protectors, running capacitors and contactors.

Ratings through 1 hp may use either a Franklin Electric solid state QD or a potential (voltage) type starting relay, while larger ratings use potential relays.

Potential (Voltage) Relays

Potential relays have normally closed contacts. When power is applied, both start and main motor windings are energized, and the motor starts. At this instant, the voltage across the start winding is relatively low and not

enough to open the contacts of the relay.

As the motor accelerates, the increasing voltage across the start winding (and the relay coil) opens the relay contacts. This opens the starting circuit and the motor continues to run on the main winding alone, or the main plus run capacitor circuit. After the motor is started the relay contacts remain open.

CAUTION: The control box and motor are two pieces of one assembly. Be certain that the control box and motor hp and voltage match. Since a motor is designed to operate with a control box from the same manufacturer, we can promise warranty coverage only when a Franklin control box is used with a Franklin motor.

2-Wire Motor Solid State Controls

BIAC Switch Operation

When power is applied the bi-metal switch contacts are closed, so the triac is conducting and energizes the start winding. As rpm increases, the voltage in the sensor coil generates heat in the bi-metal strip, causing the bi-metal strip to bend and open the switch circuit. This removes the starting winding and the motor continues to run on the main winding alone.

Approximately 5 seconds after power is removed from the motor, the bi-metal strip cools sufficiently to return to its closed position and the motor is ready for the next start cycle.

Rapid Cycling

The BIAC starting switch will reset within approximately 5 seconds after the motor is stopped. If an attempt is made

CAUTION: Restarting the motor within 5 seconds after power is removed may cause the motor overload to trip.

to restart the motor before the starting switch has reset, the motor may not start; however, there will be current in the main winding until the overload protector interrupts the circuit. The time for the protector to reset is longer than the reset of the starting switch. Therefore, the start switch will have closed and the motor will operate.

A waterlogged tank will cause fast cycling. When a waterlogged condition does occur, the user will be alerted to the problem during the off time (overload reset time) since the pressure will drop drastically. When the waterlogged tank condition is detected, the condition should be corrected to prevent nuisance tripping of the overload protector.

Bound Pump (Sandlocked)

When the motor is not free to turn, as with a sandlocked pump, the BIAC switch creates a "reverse impact torque" in the motor in either direction. When the sand is dislodged, the motor will start and operate in the correct direction.

QD Relays (Solid State)

There are two elements in the relay: a reed switch and a triac. The reed switch consists of two tiny rectangular blade-type contacts, which bend under magnetic flux. It is hermetically sealed in glass and is located within a coil, which conducts line current. When power is supplied to the control box, the main winding current passing through the coil immediately closes the reed switch contacts. This turns on the triac, which supplies voltage to the start winding, thus starting the motor.

Once the motor is started, the operation of the QD relay is an interaction between the triac, the reed switch and

the motor windings. The solid state switch senses motor speed through the changing phase relationship between start winding current and line current. As the motor approaches running speed, the phase angle between the start current and the line current becomes nearly in phase. At this point, the reed switch contacts open, turning off the triac. This removes voltage from the start winding and the motor continues to run on the main winding only. With the reed switch contacts open and the triac turned off, the QD relay is ready for the next starting cycle.

2- or 3-Wire Cable, 60 Hz (Service Entrance to Motor - Maximum Length In Feet)

Table 11 60 °C

M	OTOR RATI	NG					60 °C	INSULATIO	N - AWG CO	PPER WIRE	SIZE				
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000
115	1/2	.37	100	160	250	390	620	960	1190	1460	1780	2160	2630	3140	3770
	1/2	.37	400	650	1020	1610	2510	3880	4810	5880	7170	8720			
	3/4	.55	300	480	760	1200	1870	2890	3580	4370	5330	6470	7870		
	1	.75	250	400	630	990	1540	2380	2960	3610	4410	5360	6520		
	1.5	1.1	190	310	480	770	1200	1870	2320	2850	3500	4280	5240		
220	2	1.5	150	250	390	620	970	1530	1910	2360	2930	3620	4480		
230	3	2.2	120	190	300	470	750	1190	1490	1850	2320	2890	3610		
	5	3.7	0	0	180	280	450	710	890	1110	1390	1740	2170	2680	
	7.5	5.5	0	0	0	200	310	490	610	750	930	1140	1410	1720	
	10	7.5	0	0	0	0	250	390	490	600	750	930	1160	1430	1760
	15	11	0	0	0	0	170	270	340	430	530	660	820	1020	1260

Table 11A 75 °C

M	OTOR RATI	NG					75 °C	INSULATIO	N - AWG CO	PPER WIRE	SIZE				
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000
115	1/2	.37	100	160	250	390	620	960	1190	1460	1780	2160	2630	3140	3770
	1/2	.37	400	650	1020	1610	2510	3880	4810	5880	7170	8720			
	3/4	.55	300	480	760	1200	1870	2890	3580	4370	5330	6470	7870	9380	
	1	.75	250	400	630	990	1540	2380	2960	3610	4410	5360	6520	7780	9350
	1.5	1.1	190	310	480	770	1200	1870	2320	2850	3500	4280	5240	6300	7620
000	2	1.5	150	250	390	620	970	1530	1910	2360	2930	3620	4480	5470	6700
230	3	2.2	120	190	300	470	750	1190	1490	1850	2320	2890	3610	4470	5550
	5	3.7	0	110	180	280	450	710	890	1110	1390	1740	2170	2680	3330
	7.5	5.5	0	0	120	200	310	490	610	750	930	1140	1410	1720	2100
	10	7.5	0	0	0	160	250	390	490	600	750	930	1160	1430	1760
	15	11	0	0	0	0	170	270	340	430	530	660	820	1020	1260

¹ Foot = .3048 Meter

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors 60 °C or 75 °C in free air or water, not in magnetic enclosures, conduit or direct buried.

Lengths NOT in bold meet the NEC ampacity requirements for either individual conductors or jacketed 60 °C or 75 °C cable and can be in conduit or direct buried. Flat molded and web/ribbon cable are considered jacketed cable.

If any other cable is used, the NEC and local codes should be observed.

Cable lengths in tables 11 & 11A allow for a 5% voltage drop running at maximum nameplate amperes. If 3% voltage drop is desired, multiply table 11 and 11A lengths by 0.6 to get maximum cable length.

The portion of the total cable length, which is between the supply and single-phase control box with a line contactor, should not exceed 25% of total maximum allowable to ensure reliable contactor operation. Singlephase control boxes without line contactors may be connected at any point in the total cable length.

Tables 11 & 11A are based on copper wire. If aluminum wire is used, it must be two sizes larger than copper wire and oxidation inhibitors must be used on connections.

EXAMPLE: If tables 11 & 11A call for #12 copper wire, #10 aluminum wire would be required.

Contact Franklin Electric for 90 °C cable lengths. See pages 15, 49, and 50 for applications using 230 V motors on 208 V power systems.

Two or More Different Cable Sizes Can Be Used

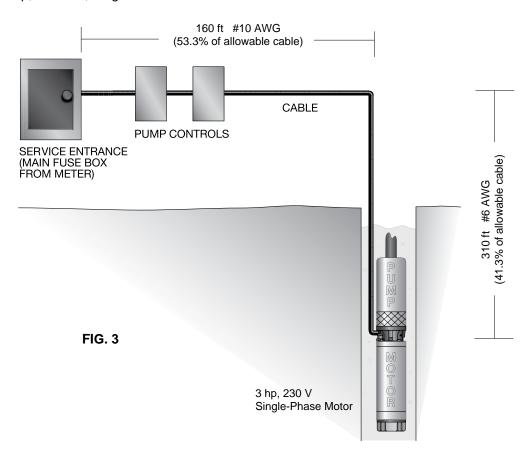
Depending on the installation, any number of combinations of cable may be used.

For example, in a replacement/upgrade installation, the well already has 160 feet of buried #10 cable between the service entrance and the wellhead. A new 3 hp, 230-volt, single-phase motor is being installed to replace a smaller motor. The question is: Since there is already 160 feet of #10 AWG installed, what size cable is required in the well with a 3 hp, 230-volt, single-phase motor setting at 310 feet?

From tables 11 & 11A, a 3 hp motor can use up to 300 feet of #10 AWG cable.

The application has 160 feet of #10 AWG copper wire installed.

Using the formula below, 160 feet (actual) ÷ 300 feet (max allowable) is equal to 0.533. This means 53.3% (0.533 x 100) of the allowable voltage drop or loss, which is allowed between the service entrance and the motor,


occurs in this wire. This leaves us 46.7% (1.00 - 0.533 = 0.467) of some other wire size to use in the remaining 310 feet "down hole" wire run.

The table shows #8 AWG copper wire is good for 470 feet. Using the formula again, 310 feet (used) \div 470 feet (allowed) = 0.660; adding this to the 0.533 determined earlier; 0.533 + 0.660 = 1.193. This combination is greater than 1.00, so the voltage drop will not meet US National Electrical Code recommendations.

Tables 11 & 11A show #6 AWG copper wire is good for 750 feet. Using the formula, $310 \div 750 = 0.413$, and using these numbers, 0.533 + 0.413 = 0.946, we find this is less than 1.00 and will meet the NEC recommended voltage drop.

This works for two, three or more combinations of wire and it does not matter which size wire comes first in the installation.

EXAMPLE: 3 hp, 230-Volt, Single-Phase Motor

Table 13 Single-Phase Motor Specifications (60 Hz) 3450 rpm

-D/D-	MOTOR			RATING				ILL DAD		IMUM DAD	WINDING (1) RES. IN OHMS	EFFIC	IENCY %		WER OR %	LOCKED	KVA
TYPE	MODEL PREFIX	HP	KW	VOLTS	HZ	S.F.	(2) AMPS	WATTS	(2) AMPS	WATTS	M=MAIN RES. S=START RES.	S.F.	F.L.	S.F.	F.L.	ROTOR AMPS	CODE
	244504	1/2	0.37	115	60	1.6	10.0	670	12.0	960	1.0-1.3	62	56	73	58	64.4	R
4" 2-WIRE	244505	1/2	0.37	230	60	1.6	5.0	670	6.0	960	4.2-5.2	62	56	73	58	32.2	R
2-V	244507	3/4	0.55	230	60	1.5	6.8	940	8.0	1310	3.0-3.6	64	59	74	62	40.7	N
4"	244508	<u>1</u>	0.75	230	60	1.4	8.2	1210	10.4	1600	2.2-2.7	65	62	74	63	48.7	N
	244309	1.5	1.1	230	60	1.3	10.6 Y10.0	1770	13.1 Y12.0	2280	1.5-2.1	64	63	83	76	66.2	М
	214504	1/2	0.37	115	60	1.6	B10.0 R0	670	B12.0 R0	960	M1.0-1.3 S4.1-5.1	62	56	73	58	50.5	М
4" 3-WIRE	214505	1/2	0.37	230	60	1.6	Y5.0 B5.0 R0	670	Y6.0 B6.0 R0	960	M4.2-5.2 S16.7-20.5	62	56	73	58	23	М
4" 3-	214507	3/4	0.55	230	60	1.5	Y6.8 B6.8 R0	940	Y8.0 B8.0 R0	1310	M3.0-3.6 S10.7-13.1	64	59	74	62	34.2	М
	214508	1	0.75	230	60	1.4	Y8.2 B8.2 R0	1210	10.4 10.4 R0	1600	M2.2-2.7 S9.9-12.1	65	62	74	63	41.8	L,
SC CB	214505	1/2	0.37	230	60	1.6	Y3.6 B3.7 R2.0	655	Y4.3 B4.0 R2.0	890	M4.2-5.2 S16.7-20.5	67	57	90	81	23	М
4" 3-WIRE W/CRC CB	214507	3/4	0.55	230	60	1.5	Y4.9 B5.0 R3.2	925	Y5.7 B5.2 R3.1	1220	M3.0-3.6 S10.7-13.1	69	60	92	84	34.2	М
4" 3-	214508	1	0.75	230	60	1.4	Y6.0 B5.7 R3.4	1160	Y7.1 B6.2 R3.3	1490	M2.2-2.7 S9.9-12.1	70	64	92	86	41.8	L
	214508 W/1- 1.5 CB	1	0.75	230	60	1.4	Y6.6 B6.6 R1.3	1130	Y8.0 B7.9 R1.3	1500	M2.2-2.7 S9.9-12.1	70	66	82	72	43	L
ш	224300	1.5	1.1	230	60	1.3	Y10.0 B9.9 R1.3	1620	Y11.5 B11.0 R1.3	2080	M1.7-2.1 S7.5-9.2	70	69	85	79	51.4	J
4" 3-WIRE	224301	2	1.5	230	60	1.25	Y10.0 B9.3 R2.6	2025	Y13.2 B11.9 R2.6	2555	M1.8-2.3 S5.5-7.2	73	74	95	94	53.1	G
	224302 (3)	3	2.2	230	60	1.15	Y14.0 B11.2 R6.1	3000	Y17.0 B12.6 R6.0	3400	M1.1-1.4 S4.0-4.8	75	75	99	99	83.4	Н
	224303 (4)	5	3.7	230	60	1.15	Y23.0 B15.9 R11.0	4830	Y27.5 B19.1 R10.8	5500	M.7182 S1.8-2.2	78	77	100	100	129	G
	226110 (5)	5	3.7	230	60	1.15	Y23.0 B14.3 R10.8	4910	Y27.5 B17.4 R10.5	5570	M.5568 S1.3-1.7	77	76	100	99	99	Е
9	226111	7.5	5.5	230	60	1.15	Y36.5 B34.4 R5.5	7300	Y42.1 B40.5 R5.4	8800	M.3650 S.88-1.1	73	74	91	90	165	F
9	226112	10	7.5	230	60	1.15	Y44.0 B39.5 R9.3	9800	Y51.0 B47.5 R8.9	11300	M.2733 S.8099	76	77	96	96	204	Е
	226113	15	11	230	60	1.15	Y62.0 B52.0 R17.5	13900	Y75.0 B62.5 R16.9	16200	M.1722 S.6893	79	80	97	98	303	Е

(1) Main winding - yellow to black Start winding - yellow to red

(2) Y = Yellow lead - line amps

B = Black lead - main winding amps

R = Red lead - start or auxiliary winding amps

(3) Control Boxes date coded 02C and older have 35 MFD run capacitors. Current values should be Y14.0 @ FL and Y17.0 @ Max Load.

B12.2
B14.5
R4.7
R4.5

(4) Control Boxes date coded 01M and older have **60 MFD** run capacitors and the current values on a 4" motor will be Y23.0 @ FL - Y27.5 @ Max Load. B19.1 B23.2

R8.0 R7.8

(5) Control Boxes date coded 01M and older have 60 MFD run capacitors and the current values on a 6" motor will be Y23.0 @ FL -Y27.5 @ Max Load. B18.2 B23.2

R8.0 R7.8

Performance is typical, not guaranteed, at specified voltages and specified capacitor values. Performance at voltage ratings not shown is similar, except amps vary inversely with voltage.

Table 14 Single-Phase Motor Fuse Sizing

					CIRCU	IT BREAKERS OR FUSE	AMPS	CIRCU	IT BREAKERS OR FUSE	AMPS
	MOTOR		RATING			(MAXIMUM PER NEC)		(1	TYPICAL SUBMERSIBL	E)
TYPE	MODEL PREFIX	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	244504	1/2	0.37	115	35	20	30	30	15	30
ш	244505	1/2	0.37	230	20	10	15	15	8	15
4" 2-WIRE	244507	3/4	0.55	230	25	15	20	20	10	20
4	244508	1	0.75	230	30	20	25	25	11	25
	244309	1.5	1.1	230	35	20	30	35	15	30
	214504	1/2	0.37	115	35	20	30	30	15	30
4" 3-WIRE	214505	1/2	0.37	230	20	10	15	15	8	15
4" 3-	214507	3/4	0.55	230	25	15	20	20	10	20
	214508	1	0.75	230	30	20	25	25	11	25
C CB	214505	1/2	0.37	230	20	10	15	15	8	15
4" 3-WIRE W/CRC CB	214507	3/4	0.55	230	25	15	20	20	10	20
4"3	214508	1	0.75	230	30	20	25	25	11	25
	214508 W/ 1-1.5 CB	1	0.75	230	30	20	25	25	11	25
4" 3-WIRE	224300	1.5	1.1	230	35	20	30	30	15	30
4" 3-	224301	2	1.5	230	30	20	25	30	15	25
	224302	3	2.2	230	45	30	40	45	20	40
	224303	5	3.7	230	80	45	60	70	30	60
	226110	5	3.7	230	80	45	60	70	30	60
9	226111	7.5	5.5	230	125	70	100	110	50	100
9	226112	10	7.5	230	150	80	125	150	60	125
	226113	15	11	230	200	125	175	200	90	175

Auxiliary Running Capacitors

Added capacitors must be connected across "Red" and "Black" control box terminals, in parallel with any existing running capacitors. The additional capacitor(s) should be mounted in an auxiliary box. The values of additional running capacitors most likely to reduce noise are given below. The tabulation gives the **max.** S.F. amps normally in each lead with the added capacitor.

Although motor amps decrease when auxiliary run capacitance is added, the load on the motor does not. If a motor is overloaded with normal capacitance, it still will be overloaded with auxiliary run capacitance, even though motor amps may be within nameplate values.

Table 15 Auxiliary Capacitor Sizing

MOTOR	RATING	NORMAL RUNNING Capacitor(S)	A	AUXILIARY RUNNING NOISE REI	CAPACITORS FOR DUCTION	MAXIMU	JM AMPS WITH I	RUN CAP
HP	VOLTS	MFD	MFD	MIN. VOLTS	FRANKLIN PART	YELLOW	BLACK	RED
1/2	115	0	60(1)	370	TWO 155327101	8.4	7.0	4.0
1/2		0	15(1)	370	ONE 155328101	4.2	3.5	2.0
3/4		0	20(1)	370	ONE 155328103	5.8	5.0	2.5
1		0	25(1)	370	ONE EA. 155328101 155328102	7.1	5.6	3.4
1.5		10	20	370	ONE 155328103	9.3	7.5	4.4
2	200	20	10	370	ONE 155328102	11.2	9.2	3.8
3	230	45	NONE	370		17.0	12.6	6.0
5		80	NONE	370		27.5	19.1	10.8
7.5		45	45	370	ONE EA. 155327101 155328101	37.0	32.0	11.3
10		70	30	370	ONE 155327101	49.0	42.0	13.0
15		135	NONE			75.0	62.5	16.9

⁽¹⁾ Do not add running capacitors to 1/3 through 1 hp control boxes, which use solid state switches or QD relays. Adding capacitors will cause switch failure. If the control box is converted to use a voltage relay, the specified running capacitance can be added.

Buck-Boost Transformers

When the available power supply voltage is not within the proper range, a buck-boost transformer is often used to adjust voltage to match the motor. The most common usage on submersible motors is boosting a 208 volt supply to use a standard 230 volt single-phase submersible motor and control. While tables to give a

wide range of voltage boost or buck are published by transformer manufacturers, the following table shows Franklin's recommendations. The table, based on boosting the voltage 10%, shows the minimum rated transformer kVA needed and the common standard transformer kVA.

Table 15A Buck-Boost Transformer Sizing

MOTOR HP	1/3	1/2	3/4	1	1.5	2	3	5	7.5	10	15
LOAD KVA	1.02	1.36	1.84	2.21	2.65	3.04	3.91	6.33	9.66	11.70	16.60
MINIMUM XFMR KVA	0.11	0.14	0.19	0.22	0.27	0.31	0.40	0.64	0.97	1.20	1.70
STANDARD XFMR KVA	0.25	0.25	0.25	0.25	0.50	0.50	0.50	0.75	1.00	1.50	2.00

Buck-Boost transformers are power transformers, not control transformers. They may also be used to lower voltage when the available power supply voltage is too high.

Table 16 Three-Phase 60 °C Cable, 60 Hz (Service Entrance to Motor) Maximum Length in Feet

60 °C

мото	OR RATIN	IG				60	O °C INSI	JLATION	- AWG C	OPPER 1	WIRE SIZ	Œ.					мсм с	OPPER WI	RE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	710	1140	1800	2840	4420													
	3/4	0.55	510	810	1280	2030	3160													
	1	0.75	430	690	1080	1710	2670	4140	5140											
	1.5	1.1	310	500	790	1260	1960	3050	3780											
200 V	2	1.5	240	390	610	970	1520	2360	2940	3610	4430	5420								
200 V 60 Hz	3	2.2	180	290	470	740	1160	1810	2250	2760	3390	4130								
Three-	5	3.7	110	170	280	440	690	1080	1350	1660	2040	2490	3050	3670	4440	5030				
Phase 3 - Lead	7.5	5.5	0	0	200	310	490	770	960	1180	1450	1770	2170	2600	3150	3560				
J - Leau	10	7.5	0	0	0	230	370	570	720	880	1090	1330	1640	1970	2390	2720	3100	3480	3800	4420
	15	11	0	0	0	160	250	390	490	600	740	910	1110	1340	1630	1850	2100	2350	2570	2980
	20	15	0	0	0	0	190	300	380	460	570	700	860	1050	1270	1440	1650	1850	2020	2360
	25	18.5	0	0	0	0	0	240	300	370	460	570	700	840	1030	1170	1330	1500	1640	1900
	30	22	0	0	0	0	0	0	250	310	380	470	580	700	850	970	1110	1250	1360	1590
	1/2	0.37	930	1490	2350	3700	5760	8910												
	3/4	0.55	670	1080	1700	2580	4190	6490	8060	9860										
	1	0.75	560	910	1430	2260	3520	5460	6780	8290										
	1.5	1.1	420	670	1060	1670	2610	4050	5030	6160	7530	9170								
230 V	2	1.5	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780							
60 Hz	3	2.2	240	390	620	990	1540	2400	2980	3660	4480	5470	6690	8020	9680					
Three- Phase	5	3.7	140	230	370	590	920	1430	1790	2190	2690	3290	4030	4850	5870	6650	7560	8460	9220	
3 - Lead	7.5	5.5	0	160	260	420	650	1020	1270	1560	1920	2340	2870	3440	4160	4710	5340	5970	6500	7510
	10	7.5	0	0	190	310	490	760	950	1170	1440	1760	2160	2610	3160	3590	4100	4600	5020	5840
	15	11	0	0	0	210	330	520	650	800	980	1200	1470	1780	2150	2440	2780	3110	3400	3940
	20	15	0	0	0	0	250	400	500	610	760	930	1140	1380	1680	1910	2180	2450	2680	3120
	25	18.5	0	0	0	0	0	320	400	500	610	750	920	1120	1360	1540	1760	1980	2160	2520
	30	22	0	0	0	0	0	260	330	410	510	620	760	930	1130	1280	1470	1650	1800	2110
	1/2	0.37	2690	4290	6730	7000														
	3/4	0.55	2000	3190	5010	7860	0000													
	1	0.75	1620	2580	4060	6390	9980													
	1.5	1.1	1230 870	1970 1390	3100 2180	4890 3450	7630 5400	8380												
	3	1.5	680	1090	1710	2690	4200	6500	8020	9830										
	5	2.2	400	640	1010	1590	2490	3870	4780	5870	7230	8830								
	7.5	3.7 5.5	270	440	690	1090	1710	2640	3260	4000	4930	6010	7290	8780						
	10	7.5	200	320	510	800	1250	1930	2380	2910	3570	4330	5230	6260	7390	8280	9340			
380 V	15	11	0	0	370	590	920	1430	1770	2170	2690	3290	4000	4840	5770	6520	7430	8250	8990	
60 Hz	20	15	0	0	0	440	700	1090	1350	1670	2060	2530	3090	3760	4500	5110	5840	6510	7120	8190
Three-	25	18.5	0	0	0	360	570	880	1100	1350	1670	2050	2510	3040	3640	4130	4720	5250	5740	6590
Phase 3 - Lead	30	22	0	0	0	0	470	730	910	1120	1380	1700	2080	2520	3020	3430	3920	4360	4770	5490
	40	30	0	0	0	0	0	530	660	820	1010	1240	1520	1840	2200	2500	2850	3170	3470	3990
	50	37	0	0	0	0	0	0	540	660	820	1000	1220	1480	1770	2010	2290	2550	2780	3190
	60	45	0	0	0	0	0	0	0	560	690	850	1030	1250	1500	1700	1940	2150	2350	2700
	75	55	0	0	0	0	0	0	0	0	570	700	860	1050	1270	1440	1660	1850	2030	2350
	100	75	0	0	0	0	0	0	0	0	0	510	630	760	910	1030	1180	1310	1430	1650
	125	93	0	0	0	0	0	0	0	0	0	0	0	620	740	840	950	1060	1160	1330
	150	110	0	0	0	0	0	0	0	0	0	0	0	0	620	700	790	880	960	1090
	175	130	0	0	0	0	0	0	0	0	0	0	0	0	0	650	750	840	920	1070
	200	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	630	700	760	880

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.

Continued on next page 16

Table 17 Three-Phase 60 °C Cable (Continued)

60 °C

МОТ	OR RATI	NG				E	60 °C INS	ULATION	- AWG (OPPER V	VIRE SIZI	E					мсм сс	PPER W	IRE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	3770	6020	9460															
	3/4	0.55	2730	4350	6850															
	1	0.75	2300	3670	5770	9070														
	1.5	1.1	1700	2710	4270	6730														
	2	1.5	1300	2070	3270	5150	8050													
	3	2.2	1000	1600	2520	3970	6200													
	5	3.7	590	950	1500	2360	3700	5750												
	7.5	5.5	420	680	1070	1690	2640	4100	5100	6260	7680									
	10	7.5	310	500	790	1250	1960	3050	3800	4680	5750	7050								
460 V	15	11	0	340	540	850	1340	2090	2600	3200	3930	4810	5900	7110						
60 Hz Three-	20	15	0	0	410	650	1030	1610	2000	2470	3040	3730	4580	5530						
Phase	25	18.5	0	0	0	530	830	1300	1620	1990	2450	3010	3700	4470	5430					
3 - Lead	30	22	0	0	0	430	680	1070	1330	1640	2030	2490	3060	3700	4500	5130	5860			
	40	30	0	0	0	0	500	790	980	1210	1490	1830	2250	2710	3290	3730	4250			
	50	37	0	0	0	0	0	640	800	980	1210	1480	1810	2190	2650	3010	3420	3830	4180	4850
	60	45	0	0	0	0	0	540	670	830	1020	1250	1540	1850	2240	2540	2890	3240	3540	4100
	75	55	0	0	0	0	0	0	0	680	840	1030	1260	1520	1850	2100	2400	2700	2950	3440
	100	75	0	0	0	0	0	0	0	0	620	760	940	1130	1380	1560	1790	2010	2190	2550
	125	93	0	0	0	0	0	0	0	0	0	0	740	890	1000	1220	1390	1560	1700	1960
	150	110	0	0	0	0	0	0	0	0	0	0	0	760	920	1050	1190	1340	1460	1690
	175	130	0	0	0	0	0	0	0	0	0	0	0	0	810	930	1060	1190	1300	1510
	200	150	0	0	0	0	0	0	0	0	0	0	0	0	0	810	920	1030	1130	1310
	1/2	0.37	5900	9410																
	3/4	0.55	4270	6810																
	1	0.75	3630	5800	9120															
	1.5	1.1	2620	4180	6580															
	2	1.5	2030	3250	5110	8060														
	3	2.2	1580	2530	3980	6270														
	5	3.7	920	1480	2330	3680	5750													
	7.5	5.5	660	1060	1680	2650	4150	4==0	=0.40											
	10	7.5	490	780	1240	1950	3060	4770	5940											
575 V 60 Hz	15	11	330	530	850	1340	2090	3260	4060	2060	4760	E020								
Three-	20	15	0	410	650	1030	1610	2520	3140	3860	4760	5830								
Phase 3 - Lead	25	18.5	0	0	520 430	830 680	1300	2030	2530	3110 2560	3840	4710 3880	4770	5790	7020	9000				
J - Leau	30	22 30	0	0	0	500	1070 790	1670 1240	2080 1540	1900	3160 2330	2860	4770 3510	5780 4230	7030 5140	8000 5830				
	40 50		0	0	0	0	640	1000	1250	1540	1890	2310	2840	3420	4140	4700	5340	5990	6530	7580
	50 60	37 45	0	0	0	0	0	850	1060	1300	1600	1960	2400	2890	3500	3970	4520	5070	5530	6410
	75	45 55	0	0	0	0	0	690	860	1060	1310	1600	1970	2380	2890	3290	3750	5220	4610	5370
	100	75	0	0	0	0	0	0	0	790	970	1190	1460	1770	2150	2440	2790	3140	3430	3990
	125	93	0	0	0	0	0	0	0	0	770	950	1160	1400	1690	1920	2180	2440	2650	3070
	150	110	0	0	0	0	0	0	0	0	0	800	990	1190	1440	1630	1860	2080	2270	2640
	175	130	0	0	0	0	0	0	0	0	0	0	870	1050	1270	1450	1650	1860	2030	2360
			0	0	0	0	0	0	0	0	0	0	0	920	1110	1260	1440	1620	1760	2050
	200	150	0	U	U	U	U	U	U	U	U	U	U	920	1110	1200	1440	1020	1760	2000

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See 11 for additional details.

17 Continued on next page

Table 18 Three-Phase 60 °C Cable (Continued)

60 °C

20 V 7 5 5 5 10 10 20 10 180 200 40 10 10 10 10 10 10 10 10 10 10 10 10 10								•												00	
1	MOTO	OR RATII	NG				(60 °C INS	ULATION	- AWG C	OPPER V	VIRE SIZI						MCM CO	PPPER W	IRE SIZE	
00 12 10 15 10 180 300 460 730 1150 1440 1770 2170 2560 32	VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
Sept 10 7.5 80 130 211 340 550 850 1080 1080 163		5	3.7	160	250	420	660	1030	1620	2020	2490	3060	3730	4570	5500	6660	7540				
Sept 10	200 V	7.5	5.5	110	180	300	460	730	1150	1440	1770	2170	2650	3250	3900	4720	5340				
Three-Phase 15	60 Hz									-	-							4650	5220	5700	6630
Phase 15	Three-																				
Section Part				-	-	-															4470
10 10 10 10 10 10 10 10	6 - Lead	20	15	0	0	0			450		690		1050			1900	2160			3030	3540
30 22 0 0 0 180 294 370 460 570 700 870 1050 1270 1450 1660 1870 2040 2 20		25	18.5	0	0	0	140	220	360	450	550	690	850	1050	1260	1540	1750	1990	2250	2460	2850
Collic C		30	22	0	0	0	0	180	294	370	460	570	700	870	1050	1270	1450	1660	1870	2040	2380
Collic C		5	3.7	210	340	550	880	1380	2140	2680	3280	4030	4930	6040	7270	8800	9970				
60 12 10 7.5 110 180 280 460 730 1140 1420 1750 2160 2640 3240 3810 4740 5380 6150 6900 7530 680 750 7	230 V																	8010	8950	9750	
Three 10					-																9760
Phase 19																					8760
S - Leaf 20 15 0		15	11	0	0	190	310	490	780	970	1200	1470	1800	2200	2670	3220	3660	4170	4660	5100	5910
Ye 25		20	15	0	0	140	230	370	600	750	910	1140	1390	1710	2070	2520	2860	3270	3670	4020	4680
Second S		25	18.5	0	0	0	190	300	480	600	750	910	1120	1380	1680	2040	2310	2640	2970	3240	3780
5		30	22	0	0	0	150	240	390	490	610	760	930	1140	1390	1690	1920	2200	2470	2700	3160
7.5				600	960	1510	2380	3730	5800	7170	8800										
10												7200	0010								
15																					
20			1																		
380 V 25 18.5 0 210 330 540 850 1320 1650 2020 2500 3070 3760 4560 5460 6190 7080 7870 8610 6 60 Hz 30 22 0 0 0 270 430 700 1090 1360 1680 2070 2550 3120 3780 4530 5140 5880 6540 7150 6 7180 30 0 0 0 0 320 510 799 990 1230 1510 1880 2220 2260 2760 3300 3750 4270 4750 5200 8 7180 50 37 0 0 0 0 320 540 660 840 1030 1270 1540 1870 2250 2550 2910 3220 3520 4 7-0 75 55 0 0 0 0 0 0 340 540 660 840 1030 1270 1540 1870 2250 2550 2910 3220 3520 4 7-0 75 55 0 0 0 0 0 0 0 450 550 890 855 1150 190 190 2160 2490 2770 3040 1270 1540 1870 1280 1570 1900 1260 1420 1590 1740 1250 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		15	11	210	340	550	880	1380	2140	2650	3250	4030	4930	6000	7260	8650	9780				
60 Hz 100		20	15	160	260	410	660	1050	1630	2020	2500	3090	3790	4630	5640	6750	7660	4260	9760		
60 Hz 100	200.1	25	18.5	0	210	330	540	850	1320	1650	2020	2500	3070	3760	4560	5460	6190	7080	7870	8610	9880
Three-Phase 50 37 0 0 0 0 250 400 630 810 990 1230 1510 1860 2280 2760 3300 3750 4270 4750 5200 630 11 11 11 20 1260 1380 170 1900 175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-	-																8230
Phase 6- Lead Y-D Fig. 1.				-	-																5980
6- Lead Y-D 78					-	-															
Y-D 75 55 0 0 0 0 0 0 0 0					-																4780
100 75 0 0 0 0 0 0 0 0 0 0 420 520 640 760 940 1140 1360 1540 1770 1960 2140 2160 1260 1380 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		60	45	0	0	0	0	340	540	660	840	1030	1270	1540	1870	2250	2550	2910	3220	3520	4050
125 93 0 0 0 0 0 0 0 0 0	Y-V	75	55	0	0	0	0	0	450	550	690	855	1050	1290	1570	1900	2160	2490	2770	3040	3520
150		100	75	0	0	0	0	0	0	420	520	640	760	940	1140	1360	1540	1770	1960	2140	2470
150		125	93	0	0	0	0	0	0	0	400	490	600	730	930	1110	1260	1420	1590	1740	1990
175 130 0 0 0 0 0 0 0 0 0					-	-		-	-												1630
200 150 0 0 0 0 0 0 0 0 0					-			-	-												
S S S S S S S S S S					-	-	-	-	-	-			_								1600
7.5 5.5 630 1020 1600 2530 3960 6150 7650 9390 10 7.5 460 750 1180 1870 2940 4570 5700 7020 8620 15 11 310 510 810 1270 2010 3130 3900 4800 5890 7210 8850 20 15 230 380 610 970 1540 2410 3000 3700 4560 5590 6870 8290 25 18.5 190 310 490 790 1240 1950 2430 2980 3670 4510 5550 6700 8140 2500 170 170 1800 1990 2460 3040 3730 4590 5550 6750 7690 8790 1240 1950 2450 1470 1810 2230 2740 3370 4060 4930 5590 6370 1470 1810 2230 2740 3370 4060 4930 5590 6370 1470 1810 2230 2740 3370 4060 4930 5590 6370 1470 1810 2230 2740 3370 4060 4930 5590 6370 1470 1810 1470 1810 1470 1810 2220 2710 3280 3970 4510 5130 5740 6270 1470 1810 1470 1470 1470 1470 1470 1470 1470 14			150		-	-	-	-	-	0	0	0	0	480	580	690	790	940	1050	1140	1320
10		5	3.7	880	1420	2250	3540	5550	8620												
15		7.5	5.5	630	1020	1600	2530	3960	6150	7650	9390										
15		10	7.5	460	750	1180	1870	2940	4570	5700	7020	8620									
20 15 230 380 610 970 1540 2410 3000 3700 4560 5590 6870 8290		15		310	510	810	1270	2010	3130	3900	4800	5890	7210	8850							
460 V 60 Hz 70 Hz															9200						
## 40																0440					
Three 40 30 0 0 300 480 750 1180 1470 1810 2230 2740 3370 4060 4930 5590 6370	460 V																				
Phase 50 37 0 0 0 0 370 590 960 1200 1470 1810 2220 2710 3280 3970 4510 5130 5740 6270 76 6-Lead 60 45 0 0 0 0 320 500 810 1000 1240 1530 1870 2310 2770 3360 3810 4330 4860 5310 60 75 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 Hz	30	22	0	250	410	640	1020	1600	1990	2460	3040	3730	4590	5550	6750	7690	8790			
6-Lead Y-D	Three-	40	30	0	0	300	480	750	1180	1470	1810	2230	2740	3370	4060	4930	5590	6370			
Y-D 75 55 0 0 0 0 420 660 810 1020 1260 1540 1890 2280 2770 3150 3600 4050 4420 66 810 1020 1260 1540 1890 2280 2770 3150 3600 4050 4420 66 810 1020 1260 1540 1890 2280 2770 3150 3600 4050 4420 66 810 760 930 1140 1410 1690 2070 2340 2680 3010 3280 3 125 93 0 0 0 0 0 470 590 730 880 1110 1330 2080 2340 2550 23 2340 2550 23 2340 2550 23 2340 2550 23 2340 2550 23 2340 2550 23 2340 2550 23 2340 2340 2550 </th <th>Phase</th> <th>50</th> <th>37</th> <th>0</th> <th>0</th> <th>0</th> <th>370</th> <th>590</th> <th>960</th> <th>1200</th> <th>1470</th> <th>1810</th> <th>2220</th> <th>2710</th> <th>3280</th> <th>3970</th> <th>4510</th> <th>5130</th> <th>5740</th> <th>6270</th> <th>7270</th>	Phase	50	37	0	0	0	370	590	960	1200	1470	1810	2220	2710	3280	3970	4510	5130	5740	6270	7270
Y-D 75 55 0 0 0 420 660 810 1020 1260 1540 1890 2280 2770 3150 3600 4050 4420 560 610 760 930 1140 1410 1690 2070 2340 2680 3010 3280 3 125 93 0 0 0 0 0 0 470 590 730 880 1110 1330 1500 1830 2080 2340 2550 2 150 110 0 0 0 0 0 0 0 0 0 0 110 1330 1570 1790 2000 2180 2 175 130 0 0 0 0 0 0 0 550 680 830 1000 1220 1390 1580 1780 1950 2 200 150 0 0 0 <th>6 - Lead</th> <th>60</th> <th>45</th> <th>0</th> <th>0</th> <th>0</th> <th>320</th> <th>500</th> <th>810</th> <th>1000</th> <th>1240</th> <th>1530</th> <th>1870</th> <th>2310</th> <th>2770</th> <th>3360</th> <th>3810</th> <th>4330</th> <th>4860</th> <th>5310</th> <th>6150</th>	6 - Lead	60	45	0	0	0	320	500	810	1000	1240	1530	1870	2310	2770	3360	3810	4330	4860	5310	6150
100 75 0 0 0 0 0 0 0 0 1470 590 730 880 1110 1330 1500 1830 2340 2680 3010 3280 3 1 150 1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y-D				-	-															5160
125 93 0 0 0 0 0 0 0 470 590 730 880 1110 1330 1500 1830 2080 2340 2550 2 150 110 0 0 0 0 0 0 0 510 630 770 950 1140 1380 1570 1790 2000 2180 2 175 130 0 0 0 0 0 0 0 0 550 680 830 1000 1220 1390 1580 1780 1950 2 200 150 0 0 0 0 0 0 0 590 730 880 1070 1210 1380 1550 1690 2 5 3.7 1380 2220 3490 6220 8910 7750 8910 780 780 780 780 780 780 780				-	-	-	-	_													3820
150 110 0 0 0 0 0 0 0 0 510 630 770 950 1140 1380 1570 1790 2000 2180 2 175 130 0 0 0 0 0 0 0 0 0 0 140 1380 1570 1790 2000 2180 2 200 150 0 0 0 0 0 0 0 0 590 730 880 1070 1210 1380 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690 1550					-	-	-	-					-								
175 130 0 0 0 0 0 0 0 0 0 0 150 120 1390 1580 1780 1950 2 200 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 590 730 880 1070 1210 1380 1550 1690 1550 1				-	-	-	-	-	-	_											2940
200 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 590 730 880 1070 1210 1380 1550 1690 1550 1690 1550 1690 1550 1690 1550 1690<		150	110	0	0	0	0	0	0	0	510	630	770	950	1140	1380	1570	1790	2000	2180	2530
5 3.7 1380 2220 3490 5520 8620 7.5 5.5 990 1590 2520 3970 6220 10 7.5 730 1170 1860 2920 4590 7150 8910 15 11 490 790 1270 2010 3130 4890 6090		175	130	0	0	0	0	0	0	0	0	550	680	830	1000	1220	1390	1580	1780	1950	2270
7.5 5.5 990 1590 2520 3970 6220 10 7.5 730 1170 1860 2920 4590 7150 8910 15 11 490 790 1270 2010 3130 4890 6090		200	150	0	0	0	0	0	0	0	0	0	590	730	880	1070	1210	1380	1550	1690	1970
7.5 5.5 990 1590 2520 3970 6220 10 7.5 730 1170 1860 2920 4590 7150 8910 15 11 490 790 1270 2010 3130 4890 6090		5	3.7	1380	2220	3490	5520	8620													
10 7.5 730 1170 1860 2920 4590 7150 8910 15 11 490 790 1270 2010 3130 4890 6090																					
15 11 490 790 1270 2010 3130 4890 6090									7150	8010											
20 15 370 610 970 1540 2410 3780 4710 5790 7140 8740																					
		20	15	370	610	970	1540	2410	3780	4710	5790	7140	8740								
575 V 25 18.5 300 490 780 1240 1950 3040 3790 4660 5760 7060	575 V	25	18.5	300	490	780	1240	1950	3040	3790	4660	5760	7060								
60 Hz 30 22 240 400 645 1020 1600 2500 3120 3840 4740 5820 7150 8670		30	22	240	400	645	1020	1600	2500	3120	3840	4740	5820	7150	8670						
Three 40 30 0 300 480 750 1180 1860 2310 2850 3490 4290 5260 6340 7710 8740				0	300	480	750	1180	1860	2310	2850	3490	4290	5260	6340	7710	8740				
Phase 50 37 0 0 380 590 960 1500 1870 2310 2830 3460 4260 5130 6210 7050 8010 8980 9790																		8010	8980	9790	
																					9610
VD 30 10 10 10 10 10 10 10 10 10 10 10 10 10																					
75 35 6 6 7 420 660 1660 1660 1660 2660 6670 1660 6660 6670 1660						-															8050
		100	75	0	0		0	400	780		1180	1450	1780		2650				4710	5140	5980
125 93 0 0 0 0 0 600 740 920 1150 1420 1740 2100 2530 2880 3270 3660 3970 4		125	93	0	0	0	0	0	600	740	920	1150	1420	1740	2100	2530	2880	3270	3660	3970	4600
150 110 0 0 0 0 0 0 0 650 800 990 1210 1480 1780 2160 2450 2790 3120 3410 3		150	110	0	0	0	0	0	0	650	800	990	1210	1480	1780	2160	2450	2790	3120	3410	3950
					0	0	0	0	0	0	700	860									3540
																					3070
200 100 0 0 0 0 0 0 0 100 1000 1000 2100 2420 2040 1		200	130		, ,			3			, ,	. 30	030	1170	1070	1070	1000	2.00	2 720	2040	0070

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.

Table 19 Three-Phase 75 °C Cable, 60 Hz (Service Entrance to Motor) Maximum Length in Feet

75 °C

МОТО	OR RATIN	IG					75 °C INS	ULATION	- AWG (OPPER V	VIRE SIZE						мсм со	OPPER W	IRE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	710	1140	1800	2840	4420													
	3/4	0.55	510	810	1280	2030	3160													
	1	0.75	430	690	1080	1710	2670	4140	5140											
	1.5	1.1	310	500	790	1260	1960	3050	3780											
000 1/	2	1.5	240	390	610	970	1520	2360	2940	3610	4430	5420								
200 V 60 Hz	3	2.2	180	290	470	740	1160	1810	2250	2760	3390	4130								
Three-	5	3.7	110	170	280	440	690	1080	1350	1660	2040	2490	3050	3670	4440	5030				
Phase 3 - Lead	7.5	5.5	0	0	200	310	490	770	960	1180	1450	1770	2170	2600	3150	3560				
o Loud	10	7.5	0	0	150	230	370	570	720	880	1090	1330	1640	1970	2390	2720	3100	3480	3800	4420
	15	11	0	0	0	160	250	390	490	600	740	910	1110	1340	1630	1850	2100	2350	2570	2980
	20	15	0	0	0	0	190	300	380	460	570	700	860	1050	1270	1440	1650	1850	2020	2360
	25	18.5	0	0	0	0	0	240	300	370	460	570	700	840	1030	1170	1330	1500	1640	1900
	30	22	0	0	0	0	0	200	250	310	380	470	580	700	850	970	1110	1250	1360	1590
	1/2	0.37	930	1490	2350	3700	5760	8910												
	3/4	0.55	670	1080	1700	2580	4190	6490	8060	9860										
	1	0.75	560	910	1430	2260	3520	5460	6780	8290										
	1.5	1.1	420	670	1060	1670	2610	4050	5030	6160	7530	9170								
230 V	2	1.5	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780							
60 Hz	3	2.2	240	390	620	990	1540	2400	2980	3660	4480	5470	6690	8020	9680					
Three-	5	3.7	140	230	370	590	920	1430	1790	2190	2690	3290	4030	4850	5870	6650	7560	8460	9220	
Phase 3 - Lead	7.5	5.5	0	160	260	420	650	1020	1270	1560	1920	2340	2870	3440	4160	4710	5340	5970	6500	7510
	10	7.5	0	0	190	310	490	760	950	1170	1440	1760	2160	2610	3160	3590	4100	4600	5020	5840
	15	11	0	0	0	210	330	520	650	800	980	1200	1470	1780	2150	2440	2780	3110	3400	3940
	20	15	0	0	0	160	250	400	500	610	760	930	1140	1380	1680	1910	2180	2450	2680	3120
	25	18.5	0	0	0	0	200	320	400	500	610	750	920	1120	1360	1540	1760	1980	2160	2520
	30	22	0	0	0	0	0	260	330	410	510	620	760	930	1130	1280	1470	1650	1800	2110
	1/2	0.37	2690	4290	6730															
	3/4	0.55	2000	3190	5010	7860														
	1	0.75	1620	2580	4060	6390	9980													
	1.5	1.1	1230	1970	3100	4890	7630													
	2	1.5	870	1390	2180	3450	5400	8380												
	3	2.2	680	1090	1710	2690	4200	6500	8020	9830	7000									
	5	3.7	400	640	1010	1590	2490	3870	4780	5870	7230	8830	7000	0700						
	7.5	5.5	270	440	690	1090	1710	2640	3260	4000	4930	6010	7290	8780	7200	9390	0240			
	10	7.5	200	320	510 370	800 590	1250 920	1930 1430	2380 1770	2910	3570 2690	4330 3290	5230 4000	6260 4840	7390 5770	8280 6520	9340	8250	8990	
380 V 60 Hz	15	11	0	0	280	440	700	1090	1350			2530	3090	3760		5110	2840			8190
Three-	20	15	0	0	0	360	570	880	1100	1670 1350	2060 1670	2050	2510	3040	4500 3640	4130	4720	6510 5250	7120 5740	6590
Phase 3 - Lead	25	18.5 22	0	0	0	290	470	730	910	1120	1380	1700	2080	2520	3020	3430	3920	4360	4770	5490
o Lead	30 40	30	0	0	0	0	0	530	660	820	1010	1240	1520	1840	2200	2500	2850	3170	3470	3990
		37	0	0	0	0	0	440	540	660	820	1000	1220	1480	1770	2010	2290	2550	2780	3190
	50 60	45	0	0	0	0	0	370	460	560	690	850	1030	1250	1500	1700	1940	2150	2350	2700
	75	45 55	0	0	0	0	0	0	0	460	570	700	860	1050	1270	1440	1660	1850	2030	2350
	100	75	0	0	0	0	0	0	0	0	420	510	630	760	910	1030	1180	1310	1430	1650
	125	93	0	0	0	0	0	0	0	0	0	0	510	620	740	840	950	1060	1160	1330
	150	110	0	0	0	0	0	0	0	0	0	0	0	520	620	700	790	880	960	1090
		130	0	0	0	0	0	0	0	0	0	0	0	0	560	650	750	840	920	1070
	175		0	0	0	0	0	0	0	0	0	0	0	0	0	550	630	700	760	880
	200	150	U	U	U	U	U	U	U	l U	U	U	U	U	U	550	630	700	760	000

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.

19 Continued on next page

Table 20 Three-Phase 75 °C Cable (Continued)

75 °C

мот	TOR RATI	NG				7	75 °C INS	SULATION	- AWG (OPPER V	VIRE SIZI						мсм с	DPPFR W	IRE SIZE	
VOLTS	НР	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	3770	6020	9460						·			555	0000			000		
	3/4	0.55	2730	4350	6850															
	1	0.75	2300	3670	5770	9070														
	1.5	1.1	1700	2710	4270	6730														
	2	1.5	1300	2070	3270	5150	8050													
	3	2.2	1000	1600	2520	3970	6200													
	5	3.7	590	950	1500	2360	3700	5750												
	7.5	5.5	420	680	1070	1690	2640	4100	5100	6260	7680									
	10	7.5	310	500	790	1250	1960	3050	3800	4680	5750	7050								
460 V	15	11	0	340	540	850	1340	2090	2600	3200	3930	4810	5900	7110						
60 Hz	20	15	0	0	410	650	1030	1610	2000	2470	3040	3730	4580	5530						
Three- Phase	25	18.5	0	0	330	530	830	1300	1620	1990	2450	3010	3700	4470	5430					
3 - Lead	30	22	0	0	270	430	680	1070	1330	1640	2030	2490	3060	3700	4500	5130	5860			
	40	30	0	0	0	320	500	790	980	1210	1490	1830	2250	2710	3290	3730	4250			
	50	37	0	0	0	0	410	640	800	980	1210	1480	1810	2190	2650	3010	3420	3830	4180	4850
	60	45	0	0	0	0	0	540	670	830	1020	1250	1540	1850	2240	2540	2890	3240	3540	4100
	75	55	0	0	0	0	0	440	550	680	840	1030	1260	1520	1850	2100	2400	2700	2950	3440
	100	75	0	0	0	0	0	0	0	500	620	760	940	1130	1380	1560	1790	2010	2190	2550
	125	93	0	0	0	0	0	0	0	0	0	600	740	890	1000	1220	1390	1560	1700	1960
	150	110	0	0	0	0	0	0	0	0	0	0	630	760	920	1050	1190	1340	1460	1690
	175	130	0	0	0	0	0	0	0	0	0	0	0	670	810	930	1060	1190	1300	1510
	200	150	0	0	0	0	0	0	0	0	0	0	0	590	710	810	920	1030	1130	1310
	1/2	0.37	5900	9410																
	3/4	0.55	4270	6810																
	1	0.75	3630	5800	9120															
	1.5	1.1	2620	4180	6580															
	2	1.5	2030	3250	5110	8060														
	3	2.2	1580	2530	3980	6270														
	5	3.7	920	1480	2330	3680	5750													
	7.5	5.5	660	1060	1680	2650	4150													
	10	7.5	490	780	1240	1950	3060	4770	5940											
575 V	15	11	330	530	850	1340	2090	3260	4060											
60 Hz Three-	20	15	0	410	650	1030	1610	2520	3140	3860	4760	5830								
Phase	25	18.5	0	0	520	830	1300	2030	2530	3110	3840	4710								
3 - Lead	30	22	0	0	430	680	1070	1670	2080	2560	3160	3880	4770	5780	7030	8000				
	40	30	0	0	0	500	790	1240	1540	1900	2330	2860	3510	4230	5140	5830				
	50	37	0	0	0	410	640	1000	1250	1540	1890	2310	2840	3420	4140	4700	5340	5990	6530	7580
	60	45	0	0	0	0	540	850	1060	1300	1600	1960	2400	2890	3500	3970	4520	5070	5530	6410
	75	55	0	0	0	0	0	690	860	1060	1310	1600	1970	2380	2890	3290	3750	5220	4610	5370
	100	75	0	0	0	0	0	0	640	790	970	1190	1460	1770	2150	2440	2790	3140	3430	3990
	125	93	0	0	0	0	0	0	0	630	770	950	1160	1400	1690	1920	2180	2440	2650	3070
	150	110	0	0	0	0	0	0	0	0	660	800	990	1190	1440	1630	1860	2080	2270	2640
	175	130	0	0	0	0	0	0	0	0	0	700	870	1050	1270	1450	1650	1860	2030	2360
	200	150	0	0	0	0	0	0	0	0	0	0	760	920	1110	1260	1440	1620	1760	2050

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.

Continued on next page 20

Table 21 Three-Phase 75 °C Cable (Continued)

75 °C

iabie .	Z I II	ii ee	-Pnas	e /5	C C.														70	
МОТ	OR RATII	IG					75 °C INS	ULATION	- AWG (COPPER V	VIRE SIZI						мсм с	OPPER W	IRE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	5	3.7	160	250	420	660	1030	1620	2020	2490	3060	3730	4570	5500	6660	7540				
200 V	7.5	5.5	110	180	300	460	730	1150	1440	1770	2170	2650	3250	3900	4720	5340				
60 Hz	10	7.5	80	130	210	340	550	850	1080	1320	1630	1990	2460	2950	3580	4080	4650	5220	5700	6630
Three-	15	11	0	0	140	240	370	580	730	900	1110	1360	1660	2010	2440	2770	3150	3520	3850	4470
Phase 6 - Lead	20	15	0	0	120	170	280	450	570	690	850	1050	1290	1570	1900	2160	2470	2770	3030	3540
Y-D	25	18.5	0	0	0	140	220	360	450	550	690	850	1050	1260	1540	1750	1990	2250	2460	2850
	30	22	0	0	0	120	180	294	370	460	570	700	870	1050	1270	1450	1660	1870	2040	2380
	5	3.7	210	340	550	880	1380	2140	2680	3280	4030	4930	6040	7270	8800	9970				
230 V	7.5	5.5	150	240	390	630	970	1530	1900	2340	2880	3510	4300	5160	6240	7060	8010	8950	9750	
60 Hz	10	7.5	110	180	280	460	730	1140	1420	1750	2160	2640	3240	3910	4740	5380	6150	6900	7530	8760
Three-	15	11	0	130	190	310	490	780	970	1200	1470	1800	2200	2670	3220	3660	4170	4660	5100	5910
Phase	20	15	0	0	140	230	370	600	750	910	1140	1390	1710	2070	2520	2860	3270	3670	4020	4680
6 - Lead	25	18.5	0	0	120	190	300	480	600	750	910	1120	1380	1680	2040	2310	2640	2970	3240	3780
Y-D	30	22	0	0	0	150	240	390	490	610	760	930	1140	1390	1690	1920	2200	2470	2700	3160
	5	3.7	600	960	1510	2380	3730	5800	7170	8800	700	330	1140	1000	1030	1320	2200	2470	2700	3100
	7.5	5.5	400	660	1030	1630	2560	3960	4890	6000	7390	9010								
				480	760	1200	1870	2890	3570		5350	6490	7040	9390						
	10	7.5	300							4360			7840		0050	0700				
	15	11	210	340	550	880	1380	2140	2650	3250	4030	4930	6000	7260	8650	9780	4000	0700		
	20	15	160	260	410	660	1050	1630	2020	2500	3090	3790	4630	5640	6750	7660	4260	9760	0040	
380 V	25	18.5	0	210	330	540	850	1320	1650	2020	2500	3070	3760	4560	5460	6190	7080	7870	8610	9880
60 Hz	30	22	0	0	270	430	700	1090	1360	1680	2070	2550	3120	3780	4530	5140	5880	6540	7150	8230
Three-	40	30	0	0	210	320	510	790	990	1230	1510	1860	2280	2760	3300	3750	4270	4750	5200	5980
Phase	50	37	0	0	0	250	400	630	810	990	1230	1500	1830	2220	2650	3010	3430	3820	4170	4780
6 - Lead	60	45	0	0	0	0	340	540	660	840	1030	1270	1540	1870	2250	2550	2910	3220	3520	4050
Y-D	75	55	0	0	0	0	290	450	550	690	855	1050	1290	1570	1900	2160	2490	2770	3040	3520
	100	75	0	0	0	0	0	340	420	520	640	760	940	1140	1360	1540	1770	1960	2140	2470
	125	93	0	0	0	0	0	0	340	400	490	600	730	930	1110	1260	1420	1590	1740	1990
	150	110	0	0	0	0	0	0	0	350	420	510	620	750	930	1050	1180	1320	1440	1630
	175	130	0	0	0	0	0	0	0	0	360	440	540	660	780	970	1120	1260	1380	1600
	200	150	0	0	0	0	0	0	0	0	0	410	480	580	690	790	940	1050	1140	1320
	5	3.7	880	1420	2250	3540	5550	8620												
	7.5	5.5	630	1020	1600	2530	3960	6150	7650	9390										
	10	7.5	460	750	1180	1870	2940	4570	5700	7020	8620									
	15	11	310	510	810	1270	2010	3130	3900	4800	5890	7210	8850							
	20	15	230	380	610	970	1540	2410	3000	3700	4560	5590	6870	8290						
400 V	25	18.5	190	310	490	790	1240	1950	2430	2980	3670	4510	5550	6700	8140					
460 V 60 Hz	30	22	0	250	410	640	1020	1600	1990	2460	3040	3730	4590	5550	6750	7690	8790			
Three-	40	30	0	0	300	480	750	1180	1470	1810	2230	2740	3370	4060	4930	5590	6370			
Phase	50	37	0	0	250	370	590	960	1200	1470	1810	2220	2710	3280	3970	4510	5130	5740	6270	7270
6 - Lead	60	45	0	0	0	320	500	810	1000	1240	1530	1870	2310	2770	3360	3810	4330	4860	5310	6150
Y-D	75	55	0	0	0	0	420	660	810	1020	1260	1540	1890	2280	2770	3150	3600	4050	4420	5160
			0	0	0	0	310	500	610	760	930	1140	1410	1690	2070	2340	2680	3010	3280	3820
	100	75			0	-														
	125	93	0	0	-	0	0	390	470	590	730	880	1110	1330	1500	1830	2080	2340	2550	2940
	150	110	0	0	0	0	0	0	420	510	630 550	770	950	1140	1380	1570	1790	2000	2180	2530 2270
	175	130	0	0	0	0	0	0	0	450		680	830	1000		1390	1580	1780	1950	
	200	150	0	0	0	0	0	0	0	0	480	590	730	880	1070	1210	1380	1550	1690	1970
	5	3.7	1380	2220	3490	5520	8620													
	7.5	5.5	990	1590	2520	3970	6220													
	10	7.5	730	1170	1860	2920	4590	7150	8910											
	15	11	490	790	1270	2010	3130	4890	6090											
	20	15	370	610	970	1540	2410	3780	4710	5790	7140	8740								
575 V	25	18.5	300	490	780	1240	1950	3040	3790	4660	5760	7060								
60 Hz	30	22	240	400	645	1020	1600	2500	3120	3840	4740	5820	7150	8670						
Three-	40	30	0	300	480	750	1180	1860	2310	2850	3490	4290	5260	6340	7710	8740				
Phase	50	37	0	0	380	590	960	1500	1870	2310	2830	3460	4260	5130	6210	7050	8010	8980	9790	
6 - Lead	60	45	0	0	330	500	790	1270	1590	1950	2400	2940	3600	4330	5250	5950	6780	7600	8290	9610
Y-D	75	55	0	0	0	420	660	1030	1290	1590	1960	2400	2950	3570	4330	4930	5620	6330	6910	8050
	100	75	0	0	0	0	400	780	960	1180	1450	1780	2190	2650	3220	3660	4180	4710	5140	5980
	125	93	0	0	0	0	0	600	740	920	1150	1420	1740	2100	2530	2880	3270	3660	3970	4600
	150	110	0	0	0	0	0	520	650	800	990	1210	1480	1780	2160	2450	2790	3120	3410	3950
	175	130	0	0	0	0	0	0	570	700	860	1060	1300	1570	1910	2170	2480	2780	3040	3540
			0	0	0	0	0	0	500	610	760	930					2160	2420	2640	3070
	200	150	U	U	U	U	U	U	300	010	100	930	1140	1370	1670	1890	2100	2420	2040	3070

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.

Table 22 Three-Phase Motor Specifications (60 Hz) 3450 rpm

TYPE	MOTOR Model			RATING			FULL	LOAD	MAXI LO		LINE TO LINE RESISTANCE	EFFICI	ENCY %	LOCKED ROTOR	KVA CODE
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	AMPS	CODE
	234501			200	60	1.6	2.8	585	3.4	860	6.6-8.4	70	64	17.5	N
4 "	234511			230	60	1.6	2.4	585	2.9	860	9.5-10.9	70	64	15.2	N
4	234541	1/2	0.37	380	60	1.6	1.4	585	2.1	860	23.2-28.6	70	64	9.2	N
	234521			460	60	1.6	1.2	585	1.5	860	38.4-44.1	70	64	7.6	N
	234531			575	60	1.6	1.0	585	1.2	860	58.0-71.0	70	64	6.1	N
	234502			200	60	1.5	3.6	810	4.4	1150	4.6-5.9	73	69	24.6	N
	234512			230	60	1.5	3.1	810	3.8	1150	6.8-7.8	73	69	21.4	N
	234542	3/4	0.55	380	60	1.5	1.9	810	2.5	1150	16.6-20.3	73	69	13	N
	234522			460	60	1.5	1.6	810	1.9	1150	27.2-30.9	73	69	10.7	N
	234532			575	60	1.5	1.3	810	1.6	1150	41.5-50.7	73	69	8.6	N
	234503			200	60	1.4	4.5	1070	5.4	1440	3.8-4.5	72	70	30.9	M
	234513			230	60	1.4	3.9	1070	4.7	1440	4.9-5.6	72	70	26.9	M
	234543	1	0.75	380	60	1.4	2.3	1070	2.8	1440	12.2-14.9	72	70	16.3	М
	234523			460	60	1.4	2	1070	2.4	1440	19.9-23.0	72	70	13.5	M
	234533			575	60	1.4	1.6	1070	1.9	1440	30.1-36.7	72	70	10.8	М
	234504			200	60	1.3	5.8	1460	6.8	1890	2.5-3.0	76	76	38.2	K
	234514			230	60	1.3	5	1460	5.9	1890	3.2-4.0	76	76	33.2	К
	234544	1.5	1.1	380	60	1.3	3	1460	3.6	1890	8.5-10.4	76	76	20.1	K
	234524			460	60	1.3	2.5	1460	3.1	1890	13.0-16.0	76	76	16.6	К
	234534			575	60	1.3	2	1460	2.4	1890	20.3-25.0	76	76	13.3	K
	234305			200	60	1.25	7.7	1960	9.3	2430	1.8-2.4	76	76	50.3	К
	234315			230	60	1.25	6.7	1960	8.1	2430	2.3-3.0	76	76	45.0	K
	234345	2	1.5	380	60	1.25	4.1	1960	4.9	2430	6.6-8.2	76	76	26.6	K
	234325			460	60	1.25	3.4	1960	4.1	2430	9.2-12.0	76	76	22.5	K
	234335			575	60	1.25	2.7	1960	3.2	2430	14.6-18.7	76	76	17.8	К
	234306			200	60	1.15	10.9	2920	12.5	3360	1.3-1.7	77	77	69.5	K
	234316			230	60	1.15	9.5	2920	10.9	3360	1.8-2.2	77	77	60.3	К
	234346	3	2.2	380	60	1.15	5.8	2920	6.6	3360	4.7-6.0	77	77	37.5	K
	234326			460	60	1.15	4.8	2920	5.5	3360	7.2-8.8	77	77	31.0	К
	234336			575	60	1.15	3.8	2920	4.4	3360	11.4-13.9	77	77	25.1	K
	234307			200	60	1.15	18.3	4800	20.5	5500	.6883	78	78	116	К
	234317			230	60	1.15	15.9	4800	17.8	5500	.91-1.1	78	78	102	K
	234347	5	3.7	380	60	1.15	9.6	4800	10.8	5500	2.6-3.2	78	78	60.2	К
	234327			460	60	1.15	8.0	4800	8.9	5500	3.6-4.4	78	78	53.7	K
	234337			575	60	1.15	6.4	4800	7.1	5500	5.6-6.9	78	78	41.8	К
	234308			200	60	1.15	26.5	7150	30.5	8200	.4353	78	78	177	K
	234318			230	60	1.15	23.0	7150	26.4	8200	.6073	78	78	152	К
	234348	7.5	5.5	380	60	1.15	13.9	7150	16.0	8200	1.6-2.0	78	78	92.7	K
	234328			460	60	1.15	11.5	7150	13.2	8200	2.3-2.8	78	78	83.8	к
	234338			575	60	1.15	9.2	7150	10.6	8200	3.6-4.5	78	78	64.6	К
	234549			380	60	1.15	19.3	10000	21.0	11400	1.2-1.6	75	75	140	L
	234595	10	7.5	460	60	1.15	15.9	10000	17.3	11400	1.8-2.3	75	75	116.0	L
	234598			575	60	1.15	12.5	10000	13.6	11400	2.8-3.5	75	75	92.8	L

Table 23 Three-Phase Motor Fuse Sizing

					CIRCU	JIT BREAKERS OR FUSE	AMPS	CIRCI	UIT BREAKERS OR FUSE	AMPS
	MOTOR		RATI	NG		(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE))
TYPE	MODEL PREFIX	НР	кw	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT BREAKER	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	234501			200	10	5	8	10	4	15
4 ''	234511			230	8	4.5	6	8	4	15
4	234541	1/2	0.37	380	5	2.5	4	5	2	15
	234521			460	4	2.25	3	4	2	15
	234531			575	3	1.8	3	3	1.4	15
	234502			200	15	7	10	12	5	15
	234512			230	10	5.6	8	10	5	15
	234542	3/4	0.55	380	6	3.5	5	6	3	15
	234522			460	5	2.8	4	5	3	15
	234532			575	4	2.5	4	4	1.8	15
	234503			200	15	8	15	15	6	15
	234513			230	15	7	10	12	6	15
	234543	1	0.75	380	8	4.5	8	8	4	15
	234523			460	6	3.5	5	6	3	15
	234533			575	5	2.8	4	5	2.5	15
	234504			200	20	12	15	20	8	15
	234514	1.5		230	15	9	15	15	8	15
	234544		1.1	380	10	5.6	8	10	4	15
	234524			460	8	4.5	8	8	4	15
	234534			575	6	3.5	5	6	3	15
	234305			200	25	15	20	25	11	20
	234315			230	25	12	20	25	10	20
	234345	2	1.5	380	15	8	15	15	6	15
	234325			460	15	6	10	11	5	15
	234335			575	10	5	8	10	4	15
	234306			200	35	20	30	35	15	30
	234316			230	30	17.5	25	30	12	25
	234346	3	2.2	380	20	12	15	20	8	15
	234326			460	15	9	15	15	6	15
	234336			575	15	7	10	11	5	15
	234307			200	60	35	50	60	25	50
	234317			230	50	30	40	45	20	40
	234347	5	3.7	380	30	17.5	25	30	12	25
	234327			460	25	15	20	25	10	20
	234337			575	20	12	20	20	8	20
	234308			200	90	50	70	80	35	70
	234318	7.5		230	80	45 25	60 40	70 40	30	60
	234348	7.5	5.5	380	45				20	40
	234328			460 575	40	25	30	35	15 12	30
	234338 234349			575 380	30 70	17.5 40	25 60	30 60	25	25 60
	234349			380 460		30	60 45	50	25 25	60 45
	234329			460 575	60	25		40	20	45 35
		10	7.5	380	45	35	35 60			
	234549 234595				70		60	60	25	60
				460 575	60	30 25	45 35	50	25	45 35
	234598			575	45	25	35	40	20	35

Table 24 Three-Phase Motor Specifications (60 Hz) 3450 rpm

ТҮРЕ	MOTOR MODEL			RATING			FULL	LOAD		CIMUM DAD	LINE TO LINE RESISTANCE	EFFICIE	ENCY %	LOCKED ROTOR	KVA CODE
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	AMPS	CODE
	236650			200	60	1.15	17.5	4700	20.0	5400	.7793	79	79	99	Н
CII	236600			230	60	1.15	15	4700	17.6	5400	1.0-1.2	79	79	86	Н
6"	236660	5	3.7	380	60	1.15	9.1	4700	10.7	5400	2.6-3.2	79	79	52	Н
	236610			460	60	1.15	7.5	4700	8.8	5400	3.9-4.8	79	79	43	Н
STD.	236620			575	60	1.15	6	4700	7.1	5400	6.3-7.7	79	79	34	Н
	236651			200	60	1.15	25.1	7000	28.3	8000	.4353	80	80	150	Н
	236601			230	60	1.15	21.8	7000	24.6	8000	.6478	80	80	130	Н
	236661	7.5	5.5	380	60	1.15	13.4	7000	15	8000	1.6-2.1	80	80	79	Н
	236611			460	60	1.15	10.9	7000	12.3	8000	2.4-2.9	80	80	65	Н
	236621			575	60	1.15	8.7	7000	9.8	8000	3.7-4.6	80	80	52	Н
	236652			200	60	1.15	32.7	9400	37	10800	.3745	79	79	198	Н
	236602			230	60	1.15	28.4	9400	32.2	10800	.4757	79	79	172	Н
	236662	10	7.5	380	60	1.15	17.6	9400	19.6	10800	1.2-1.5	79	79	104	Н
	236612			460	60	1.15	14.2	9400	16.1	10800	1.9-2.4	79	79	86	Н
	236622			575	60	1.15	11.4	9400	12.9	10800	3.0-3.7	79	79	69	Н
	236653			200	60	1.15	47.8	13700	54.4	15800	.2429	81	81	306	Н
	236603			230	60	1.15	41.6	13700	47.4	15800	.2835	81	81	266	Н
	236663	15	11	380	60	1.15	25.8	13700	28.9	15800	.7795	81	81	161	Н
	236613			460	60	1.15	20.8	13700	23.7	15800	1.1-1.4	81	81	133	Н
	236623			575	60	1.15	16.6	13700	19	15800	1.8-2.3	81	81	106	Н
	236654			200	60	1.15	61.9	18100	69.7	20900	.1620	82	82	416	J
	236604			230	60	1.15	53.8	18100	60.6	20900	.2226	82	82	362	J
	236664	20	15	380	60	1.15	33	18100	37.3	20900	.5568	82	82	219	J
	236614			460	60	1.15	26.9	18100	30.3	20900	.8-1.0	82	82	181	J
	236624			575	60	1.15	21.5	18100	24.2	20900	1.3-1.6	82	82	145	J
	236655			200	60	1.15	77.1	22500	86.3	25700	.1215	83	83	552	J
	236605			230	60	1.15	67	22500	75	25700	.1519	83	83	480	J
	236665	25	18.5	380	60	1.15	41	22500	46	25700	.4656	83	83	291	J
	236615			460	60	1.15	33.5	22500	37.5	25700	.6377	83	83	240	J
	236625			575	60	1.15	26.8	22500	30	25700	1.0-1.3	83	83	192	J
	236656			200	60	1.15	90.9	26900	104	31100	.0911	83	83	653	J
	236606			230	60	1.15	79	26900	90.4	31100	.1417	83	83	568	J
	236666	30	22	380	60	1.15	48.8	26900	55.4	31100	.3543	83	83	317	J
	236616			460	60	1.15	39.5	26900	45.2	31100	.5264	83	83	284	J
	236626			575	60	1.15	31.6	26900	36.2	31100	.7895	83	83	227	J
	236667			380	60	1.15	66.5	35600	74.6	42400	.2633	83	83	481	J
	236617	40	30	460	60	1.15	54.9	35600	61.6	42400	.3442	83	83	397	J
	236627			575	60	1.15	42.8	35600	49.6	42400	.5264	83	83	318	Н
	236668			380	60	1.15	83.5	45100	95	52200	.2125	82	83	501	Н
	236618			460	60	1.15	67.7	45100	77	52200	.2532	82	83	414	Н
	236628	50	07	575	60	1.15	54.2	45100	61.6	52200	.4049	82	83	331	Н
	276668	50	37	380	60	1.15	82.4	45100	94.5	52200	.2125	82	83	501	Н
	276618			460	60	1.15	68.1	45100	78.1	52200	.2532	82	83	414	Н
	276628			575	60	1.15	54.5	45100	62.5	52200	.4049	82	83	331	Н
	236669			380	60	1.15	98.7	53500	111	61700	.1518	84	84	627	Н
	236619			460	60	1.15	80.5	53500	91	61700	.2227	84	84	518	Н
	236629	60	45	575	60	1.15	64.4	53500	72.8	61700	.3539	84	84	414	Н
	276669	60	45	380	60	1.15	98.1	53500	111.8	61700	.1518	84	84	627	Н
	276619			460	60	1.15	81.0	53500	92.3	61700	.2227	84	84	518	Н
	276629			575	60	1.15	64.8	53500	73.9	61700	.3539	84	84	414	Н
Model num			(1			- 0:									

Model numbers above are for three-lead motors. Six-lead motors with different model numbers have the same running performance, but when Wye connected for starting have locked rotor amps 33% of the values shown. Six-lead individual phase resistance = table X 1.5.

Table 25 6" Three-Phase Motor Specifications (60 Hz) 3450 rpm

ТҮРЕ	MOTOR MODEL			RATING			FULL	LOAD		(IMUM DAD	LINE TO LINE RESISTANCE	EFFICIE	ENCY %	LOCKED ROTOR	KVA
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	AMPS	CODE
	276650			200	60	1.15	17.2	5200	19.8	5800	.5365	73	72	124	K
6"	276600			230	60	1.15	15.0	5200	17.2	5800	.6884	73	72	108	K
\mathbf{O}^{-}	276660	5	3.7	380	60	1.15	9.1	5200	10.4	5800	2.0 - 2.4	73	72	66.0	K
	276610			460	60	1.15	7.5	5200	8.6	5800	2.8 - 3.4	73	72	54.0	K
HI-	276620			575	60	1.15	6.0	5200	6.9	5800	4.7 - 5.7	73	72	43.0	K
TEMP	276651			200	60	1.15	24.8	7400	28.3	8400	.3037	77	76	193	K
	276601			230	60	1.15	21.6	7400	24.6	8400	.4150	77	76	168	K
90°C	276661	7.5	5.5	380	60	1.15	13.1	7400	14.9	8400	1.1 - 1.4	77	76	102	K
	276611			460	60	1.15	10.8	7400	12.3	8400	1.7 - 2.0	77	76	84.0	K
	276621			575	60	1.15	8.6	7400	9.9	8400	2.6 - 3.2	77	76	67.0	K
	276652			200	60	1.15	32.0	9400	36.3	10700	.2126	80	79	274	L
	276602			230	60	1.15	27.8	9400	31.6	10700	.2835	80	79	238	L
	276662	10	7.5	380	60	1.15	16.8	9400	19.2	10700	.8098	80	79	144	L
	276612			460	60	1.15	13.9	9400	15.8	10700	1.2 - 1.4	80	79	119	L
	276622			575	60	1.15	11.1	9400	12.7	10700	1.8 - 2.2	80	79	95.0	L
	276653			200	60	1.15	48.5	14000	54.5	15900	.1519	81	80	407	L
	276603			230	60	1.15	42.2	14000	47.4	15900	.1924	81	80	354	L
	276663	15	11	380	60	1.15	25.5	14000	28.7	15900	.5265	81	80	214	L
	276613			460	60	1.15	21.1	14000	23.7	15900	.7896	81	80	177	L
	276623			575	60	1.15	16.9	14000	19.0	15900	1.2 - 1.4	81	80	142	L
	276654			200	60	1.15	64.9	18600	73.6	21300	.1012	80	80	481	K
	276604			230	60	1.15	56.4	18600	64.0	21300	.1418	80	80	418	K
	276664	20	15	380	60	1.15	34.1	18600	38.8	21300	.4151	80	80	253	K
	276614			460	60	1.15	28.2	18600	32.0	21300	.5872	80	80	209	K
	276624			575	60	1.15	22.6	18600	25.6	21300	.93 - 1.15	80	80	167	K
	276655			200	60	1.15	80.0	22600	90.6	25800	.0911	83	82	665	L
	276605			230	60	1.15	69.6	22600	78.8	25800	.1114	83	82	578	L
	276665	25	18.5	380	60	1.15	42.1	22600	47.7	25800	.2734	83	82	350	L
	276615			460	60	1.15	34.8	22600	39.4	25800	.4151	83	82	289	L
	276625			575	60	1.15	27.8	22600	31.6	25800	.7086	83	82	231	L
	276656			200	60	1.15	95.0	28000	108.6	31900	.0709	81	80	736	K
	276606			230	60	1.15	82.6	28000	94.4	31900	.0912	81	80	640	K
	276666	30	22	380	60	1.15	50.0	28000	57.2	31900	.2329	81	80	387	K
	276616			460	60	1.15	41.3	28000	47.2	31900	.3442	81	80	320	K
	276626			575	60	1.15	33.0	28000	37.8	31900	.5265	81	80	256	K
	276667			380	60	1.15	67.2	35900	76.0	42400	.1823	84	83	545	L
	276617	40	30	460	60	1.15	55.4	35900	62.8	42400	.2329	84	83	450	L
	276627			575	60	1.15	45.2	35900	50.2	42400	.3443	84	83	360	L

Model numbers above are for three-lead motors. Six-lead motors with different model numbers have the same running performance, but when Wye connected for starting have locked rotor amps 33% of the values shown. Six-lead individual phase resistance = table X 1.5.

Table 26 Three-Phase Motor Fuse Sizing

						CIRCU	UIT BREAKERS OR FUSE	AMPS	CIRCI	JIT BREAKERS OR FUSE	AMPS
		OTOR ODEL REFIX		RATING	G		(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)
ТҮРЕ			НР	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT BREAKER	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	236650	276650			200	60	35	45	50	25	45
CII	236600	276600			230	45	30	40	45	20	40
6"	236660	276660	5	3.7	380	30	17.5	25	30	12	25
	236610	276610			460	25	15	20	25	10	20
STD.	236620	276620			575	20	12	15	20	8	15
	236651	276651			200	80	45	70	80	35	70
& HI-	236601	276601			230	70	40	60	70	30	60
TEMP	236661	276661	7.5	5.5	380	45	25	35	40	20	35
ILLIVIE	236611	276611			460	35	20	30	35	15	30
	236621	276621			575	30	17.5	25	25	11	25
	236652	276652			200	100	60	90	100	45	90
	236602	276602			230	90	50	80	90	40	80
	236662	276662	10	7.5	380	60	35	45	50	25	45
	236612	276612			460	45	25	40	45	20	40
	236622	276622			575	35	20	30	35	15	30
	236653	276653			200	150	90	125	150	60	125
	236603	276603			230	150	80	110	125	60	110
	236663	276663	15	11	380	80	50	70	80	35	70
	236613	276613			460	70	40	60	60	30	60
	236623	276623			575	60	30	45	50	25	45
	236654	276654			200	200	110	175	175	80	175
	236604	276604			230	175	100	150	175	70	150
	236664	276664	20	15	380	100	60	90	100	45	90
	236614	276614			460	90	50	70	80	35	70
	236624	276624			575	70	40	60	70	30	60
	236655	276655			200	250	150	200	225	100	200
	236605	276605			230	225	125	175	200	90	175
	236665	276665	25	18.5	380	125	80	110	125	50	110
	236615	276615			460	110	60	90	100	45	90
	236625	276625			575	90	50	70	80	35	70
	236656	276656			200	300	175	250	300	125	250
	236606	276606			230	250	150	225	250	100	200
	236666	276666	30	22	380	150	90	125	150	60	125
	236616	276616			460	125	70	110	125	50	100
	236626	276626			575	100	60	90	100	40	80
	236667	276667			380	200	125	175	200	90	175
	236617	276617	40	30	460	175	100	150	175	70	150
	236627	276627			575	150	80	110	125	60	110
	236668	276668			380	250	150	225	250	110	225
	236618	276618	50	37	460	225	125	175	200	90	175
	236628	276628			575	175	100	150	175	70	150
	236669	276669			380	300	175	250	300	125	250
	236619	276619	60	45	460	250	150	225	250	100	225
	236629	276629			575	200	125	175	200	80	175

Table 27 Three-Phase Motor Specifications (60 Hz) 3525 rpm

TYPE	MOTOR Model			RATING			FUI	LL LOAD		AXIMUM LOAD	LINE TO LINE RESISTANCE		CIENCY %	LOCKED ROTOR	KVA
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	KILOWATTS	AMPS	KILOWATTS	OHMS	S.F.	F.L.	AMPS	CODE
	239660			380	60	1.15	64	35	72	40	.1620	86	86	479	J
OII	239600	40	30	460	60	1.15	53	35	60	40	.2430	86	86	396	J
8"	239610			575	60	1.15	42	35	48	40	.3949	86	86	317	J
	239661			380	60	1.15	79	43	88	49	.1216	87	87	656	K
STD.	239601	50	37	460	60	1.15	64	43	73	49	.1822	87	87	542	K
0.5.	239611			575	60	1.15	51	43	59	49	.2834	87	87	434	K
	239662			380	60	1.15	92	52	104	60	.0911	88	87	797	K
	239602	60	45	460	60	1.15	76	52	86	60	.1417	88	87	658	K
	239612			575	60	1.15	61	52	69	60	.2228	88	87	526	K
	239663			380	60	1.15	114	64	130	73.5	.0609	88	88	1046	L
	239603	75	55	460	60	1.15	94	64	107	73.5	.1013	88	88	864	L
	239613			575	60	1.15	76	64	86	73.5	.1621	88	88	691	L
	239664			380	60	1.15	153	85	172	97.5	.0506	89	89	1466	L
	239604	100	75	460	60	1.15	126	85	142	97.5	.0709	89	89	1211	L
	239614			575	60	1.15	101	85	114	97.5	.1113	89	89	969	L
	239165			380	60	1.15	202	109	228	125	.0304	87	86	1596	K
	239105	125	93	460	60	1.15	167	109	188	125	.0507	87	86	1318	K
	239115			575	60	1.15	134	109	151	125	.0811	87	86	1054	K
	239166			380	60	1.15	235	128	266	146	.0203	88	87	1961	K
	239106	150	110	460	60	1.15	194	128	219	146	.0405	88	87	1620	K
	239116			575	60	1.15	155	128	176	146	.0608	88	87	1296	K
	239167			380	60	1.15	265	150	302	173	.0204	88	88	1991	J
	239107	175	130	460	60	1.15	219	150	249	173	.0405	88	88	1645	J
	239117			575	60	1.15	175	150	200	173	.0608	88	88	1316	J
	239168			380	60	1.15	298	169	342	194	.0203	88	88	2270	J
	239108	200	150	460	60	1.15	246	169	282	194	.0305	88	88	1875	J
	239118			575	60	1.15	197	169	226	194	.0507	88	88	1500	J

Table 27A 8" Three-Phase Motor Specifications (60 Hz) 3525 rpm

ТҮРЕ	MOTOR MODEL			RATING			FUI	LL LOAD		AXIMUM Load	LINE TO LINE RESISTANCE		CIENCY %	LOCKED ROTOR	KVA
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	KILOWATTS	AMPS	KILOWATTS	OHMS	S.F.	F.L.	AMPS	CODE
	279160			380	60	1.15	69.6	38	78.7	43	.1114	79	78	616	М
OII	279100	40	30	460	60	1.15	57.5	38	65.0	43	.1619	79	78	509	М
Ι δ΄΄	279110			575	60	1.15	46.0	38	52.0	43	.2531	79	78	407	М
	279161			380	60	1.15	84.3	47	95.4	53	.0709	81	80	832	M
HI-	279101	50	37	460	60	1.15	69.6	47	78.8	53	.1114	81	80	687	М
	279111			575	60	1.15	55.7	47	63.0	53	.1822	81	80	550	М
TEMP	279162			380	60	1.15	98.4	55	112	62	.0607	83	82	1081	N
	279102	60	45	460	60	1.15	81.3	55	92.1	62	.0911	83	82	893	N
	279112			575	60	1.15	65.0	55	73.7	62	.1316	83	82	715	N
	279163			380	60	1.15	125	68	141	77	.0506	83	82	1175	L
	279103	75	56	460	60	1.15	100	68	114	77	.0709	83	82	922	L
	279113			575	60	1.15	80	68	92	77	.1114	83	82	738	L
	279164			380	60	1.15	159	88	181	100	.0405	86	85	1508	М
	279104	100	75	460	60	1.15	131	88	149	100	.0507	86	85	1246	М
	279114			575	60	1.15	105	88	119	100	.0810	86	85	997	М
	279165			380	60	1.15	195	109	223	125	.0304	86	85	1793	L
	279105	125	93	460	60	1.15	161	109	184	125	.0406	86	85	1481	L
	279115			575	60	1.15	129	109	148	125	.0709	86	85	1185	L
	279166			380	60	1.15	235	133	269	151	.0203	85	84	2012	K
	279106	150	110	460	60	1.15	194	133	222	151	.0305	85	84	1662	K
	279116			575	60	1.15	155	133	178	151	.0507	85	84	1330	K

Model numbers above are for three-lead motors. Six-lead motors with different model numbers have the same running performance, but when Wye connected for starting have locked rotor amps 33% of the values shown. Six-lead individual phase resistance = table X 1.5.

Table 28 Three-Phase Motor Fuse Sizing

			DATING		CIRCL	IIT BREAKERS OR FUSE	AMPS	CIRC	JIT BREAKERS OR FUSE I	AMPS
TYPE	MOTOR Model		RATING			(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
2	PREFIX	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT BREAKER
	239660			380	200	125	175	200	80	175
QII	239600	40	30	460	175	100	150	175	70	150
8	239610			575	150	80	110	125	60	110
	239661			380	250	150	200	225	100	200
STD.	239601	50	37	460	200	125	175	200	80	175
OID.	239611			575	175	90	150	150	70	150
	239662			380	300	175	250	300	125	250
	239602	60	45	460	250	150	200	225	100	200
	239612	75		575	200	110	175	175	80	175
	239663	75		380	350	200	300	350	150	300
	239603	75	55	460	300	175	250	300	125	250
	239613			575	250	150	200	225	100	200
	239664			380	500	275	400	450	200	400
	239604	100	75	460	400	225	350	400	175	350
	239614			575	350	200	300	300	125	300
	239165			380	700	400	600	600	250	600
	239105	125	93	460	500	300	450	500	225	450
	239115			575	450	250	350	400	175	350
	239166			380	800	450	600	700	300	600
	239106	150	110	460	600	350	500	600	250	500
	239116			575	500	300	400	450	200	400
	239167			380	800	500	700	800	350	700
	239107	175	130	460	700	400	600	700	300	600
	239117			575	600	350	450	600	225	450
	239168			380	1000	600	800	1000	400	800
	239108	200	150	460	800	450	700	800	350	700
	239118			575	600	350	500	600	250	500

Table 28A 8" Three-Phase Motor Fuse Sizing

			DATING		CIRCL	JIT BREAKERS OR FUSE	AMPS	CIRCI	JIT BREAKERS OR FUSE	AMPS
TYPE	MOTOR Model		RATING	1		(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)
	PREFIX	НР	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	279160			380	225	125	175	200	90	175
QII	279100	40	30	460	175	110	150	175	70	150
8	279110			575	150	90	125	125	60	125
	279161			380	250	150	225	225	110	225
HI-	279101	50	37	460	200	125	175	200	90	175
	279111			575	175	100	150	150	70	150
TEMP	279162			380	300	175	250	300	125	250
	279102	60	45	460	275	150	225	250	100	225
	279112			575	200	125	175	175	80	175
	279163			380	400	200	350	350	150	350
	279103	75	56	460	300	175	275	300	125	275
	279113			575	275	150	225	225	100	225
	279164			380	500	300	450	450	200	450
	279104	100	75	460	400	250	350	400	175	350
	279114			575	350	200	300	300	125	300
	279165			380	700	400	600	600	250	600
	279105	125	93	460	500	300	450	500	225	450
	279115			575	450	250	350	400	175	350
	279166			380	800	450	600	700	300	600
	279106	150	110	460	600	350	500	600	250	500
	279116			575	500	300	400	450	200	400

Overload Protection of Three-Phase Submersible Motors Class 10 Protection Required

The characteristics of submersible motors are different than standard motors and special overload protection is required.

If the motor is locked, the overload protection must trip within 10 seconds to protect the motor windings. Subtrol/SubMonitor, a Franklin-approved adjustable overload relay, or a Franklin-approved fixed heater must be used.

Fixed heater overloads must be the ambient-compensated quick-trip type to maintain protection at high and low air temperatures.

All heaters and amp settings shown are based on total line amps. When determining amperage settings or making heater selections for a six-lead motor with a Wye-Delta starter, divide motor amps by 1.732.

Pages 29, 30 and 31 list the correct selection and settings for some manufacturers. Approval for other manufacturers' types not listed may be requested by calling Franklin's Submersible Service Hotline at 800-348-2420.

Refer to notes on page 30.

Table 29 - 60 Hz 4" Motors

НР	KW	VOLTS	NEMA STARTER	OVERLOA	RS FOR D RELAYS	ADJUS REL	AYS
		0000	SIZE	FURNAS (NOTE 1)	G.E. (NOTE 2)	(NOT SET	MAX.
		200	00	K31	L380A	3.2	3.4
		230	00	K28	L343A	2.7	2.9
1/2	0.37	380	00	K22	L211A	1.7	1.8
		460	00	-	L174A	1.4	1.5
		575	00	-	-	1.2	1.3
		200	00	K34	L510A	4.1	4.4
		230	00	K32	L420A	3.5	3.8
3/4	0.55	380	00	K27	L282A	2.3	2.5
		460	00	K23	L211A	1.8	1.9
		575	00	K21	L193A	1.5	1.6
		200	00	K37	L618A	5.0	5.4
		230	00	K36	L561A	4.4	4.7
1	0.75	380	00	K28	L310A	2.6	2.8
		460	00	K26	L282A	2.2	2.4
		575	00	K23 K42	L211A L750A	1.8	1.9
		200 230	00	K39	L680A	6.3 5.5	6.8 5.9
4.5		380	00	K32	L420A	3.3	3.6
1.5	1.1	460	00	K29	L343A	2.8	3.0
		575	00	K29	L282A	2.0	2.4
		200	0	K50	L111B	8.6	9.3
		230	0	K49	L910A	7.5	8.1
2	1.5	380	0	K36	L561A	4.6	4.9
_		460	00	K33	L463A	3.8	4.1
		575	00	K29	L380A	3.0	3.2
		200	0	K55	L147B	11.6	12.5
		230	0	K52	L122B	10.1	10.9
3	2.2	380	0	K41	L750A	6.1	6.6
		460	0	K37	L618A	5.1	5.5
		575	0	K34	L510A	4.1	4.4
		200	1	K62	L241B	19.1	20.5
		230	1	K61	L199B	16.6	17.8
5	3.7	380	0	K52	L122B	10.0	10.8
		460	0	K49	L100B	8.3	8.9
		575	0	K42	L825A	6.6	7.1
		200	1	K68	L332B	28.4	30.5
		230	1	K67	L293B	24.6	26.4
7.5	5.5	380	1	K58	L181B	14.9	16.0
		460	1	K55	L147B	12.3	13.2
		575	1	K52	L122B	9.9	10.6
		380	1	K62	L241B	19.5	21.0
10	7.5	460	1	K60	L199B	16.1	17.3
		575	1	K56	L165B	12.9	13.6

Table 30 - 60 Hz 6" Standard & Hi-Temp Motors

HP	KW	VOLTS	NEMA STARTER	HEATEI Overloa	RS FOR D RELAYS	REL	STABLE AYS (E 3)
			SIZE	FURNAS (NOTE 1)	G.E. (NOTE 2)	SET	MAX.
		200	1	K61	L220B	17.6	19.1
		230	1	K61	L199B	15.4	16.6
5	3.7	380	0	K52	L122B	9.4	10.1
		460	0	K49	L100B	7.7	8.3
		575	0	K42	L825A	6.1	6.6
		200	1	K67	L322B	26.3	28.3
		230	1	K64	L293B	22.9	24.6
7.5	5.5	380	1	K57	L165B	13.9	14.9
		460	1	K54	L147B	11.4	12.3
		575	1	K52	L111B	9.1	9.8
		200	2(1)	K72	L426B	34.4	37.0
		230	2(1)	K70	L390B	29.9	32.2
10	7.5	380	1	K61	L220B	18.1	19.5
		460	1	K58	L181B	15.0	16.1
		575	1	K55	L147B	12.0	12.9
		200	3(1)	K76	L650B	50.7	54.5
		230	2	K75	L520B	44.1	47.4
15	11	380	2(1)	K68	L322B	26.7	28.7
		460	2(1)	K64	L265B	22.0	23.7
		575	2(1)	K61	L220B	17.7	19.0
		200	3	K78	L787B	64.8	69.7
		230	3(1)	K77	L710B	56.4	60.6
20	15	380	2	K72	L426B	34.1	36.7
		460	2	K69	L352B	28.2	30.3
		575	2	K64	L393B	22.7	24.4
		200	3	K86	L107C	80.3	86.3
		230	3	K83	L866B	69.8	75.0
25	18.5	380	2	K74	L520B	42.2	45.4
		460	2	K72	L426B	34.9	37.5
		575	2	K69	L352B	27.9	30.0
		200	4(1)	K88	L126C	96.7	104.0
		230	3	K87	L107C	84.1	90.4
30	22	380	3(1)	K76	L650B	50.9	54.7
		460	3(1)	K74	L520B	42.0	45.2
		575	3(1)	K72	L390B	33.7	36.2
		380	3	K83	L866B	69.8	75.0
40	30	460	3	K77	L710B	57.7	62.0
		575	3	K74	L593B	46.1	49.6
		380	3	K87	L107C	86.7	93.2
50	37	460	3	K83	L950B	71.6	77.0
		575	3	K77	L710B	57.3	61.6
		380	4(1)	K89	L126C	102.5	110.2
60	45	460	4(1)	K87	L107C	84.6	91.0
		575	4(1)	K78	L866B	67.7	72.8

Footnotes for Tables 29, 30, and 31

NOTE 1: Furnas intermediate sizes between NEMA starter sizes apply where (1) is shown in tables, size 1.75 replacing 2, 2.5 replacing 3, 3.5 replacing 4, and 4.5 replacing 5. Heaters were selected from Catalog 294, table 332 and table 632 (starter size 00, size B). Size 4 starters are heater type 4 (JG). Starters using these heater tables include classes 14, 17 and 18 (inNOVA), classes 36 and 37 (reduced voltage), and classes 87, 88 and 89 (pump and motor control centers). Overload relay adjustments should be set no higher than 100% unless necessary to stop nuisance tripping with measured amps in all lines below nameplate maximum. Heater selections for class 16 starters (Magnetic Definite Purpose) will be furnished upon request.

NOTE 2: General Electric heaters are type CR123 usable only on type CR124 overload relays and were selected from Catalog GEP-126OJ, page 184. Adjustment should be set no higher than 100%, unless necessary to stop nuisance tripping with measured amps in all lines below nameplate maximum.

NOTE 3: Adjustable overload relay amp settings apply to approved types listed. Relay adjustment should be set at the specified SET amps. Only if tripping occurs with amps in all lines measured to be within nameplate maximum amps should the setting be increased, not to exceed the MAX value shown.

NOTE 4: Heaters shown for ratings requiring NEMA size 5 or 6 starters are all used with current transformers per manufacturer standards. Adjustable relays may or may not use current transformers depending on design.

Table 31 - 60 Hz 8" Motors

MOTOR MODEL PREFIX	НР	KW	VOLTS	NEMA STARTER SIZE	HEATERS FOR OVERLOAD RELAYS		ADJUSTABLE RELAYS	
					FURNAS	G.E.	(NOT	E 3)
THEIR				OILL	(NOTE 1)	(NOTE 2)	SET	MAX.
239660	40	30	380	3	K78	L866B	68	73
239600			460	3	K77	L710B	56	60
239610			575	3	K73	L520B	45	48
239661	50	37	380	3	K86	L107C	81	87
239601			460	3	K78	L866B	68	73
239611			575	3	K77	L710B	56	60
239662		45	380	4(1)	K89	L126C	101	108
239602	60		460	4(1)	K86	L107C	83	89
239612			575	4(1)	K78	L787B	64	69
239663	75		380	4	K92	L142C	121	130
239603		55	460	4(1)	K89	L126C	100	107
239613			575	4(1)	K85	L950C	79	85
239664	100	75	380	5(1)	K28	L100B	168	181
239604			460	4	K92	L155C	134	144
239614			575	4	K90	L142C	108	116
239165	125	93	380	5	K32	L135B	207	223
239105			460	5(1)	K29	L111B	176	189
239115			575	5(1)	K26	L825A	140	150
239166	150	110	380	5	-	L147B	248	267
239106			460	5(1)	K32	L122B	206	221
239116			575	5(1)	K28	L100B	165	177
239167	175	130	380	6	K26	-	270	290
239107			460	5	K33	L147B	233	250
239117			575	5	K31	L111B	186	200
239168	200	150	380	6	K27	-	316	340
239108			460	5	K33	L165B	266	286
239118			575	5	K32	L135B	213	229

Recommended Adjustable Overload Relays

Advance Controls: MDR3 Overload **AEG Series:** B17S, B27S, B27-2

ABB Type: RVH 40, RVH65, RVP160, T25DU, T25CT, TA25DU

AGUT: MT03, R1K1, R1L0, R1L3, TE set Class 5 **Allen Bradley:** Bulletin 193, SMP-Class 10 only

Automatic Switch Types: DQ, LR1-D, LR1-F, LR2 Class 10

Benshaw: RSD6 (Class 10) Soft Start

Bharita C-H: MC 305 ANA 3

Clipsal: 6CTR, 6MTR

Cutler-Hammer: C316F, C316P, C316S, C310-set at 6 sec

max, Advantage Class10

Fanal Types: K7 or K7D through K400 Franklin Electric: Subtrol-Plus, SubMonitor

Fuji Types: TR-OQ, TR-OQH, TR-2NQ, TR-3NQ, TR-4NQ,

TR-6NQ, RCa 3737-ICQ & ICQH

Furnas Types: US15 48AG & 48BG, 958L, ESP100-Class 10

only, 3RB10-Class 10

General Electric: CR4G, CR7G, RT*1, RT*2, RTF3, RT*4,

CR324X-Class 10 only

Kasuga: RU Set Operating Time Code = 10 & time setting

6 sec max

Klockner-Moeller Types: ZOO, Z1, Z4, PKZM1, PKZM3

& PKZ2

Table 31A - 60 Hz 8" Hi-Temp 75°C Motors

MOTOR MODEL PREFIX	НР	KW	VOLTS STA	NEMA Starter	HEATERS FOR OVERLOAD RELAYS		ADJUSTABLE RELAYS	
	nr			SIZE	FURNAS (NOTE 1)	G.E. (NOTE 2)	(NOT	MAX.
279160	40	30	380	3	K83	L866B	73	79
279100			460	3	K77	L710B	60	65
279110			575	3	K74	L593B	48	52
279161	50	37	380	3	K87	L107C	89	95
279101			460	3	K83	L866B	73	79
279111			575	3	K77	L710B	59	63
279162			380	4(1)	K89	L126C	104	112
279102	60	45	460	4(1)	K87	L107C	86	92
279112			575	4(1)	K78	L866B	69	74
279163	75	56	380	4	K92	L155C	131	141
279103			460	4(1)	K89	L126C	106	114
279113			575	4(1)	K87	L950C	86	92
279164	100	75	380	5(1)	K28	L100B	168	181
279104			460	5(1)	K26	L825A	139	149
279114			575	4	K90	L142C	111	119
279165	125	93	380	5	K32	L135B	207	223
279105			460	5(1)	K29	L111B	171	184
279115			575	5(1)	K26	L825A	138	148
279166	150	110	380	5	-	L147B	250	269
279106			460	5(1)	K32	L122B	206	222
279116			575	5(1)	K28	L100B	166	178

Note: Other relay types from these and other manufacturers may or may not provide acceptable protection, and they should not be used without approval of Franklin Electric.

Some approved types may only be available for part of the listed motor ratings. When relays are used with current transformers, relay setting is the specified amps divided by the transformer ratio.

Lovato: RC9, RC22, RC80, RF9, RF25 & RF95

Matsushita: FKT-15N, 15GN, 15E, 15GE, FT-15N, FHT-15N

Mitsubishi: ET, TH-K12ABKP, TH-K20KF, TH-K20KP,

TH-K20TAKF, TH-K60KF, TH-K60TAKF

Omron: K2CM Set Operating Timing Code = 10 & time setting

6 sec max, SE-KP24E time setting 6 sec max

Riken: PM1, PM3

Samwha: EOCRS Set for Class 5, EOCR-ST, EOCR-SE,

EOCR-AT time setting 6 sec max

Siemens Types: 3UA50, -52, -54, -55, -58, -59, -60, -61, -62,

-66, -68, -70, 3VUI3, 3VE, 3UB (Class 5)

Sprecher and Schuh Types: CT, CT1, CTA 1, CT3K, CT3-12 thru CT3-42, KTA3, CEF1 & CET3 set at 6 sec max, CEP 7

Class 10, CT4, 6, & 7, CT3, KT7

Square D/Telemecanique: Class 9065 Types: TD, TE, TF, TG, TJ, TK, TR, TJE &TJF (Class 10), LR1-D, LR1-F, LR2 Class 10, Types 18A, 32A, SS-Class 10, SR-Class 10 and 63-A-LB Series. Integral 18,32,63, GV2-L, GV2-M, GV2-P, GV3-M (1.6-10 amp only) LR9D, SF Class 10, ST Class 10, LT6 (Class 5 or 10), LRD (Class 10), Motor Logic (Class10)

Toshiba Type: 2E RC820, set at 8 sec max.

WEG: RW2

Westinghouse Types: FT13, FT23, FT33, FT43, K7D, K27D,

K67D, Advantage (Class 10), MOR, IQ500 (Class 5)

Westmaster: OLWROO and OLWTOO suffix D thru P

1. Motor Insp	ection				
	Verify that the model, hp or kW, voltage, phase and hertz on the motor nameplate match the installation requirements.				
	B. Check that the motor lead assembly is not damaged.				
	C. Measure insulation resistance using a 500 or 1000 volt DC megohmmeter from each lead wire to the motor frame. Resistance should be at least 200 megohms without drop cable.				
	Keep a record of motor model number, hp or kW, voltage, and serial number (S/N). (S/N is stamped in shell above the nameplate. A typical example, S/N 07A18 01-0123)				
2. Pump Insp	ection				
	A. Check that the pump rating matches the motor.				
	B. Check for pump damage and verify that the pump shaft turns freely.				
3. Pump/Moto	or Assembly				
	A. If not yet assembled, check that pump and motor mounting faces are free from dirt, debris and uneven paint thickness.				
	B. Pumps and motors over 5 hp should be assembled in the vertical position to prevent stress on pump brackets and shafts. Assemble the pump and motor together so their mounting faces are in contact and then tighten assembly bolts or nuts evenly to manufacturer specifications.				
	C. If accessible, check that the pump shaft turns freely.				
	 Assemble the pump lead guard over the motor leads. Do not cut or pinch lead wires during assembly or installation. 				
4. Power Sup	ply and Controls				
	A. Verify that the power supply voltage, Hertz, and kVA capacity match motor requirements.				
	B. Verify control box hp and voltage matches motor (3-wire only).				
	C. Check that the electrical installation and controls meet all safety regulations and match the motor requirements, including fuse or circuit breaker size and motor overload protection. Connect all metal plumbing and electrical enclosures to the power supply ground to prevent shock hazard. Comply with national and local codes.				
5. Lightning a	and Surge Protection				
	A. Use properly rated surge (lightning) arrestors on all submersible pump installations. Motors 5 hp and smaller, which are marked "Equipped with Lightning Arrestors", contain internal arrestors.				
	B. Ground all above ground arrestors with copper wire directly to the motor frame, or to metal drop pipe or casing which reaches below the well pumping level. Connecting to a ground rod does not provide good surge protection.				
6. Electrical D	Prop Cable				
	A. Use submersible cable sized in accordance with local regulations and the cable charts. See pages 11 and 16-21. Ground motor per national and local codes.				
	B. Include a ground wire to the motor and surge protection, connected to the power supply ground if required by codes. Always ground any pump operated outside a drilled well.				
7. Motor Cool	ing				
	A. Ensure at all times that the installation provides adequate motor cooling; see page 6 for details.				

8. Pump/Mot	tor I	nstallation
	A.	Splice motor leads to supply cable using electrical grade solder or compression connectors, and carefully insulate each splice with watertight tape or adhesive-lined shrink tubing, as shown in motor or pump installation data.
	B.	Support the cable to the delivery pipe every 10 feet (3 meters) with straps or tape strong enough to prevent sagging. Use padding between cable and any metal straps.
	C.	A check valve in the delivery pipe is recommended. More than one check valve may be required, depending on valve rating and pump setting; see page 5 for details.
	D.	Assemble all pipe joints as tightly as practical, to prevent unscrewing from motor torque. Torque should be at least 10 pound feet per hp (2 meter-KG per kW).
	E.	Set the pump far enough below the lowest pumping level to assure the pump inlet will always have at least the Net Positive Suction Head (NPSH) specified by the pump manufacturer. Pump should be at least 10 feet (3 meters) from the bottom of the well to allow for sediment build up.
	F.	Check insulation resistance as pump/motor assembly is lowered into the well. Resistance may drop gradually as more cable enters the water, but any sudden drop indicates possible cable, splice or motor lead damage; see page 45.
9. After Insta	allat	ion
	A.	Check all electrical and water line connections and parts before starting the pump.
	B.	Start the pump and check motor amps and pump delivery. If normal, continue to run the pump until delivery is clear. If three-phase pump delivery is low, it may be running backward. Rotation may be reversed (with power off) by interchanging any two motor lead connections to the power supply.
	C.	Check three-phase motors for current balance within 5% of average, using motor manufacturer instructions Imbalance over 5% will cause higher motor temperatures and may cause overload trip, vibration, and reduced life.
	D.	Verify that starting, running and stopping cause no significant vibration or hydraulic shocks.
	E.	After at least 15 minutes running time, verify that pump output, electrical input, pumping level, and other characteristics are stable and as specified.
Date		Filled In By
Notes		

SUBMERSIBLE MOTOR INSTALLATION RECORD Form 2207 - Page 1

$\mathbb{R}\mathbb{M}$	A Number	
		1

DISTRIBUTOR			
	INSTALLER		END USER
Name:	Name:		Name:
City:	City:		City:
State: Zip:	State: Zip	D:	State: Zip:
Well ID or GPS:		Water Tem	nperature: re C
Application/Water Use (e.g. potable wate	r, irrigation, municipal, four	ntain, etc.):	
Date Installed (mm/yy):	Date Failed (mm/yy):	Mo	otor Position Shaft-Up: Yes No
Operating Cycle: ON Time Per Start		OFF Between S	Stop & Restart Hrs. Mins.
MOTOR Model: Sorie	al Number		Data Code (if undated):
Model: Seria	I Number:		
MOTOR OVERLOAD			
System Typical Operating Current:	Amps @	,	Volts
Overload: FE SubMonitor Input Am	ps D3 Attached	Yes No	Fault Settings Attached Yes No
Other Manufacturer Mode	el:	Dial Set a	t: or Heater#
NEMA Class: 10 20	30 Ambient Comp	ensated: Yes	No No
		_	
i rower to Motor by. I i dir voit Starter [VFD Soil Starter \	/FD or Soft Start	er Mfr. & Model:
PUMP	WELL D		er Mfr. & Model: urements from well head down.)
PUMP Manufacturer:	WELL D	DATA (All measu	
PUMP	WELL D	DATA (All meast	urements from well head down.)
PUMP Manufacturer:	WELL D	Casing Drop P Number	Diameter in in in er of Sticks of Drop Pipe
Manufacturer: Model: Stages:	WELL D	Casing Drop P Number	Diameter in in in
PUMP Manufacturer: Model: Stages:	WELL D	Casing Drop P Number	Diameter in in in er of Sticks of Drop Pipe
PUMP Manufacturer: Model: Stages: Design Rating: gpm @	WELL D	Casing Drop P Number Static N Drawdo	Diameter in in in in er of Sticks of Drop Pipe ft Dwn (pumping) Water Level ft Assist Check Valves:
PUMP Manufacturer: Model: Stages: Design Rating: gpm @ Horsepower Required by Pump End:	WELL D	Casing Drop P Number Static N Drawdor Spring (Measu	Diameter in in in in in er of Sticks of Drop Pipe ft Dwn (pumping) Water Level ft Assist Check Valves: ured from Well Head Down)
Manufacturer:	MELL D	DATA (All meast Casing Drop P Number Static N Drawdo Spring (Meast #1	Diameter in
PUMP Manufacturer:	MELL D	Casing Drop P Number Static V Drawdo Spring (Measu	Diameter in in ipe Diameter in in er of Sticks of Drop Pipe ft Down (pumping) Water Level ft Assist Check Valves: ured from Well Head Down) #2 #3 #4 ft In
Manufacturer:	WELL D	Casing Drop P Number Static V Drawdo Spring (Measu #1 Sol	Diameter
Manufacturer:	WELL D	Casing Drop P Number Static N Drawdo Spring (Measu #1 Sol Pump I Flow S	Diameter
Manufacturer:	WELL D	Casing Drop P Number Static N Drawdo Spring (Measu #1 Sol Pump I Flow S Case E	Diameter
Manufacturer:	WELL D	Casing Drop P Number Static N Drawdo Spring (Measu #1 Sol Pump I Flow S Case E	Diameter

SUBMERSIBLE MOTOR INSTALLATION RECORD Form 2207 - Page 2

RMA	Number

Т	TRANSFORMERS	
Ν	lumber of Transformers: Two Three Trans	sformers Supply Motor Only: Yes No Unsure
Tr	ransformer #1: kVA Transformer #2:	kVA Transformer #3: kVA
	OWER CABLES & GROUND WIRE	
	Service Entrance to Pump Control Panel:	
1	Length: ft. & Gauge: AW	G/MCM
•		uction: Jacketed Individual Conductors Web Twisted
	Temperature Rating of Cable: 60C 75C 5	90C 125C or Insulation Type: (e.g. THHN)
	Pump Control Panel to Motor:	
2	Length: ft. & Gauge: AW	
		uction: Jacketed Individual Conductors Web Twisted
		90C 125C or Insulation Type: (e.g. THHN)
	Ground Wire Size: From Control Panel to Motor:	AWG/MCM
3	Control Grounded to (mark all that apply): Well Head Metal Casing Motor Drive	on Rod Dower Supply
		En Rou Fower Suppry
	NCOMING VOLTAGE	RUNNING AMPS & CURRENT BALANCE
	lo Load L1-L2 L2-L3 L1-L3	
	full Load L1-L2 L2-L3 L1-L3	
		% Unbalance:
C	ONTROL PANEL	
1	Pump Panel Manufacturer/Fabricator:	
	Short Circuit Protection - Fuses or Circuit Break	er
	Option #1 - Fuse	
	Manufacturer: Model:	Rating: Amps
2	Type: Time-Delay Standard	
	Option #2 - Circuit Breaker	
	Manufacturer: Model:	Rating: Amps Setting:
	Starter - Full Voltage, Reduced Voltage, Soft-Start	ter or VFD (Variable Frequency Drive)
	Option #1 - Full Voltage	
	Manufacturer: Model:	Size: Contacts: NEMA IEC
	Option #2 - Reduced Voltage	
	Manufacturer: Model:	Ramp Time to Full Voltage: sec.
3	Option #3 - Soft-Starter or VFD	
	Manufacturer: Model:	Max. Continuous Amp Output Rating:
	Min. Setting: Hz & GPM:	Max. Setting: Hz & GPM:
	Start Ramp Time to 30 Hz: sec.	Stop Mode: Power Off Coast 30-0 Hz Ramp sec.
	Special Output Filter Purchased: Yes No	
	Output Filter Manufacturer:	Model: % Reactance:
	Surge Arrestor: No Yes, Manufacturer:	

			RMA Number
Date/ Filled In By			
INSTALLATION			
Owner/User	Tele	ephone (
Address			
Installation Site, If Different			= ·r
Contact			
System Application			
System Manufactured By	Model	Serial N	lo
System Supplied By	City	State	Zip
Is this a "HERO" system (10.0 - 10.5 PH)? Yes	•		
MOTOR			
Model No Serial No Horsepower Voltage Single-Pha Slinger Removed? Yes No Check Valve Plug Motor Fill Solution Standard DI Water Model	se Three-Phase Diam Removed? Yes N	neter in. o	Date Code
PUMP			
Manufacturer Model	Serial No		
Stages Diameter Flow Rate Of _	gpm At1	TDH .	
Booster Case Internal Diameter Material			
CONTROLS AND PROTECTIVE DEVICES			
SubMonitor? Yes No If Yes, Warranty Reg	jistration No		
	? Yes No		
	Yes No Set A		
VFD or Reduced Voltage Starter? Yes No If			
<u> </u>	Setting9		sec
Pump Panel? Yes No If Yes, Mfr.	_	=	
Magnetic Starter/Contactor Mfr.			
Heaters Mfr No	If Adjustable Set A	\t	
Fuses Mfr Size	Type		
Lightning/Surge Arrestor Mfr	Model		
Controls Are Grounded to w			
Inlet Pressure Control Yes No If Yes, M	Mfr Model	Setting p	si Delay sec
Inlet Flow Control Yes No If Yes, M	Mfr Model	Setting g	ıpm Delay sec
Outlet Pressure Control Yes No If Yes, N	Mfr Model	Setting p	osi Delay sec
Outlet Flow Control Yes No If Yes, N	Mfr Model	Setting g	ıpm Delay sec
Water Temperature Control Yes No If Yes, N	Mfr Model		Delay sec
-	°C Located		-

INSULATION CHECK				
Initial Megs: Motor & Lead	d Only	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)
Installed Megs: Motor, Le	ad, & Cable	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)
VOLTAGE TO MOTO	R			
Non-Operating:		B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)
At Rated Flow of	gpm	B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)
At Open Flow	gpm	B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)
AMPS TO MOTOR				
At Rated Flow of	gpm	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)
At Open Flow	gpm	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)
At Shut Off*		Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)
*Do NOT run at Shut Off	more than two	(2) minutes.		
Inlet Pressure	psi Outle	et Pressureps	si Water Temperature _	°F or°C
PLEASE SKETCH TH	E SVSTEM			
PERSE SILL SIL				

SubMonitor Three-Phase Protection

Applications

SubMonitor is designed to protect 3-phase pumps/motors with service factor amp ratings (SFA) from 5 to 350 A (approx. 3 to 200 hp). Current, voltage, and motor temperature are monitored using all three legs and allows the user to set up the SubMonitor quickly and easily.

Protects Against

- Under/Overload
- · Under/Overvoltage
- Current Unbalance
- Overheated Motor (if equipped with Subtrol Heat Sensor)
- False Start (Chattering)
- · Phase Reversal

Power Factor Correction

In some installations, power supply limitations make it necessary or desirable to increase the power factor of a submersible motor. The table lists the capacitive kVAR required to increase the power factor of large Franklin three-phase submersible motors to the approximate values shown at maximum input loading.

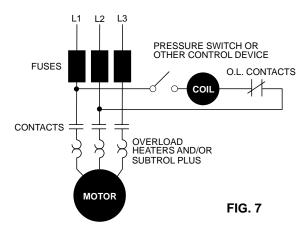
Capacitors must be connected on the line side of the overload relay, or overload protection will be lost.

Table 32 kVAR Required 60 Hz

MO.	TOR	KVAR REQUIRED FOR PF OF:			
HP	KW	0.90	0.95	1.00	
5	3.7	1.2	2.1	4.0	
7.5	5.5	1.7	3.1	6.0	
10	7.5	1.5	3.3	7.0	
15	11	2.2	4.7	10.0	
20	15	1.7	5.0	12.0	
25	18.5	2.1	6.2	15.0	
30	22	2.5	7.4	18.0	
40	30	4.5	11.0	24.0	
50	37	7.1	15.0	32.0	
60	45	8.4	18.0	38.0	
75	55	6.3	18.0	43.0	
100	75	11.0	27.0	60.0	
125	93	17.0	36.0	77.0	
150	110	20.0	42.0	90.0	
175	130	9.6	36.0	93.0	
200	150	16.0	46.0	110.0	

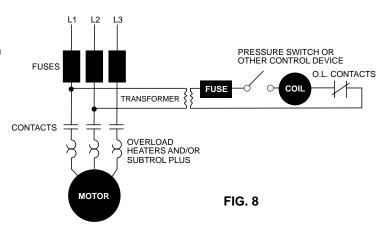
Values listed are total required (not per phase).

Three-Phase Starter Diagrams

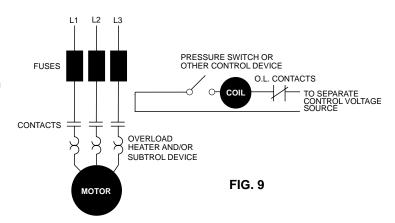

Three-phase combination magnetic starters have two distinct circuits: a power circuit and a control circuit.

The power circuit consists of a circuit breaker or fused line switch, contacts, and overload heaters connecting incoming power lines L1, L2, L3 and the three-phase motor.

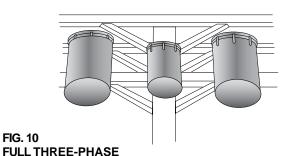
Line Voltage Control


This is the most common type of control encountered. Since the coil is connected directly across the power lines L1 and L2, the coil must match the line voltage.

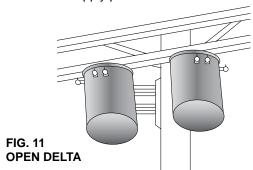
The control circuit consists of the magnetic coil, overload contacts and a control device such as a pressure switch. When the control device contacts are closed, current flows through the magnetic contactor coil, the contacts close, and power is applied to the motor. Hand-Off-Auto switches, start timers, level controls and other control devices may also be in series in the control circuit.


Low Voltage Transformer Control

This control is used when it is desirable to operate push buttons or other control devices at some voltage lower than the motor voltage. The transformer primary must match the line voltage and the coil voltage must match the secondary voltage of the transformer.


External Voltage Controls

Control of a power circuit by a lower circuit voltage can also be obtained by connecting to a separate control voltage source. The coil rating must match the control voltage source, such as 115 or 24 volts.


Three-Phase Power Unbalance

A full three-phase supply is recommended for all threephase motors, consisting of three individual transformers or one three-phase transformer. So-called "open" delta or Wye connections using only two transformers can be used, but are more likely to cause problems, such as

poor performance, overload tripping or early motor failure due to current unbalance.

Transformer rating should be no smaller than listed in table 4 for supply power to the motor alone.

Checking and Correcting Rotation and Current Unbalance

- Establish correct motor rotation by running the motor in both directions. Normal rotation is CCW viewing the shaft end. Rotation can be changed by interchanging any two of the three motor leads. The rotation that gives the most water flow is typically the correct rotation.
- 2. After correct rotation has been established, check the current in each of the three motor leads and calculate the current unbalance as explained in 3 below.

If the current unbalance is 2% or less, leave the leads as connected.

If the current unbalance is more than 2%, current readings should be checked on each leg using each of three possible hook-ups. Roll the motor leads across the starter in the same direction to prevent motor reversal.

- 3. To calculate percent of current unbalance:
 - A. Add the three line amps values together.
 - B. Divide the sum by three, yielding average current.
 - C. Pick the amp value which is furthest from the average current (either high or low).

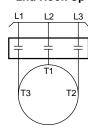
- D. Determine the difference between this amp value (furthest from average) and the average.
- E. Divide the difference by the average. Multiply the result by 100 to determine percent of unbalance.
- 4. Current unbalance should not exceed 5% at max amp load or 10% at rated input load. If the unbalance cannot be corrected by rolling leads, the source of the unbalance must be located and corrected. If, on the three possible hookups, the leg farthest from the average stays on the same power lead, most of the unbalance is coming from the "power side" of the system. If the reading farthest from average moves with the same motor lead, the primary source of unbalance is on the "motor side" of the starter. In this instance, consider a damaged cable, leaking splice, poor connection, or faulty motor winding.

Phase designation of leads for CCW rotation viewing shaft end.

To reverse rotation, interchange any two leads.

Phase 1 or "A" - Black, T1, or U1

Phase 2 or "B" - Yellow, T2, or V1


Phase 3 or "C" - Red, T3, or W1

NOTICE: Phase 1, 2 and 3 may not be L1, L2 and L3.

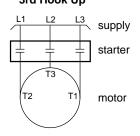

1st Hook Up

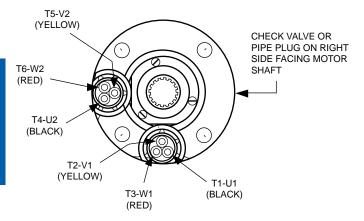
FIG. 10

2nd Hook Up

3rd Hook Up

EXAMPLE:

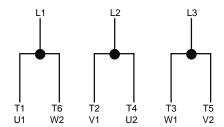
T1 = 51 amps
T2 = 46 amps

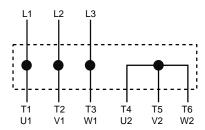

$$+ 73 = 53$$
 amps
Total = 150 amps
Total = 150 amps
Total = 150 amps
Total = 150 amps
 $- 150 = 50$ amps

$$\frac{4}{50}$$
 = 0.08 or 8% $\frac{1}{50}$ = 0.02 or 2% $\frac{2}{50}$ = 0.04 or 4%

Three-Phase Motor Lead Identification

Line Connections — Six-Lead Motors


WARNING: When installing 6-lead motors extra care must be used to ensure lead identification at the surface. Leads must be marked and connected per diagram. Motor leads are not connected red to red, yellow to yellow, etc.


LEADS LOCATED HERE ONLY FOR 3 LEAD (DOL) MOTORS

90° Lead Spacing

Connections for across-the-line starting, running, and any reduced voltage starting except WYE-DELTA type starters.

WYE-DELTA starters connect the motor as shown below during starting, then change to the running connection shown at the left.

Each motor lead is numbered with two markers, one near each end. To reverse rotation, interchange any two line connections.

Phase Converters

There are a number of different types of phase converters available. Each generates three-phase power from a single-phase power line.

In all phase converters, the voltage balance is critical to current balance. Although some phase converters may be well balanced at one point on the system-operating curve, submersible pumping systems often operate at differing points on the curve as water levels and operating pressures fluctuate. Other converters may be well balanced at varying loads, but their output may vary widely with fluctuations in the input voltage.

The following guidelines have been established for submersible installations to be warrantable when used with a phase converter.

- 1. Limit pump loading to rated horsepower. Do not load into motor service factor.
- 2. Maintain at least 3 ft/s flow past the motor. Use a flow sleeve when necessary.
- 3. Use time delay fuses or circuit breakers in pump panel. Standard fuses or circuit breakers do not provide secondary motor protection.
- SubMonitor may be used with electro mechanical type phase converters, however special connections are required. Consult SubMonitor Manual for connections of receiver and lightning arrestor.
- SubMonitor will not work with electronic solid state phase converters.
- 6. Current unbalance must not exceed 10%.

Reduced Voltage Starters

All Franklin three-phase submersible motors are suitable for full-voltage starting. Under this condition the motor speed goes from zero to full speed within a half second or less. The motor current goes from zero to locked rotor amps, then drops to running amps at full speed. This may dim lights, cause momentary voltage dips to other electrical equipment, and shock power distribution transformers.

In some cases the power companies may require reduced-voltage starters to limit this voltage dip. There are also times when reduced-voltage starters may be desirable to reduce motor starting torque thus reducing the stress on shafts, couplings, and discharge piping. Reduced-voltage starters also slow the rapid acceleration of the water on start-up to help control upthrust and water hammer.

Reduced-voltage starters may not be required if the maximum recommended cable length is used. With maximum recommended cable length there is a 5% voltage drop in the cable at running amps, resulting in about 20% reduction in starting current and about 36% reduction in starting torque compared to having rated voltage at the motor. This may be enough reduction in starting current so that reduced-voltage starters are not required.

Three-Lead Motors: Autotransformer or solid-state reduced-voltage starters may be used for soft-starting standard three-phase motors.

When autotransformer starters are used, the motor should be supplied with at least 55% of rated voltage to ensure adequate starting torque. Most autotransformer starters have 65% and 80% taps. Setting the taps on these starters depends on the percentage of the

maximum allowable cable length used in the system. If the cable length is less than 50% of the maximum allowable, either the 65% or the 80% taps may be used. When the cable length is more than 50% of allowable, the 80% tap should be used.

Six-Lead Motors: Wye-Delta starters are used with six-lead Wye-Delta motors. All Franklin 6" and 8" three-phase motors are available in six-lead Wye-Delta construction. Consult the factory for details and availability. Part winding starters are not compatible with Franklin Electric submersible motors and should not be used.

Wye-Delta starters of the open-transition type, which momentarily interrupt power during the starting cycle, are not recommended. Closed-transition starters have no interruption of power during the start cycle and can be used with satisfactory results.

Reduced-voltage starters have adjustable settings for acceleration ramp time, typically preset at 30 seconds. They must be adjusted so the motor is at full voltage within THREE SECONDS MAXIMUM to prevent excessive radial and thrust bearing wear.

If Subtrol-Plus or SubMonitor is used the acceleration time must be set to TWO SECONDS MAXIMUM due to the 3 second reaction time of the Subtrol-Plus or SubMonitor.

Solid-state starters AKA soft starts may not be compatible with Subtrol-Plus/SubMonitor. However, in some cases a bypass contactor has been used. Consult the factory for details.

During shutdown, Franklin Electric's recommendation is for the power to be removed, allowing the pump/motor to coast down. Stopping the motor by ramping down the voltage is possible, but should be limited to three (3) seconds maximum.

Inline Booster Pump Systems

Franklin Electric offers three different types of motors for non-vertical applications.

- The Booster motors are specifically designed for booster applications. They are the "Best Choice" for sealed Reverse Osmosis applications.
 These motors are the result of two years of focused development and bring additional value and durability to booster module systems. These motors are only available to OEMs or Distributors who have demonstrated capability in Booster Module systems design and operation and adhere to Franklin's Application Manual requirements.
- The Hi-Temp motors have many of the internal design features of the Booster motor. It's additional length allows for higher temperature handling and the Sand Fighter sealing system provides greater abrasion resistance. One or both of these conditions

- are often experienced in open atmosphere applications such as lakes, ponds, etc.
- The Standard Vertical Water Well (40-125 hp)
 motors can be adapted to non-vertical applications
 when applied per the below guidelines. However,
 they will be more sensitive to application variances
 than the other two designs.

All of the above motors must be applied per the guidelines listed below. In addition, for all applications where the motor is applied in a sealed system, a Submersible Motor Booster Installation Record (Form 3655) or its equivalent must be completed at startup and received by Franklin Electric within 60 days. A sealed system is one where the motor and pump intake are mounted in a sleeve and the water feeding the pump intake is not open to the atmosphere.

Continued on next page 36

Inline Booster Pump Systems (continued)

Design And Operational Requirements

- Non-Vertical Operation: Vertical Shaft-up (0°) to Horizontal (90°) operation is acceptable as long as the pump transmits "down-thrust" to the motor within 3 seconds after start-up and continuously during operation. However, it is best practice to provide a positive slope whenever it is possible, even if it is only a few degrees.
- Motor, Sleeve, and Pump Support System: The booster sleeve ID must be sized according to the motor cooling and pump NPSHR requirements. The support system must support the motor's weight, prevent motor rotation and keep the motor and pump aligned. The support system must also allow for thermal axial expansion of the motor without creating binding forces.
- 3. Motor Support Points: A minimum of two support points are required on the motor. One in the motor/ pump flange connection area and one in the bottom end of the motor area. The motor castings, not the shell area, are recommended as support points. If the support is a full length support and/or has bands in the shell area, they must not restrict heat transfer or deform the shell.
- 4. Motor Support Material and Design: The support system shall not create any areas of cavitation or other areas of reduced flow less than the minimum rate required by this manual. They should also be designed to minimize turbulence and vibration and provide stable alignment. The support materials and locations must not inhibit the heat transfer away from the motor.
- 5. Motor and Pump Alignment: The maximum allowable misalignment between the motor, pump, and pump discharge is 0.025 inch per 12 inches of length (2 mm per 1000 mm of length). This must be measured in both directions along the assembly using the motor/pump flange connection as the starting point. The booster sleeve and support system must be rigid enough to maintain this alignment during assembly, shipping, operation and maintenance.
- 6. The best motor lubrication and heat resistance is obtained with the factory based propylene glycol fill solution. Only when an application MUST HAVE deionized (DI) water should the factory fill solution be replaced. When a deionized water fill is required, the motor must be derated as indicated on the below chart. The exchange of the motor fill solution to DI

water must be done by an approved Franklin service shop or representative using a vacuum fill system per Franklin's Motor Service Manual instruction. The motor shell then must be permanently stamped with a D closely behind the Serial Number.

The maximum pressure that can be applied to the motor internal components during the removal of the factory fill solution is 7 psi (0.5 bar.)

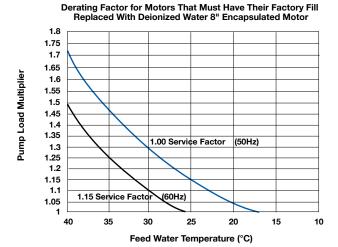


FIG. 12

First: Determine maximum Feed Water Temperature that will be experienced in this application. If the feed water exceeds the maximum ambient of the motor, both the DI water derating and a hot water application derating must be applied.

Second: Determine the Pump Load Multiplier from the appropriate Service Factor curve. (Typical 1.15 Service Factor is for 60 Hz ratings &1.00 Service Factor for 50 Hz ratings).

Third: Multiply the Pump Load Requirement times the pump load multiplier number indicated on the vertical axis to determine the Minimum Motor Nameplate Rating.

Fourth: Select a motor with a nameplate equal or higher than the above calculated value.

- 7. Motor Alterations Sand Slinger & Check Valve Plug: On 6" and 8" motors, the rubber sand slinger located on the shaft must be removed. If a pipe plug is covering the check valve, it must be removed. The special Booster motor already has these modifications.
- Frequency of Starts: Fewer than 10 starts per 24-hour period are recommended. Allow at least 20 minutes between shutdown and start-up of the motor.

37 Continued on next page

Inline Booster Pump Systems (continued)

- 9. Controls-Soft Starters and VFDs: Reduced voltage starters and variable speed drives (inverter drives) may be used with Franklin three-phase submersible motors to reduce starting current, upthrust, and mechanical stress during start-up. The guidelines for their use with submersible motors are different than with normal air cooled motor applications. Refer to the Franklin Electric Application, Installation and Maintenance (AIM) Manual Reduced Voltage Starters section or Variable Speed Submersible Pump Operation, Inverter Drives sections for specific details including required filtering.
- 10. **Motor Overload Protection:** Submersible motors require properly sized ambient compensated Class 10 quick-trip overloads per Franklin's AIM Manual guidelines to protect the motor. Class 20 or higher overloads are NOT acceptable. Franklin's SubMonitor is strongly recommended for all large submersibles since it is capable of sensing motor heat without any additional wiring to the motor. Applications using Soft Starters with a SubMonitor require a start-up bypass consult the factory for details. SubMonitor can not be used in applications using a VFD control.
- 11. Motor Surge Protection: Properly sized, grounded and dedicated motor surge arrestors must be installed in the supply line of the booster module as close to the motor as possible. This is required on all systems including those using soft-starters and variable speed drives (inverter drives).
- 12. Wiring: Franklin's lead assemblies are only sized for submerged operation in water to the motor nameplate maximum ambient temperature and may overheat and cause failure or serious injury if operated in air. Any wiring not submerged must meet applicable national and local wiring codes and

- Franklin Cable Chart tables 16-21. (Notice: wire size, wire rating and insulation temperature rating must be known when determining its suitability to operate in air or conduit. Typically, for a given size and rating, as the insulation temperature rating increases its ability to operate in air or conduit also increases.)
- Check Valves: Spring-loaded check valves must be used on start-up to minimize motor upthrusting, water hammer, or in multiple booster (parallel) applications to prevent reverse flow.
- 14. Pressure Relief Valves: A pressure relief valve is required and must be selected to ensure that, as the pump approaches shut-off, it never reaches the point that the motor will not have adequate cooling flow past it.
- 15. System Purge (Can Flooding): An air bleeder valve must be installed on the booster sleeve so that flooding may be accomplished prior to booster start-up. Once flooding is complete, the booster should be started and brought up to operating pressure as quickly as possible to minimize the duration of an upthrust condition. At no time should air be allowed to gather in the booster sleeve because this will prevent proper cooling of the motor and permanently damage it.
- 16. System Flush Must Not Spin Pump: Applications may utilize a low flow flushing operation. Flow through the booster sleeve must not spin the pump impellers and the motor shaft. If spinning takes place, the bearing system will be permanently damaged and the motor life shortened. Consult the booster pump manufacturer for maximum flow rate through the pump when the motor is not energized.

Table 38 Franklin Cable chart (See 12. Wiring)

CABLE TEMP.			AWG	#8	AWG	#6 /	AWG	#4 /	AWG	#2 /	AWG
RATING (°C)	RATED AMPS Full Load	IN AIR	IN CONDUIT								
	3-LEAD (DOL)	40A	28A	56A	40A	76A	52A	100A	68A	136A	92A
75	6-LEAD (Y-Δ)	69A	48A	97A	69A	132A	90A	173A	118A	236A	159A
00	3-LEAD (DOL)	44A	32A	64A	44A	84A	60A	112A	76A	152A	104A
90	6-LEAD (Y-Δ)	76A	55A	111A	76A	145A	104A	194A	132A	263A	180A
405	3-LEAD (DOL)	66A	46A	77A	53A	109A	75A	153A	105A	195A	134A
125	6-LEAD (Y-Δ)	114A	80A	133A	91A	188A	130A	265A	181A	337A	232A

Based on 30 °C maximum ambient with cable length of 100 feet or less.

Continued on next page 38

Inline Booster Pump Systems (continued)

17. Open Atmosphere Booster Pump Systems: When an open booster is placed in a lake, tank, etc. that is open to atmospheric pressure, the water level must provide sufficient head pressure to allow the pump to operate above its NPSHR requirement at all times and all seasons. Adequate inlet pressure must be provided prior to booster start-up.

Four Continuous Monitoring System Requirements for Sealed Booster Systems.

- Water Temperature: Feed water on each booster must be continuously monitored and not allowed to exceed the motor nameplate maximum ambient temperature at any time. IF THE INLET TEMPERATURE EXCEEDS THE MOTOR NAMEPLATE MAXIMUM AMBIENT TEMPERATURE, THE SYSTEM MUST SHUTDOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE. If feed water temperatures are expected to be above the allowable temperature, the motor must be derated. See Franklin's AIM Manual Hot Water Applications section for derating guidelines. (The high temperature feed water derating is in addition to the exchange to DI water derating if the motor factory fill solution was exchanged to DI water.)
- 2. Inlet Pressure: The inlet pressure on each booster module must be continuously monitored. It must always be positive and higher than the NPSHR (Net Positive Suction Head Requirement) of the pump. A minimum of 20 PSIG (1.38 Bar) is required at all times, except for 10 seconds or less when the motor is starting and the system is coming up to pressure.

Even during these 10 seconds the pressure must remain positive and be higher than the NPSHR (Net Positive Suction Head Requirement) of the pump.

PSIG is the actual value displayed on a pressure gauge in the system piping. PSIG is the pressure above the atmospheric conditions. If at any time these pressure requirements are not being met, the motor must be de-energized immediately to prevent permanent damage to the motor. Once the motor is damaged, it is usually not immediately noticeable, but progresses and results in a premature motor failure weeks or months after the damage occurred.

Motors that will be exposed to pressure in excess of 500 psi (34.47 Bar) must undergo special high pressure testing. Consult factory for details and availability.

- Discharge Flow: The flow rate for each pump must not be allowed to drop below the motor minimum cooling flow requirement. IF THE MOTOR MINIMUM COOLING FLOW REQUIREMENT IS NOT BEING MET FOR MORE THAN 10 SECONDS, THE SYSTEM MUST BE SHUT DOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE.
- 4. Discharge Pressure: The discharge pressure must be monitored to ensure that a downthrust load toward the motor is present within 3 seconds after start-up and continuously during operation. IF THE MOTOR DISCHARGE PRESSURE IS NOT ADEQUATE TO MEET THIS REQUIREMENT, THE SYSTEM MUST BE SHUT DOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE.

Variable Frequency Drive Submersible Motor Requirements

Franklin Electric's three-phase, encapsulated submersible motors can be used with variable frequency drives (VFD) when applied within the guidelines below.

All three-phase, encapsulated submersible motors must have the VFD sized based on the motor's nameplate maximum amps, not horsepower. The continuous rated amps of the VFD must be equal to or greater than the motor's nameplate maximum amps or warranty will be void.

Franklin Electric's single-phase, 2- and 3-wire, encapsulated submersible motors can only be used with the appropriate Franklin constant pressure controller.

Franklin Electric's submersible motor Application Installation Maintenance (AIM) manual should be checked for the latest guidelines and can be found online at www.franklin-electric.com.

WARNING: There is a potential shock hazard from contact with and/or touching the insulated cables connected to the variable frequency drive output anytime the motor has energy applied.

Output Filter Requirement Test:

NOTICE: An incoming power supply or line-side filter for the drive does not replace the need for additional output filters.

An output filter is required if the answer is yes to one or both of the items below:

#1 - Is the VFD's pulse width modulation (PWM) voltage rise-time (dV/dt) more than 500 Volts per micro-second (500 V/ μ -second)?

#2 - Is the motor nameplate voltage more than 379 Volts and is the cable from drive-to-motor more than 50 ft (15.2 m)?

NOTICE:

More than 99% of the drives applied on water well submersible motors will require the purchase of additional output filtering based on question #1.

Output filters can be expensive. However, when needed, it is required for the motor to be considered for warranty. Make sure this item is not overlooked when quoting a job.

PWM dV/dt value can be defined as: the rate at which voltage is changing with time or how fast the voltage is accelerating. This information can be supplied by the drive manufacturer or the manufacturer's drive specification sheet. The dV/dt value cannot be measured with typical field equipment, even when using a true-RMS voltage/amperage multi-meter.

Franklin Electric has a line of VFDs that are specifically designed for Franklin application systems. These VFDs are used in the MonoDrive and SubDrive constant pressure systems. Franklin drive systems have the required additional output filtering installed; however, the SubDrive HPX does not.

Types of Output Filters:

A resistor-inductor-capacitor (RLC) filter has both a high pass filter & a low pass filter section and are considered the best practice, but a high pass reactor filter is also acceptable.

Filters should be recommended by the drive manufacturer; for the correct recommendations provide them with answers to all five of the items below.

REQUIRED ITEMS FOR PROPER VFD FILTER SIZING:

(1) VFD model (2) Carrier frequency setting (3) Motor nameplate voltage (4) Motor nameplate max amps (5) Cable length from the drive output terminals to the motor

Input Current & Motor Overload Protection:

- Motor input current should be set at the system's typical operating current when running at nameplate rated voltage and frequency (Hz).
- Motor overload protection should be set to trip at 115% of the system's typical operating current.
- Motor overload protection must trip equal to or faster than NEMA Class 10 motor overload curve requirements.

Motor Maximum Load Limits:

- The system must never operate in excess of the motor nameplate maximum amps.
- On 50 Hz motors, nameplate amps are maximum amps as these motors have a 1.0 service factor.

Variable Frequency Drive Submersible Motor Requirements

Motor Operating Hertz, Cooling Requirements & Underload Settings:

- Standard practice for large VFD installations is to limit the operation to 60 Hz max. Operating at greater than 60 Hz requires special system design considerations.
- The motor must never operate below 30 Hz. This is the minimum speed required to provide correct bearing lubrication.
- The motor's operating speed must always operate so the minimum water flow requirements of 0.5 ft/sec for 6-inch & 8-inch motors and 0.25 ft/sec for 4-inch motors is supplied.
- The motor underload protection is normally set to trip at 80% of the system's typical operating current.
 However, the underload trip point must be selected so that minimum flow requirements are always met.

Starting & Stopping Ramp Settings:

- The motor must reach or pass the 30 Hz operating speed within 1 second of the motor being energized.
 If this does not occur, the motor bearings will be damaged and the motor life reduced.
- The best stopping method is to turn power off followed by a natural coast to stop.
- A controlled stop from 30 Hz to 0 Hz is allowed if the time does not exceed 1 second.

Drive Carrier Frequency:

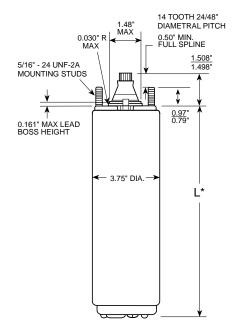
- The carrier frequency is set in the field. The drive typically has a selectable range between 2k and 12k Hz. The higher the carrier wave frequency setting, the greater the voltage spikes; the lower the carrier wave frequency setting, the rougher/poorer the shape of the power curve.
- The carrier frequency should be set within the range of 4k to 5k Hz for encapsulated submersible motors.

Application Function Setting:

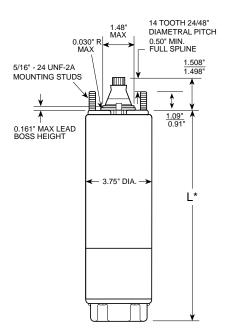
- If the VFD has a setting of centrifugal pump or propeller fan it should be used.
- Centrifugal pumps and fans have similar load characteristics.

VFD Frequency of Starts:

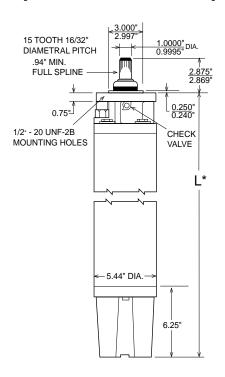
 Keeping the starts per day within the recommended numbers shown in the frequency of starts section of the AIM manual provides the best system life.
 However, since in-rush current is typically reduced when used with a properly configured VFD, large 3-phase submersible motors can be started more frequently. In all cases a minimum of 7 minutes must be allowed between a power off and the next restart attempt or consecutive restart attempts.


NEMA MG1 Above Ground Motor Standard Comments:

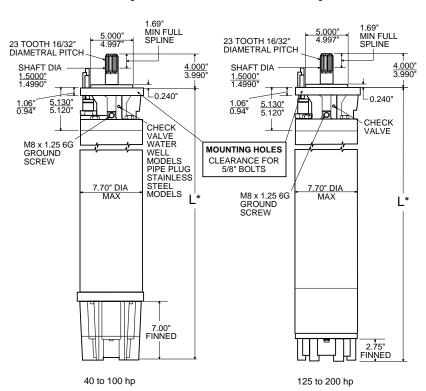
- Franklin Electric encapsulated submersible motors are not declared inverter duty motors by NEMA MG1 standards. The reason is NEMA MG1 standard part 31 does not include a section covering encapsulated winding designs.
- Franklin submersible motors can be used with VFDs without problems or warranty concerns providing Franklin's Application Installation Maintenance (AIM) manual guidelines are followed. See Franklin's on-line AIM manual for the latest guidelines.


4" Super Stainless — Dimensions

(Standard Water Well)


4" High Thrust — Dimensions

(Standard Water Well)


6" — Dimensions

(Standard Water Well)

8" — Dimensions

(Standard Water Well)

^{*} Motor lengths and shipping weights are available on Franklin Electric's web site (www.franklin-electric.com) or by calling Franklin's submersible hotline (800-348-2420).

Tightening Motor Lead Connector Jam Nut

- **4" Motors with Jam Nut:** 15 to 20 ft-lb (20 to 27 Nm)
- **4" Motors with 2 Screw Clamp Plate:** 35 to 45 in-lb (4.0 to 5.1 Nm)
- **6" Motors:** 40 to 50 ft-lb (54 to 68 Nm)
- **8" Motors with 1-3/16" to 1-5/8" Jam Nut:** 50 to 60 ft-lb (68 to 81 Nm)
- 8" Motors with 4 Screw Clamp Plate:
 Apply increasing torque to the screws equally in a criss-cross pattern until 80 to 90 in-lb (9.0 to 10.2 Nm) is reached.

Jam nut tightening torques recommended for field assembly are shown. Rubber compression set within the first few hours after assembly may reduce the jam nut torque. This is a normal condition which does not indicate reduced seal effectiveness. Retightening is not required, but is permissible and recommended if original torque was questionable.

A motor lead assembly should not be reused. A new lead assembly should be used whenever one is removed from the motor, because rubber set and possible damage from removal may prevent proper resealing of the old lead.

All motors returned for warranty consideration must have the lead returned with the motor.

Pump to Motor Coupling

Assemble coupling with non-toxic FDA approved waterproof grease such as Mobile FM102, Texaco CYGNUS2661, or approved equivalent. This prevents abrasives from entering the spline area and prolongs spline life.

Pump to Motor Assembly

After assembling the motor to the pump, torque mounting fasteners to the following:

4" Pump and Motor: 10 lb-ft (14 Nm)

6" Pump and Motor: 50 lb-ft (68 Nm)

8" Pump and Motor: 120 lb-ft (163 Nm)

Shaft Height and Free End Play

Table 42

MOTOR	NORMAL Shaft Height		DIME	NSION	FREE END PLAY		
MOTOR			SHAFT	HEIGHT	MIN.	MAX.	
4"	1 1/2"	38.1 mm	1.508" 1.498"	38.30 38.05 mm	0.010" 0.25 mm	0.045" 1.14 mm	
6"	2 7/8"	73.0 mm	2.875" 2.869"	$\frac{73.02}{72.88}$ mm	0.030" 0.76 mm	0.050" 1.27 mm	
8" TYPE 1	4"	101.6 mm	4.000" 3.990"	101.60 mm	0.008" 0.20 mm	0.032" 0.81 mm	
8" TYPE 2.1	4"	101.6 mm	4.000" 3.990"	101.60 mm 101.35	0.030" 0.76 mm	0.080" 2.03 mm	

If the height, measured from the pump-mounting surface of the motor, is low and/or end play exceeds the limit, the motor thrust bearing is possibly damaged, and should be replaced.

Submersible Leads and Cables

A common question is why motor leads are smaller than specified in Franklin's cable charts.

The leads are considered a part of the motor and actually are a connection between the large supply wire and the motor winding. The motor leads are short and there is virtually no voltage drop across the lead.

In addition, the lead assemblies **operate under water**, while at least part of the supply cable must **operate in air.** Lead assemblies running under water operate cooler.

CAUTION: Lead assemblies on submersible motors are suitable only for use in water and may overheat and cause failure if operated in air.

System Troubleshooting

Motor Does Not Start

POSSIBLE CAUSE	CHECKING PROCEDURES	CORRECTIVE ACTION
A. No power or incorrect voltage.	Check voltage at line terminals. The voltage must be ± 10% of rated voltage.	Contact power company if voltage is incorrect.
B. Fuses blown or circuit breakers tripped.	Check fuses for recommended size and check for loose, dirty or corroded connections in fuse receptacle. Check for tripped circuit breakers.	Replace with proper fuse or reset circuit breakers.
C. Defective pressure switch.	Check voltage at contact points. Improper contact of switch points can cause voltage less than line voltage.	Replace pressure switch or clean points.
D. Control box malfunction.	For detailed procedure, see pages 48-56.	Repair or replace.
E. Defective wiring.	Check for loose or corroded connections or defective wiring	Correct faulty wiring or connections.
F. Bound pump.	Check for misalignment between pump and motor or a sand bound pump. Amp readings will be 3 to 6 times higher than normal until the overload trips	Pull pump and correct problem. Run new installation until the water clears
G. Defective cable or motor.	For detailed procedure, see pages 46 & 47.	Repair or replace.

Motor Starts Too Often

A. Pressure switch.	Check setting on pressure switch and examine for defects.	Reset limit or replace switch.
B. Check valve - stuck open.	Damaged or defective check valve will not hold pressure.	Replace if defective.
C. Waterlogged tank.	Check air charge	Clean or replace.
D. Leak in system.	Check system for leaks.	Replace damaged pipes or repair leaks.

System Troubleshooting

Motor Runs Continuously

POSSIBLE CAUSE	CHECKING PROCEDURES	CORRECTIVE ACTION
A. Pressure switch.	Check switch for welded contacts. Check switch adjustments.	Clean contacts, replace switch, or adjust setting.
B. Low water level in well.	Pump may exceed well capacity. Shut off pump, wait for well to recover. Check static and drawdown level from well head.	Throttle pump output or reset pump to lower level. Do not lower if sand may clog pump.
C. Leak in system.	Check system for leaks.	Replace damaged pipes or repair leaks.
D. Worn pump.	Symptoms of worn pump are similar to those of drop pipe leak or low water level in well. Reduce pressure switch setting, if pump shuts off worn parts may be the fault.	Pull pump and replace worn parts.
E. Loose coupling or broken motor shaft.	Check for loose coupling or damaged shaft.	Replace worn or damaged parts.
F. Pump screen blocked.	Check for clogged intake screen.	Clean screen and reset pump depth.
G. Check valve stuck closed.	Check operation of check valve.	Replace if defective.
H. Control box malfunction.	See pages 47-55 for single-phase.	Repair or replace.

Motor Runs But Overload Protector Trips

A. Incorrect voltage.	Using voltmeter, check the line terminals. Voltage must be within ± 10% of rated voltage.	Contact power company if voltage is incorrect.
B. Overheated protectors.	Direct sunlight or other heat source can raise control box temperature causing protectors to trip. The box must not be hot to touch.	Shade box, provide ventilation or move box away from source.
C. Defective control box.	For detailed procedures, see pages 47-55.	Repair or replace.
D. Defective motor or cable.	For detailed procedures, see pages 45 & 46.	Repair or replace.
E. Worn pump or motor.	Check running current, see tables 13, 22, 24 & 27.	Replace pump and/or motor.

Table 45 Preliminary Tests - All Sizes Single- and Three-Phase

TEST	PROCEDURE	WHAT IT MEANS
Insulation Resistance	Open master breaker and disconnect all leads from control box or pressure switch (QD type control, remove lid) to avoid electric shock hazard and damage to the meter. Use a megohmmeter or set the scale lever to R X 100K on an ohmmeter. Zero the meter. Connect one meter lead to any one of the motor leads and the other lead to the metal drop pipe. If the drop pipe is plastic, connect the meter lead to ground.	If the ohms value is normal (table 46), the motor is not grounded and the cable insulation is not damaged. If the ohms value is below normal, either the windings are grounded or the cable insulation is damaged. Check the cable at the well seal as the insulation is sometimes damaged by being pinched.
Winding Resistance	1. Open master breaker and disconnect all leads from control box or pressure switch (QD type control, remove lid) to avoid electric shock hazard and damage to the meter. 2. Set the scale lever to R X 1 for values under 10 ohms. For values over 10 ohms, set the scale lever to R X 10. "zero" the ohmmeter. 3. On 3-wire motors measure the resistance of yellow to black (main winding) and yellow to red (start winding). On 2-wire motors: measure the resistance from line-to-line. Three-phase motors: measure the resistance line-to-line for all three combinations.	1. If all ohms values are normal (tables 13, 22, 24 & 27), the motor windings are neither shorted nor open, and the cable colors are correct 2. If any one value is less than normal, the motor is shorted. 3. If any one ohm value is greater than normal, the winding or the cable is open, or there is a poor cable joint or connection. 4. If some ohms values are greater than normal and some less on single-phase motors, the leads are mixed. See page 46 to verify cable colors.

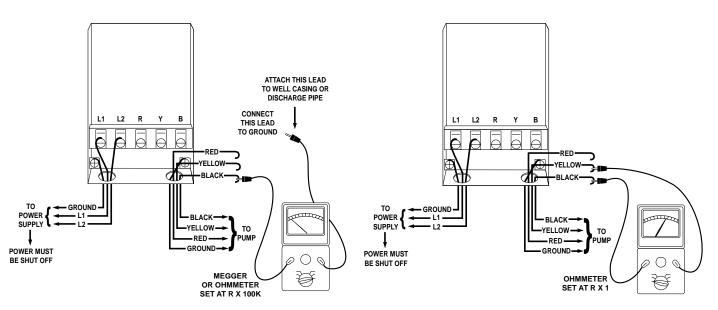


FIG. 13 FIG. 14

Insulation Resistance Readings

Table 46 Normal ohm and Megohm Values Between All Leads and Ground

CONDITION OF MOTOR AND LEADS	OHMS VALUE	MEGOHM VALUE
A new motor (without drop cable).	200,000,000 (or more)	200.0 (or more)
A used motor which can be reinstalled in well.	10,000,000 (or more)	10.0 (or more)
MOTOR IN WELL. READINGS ARE FOR DROP CABLE PLUS MOTOR.		
New motor.	2,000,000 (or more)	2.0 (or more)
Motor in good condition.	500,000 - 2,000,000	0.50 - 2.0
Insulation damage, locate and repair.	Less than 500,000	Less than .50

Insulation resistance varies very little with rating. Motors of all hp, voltage, and phase rating have similar values of insulation resistance.

The table above is based on readings taken with a megohm meter with a 500 VDC output. Readings may vary using a lower voltage ohmmeter, consult Franklin Electric if readings are in question.

Resistance of Drop Cable (ohms)

The values below are for copper conductors. If aluminum conductor drop cable is used, the resistance will be higher. To determine the actual resistance of the aluminum drop cable, divide the ohm readings from this chart by 0.61. This chart shows total resistance of cable from control to motor and back.

Winding Resistance Measuring

The winding resistance measured at the motor should fall within the values in tables 13, 22, 24 & 27. When measured through the drop cable, the resistance of the drop cable must be subtracted from the ohmmeter readings to get the winding resistance of the motor. See table below.

Table 46A DC Resistance in ohms per 100 ft of Wire (Two conductors) @ 50 °F

AV	VG OR MCM WII	RE SIZE (COPPI	ER)	14	12	10	8	6	4	3	2
	OH	MS		0.544	0.338	0.214	0.135	0.082	0.052	0.041	0.032
1	1/0	2/0	3/0	4/0	250	300	350	400	500	600	700
0.026	0.021	0.017	0.013	0.010	0.0088	0.0073	0.0063	0.0056	0.0044	0.0037	0.0032

Identification Of Cables When Color Code Is Unknown (Single-Phase 3-Wire Units)

If the colors on the individual drop cables cannot be found with an ohmmeter, measure:

Cable 1 to Cable 2 Cable 2 to Cable 3 Cable 3 to Cable 1

Find the highest resistance reading.

The lead not used in the highest reading is the yellow lead.

Use the yellow lead and each of the other two leads to get two readings:

Highest is the red lead. Lowest is the black lead.

EXAMPLE:

The ohmmeter readings were:

Cable 1 to Cable 2 - 6 ohms Cable 2 to Cable 3 - 2 ohms Cable 3 to Cable 1 - 4 ohms

The lead not used in the highest reading (6 ohms) was Cable 3—Yellow

From the yellow lead, the highest reading (4 ohms) was To Cable 1—Red

From the yellow lead, the lowest reading (2 ohms) was To Cable 2—Black

Single-Phase Control Boxes

Checking and Repairing Procedures (Power On)

WARNING: Power must be on for these tests. Do not touch any live parts.

A. VOLTAGE MEASUREMENTS

Step 1. Motor Off

- Measure voltage at L1 and L2 of pressure switch or line contactor.
- Voltage Reading: Should be ± 10% of motor rating.

Step 2. Motor Running

- Measure voltage at load side of pressure switch or line contactor with pump running.
- Voltage Reading: Should remain the same except for slight dip on starting. Excessive voltage drop can be caused by loose connections, bad contacts, ground faults, or inadequate power supply.
- 3. Relay chatter is caused by low voltage or ground faults.

B. CURRENT (AMP) MEASUREMENTS

- 1. Measure current on all motor leads.
- Amp Reading: Current in red lead should momentarily be high, then drop within one second to values in table 13. This verifies relay or solid state relay operation. Current in black and yellow leads should not exceed values in table 13.
- Relay or switch failures will cause red lead current to remain high and overload tripping.
- Open run capacitor(s) will cause amps to be higher than normal in the black and yellow motor leads and lower than normal in the red motor lead.
- A bound pump will cause locked rotor amps and overloading tripping.
- 6. Low amps may be caused by pump running at shutoff, worn pump, or stripped splines.
- Failed start capacitor or open switch/relay are indicated if the red lead current is not momentarily high at starting.

CAUTION: The tests in this manual for components such as capacitors, relays, and QD switches should be regarded as indicative and not as conclusive. For example, a capacitor may test good (not open, not shorted) but may have lost some of its capacitance and may no longer be able to perform its function.

Ohmmeter Tests

QD, Solid State Control Box (Power Off)

A. START CAPACITOR AND RUN CAPACITOR IF APPLICABLE (CRC)

- 1. Meter Setting: R x 1,000.
- 2. Connections: Capacitor terminals.
- 3. Correct meter reading: Pointer should swing toward zero, then back to infinity.

B. Q.D. (BLUE) RELAY

Step 1. Triac Test

- 1. Meter setting: R x 1,000.
- 2. Connections: Cap and B terminal.
- 3. Correct meter reading: Infinity for all models.

Step 2. Coil Test

- 1. Meter Setting: R x 1.
- 2. Connections: L1 and B.
- 3. Correct meter reading: Zero ohms for all models.

C. POTENTIAL (VOLTAGE) RELAY

Step 1. Coil Test

- 1. Meter setting: R x 1,000.
- 2. Connections: #2 & #5.
- 3. Correct meter readings:

For 115 Volt Boxes:

0.7-1.8 (700 to 1,800 ohms).

For 230 Volt Boxes:

4.5-7.0 (4,500 to 7,000 ohms).

Step 2. Contact Test

- 1. Meter setting: R x 1.
- 2. Connections: #1 & #2.
- 3. Correct meter reading: Zero for all models.

Ohmmeter Tests

Integral Horsepower Control Box (Power Off)

- **A. OVERLOADS** (Push Reset Buttons to make sure contacts are closed.)
 - 1. Meter Setting: R x 1.
 - 2. Connections: Overload terminals.
 - 3. Correct meter reading: Less than 0.5 ohms.
- **B. CAPACITOR** (Disconnect leads from one side of each capacitor before checking.)
 - 1. Meter Setting: R x 1,000.
 - 2. Connections: Capacitor terminals.
 - Correct meter reading: Pointer should swing toward zero, then drift back to infinity, except for capacitors with resistors which will drift back to 15,000 ohms.

C. POTENTIAL (VOLTAGE) RELAY

Step 1. Coil Test

- 1. Meter setting: R x 1,000.
- 2. Connections: #2 & #5.
- Correct meter readings: 4.5-7.0 (4,500 to 7,000 ohms) for all models.

Step 2. Contact Test

- 1. Meter Setting: R x 1.
- 2. Connections: #1 & #2.
- 3. Correct meter reading: Zero ohms for all models.

D. CONTACTOR

Step 1. Coil

- 1. Meter setting: R x 100
- 2. Connections: Coil terminals
- Correct meter reading:
 1.8-14.0 (180 to 1,400 ohms)

Step 2. Contacts

- 1. Meter Setting: R X 1
- 2. Connections: L1 & T1 or L2 & T2
- 3. Manually close contacts
- 4. Correct meter reading: Zero ohms

CAUTION: The tests in this manual for components such as capacitors, relays, and QD switches should be regarded as indicative and not as conclusive. For example, a capacitor may test good (not open, not shorted) but may have lost some of its capacitance and may no longer be able to perform its function.

Table 49 QD Control Box Parts 60 Hz

НР	VOLTS	CONTROL BOX Model Number	QD (BLUE) RELAY	START Capacitor	MFD	VOLTS	RUN Capacitor	MFD	VOLTS
1/0	115	280 102 4915	223 415 905	275 464 125	159-191	110			
1/3	230	280 103 4915	223 415 901	275 464 126	43-53	220			
	115	280 104 4915	223 415 906	275 464 201	250-300	125			
1/2	230	280 105 4915	223 415 902	275 464 105	59-71	220			
	230	282 405 5015 (CRC)	223 415 912	275 464 126	43-53	220	156 362 101	15	370
3/4	230	280 107 4915	223 415 903	275 464 118	86-103	220			
3/4	230	282 407 5015 (CRC)	223 415 913	275 464 105	59-71	220	156 362 102	23	370
4	230	280 108 4915	223 415 904	275 464 113	105-126	220			
	230	282 408 5015 (CRC)	223 415 914	275 464 118	86-103	220	156 362 102	23	370

Table 49A QD Capacitor Replacement Kits

CAPACITOR NUMBER	KIT
275 464 105	305 207 905
275 464 113	305 207 913
275 464 118	305 207 918
275 464 125	305 207 925
275 464 126	305 207 926
275 464 201	305 207 951
156 362 101	305 203 907
156 362 102	305 203 908

Table 49B Overload Kits 60 Hz

HP	VOLTS	KIT (1)
1/3	115	305 100 901
1/3	230	305 100 902
1/2	115	305 100 903
1/2	230	305 100 904
3/4	230	305 100 905
1	230	305 100 906

(1) For Control Boxes with model numbers that end with 4915.

Table 49C QD Relay Replacement Kits

QD RELAY NUMBER	КІТ
223 415 901	305 101 901
223 415 902	305 101 902
223 415 903	305 101 903
223 415 904	305 101 904
223 415 905	305 101 905
223 415 906	305 101 906
223 415 912 (CRC)	305 105 901
223 415 913 (CRC)	305 105 902
223 415 914 (CRC)	305 105 903

FOOTNOTES:

- (1) Control boxes supplied with QD Relays are designed to operate on 230-volt systems. For 208-volt systems or where line voltage is between 200 volts and 210 volts use the next larger cable size, or use a boost transformer to raise the voltage.
- (2) Voltage relays kits for 115-volts (305 102 901) and 230-volts (305 102 902) will replace current, voltage or QD Relays, and solid state switches.

Table 50 Integral Horsepower Control Box Parts 60 Hz

MOTOR	MOTOR	CONTROL BOX (1)	CA	PACITORS			OVERLOAD (2)	RELAY (3)	CONTACTOR (2)
SIZE	RATING HP	MODEL NO.	PART NO. (2)	MFD.	VOLTS	QTY.	PART NO.	PART NO.	PART NO.
		282 300 8110 (See Note 5)	275 464 113 S 155 328 102 R	105-126 10	220 370	1 1	275 411 107	155 031 102	
4"	1 - 1.5 Standard	282 300 8110 (See Note 5)	275 464 113 S 155 328 101 R	105-126 15	220 370	1 1	275 411 114 S 275 411 113 M	155 031 102	
		282 300 8610	275 464 113 S 155 328 101 R	105-126 15	220 370	1 1	None (See Note 4)	155 031 102	
4"	2 Standard	282 301 8110	275 464 113 S 155 328 103 R	105-126 20	220 370	1 1	275 411 117 S 275 411 113 M	155 031 102	
4"	2 Deluxe	282 301 8310	275 464 113 S 155 328 103 R	105-126 20	220 370	1 1	275 411 117 S 275 411 113 M	155 031 102	155 325 102 L
4"	3 Standard	282 302 8110	275 463 123 S 155 327 109 R	208-250 45	220 370	1 1	275 411 118 S 275 411 115 M	155 031 102	
4"	3 DELUXE	282 302 8310	275 463 123 S 155 327 109 R	208-250 45	220 370	1 1	275 411 118 S 275 411 115 M	155 031 102	155 325 102 L
4" & 6"	5 Standard	282 113 8110	275 468 119 S 155 327 114 R	270-324 40	330 370	1 2	275 411 119 S 275 406 102 M	155 031 601	
4" & 6"	5 DELUXE	282 113 9310	275 468 119 S 155 327 114 R	270-324 40	330 370	1 2	275 411 119 S 275 406 102 M	155 031 601	155 326 101 L
6"	7.5 Standard	282 201 9210	275 468 119 S 275 468 118 S 155 327 109 R	270-324 216-259 45	330 330 370	1 1 1	275 411 102 S 275 406 122 M	155 031 601	
6"	7.5 DELUXE	282 201 9310	275 468 119 S 275 468 118 S 155 327 109 R	270-324 216-259 45	330 330 370	1 1 1	275 411 102 S 275 406 121 M	155 031 601	155 326 102 L
6"	10 Standard	282 202 9210	275 468 119 S 275468 120 S 155 327 102 R	270-324 350-420 35	330 330 370	1 1 2	275 406 103 S 155 409 101 M	155 031 601	
6"	10 Standard	282 202 9230	275 463 120 S 275 468 118 S 275 468 119 S 155 327 102 R	130-154 216-259 270-324 35	330 330 330 370	1 1 1 2	275 406 103 S 155 409 101 M	155 031 601	
6"	10 DELUXE	282 202 9310	275 468 119 S 275468 120 S 155 327 102 R	270-324 350-420 35	330 330 370	1 1 2	275 406 103 S 155 409 101 M	155 031 601	155 326 102 L
6"	10 Deluxe	282 202 9330	275 463 120 S 275 468 118 S 275 468 119 S 155 327 102 R	130-154 216-259 270-324 35	330 330 330 370	1 1 1 2	275 406 103 S 155 409 101 M	155 031 601	155 326 102 L
6"	15 DELUXE	282 203 9310	275 468 120 S 155 327 109 R	350-420 45	330 370	2	275 406 103 S 155 409 102 M	155 031 601	155 429 101 L
6"	15 DELUXE	282 203 9330	275 463 122 S 275 468 119 S 155 327 109 R	161-193 270-324 45	330 330 370	1 2 3	275 406 103 S 155 409 102 M	155 031 601	155 429 101 L
6"	15 X-LARGE	282 203 9621	275 468 120 S 155 327 109 R	350-420 45	330 370	2 3	275 406 103 S 155 409 102 M	155 031 601 2 required	155 429 101 L

FOOTNOTES:

- (1) Lightning arrestors 150 814 902 are suitable for all control boxes.
- (2) S = Start, M = Main, L = Line, R = Run Deluxe = Control box with line contactor.
- (3) For 208-volt systems or where line voltage is between 200 volts and 210 volts, a low voltage relay is required. On 3 hp and smaller control boxes use relay part 155 031 103 in place of 155 031 102 and use the next larger cable size than specified in the 230-volt table. On 5 hp and larger use relay 155 031 602 in place of 155 031 601 and next larger wire. Boost transformers per page 15 are an alternative to special relays and cable.
- (4) Control box model 282 300 8610 is designed for use with motors having internal overload protectors. If used with a 1.5 hp motor manufactured prior to date code 06H18, Overload/Capacitor Kit 305 388 901 is required.
- (5) Control box model 282 300 8110 with date code 11C19 (March 2011) and newer contain 15 MFD run capacitor and both start and run overloads. This box is designed for use with any Franklin 1.5 hp motor.

Table 51 Integral hp Capacitor Replacement Kits

CAPACITOR NUMBER	КІТ
275 463 120	305 206 920
275 463 122	305 206 922
275 463 123	305 206 923
275 464 113	305 207 913
275 468 118	305 208 918
275 468 119	305 208 919
275 468 120	305 208 920
155 327 101	305 203 901
155 327 102	305 203 902
155 327 109	305 203 909
155 327 114	305 203 914
155 328 101	305 204 901
155 328 102	305 204 902
155 328 103	305 204 903

Table 51A Integral hp Overload Replacement Kits

OVERLOAD NUMBER	кіт
275 406 102	305 214 902
275 406 103	305 214 903
275 406 121	305 214 921
275 406 122	305 214 922
275 411 102	305 215 902
275 411 107	305 215 907
275 411 108	305 215 908
275 411 113	305 215 913
275 411 114	305 215 914
275 411 115	305 215 915
275 411 117	305 215 917
275 411 118	305 215 918
275 411 119	305 215 919

Table 51B Integral hp Voltage Relay Replacement Kits

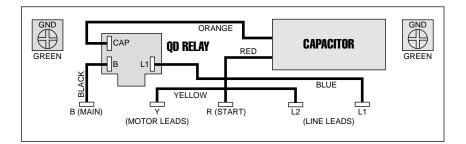
RELAY NUMBER	КІТ
155 031 102	305 213 902
155 031 103	305 213 903
155 031 601	305 213 961
155 031 602	305 213 962

Table 51C Integral hp Contactor Replacement Kits

CONTACTOR	КІТ
155 325 102	305 226 902
155 326 101	305 347 903
155 326 102	305 347 902
155 429 101	305 347 901

FOOTNOTES:

(1) The following kit number changes were made for number consistency purposes only. Parts in the kit did not change.

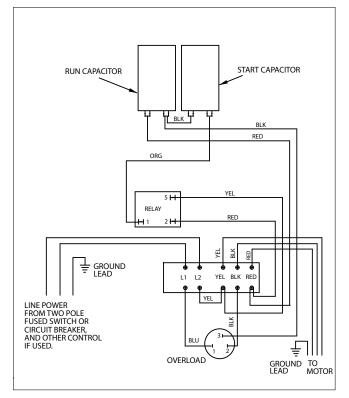

305 206 922 was 305 206 912

305 206 923 was 305 206 911

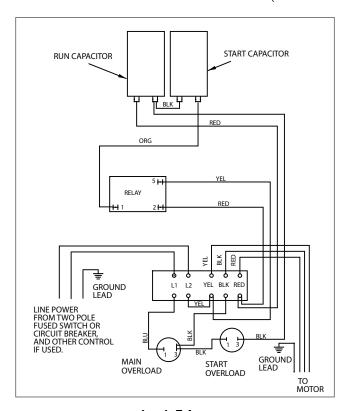
305 213 962 was 305 213 904

305 226 902 was 305 226 901

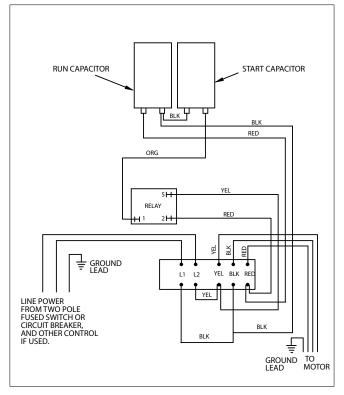
Control Box Wiring Diagrams

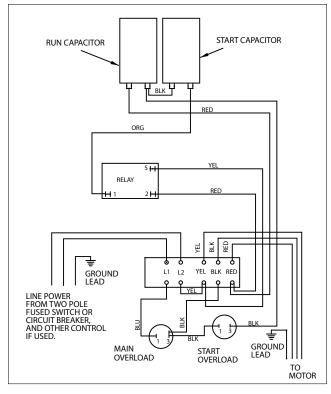


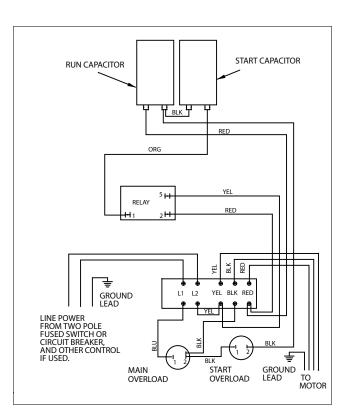
1/3 - 1 hp QD RELAY 280 10_ 4915 Sixth digit depends on hp

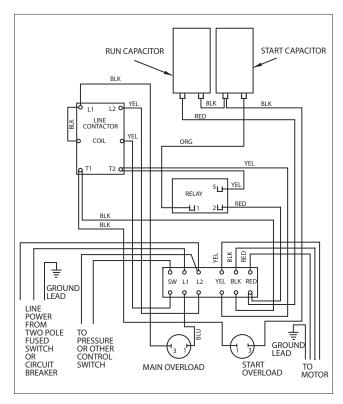


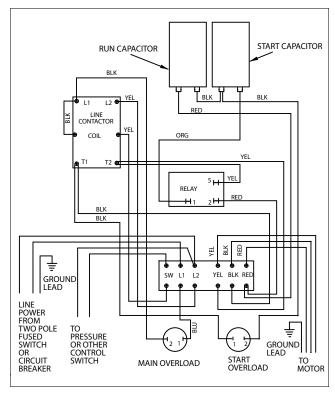
1/2 - 1 hp CRC QD RELAY 282 40_ 5015 Sixth digit depends on hp

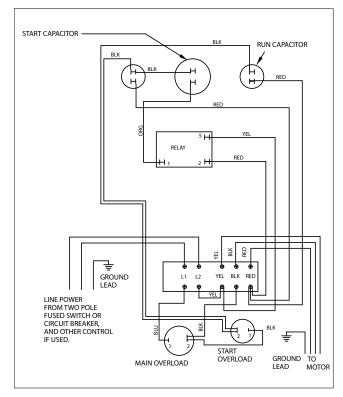

Single-Phase Motors & Controls

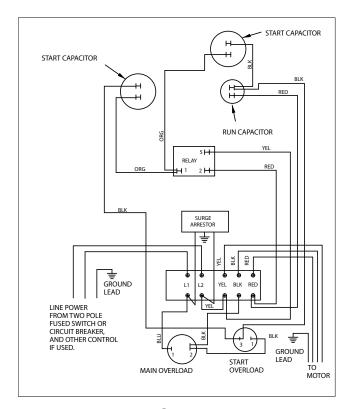

1 - 1.5 hp 282 300 8110 (Date Codes 11C19 & Older)

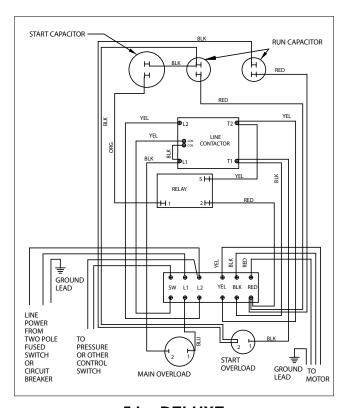

1 - 1.5 hp 282 300 8110 (Date Codes 11C19 & Newer)

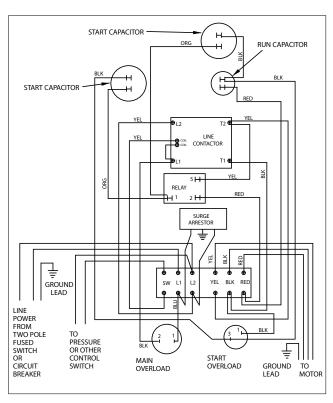

1 - 1.5 hp 282 300 8610

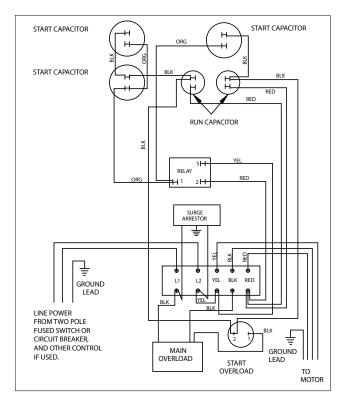

2 hp STANDARD 282 301 8110

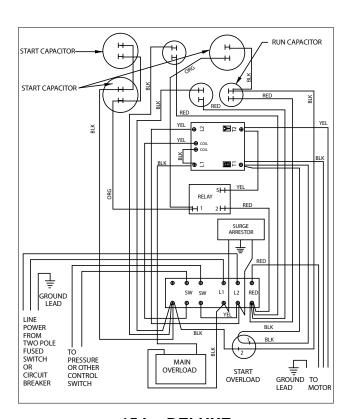

3 hp STANDARD 282 302 8110

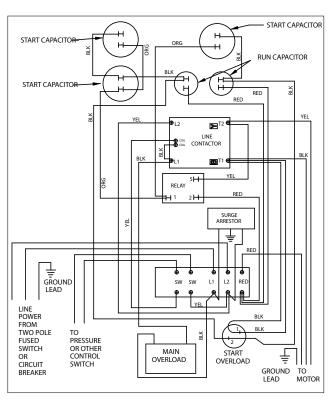

2 hp DELUXE 282 301 8310

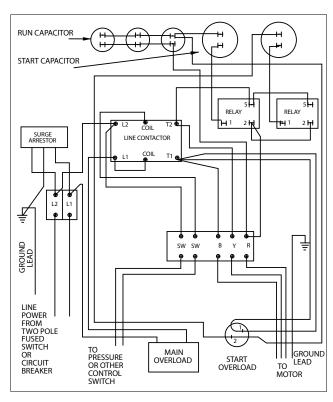

3 hp DELUXE 282 302 8310


5 hp STANDARD 282 113 8110


7.5 hp STANDARD 282 201 9210


5 hp DELUXE 282 113 8310 or 282 113 9310


7.5 hp DELUXE 282 201 9310


10 hp STANDARD 282 202 9210 or 282 202 9230

15 hp DELUXE 282 203 9310 or 282 203 9330

10 hp DELUXE 282 202 9230 or 282 202 9330

15 hp X-LARGE 282 203 9621

Pumptec-Plus

Pumptec-Plus is a pump/motor protection device designed to work on any 230 V single-phase induction motor (PSC, CSCR, CSIR, and split phase) ranging in size from 1/2 to 5 horsepower. Pumptec-Plus uses a micro-computer to continuously monitor motor power and line voltage to provide protection against dry well, water logged tank, high and low voltage and mud or sand clogging.

Pumptec-Plus - Troubleshooting **During Installation**

SYMPTOM	POSSIBLE CAUSE	SOLUTION	
Unit Appears Dead (No Lights)	No Power to Unit	Check wiring. Power supply voltage should be applied to L1 and L2 terminals of the Pumptec-Plus. In some installations the pressure switch or other control devices is wired to the input of the Pumptec-Plus. Make sure this switch is closed.	
Flashing Yellow Light	Unit Needs to Be Calibrated	Pumptec-Plus is calibrated at the factory so that it will overload on most pump systems when the unit is first installed. This overload condition is a reminder that the Pumptec-Plus unit requires calibration before use. See step 7 of the installation instructions.	
	Miscalibrated	Pumptec-Plus should be calibrated on a full recovery well with the maximum water flow. Flow restrictors are not recommended.	
Flashing Yellow Light During Calibration			
Flashing Red and Yellow Lights	Power Interruption	During the installation of Pumptec-Plus power may be switched on and off several times. If power is cycled more than four times within a minute Pumptec-Plus will trip on rapid cycle. Press and release the reset button to restart the unit.	
	Float Switch	A bobbing float switch may cause the unit to detect a rapid cycle condition on any motor or an overload condition on two-wire motors. Try to reduce water splashing or use a different switch.	
Flashing Red Light	High Line Voltage	The line voltage is over 253 volts. Check line voltage. Report high line voltage to the power company.	
	Unloaded Generator	If you are using a generator the line voltage may become too high when the generator unloads. Pumptec-Plus will not allow the motor to turn on again until the line voltage returns to normal. Overvoltage trips will also occur if line frequency drops too far below 60 Hz.	
Solid Red Light	Low Line Voltage	The line voltage is below 207 volts. Check line voltage.	
	Loose Connections	Check for loose connections which may cause voltage drops.	
	Loaded Generator	If you are using a generator the line voltage may become too low when the generator loads. Pumptec-Plus will trip on undervoltage if the generator voltage drops below 207 volts for more than 2.5 seconds. Undervoltage trips will also occur if the line frequency rises too far above 60 Hz.	

Pumptec-Plus

Pumptec-Plus - Troubleshooting After Installation

SYMPTOM	POSSIBLE CAUSE	SOLUTION	
	Dry Well	Wait for the automatic restart timer to time out. During the time out period the well should recover and fill with water. If the automatic reset timer is set to the manual position, then the reset button must be pressed to reactivate the unit.	
	Blocked Intake	Clear or replace pump intake screen.	
	Blocked Discharge	Remove blockage in plumbing.	
Solid Yellow Light	Check Valve Stuck	Replace check valve.	
	Broken Shaft	Replace broken parts.	
	Severe Rapid Cycling	Machine gun rapid cycling can cause an underload condition. See flashing red and yellow lights section below.	
	Worn Pump	Replace worn pump parts and recalibrate.	
	Stalled Motor	Repair or replace motor. Pump may be sand or mud locked.	
Yellow Flashing Light	Float Switch	A bobbing float switch can cause two-wire motors to stall. Arrange plumbing to avoid splashing water. Replace float switch.	
	Ground Fault	Check insulation resistance on motor and control box cable.	
	Low Line Voltage	The line voltage is below 207 volts. Pumptec-Plus will try to restart the motor every two minutes until line voltage is normal.	
Solid Red Light	Loose Connections	Check for excessive voltage drops in the system electrical connections (i.e. circuit breakers, fuse clips, pressure switch, and Pumptec-Plus L1 and L2 terminals). Repair connections.	
Flashing Red Light	Shing Red Light High Line Voltage The line voltage is over 253 volts. Check line voltage. Report high line voltage to the power company.		
Flashing Red and Yellow Lights	Rapid Cycle	The most common cause for the rapid cycle condition is a waterlogged tank. Check for a ruptured bladder in the water tank. Check the air volume control or snifter valve for proper operation. Check setting on the pressure switch and examine for defects.	
	Leaky Well System	Replace damaged pipes or repair leaks.	
	Stuck Check Valve	Failed valve will not hold pressure. Replace valve.	
	Float Switch	Press and release the reset button to restart the unit. A bobbing float switch may cause the unit to detect a rapid cycle condition on any motor or an overload condition on 2-wire motors. Try to reduce water splashing or use a different switch.	

QD Pumptec and Pumptec

QD Pumptec and Pumptec are load sensing devices that monitor the load on submersible pumps/motors. If the load drops below a preset level for a minimum of 4 seconds the QD Pumptec or the Pumptec will shut off the motor.

The QD Pumptec is designed and calibrated expressly for use on Franklin Electric 230 V 3-wire motors (1/3 to 1 hp.) The QD Pumptec must be installed in QD relay boxes.

The Pumptec is designed for use on Franklin Electric 2- and 3-wire motors (1/3 to 1.5 hp) 115 and 230 V. The Pumptec is not designed for jet pumps.

QD Pumptec & Pumptec - Troubleshooting

SYMPTOM	CHECKS OR SOLUTION
	A. Is the voltage less than 90% of nameplate rating?
	B. Are the pump and motor correctly matched?
If the QD Pumptec or Pumptec trips in about 4 seconds with some water delivery.	C. Is the QD Pumptec or Pumptec wired correctly? For the Pumptec check the wiring diagram and pay special attention to the positioning of the power lead (230 V or 115 V).
	D. For QD Pumptec is your system 230 V 60 Hz or 220 V 50 Hz?
	A. The pump may be airlocked. If there ia a check valve on top of the pump, put another section of pipe between the pump and the check valve.
If the QD Pumptec or Pumptec trips in about	B. The pump may be out of water.
4 seconds with no water delivery.	C. Check the valve settings. The pump may be dead-heading.
	D. Pump or motor shaft may be broken.
	E. Motor overload may be tripped. Check the motor current (amperage).
If the QD Pumptec or Pumptec will not timeout	A. Check switch position on side of circuit board on Pumptec . QD Pumptec check timer position on top/front of unit. Make sure the switch is not between settings.
and reset.	B. If the reset time switch is set to manual reset (position 0), QD Pumptec and Pumptec will not reset (turn power off for 5 sec. then back on to reset).
	A. Check voltage.
	B. Check wiring.
If your pump/motor will not run at all.	C. Remove the QD Pumptec from the control box. Reconnect wires in box to original state. If motor does not run the problem is not QD Pumptec. Bypass Pumptec by connecting L2 and motor lead with jumper. Motor should run. If not, the problem is not Pumptec.
	D. On Pumptec only check that Pumptec is installed between the control switch and the motor.
	A. Be sure you have a Franklin motor.
	B. Check wiring connections. On Pumptec is lead power (230 V or 115 V) connected to correct terminal? Is motor lead connected to correct terminal?
	C. Check for ground fault in the motor and excessive friction in the pump.
If your QD Pumptec or Pumptec will not trip when the pump breaks suction.	D. The well may be "gulping" enough water to keep QD Pumptec or Pumptec from tripping. It may be necessary to adjust the QD Pumptec or the Pumptec for these extreme applications. Call the Franklin Electric Service Hotline at 800-348-2420 for information.
	E. On Pumptec applications does the control box have a run capacitor? If so, Pumptec will not trip. (Except for Franklin 1.5 hp motors).
	A. Check for low voltage.
If your QD Pumptec or Pumptec chatters when running.	B. Check for waterlogged tank. Rapid cycling for any reason can cause the QD Pumptec or the Pumptec relay to chatter.
g-	C. On Pumptec make sure the L2 and motor wires are installed correctly. If they are reversed, the unit can chatter.

SubDrive2W, 75, 100, 150, 300, MonoDrive, & MonoDrive XT

The Franklin Electric SubDrive/MonoDrive Constant Pressure controller is a variable-speed drive that delivers water at a constant pressure.

WARNING: Serious or fatal electrical shock may result from failure to connect the motor, SubDrive/MonoDrive Controller, metal plumbing and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires. To reduce the risk of electrical shock, disconnect power before working on or around the water system. Capacitors inside the SubDrive/MonoDrive Controller can still hold a lethal voltage even after power has been removed. Allow 10 minutes for dangerous internal voltage to discharge. Do not use motor in swimming areas.

SubDrive2W, 75, 100, 150, 300, MonoDrive, & MonoDrive XT

SubDrive/MonoDrive Troubleshooting

Should an application or system problem occur, built-in diagnostics will protect the system. The "FAULT" light or digital display on the front of the SubDrive/MonoDrive Controller will flash a given number of times or display a number indicating the nature of the fault. In some cases, the system will shut itself off until corrective action is taken. Fault codes and their corrective actions are listed below. See SubDrive/MonoDrive Installation Manual for installation data.

NUMBER OF FLASHES OR DIGITAL DISPLAY	FAULT	POSSIBLE CAUSE	CORRECTIVE ACTION
1	MOTOR UNDERLOAD	- Overpumped well - Broken shaft or coupling - Blocked screen, worn pump - Air/gas locked pump - SubDrive not set properly for pump end	- Frequency near maximum with less than 65% of expected load, 42% if DIP #3 is "on" - System is drawing down to pump inlet (out of water) - High static, light loading pump - reset DIP switch #3 to "on" for less sensitivity if not out of water - Check pump rotation (SubDrive only) reconnect if necessary for proper rotation - Air/gas locked pump - if possible, set deeper in well to reduce - Verify DIP switches are set properly
2	UNDERVOLTAGE	- Low line voltage - Misconnected input leads	- Line voltage low, less than approximately 150 VAC (normal operating range = 190 to 260 VAC) - Check incoming power connections and correct or tighten if necessary - Correct incoming voltage - check circuit breaker or fuses, contact power company
3	LOCKED PUMP	Motor and/or pump misalignment Dragging motor and/or pump Abrasives in pump	Amperage above SFL at 10 Hz Remove and repair or replace as required
(MonoDrive & MonoDriveXT only)	INCORRECTLY WIRED	MonoDrive only Wrong resistance values on main and start	- Wrong resistance on DC test at start - Check wiring, check motor size and DIP switch setting, adjust or repair as needed
5	OPEN CIRCUIT	- Loose connection - Defective motor or drop cable - Wrong motor	- Open reading on DC test at start Check drop cable and motor resistance, tighten output connections, repair or replace as necessary, use "dry" motor to check drive functions, if drive will not run and exhibits underload fault replace drive
6	SHORT CIRCUIT	- When fault is indicated immediately after power-up, short circuit due to loose connection, defective cable, splice or motor	Amperage exceeded 50 amps on DC test at start or max amps during running Incorrect output wiring, phase to phase short, phase to ground short in wiring or motor If fault is present after resetting and removing motor leads, replace drive
	OVER CURRENT	- When fault is indicated while motor is running, over current due to loose debris trapped in pump	- Check pump
7	OVERHEATED DRIVE	High ambient temperature Direct sunlight Obstruction of airflow	Drive heat sink has exceeded max rated temperature, needs to drop below 85 °C to restart Fan blocked or inoperable, ambient above 125 °F, direct sunlight, air flow blocked Replace fan or relocate drive as necessary
8 (SubDrive300 only)	OVER PRESSURE	Improper pre-charge Valve closing too fast Pressure setting too close to relief valve rating	Reset the pre-charge pressure to 70% of sensor setting. Reduce pressure setting well below relief valve rating. Use next size larger pressure tank. Verify valve operation is within manufacturer's specifications. Reduce system pressure setting to a value less than pressure relief rating.
RAPID	INTERNAL FAULT	- A fault was found internal to drive	- Unit may require replacement. Contact your supplier.
9 (SubDrive2W only)	OVER RANGE (Values outside normal operating range)	- Wrong hp/voltage - Internal fault	- Verify motor hp and voltage - Unit may require replacement. Contact your supplier.

SubMonitor

SubMonitor Troubleshooting

FAULT MESSAGE	PROBLEM/CONDITION	POSSIBLE CAUSE
SF Amps Set Too High SF Amps setting above 359 Amps.		Motor SF Amps not entered.
Phase Reversal	Reversed incoming voltage phase sequence.	Incoming power problem.
	Normal line current.	Wrong SF Max Amps setting.
Underload	Low line current.	Over pumping well. Clogged pump intake. Closed valve. Loose pump impeller. Broken shaft or coupling. Phase loss.
Overload	Normal line current.	Wrong SF Max Amps setting.
	High line current.	High or low line voltage. Ground fault. Pump or motor dragging. Motor stalled or bound pump.
Overheat	Motor temperature sensor has detected excess motor temperature.	High or low line voltage. Motor is overloaded. Excessive current unbalance. Poor motor cooling. High water temperature. Excessive electrical noise (VFD in close proximity).
Unbalance	Current difference between any two legs exceeds programmed setting.	Phase loss. Unbalanced power supply. Open Delta transformer.
Overvoltage Line voltage exceeds programmed setting.		Unstable power supply.
Undervoltage	Line voltage below programmed setting.	Poor connection in motor power circuit. Unstable or weak power supply.
False Starts	Power has been interrupted too many times in a 10 second period.	Chattering contacts. Loose connections in motor power circuit. Arcing contacts.

Continued on next page

Subtrol-Plus (Obsolete - See SubMonitor)

Subtrol-Plus - Troubleshooting After Installation

SYMPTOM	POSSIBLE CAUSE OR SOLUTION
Subtrol-Plus Dead	When the Subtrol-Plus reset button is depressed and released, all indicator lights should flash. If line voltage is correct at the Subtrol-Plus L1, L2, L3 terminals and the reset button does not cause lights to flash, Subtrol-Plus receiver is malfunctioning.
Green Off Time Light Flashes	The green light will flash and not allow operation unless both sensor coils are plugged into the receiver. If both are properly connected and it still flashes, the sensor coil or the receiver is faulty. An ohmmeter check between the two center terminals of each sensor coil connected should read less than 1 ohm, or coil is faulty. If both coils check good, receiver is faulty.
Green Off Time Light On	The green light is on and the Subtrol-Plus requires the specified off time before the pump can be restarted after having been turned off. If the green light is on except as described, the receiver is faulty. Note that a power interruption when the motor is running will initiate the delay function.
Overheat Light On	This is a normal protective function which turns off the pump when the motor reaches maximum safe temperatures. Check that amps are within the nameplate maximum on all three lines, and that the motor has proper water flow past it. If overheat trip occurs without apparent motor overheating, it may be the result of an arcing connection somewhere in the circuit or extreme noise interference on the power lines. Check with the power company or Franklin Electric. A true motor overheat trip will require at least five minutes for a motor started cold. If trips do not conform to this characteristic, suspect arcing connections, power line noise, ground fault, or SCR variable speed control equipment.
Overload Light On	This is a normal protective function, protecting against an overload or locked pump. Check the amps in all lines through a complete pumping cycle, and monitor whether low or unbalanced voltage may be causing high amps at particular times. If overload trip occurs without high amps, it may be caused by a faulty rating insert, receiver, or sensor coil. Recheck that the insert rating matches the motor. If it is correct, carefully remove it from the receiver by alternately lifting sides with a knife blade or thin screwdriver, and make sure it has no pins bent over. If the insert is correct and its pins are okay, replace receiver and/or sensor coils.
Underload Light On	 This is a normal protective function. A. Make sure the rating insert is correct for the motor. B. Adjusting the underload setting as described to allow the desired range of operating conditions. Note that a DECREASE in underload setting is required to allow loading without trip. C. Check for drop in amps and delivery just before trip, indicating pump breaking suction, and for unbalanced line current. D. With the power turned off, recheck motor lead resistance to ground. A grounded lead can cause underload trip.

Subtrol-Plus (Obsolete - See SubMonitor)

Subtrol-Plus - Troubleshooting After Installation (Continued)

SYMPTOM	POSSIBLE CAUSE OR SOLUTION	
Tripped Light On	Whenever the pump is off as a result of Subtrol-Plus protective function, the red tripped light is on. A steady light indicates the Subtrol-Plus will automatically allow the pump to restart as described, and a flashing light indicates repeated trips, requiring manual reset before the pump can be restarted. Any other red light operation indicates a faulty receiver. One-half voltage on 460 V will cause tripped light on.	
Control Circuit Fuse Blows	With power turned off, check for a shorted contactor coil or a grounded control circuit lead. The coil resistance should be at least 10 ohms and the circuit resistance to panel frame over 1 megohm. A standard or delay-type 2 amp fuse should be used.	
Contactor Will Not Close	If proper voltage is at the control coil terminals when controls are operated to turn the pump on, but the contactor does not close, turn off power and replace the coil. If there is no voltage at the coil, trace the control circuit to determine if the fault is in the Subtrol-Plus receiver, fuse, wiring, or panel operating switches. This tracing can be done by first connecting a voltmeter at the coil terminals, and then moving the meter connections step by step along each circuit to the power source, to determine at which component the voltage is lost.	
	With the Subtrol-Plus receiver powered up, with all leads disconnected from the control terminals and with an ohmmeter set at RX10, measure the resistance between the control terminals. It should measure 100 to 400 ohms. Depress and hold in the reset button. The resistance between the control terminals should measure close to infinity.	
Contactor Hums or Chatters	Check that coil voltage is within 10% of rated voltage. If voltage is correct and matches line voltage, turn off power and remove the contactor magnetic assembly and check for wear, corrosion, and dirt. If voltage is erratic or lower than line voltage, trace the control circuit for faults similar to the previous item, but looking for a major drop in voltage rather than its complete loss.	
Contactor Opens When Start Switch is Released	Check that the small interlocks switch on the side of the contactor closes when the contactor closes. If the switch or circuit is open, the contactor will not stay closed when the selector switch is in HAND position.	
Contactor Closes But Motor Doesn't Run	Turn off power. Check the contactor contacts for dirt, corrosion, and proper closing when the contactor is closed by hand.	
Signal Circuit Terminals Do Not Energize	With the Subtrol-Plus receiver powered up and all leads disconnected from the signal terminals, with an 0hmmeter set at RX10, measure the resistance between the signal terminals. Resistance should measure close to infinite. Depress and hold in the reset button. The resistance between the signal terminals should measure 100 to 400 ohms.	

Milliamp

Maximum

mΑ

max

Α	Amp or amperage	MCM	Thousand Circular Mils
AWG	American Wire Gauge	mm	Millimeter
BJT	Bipolar Junction Transistor	MOV	Metal Oxide Varister
°C	Degree Celsius	NEC	National Electrical Code
СВ	Control Box	NEMA	National Electrical Manufacturer
CRC	Capacitor Run Control		Association
DI	Deionized	Nm	Newton Meter
Dv/dt	Rise Time of the Voltage	NPSH	Net Positive Suction Head
EFF	Efficiency	OD	Outside Diameter
°F	Degree Fahrenheit	OL	Overload
FDA	Federal Drug Administration	PF	Power Factor
FL	Full Load	psi	Pounds per Square Inch
ft	Foot	PWM	Pulse Width Modulation
ft-lb	Foot Pound	QD	Quick Disconnect
ft/s	Feet per Second	R	Resistance
GFCI	Ground Fault Circuit Interrupter	RMA	Return Material Authorization
gpm	Gallon per Minute	RMS	Root Mean Squared
HERO	High Efficiency Reverse Osmosis	rpm	Revolutions per Minute
hp	Horsepower	SF	Service Factor
Hz	Hertz	SFhp	Service Factor Horsepower
ID	Inside Diameter	S/N	Serial Number
IGBT	Insulated Gate Bipolar Transistor	TDH	Total Dynamic Head
in	Inch	UNF	Fine Thread
kVA	Kilovolt Amp	V	Voltage
kVAR	Kilovolt Amp Rating	VAC	Voltage Alternating Current
kW	Kilowatt (1000 watts)	VDC	Voltage Direct Current
L1, L2, L3	,	VFD	Variable Frequency Drive
lb-ft	Pound Feet	W	Watts
L/min	Liter per Minute	XFMR	Transformer
<u> </u>	F or	\/ D	W - D-16-

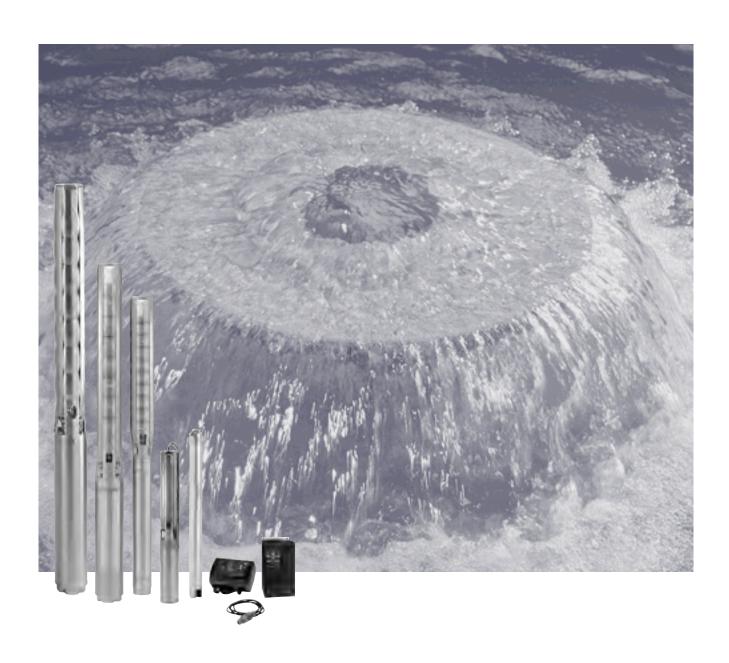
Y-D

Ω

Wye-Delta

ohms

TOLL FREE HELP FROM A FRIEND 800-348-2420 • 260-827-5102 (fax)


Phone Franklin's toll free SERVICE HOTLINE for answers to your pump and motor installation questions. When you call, a Franklin expert will offer assistance in troubleshooting and provide immediate answers to your system application questions. Technical support is also available online. Visit our website at:

www.franklin-electric.com

SQ, SQE, SP

Stainless steel submersible pumps and accessories 60 Hz

Mission

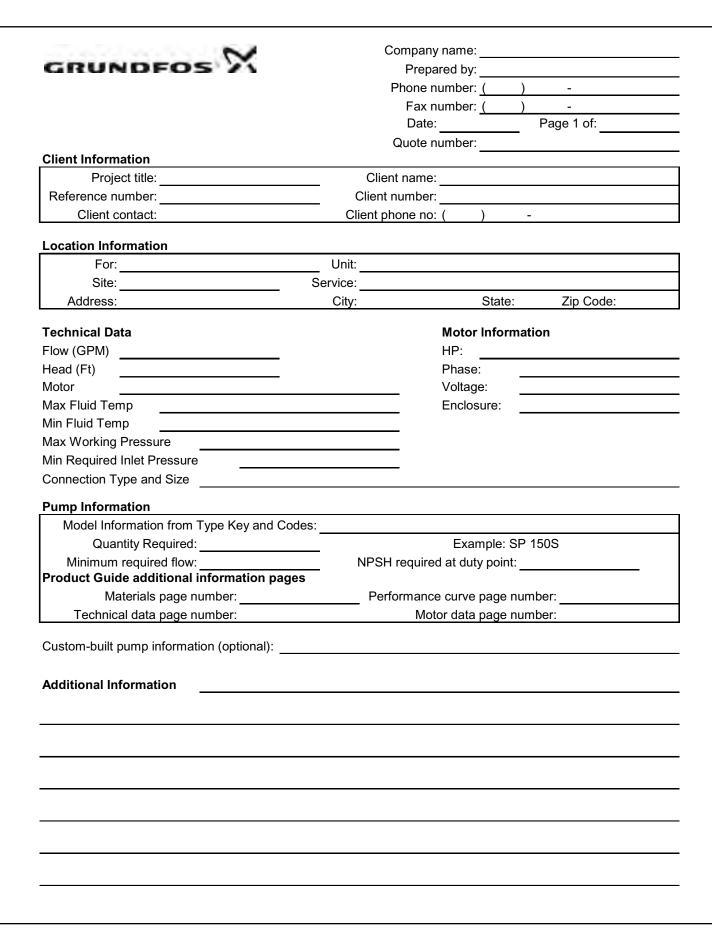
- to successfully develop, produce, and sell high quality pumps and pumping systems worldwide, contributing to a better quality of life and healthier environment

Bjerringbro, Denmark

Fresno, California

Olathe, Kansas

Monterrey, Mexico


Allentown, Pennsylvania

Oakville, Ontario

- One of the 3 largest pump companies in the world with over 11,000 employees worldwide
- · World headquarters in Denmark
- North American headquarters in Kansas City Manufacturing in Fresno, California
- 60 companies in 40 countries
- More than 10 million pumps produced annually worldwide
- North American companies operating in USA, Canada and Mexico
- Continuous reinvestment in growth and development enables the company to BE responsible, THINK ahead, and INNOVATE

Submittal Data Sheet

GRUNDFOS STAINLESS STEEL PUMPS

FOR GROUNDWATER APPLICATIONS

TABLE OF CONTENTS

Stainless Steel Submersible Pumps Features & Benefits SP, SQ/SQE Type Keys	. SECTION	1
SmartFlo™ SQE 3-Inch Performance Curves	. SECTION	2
SmartFlo™ SQE 3-Inch System Sizing	. SECTION	2-18
SmartFlo™ CU 321 4-Inch Performance Curves	. SECTION	2-19
SmartFlo™ CU 321 4-Inch System Sizing	. SECTION	2-29
SmartFlo™ Technical Data & Accessories	. SECTION	3-7
SQ 3-Inch Performance Curves	. SECTION	3
Grundfos 4-Inch Stainless Steel Submersible Pumps Sizing & Selection Charts Performance Curves & Technical Data	. SECTION	4
Grundfos 6, 8 & 10-Inch Stainless Steel Submersible Pumps Performance Curves & Technical Data	. SECTION	5
Groundwater Accessories	. SECTION	5-38
Technical & Pump Selection Information	. SECTION	6
Submittal Data Sheet	. SECTION	6-12

GRUNDFOS STAINLESS STEEL PUMPS

STAINLESS STEEL CONSTRUCTION

Grundfos submersibles feature rugged and durable stainless steel construction for all vital pump components. Impellers, diffusers, shafts, vanes, cable guards, couplings...even the nuts and bolts are stainless steel. Grundfos' 4-inch pump systems include the stainless steel pump, motor, and control box and are delivered ready to install.

Computer-aided design and manufacturing techniques ensure that each *pump* is built to exacting tolerance and performs to industry-leading standards. Grundfos state-of-the-art production equipment includes extensive use of robotics and advanced quality assurance procedures. You can rely on quality Grundfos' groundwater products for outstanding pump performance and best value.

SUBMERSIBLES

4-INCH and LARGER WELLS

The 4-inch submersibles line covers all flow requirements from 1.2 to 95 gpm and heads to 2000 feet. This broad range ensures proper pump selection for all domestic groundwater system applications.

6, 8, & 10-INCH and LARGER WELLS

For high flow requirements, this submersible line includes 6, 8, and 10-inch models for flows up to 1,400 gpm and heads to 2100 feet.

Grundfos offers 18 models of submersible pumps designed for domestic and industrial applications with flow rates from five to 1,400 gpm. Horsepower range extends from 1/3 hp to 250 hp. These pumps are marketed through more than 300 distributors and nearly 2,000 dealers nationwide.

THE STAINLESS STEEL ADVANTAGE

TOP PUMP PERFORMANCE

Grundfos pumps are built to work hard with every component designed for maximum hydraulic efficiency. With the inherently smooth surfaces of fabricated stainless steel, peak performance is maintained over many years of service.

RELIABLE OPERATION

Highly advanced design and manufacturing techniques minimize the number of moving parts. This, plus Grundfos' use of rugged stainless steel construction, make GRUNDFOS groundwater pumps the toughest, most reliable pumps on the market. With Grundfos you can rely on getting the water you need, when you need it.

LONG PUMP LIFE

Stainless steel is the best available material to resist wear and corrosion in water system applications. Compare Grundfos' stainless steel construction to the best the other manufactures have to offer. Grundfos stainless steel pumps are designed to operate efficiently and effectively for a long, long time.

SQ/SQE SUBMERSIBLE PUMPS

3-Inch SQ/SQE Submersible Well Pumps 3-Inch and Larger Wells

SQ/SQE pumps are suitable for both continuous and intermittent operation for a variety of applications:

- Domestic water supply
- · Small waterworks
- Irrigation
- Tank applications

SQ, SQE pumps offer the following features:

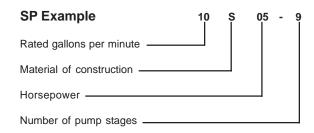
- · Dry-Run protection
- · High efficiency pump and motor
- · Protection against up-thrust
- Soft-start
- Over-voltage and under-voltage protection
- Overload protection
- · Over-temperature protection
- · High starting torque

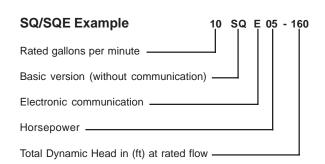
Additionally, the SQE pumps offer:

- Constant pressure control
- · Variable speed
- · Electronic control and communication

The SQ and SQE pump models incorporate an innovative motor design. With the use of permanent-magnet technology within the motor, the SQ/SQE pumps deliver unmatched performance. By combining permanent-magnet motors and Grundfos's own micro frequency converter, we are now able to control and communicate with the pump in ways never before possible. A few of the features that

come out of this combination are Constant Pressure Control, Soft-Start, and integrated Dry-Run protection. These are just a few of the many features that the SQ/SQE pumps can offer.

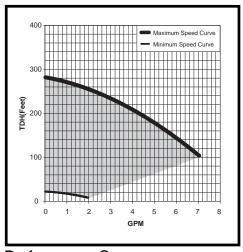

The SQ pump models operate at a constant speed much like today's conventional pumps. The difference between it and traditional pumps is you get all the

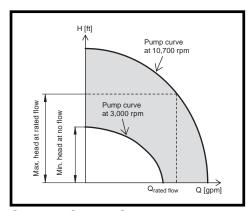


benefits of an electronically controlled permanentmagnet motor that cannot be accomplished with a conventional induction motor. The SQ pumps are available for single phase power. They use a simple 2-wire design making installation easy.

The SQE uses the Grundfos "Smart Motor". Like the SQ model, we still use the high efficiency permanent magnet motor, but we give this motor the ability to communicate. The "Smart Motor" communicates via the CU301 status box through the power leads. It is not necessary to run any additional wires down the well. By being able to communicate with the pump you can have Constant Pressure Control and the ability to change the pump performance while the pump is installed in the well. Like the SQ motor, this is also a 2-wire motor designed for single-phase operation.

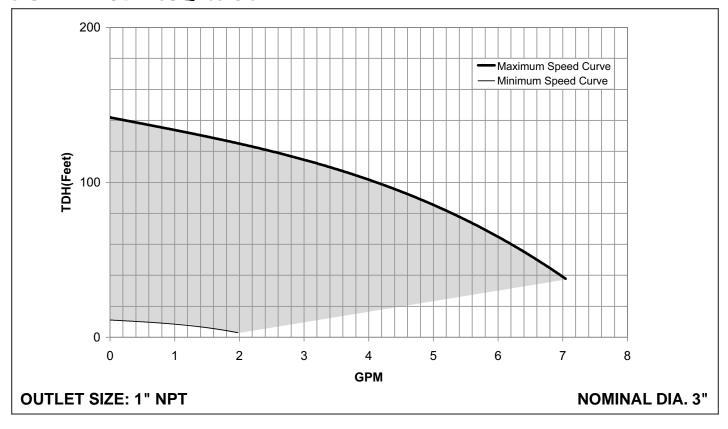
TYPE KEYS

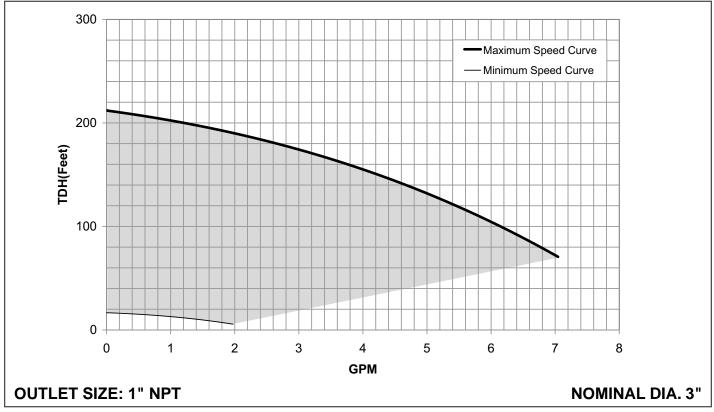



Performance Curves and Technical Data

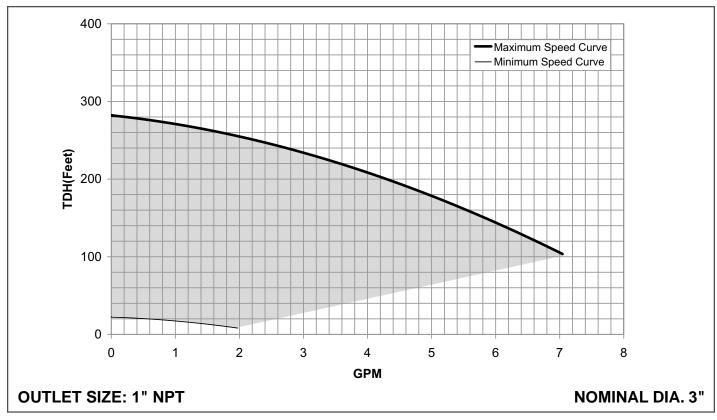
For 3-Inch & larger well applications

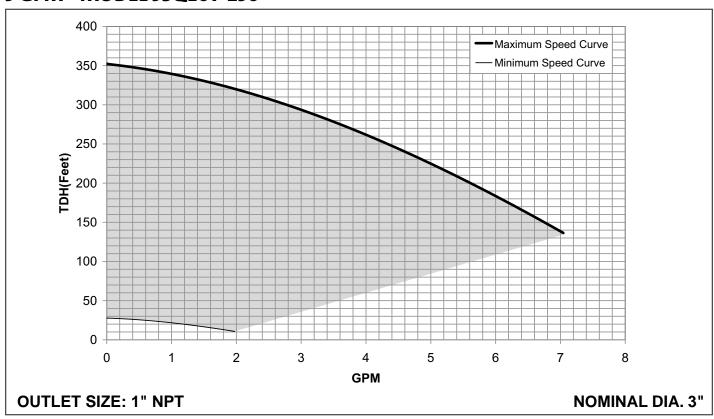
Performance Curves

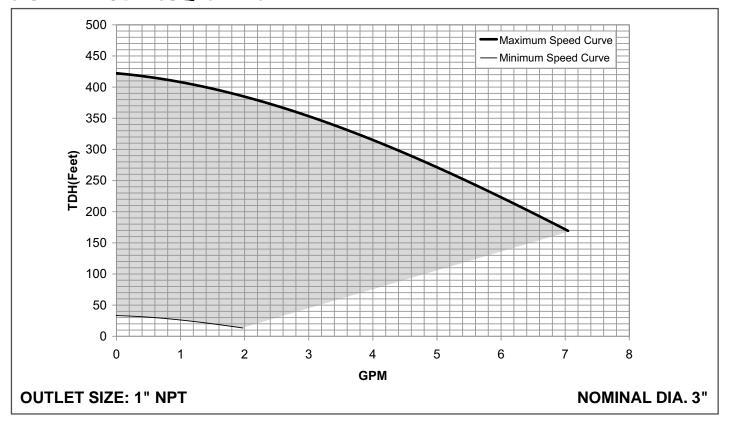

System Sizing Guide

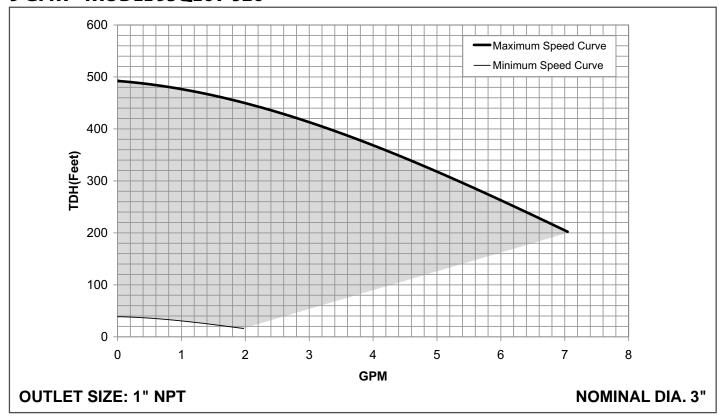

WATER TANK

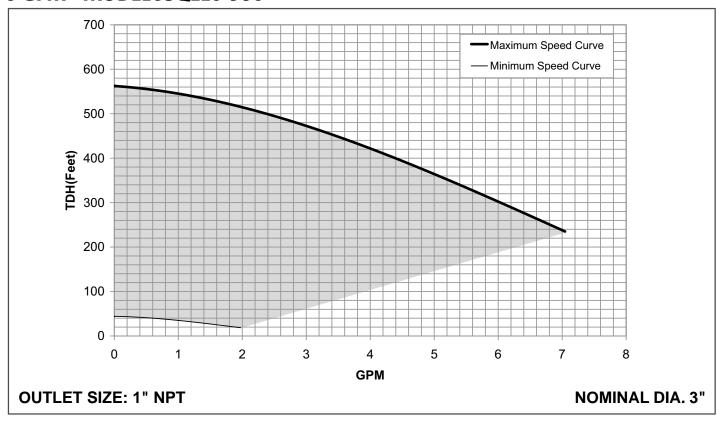
2 gallon tank min. for SQE 4 gallon tank min. for CU 321

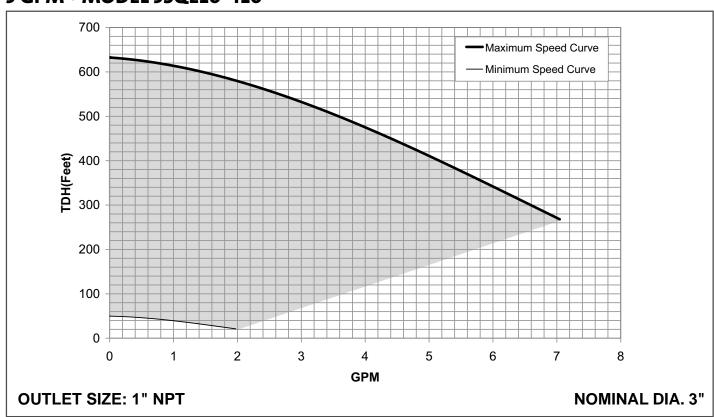

5 GPM • MODEL 5SQE05-90

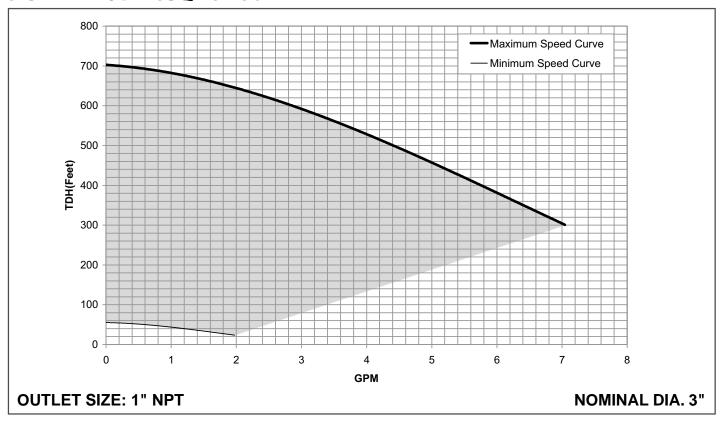

5 GPM • MODEL 5SQE05-140

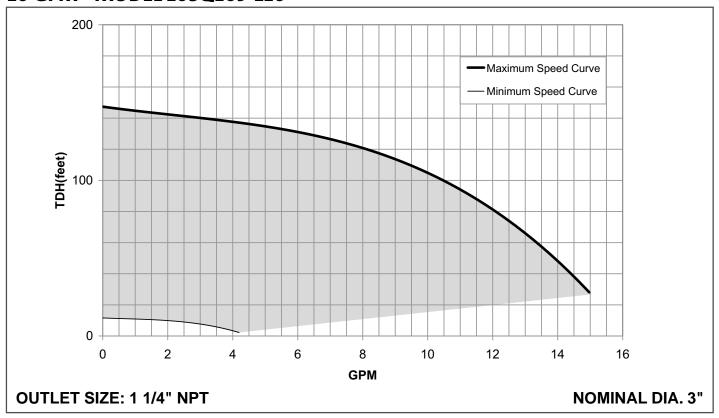

5 GPM • MODEL 5SQE05-180

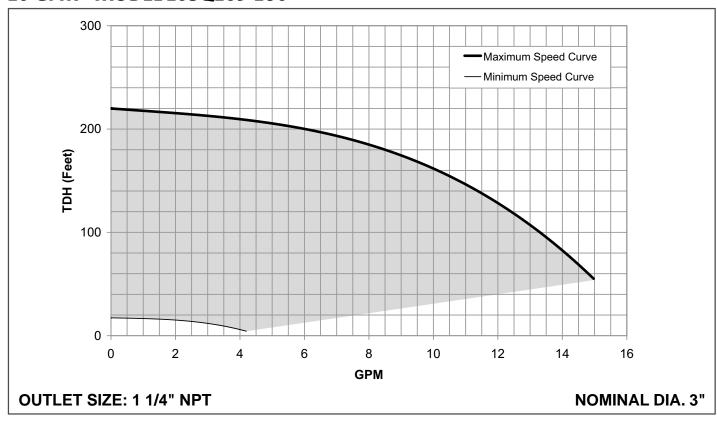

5 GPM • MODEL 5SQE07-230

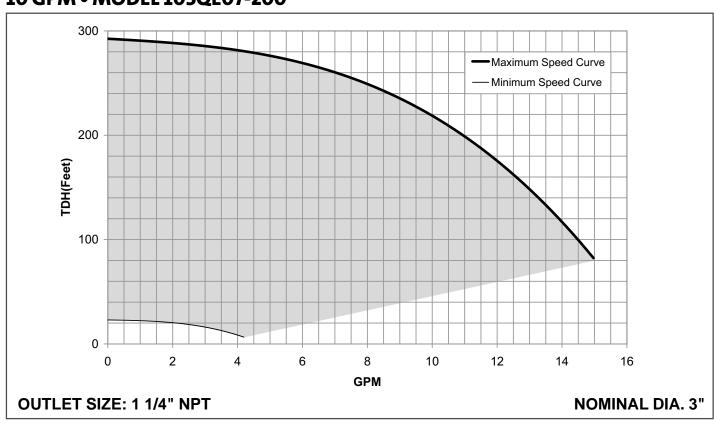

5 GPM • MODEL 5SQE07-270

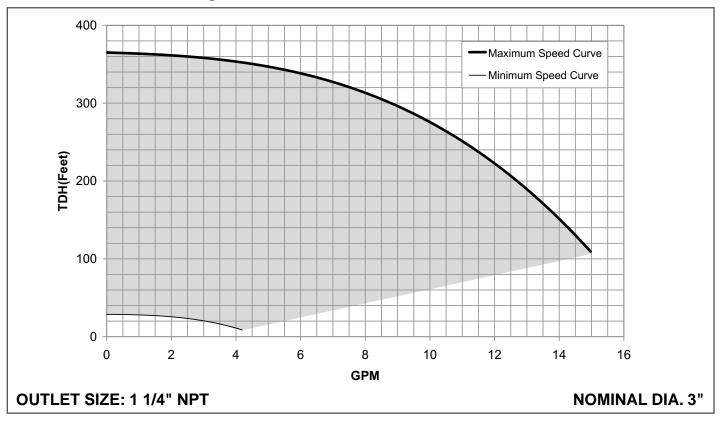

5 GPM • MODEL 5SQE07-320

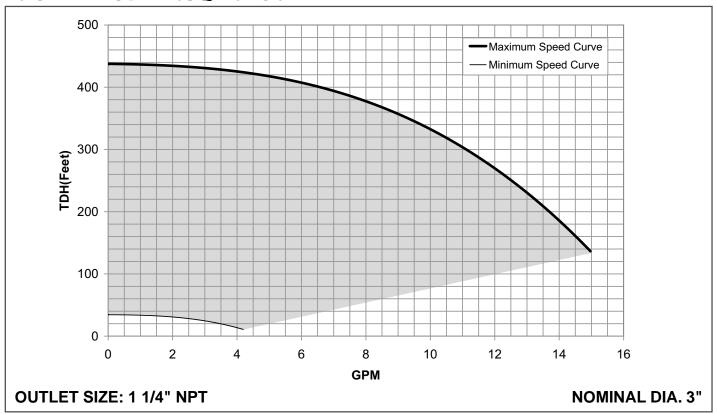

5 GPM • MODEL 5SQE10-360

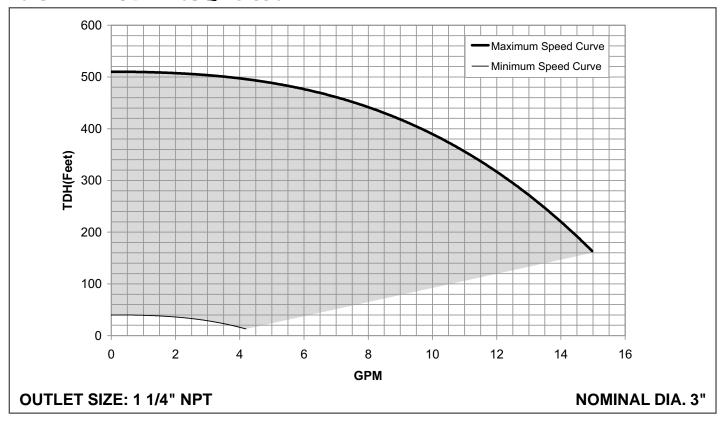

5 GPM • MODEL 5SQE10-410

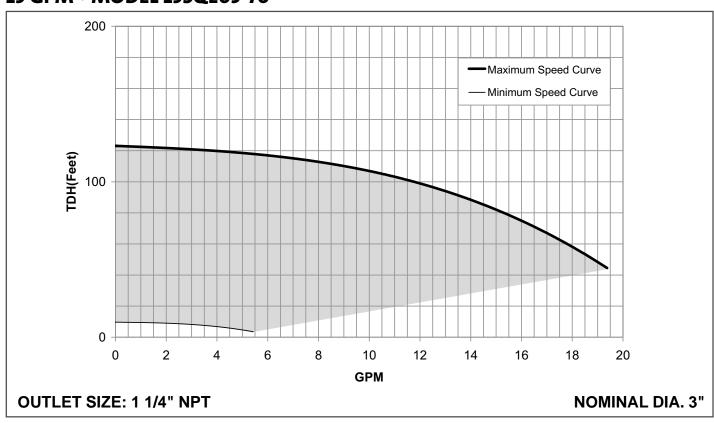

5 GPM • MODEL 5SQE15-450

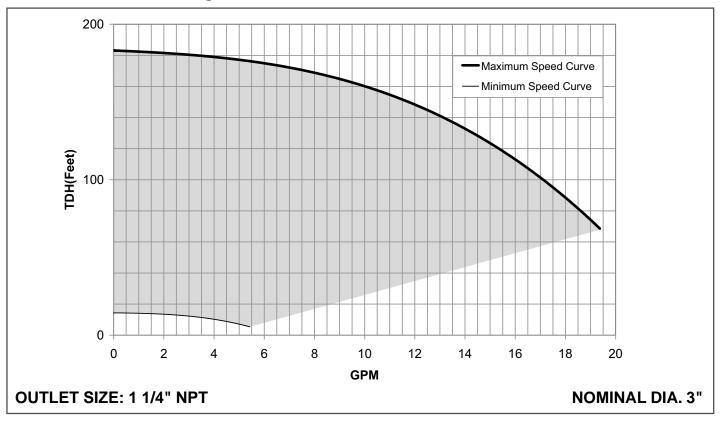

10 GPM • MODEL 10SQE05-110

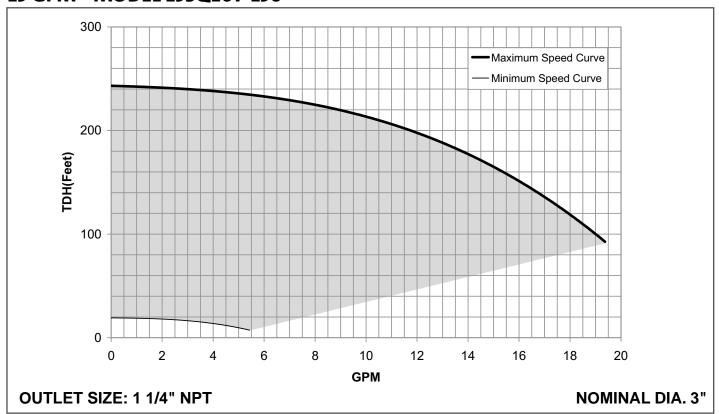

10 GPM • MODEL 10SQE05-160

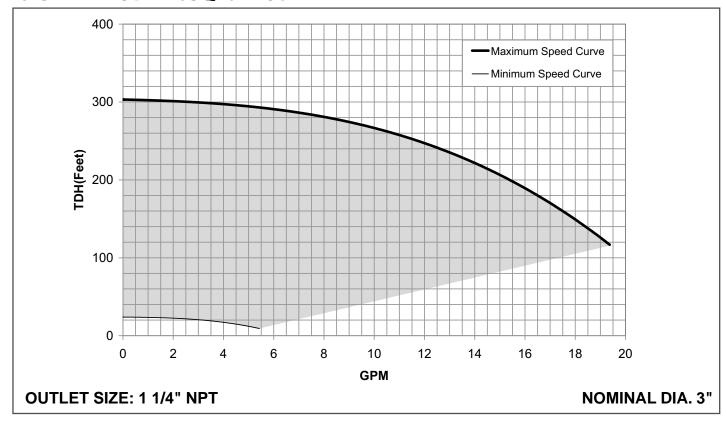

10 GPM • MODEL 10SQE07-200

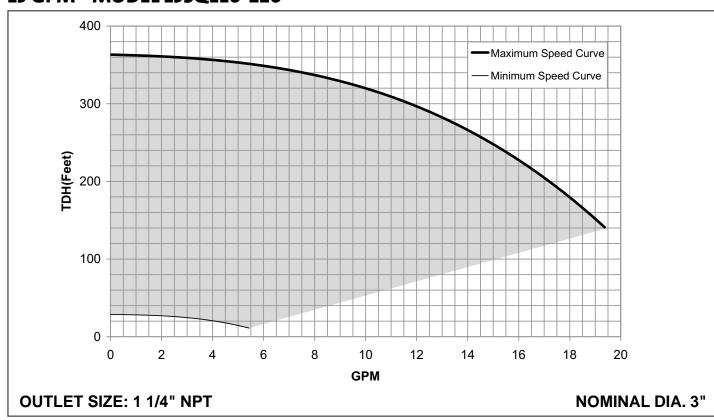

10 GPM • MODEL 10SQE07-240

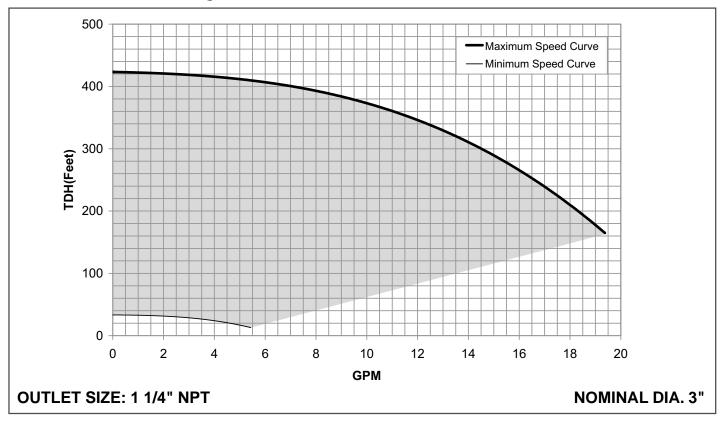

10 GPM • MODEL 10SQE10-290

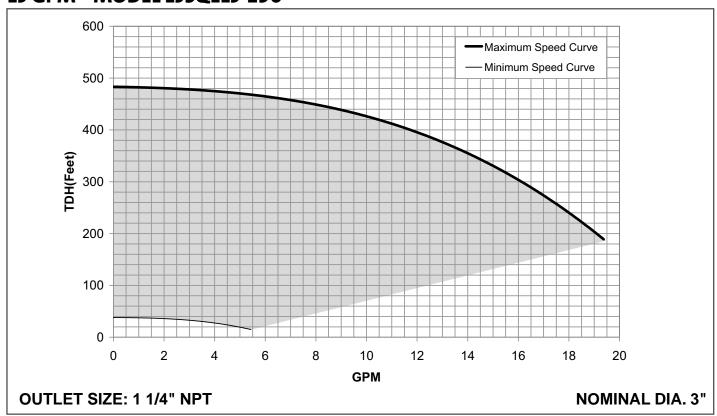

10 GPM • MODEL 10SQE15-330

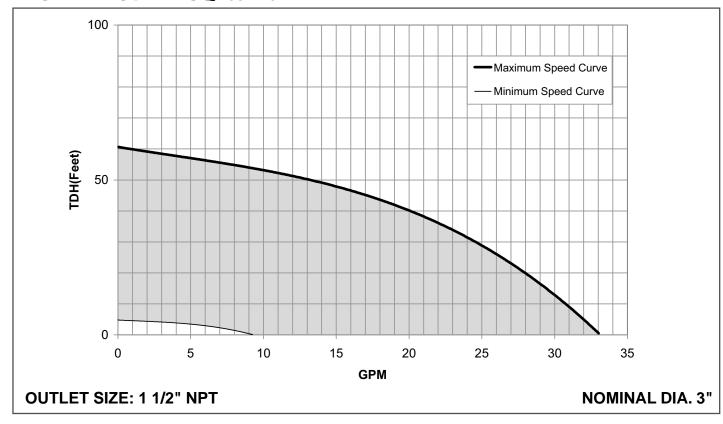

15 GPM • MODEL 15SQE05-70

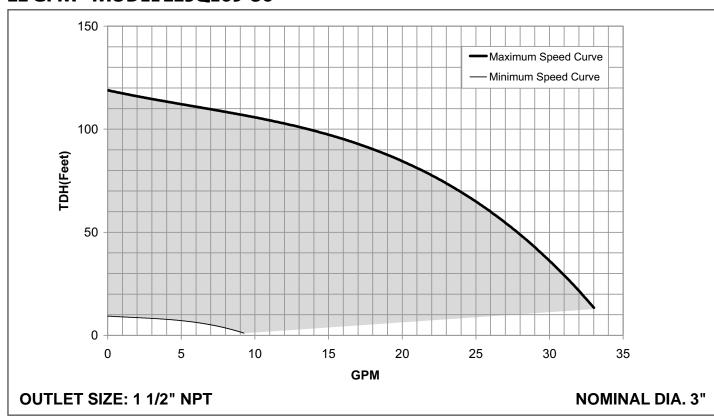

15 GPM • MODEL 15SQE05-110

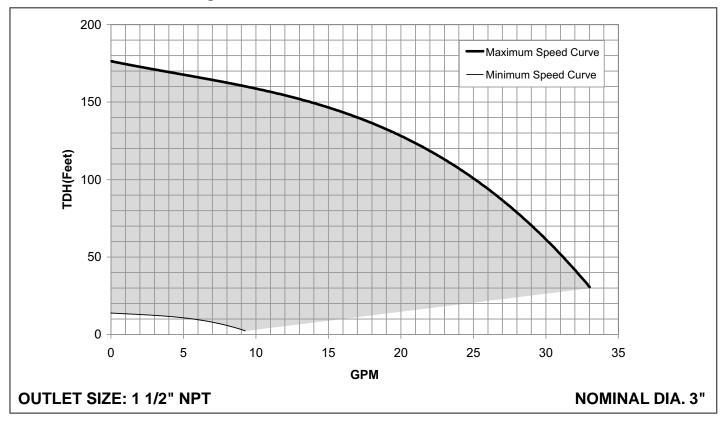

15 GPM • MODEL 15SQE07-150

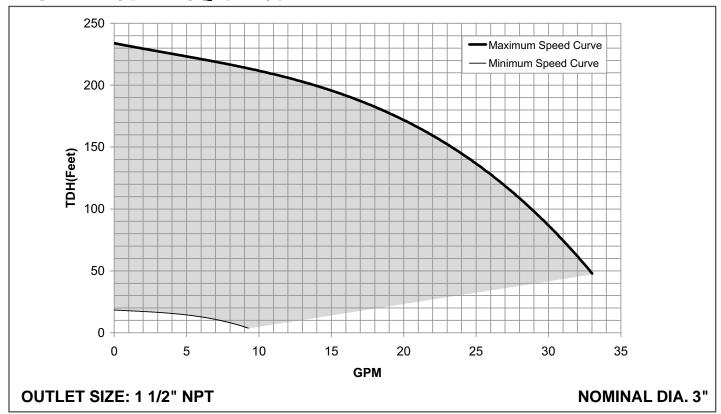

15 GPM • MODEL 15SQE07-180

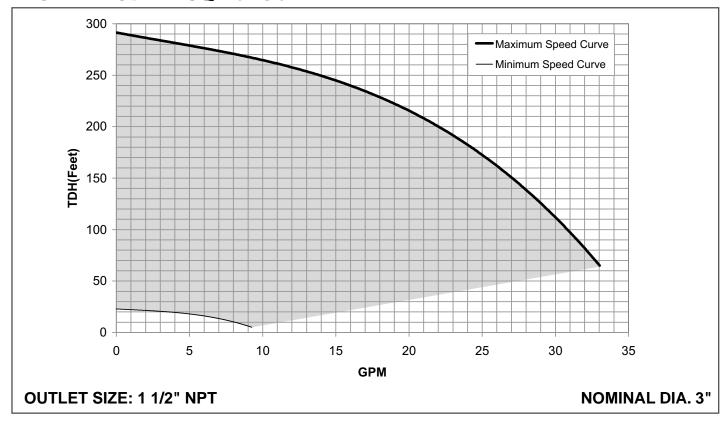

15 GPM • MODEL 15SQE10-220

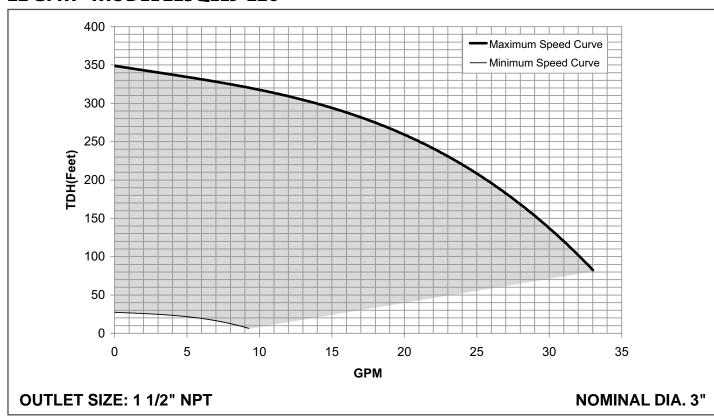

15 GPM • MODEL 15SQE10-250

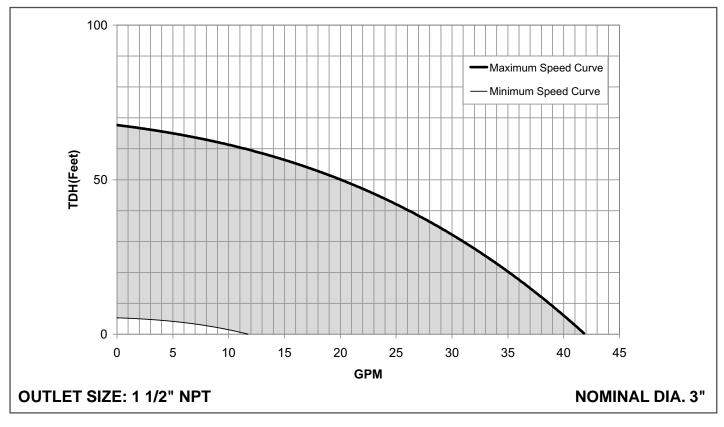

15 GPM • MODEL 15SQE15-290

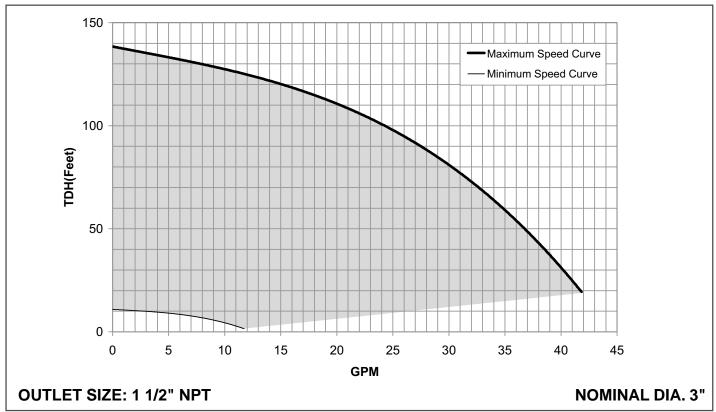

22 GPM • MODEL 22SQE05-40

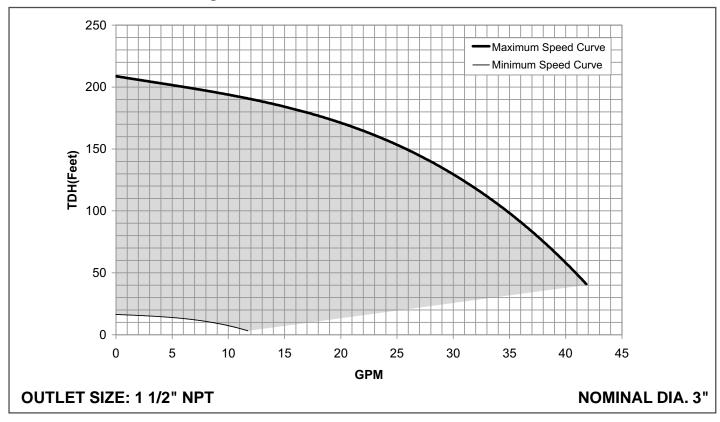

22 GPM • MODEL 22SQE05-80


22 GPM • MODEL 22SQE07-120


22 GPM • MODEL 22SQE07-160


22 GPM • MODEL 22SQE10-190


22 GPM • MODEL 22SQE15-220


30GPM • MODEL 30SQE05-40

30 GPM • MODEL 30SQE07-90

30 GPM • MODEL 30SQE10-130

Step 1

Calculate minimum head requirements at no flow conditions:

Col. 1

System Sizing Matrix

Hmax (required) = dynamic head + system pressure (in feet) + above grade elevation + friction loss.

Step 2

Select pump from chart as follows:

- Choose model family based on the desired flow rate. i.e. 15SQE for a flow rate of 15gpm
- > Select the first model with a value in Column 2 greater than the Hmax calculated in Step 1

Col. 2

287

328

36

77

117

159

200

240

33

82

126

➤ For example: the choice for a 22gpm model with an Hmax of 140' would be the 22SQE-160.

Double check your selection in the performance curves found in the previous pages of this book.

Pump Type Model B	Shutoff Head (0 GPM) @ 3000 RPM Min. Speed	Head @ Rated GPM @ 10700 RPM Max. Speed
	TDH(Feet)	TDH(Feet)
5SQE-90	11	86
5SQE-140	17	131
5SQE-180	22	177
5SQE-230	28	222
5SQE-270	34	270
5SQE-320	39	315
5SQE-360	45	360
5SQE-410	51	405
5SQE-450	56	450
10SQE-110	12	105
10SQE-160	17	164
10SQE-200	23	215
10SQE-240	29	267
10SQE-290	34	328
10SQE-330	40	390
15SQE-70	10	75
15SQE-110	14	123
15SQE-150	19	164
15SQE-180	24	205
15SQE-220	29	246

33

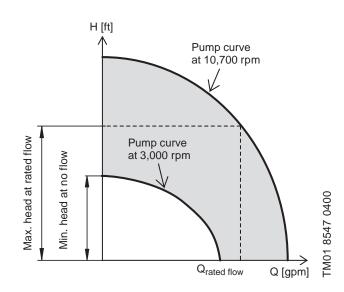
38

5

9

14

18


23

27

5

11

16

Note: All calculated head requirements must lie between the selected pump models minimum and maximum speed curves.

15SQE-250

15SQE-290

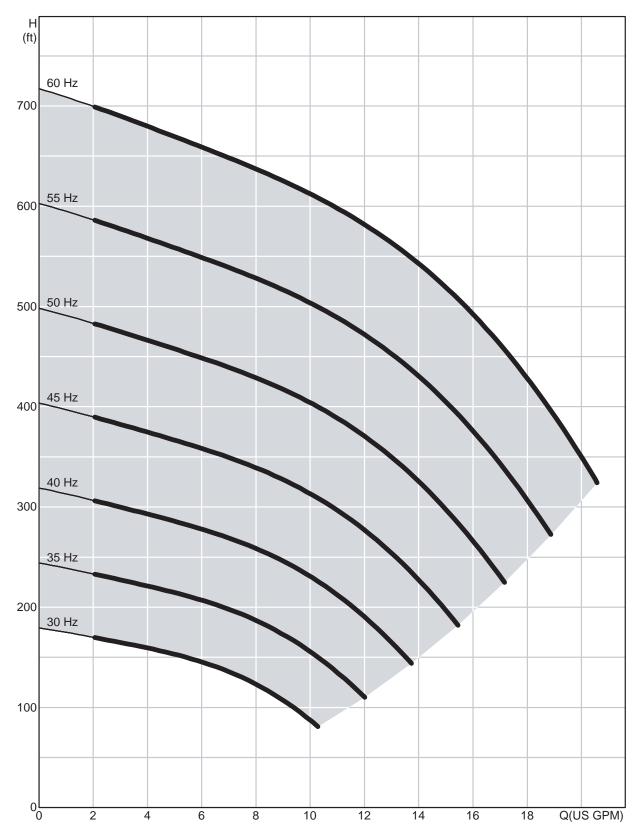
22SQE-40

22SQE-80

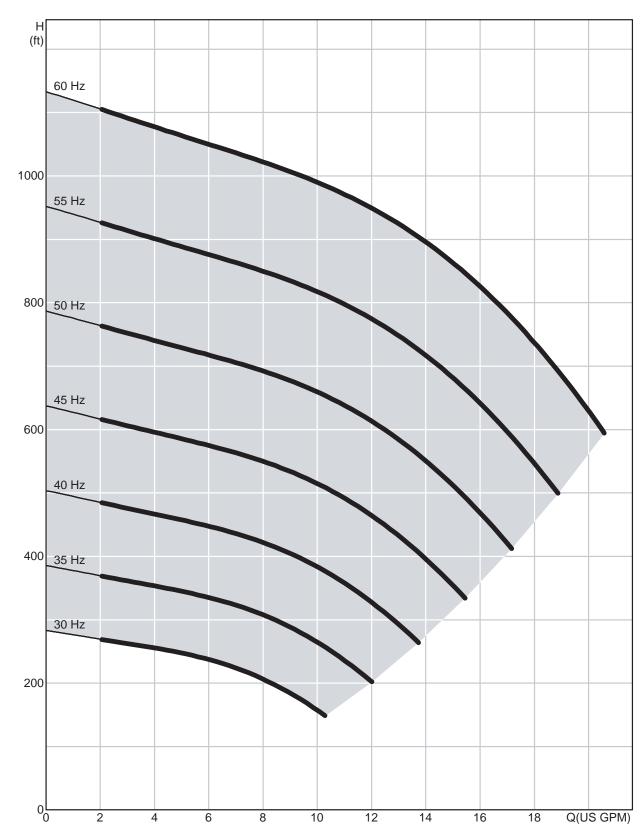
22SQE-120

22SQE-160

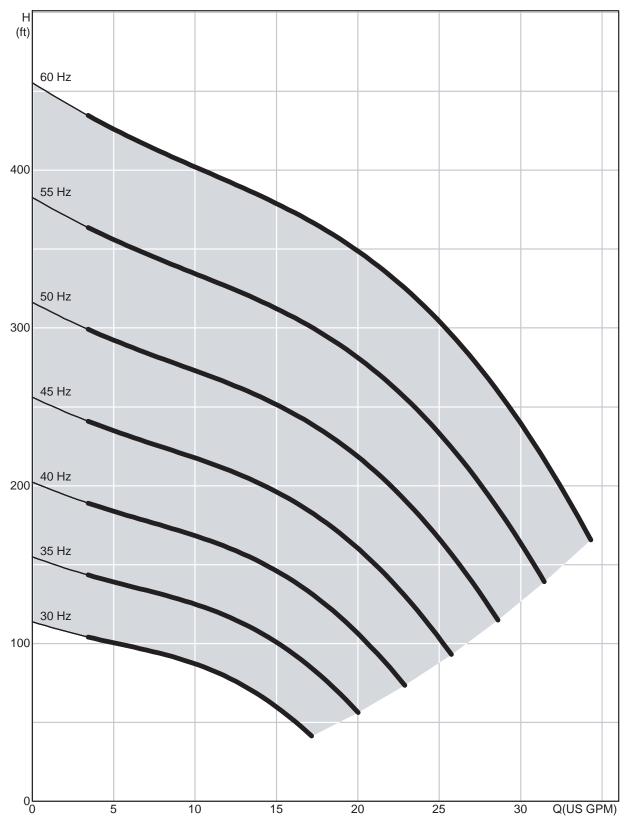
22SQE-190

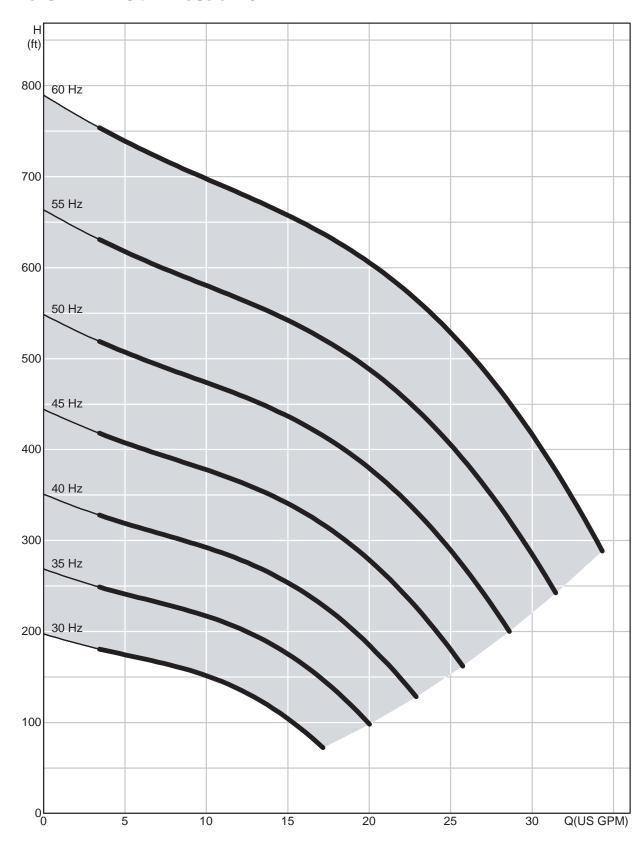

22SQE-220

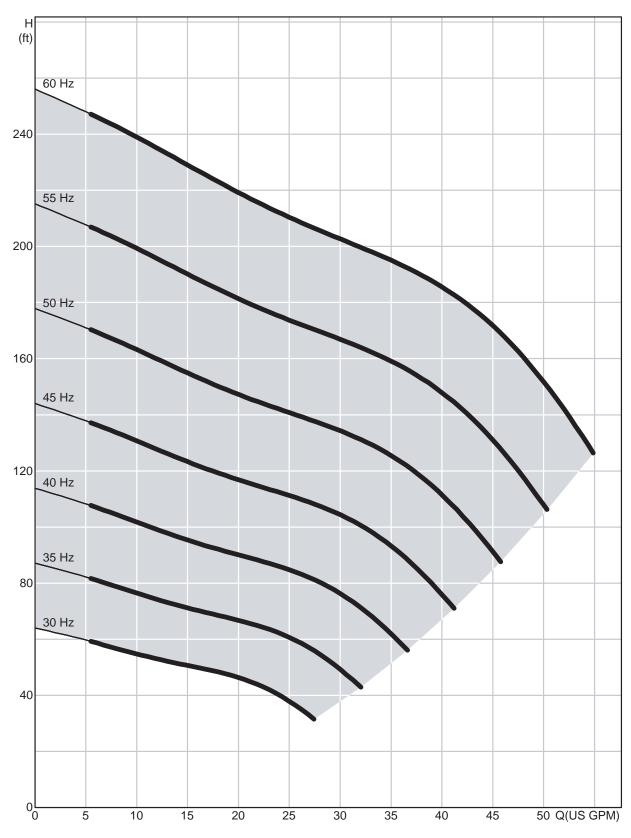
30SQE-40

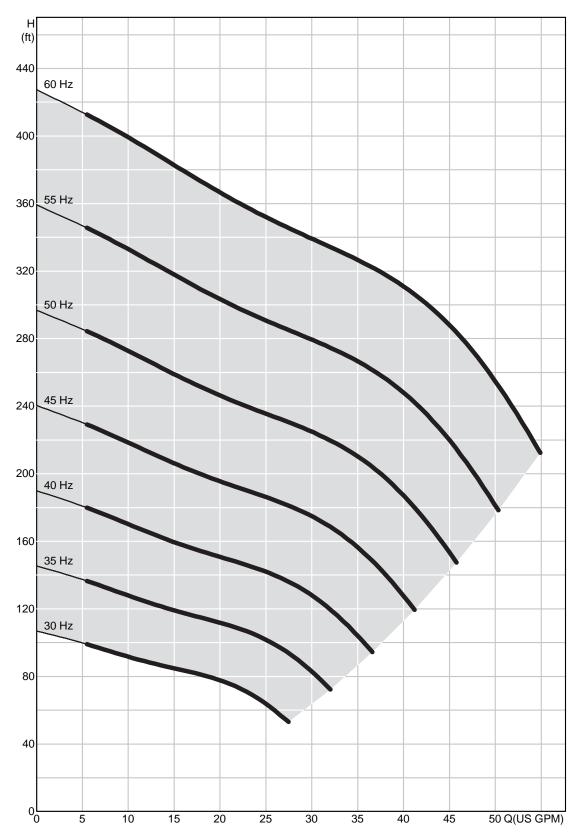

30SQE-90

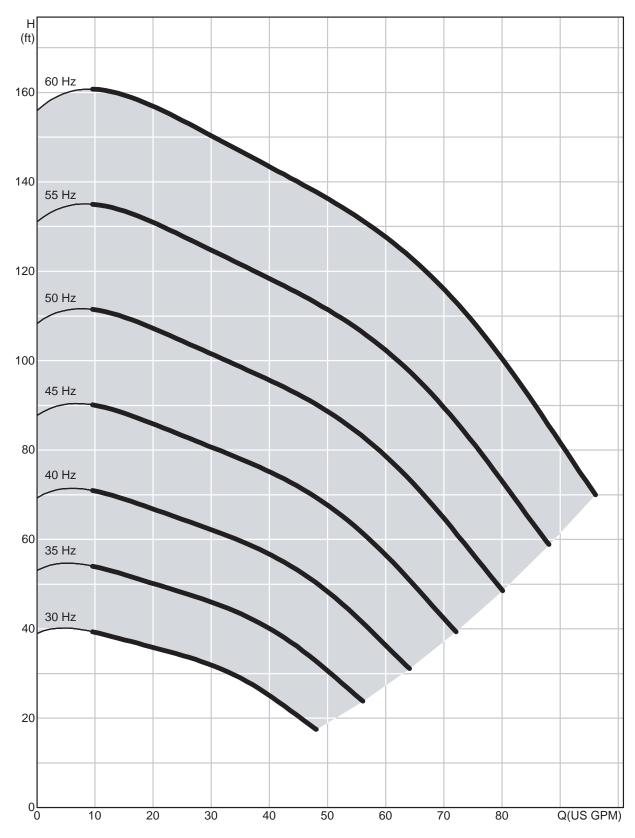
30SQE-130

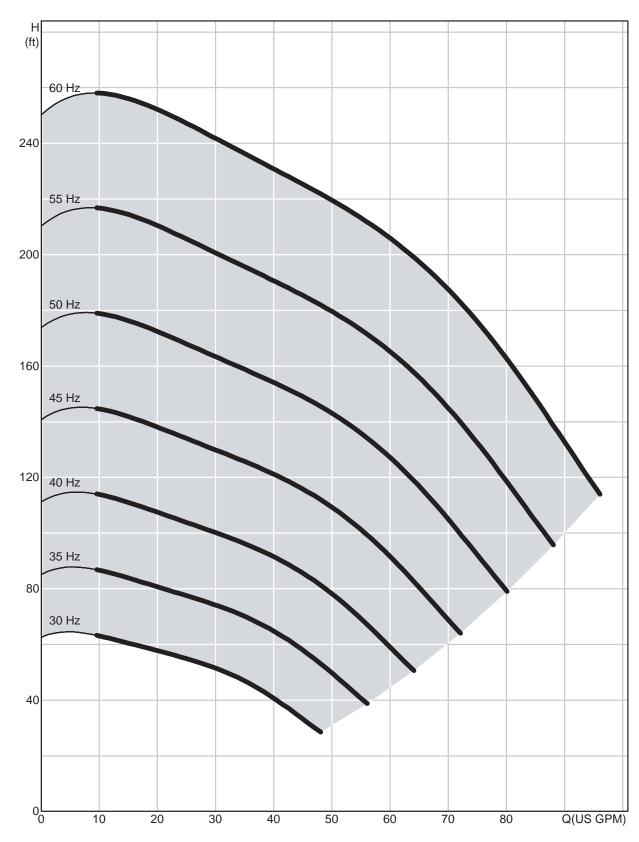

16 GPM • MODEL 16S30-24


16 GPM • MODEL 16S50-38


25 GPM • MODEL 25S30-15


25 GPM • MODEL 25S50-26


40 GPM • MODEL 40S30-9


40 GPM • MODEL 40S50-15

75 GPM • MODEL 75S30-5

75 GPM • MODEL 75S50-8

Step 1

Calculate maximum head requirements at rated flow conditions:

Hmax = dynamic head + system psi (in feet) + friction loss + above grade elevation

Step 2

Select pump from chart as follows:

- > Select a model in which the calculated value of Hmax is below the value in columns 2
- > For example: the choice for a 40gpm model with an Hmax of 150 would be the 40S30-9

Col. 1 Col. 2

Syste	System Sizing Matrix						
Pump Type	Shutoff Head (0 GPM) @ 1500 RPM Min. Speed	Head @ Rated GPM @ 3600 RPM Max. Speed					
ЗНР	TDH(Feet)	TDH(Feet)					
16S30-24	128	490					
25S30-15	80	305					
40S30-9	45	185					
75S30-5	30	105					
5HP							
16S50-38	200	825					
25S50-26	105	530					
40S50-15	75	310					
75\$50-8	45	175					

SmartFlo™ Accessories

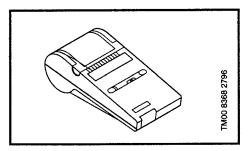
CU301 SQE 3" Constant Pressure System "SmartFlo"

Description	Product no.		
"SmartFlo" Constant Pressure Kit (Includes CU301 and Transducer)	96438895		

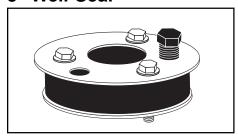
CU321 SP 4" Constant Pressure System "SmartFlo"

Description	HP	Input PH	Input VOLTS	Product no.
CU321 Constant Pressure Kit	3	1	200-240	96581690
CU321 Constant Pressure Kit	5	3	200-240	96581691
Pressure Sensor	_	_	_	96437852

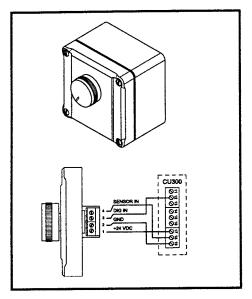
Note: Kits include CU321 and pressure sensor


CU300 Status Box & R100

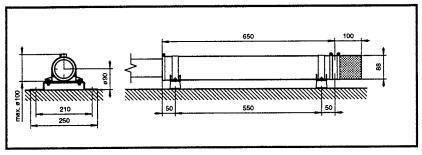
Description	Product no.
CU300 Status Box	96422776


Description	Product no.
The R100 is used for wireless infrared communication with the CU300	625333

Printer


Description	Product no.
Printer for R100, infrared communication	620480
Type: Hewlett Packard, HP 82240B	
Paper Roll	620481

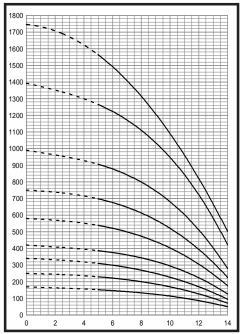
3" Well Seal


Description	Product no.
3" Sanitary Well Seal	1B5102

Potentiometer

Description	Version	Product no.
External potentiometer with cabinet	Grundfos potentiometer, SPP1	
for wall mounting.	Enclosure class: IP 55	625468
Screened cables, 4-wire cable,		
max. length of cable: 100m		

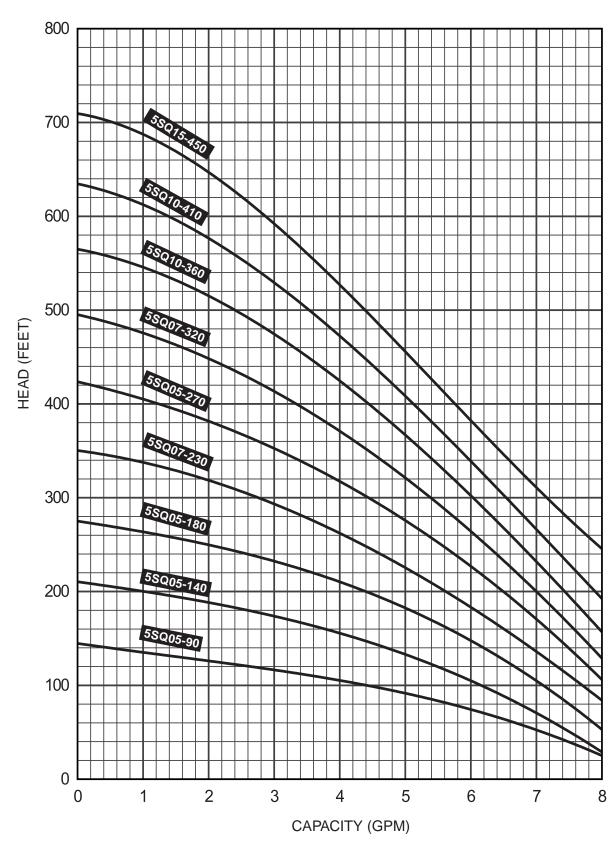

SQ/SQE - Flow sleeve



Description	Product no.	
Flow Sleeve Complete	96037505	

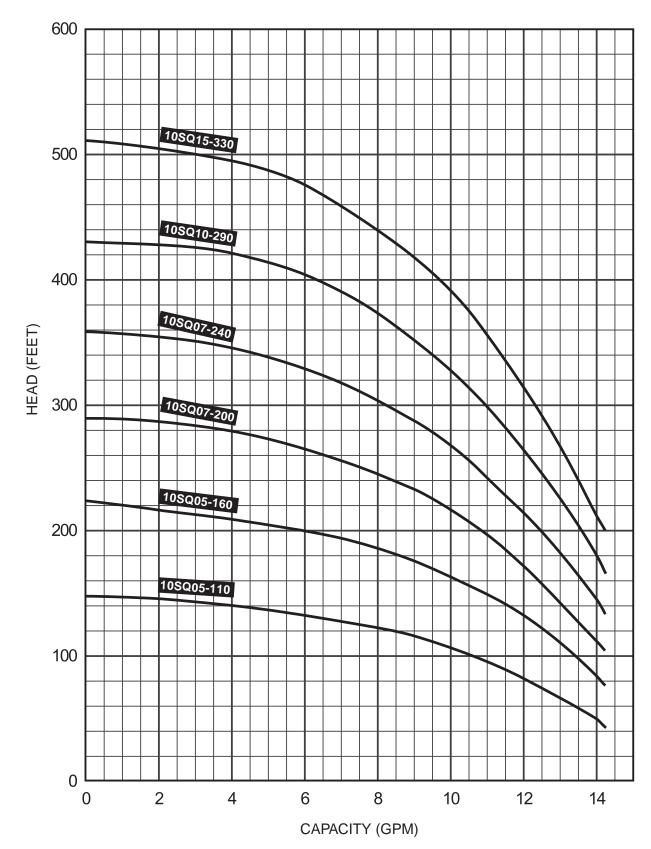
Performance Curves and Technical Data

For 3-Inch & larger well applications


Performance Curves

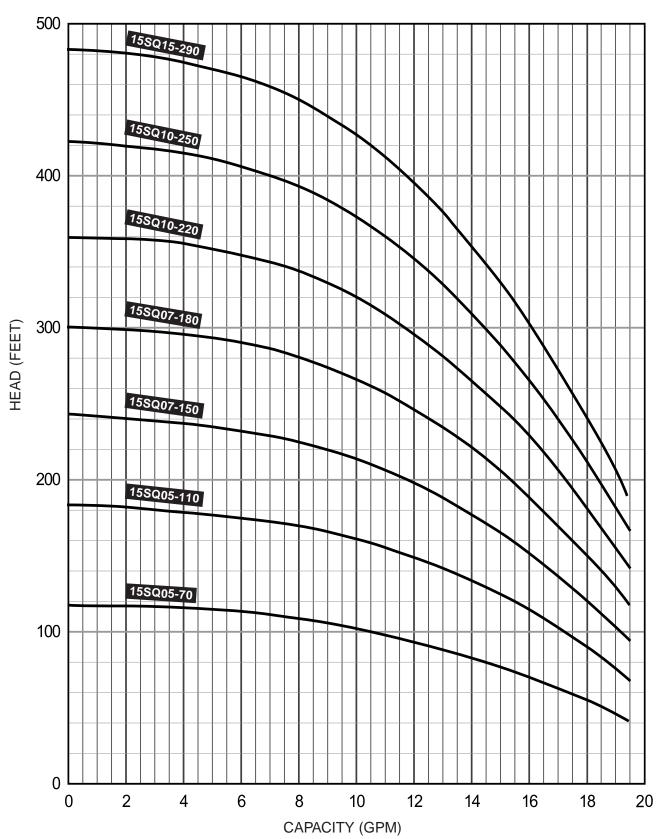
Materials of Construction

OUTLET SIZE: 1" NPT


NOMINAL DIA. 3"

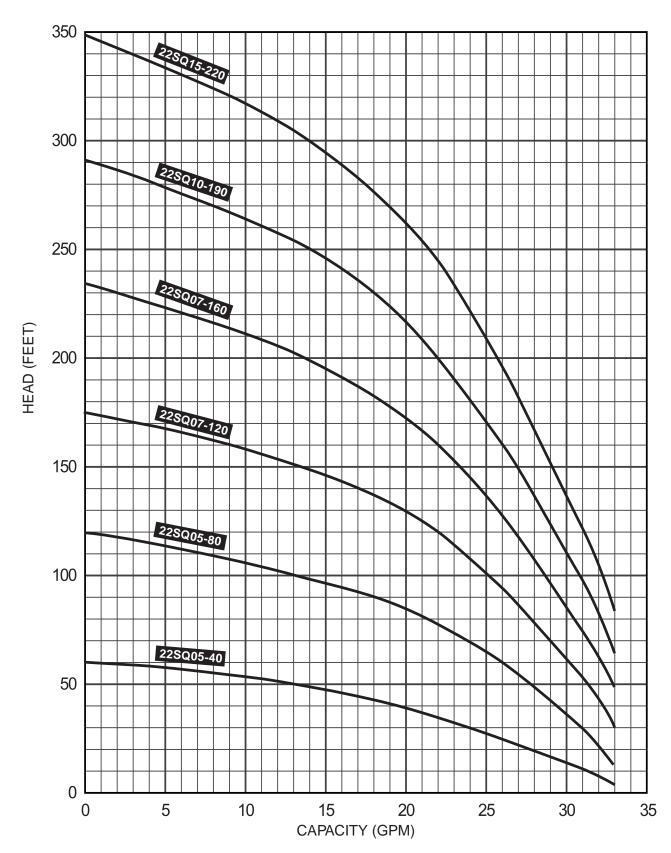
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

OUTLET SIZE: 1 1/4" NPT


NOMINAL DIA. 3"

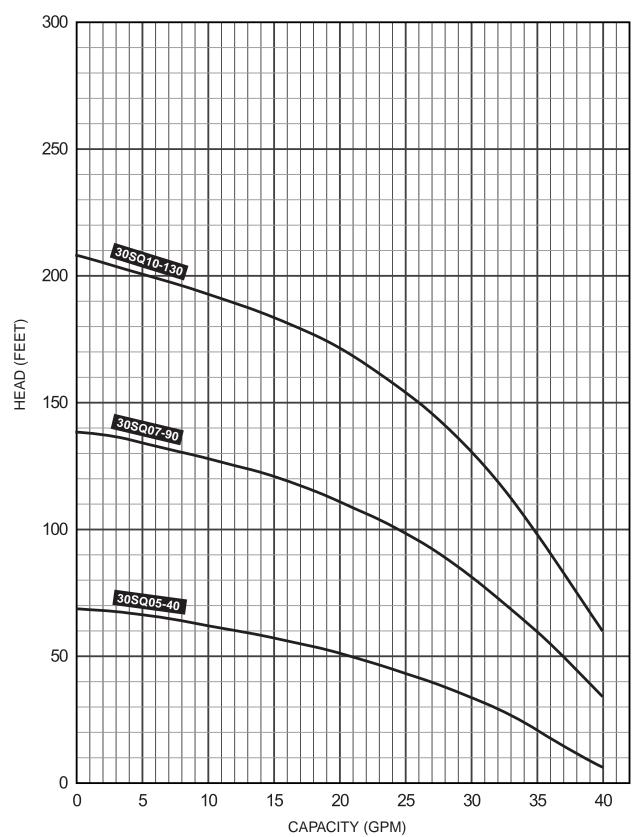
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

OUTLET SIZE: 1 1/4" NPT


NOMINAL DIA. 3"

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

OUTLET SIZE: 1 1/2" NPT


NOMINAL DIA. 3"

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

OUTLET SIZE: 1 1/2" NPT

NOMINAL DIA. 3"

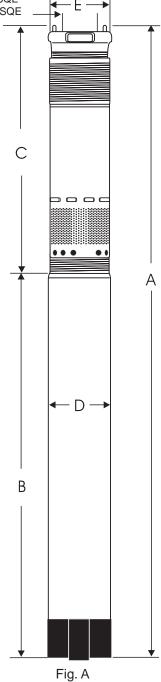
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

Dimensions and Weights

			MOTOR	DISCHARGE		DIMENSIONS IN INCHES			APPROX.	
MODEL	FIG.	HP	SIZE	SIZE	Α	В	С	D	E	SHIP WT.
5SQ/SQE05-90	Α	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-140	Α	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-180	Α	1/2	3"	1" NPT	31.5	19.8	11.6	2.6	2.9	12
5SQ/SQE07-230	Α	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-270	Α	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-320	Α	3/4	3"	1" NPT	34.6	19.8	14.8	2.6	2.9	13
5SQ/SQE10-360	Α	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE10-410	Α	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE15-450	Α	1 1/2	3"	1" NPT	39.3	21.3	18.0	2.6	2.9	16
10SQ/SQE05-110	Α	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQ/SQE05-160	Α	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQ/SQE07-200	Α	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
10SQ/SQE07-240	Α	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
10SQ/SQE10-290	Α	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
10SQ/SQE15-330	Α	1 1/2	3"	1 1/4" NPT	36.14	21.3	14.8	2.6	2.9	16
15SQ/SQE05-70	Α	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE05-110	Α	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE07-150	Α	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
15SQ/SQE07-180	Α	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
15SQ/SQE10-220	Α	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
15SQ/SQE10-250	Α	1	3"	1 1/4" NPT	36.1	21.3	14.8	2.6	2.9	16
15SQ/SQE15-290	Α	1 1/2	3"	1 1/4" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE05-40	Α	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE05-80	Α	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE07-120	Α	3/4	3"	1 1/2" NPT	31.5	19.8	11.6	2.6	2.9	13
22SQ/SQE07-160	Α	3/4	3"	1 1/2" NPT	33.6	19.8	13.7	2.6	2.9	13
22SQ/SQE10-190	Α	1	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE15-220	Α	1 1/2	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
30SQ/SQE05-40	Α	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
30SQ/SQE07-90	Α	3/4	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	13
30SQ/SQE10-130	Α	1	3"	1 1/2" NPT	35.0	21.3	13.7	2.6	2.9	13

DISCHARGE SIZES

1" NPT 5SQ/SQE

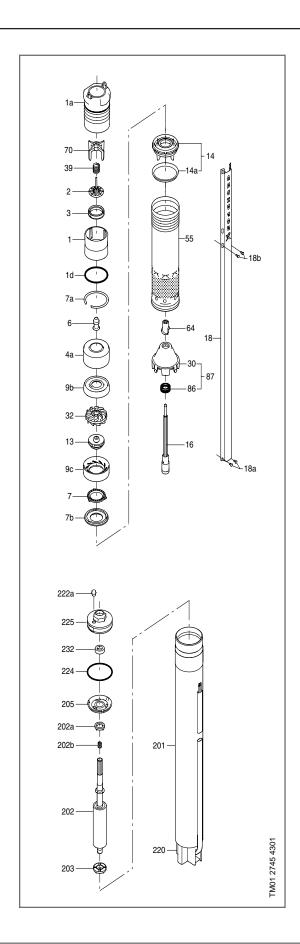

1 1/4" NPT 10-15SQ/SQE

1 1/2" NPT 22-30 SQ/SQE

MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT
Valve Casing	Polyamide
Discharge Chamber	304 Stainless Steel
Valve Guide	Polyamide
Valve Spring	316LN Stainless Steel
Valve Cone	Polyamide
Valve Seat	NBR Rubber
O-ring	NBR Rubber
Lock Ring	310 Stainless Steel
Top Bearing	NBR Rubber
Top Chamber	Polyamide
Guide Vanes	Polyamide
Impeller	Polyamide w/tungsten carbide bearings
Bottom Chamber	Polyamide
Neck Ring	TPU/PBT
Bearing	Aluminum Oxide
Suction Interconnector	Polyamide
Ring	304 Stainless Steel
Pump Sleeve	304 Stainless Steel
Cone for Pressure Equalization	Polyamide
Spacer	Polyamide
Sand Trap	316 Stainless Steel
Shaft w/Coupling	304 Stainless Steel
Cable Guard	304 Stainless Steel

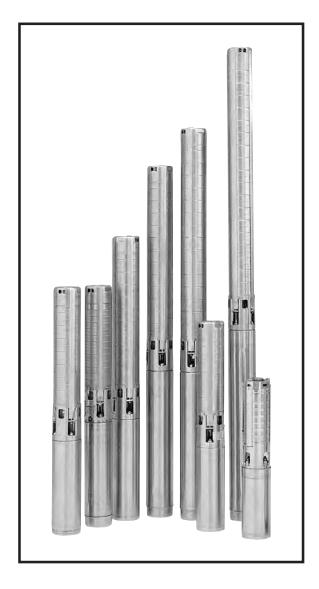
NOTES: Specifications subject to change without notice.

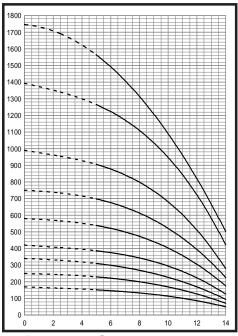


Material specification (Pump)

Pos.	Component	Material	DIN WNr. SQ/SQE	AISI	DIN WNr. SQ-N	AISI	
1	Valve casing	Polyamide					
1a	Discharge chamber	Stainless steel	1.4301	304	1.4401	316	
1d	O-ring	NBR rubber					
2	Valve cup	Polyamide					
3	Valve seat	NBR rubber					
4a	Empty chamber	Polyamide					
6	Top bearing	NBR rubber					
7	Neck ring	TPU/PBT					
7a	Lock ring	Stainless spring steel	1.4310	310	1.4401	316	
7b	Neck ring retainer	Polyamide					
9b	Chamber top	Polyamide					
9c	Chamber bottom	Polyamide					
13	Impeller with tungsten car- bide bearing	Polyamide					
14	Suction inter- connector	Polyamide					
14a	Ring	Stainless steel	1.4301	304	1.4401	316	
16	Shaft with	Stainless steel	1.4301	304	1.4401	316	
10	coupling	Sintered steel					
18	Cable guard	Stainless steel	1.4301	304	1.4401	316	
18a 18b	Screws for cable guard	Stainless steel	1.4401	316	1.4401	316	
30	Cone for pressure equalisation	Polyamide					
32	Guide vanes	Polyamide					
39	Spring	Stainless spring steel	1.4406	316LN	1.4406	316LN	
55	Pump sleeve	Stainless steel	1.4301	304	1.4401	316	
64	Priming screw	Polyamide					
70	Valve guide	Polyamide					
86	Lip seal ring	NBR rubber					
87	Cone for pressure equalization complete	Polyamide/ NBR rubber					

Material specification (Motor)


Pos.	Component	Material	DIN WNr. MS 3/ MSE 3	AISI	DIN WNr. MS 3-NE	AISI
201	Stator	Stainless steel	1.4301	304	1.4401	316
202	Rotor	Stainless steel	1.4301	304	1.4401	316
202a	Stop ring	PP				
202b	Filter	Polyester				
203	Thrust bearing	Carbon				
205	Radial bearing	Ceramic/ tungsten carbide				
220	Motor cable with plug	EPR				
222a	Filling plug	MS 3: NBR MSE 3: FKM				
224	O-ring	FKM				
225	Top cover	PPS				
232	Shaft seal	MS 3: NBR MSE 3: FKM				
	Motor liquid	SML-2				



	EL ECTRIC
	1x200 240V 169/ 109/ 50/60 Hz DE
Supply Voltage:	1x200-240V +6%/-10%, 50/60 Hz, PE 1x100-115V +6%/-10%, 50/60 Hz, PE
Operation Via Generator:	As a minimum, the generator output must be equal to
Operation via Generator.	the motor P1[kw] + 10%
Starting Current:	The motor starting current is equal to the highest value
Starting Current.	stated on the motor nameplate
Starting:	Soft Start
Run-up Time:	Maximum: 2-seconds
Motor Protection:	Motor is protected against: Dry running, overvoltage,
Motor Protection.	undervoltage, overload, overtemperature
Power Factor:	PF=1
Motor Cable:	3 Wire, 14AWG XLPE
Motor Liquid:	Type SML 2
pH Values:	SQ and SQE: 5 to 9
Liquid Temperature:	The temperature of the pumped liquid must
Liquid Temperature.	not exceed 104°F
Note: If liquids with a viscosity higher than that	of water are to be pumped, please contact Grundfos
	G CONNECTION
Discharge Port:	5SQ/SQE - 1" NPT
Discharge Fort.	10-15SQ/SQE - 1-1/4" NPT
	22-30SQ/SQE - 1-1/2" NPT
STORA	AGE CONDITIONS
Minimum Ambient Temperature:	-4°F
Maximum Ambient Temperature:	+140°F
Frost Protection:	If the pump has to be stored after use, it must be
	stored at a frost-free location or it must be ensured
	that the motor liquid is frost proof.
OPERATI	NG CONDITIONS
Minimum Ambient Fluid Temperature:	+ 34°F
Maximum Ambinet Fluid Temperature:	+140°F
-	MENSIONS AND WEIGHT
Motor Dimensions (MS 3 & MSE 3):	
0.50 [Hp]	20.9" length x 2.68 diameter
0.75 [Hp]	20.9" length x 2.68 diameter
1.0 - 1.5 [Hp]	22.3" length x 2.68 diameter
Motor Weights (MS3 & MSE3)	
0.50 [Hp]	6.0 lbs
0.75 [Hp]	7.1 lbs
1.0 - 1.5 [Hp]	8.2 lbs
Pump End Dimensions:	
Pump Diameter:	2.68
Pump Diameter, incl cable guard	2.91
Pump End Dimensions (min. and max.):	10.00
5SQ/SQE	10.6" to 18.0"
10SQ/SQE	10.6" to 14.8"
15SQ/SQE	10.6" to 16.9"
22SQ/SQE 30SQ/SQE	10.6" to 13.7" 10.6" to 13.7"
Pump End Weights (min. and max.):	10.0 10.13.7
All SQ/SQE Models	2.2 lbs to 3.5 lbs
Well Diameter:	3-inch or larger
Installation Depth (maximum)	500 feet below static water level

Easy Selection Chart Performance Curves and Technical Data

4-Inch Submersible Pumps

Performance Curves

Materials of Construction

Grundfos Stainless Steel Submersible Pumps

4" Submersible Easy Selection Charts.

SELECTION CHARTS

FLOW RANGE

PUMP OUTLET

(Ratings are in GALLONS PER MINUTE-GPM)

(1 2 TO 7 GPM)

1 " NPT

(Ratings a	are in C	ALL	ONS	PER	MIN	UTE-	GPM)	1			(1.2 T	07	GPM	1)											1 " NP	1
									DEP	TH TO	D PUN	/PING	FAW 6	ER L	EVEL	(LIFT) IN F	EET									
PUMP																											
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		0				7.1	6.7	6.2	5.8	5.3	4.8	4.3	3.2	2.1													
		20		7.0	6.6	6.1	5.7	5.2	4.6	4.0	2.8	1.6															
5S03-9	1/3	30		6.5	6.0	5.6	5.1	4.6	3.8	2.9	1.5																
		40	6.7	6.0	5.5	5.1	4.4	3.8	2.4																		
		50	6.2	5.5	4.9	4.4	3.4	2.5	1.3																		
		60	5.6	4.9	4.2	3.5	1.9																				
SHUT-OFF	PSI:		102	94	85	76	68	59	50	42	33	24	16	7													
		0						7.1	6.8	6.4	6.1	5.8	5.5	5.2	4.8	4.5	3.9	2.3									
		20			7.3	7.0	6.7	6.3	6.0	5.7	5.4	5.1	4.7	4.3	3.7	3.1	2.0										
5S05-13	1/2	30		7.2	6.9	6.6	6.3	6.0	5.7	5.4	5.0	4.7	4.2	3.7	2.8	2.0											<u> </u>
		40	7.2	6.9	6.6	6.3	5.9	5.6	5.3	5.0	4.6	4.2	3.5	2.8	1.6												-
		50 60	6.8	6.5	6.2 5.8	5.9 5.5	5.6 5.2	5.3 4.9	4.9	4.6	4.0 3.3	3.5 2.6	2.6	1.6													
SHUT-OFF	PSI-	OU	152	143		126	117	108	100	91	82	74	65	56	48	39	30	13									
5.101-011	. 01.	0	102	170	104	120	,	100	100	7.1	6.9	6.7	6.4	6.2	6.0	5.8	5.6	5.1	4.2	2.7							
		20						71	6.0		6.4	6.2	5.9		5.5		5.0			2.1							
5S07-18	3/4	30					7.0	7.1 6.8	6.8	6.6	6.1	5.9	5.7	5.7 5.5	5.2	5.3 5.0	4.7	4.5	3.2 2.5								
3307-10	3/4	40			7.0	7.0																					
		50		7.2	7.2	7.0 6.7	6.8	6.5	6.3	6.1	5.9 5.6	5.6 5.4	5.4 5.1	5.2 4.9	4.9	4.7	4.4 3.9	3.5 2.9	1.5								-
			7.4			_			6.1	5.8																	
SHUT-OFF	Del.	60	7.1 213	6.9	6.7 195	6.5 187	6.2 178	6.0 169	5.8 161	5.6 152	5.3 143	5.1 135	4.9 126	4.6 117	4.3 109	3.9	3.4 91	2.1 74	48	22							
31101-011	roi.		213	204	193	107	170	109	101	132	143										0.0	4 7					
		0								7.4	0.0	7.1	6.9	6.7	6.6	6.4	6.2	5.8	5.3	4.7	3.8	1.7					
5040.00	١.	20							= 0	7.1	6.9	6.7	6.5	6.3	6.1	6.0	5.8	5.4	4.8	4.0	2.8						-
5S10-22	1	30							7.0	6.8	6.7	6.5	6.3	6.1	5.9	5.7	5.6	5.2	4.6	3.6	2.1						
		40						7.0	6.8	6.6	6.5	6.3	6.1	5.9	5.7	5.5	5.4	5.0	4.3	3.1	1.3						
		50				7.2	7.0	6.8	6.6	6.4	6.2	6.1	5.9	5.7	5.5	5.3	5.1	4.7	3.9	2.5							
011117 055		60			7.1	6.9	6.8	6.6	6.4	6.2	6.0	6.0	5.7	5.5	5.3	5.1	4.9	4.4	3.5	1.7	40	40					-
SHUT-OFF	PSI:				245	237	228	219	211	202	194	185	176	168	159	150	142	124	98	72	46	12					<u> </u>
		0												7.1	7.0	6.8	6.7	6.4	5.9	5.4	4.9	4.1	2.1				<u> </u>
		20										7.1	6.9	6.8	6.6	6.5	6.3	6.0	5.5	5.1	4.5	3.4					<u> </u>
5S15-26	1 1/2	30									7.1	6.9	6.7	6.6	6.4	6.3	6.1	5.8	5.4	4.8	4.2	2.9					—
		40								7.0	6.9	6.7	6.6	6.4	6.3	6.1	6.0	5.6	5.2	4.6	5.6	2.4					<u> </u>
		50							7.0	6.9	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.5	5.0	4.4	3.6	1.7					<u> </u>
		60						7.0	6.8	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.6	5.3	4.8	4.1	3.1						<u> </u>
SHUT-OFF	· PSI:							269	260	252	243	234	226	217	208	200	191	174	148	122	96	61	18				
		0														7.1	7.0	6.7	6.3	5.9	5.5	6.7	4.1	2.6			<u> </u>
		20												7.1	6.9	6.8	6.7	6.4	6.0	5.6	5.2	4.6	3.5	1.6			<u> </u>
5S15-31	1 1/2	30			L								7.0	6.9	6.8	6.6	6.5	6.2	5.9	5.5	5.1	4.4	3.2	0.9			
		40										7.0	6.9	6.8	6.6	6.5	6.4	6.1	5.7	5.3	4.9	4.2	2.8				<u> </u>
		50								7.1	7.0	6.9	6.7	6.6	6.5	6.3	6.2	6.0	5.6	5.2	4.7	4.0	2.3				<u> </u>
		60							7.1	7.0	6.8	6.7	6.6	6.5	6.3	6.2	6.1	5.8	5.4	5.0	4.5	3.7	1.7				<u> </u>
SHUT-OFF	PSI:				1				320	311	303	294	285	277	268	259	251	233	207	181	155	121	77	34			ı

See 5S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

 SELECTION CHARTS
 FLOW RANGE
 PUMP OUTLET

 (Ratings are in GALLONS PER MINUTE-GPM)
 (3 TO 10 GPM)
 1" NPT

(Ratings are	e in Gali	LONS	PER	IVIIIN	UIE-	GPIVI)			(3	0 10) GPI	vi)														
	DEPTH TO PUMPING WATER LEVEL (LIFT) IN FEET																										
PUMP																											
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	10.0	9.5	8.7	8.0	7.2	6.4	5.0	3.7	1.8																
7S03-8	1/3	30	9.3	8.7	7.9	7.1	6.1	5.1	2.6																		
		40	8.5	7.8	7.0	6.1	4.5	2.9	1.5																		
		50	7.6	6.9	5.8	4.7	2.3																				
		60	6.7	5.8	3.9	2.0																					
SHUT-OFF P	SI:		86	77	69	60	52	43	34	26	17	8															
		0					9.9	9.5	8.9	8.4	7.8	7.3	6.7	6.0	5.0	4.0											
		20			9.8	9.3	8.8	8.2	7.7	7.1	6.5	5.8	4.7	3.5	1.8												
7S05-11	1/2	30	10.1	9.7	9.2	8.7	8.1	7.6	7.0	6.4	5.6	4.7	2.9														
		40	9.6	9.2	8.6	8.1	7.5	6.9	6.2	5.6	4.3	3.0	1.5														
		50	9.1	8.5	8.0	7.4	6.8	6.2	5.3	4.3	2.2																
		60	8.4	7.9	7.3	6.8	6.0	5.3	3.8	2.3																	
SHUT-OFF P	SI:	<u> </u>	122	113	105	96	87	79	70	61	53	44	35	27	18	10											
		0						10.2	9.9	9.5	9.2	8.8	8.4	8.0	7.6	7.1	6.7	5.6	2.9								
		20				10.1	9.8	9.4	9.0	8.6	8.2	7.8	7.4	7.0	6.5	6.1	5.4	3.6									
7S07-15	3/4	30			10.0	9.7	9.4	9.0	8.6	8.2	7.8	7.4	6.9	6.5	5.9	5.4	4.5	1.8									
		40		10.0		9.3	8.9	8.5	8.1	7.7	7.3	6.9	6.4	5.9	5.2	4.5	3.2	1.0									
		50	9.9	9.6	9.2	8.9	8.5	8.1	7.6	7.2	6.8	6.4	5.8	5.2	4.2	3.2	1.6										
		60	9.5	9.2	8.8	8.4	8.0	7.6	7.2	6.7	6.2	5.7	4.9	4.2	2.8	1.4											
SHUT-OFF P	SI:		170	101	153	144	135	127	118	110	101	92	84	75	66	58	49	32	6								
		0								10.1	9.8	9.6	9.3	9.0	8.7	8.4	8.0	7.4	6.4	4.8							
		20						10.0	9.8	9.5	9.2	8.9	8.6	8.3	7.9	7.6	7.3	6.6	5.3	2.8							
7S10-19	1	30					10.0	9.7	9.5	9.2	8.9	8.5	8.2	7.9	7.6	7.3	6.9	6.2	4.6	1.4							
		40				10.0	9.7	9.4	9.1	8.8	8.5	8.2	7.8	7.5	7.2	6.9	6.5	5.6	3.7								igsquare
		50		10.2		9.7	9.4	9.1	8.8	8.4	8.1	7.8	7.5	7.2	6.8	6.5	6.0	5.0	2.4								
		60	10.1	9.9	9.6	9.3	9.0	8.7	8.4	8.1	7.8	7.4	7.1	6.8	6.4	6.0	5.5	4.2									lacksquare
SHUT-OFF P	PSI:	_	218	209	200	192	183	174	166	157	148	140	131	123	114	105	97	79	53	27							
		0											10.1	9.9	9.7	9.5	9.3	8.8	8.1	7.4	6.7	5.5					
		20									10.0	9.8	9.6	9.4	9.2	9.0	8.8	8.3	7.6	6.9	6.1	4.4					igsquare
7S15-26	1 1/2	30								10.0	9.8	9.6	9.4	9.2	9.0	8.7	8.5	8.0	7.3	6.6	5.7	3.7					igwdown
		40						10.1	10.0	9.8	9.6	9.4	9.1	8.9	8.7	8.5	8.2	7.8	7.1	6.3	5.2	2.9					igwdown
		50					10.1	9.9	9.7	9.6	9.3	9.1	8.9	8.7	8.4	8.2	8.0	7.5	6.8	5.9	4.7	1.9					
		60				10.1	9.9	9.7	9.5	9.3	9.1	8.9	8.6	8.4	8.2	7.9	7.7	7.2	6.5	5.5	4.1						igwdown
SHUT-OFF P	SI:	<u> </u>				274	265	257	248	239	231	222	213	205	196	187	179	161	135	110	84	49					—
		0	0										10.6	10.5	10.4	10.4	10.3	10.1	9.6	9.1	8.4	7.3	5.7				<u> </u>
		20	46.2								10.5	10.5	10.4	10.3	10.3	10.2	10.0	9.8	9.2	8.6	7.8	6.6	4.8				<u> </u>
7S20-32	2	30	69.3			Щ				10.5	10.5	10.4	10.3	10.2	10.1	10.0	9.9	9.6	9.0	8.3	7.5	6.2	4.3				<u> </u>
		40	92.4						10.5	10.5	10.4	10.3	10.2	10.1	10.0	9.9	9.7	9.4	8.8	8.0	7.2	5.8	3.9				—
		50	116						10.5	10.4	10.3	10.2	10.1	10.0	9.8	9.7	9.5	9.1	8.5	7.7	6.8	5.4	3.3				<u> </u>
		60	139					10.5	10.4	10.3	10.2	10.1	10.0	9.8	9.7	9.5	9.3	8.9	8.2	7.4	6.4	5.0					<u> </u>
SHUT-OFF P	SI:						343	334	326	317	308	300	291	282	274	265	256	239	213	187	161	126	83				

SELECTION CHARTS

FLOW RANGE

PUMP OUTLET 1 1/4" NPT

(Ratings are in	n GALI	ONS	S PEI	R MIN	NUTE	-GPI	۷)				(5 T	O 14	I GP	M)											1 1.	/4" NPT	
			DEPTH TO PUMPING WATER LEVEL (LIFT) IN FEET																								
PUMP																											l
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	14.0	13.2	12.4	10.6	8.9	5.3																			l
10S03-6	1/3	30	13.2	11.8	10.4	8.4																					
		40	11.9	10.1	8.3																						
		50	9.8	7.5																							
		60	7.7	3.9																							
SHUT-OFF PSI:			64	55	47	38	29	21	12	3																	<u> </u>
		0				14.1	13.4	12.4	11.4	10.4	9.5	8.3	6.6	3.5													l
		20		13.9	13.1	12.1	11.1	10.1	9.2	7.9	5.8	2.0															l
10S05-9	1/2	30	13.8	13.0	12.0	11.0	10.0	9.0	7.6	5.3	1.2																l
		40	12.8	11.8	10.8	9.8	8.8	7.3	4.8																		l
		50	11.7	10.7	9.7	8.6	7.0	4.3																			
		60	10.5	9.5	8.4	6.7	3.7																				
SHUT-OFF PSI:			100	92	83	74	66	57	48	40	31	23	14	5													
		0					14.3	13.8	13.2	12.5	11.7	11.0	10.2	9.5	8.7	7.6	6.0										
		20			14.2	13.6	12.9	12.2	11.5	10.7	10.0	9.3	8.4	7.2	5.4	2.6											
10S07-12	3/4	30		14.1	13.5		12.1	11.4	10.6	9.9	9.2	8.2	7.0	5.0	2.0												
		40	14.0	13.4	12.8	12.0	11.3	10.5	9.8	9.0	8.1	6.7	4.7	1.4													
		50	13.3	12.6	11.9	11.1	10.4	9.7	8.9	7.9	6.5	4.2															
		60	12.5	11.8	11.0	10.3	9.6	8.8	7.7	6.2	3.8																
SHUT-OFF PSI:			137	129	120	111	103	94	85	77	68	59	51	42	33	25	16										
		0							14.1	13.6	13.1	12.5	11.9	11.3	10.7	10.1	9.6	8.2	3.8								
		20					13.9	13.5	12.9	12.3	11.7	11.1	10.5	10.0	9.4	8.7	7.9	5.2	0.0								
10S10-15	1	30				13.9	13.4	12.8	12.2	11.6	11.0	10.5	9.9	9.3	8.6	7.7	6.6	2.6									
1001010	•	40		14.2	13.8		12.7	12.1	11.5	10.9	10.4	9.8	9.2	8.5	7.6	6.3	4.6										
		50	14.1	13.7	13.2	1	12.1	11.4	10.9	10.3	9.7	9.1	8.3	7.4	6.1	4.3	1.7										
		60	13.6	13.1	12.6	_	11.4	10.8	10.2	9.6	9.0	8.2	7.2	5.9	3.9												
SHUT-OFF PSI:			174	165		148	139	131	122	113	105	96	87	79	70	61	53	35	10								
		0		.00		1	100			110	14.2	13.9	13.6		12.9	12.5	12.0	11.2	9.9	8.5	6.3						
		20							14.1	13.9	13.5	13.1	12.7	12.3	11.9	11.5	11.0	10.2	8.9	6.9	2.9						
10S15-21	1 1/2	30						14.1	13.8	13.5	13.1	12.7	12.7	11.8	11.4	11.0	10.5	9.7	8.3	5.7	2.9						
10013-21	1 1/2	40					14.1	13.8	13.4	13.0	12.6	12.2	11.8	11.3	10.9	10.5	10.3	9.2	7.5	4.1							
		50				14.0	13.7	13.3	13.4	12.5	12.1	11.7	11.3	10.8	10.3	10.0	9.6	8.7	6.5	2.0							
		60		14.2	14.0		13.7	12.9	12.5	12.3	11.6	11.7	10.8	10.8	9.9	9.5	9.0	8.0	5.1	2.0							
SHUT-OFF PSI:		00		237	229	220	211	203	194	185	177	168	159	151	142	133	125	107	81	55	29						
C.101-011 F31.		0		231			411	200	134	100	.//	100	109				13.4	12.8				0.2	17				
		0				\vdash	\vdash					1.4.4	12.0	14.1	13.9	13.7			11.8	10.8	9.8	8.3	4.7				
40000 07	_	20				-	\vdash				14.0	14.1	13.8	13.6	13.3	13.0	12.7	12.0 11.6	11.0	10.0	9.0	7.1 6.2	1.5				
10S20-27	2	30					\vdash		14.0	14.0	14.0	13.8	13.5	13.3	12.9	12.6	12.3		10.6	9.7	8.6						
		40		-		 	\vdash	14.0	14.2				13.2	12.9	12.6	12.2	11.9	11.2	10.3	9.3	8.1	5.2					
		50		\vdash		\vdash	14.4				13.5										7.4						
CULIT CEE DO:		60				-	14.1				13.1									8.4		2.1	0.5				
SHUT-OFF PSI:						<u> </u>	285	276	268	259	250	242	233	224	216	207	198			129	103	68	25				
		0				<u> </u>										10.5	10.5		13.2		11.9				_		
		20				<u> </u>	\vdash									13.9					11.3	10.3	8.9		2.7		
10S30-34	3	30				<u> </u>	\vdash									13.7					11.0	10.0	8.5		1.3		
		40				 	\vdash							13.8		13.5		-			10.8	9.7	8.0	5.1			
		50				!								13.6			_				10.5		7.5	4.2			-
		60				<u> </u>	\vdash					13.8		13.4	13.2	13.0					10.2	9.0	6.9	3.1			-
SHUT-OFF PSI:												332	324	315	306	298	289	272	246	220	194	159	116	73	29		

See 10S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

SELECTION CHARTS

FLOW RANGE

PUMP OUTLET 1 1/4 " NPT

(Ratings ar	e in GA	LLON	IS PE	ER M	INUT	E-GP	PM)				(10	TO :	20 G	PM)											1 1	I/4 " NI	PT
							DEPT	н то	PUM	IPING	WAT	ER L	EVEL	(LIF	Γ) IN I	FEET											
PUMP MODEL	НР	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	20.3	18.2	14.1	10.0	5.0																				
16S05-5	1/2	30	17.3	14.4	8.0	1.6																					
		40	12.7	8.0	4.0																						
		50	6.5																								
		60	2.9																								
SHUT-OFF F	PSI:		58	49	40	32	23	14																			
		0					20.5	19.2	17.5	15.8	12.8	9.8	5.2														
		20			20.1	18.8	16.9	15.2	11.8	8.5	4.3																
16S07-8	3/4	30	21.2	19.9	18.4	16.9	14.3	11.8	7.5	3.2	1.6																
		40	19.7	18.3	16.3	14.3	10.8	7.2	3.6																		
		50	17.9	16.3	13.5	10.7	6.2	1.7																			
	j	60	15.7	13.5	9.6	5.8	2.9																				
SHUT-OFF F	PSI:		97	88	80	71	62	54	45	36	28	19	10														
		0						20.8	19.8	18.8	17.3	15.9	13.7	11.4	8.0	4.7											
		20				20.5	19.4	18.3		15.3	12.9	10.5	7.0	3.5	1.8												
16S10-10	1	30			20.3	19.3	18.1	16.8	_	12.8	9.8	6.7	3.3														
		40		20.2	19.1	18.0	16.4	14.8		9.6	5.9	2.3															
		50	20.0	19.0	17.7	16.3	14.2	12.0	8.8	5.6	2.8																
		60		17.6	15.8		11.3	8.6	4.8																		
SHUT-OFF F	PSI:		123	115	106	97	89	80	71	63	54	45	37	28	19	11											
		0				-				21.0	20.3	19.6		18.0	16.9		14.3	10.7	3.3								
		20							20.1	19.3	18.5	17.7	16.6	15.4	13.8	12.2	10.0	5.1	0.0								
16S15-14	1 1/2	30					20.7	20.0		18.4	17.4	16.5	15.1	13.7	11.8	9.8	7.3	2.4									
10010 14	/2	40				20.6	19.8	19.1	18.3	17.4	16.0	15.0		11.6	9.3	7.0	4.3	2.7									
		50			20.4	19.8	18.9	18.2	17.2	16.1	14.7	13.2	11.2	9.1	6.5	3.9	2.0										
		60		20.3	19.6	18.8	18.0	17.1	15.8	14.5	12.8	11.0	8.6	6.3	3.4	0.0	2.0										
SHUT-OFF F	PSI:	- 00		167	158	149	141	132	123	115	106	97	89	80	71	63	54	37	28								
<u> </u>	Oi.	0		107	100	170		102	120	110	100	21.2	20.6	20.0	19.5	18.9	18.2	16.7	13.5	8.8	2.7						
		20									20.4	19.8	19.3	18.7	18.0	17.3	16.4	14.3	10.0	4.2	2.1						
16S20-18	2	30								20.3	19.8	19.2	18.6	17.9	17.2	16.3	15.3	12.8	7.9	1.9							
10020-10	2	40							20.3	19.7	19.1	18.5	17.8	17.3	16.1	15.2	13.9	11.1	5.7	1.9							
		50						20.2	19.6	19.0	18.3	17.7	16.8	16.0	14.9	13.8	12.3	9.2	3.2								
		60					20.1	19.5	18.9	18.3	17.5	16.8	15.8	14.8	13.5	12.3	10.6	7.0	5.2								
SHUT-OFF F	oei.	00					194	186	177	168	160	151	142	134	125	116	10.0	90	65	39	13						
J. 10 120FF F	JI.	0					1 34	100	1//	100	100	131	144	134	120	110	100					0.0	2.1				
		-					\vdash								20.2	10.0	10 F	19.6	18.3		14.2	9.8	2.1				
16630 04		20												20.2	20.3	19.9	19.5	18.6	17.0	14.8	11.8	6.5					
16S30-24	3	30					\vdash						20.2	20.3	19.8	19.4	19.0	18.0	16.3	13.7	10.4	4.7					
		40					\vdash					20.0	20.2	_	19.3	18.9	18.4	17.3	15.3	12.5	8.9	2.8					
		50					\vdash				20.4			19.3													
CULIT OFF	201	60					\vdash				20.1	19.7	19.2	18.8	18.3	17.8	17.2	15.8	13.3	9.8	5.5		40				
SHUT-OFF F	13 1:					H	Н				239	230	221	213	204	195	187	169	143	117	91	57	13	10 -	45		
		0		-																			18.7			8.9	2.1
40050 00	_	20				\vdash	Ш													01		19.6	17.7	15.2	11.5	6.1	
16S50-38	5	30																			20.5		17.2			4.5	
		40					Ш														20.2			13.7		2.7	
		50																	21.6			18.4	16.1			8.0	
		60					Ш												21.3		19.4	17.9	15.4				
SHUT-OFF F	PSI:																		314	288	262	227	184	141	98	54	11

See 16S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

SELECTION CHARTS

FLOW RANGE

PUMP OUTLET

(Ratings are in GALL ONS PER MINITE-GPM)

(18 TO 32 GPM)

1 1/2" NPT

(Ratings are	in GAL	LON	S PE	R MI	NUT	E-GPI	M)			(18	3 TO	32 (<u> </u>)											1	1/2" N	РΙ
								DE	PTH	TO F	PUMP	ING V	VATE	R LE	√EL (I	LIFT)	IN FE	ET									
PUMP																											
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	18.6	6.5	3.3																						
25S05-3	1/2	30	10.5																								_
		40																									
		50	-	-													<u> </u>										-
		60				_											_										_
SHUT-OFF PS	SI:		31	22	13	5																					
		0				29.8	23.9	18.1																			
05005.5		20		28.6		_	7.5																				
25S07-5	3/4	30	27.1	-	_	2.0											_										_
		40	19.5	11.8	5.8	\vdash											_										_
		50	10.1														_										_
CHUT OFF D	<u> </u>	60	4.1	40	20	24	00	40																			
SHUT-OFF PS	эi:	_	57	48	39	31	22	13	0/-	06.7	45 -						_										<u> </u>
		0	-	25.	05.	or i		28.5	24.3	20.2	12.7	5.1					<u> </u>	<u> </u>									├
05040.7		20	20.0		30.3		22.9	18.3	10.4	2.5	1.3																
25S10-7	1	30	33.0	29.9	26.5		13.0	9.6	4.8																		
		40			_	_	8.2																				
		50	25.3			7.0	3.5																				
01111T 0FF D		60	19.7	13.9			40		0.4	-00	40	_															
SHUT-OFF PS	SI:		83	74	65	57	48	39	31	22	13	5															_
		0				04.5	000	32.2	30.0	27.9	24.8	21.6		10.8													
05045.0		20			04.0	31.5	29.3	27.2	23.7	20.3	14.5	8.8	4.4														
25S15-9	1 1/2	30		20.0		29.1	26.4	23.7	18.9	14.2	7.8	1.5					_										-
		40	00.0		28.6		22.6		12.8	6.8	3.4																
		50			25.5		17.4	12.3	6.2								_										
01111T 0FF D		60	27.8				11.0	4.8	2.4	40		0.4		40													
SHUT-OFF PS	51:		109	100	91	83	74	65	57	48	39	31	22	13								l					
		0					20.5	33.1	31.1	29.3	27.6	25.1	22.5	18.5		9.3	_										
05000 44		20				20.0	32.5	30.6	28.8	27.0	24.3	21.5	17.3	13.0	7.8	2.5	-										
25S20-11	2	30 40			31.8	32.0	30.3	28.7	26.4	24.2	20.6	16.9	12.0	7.0	3.5												
		50		31.5			28.2	26.3	23.3 19.4	20.4 15.6	15.9 10.4	11.4 5.3	6.3														
		60	31.3	_			22.4	19.3	14.5	9.8	4.9	5.5	2.1														
SHUT-OFF PS	<u> </u>	50	135	126	118	109	100	92	83	74	66	57	48	40	31	23	\vdash										\vdash
S.IOI-OII P	<i>-</i>	0	133	120	110	109	100	JZ	00	, 4	1 30	32.3		29.8		27.1	25.2	20.7									\vdash
		20			-	\vdash				31.8	30.6	29.3	28.0	26.6	24.6	22.7	19.8	13.5									\vdash
25S30-15	3	30				\vdash		33.0	31.7	30.4	29.2	27.8	26.2	24.5	22.1	19.7	16.4	9.3									\vdash
23330-13	"	40				Н	32.8	31.5	30.3	29.0	27.5	26.0	24.0	21.9	19.0	16.1	12.4	4.9									\vdash
		50				32.6		30.0										_									\vdash
		60			32.4							21.2	18.1		11.3	7.6	3.8	2.2									\vdash
SHUT-OFF PS	<u> </u>	50			170		152	144	135	126	118	109	100	92	83	7.0	66	48									\vdash
GIIGI-OFF P	J	0			170	101	132	144	133	120	110	109	100	32	US	74	00		30.3	28.0	25.2	10.0	10.2				\vdash
		20			-	\vdash										-	32.2										\vdash
25\$50-26	5	30				Н										32.1	31.3	30.8		_	20.8		5.0 2.5				\vdash
20000-20	ာ	40			-	\vdash									32.0	31.3		29.9			18.9		2.5				\vdash
		50				\vdash							32.7	31.8	31.2	30.4	29.7	28.2									\vdash
		60				Н						32.5	31.8	31.0	30.3	29.6	28.8				14.6						—
CUUT OFF S		00			-	\vdash																	07				
SHUT-OFF PS	oi:										1	253	245	236	227	219	210	193	167	141	115	80	37				Щ

See 25S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

 SELECTION CHARTS
 FLOW RANGE
 PUMP OUTLET

 (Ratings are in GALLONS PER MINUTE-GPM)
 (24 TO 55 GPM)
 2 " NPT

,	III GAL	LON	S PEI	R MINI	JTE-C	PM)							TO 5														2 NP	•
B		, ,						, ,		DEPT	H TO F	PUMPIN	IG WA	TER L	EVEL	(LIFT) IN FE	ET										
PUMP		ا ا						46-	465	ا ا	465	465								465	46.5						40	
MODEL	HP	PSI		20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
			46.2	33.0																								
	1	30	69.3																									
40S10-3		40	92.4																									
		50	116																									
		60	139			.																						
SHUT-OFF PS	SI:		0	28	19	11	2																					
		0	0	F7.0	50.0	07.0		41.0	24.0																			
40C4E E	4.40	20	46.2	57.0	50.0		18.0																					
40S15-5	1 1/2	30	69.3	48.0	34.0	15.0																						
		40	92.4	31.0	11.0																							
		50 60	116 139	7.0																								
SHUT-OFF PS	SI:	00	0	52	44	35	26	18	9																			
Т				- 02		- 00																						
		0	0					54.0	49.0	40.0	29.0	15.0																
		20	46.2			53.0	46.0	37.0	25.0	10.0																		
40S20-7	2	30	69.3		52.0	45.0	35.0	23.0	8.0																			
		40	92.4	51.0	44.0	33.0	21.0	5.0																				
		50	116	42.0	32.0	18.0	2.0																					
		60	139	30.0	16.0																							
SHUT-OFF PS	SI:		0	77	68	59	51	42	33	25	16	7																
		0	0							53.0	47.0	41.0	32.0	22.0														
		-	_				1	51.0	AF O				J2.0	22.0												1		
40000		20	46.2			 		51.0	45.0	38.0	29.0	19.0																
40S30-9	3	30	69.3				50.0	44.0	37.0	28.0	17.0																	
		40	92.4		54.0		43.0	35.0	26.0	15.0																		
		50	116	54.0	49.0		34.0	24.0	13.0																	l		
		60	139	48.0	41.0	33.0	23.0	11.0																				
SHUT-OFF PS	SI:		0	102	94	85	76	68	59	50	42	33	24	16	7													
		0	0			<u></u>	L					53.0	49.0	44.0	39.0	32.0	25.0	16.0								<u> </u>		
		20	46.2							52.0	48.0	43.0	37.0	30.0	22.0	13.0												
40S50-12	5	30	69.3						51.0	47.0	42.0	36.0	29.0	21.0	12.0													
		40	92.4					51.0	46.0	41.0	35.0	28.0	20.0	11.0														
		50	116			54.0	50.0	45.0	40.0	34.0	26.0	18.0	9.0															
		60	139		53.0	49.0	45.0	39.0	33.0	25.0	17.0	8.0																
SHUT-OFF PS	SI:		0		130	122	113	104	96	87	78	70	61	52	44	35	26	18										
		0	0											52.0	49.0	46.0	42.0	37.0	26.0									
		20	46.2									51.0	48.0	45.0	40.0	35.0	30.0	24.0										
40S50-15	5	30	69.3								51.0	48.0	44.0	40.0	35.0	29.0	23.0	16.0										
		40	92.4						ш	51.0	47.0	43.0	39.0	34.0	28.0	21.0	14.0											
		50	116				 		50.0	47.0	43.0	38.0	33.0	27.0	20.0	13.0										l		
		60	139	1												.0.0	_					_						l
SHUT-OFF PS		_				-		50.0	46.0	42.0	37.0	32.0	26.0	19.0	12.0													
	SI:		0					141	132	42.0 124	37.0 115	32.0 107	26.0 98	19.0 89		72	63	55	37	11								
	SI:	0	0												12.0	72			49.0	41.0	29.0	15.0						
		20	0 0 46.2												12.0 81	72 53.0	51.0	48.0	49.0 43.0	41.0 32.0	19.0	15.0						
40\$75-21	7 1/2	20 30	0 0 46.2 69.3											89	12.0 81 52.0	72 53.0 50.0	51.0 48.0	48.0 45.0	49.0 43.0 39.0	41.0 32.0 27.0	19.0 13.0	15.0						
		20 30 40	0 46.2 69.3 92.4										98	89 52.0	12.0 81 52.0 50.0	72 53.0 50.0 48.0	51.0 48.0 45.0	48.0 45.0 42.0	49.0 43.0 39.0 35.0	41.0 32.0 27.0 22.0	19.0	15.0						
		20 30 40 50	0 46.2 69.3 92.4 116									107	98 52.0	52.0 50.0	12.0 81 52.0 50.0 47.0	72 53.0 50.0 48.0 44.0	51.0 48.0 45.0 41.0	48.0 45.0 42.0 38.0	49.0 43.0 39.0 35.0 30.0	41.0 32.0 27.0 22.0 16.0	19.0 13.0	15.0						
	7 1/2	20 30 40	0 46.2 69.3 92.4 116 139									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	72 53.0 50.0 48.0 44.0 41.0	51.0 48.0 45.0 41.0 38.0	48.0 45.0 42.0 38.0 34.0	49.0 43.0 39.0 35.0 30.0 25.0	41.0 32.0 27.0 22.0 16.0 10.0	19.0 13.0 6.0							
40\$75-21	7 1/2 SI:	20 30 40 50 60	0 46.2 69.3 92.4 116 139 0									107	98 52.0	52.0 50.0	12.0 81 52.0 50.0 47.0	72 53.0 50.0 48.0 44.0	51.0 48.0 45.0 41.0	48.0 45.0 42.0 38.0	49.0 43.0 39.0 35.0 30.0	41.0 32.0 27.0 22.0 16.0 10.0 85	19.0 13.0 6.0	33	23.0					
40\$75-21	7 1/2 SI:	20 30 40 50 60	0 46.2 69.3 92.4 116 139 0									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	72 53.0 50.0 48.0 44.0 41.0	51.0 48.0 45.0 41.0 38.0	48.0 45.0 42.0 38.0 34.0	49.0 43.0 39.0 35.0 30.0 25.0 111	41.0 32.0 27.0 22.0 16.0 10.0 85	19.0 13.0 6.0 59	33	23.0					
40\$75-21	7 1/2 SI:	20 30 40 50 60 0 20	0 46.2 69.3 92.4 116 139 0									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	72 53.0 50.0 48.0 44.0 41.0	51.0 48.0 45.0 41.0 38.0	48.0 45.0 42.0 38.0 34.0	49.0 43.0 39.0 35.0 30.0 25.0	41.0 32.0 27.0 22.0 16.0 10.0 85	19.0 13.0 6.0 59 45.0 39.0	33						
40S75-21 SHUT-OFF PS	7 1/2 SI:	20 30 40 50 60 0 20 30	0 46.2 69.3 92.4 116 139 0 0									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	72 53.0 50.0 48.0 44.0 41.0	51.0 48.0 45.0 41.0 38.0	48.0 45.0 42.0 38.0 34.0 129	49.0 43.0 39.0 35.0 30.0 25.0 111	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0	19.0 13.0 6.0 59 45.0 39.0	33 37.0 29.0						
40S75-21 SHUT-OFF PS	7 1/2 SI:	20 30 40 50 60 0 20 30	0 46.2 69.3 92.4 116 139 0 0 46.2 69.3									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	72 53.0 50.0 48.0 44.0 41.0	51.0 48.0 45.0 41.0 38.0 137	48.0 45.0 42.0 38.0 34.0 129	49.0 43.0 39.0 35.0 25.0 111 52.0 50.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0	19.0 13.0 6.0 59 45.0 39.0 35.0	33 37.0 29.0 25.0						
40S75-21 SHUT-OFF PS	7 1/2 SI:	20 30 40 50 60 0 20 30 40	0 46.2 69.3 92.4 116 139 0 0 46.2 69.3 92.4									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0	53.0 50.0 48.0 44.0 41.0 146	51.0 48.0 45.0 41.0 38.0 137	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0	49.0 43.0 39.0 35.0 25.0 111 52.0 48.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0 44.0	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0	33 37.0 29.0 25.0						
40S75-21 SHUT-OFF PS	7 1/2 SI: 7 1/2	20 30 40 50 60 0 20 30 40 50	0 46.2 69.3 92.4 116 139 0 0 46.2 69.3 92.4 116									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 155	72 53.0 50.0 48.0 44.0 146 53.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 48.0 45.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0 44.0 41.0 38.0	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0 28.0	33 37.0 29.0 25.0						
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS	7 1/2 SI: 7 1/2	20 30 40 50 60 0 20 30 40 50	0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116 139									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0 51.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 50.0 48.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 44.0 44.0 43.0 38.0	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0 28.0 24.0	33 37.0 29.0 25.0 21.0	14.0	27.0				
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS *40S100-30	7 1/2 SI: 7 1/2 SI:	20 30 40 50 60 20 30 40 50 60	0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116 139 0 0 46.2									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0 51.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 50.0 48.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0 44.0 41.0 38.0 34.0 134	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0 28.0 24.0	33 37.0 29.0 25.0 21.0 82 49.0 44.0	47 41.0 35.0	27.0				
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS	7 1/2 SI: 7 1/2 SI:	20 30 40 50 60 20 30 40 50 60 0 20 30	0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116 139 0 0 46.2 69.3									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0 51.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 50.0 48.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0 44.0 41.0 38.0 34.0 134	19.0 13.0 6.0 59 45.0 39.0 35.0 28.0 24.0 108 53.0 50.0 48.0	33 37.0 29.0 25.0 21.0 82 49.0 44.0 42.0	47 41.0 35.0 32.0	20.0				
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS *40S100-30	7 1/2 SI: 7 1/2 SI:	20 30 40 50 60 20 30 40 50 60 0 20 30 40 40	0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 129 92.4 140 92.4									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0 51.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 50.0 48.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 44.0 44.0 38.0 34.0 134 54.0 52.0 51.0	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0 28.0 24.0 108 53.0 50.0 48.0 46.0	33 37.0 29.0 25.0 21.0 82 49.0 44.0 42.0 39.0	47 41.0 35.0 32.0 28.0	20.0 16.0 12.0				
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS *40S100-30	7 1/2 SI: 7 1/2 SI:	20 30 40 50 60 20 30 40 50 60 0 20 30 40 50 50	0 46.2 69.3 92.4 116 0 0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116									51.0	98 52.0 49.0	52.0 50.0 47.0	52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0 51.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 1111 52.0 50.0 48.0 45.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 47.0 44.0 41.0 38.0 34.0 134 54.0 52.0 51.0	19.0 13.0 6.0 59 45.0 39.0 35.0 28.0 24.0 108 53.0 50.0 48.0 46.0 43.0	33 37.0 29.0 25.0 21.0 82 49.0 44.0 42.0 39.0 36.0	47 41.0 35.0 32.0 28.0 25.0	20.0				
40S75-21 SHUT-OFF PS 40S75-25 SHUT-OFF PS *40S100-30	7 1/2 SI: 7 1/2 SI:	20 30 40 50 60 20 30 40 50 60 0 20 30 40 50 50	0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 116 139 0 46.2 69.3 92.4 129 92.4 140 92.4									51.0	98 52.0 49.0	52.0 50.0 47.0	12.0 81 52.0 50.0 47.0 44.0 155	72 53.0 50.0 48.0 44.0 41.0 146 53.0	51.0 48.0 45.0 41.0 38.0 137 54.0 52.0 49.0	48.0 45.0 42.0 38.0 34.0 129 54.0 52.0 50.0 47.0	49.0 43.0 39.0 35.0 30.0 25.0 111 52.0 50.0 48.0 43.0	41.0 32.0 27.0 22.0 16.0 10.0 85 51.0 44.0 44.0 38.0 34.0 134 54.0 52.0 51.0	19.0 13.0 6.0 59 45.0 39.0 35.0 32.0 28.0 24.0 108 53.0 50.0 48.0 46.0	33 37.0 29.0 25.0 21.0 82 49.0 44.0 42.0 39.0	47 41.0 35.0 32.0 28.0	20.0 16.0 12.0	23			

* 6" Motor

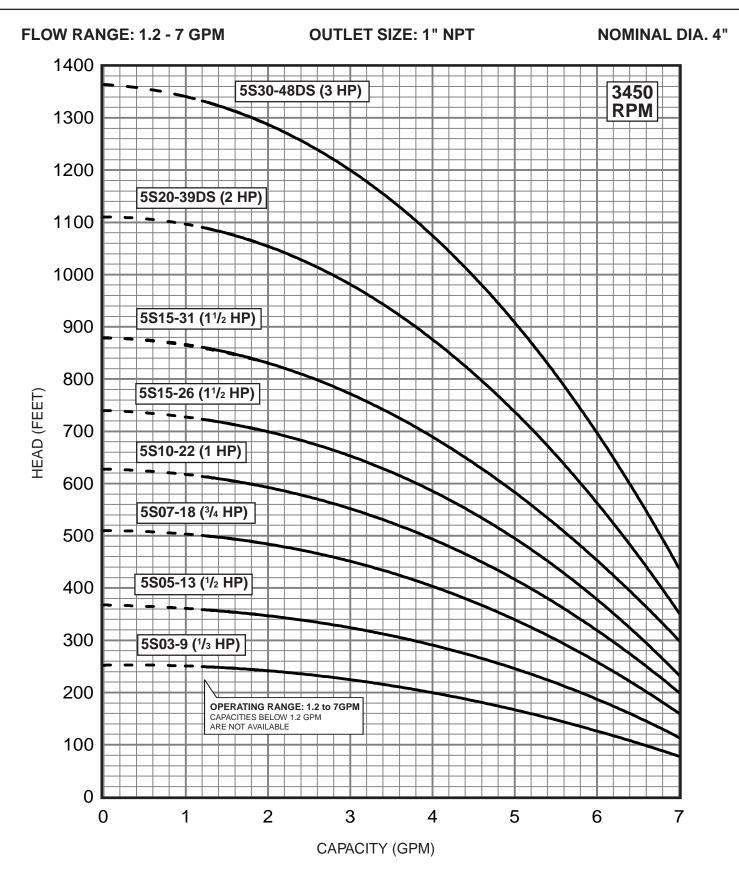
See 40S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

SELECTION CHARTSFLOW RANGEPUMP OUTLET(Ratings are in GALLONS PER MINUTE-GPM)(40 TO 75 GPM)2" NPT

-					JIL-C			DEPT	тн то	PIM	PING			75 C	(LIFT)	IN F	FFT										\neg
PUMP								DLF.		I OIVI		V V / \		- V L L	(=11 1 <i>)</i>	11 1 1 1											
MODEL	НР	DO:		40			400	400	440	400	400	000	000	040				240	400	400			700		000	4000	4400
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	72.3	64.5	38.6	12.7	6.3																				
60S20-4	2	30	58.6	44.9	22.4																						—
		40	30.4																								
		50 60	17.9																								—
SHUT-OFF PSI		60	46	37	29	20	11	3																			
3001-066 631		_	40	31	29			=	04.0																		
		0	77.0	70.0	00.0	74.8	66.8	58.8	34.3																		
60630 E		20	77.8	72.9	63.8	54.8	27.4																				
60S30-5	3	30	76.0	64.3 49.9	47.3	30.0	15.0																				—
		40	60.4		25.0																						
		50	40.4 22.0	19.4	9.8																						-
CUUT OFF DEL		60		E4	40	24	25	10	0																		-
SHUT-OFF PSI			60	51	42	34	25	16	8	00.6	50.6	44.5															
		0			70.0	70.4	77.5	73.8	68.4	63.1	52.2	41.3															
20052 7	_	20	_	70.0	76.3	72.4	66.6	61.1	48.3	35.8	17.9	_								_							—
60S50-7	5	30	75.4	76.0	71.3	66.5	57.8	49.2	24.6																		\vdash
		40	75.1	71.0	64.6	58.2	43.8	29.4	14.8			_								_							
		50	69.7	64.6	54.8	44.9	22.5																				
0.00		60	62.3	55.3	38.7	22.0	11.0	4-			40	40															\vdash
SHUT-OFF PSI	:		88	80	71	62	54	45	36	28	19	10															\vdash
		0					70.0	70.5	74.8	71.7	67.3	63.0	55.6	48.2	32.8	17.3											
20052.0	_	20					73.8	70.5	65.9	61.3	53.0	44.8	27.5	10.2	5.1												\vdash
60S50-9	5	30		70.0	76.5	73.5	69.6	65.7	59.4	53.2	40.7	28.1	14.0														
		40		76.2	72.8	69.3	64.3	59.4	50.3	41.0	20.5																$\vdash \vdash \vdash$
		50	75.5	72.5	68.3	64.2	57.3	50.4	36.3	22.2	11.1																
01117 055 001		60	71.7	68.1	62.7	57.3	47.1	36.8	18.4		40	07		00													\vdash
SHUT-OFF PSI	l:		115	106	98	89	81	72	63	55	46	37	29	20	11	3											
		0									77.3	75.4	73.1	70.7	67.8	64.8	60.7	50.0	21.5								\vdash
		20							76.8	74.8	72.3	69.9	66.8	63.8	59.3	55.0	47.9	28.9									\vdash
	7 1/2	-						76.6	74.3	72.1	69.3	66.6	62.8	59.2	53.3	47.7	38.2	14.3									
*60S75-13		40					76.2	74.1	71.6	69.1	65.8	62.7	57.9	53.3	45.6	37.9	25.0	6.0									\vdash
		50				75.9	73.6	71.3	68.4	65.6	61.7	57.7	51.6	45.4	35.0	24.7	12.3										
		60			75.5	73.3	70.8	68.2	64.8	61.4	56.3	51.3	43.1	34.8	20.8	6.8	H.,										\vdash
SHUT-OFF PSI	:				152	143	134	126	117	108	100	91	82	74	65	56	48	30	4								
		0													76.5	75.0	73.3	69.8	63.1	52.6							Щ
<u>.</u>		20											76.1	74.6	72.8	71.2	69.2	64.7	55.8	40.0	14.2						igwdapprox
*60S100-18	10	30										75.9	74.3	72.7	70.8	68.9	66.7	61.6	50.9	31.5							igwdown
		40									75.7	74.1	72.3	70.6	68.5	66.5	63.9	58.0	45.0	20.7							
		50								75.4	73.8	72.1	70.2	68.3	66.0	63.7	60.7	53.6	37.5	10.0							$oxed{oxed}$
		60							75.2	73.6	71.8	70.0	67.8	65.8	63.1	60.5	56.8	48.2	28.3								Щ
SHUT-OFF PSI	l:								186	177	169	160	152	143	134	126	117	100	74	46	22						

^{* 6&}quot; Motor

75S EASY SELECTION CHART

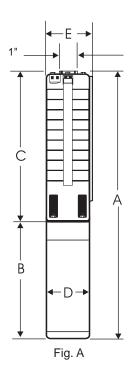

75 GPM

SELECTION CHARTSFLOW RANGEPUMP OUTLET(Ratings are in GALLONS PER MINUTE-GPM)(45 TO 95 GPM)2" NPT

(Ratings are ir	1 GALLO	NS PI	ER MI	NUTE	-GPM)					(4	5 10	95 GF	'IVI)													2" NP	<u> </u>
								DE	PTH T	TO PU	MPIN	G WA	ΓER LE	EVEL	(LIFT)	IN FE	ĒΤ										
PUMP																											
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		20	69.6	45.8	22.9																						
75S20-3	2	30	36.2																								
		40	12.4																								
		50																									
		60																									
SHUT-OFF PSI:			32	23	14	6																					
		0			89.8	90.2	78.8	67.6																			
		20	96.3	86.8	74.8	62.9	31.5																				
75S30-5	3	30	85.8	74.2	51.8	29.5	14.8																				
		40	70.2	57.1	28.6																						
		50	35.3																								
		60	24.2																								
SHUT-OFF PSI:			58	49	41	32	23	15																			
		0						93.3	86.5	79.6	72.0	64.5	46.9	29.4													
		20			97.4	91.3	84.7	77.5	69.4	61.3	40.3	19.4	9.8														
75S50-8	5	30		96.9	90.1	83.3	76.3	69.3	56.3	43.1	21.6																
		40	95.5	89.1	82.3	75.4	66.5	57.5	28.8																		
		50	88.0	81.2	73.9	66.7	51.2	35.8	17.9																		
		60	80.2	73.3	63.2	53.0	26.5																				
SHUT-OFF PSI:			98	90	81	72	64	55	46	38	29	20	12	3													
		0								97.8	93.3	88.8	84.3	79.8	75.1	70.4	63.7	43.4									
		20						96.5	92.0	87.4	82.9	78.3	73.5	68.8	61.4	54.0	38.8	11.8									
*75S75-11	7 1/2	30					95.7	91.3	86.8	82.2	77.6	73.1	67.3	61.4	50.3	39.3	19.7										
		40				95.2	90.6	86.0	81.5	77.0	72.0	67.0	58.9	50.8	33.5	16.3	8.2										
		50			94.3	89.9	85.3	80.8	76.2	71.6	65.3	59.0	46.6	34.2	17.1												
		60	97.9	93.8	89.2	84.6	80.1	75.6	70.3	65.2	56.1	47.0	23.5														1
SHUT-OFF PSI:			151	142	133	125	116	107	99	90	81	73	64	55	47	38	29	12		<u> </u>	<u> </u>	<u> </u>					<u> </u>
		0											96.7	93.4	90.0	86.5	83.2	76.3	64.7	40.9							
		20									95.7	92.4	88.9	85.5	82.1	78.7	75.2	67.4	49.3	12.5							
*75S100-15	10	30								95.3	91.8	88.4	85.0	81.5	78.2	74.8	70.9	61.6	37.1								
		40						98.0	94.7	91.3	87.8	84.4	81.0	77.7	74.1	70.6	66.0	54.0	19.9								
		50					97.3	94.3	90.8	87.3	83.9	80.5	77.1	73.7	69.7	65.8	59.8	43.5									
		60				97.0	93.7	90.3	86.8	83.3	80.0	76.6	73.0	69.3	64.5	59.6	51.5	21.7									
SHUT-OFF PSI:						178	170	161	152	144	135	126	118	109	100	92	83	66	40	14							i

^{* 6&}quot; Motor Performance is the same at Best Efficiency Point only, consult factory for actual performance.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

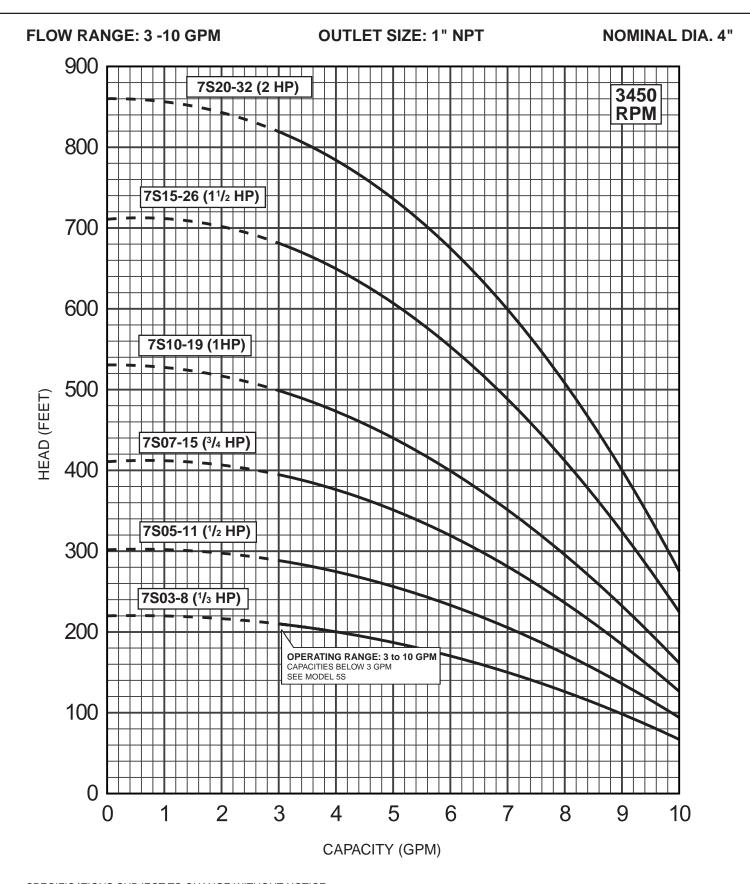

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 3450 RPM.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 2 feet.

DIMENSIONS AND WEIGHTS

			MOTOR	DISCH.		DIMEN	SIONS I	N INCHE	S	APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
5S03-9	Α	1/3	4"	1" NPT	22.3	8.8	13.5	3.8	3.9	27
5S05-13	Α	1/2	4"	1" NPT	26.4	9.5	16.9	3.8	3.9	31
5S07-18	Α	3/4	4"	1" NPT	31.7	10.7	21.0	3.8	3.9	34
5S10-22	Α	1	4"	1" NPT	36.1	11.8	24.3	3.8	3.9	42
5S15-26	Α	1 1/2	4"	1" NPT	41.2	13.6	27.6	3.8	3.9	46
5S15-31	Α	1 1/2	4"	1" NPT	47.1	13.6	33.5	3.8	3.9	58
5S20-39DS	Α	2	4"	1" NPT	55.2	15.1	40.1	3.8	3.9	65
5S30-48DS	Α	3	4"	1" NPT	70.0	20.6	45.8	3.8	3.9	90

NOTES: All models suitable for use in 4" wells. Weights include pump end with motor in lbs.


MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT (9-26 Stgs.)	CYLINDRICAL SHAFT (31-48 Stgs.)
Check Valve Housing	304 Stainless Steel	304 Stainless Steel
Check Valve	304 Stainless Steel	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel
Impeller	304 Stainless Steel	304 Stainless Steel
Suction Interconnector	304 Stainless Steel	304 Stainless Steel
Inlet Screen	304 Stainless Steel	304 Stainless Steel
Pump Shaft	304 Stainless Steel	431 Stainless Steel
Straps	304 Stainless Steel	304 Stainless Steel
Cable Guard	304 Stainless Steel	304 Stainless Steel
Priming Inducer	304 Stainless Steel	316 Stainless Steel
Coupling	329/420/431 Stainless Steel	329/420/431 Stainless Steel
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel
Top Bearing	NBR/304 Stainless Steel	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)
Intermediate Bearings	NBR	304 Stainless Steel
Shaft Washer	Not Required	LCP (Vectra®)
Split Cone	Not Required	304 Stainless Steel
Split Cone Nut	Not Required	316 Stainless Steel

NOTES: Specifications subject to change without notice. Valox® is a registered trademark of General Electric Co.

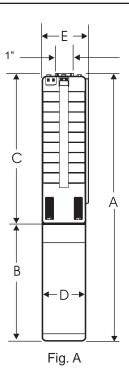
Vectra® is a registered trademark of Hoechast Calanese Corporation.

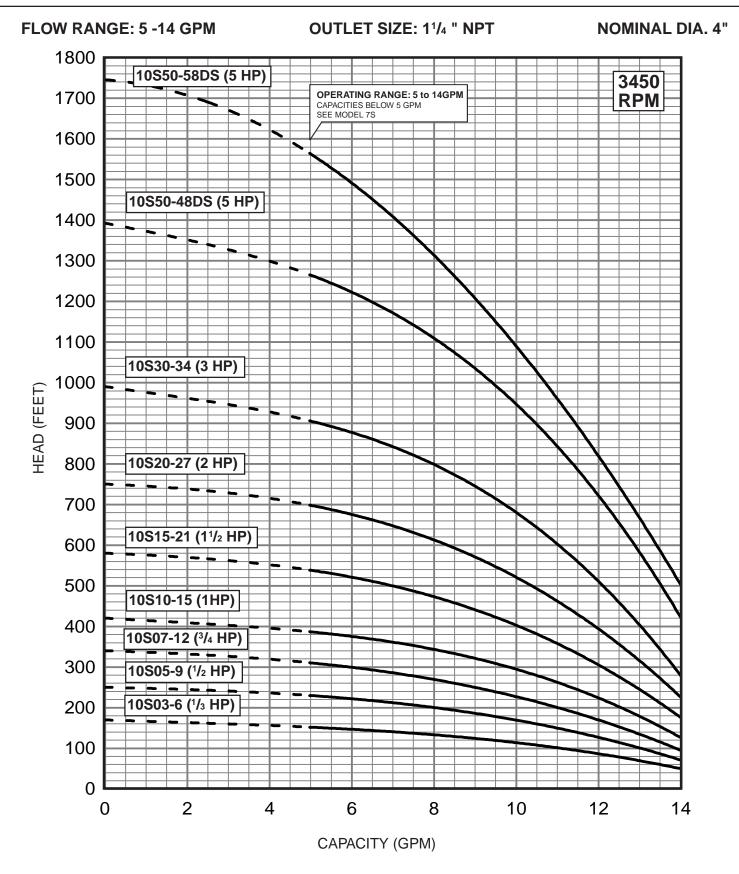
Ryton® is a registered trademark of Phillips 66.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. $4^{\rm w}$ MOTOR STANDARD, 3450 RPM.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 2 feet.

DIMENSIONS AND WEIGHTS

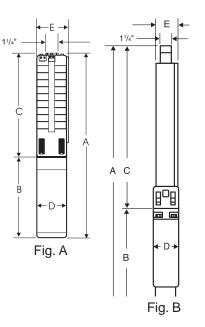

			MOTOR	DISCH.	DIMENSIONS IN INCHES				APPROX.	
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
7S03-8	Α	1/3	4"	1" NPT	21.5	8.8	12.7	3.8	3.9	27
7S05-11	Α	1/2	4"	1" NPT	24.7	9.5	15.2	3.8	3.9	30
7S07-15	Α	3/4	4"	1" NPT	29.2	10.7	18.5	3.8	3.9	33
7S10-19	Α	1	4"	1" NPT	33.6	11.8	21.8	3.8	3.9	36
7S15-26	Α	1 1/2	4"	1" NPT	41.2	13.6	27.6	3.8	3.9	46
7S20-32	Α	2	4"	1" NPT	48.5	14.0	34.5	3.8	3.9	59


NOTES: All models suitable for use in 4" wells. Weights include pump end with motor in lbs.

MATERIALS OF CONSTRUCTION

COMPONENT	SPLINE SHAFT					
Check Valve Housing	304 Stainless Steel					
Check Valve	304 Stainless Steel					
Diffuser Chamber	304 Stainless Steel					
Impeller	304 Stainless Steel					
Suction Interconnector	304 Stainless Steel					
Inlet Screen	304 Stainless Steel					
Pump Shaft	304 Stainless Steel					
Straps	304 Stainless Steel					
Cable Guard	304 Stainless Steel					
Priming Inducer	304 Stainless Steel					
Coupling	316/431 Stainless Steel					
Check Valve Seat	NBR/304 Stainless Steel					
Top Bearing	NBR					
Impeller Seal Ring	NBR/PBT (Valox ®)					
Intermediate Bearings	NBR					

NOTES: Specifications subject to change without notice. Valox® is a registered trademark of General Electric Co.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 3450 RPM.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 2 feet.

			MOTOR	DISCH.	H. DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
10S03-6	Α	1/3	4"	1 1/4" NPT	19.9	8.8	11.1	3.8	3.9	26
10S05-9	Α	1/2	4"	1 1/4" NPT	23.0	9.5	13.5	3.8	3.9	29
10S07-12	Α	3/4	4"	1 1/4" NPT	26.7	10.7	16.0	3.8	3.9	32
10S10-15	Α	1	4"	1 1/4" NPT	30.3	11.8	18.5	3.8	3.9	34
10S15-21	Α	1 1/2	4"	1 1/4" NPT	37.1	13.6	23.5	3.8	3.9	44
10S20-27	Α	2	4"	1 1/4" NPT	43.5	15.1	28.4	3.8	3.9	49
10S30-34	Α	3	4"	1 1/4" NPT	54.7	20.6	34.1	3.8	3.9	83
10S50-48DS	Α	5	4"	1 1/4" NPT	71.3	23.6	47.7	3.8	3.9	115
10S50-58DS*	В	5	4"	1 1/4" MPT	88.2	23.6	64.5	3.8	4.3	142

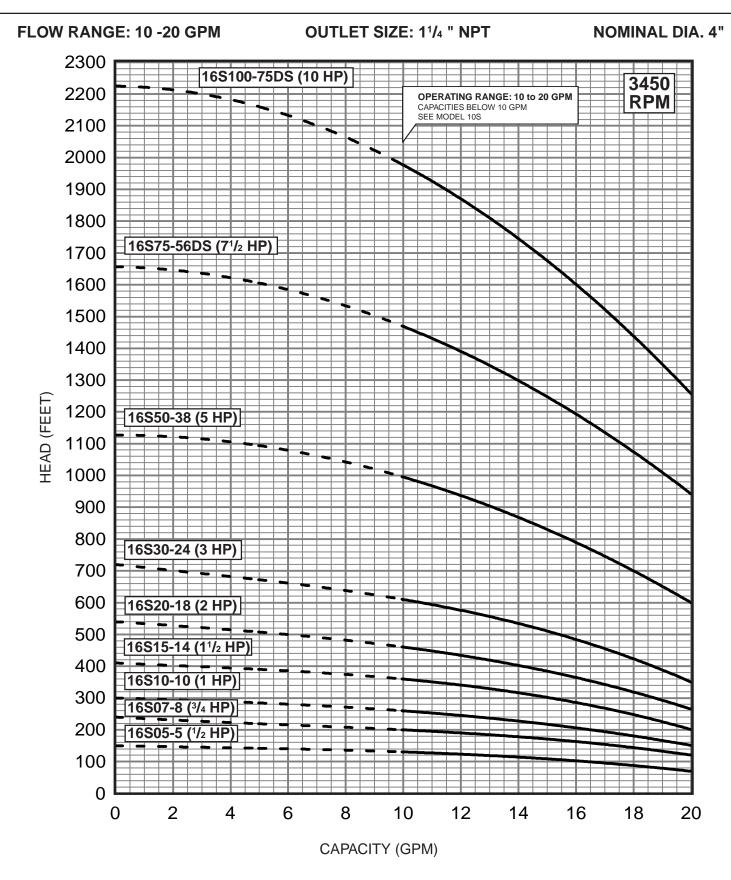
NOTES: All models suitable for use in 4" wells, unless otherwise noted. Weights include pump end with motor in lbs.

MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT (6-27 Stgs.)	CYLINDRICAL SHAFT (34-48 Stgs.)	DEEP SET (58 Stgs.)
Check Valve Housing	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Check Valve	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Impeller	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Suction Interconnector	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Inlet Screen	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Pump Shaft	304 Stainless Steel	431 Stainless Steel	431 Stainless Steel
Straps	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Cable Guard	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Priming Inducer	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Coupling	316/431 Stainless Steel	316/431 Stainless Steel	316/431 Stainless Steel
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Top Bearing	NBR	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)	NBR/PPS (Ryton®)
Intermediate Bearings	NBR	304 Stainless Steel	NBR/316 Stainless Steel
Shaft Washer	Not Required	LCP (Vectra®)	LCP (Vectra®)
Split Cone	Not Required	304 Stainless Steel	304 Stainless Steel
Split Cone Nut	Not Required	316 Stainless Steel	304 Stainless Steel
Sleeve	Not Required	Not Required	316 Stainless Steel
Sleeve Flange	Not Required	Not Required	Zincless Bronze*

NOTES: Specifications subject to change without notice.

Valox® is a registered trademark of General Electric Co.

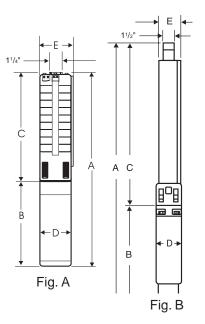

Vectra® is a registered trademark of Hoechast Calanese Corporation.

Ryton® is a registered trademark of Phillips 66.

^{*} Built into sleeve 11/4" MPT discharge, 5" min. well dia.

^{*} Stainless Steel option available.

16 GPM



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, .5 -5 HP/3450 RPM. 6" MOTOR STANDARD,7.5 -10HP/3450 RPM.

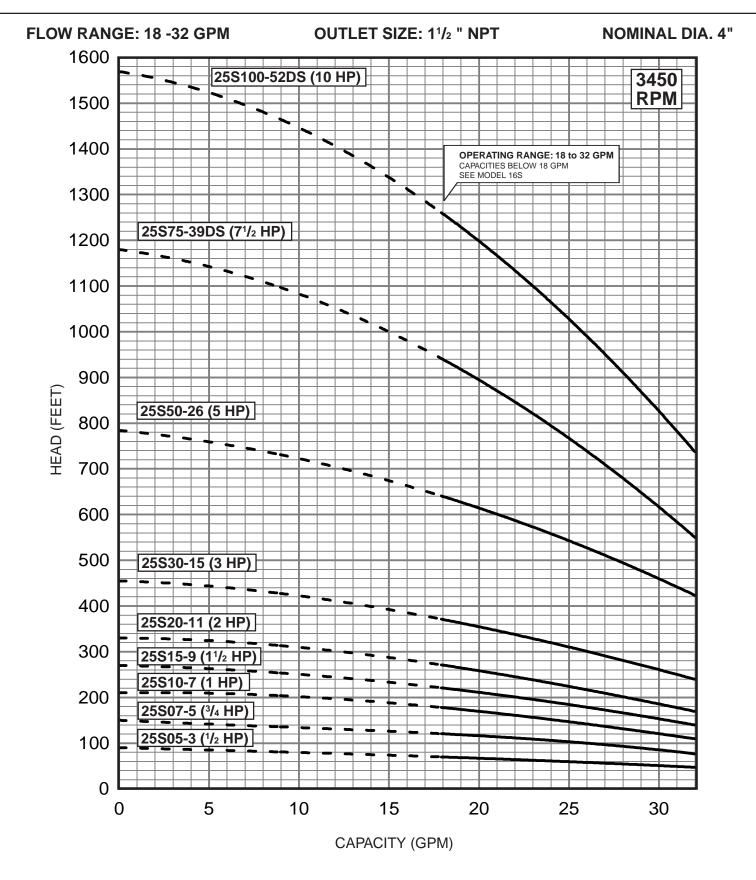
Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 2 feet.

			MOTOR	DISCH.	DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
16S05-5	Α	1/2	4"	1 1/4" NPT	19.7	9.5	10.2	3.8	3.9	27
16S07-8	Α	3/4	4"	1 1/4" NPT	23.4	10.7	12.7	3.8	3.9	29
16S10-10	Α	1	4"	1 1/4" NPT	26.2	11.8	14.4	3.8	3.9	32
16S15-14	Α	1 1/2	4"	1 1/4" NPT	32.8	15.1	17.7	3.8	3.9	36
16S20-18	Α	2	4"	1 1/4" NPT	36.0	15.1	20.9	3.8	3.9	40
16S30-24	Α	3	4"	1 1/4" NPT	46.5	20.6	25.9	3.8	3.9	64
16S50-38	Α	5	4"	1 1/4" NPT	61.1	23.6	37.5	3.8	3.9	94
16S75-56DS*	В	7 1/2	6"	1 1/4" MPT	93.0	24.2	68.8	5.4	4.6	220
16S100-75DS*	В	10	6"	1 1/4" MPT	109.9	25.4	84.5	5.4	4.6	245

NOTES: All models suitable for use in 4" wells, unless otherwise noted. Weights include pump end with motor in lbs..

MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT (5-24 Stgs.)	CYLINDRICAL SHAFT (38 Stgs.)	DEEP SET (56-75 Stgs)		
Check Valve Housing	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Check Valve	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Impeller	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Suction Interconnector	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Inlet Screen	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Pump Shaft	304 Stainless Steel	431 Stainless Steel	431 Stainless Steel		
Straps	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Cable Guard	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Priming Inducer	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Coupling	316/431 Stainless Steel	316/431 Stainless Steel	329/416 Stainless Steel**		
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel	NBR/316 Stainless Steel		
Top Bearing	NBR	NBR/316 Stainless Steel	NBR/316 Stainless Steel		
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)	NBR/PPS (Ryton®)		
Intermediate Bearings	NBR	304 Stainless Steel	NBR/316 Stainless Steel		
Shaft Washer	Not Required	LCP (Vectra®)	LCP (Vectra®)		
Split Cone	Not Required	304 Stainless Steel	304 Stainless Steel		
Split Cone Nut	Not Required	316 Stainless Steel	304 Stainless Steel		
Sleeve	Not Required	Not Required	316 Stainless Steel		
Sleeve Flange	Not Required	Not Required	304 Stainless Steel		
Coupling Key	Not Required	Not Required	302/304 Stainless Steel**		

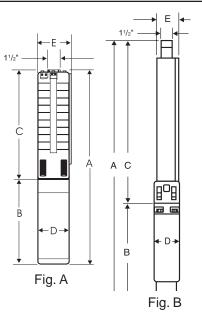

NOTES: Specifications are subject to change without notice. Valox® is a registered trademark of General Electric Co.

Vectra® is a registered trademark of Hoechast Calanese Corporation. Ryton® is a registered trademark of Phillips 66.

^{*} Built into sleeve 11/4" MPT discharge, 6" min. well dia.

^{*}Stainless Steel option available.

** If using 4" non-standard motors, refer to 329/420/431 Stainless Steel for coupling. A coupling key is not required.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, .5 -5 HP/3450 RPM. 6" MOTOR STANDARD,7.5 -10HP/3450 RPM.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 2 feet.

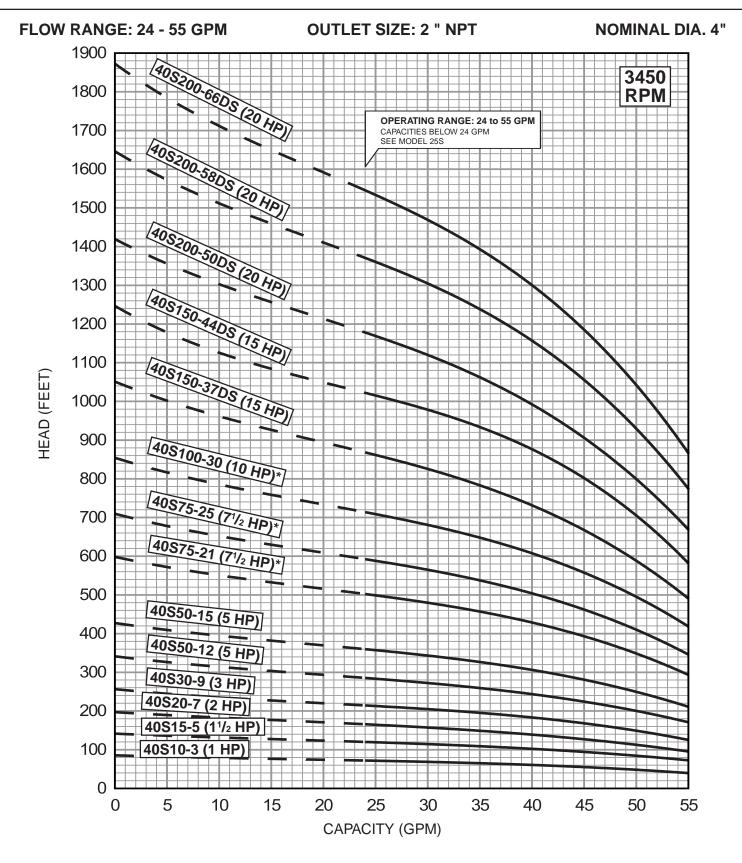
			MOTOR	DISCH.	DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	E	SHIP WT.
25S05-3	Α	1/2	4"	1 1/2" NPT	18.1	9.5	8.6	3.8	3.9	26
25\$07-5	Α	3/4	4"	1 1/2" NPT	20.9	10.7	10.2	3.8	3.9	28
25S10-7	Α	1	4"	1 1/2" NPT	23.7	11.8	11.9	3.8	3.9	29
25S15-9	Α	1 1/2	4"	1 1/2" NPT	27.1	13.6	13.5	3.8	3.9	34
25S20-11	Α	2	4"	1 1/2" NPT	30.3	15.1	15.2	3.8	3.9	37
25S30-15	Α	3	4"	1 1/2" NPT	39.1	20.6	18.5	3.8	3.9	59
25S50-26	Α	5	4"	1 1/2" NPT	51.2	23.6	27.6	3.8	3.9	76
25S75-39DS	Α	7 1/2	6"	1 1/2" NPT	66.8	24.2	42.6	5.4	4.6	168
25S100-52DS*	В	10	6"	1 1/2" MPT	90.9	25.4	65.5	5.4	5.4	226

NOTES: All models suitable for use in 4" wells, unless otherwise noted. Weights include pump end with motor in lbs.

MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT (3-26 Stgs.)	CYLINDRICAL SHAFT (39 Stgs.)	DEEP SET (52 Stgs)		
Check Valve Housing	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Check Valve	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Impeller	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Suction Interconnector	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Inlet Screen	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Pump Shaft	304 Stainless Steel	431 Stainless Steel	431 Stainless Steel		
Straps	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Cable Guard	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Priming Inducer	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel		
Coupling	316/431 Stainless Steel	316/431 Stainless Steel	329/416 Stainless Steel**		
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel	NBR/316 Stainless Steel		
Top Bearing	NBR	NBR/316 Stainless Steel	NBR/316 Stainless Steel		
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)	NBR/PPS (Ryton®)		
Intermediate Bearings	NBR	304 Stainless Steel	NBR/316 Stainless Steel		
Shaft Washer	Not Required	LCP (Vectra®)	LCP (Vectra®)		
Split Cone	Not Required	304 Stainless Steel	304 Stainless Steel		
Split Cone Nut	Not Required	316 Stainless Steel	304 Stainless Steel		
Sleeve	Not Required	Not Required	316 Stainless Steel		
Sleeve Flange	Not Required	Not Required	304 Stainless Steel		
Coupling Key	Not Required	Not Required	302/304 Stainless Steel**		

NOTES: Specifications are subject to change without notice. $\label{eq:valox} \mbox{Valox} \mbox{\mathbb{R} is a registered trademark of General Electric Co.}$


Vectra® is a registered trademark of Hoechast Calanese Corporation.

Ryton® is a registered trademark of Phillips 66.

^{*} Built into sleeve 11/2" MPT discharge, 6" min. well dia.

^{*}Stainless Steel option available.

^{**} If using 4" non-standard motors, refer to 329/420/431 Stainless Steel for coupling. A coupling key is not required.

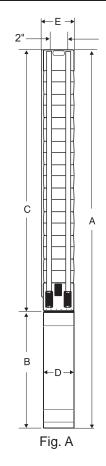
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 1-10 HP/3450 RPM. 6" MOTOR STANDARD,15-20 HP/3450 RPM.

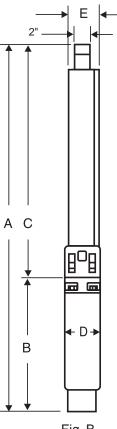
* Also available with 6" motor.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 5 feet.

			MOTOR	DISCH.		DIMEN	ES	APPROX.		
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
40S10-3	Α	1	4"	2" NPT	24.6	11.8	12.8	3.8	3.9	32
40S15-5	Α	1 1/2	4"	2" NPT	29.7	13.6	16.1	3.8	3.9	37
40S20-7	Α	2	4"	2" NPT	34.5	15.1	19.4	3.8	3.9	41
40S30-9	Α	3	4"	2" NPT	43.3	20.6	22.7	3.8	3.9	65
40S50-12	Α	5	4"	2" NPT	51.3	23.6	27.7	3.8	3.9	78
40S50-15	Α	5	4"	2" NPT	56.2	23.6	32.6	3.8	3.9	84
40S75-21*	Α	7 1/2	4"	2" NPT	74.6	29.6	45.0	3.8	3.9	120
40S75-25*	Α	7 1/2	4"	2" NPT	81.2	29.6	51.6	3.8	3.9	124
40S100-30*	Α	10	4"	2" NPT	103.7	43.9	59.8	3.8	3.9	181
40S150-37DS	Α	15	6"	2" NPT	99.5	28.0	71.5	5.4	5.4	244
40S150-44DS	Α	15	6"	2" NPT	111.0	28.0	83.0	5.4	5.4	340
40S200-50DS**	В	20	6"	2" MPT	136.0	30.6	105.4	5.4	5.5	319
40S200-58DS**	В	20	6"	2" MPT	149.2	30.6	118.6	5.4	5.5	334
40S200-66DS**	В	20	6"	2" MPT	162.4	30.6	131.8	5.4	5.5	394

NOTES: All models suitable for use in 4" wells, unless otherwise noted.

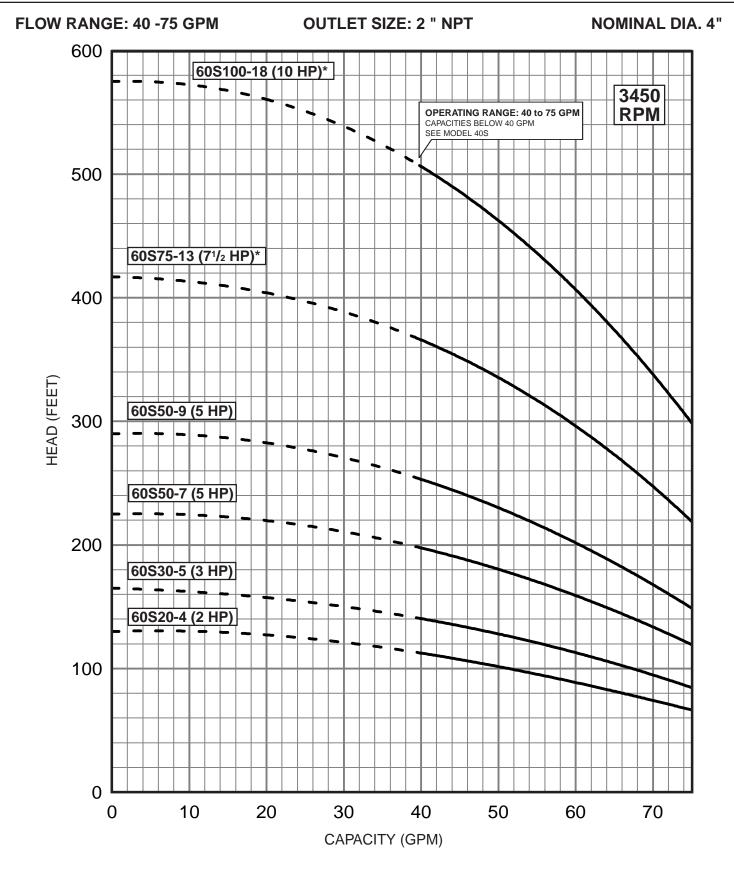

Weights include pump end with motor in lbs.


MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (3-44 Stgs.)	DEEP SET (50-66 Stgs.)
Check Valve Housing	304 Stainless Steel	304 Stainless Steel
Check Valve	304 Stainless Steel	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel
Impeller	304 Stainless Steel	304 Stainless Steel
Suction Interconnector	304 Stainless Steel	304 Stainless Steel
Inlet Screen	304 Stainless Steel	304 Stainless Steel
Pump Shaft	431 Stainless Steel	431 Stainless Steel
Straps	304 Stainless Steel	304 Stainless Steel
Cable Guard	304 Stainless Steel	304 Stainless Steel
Priming Inducer	304 Stainless Steel	304 Stainless Steel
Coupling	316/431 Stainless Steel **	329/416 Stainless Steel
Check Valve Seat	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Top Bearing	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Intermediate Bearings	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Shaft Washer	LCP (Vectra®)	LCP (Vectra®)
Split Cone	304 Stainless Steel	304 Stainless Steel
Split Cone Nut	304 Stainless Steel	304 Stainless Steel
Sleeve	Not Required	316 Stainless Steel
Sleeve Flange	Not Required	304 Stainless Steel

NOTES: Specifications are subject to change without notice.

Vectra® is a registered trademark of Hoechast Calanese Corporation.



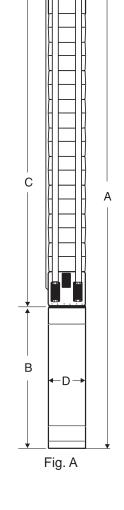
^{*} Also available with 6" motor.

^{**} Built into sleeve 2" MPT discharge, 6" min. well dia.

^{*}Stainless Steel option available.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 3450 RPM.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 5 feet.


^{*} Also available with 6" motor.

			MOTOR	DISCH.	DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
60S20-4	Α	2	4"	2" NPT	32.6	15.1	17.5	3.8	3.9	39
60S30-5	Α	3	4"	2" NPT	40.7	20.6	20.1	3.8	3.9	64
60S50-7	Α	5	4"	2" NPT	48.8	23.6	25.2	3.8	3.9	75
60S50-9	Α	5	4"	2" NPT	53.9	23.6	30.3	3.8	3.9	80
60S75-13*	Α	7 1/2	4"	2" NPT	70.1	29.6	40.5	3.8	3.9	105
60S100-18*	Α	10	4"	2" NPT	97.3	43.9	53.4	3.8	3.9	160

NOTES: All models suitable for use in 4" wells, unless otherwise noted. Weights include pump end with motor in lbs..


MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (4-18 Stgs.)
Check Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Pump Shaft	431 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Priming Inducer	304 Stainless Steel
Coupling	316/431 Stainless Steel**
Check Valve Seat	NBR/316 Stainless Steel
Top Bearing	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/316 Stainless Steel
Intermediate Bearings	NBR/316 Stainless Steel
Shaft Washer	LCP (Vectra®)
Split Cone	304 Stainless Steel
Split Cone Nut	304 Stainless Steel

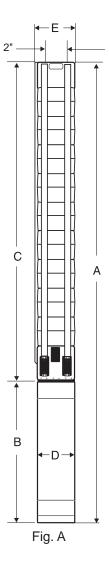
NOTES: Specifications are subject to change without notice. Vectra® is a registered trademark of Hoechast Calanese Corporation.

^{*} Also available with 6" motor.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD,2-10 Hp 3450 RPM.

* Also available with 6" motor, performance is the same only at Best Effeciency point. Consult factory for actual performance.

Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 5 feet.


			MOTOR	DISCH.	DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
75S20-3	Α	2	4"	2" NPT	30.0	15.1	14.9	3.8	3.9	38
75S30-5	Α	3	4"	2" NPT	40.7	20.6	20.1	3.8	3.9	64
75S50-8	Α	5	4"	2" NPT	51.4	23.6	27.8	3.8	3.9	78
75S75-12*	Α	7 1/2	4"	2" NPT	67.5	29.6	37.9	3.8	3.9	100
75S100-16*	Α	10	4"	2" NPT	92.1	43.9	48.2	3.8	3.9	155

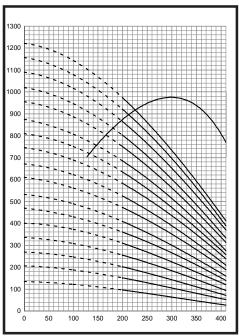
NOTES: All models suitable for use in 4" wells, unless otherwise noted.

Weights include pump end with motor in lbs.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (3-16 Stgs.)
Check Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Pump Shaft	431 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Priming Inducer	304 Stainless Steel
Coupling	316/431 Stainless Steel**
Check Valve Seat	NBR/316 Stainless Steel
Top Bearing	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/316 Stainless Steel
Intermediate Bearings	NBR/316 Stainless Steel
Shaft Washer	LCP (Vectra®)
Split Cone	304 Stainless Steel
Split Cone Nut	304 Stainless Steel

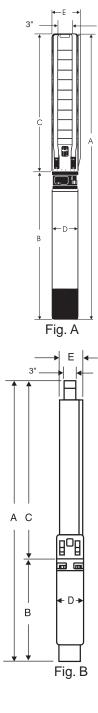
NOTES: Specifications are subject to change without notice.


Vectra® is a registered trademark of Hoechast Calanese Corporation.

^{*} Also available with 6" motor, performance is the same only at Best Efficiency point. Consult factory for actual performance.

Performance Curves and Technical Data

6-Inch, 8-Inch & 10-Inch Submersible Pumps



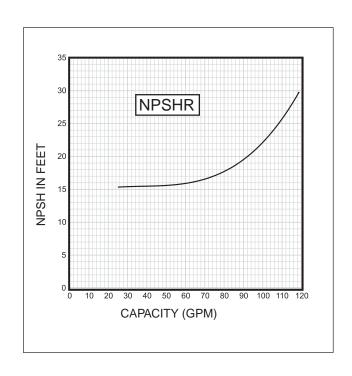
Performance Curves

Materials of Construction

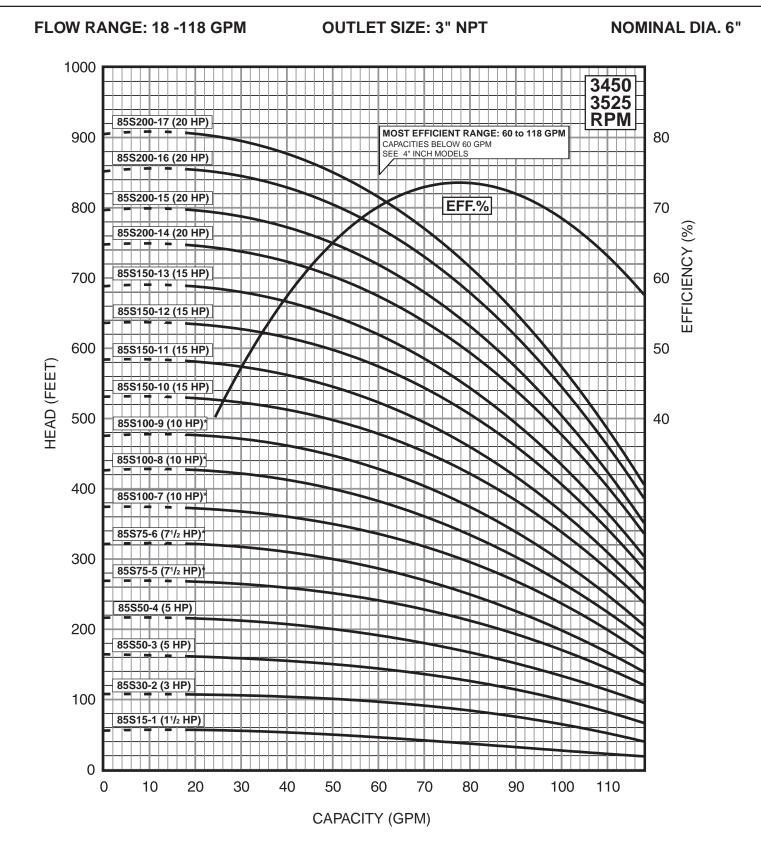
			MOTOR	DISCH.	DII	MENSI	IONS IN	INCHE	s	APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
85S15-1	Α	1 1/2	4"	3" NPT	25.9	13.6	12.3	3.75	5.2	37
85S30-2	Α	3	4"	3" NPT	35.3	20.6	14.7	3.75	5.2	61
85S50-3	Α	5	4"	3" NPT	40.7	23.6	17.1	3.75	5.2	75
85S50-4	Α	5	4"	3" NPT	43.1	23.6	19.5	3.75	5.2	77
85S75-5	Α	7 1/2	4"	3" NPT	51.5	29.6	21.9	3.75	5.2	95
85S75-6	Α	7 1/2	4"	3" NPT	53.9	29.6	24.3	3.75	5.2	97
85S100-7	Α	10	4"	3" NPT	70.5	43.9	26.6	3.75	5.2	151
85S100-8	Α	10	4"	3" NPT	72.9	43.9	29.0	3.75	5.2	154
85S100-9	Α	10	4"	3" NPT	75.3	43.9	31.4	3.75	5.2	156
85S75-5	Α	7 1/2	6"	3" NPT	46.7	24.2	22.5	5.38	5.6	135
85S75-6	Α	7 1/2	6"	3" NPT	49.1	24.2	24.9	5.38	5.6	137
85S100-7	Α	10	6"	3" NPT	52.7	25.4	27.3	5.38	5.6	148
85S100-8	Α	10	6"	3" NPT	55.0	25.4	29.6	5.38	5.6	151
85S100-9	Α	10	6"	3" NPT	57.4	25.4	32.0	5.38	5.6	153
85S150-10	Α	15	6"	3" NPT	62.4	28.0	34.4	5.38	5.6	170
85S150-11	Α	15	6"	3" NPT	64.8	28.0	36.8	5.38	5.6	174
85S150-12	Α	15	6"	3" NPT	67.2	28.0	39.2	5.38	5.6	176
85S150-13	Α	15	6"	3" NPT	69.6	28.0	41.6	5.38	5.6	178
85S200-14	Α	20	6"	3" NPT	74.5	30.6	43.9	5.38	5.6	193
85S200-15	Α	20	6"	3" NPT	76.9	30.6	46.3	5.38	5.6	198
85S200-16	Α	20	6"	3" NPT	79.3	30.6	48.7	5.38	5.6	200
85S200-17	Α	20	6"	3" NPT	81.7	30.6	51.1	5.38	5.6	202
85S200-18	Α	20	6"	3" NPT	84.1	30.6	53.5	5.38	5.6	204
85S250-19	Α	25	6"	3" NPT	88.9	33.1	55.8	5.38	5.6	240
85S250-20	Α	25	6"	3" NPT	91.9	33.1	58.8	5.38	5.6	244
85S250-21	Α	25	6"	3" NPT	94.3	33.1	61.2	5.38	5.6	246
85S250-22	Α	25	6"	3" NPT	96.7	33.1	63.6	5.38	5.6	249
85S300-23	Α	30	6"	3" NPT	101.9	35.7	66.2	5.38	5.6	264
85S300-24	Α	30	6"	3" NPT	104.1	35.7	68.4	5.38	5.6	266
85S300-25	Α	30	6"	3" NPT	106.4	35.7	70.7	5.38	5.6	271
85S300-26	Α	30	6"	3" NPT	108.8	35.7	73.1	5.38	5.6	273
85S300-27	Α	30	6"	3" NPT	116.3	40.8	75.5	5.38	5.6	278
85S400-28	Α	40	6"	3" NPT	118.7	40.8	77.9	5.38	5.6	281
85S400-29	Α	40	6"	3" NPT	121.1	40.8	80.3	5.38	5.6	283
85S400-30	Α	40	6"	3" NPT	123.4	40.8	82.6	5.38	5.6	287
85S400-33*	В	40	6"	3" NPT	139.7	40.8	98.9	5.38	6.9	343
85S400-36*	В	40	6"	3" NPT	146.9	40.8	106.1	5.38	6.9	354
85S500-39*	В	50	6"	3" NPT	171.0	57.8	113.2	5.38	6.9	448
85S400-33*	В	40	8"	3" NPT	134.7	35.8	98.9	7.5	6.9	377
85S400-36*	В	40	8"	3" NPT	141.9	35.8	106.1	7.5	6.9	390
85S500-39*	В	50	8"	3" NPT	152.0	38.8	113.2	7.5	6.9	498

NOTES: All models suitable for use in 6" wells, unless otherwise noted.

Weights include pump end with motor in lbs.


* Built into sleeve 3" NPT discharge, 8" min. well dia.

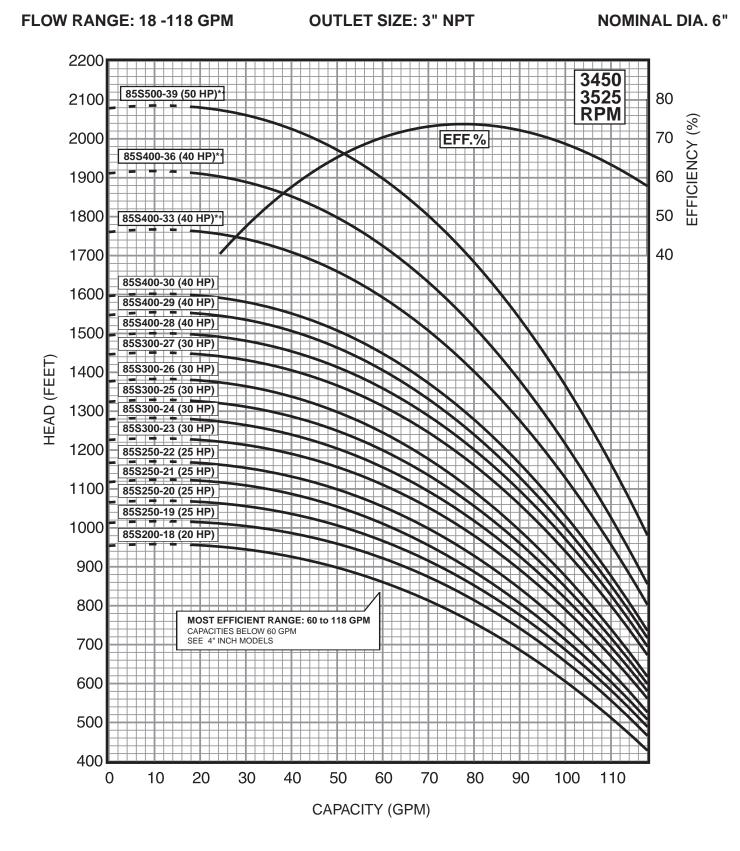
MATERIALS OF CONSTRUCTION


COMPONENT	CYLINDRICAL SHAFT (1- 39 Stgs.)						
Check Valve Housing	304 Stainless Steel						
Check Valve	304 Stainless Steel						
Diffuser Chamber	304 Stainless Steel						
Split Cone Nut	304 Stainless Steel						
Split Cone	304 Stainless Steel						
Impeller	304 Stainless Steel						
Suction Interconnector	304 Stainless Steel						
Seal Ring Support	304 Stainless Steel						
Inlet Screen	304 Stainless Steel						
Straps	304 Stainless Steel						
Cable Guard	304 Stainless Steel						
Priming Inducer	304 Stainless Steel						
Coupling	316/329 Stainless Steel**						
Pump Shaft	431 Stainless Steel						
Intermediate Bearings	NBR						
Impeller Seal Ring	NBR/PPS						
Check Valve Seat	NBR/316 Stainless Steel						
Upthrust Disc	Carbon/Graphite						
Upthrust Stop Washer	304 Stainless Steel						
8" Motor Adaptor Plate	304 Stainless Steel						
Sleeve *	316 Stainless Steel						
Sleeve Flange *	316 Stainless Steel						

NOTES: Specifications are subject to change without notice.

^{** 4&}quot; Coupling made of 316 Stainless Steel

^{*} Required for 33-39 stages.

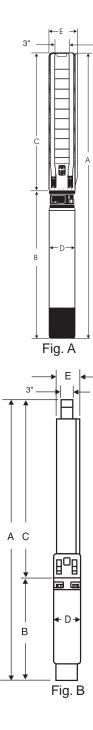

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

Performance conforms to ISO 9906 Annex A @ 5 ft. min. submergence.

^{4&}quot; MOTOR STANDARD, 1.5-5 HP/3450 RPM

^{6&}quot; MOTOR STANDARD, 7.5-50 HP/3450 RPM.

^{*} Alternate motor sizes available.


SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

Performance conforms to ISO 9906 Annex A @ 5 ft. min. submergence.

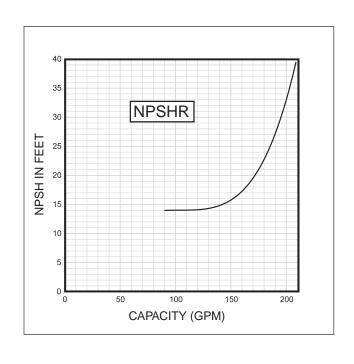
^{*} Built into sleeve 3" male NPT discharge/ 8" min. well diameter. 6" MOTOR STANDARD, 7.5-50 HP/3450 RPM.

⁺Alternate motor sizes available.

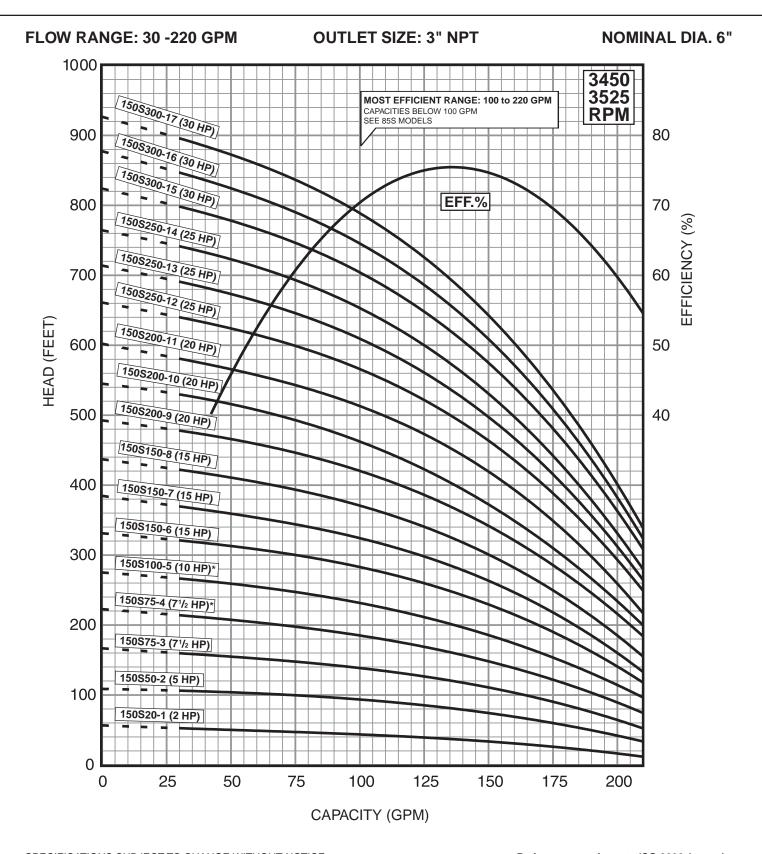
			MOTOR	DISCH.	DI	MENSI	ONS IN	INCHE	S	APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
150S20-1	Α	2	4"	3" NPT	27.3	13.6	13.7	3.75	5.2	55
150S50-2	Α	5	4"	3" NPT	41.1	23.6	17.5	3.75	5.2	75
150S75-3	Α	7 1/2	4"	3" NPT	50.9	29.6	21.3	3.75	5.2	92
150S75-4	Α	7 1/2	4"	3" NPT	54.7	29.6	25.1	3.75	5.2	97
150S100-5	Α	10	4"	3" NPT	72.8	43.9	28.9	3.75	5.2	151
150S75-4	Α	7 1/2	6"	3" NPT	49.9	24.2	25.7	5.38	5.6	135
150S100-5	Α	10	6"	3" NPT	54.9	25.4	29.5	5.38	5.6	148
150S150-6	Α	15	6"	3" NPT	61.3	28.0	33.3	5.38	5.6	167
150S150-7	Α	15	6"	3" NPT	65.0	28.0	37.0	5.38	5.6	169
150S150-8	Α	15	6"	3" NPT	68.8	28.0	40.8	5.38	5.6	174
150S200-9	Α	20	6"	3" NPT	75.2	30.6	44.6	5.38	5.6	191
150S200-10	Α	20	6"	3" NPT	79.0	30.6	48.4	5.38	5.6	193
150S200-11	Α	20	6"	3" NPT	82.8	30.6	52.2	5.38	5.6	198
150S250-12	Α	25	6"	3" NPT	89.0	33.1	55.9	5.38	5.6	235
150S250-13	Α	25	6"	3" NPT	92.8	33.1	59.7	5.38	5.6	238
150S250-14	Α	25	6"	3" NPT	96.6	33.1	63.5	5.38	5.6	242
150S300-15	Α	30	6"	3" NPT	103.0	35.7	67.3	5.38	5.6	260
150S300-16	Α	30	6"	3" NPT	106.8	35.7	71.1	5.38	5.6	262
150S300-17	Α	30	6"	3" NPT	110.5	35.7	74.8	5.38	5.6	266
150S400-18	Α	40	6"	3" NPT	119.4	40.8	78.6	5.38	5.6	306
150S400-19	Α	40	6"	3" NPT	123.2	40.8	82.4	5.38	5.6	308
150S400-20	Α	40	6"	3" NPT	127.0	40.8	86.2	5.38	5.6	323
150S400-21	Α	40	6"	3" NPT	130.8	40.8	90.0	5.38	5.7	334
150S400-22	Α	40	6"	3" NPT	134.5	40.8	93.7	5.38	5.7	338
150S400-23	Α	40	6"	3" NPT	138.3	40.8	97.5	5.38	5.7	340
150S500-24	Α	50	6"	3" NPT	162.2	57.8	104.4	5.38	6.1	442
150S500-25	Α	50	6"	3" NPT	166.0	57.8	108.2	5.38	6.1	444
150S500-26	Α	50	6"	3" NPT	169.8	57.8	112.0	5.38	6.1	446
150S500-27	Α	50	6"	3" NPT	173.6	57.8	115.8	5.38	6.1	448
150S500-28	Α	50	6"	3" NPT	183.4	63.8	119.6	5.38	7.1	450
150S600-29	Α	60	6"	3" NPT	193.7	63.8	129.9	5.38	7.1	448
150S600-31	Α	60	6"	3" NPT	201.3	63.8	137.5	5.38	7.1	452
150S600-33	Α	60	6"	3" NPT	208.8	63.8	145.0	5.38	7.1	456
150S500-24	Α	50	8"	3" NPT	143.2	38.8	104.4	7.50	7.5	492
150S500-25	Α	50	8"	3" NPT	147.0	38.8	108.2	7.50	7.5	495
150S500-26	Α	50	8"	3" NPT	150.8	38.8	112.0	7.50	7.5	497
150S500-27	Α	50	8"	3" NPT	154.6	38.8	115.8	7.50	7.5	499
150S500-28	Α	50	8"	3" NPT	158.4	38.8	119.6	7.50	7.5	501
150S600-29*	В	60	8"	3" NPT	169.7	41.8	127.9	7.50	7.5	539
150S600-31*	В	60	8"	3" NPT	177.3	41.8	135.5	7.50	7.5	543
150S600-33*	В	60	8"	3" NPT	184.8	41.8	143.0	7.50	7.5	547
150S750-36*	В	75	8"	3" NPT	201.8	47.4	154.4	7.50	7.5	592
150S750-39*	В	75	8"	3" NPT	213.1	47.4	165.7	7.50	7.5	598

NOTES: All models suitable for use in 6" wells, unless otherwise noted.

Weights include pump end with motor in lbs.


^{*} Built into sleeve 3" NPT discharge, 8" min. well dia.

MATERIALS OF CONSTRUCTION

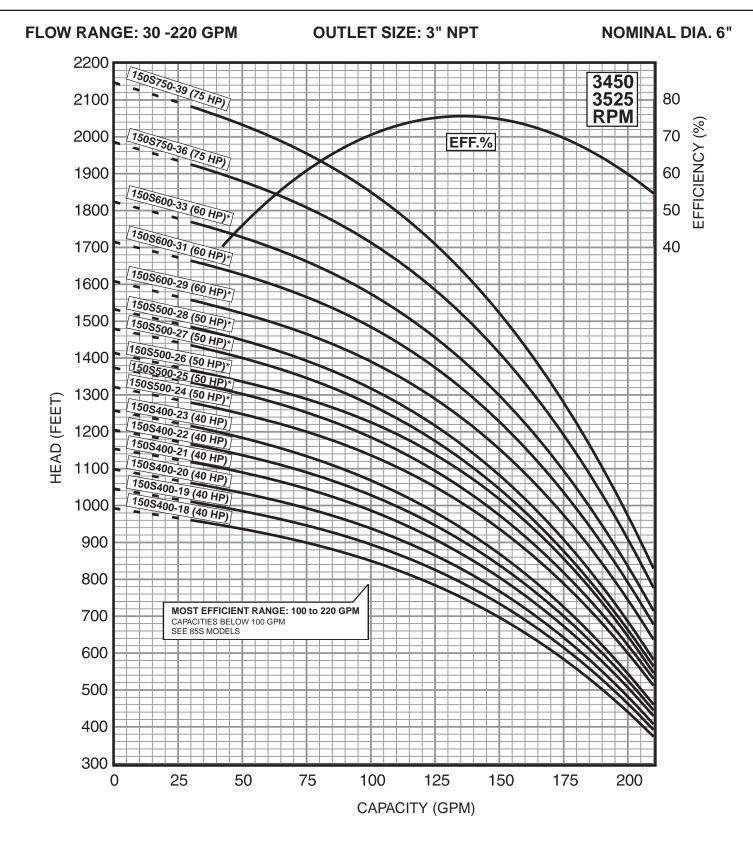

COMPONENT	CYLINDRICAL SHAFT (1-39 Stgs.)
Check Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Seal Ring Support Plate	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Priming Inducer	304 Stainless Steel
Coupling	316/329 Stainless Steel**
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Check Valve Seat	NBR/316 Stainless Steel
Top Bearing	NBR/304 Stainless Steel
Upthrust Disc	Carbon/Graphite
Upthrust Stop Washer	304 Stainless Steel
8" Motor Adaptor Plate	304 Stainless Steel
Sleeve*	316 Stainless Steel
Sleeve Flange	304 Stainless Steel
NOTEO. On a sifi a stinua and and	alle at the relation of the continue than

NOTES: Specifications are subject to change without notice.

^{** 4&}quot; Coupling made of 316 Stainless Steel.

^{*}Required for 29-39 stage models.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.


4" MOTOR STANDARD, 2-10 HP/3450 RPM

6" MOTOR STANDARD, 7.5-60 HP/3450 RPM.

8" MOTOR STANDARD, 75 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 5 ft. min. submergence.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 7.5-60 HP/3450 RPM. 8" MOTOR STANDARD, 75 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 5 ft. min. submergence.

			MOTOR	DISCH.		DIMEN	SIONS IN	INCHES		APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
230S20-1B	Α	2	4"	3" NPT	29.7	15.1	14.6	3.8	5.7	44
230S30-1A	Α	3	4"	3" NPT	38.2	23.6	14.6	3.8	5.7	55
230S50-1	Α	5	4"	3" NPT	44.2	29.6	14.6	3.8	5.7	65
230S50-2AB	Α	5	4"	3" NPT	48.5	29.6	18.9	3.8	5.7	71
230S75-2	Α	7.5	4"	3" NPT	48.5	29.6	18.9	3.8	5.7	88
230S75-2	Α	7.5	6"	3" NPT	43.0	24.2	18.9	5.4	5.7	124
230S75-3BB	Α	7.5	4"	3" NPT	53.5	29.6	23.9	3.8	5.7	96
230S75-3BB	Α	7.5	6"	3" NPT	48.1	24.2	23.9	5.4	5.7	96
230S100-3	Α	10	4"	3" NPT	67.8	43.9	23.9	3.8	5.7	146
230S100-3	Α	10	6"	3" NPT	49.3	25.4	23.9	5.4	5.7	140
230S100-4BC	Α	10	4"	3" NPT	72.3	43.9	28.4	3.8	5.7	147
230S100-4BC	Α	10	6"	3" NPT	53.8	25.4	28.4	5.4	5.7	147
230S150-4	Α	15	6"	3" NPT	56.4	28.0	28.4	5.4	5.7	161
230S150-5B	Α	15	6"	3" NPT	60.8	28.0	32.8	5.4	5.7	165
230S200-5	Α	20	6"	3" NPT	63.4	30.6	32.8	5.4	5.7	167
230S200-6	Α	20	6"	3" NPT	67.8	30.6	37.3	5.4	5.7	186
230S200-7C	Α	20	6"	3" NPT	67.8	30.6	37.3	5.4	5.7	202
230S250-7	Α	25	6"	3" NPT	74.9	33.1	41.7	5.4	5.7	202
230S250-8B	Α	25	6"	3" NPT	79.3	33.1	46.2	5.4	5.7	209
230S250-8	Α	25	6"	3" NPT	79.3	33.1	46.2	5.4	5.7	209
230S250-9BB	Α	25	6"	3" NPT	83.8	33.1	50.6	5.4	5.7	228
230\$300-9	Α	30	6"	3" NPT	86.3	35.7	50.6	5.4	5.7	228
230\$400-10*	Α	40	6"	3" NPT	95.9	40.81	55.1	5.4	5.7	234
230\$400-11*	Α	40	6"	3" NPT	100.3	40.81	59.5	5.4	5.7	273
230\$400-12*	Α	40	6"	3" NPT	104.8	40.81	64.0	5.4	5.7	279
230\$400-13*	Α	40	6"	3" NPT	109.2	40.81	68.4	5.4	5.7	284
230\$500-14*	Α	50	6"	3" NPT	130.7	57.83	72.9	5.4	5.7	388
230S500-15*	Α	50	6"	3" NPT	135.2	57.83	77.3	5.4	5.7	393
230S500-16*	Α	50	6"	3" NPT	139.6	57.83	81.8	5.4	5.7	399
230S600-17*	Α	60	6"	3" NPT	151.2	63.83	87.4	5.4	5.7	438
230S600-18*	Α	60	6"	3" NPT	155.6	63.83	91.8	5.4	5.7	445
230S600-19*	Α	60	6"	3" NPT	160.1	63.83	96.3	5.4	5.7	449
230S600-17	Α	60	8"	3" NPT	129.2	41.79	87.4	7.5	7.6	544
230\$600-18	Α	60	8"	3" NPT	133.6	41.79	91.8	7.5	7.6	551
230\$600-19	Α	60	8"	3" NPT	138.0	41.79	96.3	7.5	7.6	555
230\$750-20**	В	75	8"	4" M-NPT	154.7	47.41	107.3	7.5	7.6	634
230S750-22**	В	75	8"	4" M-NPT	163.6	47.41	116.2	7.5	7.6	681

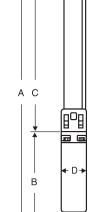
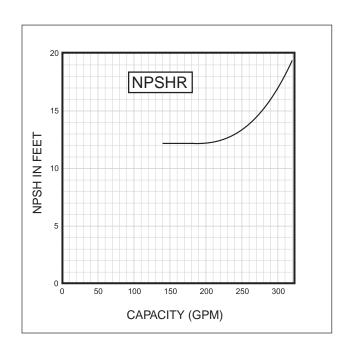


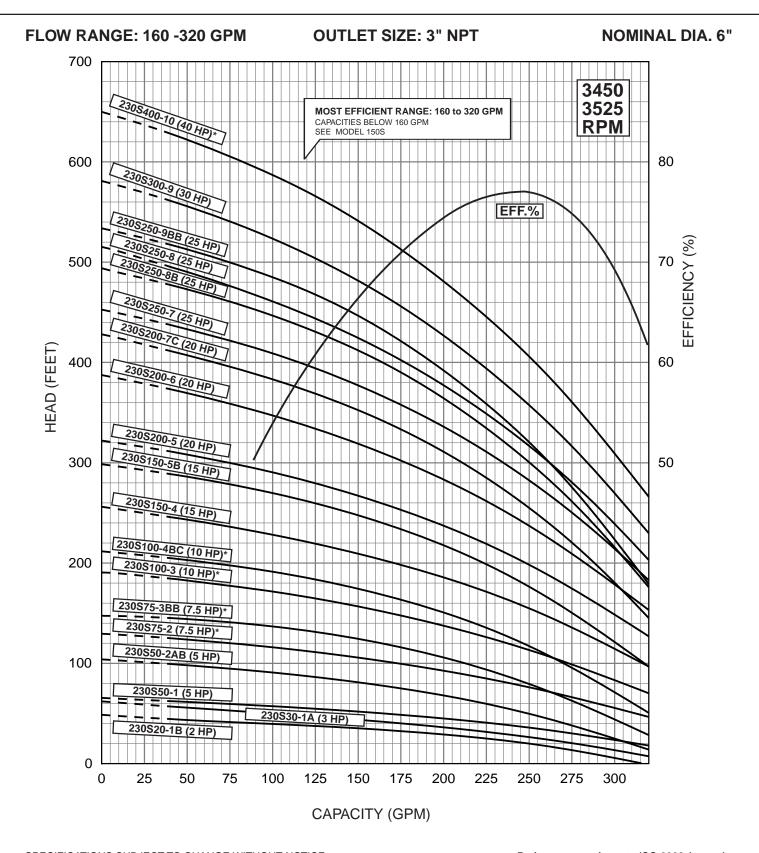
Fig. B

Fig. A

NOTES: All models suitable for use in 6" wells, unless equipped with 8" motor.

Weights include pump end with motor in lbs.


* Alternate motor sizes available.

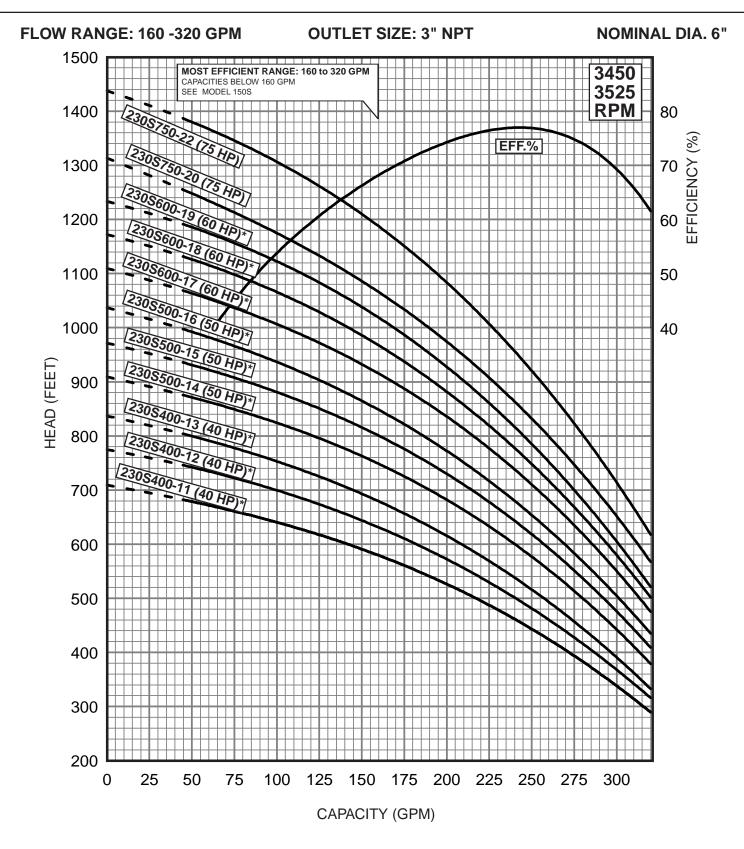

** Built into sleeve, 4" NPT, 8" motor required.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (2-18 Stgs.)					
Check Valve Housing	304 Stainless Steel					
Check Valve	304 Stainless Steel					
Diffuser Chamber	304 Stainless Steel					
Split Cone Nut	304 Stainless Steel					
Split Cone	304 Stainless Steel					
Impeller	304 Stainless Steel					
Suction Interconnector	304 Stainless Steel					
Inlet Screen	304 Stainless Steel					
Straps	304 Stainless Steel					
Cable Guard	304 Stainless Steel					
Coupling	316/329 Stainless Steel**					
Pump Shaft	431 Stainless Steel					
Intermediate Bearings	NBR					
Impeller Seal Ring	NBR/304 Stainless Steel					
Check Valve Seat	NBR/316 Stainless Steel					
Top/Lower Bearing	NBR/316 Stainless Steel					
8" Motor Adaptor Plate	304 Stainless Steel					
Upthrust Washer	Carbon/Graphite HY22					
Upthrust stop ring	304 S.S./Tungsten Carbide					
Sleeve*	304 Stainless Steel					
Sleeve Flange*	304 Stainless Steel					

NOTES: Specifications subject to change without notice.
* Required for 20-22 stage only.
** 4" Coupling made of 316 Stainless Steel.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

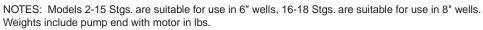

4" MOTOR STANDARD, 7.5 HP/3450 RPM

6" MOTOR STANDARD, 10-60 HP/3450 RPM.

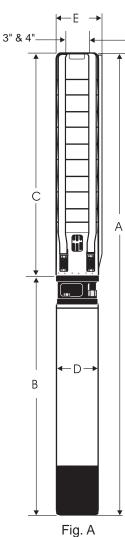
8" MOTOR STANDARD, 75 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.



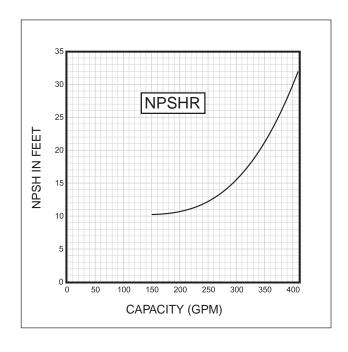
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 7.5 HP/3450 RPM 6" MOTOR STANDARD, 10-60 HP/3450 RPM. 8" MOTOR STANDARD, 75 HP/3525 RPM.


* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

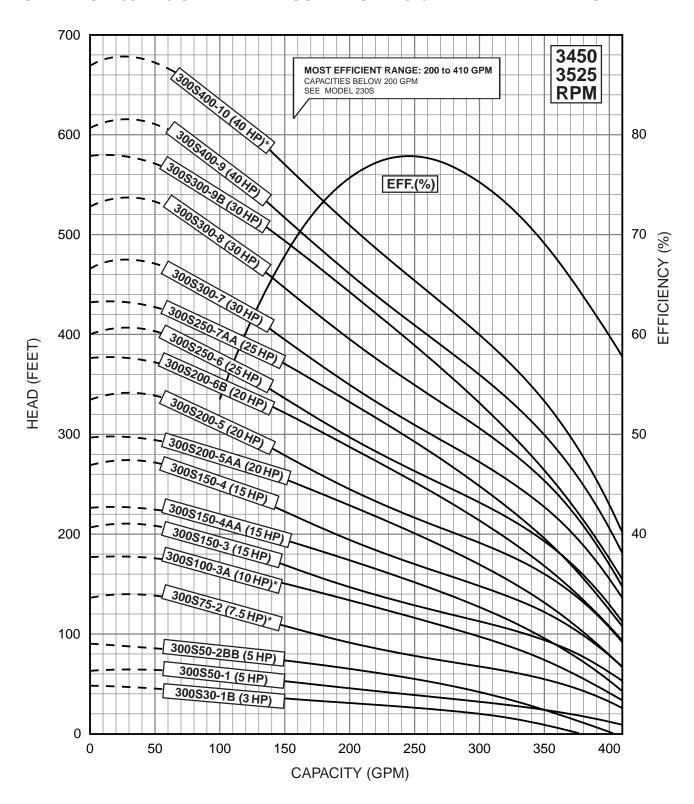
			MOTOR	DISCH.		DIMENS	IONS IN I	NCHES		APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
300S30-1B	Α	3	4"	3" NPT	38.1	23.6	14.5	3.8	5.7	65
300S50-1	Α	5	4"	3" NPT	44.1	29.6	14.5	3.8	5.7	82
300S50-2BB	Α	5	4"	3" NPT	49.1	29.6	19.5	3.8	5.7	87
300S75-2	Α	7 1/2	4"	3" NPT	43.5	24.0	19.5	3.8	5.7	113
300S75-2*	Α	7 1/2	6"	3" NPT	49.1	29.6	19.5	5.4	5.7	104
300S100-3A	Α	10	4"	3" NPT	67.8	43.9	23.9	3.8	5.7	154
300S100-3A	Α	10	6"	3" NPT	49.3	25.4	23.9	5.4	5.7	130
300S150-3	Α	15	6"	3" NPT	51.9	28.0	23.9	5.4	5.7	146
300S150-4AA	Α	15	6"	3" NPT	56.4	28.0	28.4	5.4	5.7	161
300S150-4	Α	15	6"	3" NPT	56.4	28.0	28.4	5.4	5.7	161
300S200-5AA	Α	20	6"	3" NPT	63.4	30.6	32.8	5.4	5.7	172
300S200-5	Α	20	6"	3" NPT	63.4	30.6	32.8	5.4	5.7	172
300S200-6B	Α	20	6"	3" NPT	67.9	30.6	37.3	5.4	5.7	177
300S250-6	Α	25	6"	3" NPT	70.4	33.1	37.3	5.4	5.7	192
300S250-7AA	Α	25	6"	3" NPT	74.8	33.1	41.7	5.4	5.7	201
300S300-7	Α	30	6"	4" NPT	74.8	33.1	41.7	5.4	5.7	220
300S300-8	Α	30	6"	4" NPT	81.9	35.7	46.2	5.4	5.7	241
300S300-9B	Α	30	6"	4" NPT	81.9	35.7	46.2	5.4	5.7	246
300S400-9*	Α	40	6"	4" NPT	91.4	40.8	50.6	5.4	5.7	281
300S400-10*	Α	40	6"	4" NPT	95.9	40.8	55.1	5.4	5.7	286
300S500-11*	Α	50	6"	4" NPT	117.3	57.8	59.5	5.4	5.7	292
300S500-12*	Α	50	6"	4" NPT	116.8	57.8	63.9	5.4	5.7	396
300S500-13*	Α	50	6"	4" NPT	126.2	57.8	68.4	5.4	5.7	402
300\$600-14*	Α	60	6"	4" NPT	135.3	61.3	74.0	5.4	7.1	447
300S600-15*	Α	60	8"	4" NPT	120.3	41.8	78.5	7.5	7.1	484
300S750-16	Α	75	8"	4" NPT	130.3	47.4	82.9	7.5	7.1	540
300S750-17	Α	75	8"	4" NPT	134.8	47.4	87.4	7.5	7.1	544
300S750-18	Α	75	8"	4" NPT	139.2	47.4	91.8	7.5	7.1	626

^{*} Alternate motor sizes available.



MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (2-18 Stgs.)
Check Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Coupling	316/329 Stainless Steel**
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/304 Stainless Steel
Check Valve Seat	NBR/316 Stainless Steel
Top/Lower Bearing	NBR/316 Stainless Steel
8" Motor Adaptor Plate	304 Stainless Steel
Upthrust Washer	Carbon/Graphite HY22
Upthrust stop ring	304 S.S./Tungsten Carbide
NOTES, Specifications are a	ubicat to abanda without nation


NOTES: Specifications are subject to change without notice.

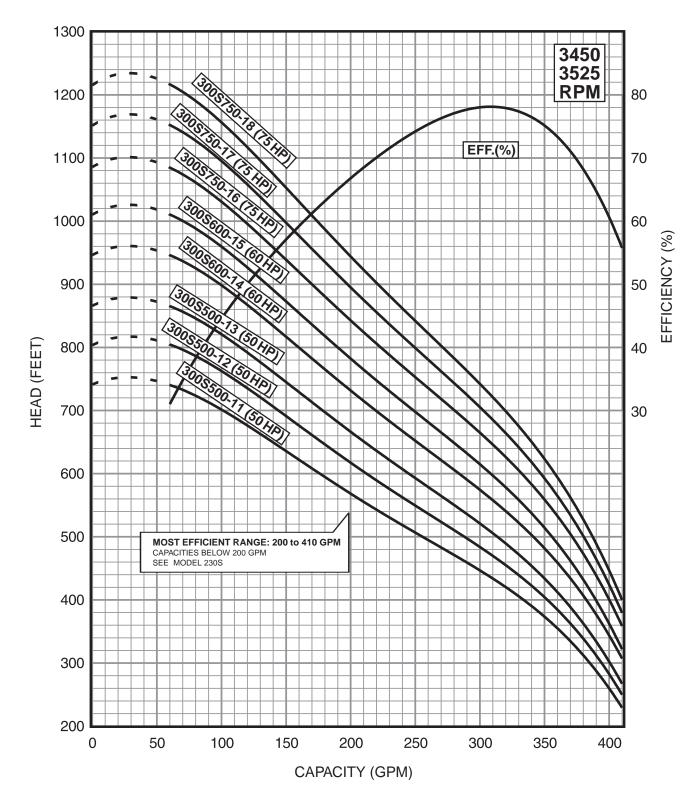
^{** 4&}quot; Coupling made of 316 Stainless Steel.

^{*}Stainless Steel options available.

FLOW RANGE: 60 -410 GPM **OUTLET SIZE: 3"& 4" NPT* NOMINAL DIA. 6"**

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

4" MOTOR STANDARD, 7.5 HP/3450 RPM.


6" MOTOR STANDARD, 15-60 HP/3450 RPM.

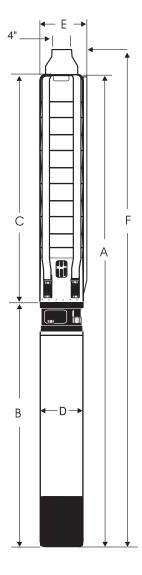
8" MOTOR STANDARD, 75 HP/3525 RPM.

* 3" NPT 2-6 STAGES, 4" NPT 7-18 STAGES.

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

FLOW RANGE: 60 -410 GPM OUTLET SIZE: 3"& 4" NPT* NOMINAL DIA. 6"

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 4" MOTOR STANDARD, 7.5 HP/3450 RPM. 6" MOTOR STANDARD,15-60 HP/3450 RPM. 8" MOTOR STANDARD, 75 HP/3525 RPM. * 3" NPT 2-6 STAGES, 4" NPT 7-18 STAGES.

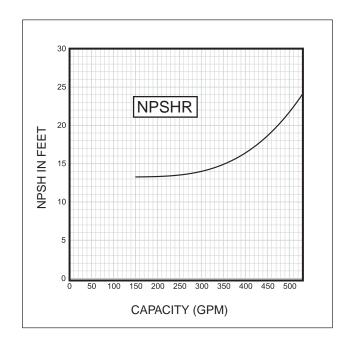

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

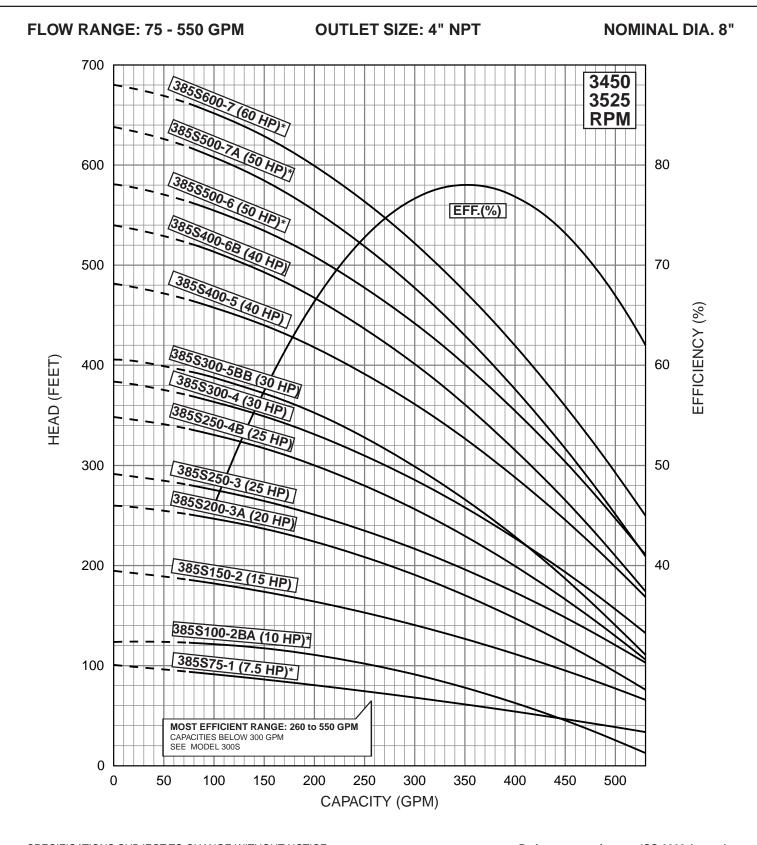
			MOTOR	DISCH.		DIN	MENSION	S IN INCH	IES		APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	F	SHIP WT.
385S75-1	Α	7.5	6"	4" NPT	48.3	24.0	24.3	5.4	7.0	53.1	148
385S100-2BA	Α	10	6"	4" NPT	54.8	25.4	29.4	5.4	7.0	59.6	178
385S150-2	Α	15	6"	4" NPT	57.4	28.0	29.4	5.4	7.0	62.2	192
385S200-3A	Α	20	6"	4" NPT	65.0	30.6	34.4	5.4	7.0	69.8	223
385S250-3	Α	25	6"	4" NPT	67.5	33.1	34.4	5.4	7.0	72.3	210
385S250-4B	Α	25	6"	4" NPT	72.6	33.1	39.5	5.4	7.0	77.4	210
385S300-4	Α	30	6"	4" NPT	75.2	35.7	39.5	5.4	7.0	80.0	243
385S300-5BB	Α	30	6"	4" NPT	80.2	35.7	44.5	5.4	7.0	85.0	252
385S400-5*	Α	40	6"	4" NPT	85.3	40.8	44.5	5.4	7.0	90.1	276
385S400-6B	Α	40	6"	4" NPT	90.4	40.8	49.6	5.4	7.0	95.2	285
385S500-6*	Α	50	6"	4" NPT	107.4	57.8	49.6	5.4	7.0	112.2	285
385S500-7A	Α	50	6"	4" NPT	113.0	57.8	55.2	5.4	7.0	117.8	450
385S600-7*	Α	60	6"	4" NPT	119.0	63.8	55.2	5.4	7.0	123.8	450
385S600-8*	Α	60	6"	4" NPT	124.0	63.8	60.2	5.4	7.0	128.8	459
385S750-9	Α	75	8"	4" NPT	112.7	47.4	65.3	7.6	7.7	117.5	577
385S750-10	Α	75	8"	4" NPT	117.7	47.4	70.3	7.6	7.7	122.5	586
385S1000-11	Α	100	8"	4" NPT	130.3	54.91	75.4	7.6	7.7	135.1	672
385S1000-12	Α	100	8"	4" NPT	135.3	54.91	80.4	7.6	7.7	140.1	701
385S1000-13	Α	100	8"	4" NPT	140.3	54.91	85.4	7.6	7.7	145.1	709
Pipe Adapter	Α									4.8	

NOTES: All models suitable for use in 8" wells, unless otherwise noted.

Weights include pump end with motor in lbs.

All models come with a standard 5"-4" Pipe Adapter. Refer to chart for dimensions.

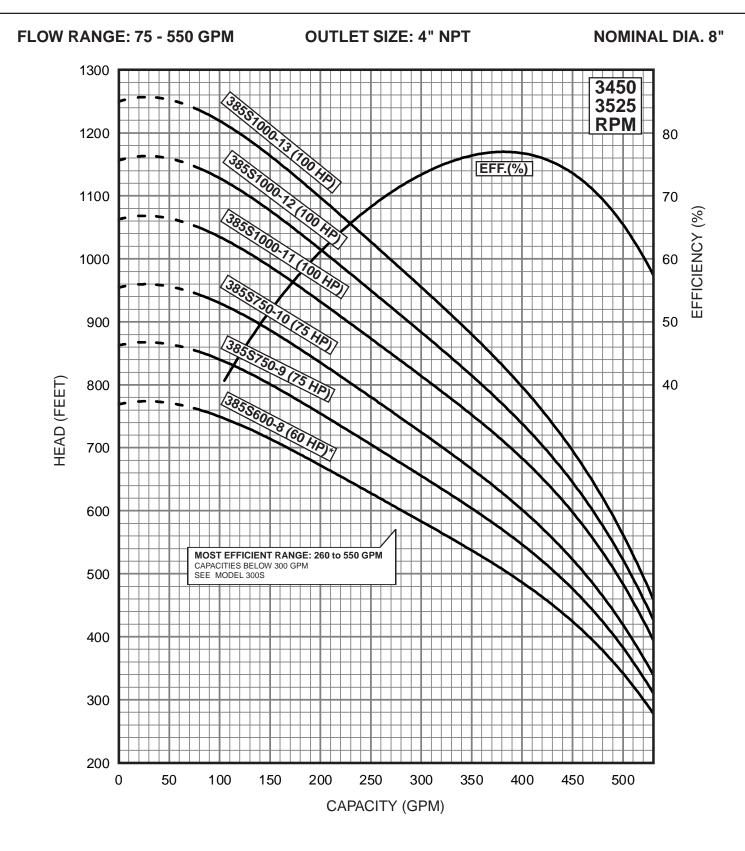



^{*}Alternate motor sizes available.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (1-13 Stgs.)
Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Coupling	316/329 Stainless Steel
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Lower Bearing	NBR/316 Stainless Steel
Upthrust Washer	Carbon/Graphite HY22
Upthrust stop ring	304 S.S./Tungsten Carbide
O-Ring	NBR
Valve Seat	304 Stainless Steel
Lower Valve Seat Retainer	316 Stainless Steel
Upper Valve Seat Retainer	304 Stainless Steel
Valve Guide	304 Stainless Steel
Valve Cup Spring	304 Stainless Steel

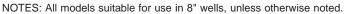
NOTES: Specifications are subject to change without notice.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 7.5-60 HP/3450 RPM. 8" MOTOR STANDARD,75-100 HP/3525 RPM.

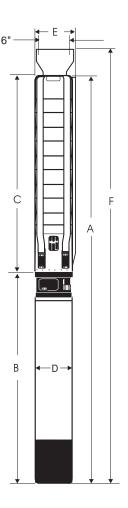
* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.



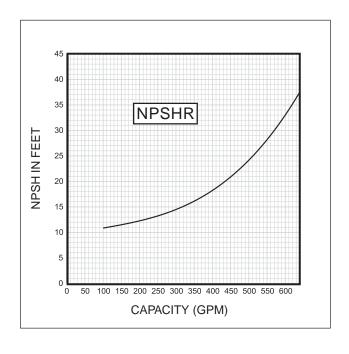
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 7.5-60 HP/3450 RPM. 8" MOTOR STANDARD,75-100 HP/3525 RPM.

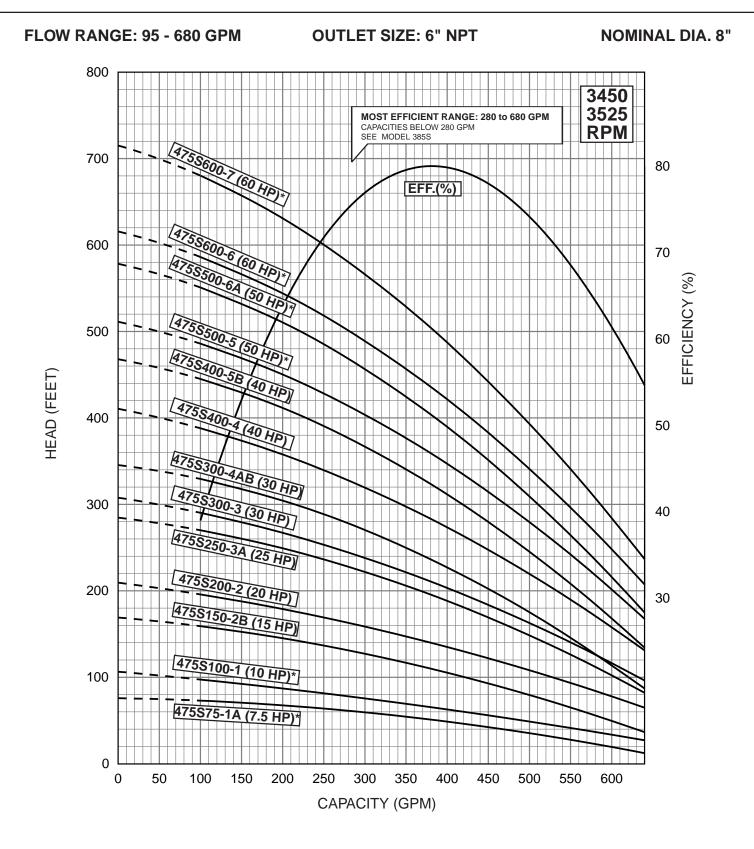
* Alternate motor sizes available.


Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

			MOTOR	DISCH.		DIMEN	SIONS IN	NCHES			APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	F	SHIP WT.
475S75-1A	Α	7.5	6"	6" NPT	48.5	24.2	24.3	5.4	7	54.6	161
475S100-1	Α	10	6"	6" NPT	49.7	25.4	24.3	5.4	7	55.8	171
475S150-2B	Α	15	6"	6" NPT	57.4	28.0	29.4	5.4	7	63.5	195
475S200-2	Α	20	6"	6" NPT	60.0	30.6	29.4	5.4	7	66.1	210
475S250-3A	Α	25	6"	6" NPT	67.5	33.1	34.4	5.4	7	73.6	230
475S300-3	Α	30	6"	6" NPT	70.1	35.7	34.4	5.4	7	76.2	230
475S300-4AB	Α	30	6"	6" NPT	75.2	35.7	39.5	5.4	7	81.3	295
475S400-4*	Α	40	6"	6" NPT	80.3	40.8	39.5	5.4	7	86.4	328
475S500-5B*	Α	40	6"	6" NPT	85.3	40.8	44.5	5.4	7	91.4	336
475S500-5*	Α	50	6"	6" NPT	102.5	58.0	44.5	5.4	7	108.6	428
475S500-6A*	Α	50	6"	6" NPT	108.1	58.0	50.1	5.4	7	114.2	437
475S600-6*	Α	60	6"	6" NPT	111.8	61.7	50.1	5.4	7.0	117.9	403
475S600-7*	Α	60	6"	6" NPT	116.9	61.7	55.2	5.4	7.0	123.0	467
475S750-8	Α	75	8"	6" NPT	107.6	47.4	60.2	7.5	7.7	113.6	547
475S1000-9	Α	100	8"	6" NPT	120.1	54.9	65.2	7.5	7.7	126.2	641
475S1000-10	Α	100	8"	6" NPT	125.2	54.9	70.3	7.5	7.7	131.2	648
475S1000-11	Α	100	8"	6" NPT	130.3	54.9	75.4	7.5	7.7	136.4	654
475S1250-12	Α	125	8"	6" NPT	149.2	68.8	80.4	7.5	7.7	155.3	862
475S1250-13	Α	125	8"	6" NPT	154.3	68.8	85.5	7.5	7.7	160.4	868
Pipe Adapter	Α									6.1	

Weights include pump end with motor in lbs.

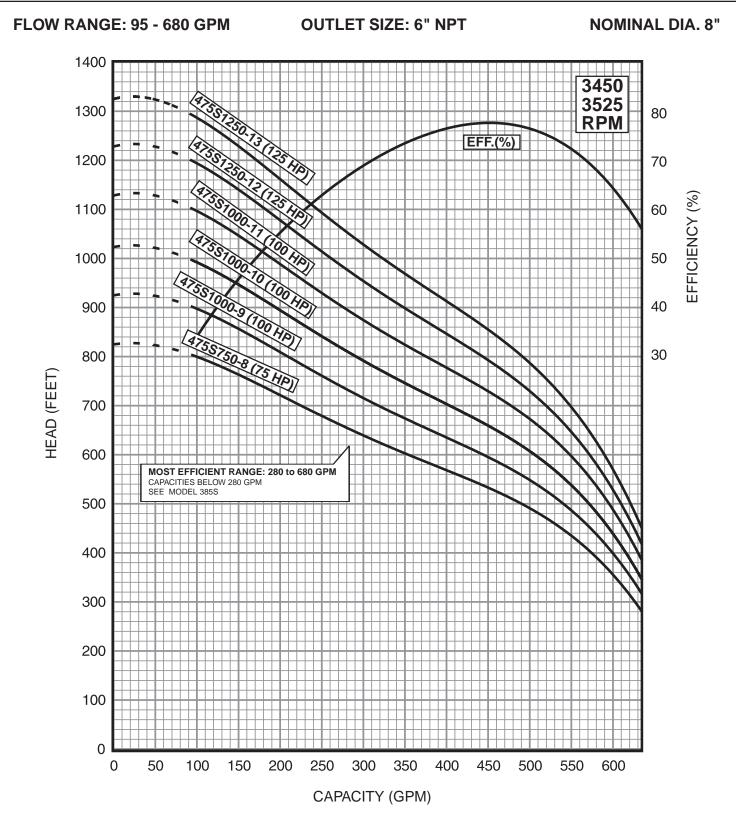

All models come with a standard 5"-6" Pipe Adapter refer to chart for dimensions.



^{*}Alternate motors sizes available.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (1-13 Stgs.)
Check Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Coupling	316/329 Stainless Steel
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Check Valve Seat	NBR/316 Stainless Steel
Lower Bearing	NBR/316 Stainless Steel
Upthrust Washer	Carbon/Graphite HY22
Upthrust stop ring	304 S.S./Tungsten Carbide
O-Ring	NBR
Valve Seat	304 Stainless Steel
Lower Valve Seat Retainer	316 Stainless Steel
Upper Valve Seat Retainer	304 Stainless Steel
Valve Guide	304 Stainless Steel
Valve Cup Spring	304 Stainless Steel
NOTES: Specifications are subje	ect to change without notice.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 10-60 HP/3450 RPM. 8" MOTOR STANDARD,75-125 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 10-60 HP/3450 RPM. 8" MOTOR STANDARD,75-125 HP/3525 RPM.

* Alternate motor sizes available.

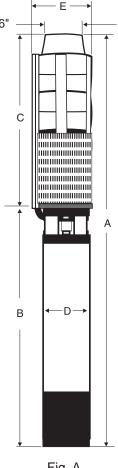
Performance conforms to ISO 9906 Annex A @ 8 ft. min. submergence.

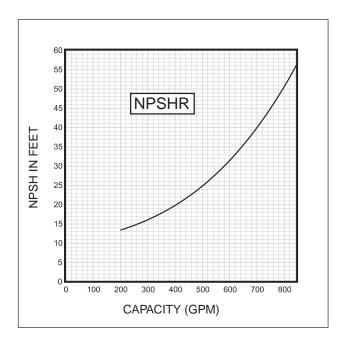
DIMENSIONS AND WEIGHTS

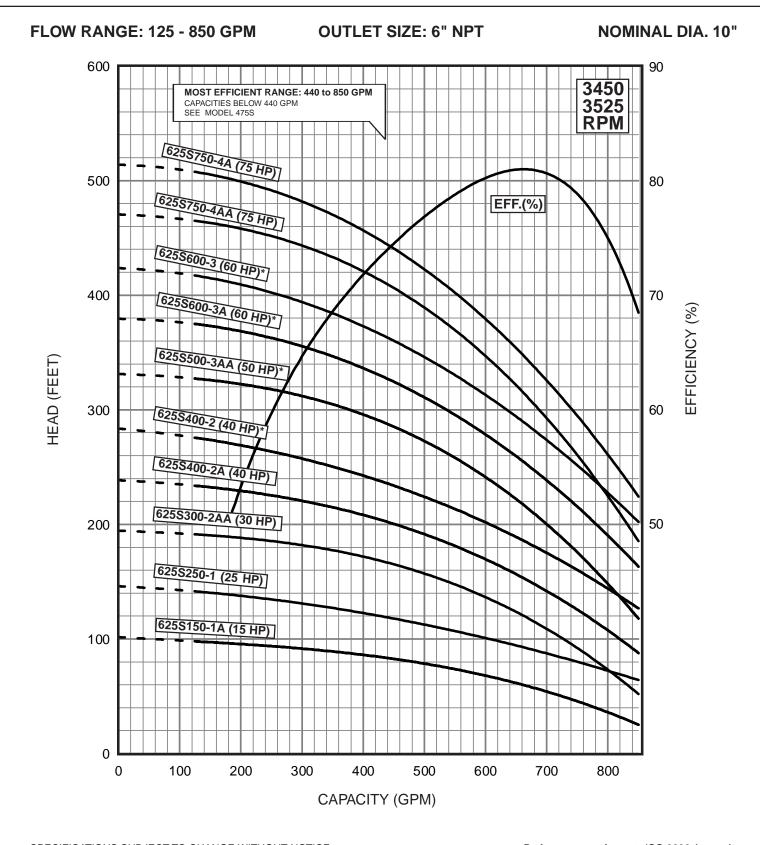
			MOTOR	DISCH.	DIMENSIONS IN INCHES			ES	APPROX.	
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
625S150-1A	Α	15	6"	6" NPT	50.6	25	25.6	5.4	8.3	208
625S250-1	Α	25	6"	6" NPT	58.7	33.1	25.6	5.4	8.3	235
625S300-2AA	Α	30	6"	6" NPT	63.8	32	31.8	5.4	8.3	296
625S400-2A	Α	40	6"	6" NPT	66.2	34.4	31.8	5.4	8.3	307
625S400-2*	Α	40	6"	6" NPT	66.2	34.4	31.8	5.4	8.3	320
625S500-3AA*	Α	50	6"	6" NPT	93.6	55.7	37.9	5.4	8.3	415
625S600-3A*	Α	60	6"	6" NPT	99.6	61.7	37.9	5.4	8.3	448
625S600-3*	Α	60	6"	6" NPT	99.6	61.7	37.9	5.4	8.3	448
625S750-4AA	Α	75	8"	6" NPT	91.4	47.4	44.0	7.5	8.6	560
625S750-4A	Α	75	8"	6" NPT	91.4	47.4	44.0	7.6	8.6	560
625S1000-4	Α	100	8"	6" NPT	98.9	54.9	44.0	7.6	8.6	638
625S1000-5AA	Α	100	8"	6" NPT	105.0	54.9	50.1	7.6	8.6	661
625S1000-5A	Α	100	8"	6" NPT	105.0	54.9	50.1	7.6	8.6	661
625S1000-5	Α	100	8"	6" NPT	105.0	54.9	50.1	7.6	8.6	661
625S1250-6AA	Α	125	8"	6" NPT	125.0	68.8	56.2	7.7	8.6	855
625S1250-6A	Α	125	8"	6" NPT	125.0	68.8	56.2	7.7	8.6	855
625S1250-6	Α	125	8"	6" NPT	125.0	68.8	56.2	7.7	8.6	855
625S1250-7AA	Α	125	8"	6" NPT	131.2	68.8	62.4	7.7	8.6	890
625S1500-7A	Α	150	8"	6" NPT	140.2	77.8	62.4	7.7	8.6	983
625S1500-7	Α	150	8"	6" NPT	140.2	77.8	62.4	7.7	8.6	983

NOTES: All models suitable for use in 10" wells unless otherwise noted.

Weights include pump end with motor in lbs.



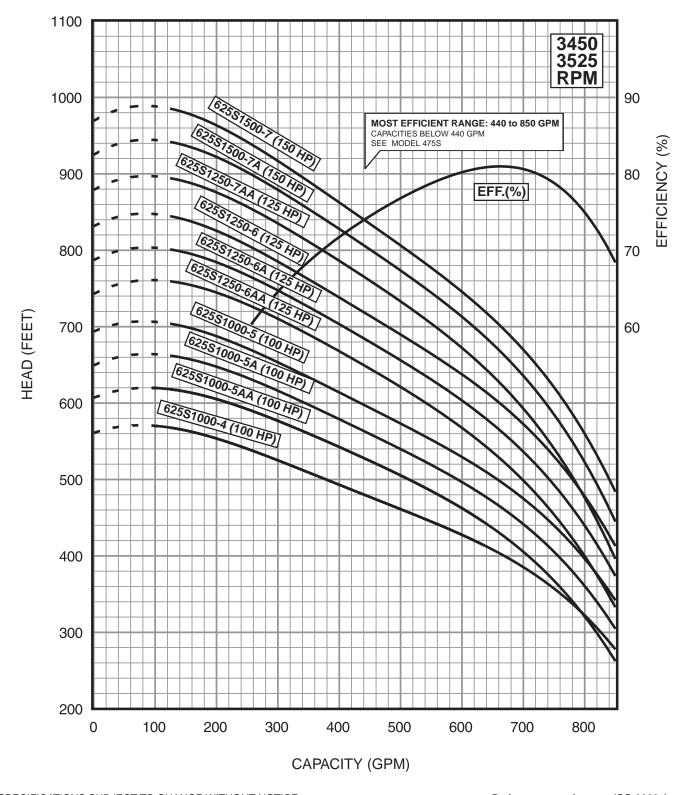

Fig. A


^{*}Alternate motor sizes available.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT (1-7 Stgs.)						
Valve Housing	304 Stainless Steel						
Check Valve	304 Stainless Steel						
Diffuser Chamber	304 Stainless Steel						
Split Cone Nut	304 Stainless Steel						
Split Cone	304 Stainless Steel						
Impeller	304 Stainless Steel						
Suction Interconnector	304 Stainless Steel						
Inlet Screen	304 Stainless Steel						
Straps	304 Stainless Steel						
Cable Guard	304 Stainless Steel						
Coupling	316/329 Stainless Steel						
Pump Shaft	431 Stainless Steel						
Intermediate Bearings	NBR						
Impeller Seal Ring	NBR/PPS						
Check Valve Seat	NBR/316 Stainless Steel						
Top Bearing	NBR/304 Stainless Steel						
Upthrust Disc	Carbon/Graphite HY22						
Check Valve Spring	401 Stainless Steel						
O-Ring	NBR						
Valve Seat	304 Stainless Steel						
Lower Valve Seat Retainer	304 Stainless Steel						
Upper Valve Seat Retainer	316 Stainless Steel						
Valve Guide	304 Stainless Steel						

NOTES: Specifications are subject to change without notice.



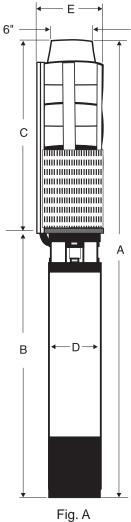
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 15-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-150 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

FLOW RANGE: 125 - 850 GPM OUTLET SIZE: 6" NPT NOMINAL DIA. 10"

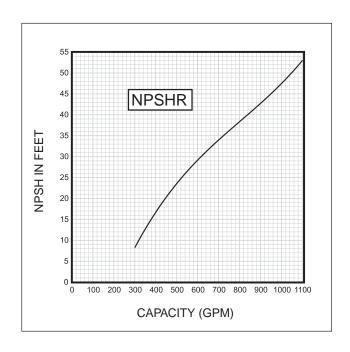
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD,15-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-150 HP/3525 RPM.

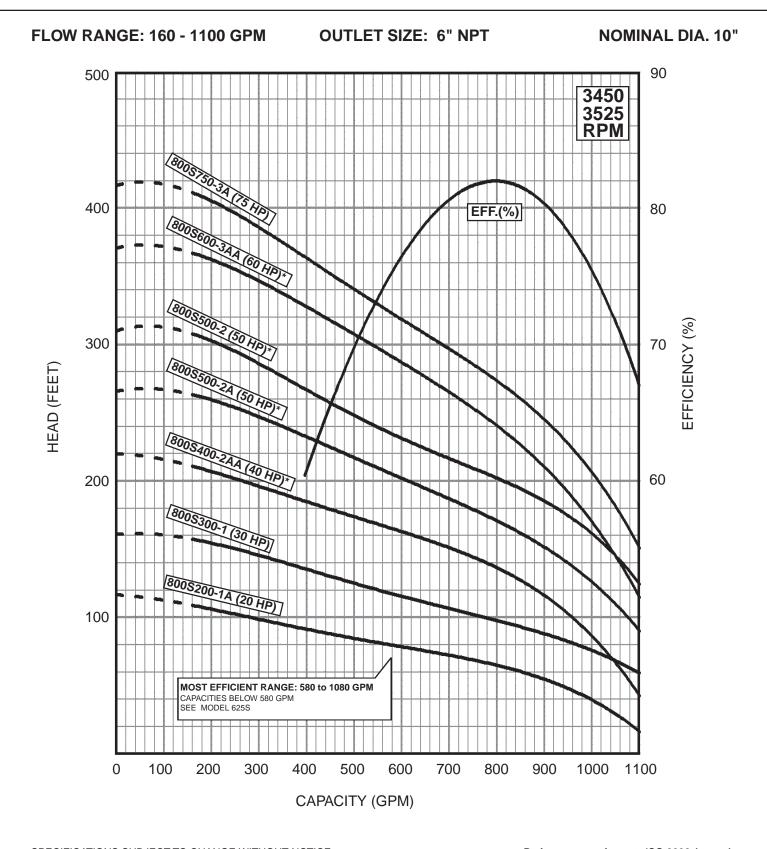

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

DIMENSIONS AND WEIGHTS

			MOTOR	DISCH.	DI	MENSI	ONS IN	INCHE	S	APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
800S200-1A	Α	20	6"	6" NPT	53.1	27.5	25.6	5.4	8.3	219
800S300-1	Α	30	6"	6" NPT	57.6	32.0	25.6	5.4	8.3	241
800S400-2AA*	Α	40	6"	6" NPT	66.2	34.4	31.8	5.4	8.3	320
800S500-2A*	Α	50	6"	6" NPT	87.5	55.7	31.8	5.4	8.3	402
800S500-2*	Α	50	6"	6" NPT	87.5	55.7	31.8	5.4	8.3	402
800S600-3AA*	Α	60	6"	6" NPT	99.6	61.7	37.9	5.4	8.3	448
800S400-2AA*	Α	40	8"	6" NPT	66.2	34.4	31.8	7.5	8.6	459
800S500-2A*	Α	50	8"	6" NPT	87.5	55.7	31.8	7.5	8.6	499
800S500-2*	Α	50	8"	6" NPT	87.5	55.7	31.8	7.5	8.6	499
800S600-3AA*	Α	60	8"	6" NPT	99.6	61.7	37.9	7.5	8.6	477
800S750-3A	Α	75	8"	6" NPT	85.3	47.4	37.9	7.5	8.6	547
800S750-3	Α	75	8"	6" NPT	85.3	47.4	37.9	7.5	8.6	547
800S1000-4AA	Α	100	8"	6" NPT	98.9	54.9	44.0	7.5	8.6	635
800S1000-4A	Α	100	8"	6" NPT	98.9	54.9	44.0	7.5	8.6	635
800S1000-4	Α	100	8"	6" NPT	98.9	54.9	44.0	7.5	8.6	635
800S1250-5AA	Α	125	8"	6" NPT	118.9	68.8	50.1	7.5	8.6	837
800S1250-5A	Α	125	8"	6" NPT	118.9	68.8	50.1	7.7	8.6	837
800S1250-5	Α	125	8"	6" NPT	118.9	68.8	50.1	7.7	8.6	837

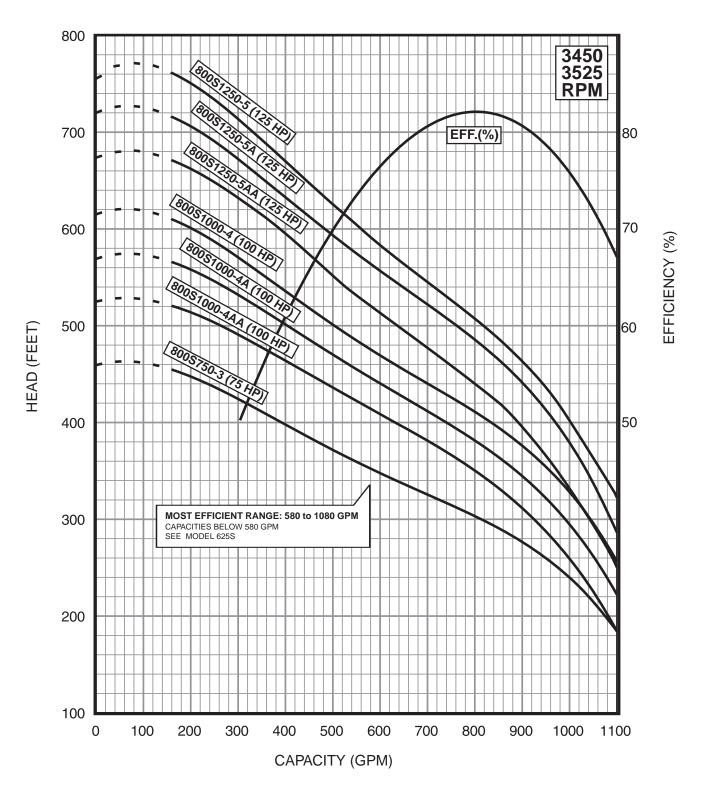

NOTES: All models suitable for use in 10" wells, unless otherwise noted. Weights include pump end with motor in lbs. *Alternate motor sizes available.



MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT
Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	316 Stainless Steel
Coupling	316/329 Stainless Steel
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Top Bearing	NBR/316 Stainless Steel
Upthrust Disc	Carbon/Graphite HY22
O-Ring	NBR
Valve Seat	304 Stainless Steel
Lower Valve Seat Retainer	316 Stainless Steel
Upper Valve Seat Retainer	304 Stainless Steel
Valve Guide	304 Stainless Steel
Valve Cup Spring	304 Stainless Steel

NOTES: Specifications are subject to change without notice.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 20-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-125 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

FLOW RANGE: 160 - 1080 GPM OUTLET SIZE: 6" NPT NOMINAL DIA. 10"

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 20-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-125 HP/3525 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

DIMENSIONS AND WEIGHTS

			MOTOR	DISCH.	DIMENSIO			IN INC	HES	APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	Α	В	С	D	Е	SHIP WT.
1100S300-1A	Α	30	6"	6" NPT	66.8	35.7	31.1	5.4	9.7	252
1100S400-1*	Α	40	6"	6" NPT	68.3	37.2	31.1	5.4	9.7	276
1100S600-2AA*	Α	60	6"	6" NPT	79.9	41.8	38.1	5.4	9.7	459
1100S750-2A	Α	75	8"	6" NPT	85.5	47.4	38.1	7.6	9.7	558
1100S1000-2	Α	100	8"	6" NPT	93.8	55.7	38.1	7.6	9.7	558
1100S1000-3AA	Α	100	8"	6" NPT	100.8	55.7	45.1	7.6	9.7	657
1100S1250-3A	Α	125	8"	6" NPT	102.1	57.0	45.1	7.7	9.7	836
1100S1250-3	Α	125	8"	6" NPT	102.1	57.0	45.1	7.7	9.7	836
1100S1500-4AA	Α	150	8"	6" NPT	129.8	77.8	52.0	7.7	9.7	1007
1100S1500-4A	Α	150	8"	6" NPT	129.8	77.8	52.0	7.7	9.7	1007
1100S1750-4	Α	175	8"	6" NPT	137.8	85.8	52.0	7.7	9.7	1007
1100S1750-5AA*	Α	175	8"	6" NPT	144.7	85.8	58.9	7.7	9.7	1089
1100S1750-5A*+	Α	175	8"	6" NPT	144.7	85.8	58.9	7.7	9.7	1089
1100S2000-5*+	Α	200	8"	6" NPT	153.7	94.8	58.9	7.7	9.7	1197
1100S2500-6AA ⁺	Α	250	10"	6" NPT	145.2	79.5	65.7	9.1	10.9	1263
1100S2500-6A ⁺	Α	250	10"	6" NPT	145.2	79.5	65.7	9.1	10.9	1263
1100S2500-6 ⁺	Α	250	10"	6" NPT	145.2	79.5	65.7	9.1	10.9	1263

NOTES: All models suitable for use in 10" wells, unless equipped with 10" motor. Weights include pump end with motor in lbs.

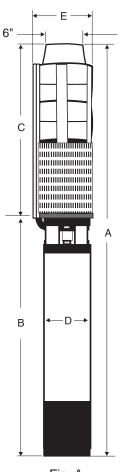
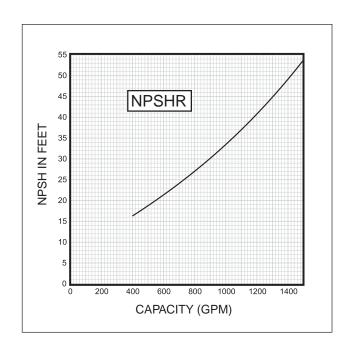
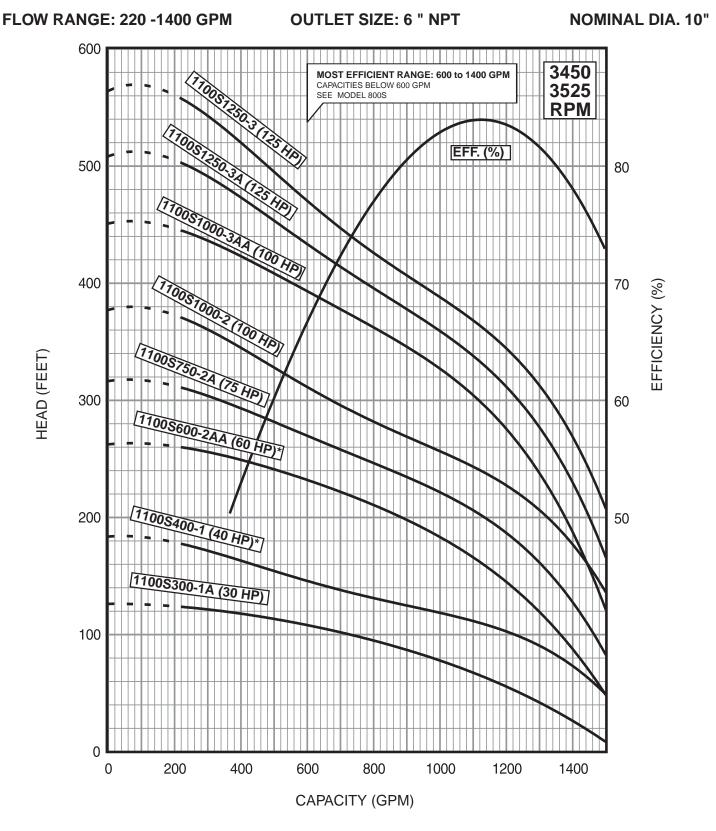


Fig. A

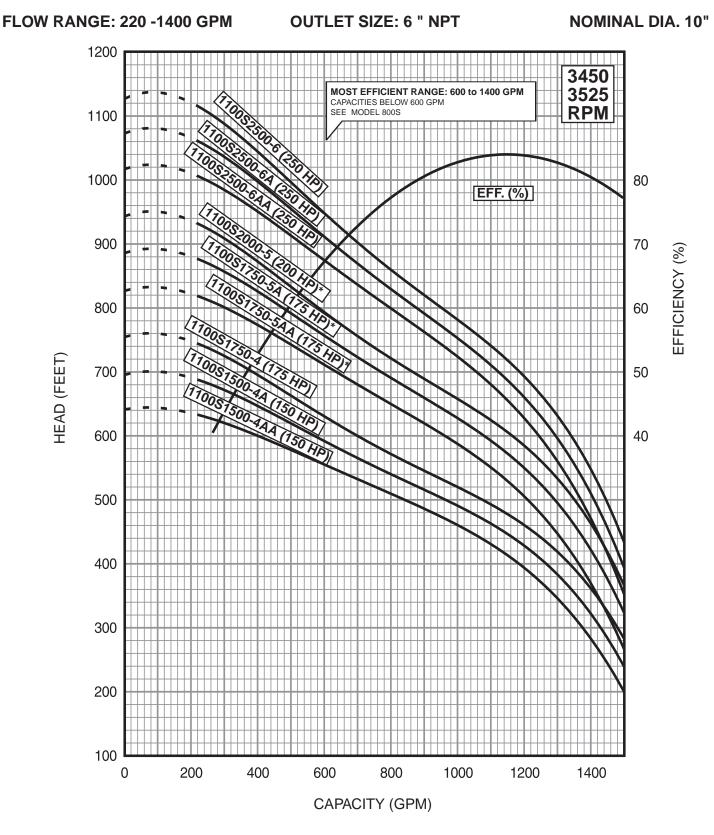

^{*} Alternate motor sizes available.


⁺ Designed to fit Hitachi® Motors.

MATERIALS OF CONSTRUCTION

COMPONENT	CYLINDRICAL SHAFT
Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	316 Stainless Steel
Coupling	316/329 Stainless Steel*
Coupling Key	302/304 Stainless Steel**
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Top Bearing	NBR/316 Stainless Steel
Upthrust Disc	Carbon/Graphite HY22
O-Ring	NBR
Valve Seat	304 Stainless Steel
Lower Valve Seat Retainer	316 Stainless Steel
Upper Valve Seat Retainer	304 Stainless Steel
Valve Guide	304 Stainless Steel
Valve Cup Spring	304 Stainless Steel

NOTES: Specifications are subject to change without notice. * 10" Coupling made of 329 Stainless Steel. ** Used in 10" motor coupling only.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 30-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-200 HP/3525 RPM. 10" MOTOR STANDARD, 250 HP/3500 RPM.

* Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 30-60 HP/3450 RPM. 8" MOTOR STANDARD, 75-200 HP/3525 RPM. 10" MOTOR STANDARD, 250 HP/3500 RPM. * Alternate motor sizes available.

Performance conforms to ISO 9906 Annex A @ 10 ft. min. submergence.

CONTROL BOX SA-SPM5

Enclosure

NEMA Type 3R rated suitable for outdoor mounting provided with mounting holes, progressive knockouts, and hinged door. 18 gauge steel construction with a gray colored epoxy coating provides great mechanical properties and corrosion protection.

Product Range

Provided in 115 VAC, 60 Hz, Single-phase for 1/3 HP and 1/2 HP motors.

Provided in 230 VAC, 60 Hz, single-phase for 1/3 HP, to 5 HP motors.

Internal wiring

Internal wire is 14 AWG, THHN, 105 degrees C, 600 VAC rated insulation.

Voltage relay

UL Recognized General Electric[™] voltage relay.

Start capacitor

User friendly quick disconnect brackets for UL Recognized Mallory™ start capacitor.

Pull handle disconnect

The pull handle disconnect is available to break voltage between line/service voltage and the starting components and motor leads.

G111 & G231 PumpSaver

The **Model G111** fits inside 1/3 and 1/2 Hp 115V control boxes.

Model G231 fits inside 1/3, 1/2, 3/4, and 1 Hp 230V control boxes. The PumpSaver Model G111/231 is a current monitor designed to protect single phase pumps from dry well, dead head, jammed impeller, and over & under voltage conditions. Typical applications include residential waterwells, commercial water wells, irrigation wells, and golf course systems.

Features and benefits:

- Restart delay can be set up to 225 minutes or placed in manual reset mode.
- Can be calibrated to specific pump/motor combinations and various conditions.
- "Run Light" conveniently shows that the unit is functional.
- Fits in existing Grundfos control box saving enclosure costs.
- Quick easy installation.

MP204 MOTOR PROTECTION

Made for pumps by pump experts

Simple set-up a priority

Simple installation and set-up was a major priority for the MP 204 designers. Mounting is done by means of four screws or by sliding the unit onto a mounting rail, and the entire set-up can be completed in just two minutes. The simple menu is used to set four parameters: rated motor amps, nominal voltage, trip class, and no. of motor phases. After just 120 seconds of setting, the unit is ready to go.

Electronic pump protection made simple

Submersible motors are made to be very strong indeed. But that does not mean they cannot benefit from extra protection that prolongs their lifetime and safeguards them against external threats. That is why we created the new MP 204 motor protection unit. Made especially for pump motors by pump specialists, it was designed to bring you protection that is as simple to use as it is efficient. Our engineers crammed it full of all the protection features you need – but kept it easy to install, set, and use.

Protect your motors against external threats

The MP 204 protects pump motors against undervoltage, overvoltage and other variations in power supply. So even if your external power supply is not entirely steady, your SP pump will remain as reliable as ever. Very importantly, the extra protection also reduces wear, thereby prolonging the motor's lifespan. Reduced power consumption is a strong indication that the pump is about to run dry, so the MP 204 will immediately stop the pump if the well goes dry.

Access more functions with the R 100 remote control

R 100 remote

The R 100 remote control from Grundfos gives you access to even more options. For example, you can adjust factory settings, carry out service and troubleshooting, and get read-outs of data stored in the MP 204 unit.

Technical data - MP 204

NEMA 1 (IP 20)
-4°F to 140°F (-20°C to 60°C)
99%
80-610VAC
3-999A
47 – 63 Hz
1-45
0.1 – 30 s
-25/+15% of nominal voltage
EN 60947, EN 60355, UL/CSA 508
SE, cUL, C-tick

^{*} For currents above 120A, external transformers required

Monitoring parameters

- Insulation resistance before start-up
- Temperature (Tempcon, PT sensor and PTC/thermal switch)
- Overload / underload
- Overvoltage / undervoltage
- Phase sequence
- · Phase missing
- Power factor (cos φ)
- Power consumption
- Harmonic distortion
- · Current asymmetry
- Run and start capacitor (single-phase)
- Operating hours and number of starts

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

MISC. PUMP ACCESSORIES

GRUNDFOS Single Phase Lightning Arrestor (Optional accessory for surge protection in

single phase submersible motors.)

Part No. 825017

GRUNDFOS Three Phase Lightning Arrestor

All Ratings Part No. 825045

Parallel Pipe Ejector/Foot Valve

EJECTOR	FOR USE WITH	НР	NOM. DEPTH	MIN. WELL DIA.	PRESSURE CONNECT	SUCTION CONNECT	ORDER NO.
5050	JS-5	1/2	50'	4"	1"	11/4"	465118
5100	JS-5	1/2	100'	4"	1"	11/4"	465119
7050	JS-7	3/4	50'	4"	1"	11/4"	465120
7100	JS-7	3/4	100'	4"	1"	11/4"	465121
10050	JS-10	1	50'	4"	1"	11/4"	465136
10100	JS-10	1	100'	4"	1"	11/4"	465137

GRUNDFOS Three Inch Stainless Steel Well Seal

Part No.	Part Name
1B5102	Well Seal

TECHNICAL & PUMP SELECTION INFORMATION SECTION 6

Part 1 – INTRODUCTION

Part 2 - CABLE SELECTION

Part 3 – MISC. TECHNICAL DATA, FORMULAS, AND CONVERSIONS

PART 1: INTRODUCTION General

This section will provide the technical information needed to properly select GRUNDFOS groundwater products. The information applies primarily to domestic groundwater systems using 4-inch wells with submersible or jet pumps, pressure tanks, and accessories. It is important to be familiar with typical system components and their basic hydraulic principles to ensure a better understanding of the more technical information found later in this section.

Prior to selecting the pump, the basic system requirements must be determined. System capacity and system pressure must be calculated and friction losses determined to ensure proper system performance. These calculations are covered in detail in **Part 1.** In **Part 2**, information is provided on proper cable selection. Also provided in **Part 3** are miscellaneous technical data and formulas commonly used in the selection of domestic groundwater systems.

Typical System Components

Domestic groundwater systems are made up of a pump, storage tank, and accessories to operate the system automatically. Pumps are generally of the submersible or jet variety and include the pump and motor as a unit. Refer to Figure 8-A for the components found in a typical automatic groundwater pumping system.

In a *closed, automatic water system* a pressure tank is used to store water and maintain system pressure between specified limits (such as 30 to 50 psi). As the water level in the tank rises, tank air is compressed in the upper part of the tank until the upper pressure limit is reached (i.e., 50 psi). At this "cut-out" point a pressure switch opens the electrical circuit to the motor and the pump stops.

The compressed air in the tank acts like a spring pushing down on the water to create system pressure. When a valve is opened in the water system, the air pressure in the upper part of the tank forces the water to flow out of the tank and into the system. As the water is drawn from the tank, the air occupies a larger space and the pressure drops until the lower limit is reached (i.e., 30 psi). At this "cut-in" point the pressure switch closes the electrical circuit to the motor and the pump starts. A cycle is thereby completed.

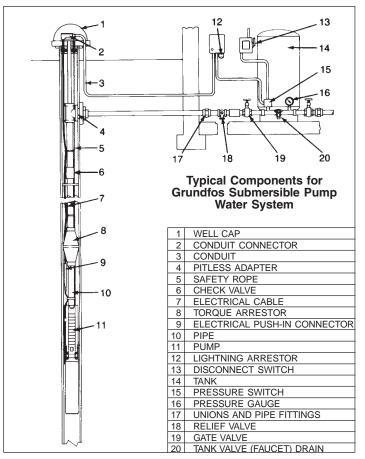
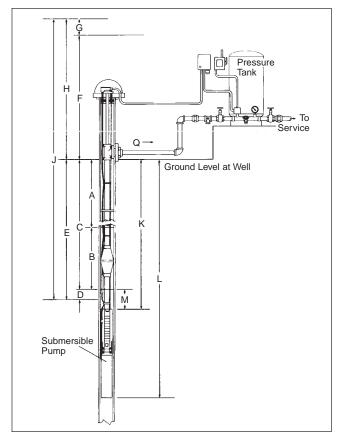



FIGURE 8-A

Components found in a typical automatic groundwater pumping system including a submersible pump, pressure tank, and pressure control accessories.

In an *open, automatic water system* the pump is used to fill a large, elevated storage tank which utilizes gravity to maintain system pressure. Tank level controls are used to cycle the pump to maintain water levels within prescribed limits.

Refer to the following illustrations for schematic layouts of typical domestic groundwater systems and components: Figure 8-B (Submersible Pump - Closed System), Figure 8-C (Submersible Pump - Open System), Figure 8-D (Shallow Well Jet Pump), and Figure 8-E (Deep Well Jet Pump).

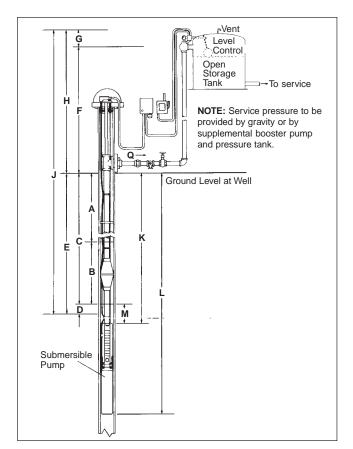


FIGURE 8-B

Figure 8-B illustrates a schematic layout of a CLOSED goundwater pumping system using a submersible pump and pressure tank set for automatic operation. A pressure switch controls the cycling of the pump.

Closed Groundwater System with Submersible Pump

- A. STATIC WATER LEVEL (in feet): vertical distance from the top of the well to the standing water level or water table.
- B. DRAWDOWN (in feet): reduction in the water level during pumping (varies with well yield and pump capacity).
- C. PUMPING WATER LEVEL or LIFT (in feet): C = A + B.
- D. FRICTION LOSSES in the WELL (in feet): friction losses caused by the drop pipe and fittings between the pump and the top of the well.
- E. TOTAL LIFT in the WELL (in feet): E = A + B + D.
- F. STATIC DISCHARGE HEAD (in feet): for PRESSURE TANK SYSTEMS it is the elevation rise in feet of the pressure tank, discharge nozzles, etc., above the top of the well plus the pressure (in feet) required at that level.
- G. FRICTION LOSSES in the DISCHARGE SYSTEM (in feet): friction losses caused by piping, valves, and fittings between the top of the well and the point of discharge.
- H. TOTAL DISCHARGE HEAD (in feet): H = F + G.
- J. TOTAL PUMPING HEAD (in feet): J = E + H.
- K. SETTING OF PUMP (in feet): vertical distance from the top of the well to the top of the pump.
- L. OVERALL LENGTH (in feet): vertical distance from the top of the well to the bottom of the pump.
- M. SUBMERGENCE (in feet): M = K C.
- Q. CAPACITY (in gpm or gph): rate of pumping.

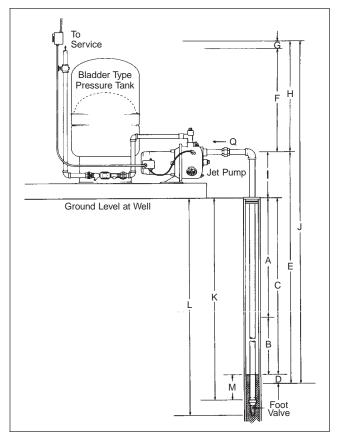


FIGURE 8-C

Figure 8-C illustrates a schematic layout of an OPEN groundwater pumping system using a submersible pump and an elevated storage tank set for automatic operation. A level control on the storage tank controls the cycling of the pump.

Open Groundwater System with Submersible Pump

- A. STATIC WATER LEVEL (in feet): vertical distance from the top of the well to the standing water level or water table.
- B. DRAWDOWN (in feet): reduction in the water level during pumping (varies with well yield and pump capacity).
- C. PUMPING WATER LEVEL or LIFT (in feet): C = A + B.
- D. FRICTION LOSSES in the WELL (in feet): friction losses caused by the drop pipe and fittings between the pump and the top of the well.
- E. TOTAL LIFT in the WELL (in feet): E = A + B + D.
- F. STATIC DISCHARGE HEAD (in feet): for OPEN DISCHARGE SYSTEMS it is the elevation of the highest water level above the top of the well.
- G. FRICTION LOSSES in the DISCHARGE SYSTEM (in feet): friction losses caused by piping, valves, and fittings between the top of the well and the point of discharge.
- H. TOTAL DISCHARGE HEAD (in feet): H = F + G.
- J. TOTAL PUMPING HEAD (in feet): J = E + H.
- K. SETTING OF PUMP (in feet): vertical distance from the top of the well to the top of the pump.
- L. OVERALL LENGTH (in feet): vertical distance from the top of the well to the bottom of the pump.
- M. SUBMERGENCE (in feet): M = K C.
- Q. CAPACITY (in gpm or gph): rate of pumping.

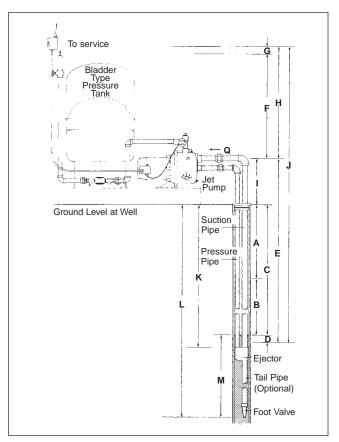


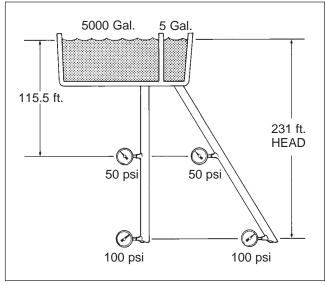
FIGURE 8-D

Figure 8-D illustrates a schematic layout of a SHALLOW WELL groundwater pumping system using a shallow well JET PUMP designed for setting to 25 feet. The pressure tank is set for automatic operation with a pressure switch controlling the cycling of the pump.

CLOSED GROUNDWATER SYSTEM WITH SHALLOW WELL JET PUMP

- A. Statics Water Level (in feet): vertical distance from the top of the well to the standing water level or water table.
- B. Drawdown (in feet): reduction in the water level during pumping (varies with well yield and pump capacity).
- C. Pumping Water Level or Lift (in feet): C = A + B.
- D. Friction Losses in the Suction System (in feet): friction losses caused by suction piping between the pump and foot valve.
- E. Total Suction Lift (in feet): E = A + B + D + I.
- F. Static Discharge Head (in feet): for *Pressure Tanks Systems* it is the elevation rise in feet of the pressure tank, discharge nozzles, etc., above the pump plus the pressure (in feet) discharge nozzles, etc., above the pump plus the pressure (in feet) required at that level. For *Open Discharge Systems* it is the elevation in feet of the highest water level above the pump.
- G. Friction Losses in the Discharge System (in feet): friction losses caused by piping, valves, and fittings between the top of the well and the point of discharge.
- H. Total Discharge Head (in feet): H = F + G.
- I. Elevation of the Pump above the Top of the Well (in feet).
- J. Total Pumping Head (in feet): J = E + H.
- K. Setting of the Foot Valve or Strainer (in feet): vertical distance from the top of the well to the top of the foot valve or strainer.
- L. Overall Length (in feet): vertical distance from the top of the well to the bottom of the foot valve or strainer.
- M. Submergence (in feet): M = K C.
- Q. Capacity (in gpm or gph): rate of pumping.

FIGURE 8-E


Figure 8-E illustrates a schematic layout of an DEEP WELL groundwater pumping system using a deep well JET PUMP designed for settings to 100 feet. The pressure tank is set for automatic operation with a pressure switch controlling the cycling of the pump.

CLOSED GROUNDWATER SYSTEM WITH SHALLOW WELL JET PUMP

- A. Static Water Level (in feet): vertical distance from the top of the well to the standing water level or water table.
- B. Drawdown (in feet): reduction in the water level during pumping (varies with well yield and pump capacity).
- C. Pumping Water Level or Lift (in feet): C = A + B.
- D. Friction Losses in the Suction System (in feet): friction losses caused by suction piping between the pump and foot valve.
- E. Total Suction Lift (in feet): E = A + B + D + I.
- F. Static Discharge Head (in feet): for PRESSURE TANK SYSTEMS it is the elevation rise in feet of the pressure tank, discharge nozzles, etc., above the pump plus the pressure (in feet) discharge nozzles, etc., above the pump plus the pressure (in feet) required at that level. For OPEN DISCHARGE SYSTEMS it is the elevation in feet of the highest water level above the pump.
- G. Friction Losses in the Discharge System (in feet): friction losses caused by piping, valves, and fittings between the top of the well and the point of discharge.
- H. Total Discharge Head (in feet): H = F + G.
- I. Elevation of the Pump above the Top of the Well (in feet).
- J. Total Pumping Head (in feet): J = E + H.
- K. Setting of the Foot Valve or Strainer (in feet): vertical distance from the top of the well to the top of the foot valve or strainer.
- L. Overall Length (in feet): vertical distance from the top of the well to the bottom of the foot valve or strainer.
- M. Submergence (in feet): M=K-C. The ejector should be set as close to the bottom of its maximum depth rating as the well will permit.
- Q. Capacity (in gpm or gph): rate of pumping.

Head and Pressure

Head and pressure are related in a very simple and direct manner. Since water has known weight, we know that a 231 foot long, one-inch square pipe holds 100 pounds of water. At the bottom of the one-inch square pipe we refer to the pressure as 100 pounds per square inch (psi). For any diameter pipe 231 feet high, the pressure will always be 100 psi at the bottom. Refer to Figure 8-F.

FIGURE 8-F Figure 8-F illustrates the relationship between head and pressure.

Head is usually expressed in feet and refers to the height, or elevation, of the column of water. In Figure 8-F we see that a column of water 231 feet high creates a pressure reading of 100 psi. That same column of water is referred to as having 231 feet of **head**. Thus, for water, 231 feet of head is equivalent to 100 psi. Or, 2.31 feet of head equals 1 psi.

It should be noted that head and pressure readings for non-flowing water depend on the elevation of the water and not on the volume of water nor the size or length of piping.

Flow and Friction Loss

Flow is measured as the volume of water moved over a given length of time. This is generally referred to as gallons per minute (gpm) for larger flows and gallons per hour (gph) for smaller flows. When water moves through a pipe, it must overcome resistance to flow caused by friction as it moves along the walls of the pipe as well as resistance caused by its own turbulence. Added together, these losses are referred to as **friction losses** and may significantly reduce system pressure.

Figure 8-G illustrates the relationship of flow and friction loss. For any flow through a level pipe the gauge pressure at the pipe inlet will be greater than the gauge pressure at the pipe outlet. The difference is attributed to friction losses caused by the pipe itself and by fittings.

In general, friction losses occur or are increased under the following conditions:

- Friction losses result from flow through any size or length of pipe (Figure 8-G).
- Friction losses increase as the flow rate increases or as the pipe size decreases (if the flow rate doubles for a given pipe size, friction losses quadruple, Figure 8-G).
- Friction losses increase with the addition of valves and fittings to the system (Figure 8-G).

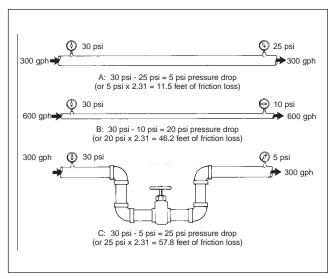


FIGURE 8-G
As shown in these illustrations friction losses increase with additional flow

Power is required to push water to a higher elevation, to increase outlet pressure, to increase flow rates, and to overcome friction losses. Good system design and common sense indicate that friction losses should be minimized whenever possible. The costs of larger pumps, bigger motors, and increased power consumption to overcome friction losses must be balanced against the increased cost of larger, but more efficient, system piping. In either case, unnecessary valves and fittings should be eliminated wherever possible.

Submersible Pumps vs. Jet Pumps

Submersible and jet pumps are both used in domestic groundwater systems. When high flow rates and pressure settings are required at high operating efficiencies, submersible pumps are generally preferred. Submersible pumps have the advantage of performing well both in shallow well applications as well as at depths to 2,000 feet. An extensive range of submersible pump models is also available allowing a precise match to exact system requirements.

Convertible jet pumps are sometimes an economical alternative to submersibles, especially in shallow well installations of 25 feet or less. The pumps are less expensive, installation is simplified, and they are easily converted for deep well installations down to 100 feet (Figure 8-H).

In "weak" well applications where the pump lowers the water level in the well faster than the well can replenish itself, a deep well jet pump with a tail pipe is particularly effective when flow requirements are relatively small. By adding 35 feet of tail pipe below the jet assembly with the foot valve attached to the bottom, it will not be possible to pull the well down and allow air to enter the system. Pump delivery remains at 100% of the rated capacity down to the level of the jet assembly. If the water level falls below that point, flow decreases in proportion to the drawdown as shown in Figure 8-I. When pump delivery equals well inflow, the water level remains constant until the pump shuts off. At 33.9 feet of drawdown the pump will no longer deliver water but the foot valve will remain fully submerged.

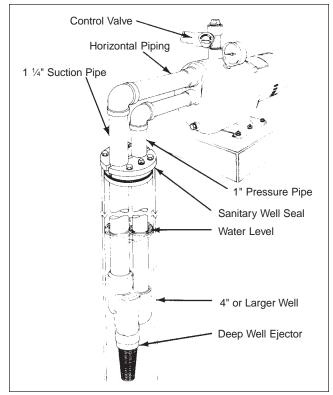


FIGURE 8-H

Figure 8-H illustrates a convertible jet pump set for deep well use (to 100 feet).

Final Pump Selection

Final pump selection will depend upon specific application requirements and cost considerations. Regardless of the pump type, system flow and head requirements (discussed in detail in Part 2) must be determined prior to actual pump selection.

Flow requirement will be determined by the size of the house or farm (including the number of bathrooms, outlets and appliances), the size of family, and the number of farm animals, if applicable.

Total Pumping Head must be calculated to ensure that the pump selected will meet all head or discharge pressure requirements. Total pumping head is the combination of the total suction lift (or lift in well), plus the pump discharge head (consisting of the elevation from the pumping water level to pressure tank plus pressure tank discharge pressure), plus all system friction losses.

Total Dynamic Head is equivalent to total pumping head plus velocity head. In most residential systems, velocity head is negligible. Because of this, the velocity head term has been left out of future examples and formulas. From the information gathered on flow and head requirements, a specific submersible or jet pump may be selected and an appropriately sized pressure tank ordered.

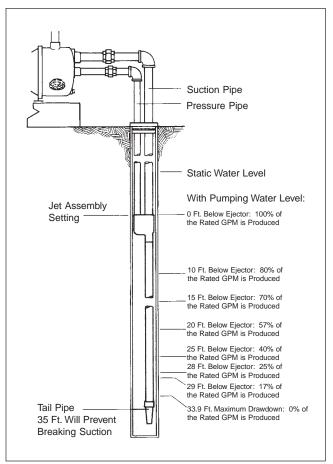


FIGURE 8-I

Figure 8-I illustrates the use of a tail pipe on a deep well convertible jet pump to compensate for weak well conditions.

PART 2: CABLE SELECTION

Submersible Pump Cable Selection Charts (60 Hz)

CABLE LENGTH SELECTION TABLES

The following table (Table 8-Q(2)) lists the recommended copper cable sizes and various cable lengths for submersible pump motors. Proper wire size will ensure that adequate voltage will be supplied to the motor.

This table complies with the 1978 edition of the National Electric Table 310-16, Column 2 for 75°C wire. The ampacities (current carrying properties of a conductor) have been divided by 1.25 per the N.E.C., Article 430-22, for motor branch circuits based on motor amps at rated horsepower.

To assure adequate starting torque, the maximum cable lengths are calculated to maintain 95% of the service entrance voltage at the motor when the motor is running at maximum nameplate amps. Cable sizes larger than specified may always be used and will reduce power usage.

The use of cables smaller than the recommended sizes will void the warranty. Smaller cable sizes will cause reduced starting torque and poor motor operation.

CALCULATING MIXED CABLE SIZES

In a submersible pump installation any combination of cable sizes may be used as long as the total percentage length of the individual cables does not exceed 100%. Mixed cable sizes are most often encountered when a pump is being replaced with a larger horsepower model and part of the old cable will be left in place.

In the following example, a 2 HP, 230 volt, 1 phase pump is being installed to replace a smaller model. The 115 feet of buried #12 cable located between the service entrance and the well head will be used in the replacement installation. The well driller must be able to calculate the required size of cable in the well to connect the new motor at a setting of 270 feet.

Cable Size Calculation:

Step 1–Check Table 8-Q(2) to see if the 115 feet of existing #12 cable is large enough to provide current to the larger 2 HP replacement pump. The table tells us that #12 cable is adequate for a maximum length of 250 feet.

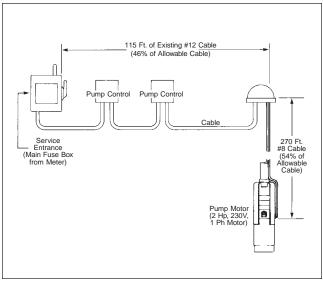


FIGURE 8-Q(1)
Example of Mixed Cable Installation

Step 2–Since 250 feet is the maximum allowable cable length for the #12 cable, calculate the percent used by the 115-foot run. (115 ft. \div 250 ft. = 46%)

Step 3–With 46% of the total allowable cable used between the service entrance and the well head, 54% remains for use in the well (100% - 46% = 54%). Therefore, the 270 feet of cable required in the well can utilize only 54% of the total feet allowed in the table.

Step 4–From Table 8-Q(2) determine the proper size cable required for the 2 HP pump set at 270 feet. (Remember, you are limited to 54% of the length listed in the table.) A check of #10 cable at 2 HP indicates that only 210 feet of this cable could be used (390 ft. x 54% = 210 ft.). Since this is less than the 270 required, the next larger size should be tried. For #8 cable, 54% of 620 feet = 335 feet. The #8 cable is suitable for use in the well at a pump setting of 270 feet.

See Chart 8-Q(2) next page.

MAXIMUM MOTOR CABLE LENGTH

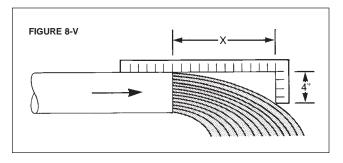
TABLE 8-Q(2) Single Phase 60Hz (Motor Service to Entrance)

Motor F	Rating						Cop	per Wir	e Size					
Volts	HP	14	12	10	8	6	4	2	0	00	000	0000	250	300
115	1/3	130	210	340	540	840	1300	1960	2910					
	1/2	100	160	250	390	620	960	1460	2160					
	1/3	550	880	1390	2190	3400	5250	7960						
230	1/2	400	650	1020	1610	2510	3880	5880						
	3/4	300	480	760	1200	1870	2890	4370	6470					
	1	250	400	630	990	1540	2380	3610	5360	6520				
	11/2	190	310	480	770	1200	1870	2850	4280	5240				
	2	150	250	390	620	970	1530	2360	3620	4480				
	3	120	190	300	470	750	1190	1850	2890	3610				
	5			180	280	450	710	1110	1740	2170				
	71/2				200	310	490	750	1140	1410				
	10					250	390	600	930	1160				

208 1½ 310 500 790 1260 2 240 390 610 970 1520 3 180 290 470 740 1160 1 5 170 280 440 690 1 7½ 200 310 490 230 370 15 20 230 370 250 250 230 1½ 360 580 920 1450 250 250 230 310 340 540 860 1340 2 2 280 450 700 1110 1740 3 210 340 540 860 1340 2 2 200 230 360 570 2 2 290 2 290 2 290 2 2 290 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2 1810 1080 1660 770 1180 570 880 390 600 300 460 370 310 2080 1240 1900 890 1350 660 1010 450 690 350 530	1770 1330 910 700 570 470	1640 1110 860 700 580	1340 1050 840 700	1270 1030 850	1170	300
2 240 390 610 970 1520 3 180 290 470 740 1160 1 5	1080 1660 770 1180 570 880 390 600 300 460 370 310 2080 1240 1900 450 690	1330 910 700 570 470	1110 860 700	1050 840	1030	1170	
3 180 290 470 740 1160 1 5 71/2 200 310 490 10 230 370 15 20 25 30 230 11/2 360 580 920 1450 2 2 280 450 700 1110 1740 3 210 340 540 860 1340 2 5 71/2 200 320 510 800 1 5 71/2 230 360 570 10 230 320 510 800 1 15 20 230 360 570 270 420 25 30 460 11/2 1700 2 2 1300 2070 3 1000 1600 2520	1080 1660 770 1180 570 880 390 600 300 460 370 310 2080 1240 1900 450 690	1330 910 700 570 470	1110 860 700	1050 840	1030	1170	
5 7½ 200 310 490 1 10 230 370 250 25 20 25 30 250 230 1½ 360 580 920 1450 200 25 20 25 30 250 250 200 25 20	1080 1660 770 1180 570 880 390 600 300 460 370 310 2080 1240 1900 450 690	1330 910 700 570 470	1110 860 700	1050 840	1030	1170	
10	570 880 390 600 300 460 370 310 2080 1240 1900 890 1350 660 1010 450 690	1330 910 700 570 470	1110 860 700	1050 840	1030	1170	
15 20 250 250 250 250 250 250 250 250 250	390 600 300 460 370 310 2080 1240 1900 890 1350 660 1010 450 690	910 700 570 470	1110 860 700	1050 840	1030	1170	
20 25 30	300 460 370 310 2080 1240 1900 890 1350 660 1010 450 690	700 570 470 2030	860 700	1050 840	1030	1170	
25 30 230 1½ 360 580 920 1450 2 280 450 700 1110 1740 3 210 340 540 860 1340 2 5 200 320 510 800 1 7½ 230 360 570 10 270 420 15 20 25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520	2080 1240 890 450 450 2080 1900 1350 660 1010 450 690	570 470 2030	700	840	1030	1170	
30	2080 1240 1900 890 1350 660 1010 450 690	2030	580				
2 280 450 700 1110 1740 3 210 340 540 860 1340 2 5 200 320 510 800 1 7½ 230 360 570 1 10 270 420 290 255 30 290 255 30 460 1 460 1½ 1700 2 1300 2070 3 1000 1600 2520	1240 1900 890 1350 660 1010 450 690					970	1110
3 210 340 540 860 1340 2 5 200 320 510 800 1 7½ 230 360 570 10 270 420 15 20 25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520	1240 1900 890 1350 660 1010 450 690						
5 7½ 200 320 510 800 1 10 230 360 570 15 20 290 25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520	1240 1900 890 1350 660 1010 450 690						
10 270 420 290 290 250 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520	660 1010 450 690						
15 290 25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520	450 690						
20 25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520		1520	1870	1510			
25 30 460 1½ 1700 2 1300 2070 3 1000 1600 2520		1040 810	1280 990	1540 1200	1450		
460	280 430	650	800	970	1170	1340	
2 1300 2070 3 1000 1600 2520	350	540	660	800	970	1110	1270
3 1000 1600 2520							
0 1000 1000 2020							
5 590 950 1500 2360							
7½ 420 680 1070 1690 2640							
10 <u>310 500 790 1250 1960 3</u>	3050						
	2090 3200 1610 2470	3730					
25 530 830 1	1300 1990	3010	3700				
30 430 680 1	1070 1640	2490	3060	3700			
40	790 1210	1830	2250	2710	3290	2010	
50 60	640 980 830	1480 1250	1810 1540	2190 1850	2650 2240	3010 2540	2890
75	000	1030	1260	1520	1850	2100	2400
100			940	1130	1380	1560	1790
125 150					1080	1220	1390 1190
200						1050 1080	1300
250						1000	1080
575 1½ 2620							
2 2030 3 1580 2530							
5 920 1480 2330							
7½ 660 1060 1680 2650							
10 490 780 1240 1950							
15 530 850 1340 2090 20 650 1030 1610 2	2520						
	2030 3110						
30 680 1070 1	1670 2560	3880					
		2860	3510	0.00			
50 1	1240 1900	2310	2840				
75	1000 1540	1060		3420	3500		
		1960 1600	2400 1970	2890 2380	3500 2890	3290	

CAUTION: Use of wire size smaller than listed will void warranty.

Notes: 1. If aluminum conductor is used, multiply lengths by 0.5 Maximum allowable length of aluminum is considerably shorter than copper wire of same size.


- 2. The portion of the total cable which is between the service entrance and a 3ø motor starter should not exceed 25% of the total maximum length to assure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.
- 3. Cables #14 to #0000 are AWG sizes, and 250 to 300 are MCM sizes.

PART 3: MISC. TECHNICAL DATA, FORMULAS, AND CONVERSION

Calculating Discharge Rate by Using The Horizontal Open Discharge Method

The most reliable method of measuring flow is to use a flow meter. When a flow meter is not available, however, it is possible to estimate the discharge capacity by constructing an "L" shaped measuring stick similar to that shown in Figure 8-V. With the water flowing from the pipe, place the long end of the "L" on top of the pipe. Position the "L" so that the end of the short 4-inch side just touches the stream of water as the stream slants downward. Note the horizontal distance "X" from this point to the open end of the discharge pipe. With the value "X" and and the nominal inside diameter of the pipe, use Table 8-X to find the discharge rate in gallons per minute.

EXAMPLE: Horizontal distance "X" is measured to be 12 inches. The size of the pipe Is known to be $1\frac{1}{2}$ " (nominal diameter). Find 12 inches in the left hand column of the chart and move across to the $1\frac{1}{2}$ " pipe size column. Table 8-X indicates that the discharge rate is 40.0 gallons per minute.

Calculating Low Capacity Outlets: A simple procedure for measuring low capacity outlets such as small pump outlets, hose spigots, and faucets is to record the amount of time it takes to fill a container of known size.

EXAMPLE: Select a container of known size such as a 5-gallon paint bucket. With a watch, measure, in seconds, the amount of time it takes to fill the bucket. If it takes 30 seconds to fill a 5-gallon bucket, Table 8-W indicates that the flow is 10.0 gallons per minute. To obtain gallons per hour (gph) multiply 10.0 x 60 to obtain 600 gph.

TABLE 8-WDischarge Rate in Gallons Per Minute (GPM) for Low Capacity Systems

Capacity of	Time (in seconds) to Fill Container										
Container	10	15	20	30	45	60	90	120			
(Gallons)		Discha	rge Rate	in Gal	ons Pe	r Minute	(GPM)				
1	6.0	4.0	3.0	2.0	1.3	1.0	.7	.5			
3	18.0	12.0	9.0	6.0	4.0	3.0	2.0	1.5			
5	30.0	20.0	15.0	10.0	6.7	5.0	3.3	2.5			
10	60.0	40.0	30.0	20.0	13.3	10.0	6.7	5.0			

NOTE: Multiply gallons per minute (GPM) by 60 to obtain gallons per hour (GPH).

Calculating Distance to Water Level

Install $\frac{1}{8}$ " or $\frac{1}{4}$ " pipe or tubing into the well so that the end of the tubing extends 10 to 20 feet below the lowest possible pumping water level. Be sure that all joints in the tubing are airtight. As the tubing is lowered into the well measure its length. Record the measurement.

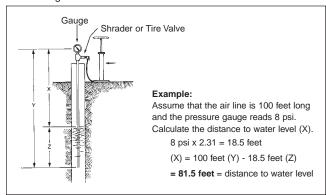
TABLE 8-X

Discharge Rate in Gallons Per Minute (GPM) for Large Capacity Systems

Horiz.			Nomin	al Pipe	Size (in Inc	hes)			
Dist. (X) Inches	1	1 1/4"	1 ½"	2"	2 1/2"	3"	4"	5"	6"	8"
	Dis	scharge	Rate	in Ga	llons	Per	Minu	te (GI	PM)	
4	5.7	9.8	13.3	22.0	31	48	83			
5	7.1	12.2	16.6	27.5	39	61	104	163		
6	8.5	14.7	20.0	33.0	47	73	125	195	285	
7	10.0	17.1	23.2	38.5	55	85	146	228	334	380
8	11.3	19.6	26.5	44.0	62	97	166	260	380	665
9	12.8	22.0	29.8	49.5	70	110	187	293	430	750
10	14.2	24.5	33.2	55.5	78	122	208	326	476	830
11	15.6	27.0	36.5	60.5	86	134	229	360	525	915
12	17.0	29.0	40.0	66.0	94	146	250	390	570	1000
13	18.5	31.5	43.0	71.5	102	158	270	425	620	1080
14	20.0	34.0	46.5	77.0	109	170	292	456	670	1160
15	21.3	36.3	50.0	82.5	117	183	312	490	710	1250
16	22.7	39.0	53.0	88.0	125	196	334	520	760	1330
17		41.5	56.5	93.0	133	207	355	550	810	1410
18			60.0	99.0	144	220	375	590	860	1500
19				100.0	148	232	395	620	910	1580
20					156	244	415	650	950	1660
21						256	435	685	1000	1750

Once the tubing is fixed in a stationary position at the top of the well, connect an air line and pressure gauge. With a tire pump or other air supply, pump air into the line until the pressure gauge reaches a point where it doesn't read any higher. Record the pressure gauge reading at this point.

Figure 8-Y illustrates a typical method for measuring distance to water level:


- X = Distance to water level (in feet). This figure to be determined.
- Y = Total length of air line (in feet).
- Z = Length of submerged air line. This value is obtained from the pressure gauge reading which reads in pounds per square inch (psi). Multiply the pressure gauge reading by 2.31 to obtain the length of the submerged air line in feet.

Distance to water level (X) = (Y) - (Z)

= The total length of the air line (Y) minus the length of the submerged portion of the air line (Z).

Figure 8-Y

Calculating the distance to water level.

FORMULAS

TEMPERATURE CONVERSIONS:

Degrees $\mathbf{C} = \underline{5} \times (\text{Degrees F - 32})$

Degrees $\mathbf{F} = (\underline{9} \times \text{Degrees C}) + 32$

Area of a Circle:

Area = π r²

Circumference of a Circle:

Circumference = 2 π r r = radius π = 3.14

Volume of a Tank or Cistern:

3.14 x (radius of tank)² x (ht. of tank) x 7.48 = Gallons Radius and height of tank measured in feet 7.48 = number of gallons per cubic foot of water

WORK, POWER, AND EFFICIENCY:

The amount of work required to lift 1 pound to a height of 1 foot is defined as 1 ft.-lb. To lift 100 pounds to a height of 60 feet is 100 pounds x 60 feet = 6,000 ft-lbs. This amount of energy remains the same whether it takes one minute or one hour to lift the weight. The rate of working, however, is referred to as **power** and was 6,000 ft-lbs. per minute in the first case and 100 foot pounds per minute in the second case.

Power can be represented either mechanically or electrically. **Mechanical power** is measured in horsepower (HP). One HP is the theoretical power required to raise 33,000 pounds to a height of one foot in one minute, or:

Electrical power is measured in watts(w) or kilowatts(kw), and:

1,000 w = 1 kw = 1.34 hp, or **1 HP** = 745 w = 0.746 kw

WATER HORSEPOWER (WHP):

Water horsepower is the power required to raise water at a specified rate against a specified head, assuming 100% efficiency.

WHP = GPM x Total Pumping Head 3,960

BRAKE HORSEPOWER (BHP):

Brake horsepower is based on test data and can be either the horsepower developed at the motor shaft (motor output) or that absorbed at the pump shaft (pump input).

Pump BHP = WHP x 100
Pump Efficiency (%)

= GPM x Total Pumping Head x 100 3,960 x Pump Efficiency (%) Motor BHP = Power input x Motor Efficiency (%)
100

= 1.34 x kw input x Motor Efficiency (%)

PUMP EFFICIENCY:

Pumps and motors, like all machines, are not 100% efficient. Not all of the energy supplied to them is converted into useful work. Pump efficiency is the ratio of power output to power input, or:

Efficiency (%) = $\frac{\text{Power Output x 100}}{\text{Power Input}}$

Pump Eff. (%) = $\frac{\text{WHP x 100}}{\text{Pump BHP (Input)}}$

= GPM x Total Pumping Head x 100 3960 x Pump BHP (Input)

Motor Eff. (%) = $\frac{\text{Motor BHP (Output) x 100}}{1.34 \text{ x kw input}}$

Plant Eff. (%) = $\frac{\text{GPM x Total Pumping Head x 100}}{5,300 \text{ x kw Input}}$

ELECTRIC POWER (AC):

E = Electrical pressure (volts). Similar to hydraulic head.

I = Electrical current (amps). Similar to rate of flow.

W = Electrical power (watts) = E x I x PF

kw = Kilowatt (1,000 watts)

kw-hr. = Kilowatt-hour = 1,000 watts for one hour

Apparent Power = E x I = volt-amperes

PF = Power Factor = Useful Power ÷ Apparent Power

Power Calculations for Single-Phase Power

 $W (Watts) = E \times I \times PF$

NOTE: When measuring single-phase power use a single-phase wattmeter.

Input HP to motor = $W \div 746 = 1.34 \text{ x kw}$

Power Calculations for Three-Phase Power

W (Watts) = $1.73 \times E \times I \times PF$

Where: E = effective (RMS) voltage between phases

I = average current in each phase

NOTE: When measuring three-phase power use either (1) three-phase wattmeter, (2) single-phase wattmeters, or the power company's revolving disc wattmeter.

When calculating power with a revolving disc wattmeter use the following formulas:

kw input =
$$\frac{K \times R \times 3.60}{t}$$

Input HP (to motor) =
$$\frac{K \times R \times 3,600}{746 \times t}$$

= $\frac{K \times R \times 4.83}{t}$

FORMULAS

Motor BHP (output) = $\frac{\text{Input HP x Motor Eff.(\%)}}{100}$

Where K = Meter constant = watts per revolution of revolving disc (value of K is marked on the meter nameplate or on the revolving disc). Where current transformers are used, multiply meter constant by current transformer ratio.

R = Number of disc revolutions counted.

t = Time in seconds for R revolutions.

CALCULATING OPERATING COSTS OF PUMPS: Costs in Cents per 1,000 Gallons:

 $Cost (c) = \frac{kw lnput x r x 1,000}{GPH}$

Cost in Cents per Acre-Inch

 $Cost (\phi) = \frac{kw lnput x r x 452.6}{GPM}$

Where: r = cost of power in cents per kw-hr.

FRICTION LOSS TABLES

Friction Loss Table - SCH 40 STEEL PIPE

(Friction Loss in Feet of Head Per 100 Feet of Pipe)

		1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
		ĪD	ID							
GPM	GPH	0.622"	0.824"	1.049"	1.380"	1.610"	2.067"	2.469"	3.068"	4.026"
2	120	4.8								
3	180	10	2.5							
<u>4</u> 5	240	17.1	4.2							
5	300	25.8	6.3	1.9						
6	360	36.5	8.9	2.7						
7	420	48.7	11.8	3.6						
8	480	62.7	15	4.5						
9	540	78.3	18.8	5.7						
10	600	95.9	23	6.9	1.8					
12	720		32.6	9.6	2.5	1.2				
14	840		43.5	12.8	3.3	1.5				
16	960		56.3	16.5	4.2	2				
20	1,200		86.1	25.1	6.3	2.9				
25	1,500			38.7	9.6	4.5	1.3			
30	1,800			54.6	13.6	6.3	1.8			
35	2,100			73.3	18.2	8.4	2.4			
40	2,400			95	23.5	10.8	3.1	1.3		
45	2,700				29.4	13.5	3.9	1.6		
50	3,000				36	16.4	4.7	1.9		
60	3,600				51	23.2	6.6	2.7		
70	4,200				68.8	31.3	8.9	3.6	1.2	
80	4,800				89.2	40.5	11.4	4.6	1.6	
90	5,400					51	14.2	5.8	2	
100	6,000					62.2	17.4	7.1	2.4	
120	7,200	1	l				24.7	10.1	3.4	
140	8,400	ĺ	1				33.2	13.5	4.5	1.2
160	9,600						43	17.5	5.8	1.5
200	12,000	ĺ	1				66.3	27	8.9	2.3
260	15,600	ĺ	1					45	14.8	3.7
300	18,000							59.6	19.5	4.9

Friction Loss Table - SCH 40 PVC

(Friction Loss in Feet of Head Per 100 Feet of Pipe)

Ì		1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
		ID.	ID	ID	ID	ID	ID	ID	ID.	ID
GPM	GPH	0.622"	0.824"	1.049"	1.380"	1.610"	2.067"	2.469"	3.068"	4.026"
2	120	4.1								
3	180	8.7	2.2							
4	240	14.8	3.7							
5	300	22.2	5.7	1.8						
6	360	31.2	8	2.5						
7	420	41.5	10.6	3.3						
8	480	53	13.5	4.2						
9	540	66	16.8	5.2						
10	600	80.5	20.4	6.3	1.7					
12	720		28.6	8.9	2.3	1.1				
14	840		38	11.8	3.1	1.4				
16	960		48.6	15.1	4	1.9				
20	1,200		60.5	22.8	6	2.8				
25	1,500			38.7	9.1	4.3	1.3			
30	1,800				12.7	6	1.8			
35	2,100				16.9	8	2.4			
40	2,400				21.6	10.2	3	1.1		
45	2,700				28	12.5	3.8	1.4		
50	3,000					15.4	4.6	1.7		
60	3,600					21.6	6.4	2.3		
70	4,200					28.7	8.5	3	1.2	
80	4,800					36.8	10.9	3.8	1.4	
90	5,400					45.7	13.6	4.8	1.8	
100	6,000					56.6	16.5	5.7	2.2	
120	7,200	ĺ			1		23.1	8	3	1
140	8,400	ĺ			1		30.6	10.5	4	1.1
160	9,600						39.3	13.4	5	1.4
200	12,000	ĺ			1		66.3	20.1	7.6	2.1
260	15,600				l			32.4	12.2	3.4
300	18,000							42.1	15.8	4.4

Friction Loss Table - VALVES and FITTINGS

(Friction Loss in Equivalent Number of Feet of Straight Pipe)

		NOMINAL SIZE OF FITTING AND PIPE							
TYPE OF FITTING	PIPE AND	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	
AND APPLICATION	FITTING	EQUI	VALEN	NT LE	NGTH (OF PIPE	(IN FE	ET)	
Insert Coupling	Plastic	3	3	3	3	3	3	3	
Threaded Adapter (Plastic to Thread)	Plastic	3	3	3	3	3	3	3	
90° Standard Elbow	Steel	2	2	3	4	4	5	6	
	Plastic	2	2	3	4	4	5	6	
Standard Tee	Steel	1	2	2	3	3	4	4	
(Flow Through Run)	Plastic	1	2	2	3	3	4	4	
Standard Tee	Steel	4	5	6	7	8	11	13	
(Flow Through Side)	Plastic	4	5	6	7	8	11	13	
Gate Valve ¹	Steel	1	1	1	1	2	2	2	
Swing Check Valve ¹	Steel	5	7	9	12	13	17	21	

NOTES:

Based on schedule 40 steel and plastic fittings.

Figures given are friction losses in terms of Equivalent Lenghts of straight pipe.

① Friction loss figures are for screwed valves and are based on equivalent lengths of steel pipe.

CONVERSION TABLES

UNITS OF FLOW

CONVERT TO	U.S. GALLONS	MILLION U.S.	CUBIC FEET	CUBIC METERS	LITERS
	PER	GALLONS	PER	PER	PER
	MINUTE	PER DAY	SECOND	HOUR	SECOND
CONVERT FROM ₩			MULTIPLY BY:		
(1) U.S. GALLON PER MINUTE	1	0.001440	0.00223	0.2271	0.0631
(1) MILLION U.S. GALLONS PER DAY	694.5	1	1.547	157.7	43.8
(1) CUBIC FOOT PER SECOND	448.83	0.646	1	101.9	28.32
(1) CUBIC METER PER HOUR	4.403	0.00634	0.00982	1	0.2778
(1) LITER PER SECOND	15.85	0.0228	0.0353	3.60	1

UNITS OF PRESSURE AND HEAD

CONVERT TO	LBS.	FEET	METERS	INCHES		
	PER	OF	OF	OF		KILOGRAMS
	SQUARE	WATER	WATER	MERCURY	ATMOSPHERES	PER
	INCH	1	1	2		SQUARE CM
CONVERT FROM -	MULTIPLY BY:					
(1) LB. PER SQUARE INCH	1	2.31	0.704	2.04	0.0680	0.0703
(1) FOOT OF WATER ①	0.433	1	0.305	0.881	0.02945	0.0304
(1) METER OF WATER ①	1.42	3.28	1	2.89	0.0966	.1
(1) INCH OF MERCURY ②	0.491	1.135	0.346	1	0.0334	0.0345
(1) ATMOSPHERE (at Sea Level)	14.70	33.96	10.35	29.92	1	1.033
(1) KILOGRAM PER SQUARE CM	14.22	32.9	10	28.96	0.968	1

NOTES: ① Equivalent units are based on density of fresh water at 68°F.

② Equivalent units are based on density of mercury at 32°F.

Each 1,000 feet of ascent decreases pressure about ½ pound per square inch.

UNITS OF VOLUME AND WEIGHT

CONVERT TO	U.S.	IMPERIAL	CUBIC	CUBIC	ACRE	POUNDS	CUBIC	
	GALLONS	GALLONS	INCHES	FEET	FEET	3	METERS	LITERS
CONVERT FROM.								
(1) U.S. GALLON	1	0.833	231	0.1337	3.07x10 ⁻⁶	8.34	0.003785	3.785
(1) IMPERIAL GALLON	1.201	1	277.4	0.1605	3.69x10 ⁻⁶	10.01	0.004546	4.546
(1) CUBIC INCH	0.00433	0.00360	1	0.000579	_	0.0361	1.64x10 ⁻⁵	0.0164
(1) CUBIC FOOT	7.48	6.23	1728	1	2.30x10 ⁻⁵	62.4	0.02832	28.32
(1) ACRE FOOT	325,850	271,335	_	43,560	1	2.7x10 ⁶	1233.5	1.23x10 ⁶
(1) POUND ③	0.120	0.0998	27.7	0.0160	3.68x10 ⁻⁷	1	4.54x10 ⁻⁴	0.454
(1) CUBIC METER	264.2	220	61,024	35.315	8.11x10 ⁻⁴	2202	1	1000
(1) LITER	0.2642	0.220	61.024	0.0353	8.11x10 ⁻⁷	2.202	0.001	1

NOTES: 3 Weight equivalent basis water at 60°F.

UNITS OF LENGTH

- (1) Inch = 0.0833 Ft. = 0.0278 Yd. = 25.4 mm = 2.54 cm
- (1) Ft. = 12 Inches = 0.333 Yd. = 30.48 cm = 0.3048 Meter
- (1) Yard = 36 Inches = 3 Ft. = 91.44 cm = 0.9144 Meters
- (1) Mile = 5280 Ft. = 1760 Yds. = 1.61 km = 1609 Meters
- (1) Meter = 3.281 Ft. = 39.37 In. = 0.000621 Miles = 0.001 km
- (1) Kilometer = 1000 m = 1093.61 Yds. = 0.62137 Miles = 3281 Ft.

L-SP-PG-001 2/06
PRINTED IN USA

Subject to alterations.

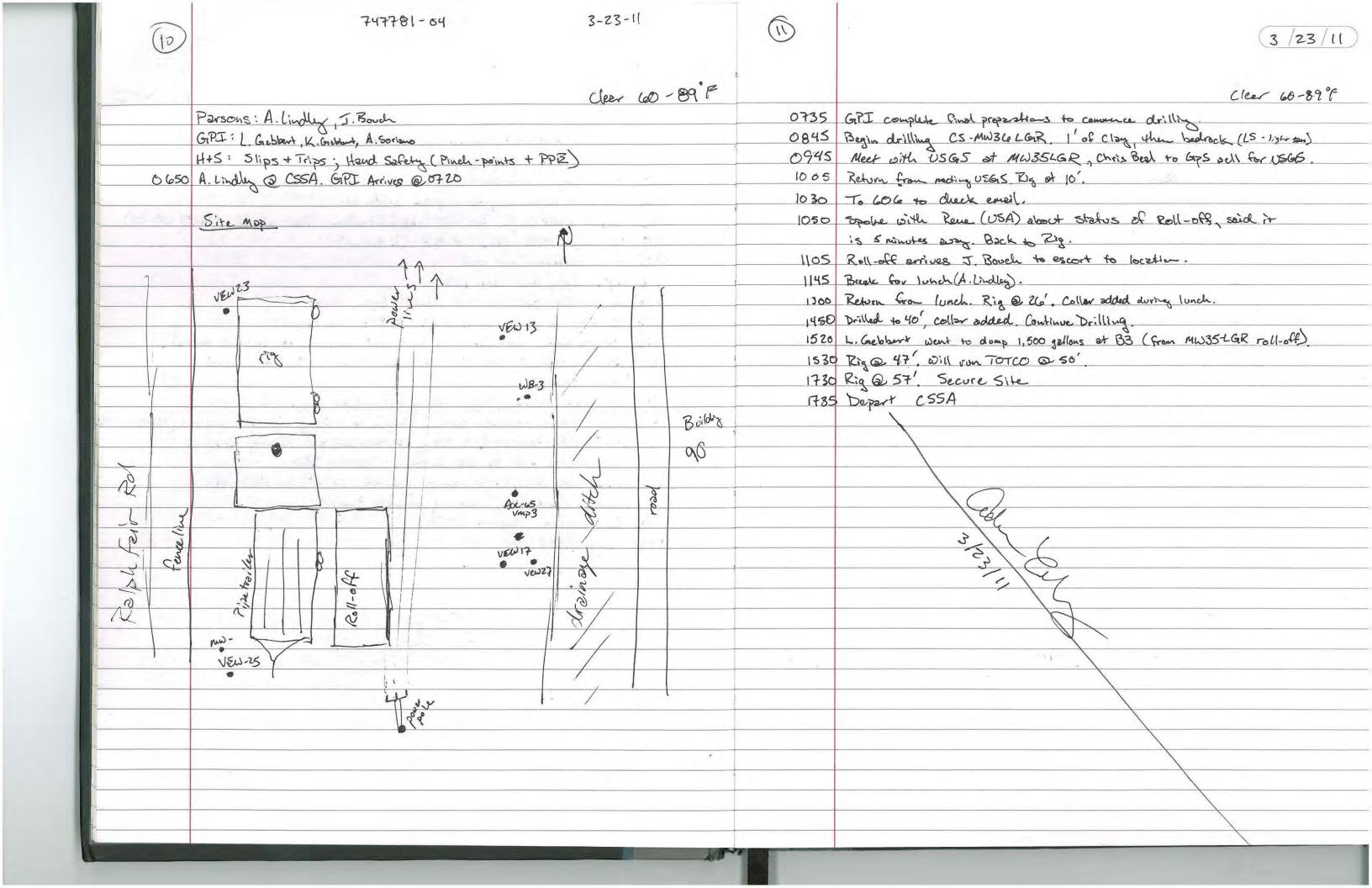
APPENDIX G Drilling Logbook

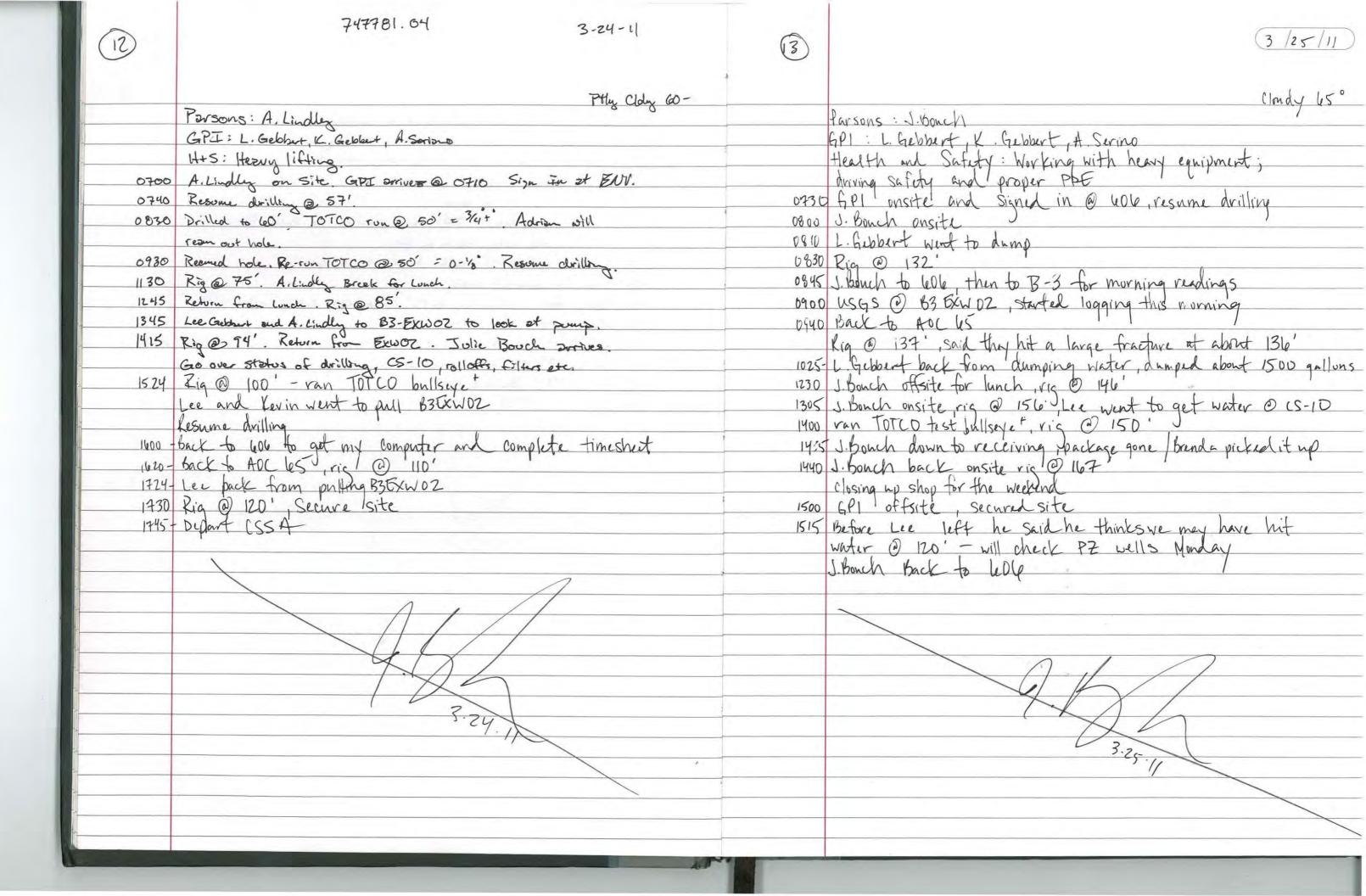
	Mobilization Day!! Overcast & DIZZle in AM 60-75"F
	Pt. Chuly in PM
0745	S. Pearson on site. Kyle Carkey has escorted
0113	USA to WWT P WITH rolloff. Meet USA
	at = , te. Drop box & open. Has about 1.5 C.Y.
	of dirt in it. Call Rene Jones, he will
0.7	look at it.
0815	Cit affice.
0845	Rene said USA will bring out another
	bux that is clean.
0700	Including Supplies 4 Nevelus Safety Plus.
10/5	Go Office Max & Home Dept for supplies
1/35	Trienly supplies 4 review safety plus. Go Office Max 4 Home Dept for supplies Spoke with Geofficits. They will be here
-	
14	Lunch Break
/23>	Return to CISA. GPI almost here. Go to
	gate 9.
/250	Excort G-PI to dilly site, Hen take
	Um to badging office.
1375	at CSSA office. Sefety meeting,
	- Scott Peason, Kyle Cushey
	- Lee Gebbert, Kern Geldreit, Adrian Soriano, Kevin Chahan
	Review - energency proceders
	- Route & hospital
	- Alt As
4	- Orlling Hayands
	- Chimical Exposure
	- Facility procedures * registements
	- etc. required by HSP
11	- 5.gn all documents
1445	Mobilize to MW35 & get Set up.
1700	Hole is set up & ready to drill MW35-LER
	A service of the serv
	Sutt Par
	Juli .

2	747781-04000	3/15/24/	3	747781-04	(3/15/11)
		Pt. Cloudy 55-804			enat SS°F
	Paisns: Scott Peasar GPI! Lee Gettert, Kevin Gebbert, adrian	Soriano		Start dulling. 3' of clay, then bed with mark & clay.	rik
0715	Cut CSSA. GPI arrives at 0730. Sign	in at	6900	Samartha Elliot calls. Meeks help Asympading the \$18055, WB64.	
0730	Sylety Meeting: SI.ps, Trips, Falls,	Good House Keeping		Motice that replacement volloff to being delivered through Gate 9. Kyle Cashe	7
	Site Map		0915	Will except to Miv35 drill site. Dounload WBO4 Data lager + remove	
			0930	Lee Gelbert Calls. This rolleff also	1
				has dist (couple wheel barous worth, We shoull it out & place it in)
		7-1		right contains that is being himbled out.	
			/000	Custern Sun we have been	
				requested to go to CS-12 constra	uctum
			1020	Meet Hilling to SCI for consultation on plunbing the mixing tank to 50%	Avi
	2 R.9 Coll M			on planting the mixing tank & 50% tank. Have conference call with Kenneth Kihr (Papsas Design Engage Feplain & resolve all questions.	ien)
	5 0	WITP	1/20	Return to drill site. 15' advancemen	£.
			1/15	Lunch break. Dullys @ 17.	
			/230	Return to CSSA. Drill to 20'. Cold Colling to drill stem.	
			1300	Tulie Burdey during lanch break.	
			132 »	A Contacto with John Zigmend (SCI)	les
			1400	bay filtus and inspect bay filtration	
		51		unit.	P
		A. P.			

4	747781-04000	3-15-2.11	3	747781-04	3/16/11
		Clear 75'F	4		AM Drizzla, 63F - 85°F
1430	Found 1 thus of unit lokes servical			PARIOUS: Scott Pearson	
	Will move wit to MW35 location	20		GPI: Lee Geldourt, Kenn Gubbert,	Adrian Suriano
	tommorrow with GPI		6720	S. PLUSON @ CSSA	
1445	Samantha adea me to come o	ret to	6730	Daly Safety Meeting - Slick Surf	aces of Heavy LAny
	WB.4 to help re-install Masor	4 <i>K</i>		(intime distant from 60.	
1515	October 1000 10 mbe		0800	Go get bag F. Hen unt From 1	3. opendor
1515 183° 58	Peturn to MW35-iGR dillsite.		6845	Clean up unit & get it ready	n We.
58	1000,71		0915	Go to bioreaster and dig in	end of
1640	Return to ENV. Rig is at 47! Will run	1	1030	Finally incover end of line.	•
	TOTCO @ 50!		1040	Con back to ENV.	
1745	Dilled to 60' TOKO run @ 50' = 1	4 - 1/2		Ken Rice & Gake M-F ask me them in a discussion about	to join
1755	Leave CSSA.	. 16		them in a discussion about	upgrading
				the biosector. Wants to di	ll 2
				men LGR wells at SWMO	ß3
				while the ris is still her	e. Rebuild
				entire system & completel	7
			•	automate thru SCADA.	V
			Moon	Lunch break	
			1300	Return to ENV.	17.5
			1310	60 to 115. The 100' 75700	Tun was /2+
	0//			Continue deilles.	
				fitting for VAK truck. Find a NPT connection at	messue
	at 1			fitting for VAC truck.	
	Swill		1345	Find a NPT connection at	end of
	0 /			Trench S. Will Scavenge	thed
				Fitting to use on Trench	4.,
			1430	Fitting to use on Truch to back to ENV. Samantha	has
				recieved results from OF-1 2 wells @ Tows in So have F-Flagged huts for Drilling is at 130'. - Have discussion with Julie B.	est Sampling
				2 wills @ Tows in So	ence Oalso
			1	have F-Flagged huts for	PCE.
			1600	Dalling is at 130'.	
				- Howe discussion with Julie Bu	rley about low
		-*-	-	well results	(61 0 0
			10.00	- Discuss 133 well option wy	/ Chis Beal.
		×	1745	- Motify babe of Towsk result	
			1800	- Discuss B3 well options wo - Motify Gabe of Towsk results S. Pian off-pst	5. Pur
		T The Land	2		-
		AP.			

6	747781-04 3-17-:	241 A	747 781-04	3/17/2011
120-	67-83	3°F	Pt.Cl.	by 67-84°F
	PARSONS: S. Pearson		PARSONS: S. Peason	
	GPI: L. Gebbert, K. Gebbert, A. Sviano		GPI: L-Geldert, K- belobert, A- Soriano	
	HAS: Driving Safety- Speed Limit, sent helts,	×	14ts: PPE. Hard Hats & Ear Protection	
	yield to traffe	0700	G-PI at CSSA	
0715	5. Pearson & G-PI at CSSA. Sign in at ENV.	0715	5. Pearson at CE CSSA. Sign in at EN	IV.
	Will resume drilling at 140! Lee is	*	145 Meeting. Deane drilling at 22	o'.
	going back to get VAC truck this AM.	0850	Modaret is here to insulate the 4K 1	lines
6800	Retin to ENV to work on adoltimal		at the MW36LGR dr.11 site- Escort	
	drilling budget.		them to the location.	
0830	Bready asks me to escort Bill Gilke (CSSA)	1000	Morlande is done wrapping the lines.	~
	out to C5-12 worksite. Andrew Wallane		Gabe will pay with credit Card.	
	also has a question about the low Floot	1030	1st load (2500 get) of filtered diel	
	Cut off at the mixing tanh.		1st load (Zoos gul) of filtered diell	
1030	Cut-off at the mixing tanh. Shop by rig. Down to 170! 150' TOCTO = 3/4"		Cititer Remove spriables head from	
1100	Return to ENV to work on latinate.		Southern mot and of 14 line to	
1/15	Escort Kevin Gebbert to CS-12 to get a		facilitate speed.	
110000	lead of water.	1130	F. nich dumping waker.	
1145	Lunch Break. See Lee return with		Go to ENV. Help Gabe set up	
	VAC Truck.		credit cand payment to Morlandt.	
1250	Return Lo CSSA. Work will Chis Beal	1145	Luch break.	
	on drilling location evaluations for B-3.	1215	Back at Rig. 250' TOTCO was 1/8". Mow	at
1430	Co out to rig. Catting close to 200!		280:	
	Lee 4 I stake out MW36-16R west of	1230	Back at ENV. Looking For GAC Shack	
	Building 90. Morlandt is going to		Back at ENV. Looking For GAC Stack	
Lum	insulate the form ine	1300	Go to GAC to take photos for bake.	
1450	Go out to 13-3. Show Lee Me French	1345	Edward from J. Sanchez Calls. The plumber	Ĵ.
201/2	4 inlet.		Subcontactor wants to test the plumbingsy	Sten.
1515	Return to rig. Getting ready for		Notify CSSA the J. Sanchy needs to	
1-2	200 1 301 707CD = 14	1.110	coordiale with CSSA, not PARSONS	
1530	Return to ENV. Work on Terming Agreemens.	1400	60 to Rig. 300' TOTCO 00 1/4°	
11	Meet with Gabe about B-3.	104	Resure drilling.	
1700	Head back out to rig. also sent	1730	Sup dilling at 340!	
	GPI a RFP to dill 2 EXW wells.	1745	Leave CSSA.	
			5. Pun	
		ALTO LA		


8


	-	1		
1	6	7)	
1		L	/	

	PARSONS: S. Pearson, A. Lindley	
	GPI: A. Soriano, L. Geldert, K. Geldert	
	145: Heavy Liting pinch ponts, Ovarhead hilting	3
0715	S. Planson & A. Soriano m-site. A. Lindley	077
	is also Lere.	08
0730	Go over status of drilling with. A. Lindly	08
	to out 4 Usit rice Show Adrium the rig	08
	rollists, F. Hung, sampling, & Well CS-10 operation.	08
0800	SCI asked if GPI can support Light in tallation	09
	at CS-12 lastin. Lee to not here will	10
	the Smeal yet.	ıc
2815	Lee andres with Smeal. adrian to cleaning	11
	and the hole. Had about 3' of meach.	12
0845	Resure drilling at 340! Lee & I go	
	Return to rig. 350' TOTCO = 1/4"	13
lo 15	Return to rig. 350' TOTCO = 1/4"	14
1400	Dall to 400. Starting to see white cuttings	10
	typical with base portion of LGR.	
	TOT(0 = 3/4)	1(
1645	Het tough drilling at 426. Either very hard	
	of a big fracture.	13
1740	Finally get & past crack & can dall with	17
	One propers.	
1155	Cuttings are turning grayish at 432. Possibly BS?	
1810	Go dup 3000 Sellers Cot B.3.	
1845	Return to well. Definitely BS. Driller called	
	It at 429-430. Stop dulling @ TD = 4401	
1900	Seeme Sile.	
1910	Leave CSSA.	

Pt.cldy 65-80° F Parsons : A. Lindley GPI L. Grebbert, A. Soriamo, K. Gebbert A+5: Moving heavy equipment. 720 A. Lindley, L. Gebbert, A. Sorizo on site 800 Go over decon rig-move plan with Lec. 810 Collect water sample for VOC characterization from roll-off. (MW35-WC-01) 840 Go dump 3000 gollons at B3 (L. Gebbert) 845 Begin cleaning out well 1915 Begin Laying down drill size 030 Lee returns. Drill pipe Isid down, Begin de con. 1045 TO GOG to check email and CHERPS for samples. 1120 Lunch break. Geo Projects to lunch and Home Depot For containing materials. 1230 Return to CSSA. To GOG for cell with S. Pearson + J. Bouch about drilling schedule. 1345 Geo Projects returns, begins moving equipment and materials to new site. 1400 collect waste characterization sample of cuttings for VOC analysis (MW35-WC-02) 1630 Geo Projects completed building containment and moving equipment and relates over to new locator. Secure Site. 1645 Spoke with Rene (USA) about roll-off. It will be delivered tomorrow (wednesday) morning around 9 Am. 1705 Geoprojects deports CSSA 1720 Leave CSSA

3/20

20

4-1-11 747781.04 Kyle CASKery

0800 KKC ARRIVES SITE. GPI: Kevin Gebbart + Cee Gebbart TODAY'S OBJECTIVE: PERFORM

PACKER Test ON ZONES: 374, TO 386 + 414 TO 426.

GPI has already started Tripping

Pipe + packer into MW-35 LGR.

0815 START Inflating Packer in

zone 374 to 386.

0845 START Pumping water out

of zone 374 to 386.

0950 it Ave pumped over 160 GAllors And 1420 is not cleare, will

1010 Have pumped ~ 260 gallons. Hz 0 15 ccentre.

1012 KKC collects d'Sumple GPI Temm WILL Re-Locate PAGER

TO INVERVIAL 414-426.

1100 START Bumping. 1175 Have, pumped N 710 GAllons And HEO 15 CLEAR.

1/23 collect SAMPLE.

21)

1200 I bouch onsite and relieved Kyle Caskey

GPI installing pump at EXWDZ! Health and Safety Tailcate: Working with overhead hezards,

well pipe packer pipe) 1205 J. Bonch out to B-3 for daily readings and to check to ondvillers.

1235 drillers are Starting to replace drill pipe 1440 J. bouch down to receiving to pick up package 1505 Back to GAC shack to find a piece of DVC for drop

1430 Tryingtoturn on EXWOZ - Les Called Scott, got pump running at 1700 and Shut off after about 10 min hoing to watch pump for awhile to make Sure it thous off and on lee . Kevin off to get

vac frick and dump 3000 gallons over the weekend

1426 Out to 635xW07_

Well cycled on and off a tentimes talked to South he said go home 1745 GPI offsite

1900 J. bouch offsite

23) 747781.04000 Parsons : A. Lindley, J. Bouch. G.P.J.: L. Gebbert, R. Bell, K. Gebbert H+S Tailgate: Moving heavy equipment. 0700 A. Linden on site. 0730 CaPI on site. Sign in at 606. To MW-35 to organize egolput. 0745 B. 90 accessed. Have occess until 1530. Maneuver small rig to vot area. 0830 Escort delivery of generator to building 90. 0945 Cement corer errives. Begin set up of corer. 1015 Bearn coving vat aven 1030 Core cut. 0.0 PID. 1100 collect soil sample from beneath concrete plug. (0-6") 1145 collect another soil sample in dry, dark brown soil (6-8") no PID reading (D.b) 1260 R. Bell K. Gebbert Linch 1230 GPI return from lunch 1250 Gr. Morrego brings hot work pennit. 1255 GIPI cots approx 29" hole in steel plate covering. 1320 Set up rig over hole. 1520 Clean up around work even, + exit building 90. 1610 Escort dir compressor to building 90. 1700 Site Secure GPI Depart site 1740 Bepart Site Parsons (A. Lindly J. Bouch

(26)		2	63)
	4-8-11 747781 -04000		6
	P2/Sons: A. Lindley, J. Booch		
	GPI = L. Grebbert, K. Grebbert, R. Bell		
	HatS Tzilgate: Overhead hazards and pluch points.		
0710	Arrive on site. A. Lindly + GPI sign in st 606. 70 AOC-65.		0810
0730	Begin Fullsting packers @ MW To LGR 320-332.		0825
0745	Access to building 90.	1	0849
0904	Begin purging 320-332' Zone, running @ 11 gpm		0910
	collect sample at CSMW 310LGR (320-3321), purged		09.31
	= 330 gallons, water was clear	-	
0946	moving packer to 294-306 interval	-	0945
1030	I bouch down to escort NETFWIO is picking up generator		
1050	NETT offsite		1030
	start packer test on 294-304	1	1045
	pumped off after = 10.5 gallons		-110 U
1124	started pumping after letting the Zone recharge for a half hour		
1137	funded off after pumping : 2 gallons at less than '14 gpm		1150
1200	lunch @ building 9 D. Janish		1230
1220	sotup camera to log SIW-DI.		
1240	Strate log - water @ 2005' 20.5' - given to be sund	1	1350
1370	Packer test at 294-306 terminated as per Scott Pearson. Total		1400
	purged & 14 gallons, Begin deflating packers.		1500
	Prep pipe for cutting and welding.		
	Roise packers to 270-282', Begin Inflating packers!	-	
	Cut plate over vat and cut pipe, Weld sections of pipe together,		1510
1423	Installed costing. Shale trap leaking so will cement next week.	¥.()	1600
1955	started packer test parce at 270-282' interval	-	1718
	pumped of after 14 gallon was purged. Will let well recharge	-	
1/1/50	and try again.		
1950	Pumped "Igollon from 278-282 interval, Terminated packer test in		
1515	and the state of t	A	
1212	Begin pulling packers for last interval 178-140'.		
	Packer set at 142'. Begin inflating.		
	L. Gebbert to Bioreactor to dump 1950 gallons from vac fruck.)	
1+00	Site Secure. Depart site.		
	4-8-11de S		

747781.04000 Parsons; A. Lindly, J. Bouch GPI: L. Gebbert, K. Gebbert, R. Bell HAS Topic: Heavy lifting. O A. Lindly surive at CSSA. R. Bell arrives sign in at lock 5 Access granted at building 90. 45 Woter level in MW-36 LGR 20 115' O L. Gebbert K. Gebbert Zrrive, 30 sample packer sid @ 142' after = 10 gallons purged - will resample after more water is purged 91 gallons purged 15 L. Gebbert to get parts for packer in SIW-01; K. Gebbert, R. Bell to bioreactor to get vac-truck. O L. Gelbert Rotorns 5 Collect sample from SIW-01. 4 Allowed CSMW36LGR (142') to recharge - purged & 90 additional gallons, collected sample O GIRI begin pulling pipe from MW36-LGR 10 USGIS Arrives and begins logging MWSG-LGR. GPI installed Packer in SIW-OI, Hele plug also used, hydrater 50 Begin adding count to SIW-OI, will allow it to core before adding more 00 GPI moving equipment from MN36 back to staying over around MW-35. Discussed cleaning out cuttings from vot, will wait for guidance from Grabe (confined space permit required) before proceeding. GPI to MW 35 to begin breaking containment and laying out well materials, o Building 90 secure. 00 Breek down contringent begin moving cuttings to voll-off. 10 Site Secure. Depart Site.

.

			4/13/01
(2)			
		(29)	
	4-12-11 747781.04000		747781,04000
	Personal Parsons Adrien Lindley Julie Beach		Parsons: A. Lindley, J. Booch
	GPJ Lee Gebbert, Kevin Gebbert, Robert Bell		GPI: L. Gebbert, K. Gebbert, R. Bell
	H+5 Toilgate: Proper PPE Usage.		H+S tailgate: House keeping, heavy lifting, overhead work.
0700	A. Lindley arrives on site sign in at 606, prepare	0 650	A. Lindley arrives on - site, sign in at 606.
	confined space entry checklist.	G 700	GPI prives (1. Gobbert, K. Gobbert, R. Roll) styn in of 606,
0710	GPI arrives, sign-in at 606. GPI to MW 35-LGR for equipment,		to MW 35 LGR to begin construction.
	Wart for building 90 access.	0730	Holeplug added (~4) bogs) to plug bottom 8 Pt.
0815	Access to building 90 grated. GPI preparity to finish century (Portled)		Begin running casing (screen in barehole.
	STW-01 casing.		toy out Tremme pipe.
0850	Comenting complete. Begin de mobile vig from building 90.	6950	Begin running Trenne pipe in hole.
6950	J. Bouch to escort Associated Drilling to MW. 35 LGR And	1030	Begin adding soud.
	unload well materials.	1124	done with sand - He bags of sand, 3 bags of bentonite - hydrote.
1645	Roturn to Bldg. 90. Discussed pulling pumps for USG.5.	1210	J. bouch to escort sunbelt
	Began cleaning out vat.		J. honch back onsite.
1230	Inside of vot clean. Begin cleaning around vot area.	1230	1. Bunch, A. Lindley offsite to grab a quick lunch.
1325	Install steaminjection page on Plange is section added to accommodate mushinglist.		GPI offsite @ 1200
1330	Map floor		Unsite à 1230
1400	Called to have building 90 closed up - weave all done inside,		s. Bouch, A. Lindley ofisite
	had him check to make Sure that floor looked or -		L. Gebbert offsite to check out Fred Friars well for USGS
	he said it looked fine I told him that it anjone wanted !		WUI logging next week, with Samantha Elliott
	it mopped again we would buy amop and mop again.	137.0	A. Lindley offsite to cheek emails
(That was not a problem. He said of.	1335	L. Gebbert back onsite
1405	I bouch and I Galbert to CSMW35 LGR. A. Lindley	1400	Begin mixing grout. Approximate ratio 24 golf per bag.
1 40	to pull pump of LS4.	1430	9 bags added. Pull 5 joints of tramm. ~192 gallon water used
1420	A. Lindley return. J. Bouch and A. Lindley to Lunch.	1455	10 more bags added (19 +otal), ~ 240 gollon red (38 gallon total). 6
	Return from Lunch. GPI begin assembling costing and prepare		joints zolled.
	well materials at CS MW35-LGR.	1530	10 more bogs added (29 total), ~ 26/0 galler used (505 galler total).
1640	clean up site. Boxes to recycling.	1600	Pulled tremen pipe. Cleaned pipe + water trough.
1500	Site Secure. Depart Site.	1630	Site Secure GIPI Deport Site. A. Loudy, J. Borch to 606.
	St.		Ad.
	Ka ?		S. Comments of the second of t
	Right		3.4

		~	
(30)	4-14-11 747781,04000	(31)	747781,04000
			Parsons : A. Lindley
	Parsons: A. Lindley J. Bouch		GPI: L. Gebbert, K. Gebbert, R. Bell
	GPI: L. Geldhert, K. Geldhert, R. Bell		LILE TILLIANS TO CONTRACT OF THE STATE OF TH
4.4.4.	HtS Toilgate: moving equipment.	0700	H+5 Tallgate: Slips, Trips, good Housekeeping.
0650	A, cridly on site, to 606. sign-in.	0100	A Lindley (GRI (& Gobbert, K, Gobbert, R Rell) strive on site, sign
	GIPI arrives. Tom MW 35-LGR.	0711	in at 606.
0750	Added 8 more secks of variety growt + ~192 gellars with (37 secks fotal).	0720	5 bags grout added to MW 35-LGR (43 secs total)
-7.55	Begin pulling treme pipe.	0155	TO MW 36-LGR to prep site to remove roll off.
0133	Col Grimvald, Kyle Caskey, + Mike Short Orrived for Safety inspection.	0812	GPI to clear brush from off-post wells with somewho Elliot.
-61-	H+5 Tailgate meeting forms provided to TEd.	0840	Escort Vorday delivery to MW36 LGD, Unload worder growt.
0810	Ed, Kyle + Mike deport. GPI begin gotherny equipment to move to ALW36-LGR.	0930	Escort Roll off mover. GPI Returns. begins putting tremme pipe
08,2	Mob to MW HO-LGR.		in hole
0910	Start to put together well casing	1130	all finished with grant. The bags of grout so-far 3.5 bags pellets I bouch, A Lindley offsite for lunch
1030	begin to put in hole plug, le bags of hole plug used, A. Lindley offsite for Hos	1145	J. Bonch, A. Lindley offsit for lunch
1107	begin installing screen and casing.	1230	buck onsite, lede
	GPI Parsons to lunch	1300	S. Bonch to MW35 LGR - GPI Cleaning up for the weekend and securing sites, getting rid of garbage and plastic GPI offsite
1320	Persons, GPJ return from lunch,		and securing sites, getting rid of garbage and plastic
1350	Trem pipe ron in.	1515	GPI Off Site
1440	17 sacks sand added,	1530	A findley offsite
1506	Breek down containent around MW 36-26R.	1600	J. bon M offsito
1530	Back hoe arrives to move cuttings to vall-off.		
1545	A. Lindly to East Postore with Kyle Caskey to see where		
	roll-offs should be enloaded.		
1610	A. Lindley return to MW 36-LGR.		
	cuttings removed from eround well, L. Gelobert to CS-10 for load of bater,		
1650	1. Gilbert retorns with 1,000 gollons.		
1700	Site Secure / Depart Site.		
	and the second s		4.1
	11/4		19.11
		3	
		1	A STATE OF THE STA

		~	
39		35	11 25 11 11
	4.25.11		4-25-11 MONDAY (CONT)
	farsons: J. bouch; B. Martin	*	TILTED TOO MUCH WHEN DELIVERED. THE TILTING
	69: Lhelpert & helpert		ALLOWS OIL TO SOAK AIR FILTER.
	H. S Tailcott Slips trips talls vainy weather,	1730-	COMPRESSOR IS FIXED. JB2 ESCORTS MIKE
	Parioment and Voe Singer 1		OFF POST + GPT DEMOBS AS WELL JB.
	Mobilization day for smaller vic to do borings at		LEAVES.
	By and horivas at AT -105	1745	WISM LEAVES SITE
0900	Lec over to CSMW35 LGR to take Static water level	(米)	FOR MW-35.
	and Continue Macrelopment. LEVEL = 260.3		tor MW-35.
030	I bunch to escort equipment to by B. Martin onsite	1645	DRILLERS RETURN FROM FILLING WATER TRUCK
1130	back to le06	1	TOTAL FOR DAY 4 TROUGHS @ 693.5 gts.
1300	JOSE LAPPEROS & KEUEN GRAHM FROM GPI	1652	20 NTU
	ON SITE WITH CME 75 RIC. JURE ESCUETS		26.27 °C
	THEM TO B-4. BRAD MARTIN MEETS TELEN	1	COND - 0.700 Ms/cm2
	ATSITE & PROVIDES HEIGHTH & SAPETY BRIEF.		DO - 2.68 mg/2
	ETIC NUZTH PRESENT TO DISCUSS EXCAUATION		PH - 6.93
	PRECAUTIONS. JUSE + KEUEN PREP RIG FOR		ORP 41.3
	JULIEN BRAD MUB TO MU-39 FOR WATER QUALTY	1657	26 270
1320	JULIE & BRAD MOB TO MU-37 FOR WATER QUALTY	1 1 10	23.40 ° C
	CHRCK. MW-35		COND - 0.699
1330	KEVEN GEBERT ON SITE AT MW37" SAYS PUMP	1	Do - 2.26
	IS SET AT 460' - IS PUMPING APPROX 28 GAL		PH - 6.93
	THEN RESTAGE 10 MIN. + REBERT CYCLE.		OFP70.8 PURGE 35 gal rectifice.
	TURD = 5.3 NTU	1707	DEGIN PURGA AGAIN
	PH 6.72	1708	41 NTO
	TEMP 24.6		23.95°C
	Caso 618 Ms		COND - 0.697
1400	MUB DACK TO B.4. JULIE BACK to office.		D6 - 2.76
	JUSE & KEVEN STILL PREPING RIC. AIR COMPRESSOL.		2H - (0.97
	Is Blowing oir. DRILLED CALL RADDY DOTTY TO		OR7 32.1
	ADVIDE & COURDITATE HE REPLACEMENT OR REPAIR.	1713	UTU 81
1530	LEE & KEUIN TO ALL WATER TRUCK		23.57° L
1600	LER & KEUEN FIEAD BACK TO MW-35 TO MEET APRIA		COND - 0.685
	& COLLECT WQ SAMPLE.		D6 - 2.71, PH - 6.88
1635	JULIE B. ESCORTS MIKE FROM MCKENZIE TO 7-4		DH - 6.88
	TO FIX COMPRESSOR - COMPRESSOR ITAS FAULTY		ORP27.1 2.5 = 18.5 gml.
	OIL CHECK UMLUE + MAY HAVE DEED		END - WO W

	4/26/2011		
	4/26/2011 TUESDAY.		(CONT)
(36)		37	(CONI)
	13-4 DRILLING FOR WESTON & MW-35/36 DEVELOPMENT,	(3+)	
0730	B. MARTH, JOSE LANDERUS, KEVIN GRAM (GPI) AND WESTON	1530	DRILLERS FWISH 1ST CORE RW. 13,4TO 18.4
	FROM WESTON SOLUTIONS. AT CSSA GATE: S.ON IN	1630	DRILLERS FLOISH 200 CORE RUD 18.4 TO 23.4.
	AT TUD GOL.		DRILLER PLUC HOLE & MOD EQUIPMENT TO BS. THEY
6745	BMARTIN CAL PH METER & GATHER EQUIMENT FOR		WILL SHIT DOWN AND PRILL TSS IN THE MORNING.
1	ACTIVITES WESTON AND GPI TO BY.		DRIVE TO MW.36.
0800	B. MARTIN TO B.4. HEACTH + SAFRTY MEETING	1700	LEE HAS SET PUMP IN MW-36 DTW = 274.40.
	LIFTING TECHNEOURS + WATCH FOR STAKES.		THITIAL WATER IS CLOUDY W/ REDPISH COLUR.
0830	DRILLES BEGIN DEILLING, AIRCORE AT 12 BGS. (CB2)		NO W.Q. READINGS UNTIL WATER CLEARS SOME.
	THE SET AUGERS THE DAY BEFORE.	1730	LEE SHUTS DOWN PUMPING AT MW-36. PUMPED
0845	BRAD MARTIN MEETS WITH LEE GEBRET + 582 FOR		APPLOX - gallons.
	ESCORT TRAINING AT BLD 36 (SECURITY).	1745	GPI BMAKTN LEAVE SITE.
0915	BRAD MARTIN BACK AT D-4.	4	
1000	DRILLERS FINISH CB2 21.7'TD = 12' AUGIRS 9,7' AIR LORG		
1000	CORE HOLE FILLED WITH BENTONITE CHIPS PRIOR TO PULLING	- 2	
	AUGERS, AUGER HOLE BACK FILLED WITH CUTTINGS		
~ 1030	TACKTO S PEARSON ABOUT MU-35. DECIDE TO		
1-2	STOP DEVELOPMENT AND MOVE TO MW-36.	4	
1045	DRIVE TO MW-35 WITH KEVIN GEDERT & TALK		
	TO LEE.		Lata.
1100	DRIVE TO BLD 606. CHECK IN WITH B-3 SAMPLE		The state of the s
	TEAM.		
1130	BACK TO BY, DRILLERS MAKING 2" CORE RUN. (5"		
11.5	BARREL), DRILLING D-3	1	
1230	DRILLERS FINISH D3. TD = 21.8' AUGERS TO 11.8	`	
123	10.0' AIR CORE.		
1245	DRILLERS MUB TO LUNCH AS DOES WESTON.		
1330	DRILLERS BACK, WESTON BACK, DRILLERY BELLY SETUP		
1550	ON D.S		
1430	DRILLERS BEGIN DRILLING. LEE HAS MUBER		
	WATER TRUCK TO D-3 TO DRAIN FULL TANK OF		
	DEJECOPMENT WATER FROM MW-35, APPROX 2200 FROM 35		
*	DEVELOMENT DATA:		
		142	
10 20	TURB = 30 pH 6.93, COND - 7.07, TEMP: 23.5°C 320 gal.		
.0 20	571 gallos TOTAL FOR TODAY FROM MW-35,		
	THE TOTAL TO		

4//27	2011
MEDN	ESDAY

	WE DIESON !		
38)		(89)	
	B-4 + AUC 65 DRILLING.		747781.04000
0730	B MARTH (WISM) + GPI, LEE, (CEVING., KEUINGEDERT,		Parsons: A. Lindley, B. Martin
	+ JUSE ON SITE, ALL SIGN IN AT DED GOG THEN		GPI: L. Geldrut, K. Greldert, J. Landros, K. Gran
	MOD TO B.4. WESTON FROM WESTON ONSITE.		H+5 Tailgate: PPE+ Houskeeping.
0800	SAFETY HUDDLE TOPIC IS PLACH POINT AND SHARP CORNELY	0715	A. Lindley, B. Matin, L. Gelslert, K. Grebbert, J. Landros, (C. Grez
	OH SOURMENT.		on site. Sign in at 606.
0830	DRILLERS BEGIN DRICCIOS WBM TO MW-36 TO CHECK	0745	L. Grebburt begin purgling MW-36 LGR. J. Lados, K. Geldsort, K. Gran begin
	DEUTELOPMENT PROCRESS INITIAL WHATER LEVEL = 274.40.		prepphy equipment + building containment @ VEW-32.
	WATER STILL CLOUDY. LEE HAS FULL TROUGH Which is	1000	Begin coving VEW-32
	gallow. WELL HAS LOW. YELD.		L. Grebbert to Preferred Pump to get new pump for development of MIN 36 LGR
0915	WBM BACK TO B. 4. DRIVERS HAVE PULLED	336	Complete coving of VEW-32. Core hole TD = 26.8'.
	FIRST CORP.		GPI Lunch. (J. Landros, K. Grebbert, K. Gra). L. Gebbert replacing
1000	PRILERS PULL 200 CORE. TD = 21.6 bys DRILLERS		pump in MW-36LGR.
	PLUG HOLE THES PREP TO DENOIS.	1430	Robert from Lunch. Begin reasing core hole.
1030	WESTON FROM WESTON LEAVES SITE, WOM DACK TO	1630	DRILLERS STILL REAMING W/ GIN bit (VEW-32) LEE
	office.		HAS SET NEW PUMP TO ~ 370' bys. DEGINS PUMPING Agam
1100	LOAD ACC-65 VEW BORING LOCATIONS TO 6PS.		WATER LEUEL WAS 279.5'. PUMP FOR APPROX 5min =
1200	MARK LOCATION AT ACC GS, LEE STILL PUMPING		~ 70 gallous DEFORE Pump STOPPRO.
	MW-36. DRILLERS BULDING A DECON PAD & PREPARING	1636	BEGIN PUMPING WELL AT ~ + ging - 0.7 gpm. ONLY SUSTAIND
	TO DRILL THE VEWS!	,	FOR 10 MIN.
1300	TALK TO JOE (CSSA PLUMBER) ABOUT CLEARING	1760	STUP PUMPING, PUMPED APPROX 90 gallow From MW-36.
	THE DRILLIPO LOCATIONS. HE SAIN HED S WING DY		DRILLERS BLEAK DOWN EQUIPMENT.
	AND TAKE OF IT WHEN ITE FINISHED HIS CURRET	1710	WISMACTIN + GPT LANG CSOA.
1	TASK		
1400	JUE HAS CLEARED ALL LOCATION EXCEPT VEW-33, I MUST		*
-	BE MOVED 3 FEET EAST TO AUDIO 10" WATER LINE.		
1630	DEILLES HAVE PREDED SITE AND ARE REMOY to DEILL.		
	JOSE, KEVIN AND KEVIN LEAVE COOP. LEE CONTINUES TO		
	PUMP MW-36		
1700	STOP MW-36 DEVELOPMENT, LEE + WBN LEAVE SITE.		The state of the s
	Mana		
	VVON		

		i
4/	29	2011
- Contraction of the Contraction		
TK	LIDA	14.

	9/29/2011		
	FRIDAY.		(5/2 /2011)
40		23	Worker
40	A	+ 40	tan'
	AOR GS SVE DRILLING		AUC 65 SVE DRILLING
0730	GPI ON SITE. LEE GRIBERT, KEUIN GEBERT, JOSÉ	0800	BRAD MHRITIS AT CSSA. WORKING IN GOG. J. BUNCH &
	LANDEROS, KEVIN GRAHAM, BOD BRAD MARTH ON SITE.		A. LINDLEY WILL ARIUR LOTTER. GPT IS MUBING
0800	HEALTH & SAFRTY MERTING - DRIVING SAFRTY.	У.	FROM AUSTIN AND WILL ARIVE LATER.
	JOSE WILL DE UMABLE TO DRILL TUDAY DECAUSE HE	12,00	GPI ARINES @ CSSA. LIGHBRERT, K. BEBBERT, B. BELL
	HMS TO LEAVE AT APPROX 1400 FOR ANOTHER JOB DELLERS,		K, GRAHAM. SEEMS TO DE SOME CUSTUSION AT THE
	WILL DE BUILDING THE PAD AT MW-35 AND DECONING		GATE, B BELL IS NOT ON THE LISTSG HE MUST HAVE
	CLEANING MW-35 SITE. LEE CONTINUES TO WORK ON		AN ESCORT TO GET IN. CME 75 ENTERS THROUGH GATE 9.
4	MV-36 WELL DEVELOPMENT. LEE IS KEEPING A SEPERTE	1230	LEE PICKEUP VAC TRUCK AT B-3 + DRIVES TO MW-36.
	LOG of DEVELOPMENT ACTIVITES THAT WILL BE INCLUDED IN		TO START DEVELOPMENT PUMPING.
	THE WELL FILE AMP NOT RECORDED IN THIS LOG BOOK.	1330	DRILLERS MOB CME TO AUC GS. & SET UP ON SIW-02.
1300	LEE DRIVES FULL WATER TRUCK TO 17-3. CHANGES FILTERS		ALSO SET GARDNER DENVER (GD) UP ON VEW-31.
	DRIVES GO TO BULLDING 90 TO PREPARE TO DRIVE WITH		BULD CONTAINMENT.
	IT ON MONDAY MURNING. JUSE IS NO EXPECTED BACK	1700	- DRILLERS READY TO DRILL FN MUKNING LEAVE SITE
1	TO CSSA WITH THE CME UNTIL AFTERNOOD MUNDAY.	1700	DE LEGIES PETEL 10 DETEC TO POLICE STORY
1400	DRILLERS LEAVE SITE, WISH LEAVES SITE.		
7100	DRICCES LEAVE SITE, WORL LEAVES SITE.		
1			
-			
1		:	
-			
-		-	
-			
-			
4			
	Wh		
	Vacco 1		hon.
FE			0.4.40
	*		
		1	

5/4/2011) WADNES DAY.

	10 25041		WADNES DAY.
42		* 43	31
	SUE DRILLING ADC 65		SUE DRILLING AGE 65.
0730	B. MARTIN, A. LINDLEY CHECK IN AT GOG. GPI	0730	A LINDLEY GPI ON SITE. SAME GPI CREW AS
	ON SITE! L. GEBBERT, B. BELL, J LANDERUS.		YESTERDAY HEALTH & SAFETY TAILGATE HUDDE -
	K GRAHAM.	1	TOPIC-
0800	ALL MEET AT DEILLSITE & DISCUSS DETAILS of		DRILLERS BREAK DOWS PREMOUS LUCATIONS AND MOVE
	WORK DAY. HEALTHO SAFTY HUDDLE . STUATTUNAL AWARENEDS.		TO NEW SPOTS GD SET ON VEW-29 CME SET ON
	GD DRILLING SEW-31, & CME to PRILL SIW-02.	1	VEW- 33.
0830	GD STARTS FREST CORE RUN.30-8.0. CAL PID.	0815	D. MARTIN ON SITE
1160	GD NOT MAKING PROGRESS AT ~ 17.3 bys. DEILLERS PULL	0900	JOSE ON CME REPORTS "CHEMICAL" SMELL, . HE IS
	BARREL TO CHANCE BIT. BIT HAD 4 broken TEETH.		TOLD TO STUP UNTIL A BREATHING SPACE CHECK IS
1115	CME PULLS LAST CORE FROM SIW-02 CORED TO 26.5		MADE.
1145	DRILLERS BREAK FOR CHOW.	0945	GATSE ON SITE BREATHING ZONE IS CHECKED AND
1245	DRILLERS BACK FROM CHOW. GPT continue coring.		FOUND TO BE BELOW THE ACTION LEVEL of 25 ppm.
1600		1	2.5 WAS THE HISHEST READING.
Le 30	SIW-02 Resuld to 28.2'. SIW-02 Cleaned out, Hole open to 27'.O. VEW-31 resuld	1300	GD CREW TO LUNCH.
	to 45'.	1230	FINISH CORING VEW-33 CORED TO 26.8. JOSE
1645	DRILLER FUIN VEW-31. CORED TO 40.8, REAMED TO		TO LUNCH, WILL REAM TO 8" WHEN RETURNS.
	45' bys. DRILLERS SHUT DOWN & SECURE SITE.	1315	CREWS BACK ON SITE, ALL BEGIN DRILLING
	WILL MOVE & CLEAD IN MURNING	1630	VEW-29 cored to 40', L. Geldent to ream corehole. DRILLERS
1730	BMARTN GPI LEAVE SITE.		BERAK DUWA EQUIP + PREPARE TO LEAVE FUR DAY
4		1720	DRILLERS LEAVE CSSA. I MARTH LEAVES (SSA
4			
4	4	,	
4			R _i
	To ha		
	and the same of th		Marie a la company de la compa
-			we wit
-			
-		4	
-			
7			
		1	
-			

SUE DRILLING ACC 65 O700 GPI + A LADLEY SIGN IN 4 00 S.TE. GPI CREW IS SAME AS YESTER DAY, CREW MOSS TO S.TE & 1000 favsons J. Bonch BEGINSTO CLEAN UP. LEE FUNDING REAMING VEW-29 TO 45° & JOSE CLEANS UP & MOSS CME TO DECON AREA. HEARTH & SAFETY TAILGATE HUDDLE - SECURE FOOTHER ON SCICK SUFFRICES CACO D. MINISTE ON SITE. REUTENS HOS MEETING INTES, J. BONCH TOO. 1015 LEE ON GD TSEGNS DRICLING VEW-30. 1330 FUNGE COREING VEN-30., CORED TO 28° [1330 MCKINZIE PICKS UP ARCOMPRESSOR.] 1400 JOSEL COME LEAVE CSA KEUR GRAHAM & BOB BELL LEAVE TOO. 1500 LEE FINISHES REMANNE. STARTS TO DEEAK DW) 1500 LEE FINISHES REMANNE. STARTS TO DEEAK DW) 1600 SURVEY RUNGLING SUNDIES. 1600 LEE FINISHES REMANNE. STARTS TO DEEAK DW)	
O700 GPI + A HADLEY SIGN IN + ON SITE. GPI CREW IS SAME AS YESTER DAY. CREW MOTSS TO SITE + 1000 GROCAM: Velly Tuten; Erasmo Delafuente BEGIJS TO CLEAN UP. LEE FINISHES REAMING VEW-29 TO 45 & JOSE CLEANS UP & MOTS CME TO DECON AREA. HEARTH & SARRY TALLGATE HUDGE - SECURE FOOTIME ON SLICK SURFACES. OAOO B. MARTH ON SITE. REVIEWS HAS MEETING NOTES, JBOXH TOO. 1015 LEE ON GD ISEGNS DRILLING VEW-30. 1330 FINSH CURENCE VEW-30; CORED TO 28' REAMED TO 30.0' 1210 Suffing up on VEW-33, Tied a flas to the CO (1230) McKinzie Picks up Air Compressor. 1400 - JOSE & CME LEANE CSSA KEUIN GRAHAM & BOB BELL LEAVE TOO. 1300 SIW-02, van camera and logs.	
The chear of LEE tinishes Reaming VEW-29 TO 45 & Jose Chears of a Mobs CME TO DECON AREA. HEALTH SARRY TAILGATE HOLDE- SECURE FOOTHE ON SLICK SURFACES. OPON B. MARTH ON SITE REGIENS HAS MEETING NOTES, JBOKH TOO. 1015 LEE ON GD TSEGNS DRILLING VEW-30. 1330 Finish Coreins Vew-30, Cored To 28' REAMED TO 30.0' (1230) McKinzie Picks of Air Compressor. 1400- Jose & CME LEAVE CSSA KEVIN GRAHAM & BoB BELL LEAVE TOO. 1300 SIW 02, van Camera and logs.	
The chear of LEE tinishes Reaming VEW-29 TO 45 & Jose Chears of a Mobs CME TO DECON AREA. HEALTH SARRY TAILGATE HOLDE- SECURE FOOTHE ON SLICK SURFACES. OPON B. MARTH ON SITE REGIENS HAS MEETING NOTES, JBOKH TOO. 1015 LEE ON GD TSEGNS DRILLING VEW-30. 1330 Finish Coreins Vew-30, Cored To 28' REAMED TO 30.0' (1230) McKinzie Picks of Air Compressor. 1400- Jose & CME LEAVE CSSA KEVIN GRAHAM & BoB BELL LEAVE TOO. 1300 SIW 02, van Camera and logs.	
AREA. HEARTH SAFETY TAILCATE HUDDLE - SECURE FOOTHER OF SLICK SUPPLES. OPON B. MIROTH ON SITE. REVIEWS HOS MEETING NOTES, JBOXH TOO. 1015 LEE ON GD IJEGINS DRILLING VEW-30. 1330 FIJISH CUREIUG VEW-30; CURED TO 28' REMMED TO 30.0' (1230) McKINZIE RICKS UP AIR COMPRESSOR. 1400- JOSE & CME LEAVE CSSA KEUIN GRAHAM & BOB BELL LEAVE TOO. HEALTH AND Safety Tailcat! Slips Trips Fall and Prich Points. 1100 Sut up on VEW-32, running Camera, Caliper on each VEW 1210 Suting up on VEW-33 Tied a flag to the California for	
AREA. HEATTH & SAPETY TAILCATE HODGE - SECURE FOOTING ON SLICK SURFACES. ONDO TS. MARTIN ON SITE. REUTEWS HAS MEETING NOTES, JBOXH BO. 1015 LEE ON GD TSEGINS DRILLING VEW-30. 1330 FINISH COREING VEW-30, CORED TO 28' REMMED TO 30.0' (1230) McKinzie Ricks of AIR COMPRESSOR. 1400- JOSE & CME LEAVE CSSA KEUN GRAHAM & BoB BELL LEAVE TOO. 1300 SIW-02, van Camera and logs.	
OADO B. MARTIN ON SITE. REUTEWS HOS MEETING WIES, JBOKH DO. 1015 LEE ON GD TSEGNS DRILLING VEW-30. 1330 FINSH CUREING VEW-30; CURED TO 28' (1230) McKINZIE PICKS UP AIR COMPRESSOR. 1400- JOSE & CME LEAVE CSSA KEUIN GRAHAM & BOB BELL LEAVE TOO. 1300 SILVER POINTS. 1100- Sut up on VEW-32, running Camera, Caliper on each VEW on each VEW 1210 Suting up on VEW-33 Tied a flag to the California of the Ca)
O900 B. MARTH ON SITE. REUTEWS HAS MEETING NOTES, JBOKH 800. 1015 LEE ON GD TSEGINS DRILLING VEW-30. 1330 FLUSH COREING VEW-30; CORED TO 28' REMMED TO 30.0' (1230) McKINZIE RICKS UP AIR COMPRESSOR. 1400- JOSE & CME LEAVE CSSA KEUN GRAHAM & BOB BELL LEAVE TOO. 1300 SIW-02, van camera and logs.	
1330 Filish CUREING VEW-30; CURED TO 28' REAMED TO 30.0' [1230] McKinzie Picks of Air Compression. [1400- Jose & CME LEAVE CSSA KEVIA GRAHAM & Bois BELL LEAVE TOO. On each VEW Lee is purging (S MW 34 as well) Lee is purging (S MW 34 as well) [210 Suting up on VEW-33. Tied a flag to the Ca [210 Suting up on VEW-33. Tied a flag to the Ca [210 Suting up on VEW-33. Tied a flag to the Ca [210 Suting up on VEW-33. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-35. Tied a flag to the Ca [210 Suting up on VEW-36. Tied a	Gamma
1330 Figure Corrido VEW-30; CORED TO 28' REMMED TO 30.0' [210 Sutting up on VEW-33 Tied a flag to the Compressor. [1230) McKinzie Picks up Air Compressor. [1400- Jose & CME LEAVE CSSA KEUIP GRAHAM & Bois BELL LEAVE TOO. [1300 SIW-02, van Camera and logs.	
REAMED TO 30.0' [210 Setting up or VEW-33 Tied a flag to the Co [1230) McKinzie Ricks up Air compressor. [1400- Jose & CME LEAVE CSSA KEVIA GRAHAM & Bois [1400- Bell Leave Too. [1200] Setting up or VEW-33. Tied a flag to the Co [1210] Setting up or VEW-33. Tied a flag to the Co [1210] Setting up or VEW-33. Tied a flag to the Co [1210] Setting up or VEW-33. Tied a flag to the Co [1210] Setting up or VEW-33. Tied a flag to the Co [1230] Setting up or VEW-33. Tied a flag to the Co [1210] Setting up or VEW-33. Tied a flag to	
(1230) McKinzie Picks of Air Compressor. 1400- Jose & CME LEAVE CSSA KEUIF GRAHAM & BOB With SVE System on Turned on SVE System BELL LEAVE TOO. 1300 SIW-02, van camera and logs.	neva
BELL LEAUE TOO. WITH SVF System on Turned and SVE System. 1300 SIW-02, ran camera and logs.	ring
BELL LEAUE TOO. 1300 SIW-02, value camera and logs.	
1500 LEE FINISHES REMAINS. STARTS TO DREAK DOWN -Also taking readings on 13 MW310 LLV	
RIG & CLEAN AREA.	
1715 DRILLERS LEAVE SITE.	
1730 B. MARTH LEAVES SITE.	
spec Conductivity: 0.465	
SH: 705	
50:5.85	
0RP: 9.0 1330 Set up on VEW-30	
1330 Sof no on VEN/3D	
1410 NTU: 24	
Temp: 2457	
spec: Conductivity: 0.466	
Temp: 24.57 spec: Conductivity: 0.466 50: 5.20	
DKP: -2.5	
DRP: -2.5 PH: 7.05	
1504 NTU: 36	
Tem1: 24.24	
spec. cond: 0.466	
Temp: 24.24 pec. cond: 0.466 50:5.00	
H: 704	
029:-11.10	
50 Finished 4/FN -79 sot to 45'	
1515 Setting up on VEW	
150 5.00 H: 7.04 ORP: 11.6 150 Finished 4VEN-29 got to 45' 1515 Setting up on VEW	

			3/1/4
46		1 (13)	dF)
(10)		47	747781.04000
1540	35 - NTU		Parsons A. Lindley , J. Bouch
	23.74 - Temo		GPI : K. Gebbert E. Shaefer, J. Fisher
-	5.46 - 00		Hots Tailgate: Driving safety, Heavy lifting, work safe.
	4.97 - pH	0.830	A. Lindley, J. Bouch on site. sign in at 606.
	-13.5 - 00P	50,70	Waite on drillers to arive.
	0.463 - Specific Conductivity	5930	To B-3 to collect dailys.
	enimped about 2000 callons today		Return to 606. Calibrate YSI, calibrate turibidianter,
	Lee took truck out to dump at 6-3	, ,	gral supplies for Waste - characterization of roll-off
	Also dum red 2500 callons train dvilling		get by building 90.
1620	Geolam offsite, GPT offsite J. Bouch back to B-3 to take readings	1030	GIPI, prives, sign in at 606 to Acc-65.
. 400	I bouch back to B-3 trake readings	(108	collect we sample from roll. of. (AOC 65-WCOI)
	1664 : NTW 284.07 68/583/7.48	1130	GPI to B-3 to collect vac truck.
	16CC: DTW 360.83 273933 / 12.04	1155	GPI return to AOC-65 Discussed well installation
	63EW01: DTW 261.80 6698788/0 -well off	1123	With F. Scheefer. GP AD
	BB 5xW0Z: DTW 314.60 2,634,310/10.48	1730	GPI to get fuel, water truck + well materials.
	Tankis 4/16 fall	1345	GPI return with well materials.
	bag Filter 38-36=2	1400	Begin construction w/ VEW-32. TD@ 27.89', WL @ 18.89'.
	- 13.0 / 8806230	1430	Well set @ 25'm. 10.5 bags soud added to 4.5' loss. 0.5
	7 - 41.0 770233		Well set @ 25'ms. 10.5 loags sound added to 4.5' logs. 0.5 loags bentonite and added to 3' logs. GPI to MW-35 LGR
			for more soud.
		1450	Begin constructi- of VEW-33. TDE 32', WL@ 31.5'.
		1515	Well set @ 25' bgs. 16 begs sound added to 4.5'bgs. 0.5
			has hale due added to 3' bos.
		1535	Begin construction of NEW-30. TD@30', 0.2' muck noted in
			hali
		1550	Well set @ 25' bgs. 13 3/4 bags szd added to 4.5' bgs, 025
			6255 hole alue added to 3'695
		1610	GPI cleaning up work area. Returning vac truck and water truck
			to landown area.
		1625	Site Secure. GPI depots site.
	. \		a color
			3-9
			"I co
A			

(48)		(49)	
	5/16/11 747781.04000	40	747781.04000
× A	Parsons: A. Lindley		Parsons: A. Lindley
	GPI : E. Schenfer, J. Fisher, K. Greldont.		GIPI , E Schaeler, J. Fischer, K. Gebbert
	H+S Teil gate: Slips, Trips.		H+S Toilgate: Hond tool, hard safety.
0715	A. Londly on site, sign in at 600.	0705	A. Lindly on site, sign in at 606.
0740	GIPI arrives, SISN in at COCO. To laydown area to pick up	0750	GPI on site, sign in at GOG. To laydown area to pick
	equipment.		up equipment and B-3 to collect use truck.
0800	GPI begin purging MW 36-LGR and excaveting around 5000-02	0840	Add second lift portland to SIW-02. 2 bags portland
	for installation of well materials.		added (3 total bass).
0915	Water Guality MW XG CGR 750 gollans surged.	වම්5	5 Resume purging MW-36 LaR.
	Temp 22.99 C DO 5.10 mg/L	100	O GPI to Hotel to pick up well material delivery.
	and 0.450 ms/on ORP 0.4 mV	1050	GPI returns. ~1000 gol: purged from MW. 36 LGR. Begin
	PH 7.14	•	to pull pump.
0930	GIFT to get well motivides for NEWS on SIW-02	1110	Lightning detected in 5 mi radius. Shut down operation sent
0945	GPI to Lows to rent a jackhammer.		GPI to which.
1100	GPI return w/ jack hommer, continue excevating around SIW-OZ.	1200	GZI return from lunch.
1135	SIW-OZ exceveted to 18" bgs. Break Louch.	1220	Resume Begin pulling pump from MW-36 CGR.
1215	K. Gebbert of J. Fisher to begin work on bollerals at mw 35-LGR.	1300	Pump pulled, & wipple removed.
	E. Schrece te drein vac-truck at bioreeder.	1310	To taydown yard to unload equipment. TO CS-12.
1245	12. Scheefer + A. Lindly to CS-12.		Arrive C5-12
1355	R. Scheeler + A. Choly return from CS-12. To MW35-LGR.		Begin Purge CS-12
1405	Bollard holes completed.	530	Dallors back to AOC-65.
1420	Return to AOC-65. Begin setting well materials in SIW-02. TD@ 27.1 BGS.	1600	Begin construction of VEW-31. TD= 44.7 bgs. WL = 35.7'.
	Less than I'water in hole.		1.25 bags hole plug added to 42'695. Well set @ 40' bgs.
1510	Casing set in SIW-02 @ 14" bgs. I bag portland added, to 6 bgs.	1430	19.5 bags sound added to 4.5' bgs. 0.5 bags hole-plug
	Begin construction of UEW-29. TD=44', I bog hole-plug added to 42'.		added to 3'bgs.
	Well set @ 40' 755. 19.5 bays sand added to 4.5 Bys. 0.5 bags	16 40	Begin installing perforated steam injection pipe in SIW-02.
	hold - plug added to 3' bgs.	1700	Steam injection sipe installed 20.25' below flange.
1620	GPI move water truck back to lay dash aver. 2,700 gallous purged from MU36.		Site Secure. Depart Site.
1645	Site Secure Depart site		
			and 1
	(a)		
	5.		3-11-11
	10.		
	11		

(59) 5/12/11 747781.04000 Parsons: A. Lindley GPI: J. Fischer, IZ. Schrefer, K. Gelobert. H+S Topic: Severe weather / Rein / Lightning 0720 Drillers on-site. J. Fischer + K. Gebbert. E. Schaufer is collecting chemicals for chlorination of CS-12. 0730 A. Lindly on-site. Drillers to CS-10 to collect local of water. 0830 Load of water collected, large threatening thunderstorm 1300 Prillers loack on - post. To CS-12. 1330 Begin jungin CS-12. 1335 Collect BACT sample. 1345 Lift pump. 1355 Begin mixing chans in water truck.
1600 Replaced primp headed back to 600
1620 GPI offsite
J. Bouch to B-3

(51) Parsons: J. Bonch: S. Pearson; E. lice

GPI: J. Fischer: E. Scheefer; K. Gebbert

H. S. Tailcate: Morking M High pressure water and

Site Monse Recping

OFOU Dillers onsite - finished pad at CSMW3le LGR

1800 J. Bonch onsite to 404 the B-3

S. Pearson, E. Rice out to CS-12 to hook up lines to

Purge Well, for Aechlorination

1100 GPI offsite lunch

1200 S. Pearson, E. Rice back to CS-12 J. Bonch back to B-3

M30 Begin purging CS-12 and taking chlorine reading S

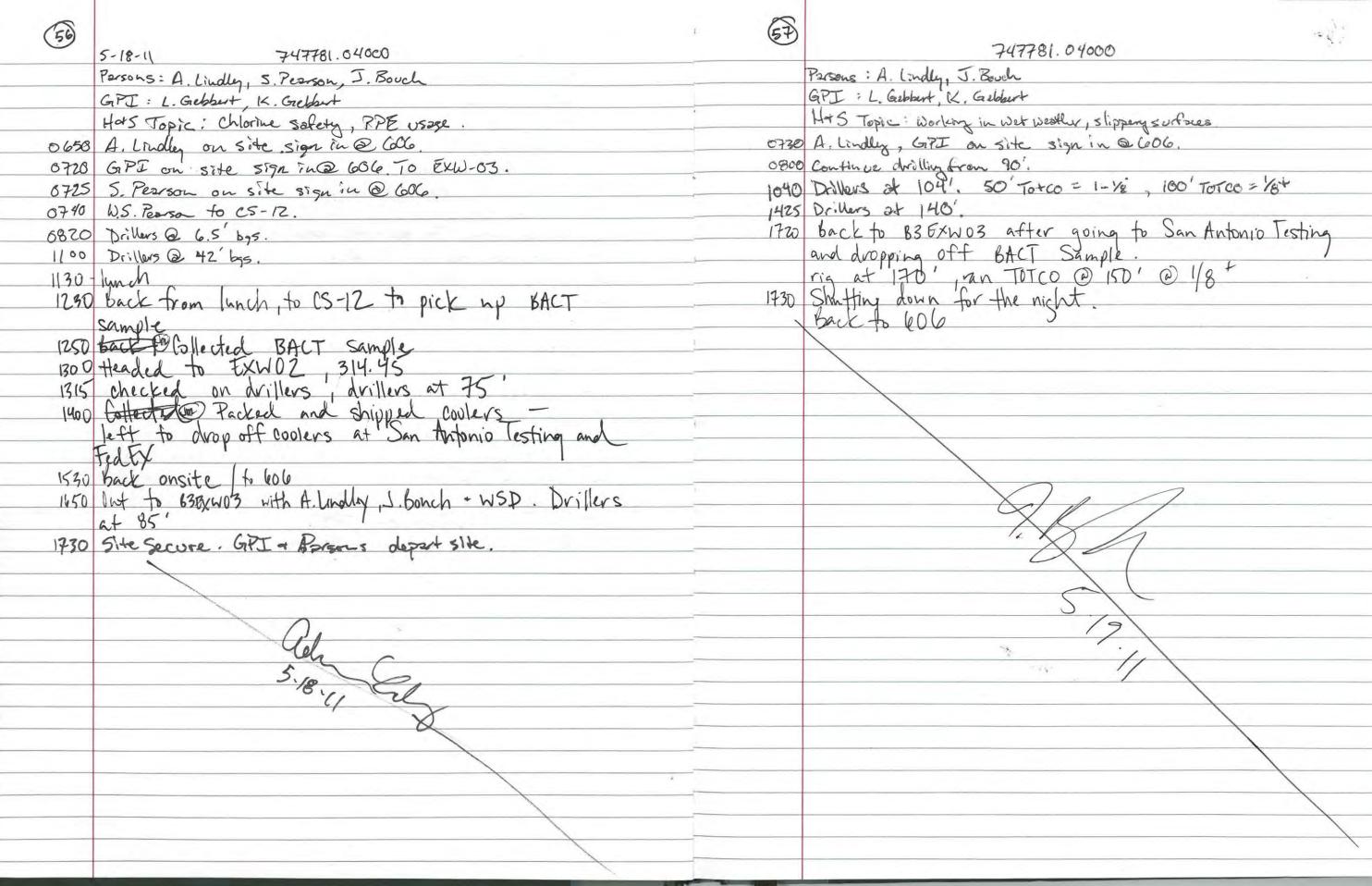
1500 J. S. Pem

1505 J. Bonch onsite 1505 J. Bouch onsite 1505 J. Donn 1515 0.39 ppm 1548 0.28 ppm 1550 Spearson E. Rice Offsite 1616 O.D ppm 1630 R. Fink onsite to install Software on SCADA 1645 0.01 ppm 1715 J. Bonch . R. Fink offsite. J. Bonch back to ledle 1745 J. Bonch offsite

(52) 5.14.11 Parsons: J. Bouch Health and Safety Trilgete: Working clone in the north pasture. 1000 I bouch onsite and to lette then to CS-12 1030 Throad on CS-12. No problems Water level at 292 1035 Chorine reading 0.07 ppm

Tonched base of Cheryl and Joanie about power rutage

Will check b-3 before Heavefor theday


1125 0.04 ppm, depth to Water 323.70.

1230 Water level is 327.10 0.07 ppm 1315 331.3 is the water lard 0.05 ppm 1430 DTW = 334.20 1530 0.04 ppm 1600 0.07 ppm DTN 341.42 - Screen not working Checked water level
1615 Went to check GAE Shack due to power ortage 1635 BNO2 was off - truned it on
1634 Back to CS-12 Spoke to Scott Coming back tomorrow off to check 1645 Shut down S-12 till tomorrow

B-3 seems to be running OK
1730 Abouch offsite

(53) Parsons: J. bonch 1300 I bouch onsite to leave working abone in the North Pasture 6900 S. Bornels out to CS-12 and began page screen Still not working. 316.7 DTW (eline) 1000 0.04 ppm 328.4 DTW 1100 0.04 ppm 336.65 DTW 1200 0.09 ppm 340 0 PTW 1300 343.30 DTW 1400 0.05 ppm 343,30 DTW 1500 343.70 DTW 0.01 ppm 1400 344.30 DTW 0.01 ppm 145 0.00 ppm Shut off 344 40 DTW 1455 10 15-3 to EXWOZ to check water leve 1910 back to 606

54) 55 747781.04000 5-16-11 Parsons J. Bonch; A Lindley Health and Safety Tailsett: Working of High Pressure Water Persons: J. Bovel A. Cindry GIPI : Lee Gelsburt, K. Gelsburt of45 Toined on CS-12, WL= 298.3' reading = 0.04 ppm. 0950 Turned on CS-12 took reading 1005 DTW-321.90 0820 WL=322.50 reading = 0.01 ppm 0845 WL= 327.20 reading = 0.01 ppm 1015 A. Lindly Errives. Took reading 0.0 ppm 0900 Beck to 606. 1015 Drillers arrive. To pay-down area. 1105 Took reading 0.04 ppm. WL = 330.75 1125 A. Lindley to 6060 and Lunds. 1100 Drillers molo GD to Extendo3. 1250 Return from Lunch. WL-358.18'. Take reading 0.08 pp.....
1350 WL=340.30', Reading= 0.04 pp...
1545 WL=301.50' Reading= 0.03 pp... 1245 CS-12 WL = 341.4', reading 0.04 ppm.
1300 Collect BACT sample at CS-12. To 606. 1340 Take sample to San Antonio Testing 1615 WC= 329.10 1530 To EXWO3 to check on drillers, filling water truck 0.03 ppm 1645 WL = 333.40 1600 TO CS-12 354.30 DTW 0.0 ppm 1650 J. Bonch and A. Lindley short down CS-12 back to B3EXW02 to take WL 1350 mm + 1545 * Well was short down from + 1545 0.04 ppm 1630 354.30 DTW 0.0 ppm 1640 Back to B-3, Check on GPI. GPI Setting up to start drilling to movrow.

58 747781,04000 5.20.11 Parsons: J. Bouch API: L. Geldert, K. Gelbert Has Tailecte: horking on a tridey pay attention to detail and don't get lazy. Also rainy weather watch for slips trips and tates 1830 J. bonch onsite, drillers at 182'
to love to calibrate YSI to take readings in UGR wells. 1045 Rig at 200 feet running TOTCO 1/4 1330 back to hig @ 230' compression valve broke turned off rig to fix it! 1400 Up and running 1435 235', another rig problem may be the other compression valve. Changing it dut to Sec if that is the problem.

lig back up and running
1530 Shut down rig @ 240'
1535 GPI offsite 1630 J. Bouch offsite

59 5.23.11 Parsons: J. Bonch GPI: L. Gebbert; K. Gebbert 0800 GPI onsite. GPI shad to watch uxo training vides from 0830-0930 0845 s. bouch onsite 0930 GPI back to B35KW03 to resume drilling activities 1. Bouch wit to B-3 to take readings and to check on drilling activities lig @ 2100'
Ran TOTCO test @ 250' 1/8+ 1295 back to leok to check e-mails, scan B-3 fieldforms
and help Sam of GW bottle order

1455 back to vic rig@ 300 van TOTCO 1/8 t

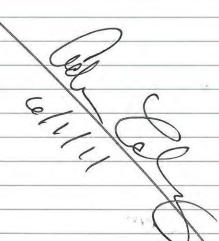
1550 back to Voli for Conference Call

1730 Back to vic 342', Lee thinks he is in the BS but he isn't

Sieing it in the cuttings

2 lett - 275' - fractivel 300-330 water braving Rotton till 342'
Lee says that he is drilling like its the BS —
he thinks about 338' - May be in a collapsel spot
1800 GPI offsite 1805 J. bouch offsite

6 4 10


	(60)		61	
		5.24.11 747781.04000		5/25/2011 WEDNESDAY
		Parsons: J. Bouch: Brad Martin	0730	GPI ON SITE, L'GETTERT, K GETTERT
		GPI: K. Gelblert: L. Gelblert	0800	B. MARTIN J BOUCH OF SITE. HAS TAILGATE
		H&S Tailsete House keeping		HUDDLE, SNAKE SAFETY + HEAT ILLNESS,
	6715	HeS Tailsate House keeping GPI onsite		DRILLEU CONTINUE TO PREP FOR GEOPHYSICAL SURVEY.
	9800	R Martin / Rough prisite		J TOOLH WELING IN GOG OFFICE, TO MAKETN COLLECTING
		B. Martin out to B3 EXWO3, told Lee to So to 350' Abesn4 look like we are in the BS yet. J. Bouch out to rig — @ 350', cuttings look like we have hit BS.		DATA AT 13-3
		gresset look like we are in the BS yet	1230	GEOCAM ON SITE (MIKE MILLER), L GEBBERT EXCETS,
4	0930	J. Box la out to no - @ 35D' Cuttings look like	1,300	GEOCAM SETS UP APP RUNS CAMBRA SURVEY, THEN
		we have hit BS		RESISTINITY SURVEY, THEN CALIPER SURVEY.
		TD -350'	1630	SURVEY COMPLETE. GEOCAM LEAVES SITE AS DOES
	1145	J. Bouch to lunch - GPI offsite to set		GTI.
		parts to fix Milty's Well tomorrow.		SURVEY SHOWS ACTUAL CONTACT FOR LURY 735
	1300	parts to fix Milty's Well tomorrow. GPI BACK ON SITE. BRAD WORKING AT SALADO	l .	TO BE AT ~ 321. DUE TO FRACTURED NATURE
		CREEK SITE. GPI WASHES HOLE & TRIPS OUT TO		of UPPER BEXAL SHALE, DECISION WAS MADE TO
		PREPARE FOR GEOPHYSICAL LOGGING.		LEAVE IT OPEN AND BACK FILL W BENTONITE
	1700	GPI of SITE.		TO 340' BGS. DECISION HAS NOT BEEN MADE
	•		6	ADOUT SURPACE CASING YET. WILL SEND S.
				PEARSON WELL DATA & STAND BY FOIR DIRECTIVE.
			1730	B. MARTIN LEAVES CSSA.
			4	
		Fe1 - 1		* * * *
				De la companya della companya della companya de la companya della
				and the second s
		**		
			-	
			-	
			1.10	
No.				

			5 2+11)
	5/26/2011 THURSDAY	(63)	
215	(37 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		747781 04000
0715	GPI ON SITE L. GEBBERT,	0730	GPI onsite Li Gebbert, K. Gebbert
0800	B MARTO, 5 DOXH ON SITE. TAILGATE HAS	0600	Parsons onsite: J. Bonch
	HODDLE. HEAT SAFETY, HYDRATION.		Parsons onsite: J. Bonch H+S Tailgate: Norking ~ drill pipe —
	DRILLERS SET TO REAM UPPER PORTION OF B3-		also stay downwind trong grount while mixing bas s
	EXU-\$3. WILL REAM TO, 20' THEN BREAK		GPI will ream to 65' and Set Casing!
	TO FIX OFF POST WELL. (MILTYS)	-	le bags whole plug to grout up bottom of
0830	3 BOUCH, IN WEEKLY MEETING BY MARTIN		GPI will ream to les' and set casing I) le bags whole plug to growt up bottom of well from 350 340'
	PREPING FOR WESTBAY PROFILE.		- Set shale trap at les and casing to surface
0915	MUD TO D-3 TO PROFILE WESTBAY.		Macd 10 back of Vorcharl avanuar arount
1/30	J. TSO AND WISM FINISH PROFILING DRILLERS		Also 3 hags whole plus above shale to
	WITH S: ELLIUT of POST TO FIX MILITYS WELL.	1710	Col - don't need to lot and + Sit friend
1330	DRILLERS BACK & BEGIN TO REAM. WILL	1720	(1) convert site
1370	STIP AT FO' UNTIL A FINAL DECICAL MADE	1670	Also 3 bags while plug above shale trap GPI - done need to let grout sit for wheread GPI secured site - offsite Shouch to 6-3 and lette for other
1600	STOP AT 50' UNTIL A FINAL DECISION IS MADE. GPI AT SITE. J BOOKEN OF SITE		work to be and love for other
1730	B. MARTIN STASTE.		Mark.
1130	13 PARCIN STASIIR.		
1	Little Control of the		
-			
1		2	
	757		
	The state of the s		
	-3		
1			25
			7.
	*		
		4	
N			
	447		

64)		(65)	
5-31-11	747781.04000		747781.0400
	Persons: A. Lidly, C. Huer		Parsons: A. Lindley
	GRI: L. Gelbert, K. Gelbert, R. Bell.	=	GPI - L. Gebbert, K. Grebbert, R.
	H+5 Topic: Overhead hozards.		HAS Topic: Rig move, howsekeeping.
0 900		0630	A. Lindley siza in @ 600.
0 945	GPI to begin topping off great. and high polling thought	0.700	GPI on- site sign inst 606. T
	GPI to begin topping off great. and high policy tracking to desire the property of great. and high policy tracking to desire the property of great. See the property of the great and high policy tracking the great and high property well EXW-03. (5 begs growt added)	0715	GPI begin installing e-line tuber and L. Gebbert to EXW-04 local
			and L. Gebbert to EXW-04 local
1510	Development complete,	1000	Prepare rig and site for move to the
1520	GPI Depart site.		to develop EKW-03.
		1345	5860 gallons of development wat
			at the bioresetor. Move 179 to
		1430	Begin drilling Exw-04. Rig @ 7.
	·	1530	Rg@ 7.
		1630	Driller notes loss of returns @ 18 1
		1655	Rig @ 23.
		1700	Site Secure. Depart Side.
	Col		
	12		
	2/1		
	0)/5	*	
			= 19
			8
		1	
	A		7
		1.	1/2
			- V. V
			V
	*		
	1	1	

747781.04000

A. Lindley L. Gebbert, K. Grebbert, R. Bell ic: Rig move, howsekeeping. siza in@ coco. - site sign inst 606. To EXW-03. Gebbert to EXW-04 location. Showed Lee new location. To and site for move to TEXW-04 Loustia. Continue P. EXW-03. gallons of development water injected into trench of bioresetos. Move rig to EXW-04 location. rilling Exw-04. tes loss of returns @ # 17.5'.

		(e/03/11)
(Ub)	~	
	67	
(6-2-11 747781.04000	(01)	747781.04000
Parsons: A. Indly, 5. Elliott		Parsons: A. Lindley GPI: L. Grebbert, R. Grebbert, R. Bell
GRI : L. Geldhot, K. Grebbert, R. Bell		GPI . C. Grebbert, K. Grebbert, R. Bell
HAYS TOOK . Hand saleh PPE, Dinch polits.	1	H+S Tonic: Heat Stan Indicated and take breaks as needed
GRI 'L. Geldhat, K. Geldbert, R. Bell HTS Topic ' Hand safety PPE, Pinch points. GT10 GPI arrives. Sign in @ GOG and to Rig. 0725 Continue dvilling from 23', Begin developing EXW-03. 1445 Rig @ \$7' 50' TOCO < '8. No returns. 8800 gallous sign pumped from EXW-63. 1640 Rig @ 80'. 1708 Site Secure. Depart Site.	G 765	GPI and A. Lindley on-site sign in at 606. Continue drilling from 80'. Resume pumping on Exw-03. Rig at 126'. 100' TOTCO survey 1/2". 11,760 gallous transferred to Bioreactor trench 4. Site Secure. Depart Site.
THE STILL ST	0903	GITE and A. Chadley Out sire sight in st cool.
0725 Continue drilling from 25. Begin developing EXW-05.	0455	Continue drilling from 80. Resone pumping on EXW-03.
1445 Kig & 57' 50' TOCO < 18, No returns, 8800	1430	Kig st 126. 100 TOVCO survey 1/2. 11760 9211ons
gollons Sign Dumsed from EXW-63.		transferred to Broreschor Trench 4.
1640 R: @ 80'	1445	Site Secure Depart Site.
The Classical Transfer of the Control of the Contro	1,10	1
1700 site secure, Depart site,	1	
	1	
	+	
· ·	4	
		6 1
(8)		2/2
6 19	1	3/20
2/4	1	
1,10		
		7
A. Company of the com		
	1	

	1	
	-	
	1	
	1	
	1	
APPENDED TO THE PERSON OF THE		

			Q/ F/11
a		A	
68		(69)	
	16/6/11 747781,04000	6.9	747781,04000
	Parsons: A. Lindley		Parsons: A. Lindly
	GPI: L. Gelbert		GPI: L. Gelobert, K. Gelobert, R. Bell
	Will The Silver I DDIT	3	H+S Topic: Driving safety, hand tool usage.
12115	HAS Topic: Sips/Trips and PPE	0.260	A is die A DT = -11 Company
1245	GiPa on site sign in at 606. A Lindly return from lunch.	5400	A. Lindley GPI on site, sign in of GOG
1310	Continue drilling from 126 of EXW-04. Continue pergly	D 50 25	Continue arilling from 192. Toll pomp to _ em 03.
	12XW - 03.	0 0 50	Continue drilling from 142'. Pull pump from EXW 03. Installing 75GS 50 to produce more purp water at EXW-03.
1645	Rig of 142'. And I lood (240 gollons) purged Rom EXW-03.	1045	Kig @ 15 T.
1705	Site Secure. GPT departs.	100	Complete installing larger pump in EKW-03.
		1130	Pump is not working. Pull pump and troubleshed.
		630	Trung pulled. Pump was set too low and sucked up mud and
			debris. Rias 185'
		1700	Site secure depart site.
			Building 90 / AOC-65
		0800	A. Lindly & K. Rice to Boilding 90 to meet Comy (USA).
		1930	J. Vegz, J. Mollager C. George arrive (USA). Bega exceeding
			asphalt and manifold Andret contralized in coll-off.
			asphalt and manifold. Asphalt containerized in roll-off.
	1	1300	Box avanth the day of son No.
	6_//	13.20	Danaged puc extractor line for VEW-16 while excavaly
	E / E	1740	Dinaged pre conserve the for VEW ite while excessing
	5/6	1390	Renee Jour, K. Rice, K. Casky arrive to trouble shoot
1			donaged for . Determined the the will be splitted only
		17.0	hose barbs, hose days and new tubry.
		1750	Continue Exercty,
		1480	o E. North arrives w/ parts for splice.
		1 100	Site Soevre. Depart Site.
			* V 4 "
			and the second second
			6.5
		+	

75		7		(4)
	6/8/11 747781.04000	•	747781,04000	
	Parsons: A. Lindley GPI: L. Gebbert, K. Geldsert, R. Bell	1638	USA cleaning up around site.	
	GPI : L. Geldret, K. Geldret, R. Bell	1635	Site Secure. USA Departs.	
	USA: J. Vege, J. Molleyer, C. George	1650	Rig @ 216.	
	Hat 5 Topic = blest fillness.	1700	Site Secure GPI deports.	
060	A. Lindly size An Q 606.	1		
6635	J. Vyz sign in 0.606, to ACC-65.			
0 700	USA continue installation of NEW IMES. GPI on site			
	sign in @ 606. L. Gebbut continue drilling from 185			
	150 TOTCO = 3/40 K. Gebbert + R. Bell prepare to move to			
	MW 18 LGR to develop.			
0 දහර	K. Gelober + Z. Bell pull pump in 18-LGR.			
0810	Gobe informed of problem with CS-1. Request Lee			
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0870	Lee, Gabe, Eli, cheryl, withre, Joani, and Adrien to			
	CS-1 to trouble shoot.			
0850	CS-1 furned on. Determined thermal conductors may be		6	
	causing pump to turn off.		00 /	
0930	Determined that C5-1 will be utilized until C5-12 is on		> 1/2 0	
	line of which time the pump will be replected and the well			
	control box (electrical).	1		
0950	Return to GCCo. Lee back to drilling, Kevin & Bob back			
	to motal ing pump in MW18 Lar.		\mathcal{A}	
1600	USA subs prive to justall steam line. E. North glove them			
	a H+5 briefing.			
1840	USA sobs to get parts. Klay to get parts for manifold.			
1200	USA to Lunch,			
1220	Rig@ 204', 200' TOTCO : 3/4.			
1245	USA Beck from lunch. Continue installing SHE Mes.		***	
1300	K. Rice, E. North wrives, building 90 access. Steen pipe			
	metallers accossed Vat.			
1330	E. North arrives. A. Lindly to MW18-LOR.			
1340	Begin prigny MW 18-LGR. WL = 395 TOC. Pump wt@ 400 bys			
	pt 7.49, DO 4.07, OFP-32.2, cond 0.324 mg/anc			
1400	Return ACC-65. PVC connections to vews complete. Steam the	*		
	installed between 5DW-02 and Building 90 dock.			
1506	Begin back filling frenches. Steam line installers deport site.			\
				1

			6/10/11
(53)			
(72)	4	(73)) S.M.
	6-9-11 747781.04003		747781.04000
	Persons, A. Lindley		Parsons: A. Wudley.
	GFI: K. Greldrit, L. Gelbert, R. Bell.		GPI: K. Grelohrt, L. Grebbert, R. Bell
	USA: J. Vegz, J. Mollinger, C. George.		USA: I. Vegz, J. Mollenger, C. Grearge.
	Hts Topic: Heavy lifting + Had tool usege, Power tool usage.		H+5 Topics: Working on friday, heavy lifting, overhead hazards.
0 700	A. Lindly + GPI on-site.	0630	A. Lindley on site, 515h in at 606.
	GITT continue re-developing mus 48-1GR, and continue	0700	GPI on-site sign in at 606. To rig.
	drilling from 216. TO AOC-65.	0715	R. Bell to MW 18-LGR to continue purging. Rig continues
0725	Klay (USA) arrives. Discuss compaction of soil	1	drilling from 256'. A. Lindly to AOC-65. Boilding 10 eccessed.
-	in frenches, management of debris and housekeeping.	0745	USA arrives. Continue building pads.
0730	Stee time subs errive.	0945	Steam line installers arrive.
0735	Tivezz and rest of USA craw arrive.		Installed union on steam line @ SIW-02, Control inside \$4.90.
0745	J. Vegz to rent compactor.		USA hepins installing veult for SIW-02.
0815	Klay to get monuments for vew pads.	1145	Stea low installers leave to get parts.
0830	J. Vegz returns. Begin compacting fill in trenches.	1346	Steam me ristollers return.
0910	J. Vago to Home depot for ports.		Stranline installed. They depart.
0945	J. Veg 3 & Klzy return. continue soil compacts.	1505	USA to 606. Sign out.
1045	2940 gallons purse weber from MW18-LGR to bioreactor, Continue purgly.	1530	Site Secure (AOC-65) USA deports.
1055	K. Gebbert + R. Bell deliver 6 logs bentonite to seel VEWS Ston suys deport.	1600	- Drillers stop at 360'. Bexa- Shale in cuttings. Circulate
1200	USA. Lund		out cuttings. Will log hole next week.
1300			- Stopped development on MW18-LGR. Remove pimp
1345	Hole plug added around VIEW casings and hydrated.		t reinstall QED pump.
	Stean the installers return from shop fabricating parts for inside 'oui'dy 90.		- Install test purp The B3-EXWOS-LGR. Ready
	Begin installation of lines inside.		For pump test.
1505	Begin well pod construction.	1615	GPI leaves CSSA.
1515	Steem I'me Matallers deport.	**	
1445	Rig @ 256. 2940 gollons (2nd load) to birroactor, USA depris ACCOS.		
1700	3: tesecure. GPI Departs site.		6-10-11
			6-1
			6. 1v
	6-9-6		
-1	11		
\$			
1			

6/13/2011			6/14/2010.
MONDAY			THEERAY!
94	747781.04000 -	(75)	147181.04000 DRILLING.
0800	S PEARSON ON SITE. A. LINDLEY IN AUSTIN, B. MARTIN	0700	GPI, L GEDBERT, K. GEBBERT, B. BELL ON SITE
	MODING FROM TYKER. GPI MODING FROM AUSTN.		SET UP AT CS-EXW OY & PREPARE TO REAM
-	GPI PUMPS CS-EXW-Ø3 + PREPARES FOR GEO.	0800	B. MARTIN ON SITE. CHECK IN AT GOG.
	CAM.	0810	DRIVE TO AUC 65- K. RICE + C. BEAL ARE ON SITE.
	BUB BECKNOW FROM GEO CAM LOGS CS-EXW-03		+ SUPERVISING WORK THERE:
<u></u>	S PEARSON REVIEWS LOG & DECIDES TO SET SURFACE	0820	CHECK WITH LOEBBERT AT 216, BREAK FOR
	CASING TO 55 bys.		HAS TAILCATE HUDDLE. DRILLEUS ARE GOING TO
	DRILLERS PREPARE TO REAM HOLE TO SS.		REAM D3-EXWIDY TO 55' bg> + SET PVC SURFACE
	END of DAY.		CASING DURING REVIEW OF CAMERA SURVEY A
			WEEP WAS DISCOVERED AT 21 bgs. AFTER REAMING AN
			ATTEMPT WILL BE MADE TO COLLECT A SAMPLE THERE.
		0900	ATTEMPT TO COCATE A DOWN HOLE CAMERA TO FACILITATE
			THE COLLECTON EFFORT.
		1000	BACK TO ACCUS. USA IS IN PROCESS OF
***			WRAPING INSULATION ON STEAM PIPES.
		1030	DRILLER STILL REAMING.
		1200	COLLECT MEASUREMENTS of MW-35
	the state of the s		STICKUP = 2.82, 0.3' CLEARAGE ABOVE COVER,
	The second of th		DTW = 294.67 - CORRECTION OF -1.3=
	WBMAKIN	1220	MEASURE MW-36, FLUSH MOUT, STICKUP =-0.1' bgs 0.3' CLEARANCE. DTW = 296.46 - CURRECTION of-1.3'=
	THEIR		0.3 CLEARANCE. DTW = 296.40 - CURRECTUS of -1.3 =
		1630	DRICLES CONTINUED TO PUMP B3-BW-03 @ ~ 186PM
			& FRISHED REAMING B3. EXW-OU TO 55 bys. ONE ATTEMPT
4			WAS MADE TO COLLECT A SAMPLE AT 21' BUT WOUT
			A CAMERA ITS USELESS.
			END OF DAY
-			
			5 50 EV V
-			
			5, 0
			6624
-03			
		60	
1-19			
- 11			
		4	

6/15/2011 WEDNESDAS	HOT DEY WWDY		HUI DRY WINDY 6/16/2011
		(77)	THURSDAY
76	747781.04000		747781.04000
0715	BMARTIN, GPI ON SITE, GPI CEEW IS LGEBBERT	0700	DRILLERS ON SITE
	K, GEBBELT + BOLDEL. MEET AT B3-EXW-03.	0730	B MARTIN OF SITE MEET AT D3- EXU-04 FOR
	HAS TAILGATE HUDDLE & DISCUSSION of DAY'S ODJECTIVES		HOS TAKGATE HUDDLE DRILLERS WILL CLEAN
0752	BEGIN. 8 hrs PUMP TEST ON B3-EXW-03 DATA GO RECORDED		EXW-03 SITE + PULL PUMP. WILL ALSO CLEAN
	ON A SEPRINTE SHEET.		OUT EXW-DY TO TO & SET PUMP.
0930	S. PEARSON ON SITE WITH A CAMBER FOR COLLECTIVE	0830	RECEIVE CALL FROM MR. KAISLUNDY THAT HE HAS
	A SAMPLE AT & B3-EXW-04-21'		NO WATER DRIVE TO HIS HOUSE WSAM & JB2.
	CONFERENCE CHILL WITH BRIAN ROUT (QED) ABOUT		COUD NOT DETERMING WHAT WAS WRONG SO WE
	PUMPS FOR WELLS - CS-MW35 + 36, - LGR.		CALL LEE GEBDERT TO COME OUT & SEE.
1030	BEGIN SAMPLE COLLECTION ATTEMPO AT EXW-04.	1000	LEE DETERMINED THAT WELL TRIPED A SWITCH &
1415	FINALLY COLLECT SAMPLE USING WADDED PAPER		SHULD BE UP GRADDED (ELECTRICAL). WE STAYED
	TUWELS & HELD TO BUREHOLD SIDE FOR 1 HR.		TO MAKE SURE ALL WAS WELL W/ SYSTEM. THEN
	FILLED 3 VOA'S FOR VOC'S	i	BACK TO CSSA.
1440	COLLECT B3-EXW/03-WC/02 3 NOAS FOR NOCS	1200	PRILLERS FINISH CLEANING EXW-OY THEN WILL SET
1445	COLLECT 133-EXWO3-WCRI 1 802 Son Fem P.T.	14	PUMP. B. MARTIN + ERIC NURTH PROTILE WESTBAYS
1552	END PUMPTEST ON EXW-63 MAINTAINED ~ 180PMIC		AT 13.3
	~ 288 865	1400	BACK AT 606. DRIVERS SETTING PUMP.
1630	SECURE FROM SITE, PRILLERS FINISHED SETTING	1500	LEE ATTEMPTS TO FIND WATER LEVEL PUMP RATE
	CASING TO 55' bgs IN EXW- ØY TOOK & 16		BACANCE ON EXW. BY - IT DOES NOT MAKE
	Days VOICEAY TO FAL VOID AT 19-20"		MUCH WATER, LEE CYCLES TO CLIZAN it
1700	LEAUR CSSA		OUT.
		1630	DEILLEUS LEAVE SITE.
		1700	BMARTA LEAVES SITE.
-			
-			
	Est -		41.
			1462V
-			
779			
	*		
1-4			
-			
-			

			6/22/1
(80)		~	
6		(81)	
	6-21-11 747781.04000	0	747781.04000
	Parsons: A. Lindley		Parsons: A. Lindly, C. Huey, E. Atkinson
	GPI · L. Gebbut, K. Gebbut, R. Bell.		GPI: L. Grebbert, K. Grebbert, R. Bell
	1445 ropic: Heat Stross of Hand Sofery.		USGS: J. Thomas
0700	A. Lindly on-site, 606 sign-in.		HYS Topic: Slick surfaces, include weather
0710	GPI prrives signs to et Lole.	0630	A. Lindly on-site, signin @ 606.
	R. Ben + K. Grebbert to MW 35-LGR to pelut bollards.	6730	GIPI arrives. To Exw-04 begin purgua.
	Prepare for pump test @ EXW-04.	0830	USGS Arrives 819n in Q 606. USGS to Son Antonio
0825	Begin pump fest @ EXW-04. Initial WL = 247.98' (below TOC).		offere to pick up a down hole comers.
002	2.85' stick-up. TD = 385'; eline tube set at 320,0 suction set @ 327'.	0835	1 casing volume purged ~ 24092
	pemping rate = 6.6 gpm.		Temp 23,33°C Turk 12,9 NTU
6900	R. Bell + K. Grebbert return from MW:35-LGR. TO EXW-03 to paint		pt 6.93 Cond 0.391
0,100	surface casing.		ORP - 10.5 DO 2.13
Inic	Vac truck complied into bioreactor (2940 gollons).	0905	2 casing volumes purged = 480 gal
1015	L. Gebbert, R. Bell + A. Cradley to CS-1.	0100	Temp 23.66°C Turb 6.31 NTU
1100	E. L. Senson - L. C. I C. P. I C. III days		ph 6.96 Coud 0,386
1100	Set up SMEAL at CS-1, C.Best, C. Henderson at CS-1.		
1715	Break for Lunch, Waiting on TCEQ Approval	<i>3</i> 0 2	ORP 44.6 DO 2.90
1213	Spake with Grabe M. soid to go sheed and pull pump	09 25	3 cose volums purged ~720 g of
(5.0)	at CS-1. GPI luturn from lunch.		Tep 23.80 Turb 3.96 NTU
1240	Arrive at CS-1. Begin pulling pump.		ph 6.96 cond 0.386
1630	Pump pulled.	2.50	ORP 49.4 DO 2.72
1690	Site Secure. Depart Site.	0955	3+ carry volumes jurged a 900 gel
			Temp 23.79 Turb 2.03 NTU
			7H 6.96 Cond 0.386
			ORP 65.5 DO 7.00
	ag .		collected WC sample @ EXW-04 (WCOI).
	6/6		Geo com arrives, GPI, Geocon, +USGS to CS-1.
	3/2	1050	Arrive at CS-1. Grabe M. on site.
		1100	Ges cen normy course.
		1230	Geo Com Printhed running video. Geo Com + GPI deport 15-1.
			Geo Com demotes. GPI to EXW-04 to set SMEAR up. USGS
			begins setting up to log (5-1.
		530	Pump pulled m EXW-04
	*		Well materials arrive with GPI at CS-1, GPI back to install
			surface costy at EXW-04. USGS finished logging.
		1700	USGS Deports
		1720	GPT deports Site secure Deport Side.
			adricer

83 747781 04000 Parsons: J. bouch GP1: L. Gibbert; K. Gebbert; K. Bell H.S Topic: Working Migh pressure water 0730 J. Bouch onsite - to led to meet " labe habe and Jibonch to B3EXWOY to get Lee and take 2940 gallons of chlorinatel water to damp 0800 Headed over to CS-1 to purge another truck load of water. 0915 Headed back to East Pasture. Saw Joe on the way. He is getting tire hydrant ready in order to have Sanchez filling their trucks as well as to purge line. Will call 1918 Got a cayl from Gabi - Sanchez can use some if the dirty Chlorinated water from next purge. Will call fabe when we are finished dumping. 0920 Called Frake headed back to CS-1, Sanchez never showed -Filled Inck 1022 theoded back to east pasture, called Frabe - Sanchez will head out her trinks we should down a few more truck londs, dumped 2940 gallons 1040 Headed back to CS-1 to fill truck again check chlorine - 2.9 ppm Chary I says ok to put chlorine in line after this one 1115 Started sunding water into line - filled up truck 1135 To Fast Pasture dumped 2940 gallons 1200 Got offsite to Austin will be back later pick up more equipment J. Bouch to 60% J. bouch to get lunch 1230 back at OSSA. Checked OS-1 chlorine reading @ CS-1 was 0.30 took a reading at five hydraut - 0.9 ppm + back to lead ! 1530 Back to CS-1 Well was off Joe turned off well at 1500. Frabe and got well ready to pump Sat morning

1950 Johnsh onsite

The Ath and Safety Tailecte - working on a Saturday

1800 Met fabe O'lelle when must out to B- to them on

well Static water level @ 270.3.

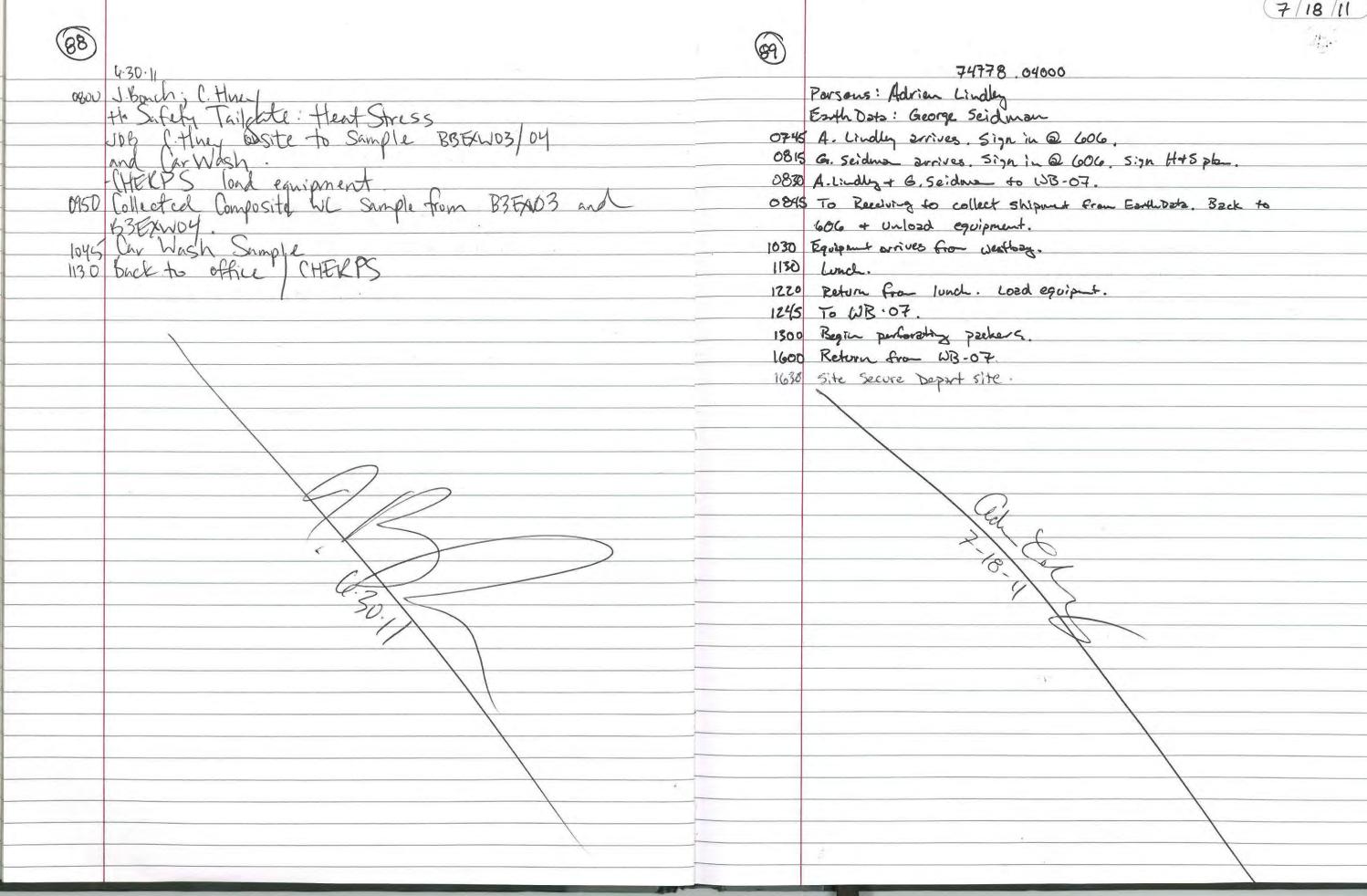
took Chlorine reading 0.08 ppm.

1830 went out to bioreactor to take readings back to CS-1

took another reading 0.03 ppm. Turned off well @ 093 D

1830 Joseph offsite trabe let well run for 3 hrs.

1800 Twent off well @ later in the day after he


allows well to recharge

1200 Gabe turned well back on @ 1200, apy ppm

1500 Twent off CS-1, 0.02 ppm, of chlorine

pumped 1200 Sallons of water for the entire day

6.2

			, pol
	Y .	Į,	7/20/11
		~	7/20/11
90		(91)	
7-19-11	747781,04000		747781,04000
	Parsons: A. Lindly		Persons: A. Lindly
	Ezah Dato: Gr. Seidman		Eagh Data: G. Seider
	G.P.I. L. Caelobart, K. Grohm		GPI: L. Gebbert, K. Grah
	Hat S Topic: Hest, overhead hozards.		H+S Topics: Hest, weather, overhead.
0800	A. Lindly + G. seidure on site sign in @ 606.	0700	A. Lindley, Earth Data, GiPI on site. Sign in at 600.
0900	Load agripment.		lord equipment To MB-07.
1030	GPI arrives.	0736	Tried to get tool past abstruction. No success. Tool brought out.
	Safely inspection of SMEAL.		Clay was noted on bottom of weight. Pipe has supersted.
1110	TO NB-07, Set SMEAL UP.		Begin pulling out pipe.
	Re-perforated top packer. Put 300 Hs pull on, no movement.		Piper out. Broke-off at 247.
1240	Thunder in aree. Break for lunch.	0960	unable to fish the peof. tool into casing. GIPI to shop
1345	Reform from Lunch.		to fabricate sishing /outside perf. tool.
1536	Successfully perforated upper 4 packers. Ran perforation tool down	०१७	Continue to try and fish purf. toolin.
.	to 262.5" but unable to lower it deeper.	1645	Unsuccessful fishing. Pack up tools. Back to 606. Site secure.
1545	Thurder storm. Pack up and return to 6000 to wait it out.	1115	G. Seidma (Earth Date) sign-out @ 6060 and departs.
1620	Lightning still in area, Geofrajects of Earth Data depart.		
1720	Site Secure. A. Lindly Depart site.		
-			
1			
H			
-	Col		
H-			
-	X-10/20		CE CONTRACTOR OF THE PROPERTY
-			2
1	7		3 5
1			
1			
1			
1			\
	+		
1			
	AST.		

92	B	
7-21-11	747781.04000	
	Parsons: A. Lindley	
	CAPI: L. Grebbert, K. Grom	
	Earth Data: G. Seidman.	
	H+S Topic: Heat, overhead hazzda, crush-lay	
a 7a0	A. Lindly, Earth Data, GPT on-site, Sign in @ 606. Load	
6700	equipment, To WB-07.	
A720		
0750	Begin running pipe in hole to figh for broken cosing.	
08 13 08 45	Perforated last packer. Begin pulling broken easing out of hole. L. Geblut, A. Lindley to GOGo for Safety comittee metry.	
89.25	Police Color of Steen constitute maring.	
0165	Return from 604. Resume pully pipe.	
0130	Figh off. Latch bent on tool. GPI back to shop to	
10.70	rebuild tool.	
	Londa.	
	Return from Lunch. Avoit GPI.	
	GPI Returns.	
	Begin running in hole with new tool.	
1600	Successfully fished out pipe. Clean up around site. layout new well materials.	
1625	Site Secure. To 606 to unload equipment.	
	Depart Site.	
, ,		
	Car	
	2// 5	
	7.18	
	5, 15	
	; X	

(93)	747781.84000
	Parsons: A. Lindly
	GPI: L. Geldourt, K. Grolin
	Eath Dato! G. Seidman
	H+S Topic: Overhund harrards, heat.
0700	A. Undly Earth Date, GPI on-site, sign in @ 606. Load
	equipment. To WB-07.
072	5 Begin assembly of WB components. Testing couplings.
0830	Begin running well motorials in hole + testing each coupling (pressure).
1130	Moterials installed.
	Profile: Atm = 14.07 Inside / Zones
	UGE-01 (14) 14.09 /14.09
	16-01 900 14.13 / 14.13
	LGR-02 (175) 14.17/14.16
	LGR-03A (208) 14.17 /14.17
	LGR-03B (257) 14.20 /14.19
	LGR-04 (318) H.22 /39,45 - DL=259,5 in borch
1215	Inside OL 298.76'
1230	
1330	Return from Lunch, Inside WL. 298.73' Integraty test
	successful.
1345	Run packer inflation tool in.
	Begin packer inflation.
1530	
	UGR-01 (14)
	LGIR-01 (90) 14.08 /14.15
	LGR-02 (175) 14.11 / 14.32
	LGR-03A (208) 14.13 / 14.10
	LGR-03B (257) 14.15 /14.12
1 11 10	LGR-04 (318) 24.64 / 39.37
1660	
1700	Deport Site.

95)	
	747781.04000
	Parsons: Admindley
	GFI: L. Gelobert, K. Gebbert, K. Grohm
	HHS Topic: Overhead hazzads + working with drop-pipe
700	A. Lindley on-site. Sign in @ 606.
	GPI on-site sign in @ 6006. To EXW-03.
5745	Begin installing pump in EXW-03.
945	Cut pipe to set pump @ 335 865.
315	Well set @ 335, eline tube set at 350 bgs.
1325	Set up at EXW-OU Begin splice.
	506 mersible motor info: Franklin Electric Date code: 11014
	- model #: 7343078 602
	-5/N # 1/0F14-24-0580
	- 3 phase; 200 v, 60 Hz; 5hp
	Pump Info: GRUNDFOS 40550-15
	- model # A11890015 - P1 1113 282
1400	Begin installing pump in EXW-04.
	Pump set @ 330', eline tube set at 325' bgs.
	Drillers pick up old WB-07 casing for disposel.
1615	Site Secure. GRI departs.
	(5)
	28
	3/05
	The state of the s