Closure Report for the F-14 Accumulation Site, Camp Stanley Storage Activity, Texas EPA Identification No. TX2210020739 TNRCC Identification No. 69026

Prepared for

Armstrong Laboratory/OEB

Brooks AFB, Texas, and

Camp Stanley Storage Activity, Texas

April 1995

Closure Report for the F-14 Accumulation Site, Camp Stanley Storage Activity, Texas EPA Identification No. TX2210020739 TNRCC Identification No. 69026

Prepared for

Armstrong Laboratory/OEB
Brooks AFB, Texas, and
Camp Stanley Storage Activity, Texas

Prepared by

Parsons Engineering Science, Inc.
Austin, Texas

April 1995

This report is printed on recycled paper.

ę .

CONTENTS

Page
Section 1: Introduction 1-1
1.1 Site Description 1-1
1.2 Site Background1-1
1.3 Geology and Hydrogeology
1.3.1 Physiography and Soil Classification
1.3.2 Stratigraphy and Structure
1.3.3 Hydrogeology and CSSA Water Well Locations
1.4 Closure Standard for the F-14 Site
Section 2: Closure Chronology2-1
Section 3: Closure Activities and Results
3.1 Summary of 1992 Site Assessment
3.1.1 Field Actions3-1
3.1.2 Analytical Results
3.2 Verification Sampling and Analytical Results
3.2.1 Berm Sampling
3.2.2 Background Sampling
3.3 Waste Disposal
3.4 Site Restoration
Section 4: Closure Summary4-1
References R-1
APPENDICES
A Closure Correspondence
B Verification Analytical Results
C Background Soil Boring Logs
D Analytical Results for Background Metals
E Data Validation Report
F Statistical Evaluation of Background Nickel Concentrations
G Waste Disposition Documentation

			1
			1
		•	1
			1
			,

FIGURES

1.1	Project Location Map1	-3
1.2	Site Map1	-5
3.1	Sample Location Map	-2
3.2	Background Sampling Locations	l 1
	TABLES	
1.1	List of Wastes Stored at the F-14 Site	-6
	List of Wastes Stored at the F-14 Site	
3.1		-4
3.1 3.2	1992 Analytical Results for Shallow Soil Samples	-4 -5
3.13.23.3	1992 Analytical Results for Shallow Soil Samples	-4 -5 -6

		٠	

PARTIAL FACILITY CLOSURE CERTIFICATION F-14 LESS-THAN-90-DAY SOLID WASTE MANAGEMENT UNIT

Department of the Army Camp Stanley Storage Activity Boerne, Texas

I certify that the above-described closure was performed under my direction in accordance with the site closure plan and 30 TAC 335, subchapter S, and as described in the attached report, and that, to the best of my knowledge and belief, said closure has been successfully accomplished.

LTC Dean Schmelling

Commander, Camp Stanley Storage Activity

Date

J./David Highland

Professional Engineer 63539

Parsons Engineering Science, Inc.

Date

SECTION 1 INTRODUCTION

The F-14 less-than-90-day accumulation site at Camp Stanley Storage Activity (CSSA) requires closure as a waste management unit under state regulations as promulgated at Texas Natural Resource Conservation Commission (TNRCC) risk reduction rules 30 Texas Administrative Code (TAC) 335, Subchapter S. This report certifies actions associated with the closure and was prepared under contract F33615-89-D-4003, order 126, between Armstrong Laboratory/OEB, Brooks Air Force Base (AFB), and Parsons Engineering Science, Inc. (Parsons ES).

Based on assessment and analytical tests performed prior to closure actions, TNRCC risk reduction standard 1 was selected for closure criteria. Therefore, no closure plan was required for TNRCC approval prior to performing closure actions. The TNRCC was apprised of closure actions as required by 30 TAC 334.8(c). This closure report documents closure activities and results, and requests TNRCC approval for site closure.

1.1 SITE DESCRIPTION

CSSA is located within Bexar County approximately 19 miles northwest of downtown San Antonio and 10 miles south of Boerne. The installation is operated under jurisdiction of the U.S. Department of Defense, Red River Army Depot (RRAD) in Texarkana, Texas. The primary mission of CSSA is munition storage and maintenance of munitions.

CSSA is located on 4,004 acres and is comprised of inner and outer cantonment areas. The F-14 site is in the inner cantonment, which encompasses about 1,760 acres and is approximately 2.4 miles long (north to south) and 1.3 miles wide (Figure 1.1). The area surrounding CSSA is primarily rural with some residential and commercial development.

The F-14 area is located about 100 feet west of gravel road F-14 in the southeastern portion of CSSA's inner cantonment (Figure 1.1). The site is roughly oblong, oriented lengthwise east to west, and the interior portion is about 55 by 90 feet (Figure 1.2). The southern perimeter is a wall formed by excavation into the side of a natural limestone hill. The northern perimeter was bermed 1 to 3 feet in height with gravelly soils. The site floor is limestone rock with a thin covering (less than 1 inch) of limy soils and pea gravel. A locked fence surrounds the F-14 site.

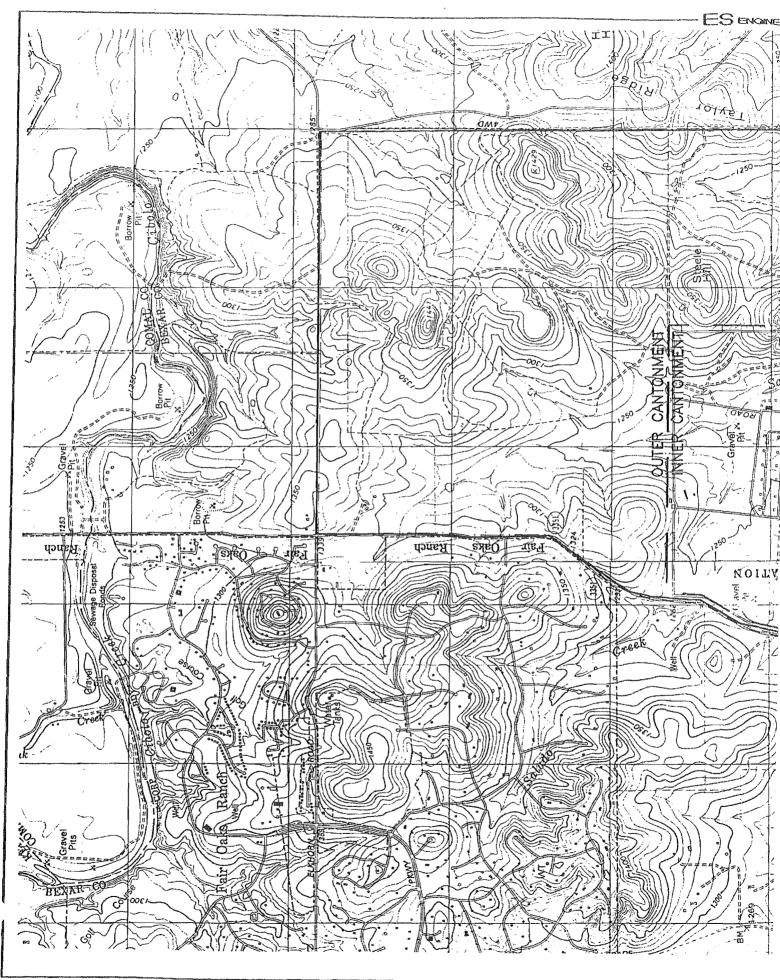
1.2 SITE BACKGROUND

CSSA operated a less-than-90-day waste storage area as part of its operations during the 1980s. Installation records do not indicate the initial storage date of wastes at the F-14

site, but personnel interviews indicate that the site was probably used at least by 1984 (Engineering-Science, Inc., 1993a). At this designated and secured location, hazardous waste compounds were stored for less than 90 days before transport and disposal. Drummed wastes were stored on wooden pallets and in metal containers appropriate for the stored compound.

Wastes known to have been stored at the F-14 site are listed in Table 1.1. CSSA generated quantities that were below the RCRA limit for small-quantity generators. From 1984 until 1988, the drummed materials were disposed of through the U.S. Air Force DRMO Environmental Office at Kelly AFB, Texas. In 1988, the Kelly AFB DRMO Environmental Office began subcontracting the disposal work to contractors experienced in transport and disposal actions, including Safety Kleen of San Antonio.

Records included in the initial site assessment report were documentation of wastes. material safety data sheets, and waste disposal records (Engineering-Science, Inc., 1993a). "Annual Waste Summaries" were recorded with the TNRCC (formerly the Texas Water Commission) for the years 1988, 1989, 1990, and 1991. These summaries were manifests of waste quantities and indicated disposal of PCB-containing transformers, petroleum wastes, solvent, PCE, nickel nitrate, and chlordane. All wastes were recorded under EPA identification number TX2210020739 and TNRCC identification number 69026. As of March 25, 1992, CSSA removed all compounds and containers from the site (Engineering-Science, Inc., 1993a).


In August 1992, CSSA retained Parsons ES (previously Engineering-Science, Inc.) through the Armstrong Laboratory/OEB contract to perform a subsurface site assessment at F-14. The scope of work was to determine what, if any, effects to the subsurface might have occurred from the previous storage of drummed wastes. Field activities included collection of floor samples, one composite soil sample from the berm, and subsurface rock samples. Total petroleum hydrocarbons (TPH) and nickel were detected in eighteen subsurface samples and the berm composite sample. The berm sample and soil cuttings sample also contained concentrations of 1,1,1-trichloroethane (TCA). Further discussion of the site assessment and analytical results are found in Section 3.1.

The TNRCC risk reduction rules for solid waste management units were promulgated in June 1993 and are applicable to closure of this site. CSSA submitted a letter of closure notification to the TNRCC on December 13, 1993 (appendix A). The notification letter stated that CSSA intended to close the F-14 waste management unit under risk reduction standard number 1 and that efforts to achieve this standard would include resampling of the berm for TCA and determination of background nickel concentrations. Section 3.2 further describes closure field actions and analytical results.

1.3 GEOLOGY AND HYDROGEOLOGY

1.3.1 Physiography and Soil Classification

CSSA is located about 5 miles northwest of the Balcones Escarpment, a geomorphologic boundary between prairie lands to the southeast and the Edwards

	•		
		; ;	

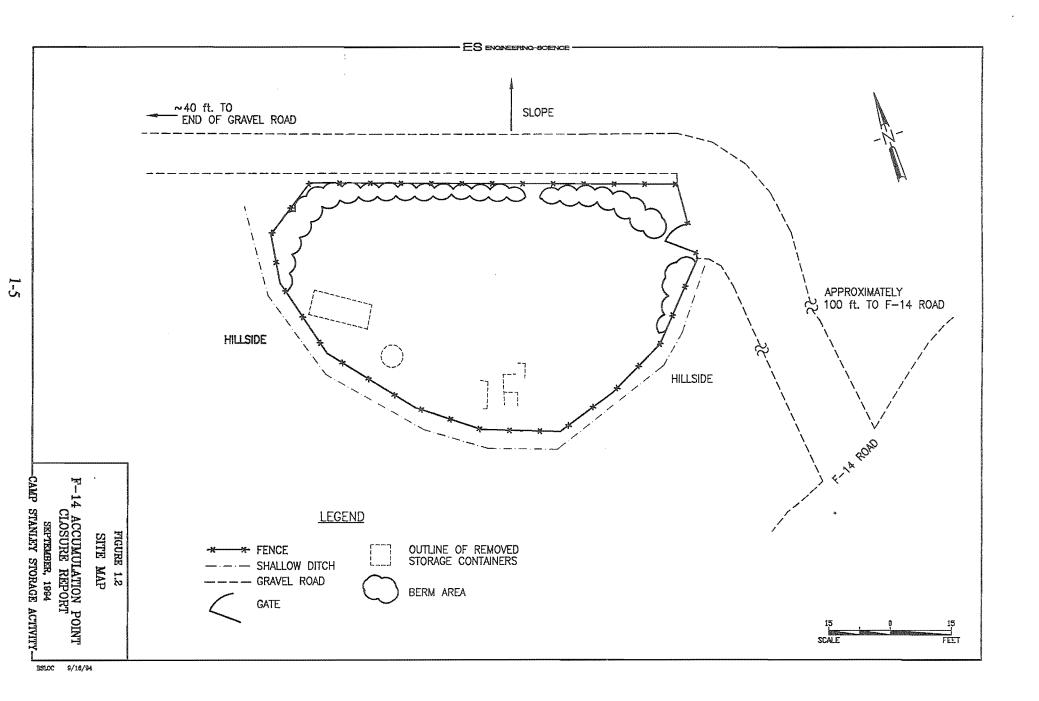


Table 1.1. List of Wastes Stored at the F-14 Site

Waste Compound*

Tetrachloroethene
Various nonchlorinated solvents
Crankcase oil
Petroleum oils
Malathion
Chloradane
Veg-a-Kill plus 2,4-D
Transformer oils with PCBs
Transformer oils without PCBs
Nickel penetrate
Gasoline and diesel

* Compounds documented in CSSA records.

Plateau to the northwest. The Edwards Plateau is a hilly region dissected by small streams, a type of physiography which is observed at CSSA (Engineering-Science, Inc., 1993b). The majority of runoff from central CSSA drains east-southeast to Salado Creek, including the area around the F-14 site (Figure 1.1). Topographic relief at CSSA ranges from about 1,100 feet to 1,500 feet above sea level.

Three soil types are in the immediate area of the F-14 site. These include the Tarrant association, rolling, the Krum complex, and the Brackett soils with 12 to 30 percent slopes (USDA Soil Conservation Service, 1966).

The Tarrant association, rolling, soils are dark colored, very shallow, clayey, weakly calcareous, stoney soils that form over hard, fractured limestone with slopes of 5 to 15 percent gradient. The Krum complex occupy "foot" slopes below the Tarrant and Brackett soils on slopes of 2 to 5 percent. The soil is dark grayish-brown or very dark grayish-brown, calcareous, and approximately 30 inches thick. The Brackett soils are very shallow (about 4 inches thick), grayish-brown, strongly calcareous loamy and clayey soils containing gravel and cobblestones. These soils form on slopes of 12 to 30 percent over soft limestone and are underlain by hard limestone.

The F-14 site is located on Brackett soils; however, no true soils exist at the site. When the hill was excavated to form the floor, south perimeter wall, and road, all soils were removed. Currently, a layer of limy clay less than 1 inch thick covers the floor of the site and is a result of weathering of the underlying limestone.

1.3.2 Stratigraphy and Structure

CSSA is located on limestone outcrops of the upper and lower members of the Cretaceous-age Glen Rose Formation of the Trinity Group. The Glen Rose is characterized by thin-bedded dolomitic, hard limestone with alternating layers of soft marl to about 300 to 350 feet below ground surface. The upper and lower members are separated by a marker bed of *Corbula* pelecypods. When exposed to weathering and erosion, the alternating layers of limestone and marl form a "stairstep" topography. At the F-14 site and over most of CSSA, the upper Glen Rose is exposed in outcrop.

CSSA is structurally located on the uplifted Edwards Plateau about 5 miles northwest of the Balcones fault zone and associated escarpment. This zone is a series of high-angle normal faults that trend northeast-southwest. The downdropped blocks outcrop as younger strata from the northwest to the southeast. A set of minor faults trend northwest-southeast along the Balcones fault zone. These faults are laterally discontinuous and displacement is small. One fault about ½ mile south of the F-14 unit downdrops the southeast corner of CSSA.

1.3.3 Hydrogeology and CSSA Water Well Locations

Regional hydrogeologic information in this section is primarily from Texas Water Development Board Report 273 (Ashworth, 1983).

The Trinity Group comprises the major aquifers beneath CSSA. It is subdivided into the upper, the middle, and the lower Trinity aquifers. Underlying the lower Trinity aquifer are metamorphosed Paleozoic rocks of low permeability that act as a hydrologic barrier. The lower Trinity and underlying strata do not appear to be affected by surface activities at F-14 and are not further discussed in this report.

The upper Trinity aquifer consists of the upper Glen Rose Limestone. Recharge is from direct precipitation on the outcrop and from stream flow losses. The upper Trinity aquifer, where it exists, is generally under water table conditions. Groundwater movement is restricted to lateral flow along bedding planes and fractures, where solution has enhanced the permeability of the limestone. Transmissivity values have not been determined for the upper Trinity aquifer. Discharge from the aquifer is predominantly through seeps and springs. The F-14 area does not have any seeps or springs in its vicinity, and surface and subsurface data generated during the September 1992 site assessment did not indicate the presence of any near-surface aquifer (Engineering-Science, Inc., 1993a).

The middle Trinity aquifer consists of the lower Glen Rose Limestone, the Bexar Shale, and the Cow Creek Limestone, and has an average thickness of 460 feet. The lower Glen Rose is the only member found in outcrop north of CSSA along Cibolo Creek and in the southwest corner of CSSA. The middle Trinity receives recharge from direct precipitation on rock outcrops and stream flow losses crossing the outcrop. Based on CSSA water well data, the middle Trinity aquifer appears to be under water table conditions in the CSSA area. An average coefficient of transmissivity for the aquifer is 1,700 gallons per day per foot (gpd/ft). Groundwater movement is towards the south and southeast. Discharge from the middle Trinity aquifer occurs naturally via springs and seeps and artificially from pumping.

Between the towns of Boerne and Bulverde, Cibolo Creek is diverted underground through sinkholes in the channel. This is the only area of lower Glen Rose limestone that is considered to be part of the Edwards aquifer recharge zone. The northernmost boundary of the outer cantonment of CSSA is located about ½ mile from the Edwards aquifer recharge zone along Cibolo Creek; however, only surface water runoff from the northeasternmost part of CSSA reaches Cibolo Creek. The F-14 site is located approximately 3.25 miles south of this recharge zone and is within the Salado Creek drainage basin. Surface water in the area of F-14 flows southeasterly into Salado Creek drainage and does not interact with recharge to Cibolo Creek; therefore, operations at the F-14 unit have not affected the referenced recharge zone.

The middle Trinity aquifer has the best water quality and production rate of the three aquifers. It is the primary source of water at CSSA for drinking, livestock, and industrial uses. CSSA wells are completed as open hole wells without well screens to maximize yield. The F-14 site is located within 1 mile of active CSSA wells 1 and 9 (Figure 1.1). Other CSSA wells are greater than 1 mile in distance from F-14. The water levels in CSSA wells 1 and 9 were 108.02 and 243.41 feet below ground level (BGL), respectively, in May 1994. In September 1994, water levels declined in these wells by at least 100 feet, apparently due to low rainfall during summer 1994, though regional pumping may have also affected water levels. However, quarterly groundwater monitoring in 1992 through

spring 1995 at CSSA has not indicated any reversals in groundwater flow direction to the south-southeast. Groundwater was not encountered during investigative drilling at the F-14 site in September 1992.

1.4 CLOSURE STANDARD FOR THE F-14 SITE

Based on previous assessment of the site, analytical testing and results, and the probability of achieving a risk reduction standard, CSSA elected to close the F-14 site under TNRCC risk reduction standard 1. Analytical results from the September 1992 initial site assessment indicate the presence of TPH and nickel in subsurface rock samples to 20 feet BGL (see Tables 3.1, 3.2, and 3.3 in this report).

The highest concentration of TPH detected during the initial assessment was 67 milligrams per kilogram (mg/kg), detected in a rock sample collected from 17 to 18 feet BGL, and the highest nickel level was 12 mg/kg in a rock sample collected at 9 to 10 feet BGL. Butyl benzyl phthalate was also detected in the September 1992 berm sample at a concentration of 110 micrograms per kilogram (µg/kg), only 0.010 mg/kg above the laboratory detection limit. Phthalates are commonly used as plasticizers and are often associated with laboratory contamination. As no other phthalates were detected in soil, rock, or wastewater samples, the detection of this compound appears to be a result of laboratory contamination. Consequently, phthalates were not tested for during verification sampling performed in April 1994.

As TPH is an indicator parameter at 30 TAC 335.553(d), and there are no risk reduction standards or closure levels under 30 TAC 335 subchapter S for comparison, the Petroleum Storage Tank Division (PST) guidelines for TPH were used to determine acceptable TPH levels at the F-14 site. At leaking PST sites, a concentration of 100 mg/kg TPH is acceptable to leave in place if groundwater is not threatened. As discussed in Section 1.3, groundwater at the F-14 site appears to be greater than 150 feet BGL and is not threatened by activities at the site. In addition, when evaluated as an indicator parameter, TPH can be associated with other gasoline compounds such as benzene. During the assessment, no other such compounds were detected by gas chromatograph/mass spectrometry tests in accordance with EPA methods SW8260 and SW8270. Concentrations of TPH were below 100 mg/kg in all samples, with an average TPH concentration of 36.5 mg/kg, and in three samples, TPH was below detection limits. Because TPH concentrations at the F-14 site were significantly less than the 100 mg/kg state guidance for leaking PST sites where groundwater is not threatened, and no compounds normally associated with TPH were detected, TPH concentrations at the F-14 were considered to not constitute wastes or waste residues and to be acceptable to leave in place under TNRCC risk reduction standard 1.

Verification sampling and testing for 1,1,1-TCA in the berm and determination of background nickel levels were the next steps towards closure of the site. As stated in the CSSA letter dated December 13, 1993 (appendix A), the berm was resampled and analyzed for potential 1,1,1-TCA concentrations and background soil borings were drilled for collection and analysis of nickel for comparison to F-14 assessment results. Based on

the results of these actions, application of risk reduction standard 1 is further discussed in Sections 3 and 4 of this report.

1-10
IPR/72146005/F14CLOSE.DOC APRIL 1995

SECTION 2 CLOSURE CHRONOLOGY

Date	Action performed by	Action
1984	CSSA	Operated a less-than-90-day hazardous waste storage facility identified at F-14 point-of-accumulation site.
1984 - 1988	DRMO, Kelly AFB	Disposed of drums and their contents produced by CSSA.
1984	DRMO, Kelly AFB	Began contracting transport and disposal actions to qualified contractors.
1988 - 1991	CSSA	Provided "Annual Waste Summaries" to TWC indicating disposal and testing of various wastes.
1990	CSSA	PCE, oils, solvent, and nickel penetrate wastes completely removed from F-14 site.
25 Mar 1992	CSSA	All other drums of wastes and storage pallets removed from F-14 site.
11 Aug 1992	CSSA	Contracted Parsons ES through Armstrong AL/OEB to perform F-14 site assessment.
September 1992	Parsons ES	Drilled 10 soil borings for subsurface rock sampling; collected floor samples and a composite berm sample.
February 1993	Parsons ES	Submitted F-14 assessment report to CSSA.

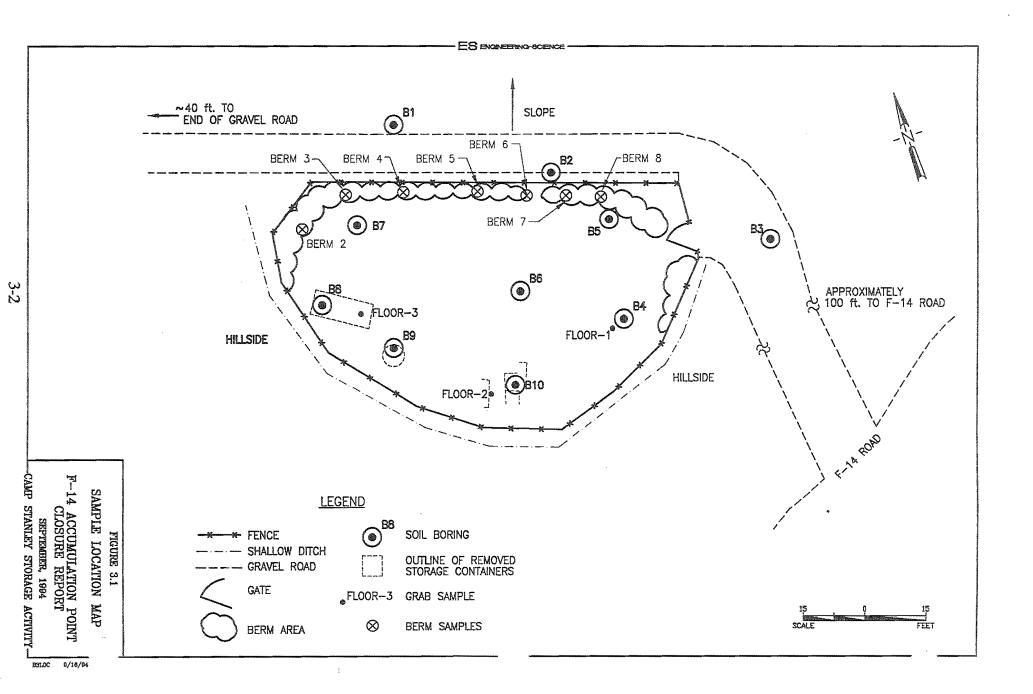
Chronology, continued

Date	Action performed by	Action
13 Dec 1993	CSSA	Sent TNRCC 90 working days notification of closure letter.
7 April 1994	CSSA	Sent TNRCC 10 working days notification of closure field actions letter.
20 April 1994	Parsons ES	Collected 7 berm samples at F-14 for verification analytical testing. Collected 10 background rock samples for testing of nickel levels.
May 1994	National Environmental Testing, Inc.	Analytical results did not indicate 1,1,1-TCA concentrations in the 7 berm samples. Total nickel levels in background rock samples were greater than those in F-14 subsurface rock samples.
June 1994	CSSA	Disposed of investigation-derived wastewater, which contained only 1.7 mg/L TPH that was less than the 15 mg/L TPH acceptable for surface discharge under TNRCC PST Division guidance, in the CSSA sanitary wastewater treatment facility.
October 1994	CSSA	Provided generator waste profile documentation to USPCI for disposal of soil/rock cuttings.
February 1995	USPCI	Transported drum of soil/rock cuttings to USPCI class I landfill in Waynoka, OK.
April 1995	Parsons ES	Submitted this closure report to CSSA.

SECTION 3 CLOSURE ACTIVITIES AND RESULTS

3.1 SUMMARY OF 1992 SITE ASSESSMENT

3.1.1 Field Actions


Prior to performing a site assessment when Parsons ES visited the site in March 1992, there were no visible stains on the limestone floor or noticeable odors in the area. Outlines of the removed storage containers and wooden pallets were visible in the shallow limy soil of the site floor. Photographs taken during the site assessment show the outline of removed storage containers (Engineering-Science, Inc., 1993a).

Field activities took place in September 1992. Because of the potential presence of pesticides and polychlorinated biphenyls (PCBs), shallow soil samples from the floor were first collected to evaluate the necessary level of health and safety protection for the subsurface investigation. The samples were analyzed in accordance with EPA method SW8080; laboratory results did not indicate the presence of pesticides or PCBs.

Drilling was performed on September 9 and 10, 1992, using a truck-mounted air rotary drilling rig. Ten soil borings were drilled using a 2-inch-diameter core barrel. The boring locations were selected to delineate possible areas of contamination inside the storage area and around its perimeter, including the entry gate. Figure 3.1 shows boring locations and other sampling points.

Logging of cores indicated that the site lithology consists of buff-colored, dry, hard limestone occasionally interbedded with marl or clay lenses. Some iron staining and shell fragments were also noted. No groundwater was observed. Field screening with a photoionization detector did not indicate significant levels of VOCs; therefore, two samples were collected for laboratory analysis based on core lithology and total depth of drilling in each borehole. Because of the potential for contaminant migration through less resistant rock types, marl intervals were typically selected for sampling.

Two soil samples from each boring were submitted for further testing. Sample analyses included TPH, aromatic and halogenated hydrocarbons, pesticides and PCBs, total nickel, base/neutral acid compounds (BNAs), and herbicides. Only a subsurface soil sample was selected for organophosphorous pesticide analysis, as these compounds have a half-life of 30 days and are rapidly degraded when exposed to air.

One composite soil sample was collected from the berm, which is located along the north boundary parallel to the fence and is about 1 to 3 feet above grade (Figure 3.1). The composite sample was composed of soil from seven sampling points located approximately 15 feet apart along the interior berm (Figure 3.1). A composite sample was also collected from the drum of soil and rock cuttings, and a sample was obtained from the drum of decontamination water. These samples were analyzed for TPH, aromatic and halogenated hydrocarbons, pesticides and PCBs, total nickel, BNAs, and herbicides. The berm composite sample was also analyzed for organophosphorus pesticides.

3.1.2 Analytical Results

Analytical results are shown in Tables 3.1, 3.2, and 3.3 which were taken from the site assessment report (Engineering-Science, Inc., 1993a). Floor samples did not contain any pesticides or PCBs, but the composite berm sample contained 30 mg/kg TPH, 0.486 mg/kg 1,1,1-TCA, 0.11 mg/kg butyl benzyl phthalate, and 2.8 mg/kg total nickel (Table 3.1). TPH and total nickel were detected in most of the rock samples (Table 3.2). TPH concentrations ranged from below detection limits (BDL) to 67 mg/kg, and total nickel concentrations from BDL to 12 mg/kg. Other chemical constituents of the target compound analyses were not detected in the subsurface rock samples. The cuttings sample contained 1,1,1-TCA at 0.507 mg/kg and 7.7 mg/kg total nickel, while the decontamination water sample contained only 1.7 mg/L TPH (Table 3.3).

3.2 VERIFICATION SAMPLING AND ANALYTICAL RESULTS

After review of the site assessment report, the newly promulgated TNRCC risk reduction rules for waste management units (State of Texas, June 1993), and other factors discussed in Section 1.4, CSSA decided the most appropriate closure of the F-14 unit was under the strictest TNRCC standard - number 1. This standard requires that the site be closed after removal of all contaminated operating system components, wastes, and waste residues (30 TAC 335.554). If closure under standard 1 is attained and approved by the TNRCC Executive Director, then the owner is released from deed recordation requirements.

Potential waste residues at the F-14 site were determined by the site assessment data evaluation and results to be nickel in subsurface rock and 1,1,1-TCA in the berm (see Section 1.4 for discussion of potential waste residues). To best achieve standard 1 at the F-14 unit, CSSA notified TNRCC of the following actions selected to address potential waste residues defined by the 1992 site assessment (appendix A):

1. The berm would be resampled using the same sampling methodology at the original locations used to collect soil for a composite berm sample. The verification samples from the berm would be analyzed for 1,1,1-TCA and other halogenated volatile organics (HVO) in accordance with EPA method SW8010. If 1,1,1-TCA or other HVO compound was detected, soil would be removed from that portion of the berm and resampled for verification that all waste

Table 3.1
1992 Analytical Results for Shallow Soil Samples

Analytic	Analytical Method:		Analytical Method:		SW418.1	SW8260	SW8270	SW8080	SW8140	SW8150	SW7520
				Aromatic and		Organochlorin	e				
		Sample		Halogenated		Pesticides	Organophosphorous		Total		
Sample	Sample	Depth	TPH	Hydrocarbons	BNAs	and PCBs	Pesticides	Herbicides	Nickel		
	Date	(in. BGL)	(mg/kg)	(mg/kg)	(µg/kg)	(mg/kg)	(µg/kg)	(μg/kg)	(mg/kg)		
Floor 1	9-02-92	1-3	_	_	_	BDL	_				
Floor 2	9-02-92	1-2	-	-	-	BDL	-	-	-		
Floor 3	9-02-92	1-2	-	-	-	BDL	-	-	•		
Berm 1	9-10-92	3-6	30	1,1,1-TCA 0.486	butyl benzyl phthalate 110	BDL	BDL	BDL	2.8		

Notes:

Methods are from EPA "Test Methods for Evaluating Solid Waste Physical/Chemical Methods," EPA publication SW-846, 1986.

TPH = total petroleum hydrocarbons

PCBs = polychlorinated biphenyls

BNAs = base/neutral acids

- = not analyzed

in. BGL = inches below ground level

BDL = below detection limits

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

JPR/72146005/F14-T1.wk4

Table 3. 2 1992 Analytical Results for Subsurface Soil Samples

Analytical l	Method:		SW418.1	SW8260	SW8270	SW8080	SW8140	SW8150	SW7520
Sample I.D.	Sample Date	Sample Depth (ft BGL)	TPH (mg/kg)	Aromatic and Halogenated Hydrocarbons (mg/kg)	BNAs (µg/kg)	Organochlorine Pesticides and PCBs (µg/kg)	Organophosphorous Pesticides (µg/kg)	Herbicides (µg/kg)	Total Nickel (mg/kg)
B1-2.5	9-09-92	2.5-3.5	49	BDL	BDL	BDL	-	BDL	6.5
B1-9.0	9-09-92	9.0-10.0	68	BDL	BDL	BDL	-	BDL	BDL
B2-1.0	9-09-92	1.0-2.0	BDL	BDL	BDL	BDL	BDL	BDL	BDL
B 2-9.0	9-09-92	9.0-10.0	30	BDL	BDL	BDL	-	BDL	2.0
B3-1.0	9-09-92	1.0-2.0	36	BDL	BDL	BDL	-	BDL	4.8
B3-8.0	9-09-92	8.0-9.0	53	BDL	BDL	BDL	-	BDL	1.3
B4-2.0	9-09-92	2.0-3.0	20	BDL	BDL	BDL	-	BDL	4.8
B4-9.0	9-09-92	9.0-10.0	63	BDL	BDL	BDL	•	BDL	12
B 5-1 .0	9-09-92	1.0-2.0	14	BDL	BDL	BDL	-	BDL	8.3
B5-9.0	9-09-92	9.0-10.0	37	BDL	BDL	BDL	#	BDL	10
B6-1.5	9-10-92	1.5-2.5	26	BDL	BDL	BDL	-	BDL	4.3
B6-17.7	9-10-92	17.7-18.5	67	BDL	BDL	BDL	-	BDL	BDL
B7-1.0	9-10-92	1.0-2.0	BDL	BDL	BDL	BDL	-	BDL	2
B7-9.0	9-10-92	9.0-10.0	43	BDL	BDL	BDL	~	BDL	BDL
B8-2.5	9-10-92	2.5-3.5	49	BDL	BDL	BDL	-	BDL	7
B8-9.0	9-10-92	8.0-9.0	18	BDL	BDL	BDL	-	BDL	6.8
B9-2.9	9-10-92	2.9-3.9	27	BDL	BDL	BDL	-	BDL	1.6
B9-9.0	9-10-92	9.0-10.0	13	BDL	BDL	BDL	*	BDL	1.8
B10-1.5	9-10-92	1.5-2.5	30	BDL	BDL	BDL	-	BDL	1.6
B10-9.0	9-10-92	9.0-10.0	14	BDL	BDL	BDL	-	BDL	BDL

Notes:

Methods are from EPA "Test Methods for Evaluating Solid Waste Physical/Chemical Methods," EPA publication SW-846, 1986.

TPH = total petroleum hydrocarbons

PCBs = polychlorinated biphenyls

BNAS = base/neutral acids

- = not analyzed
ft. BGL = feet below ground level

BDL = below detection limits

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

JPR/72146005/F14-T2.wk4

Table 3.3
1992 Analytical Results for Waste Disposition Samples

					SW8140	SW8150	SW7520
		Aromatic and		Organochlorine			
		Halogenated		Pesticides	Organophosphorous		Total
		Hydrocarbons	BNAs	and PCBs	Pesticides	Herbicides	Nickel
Sample	TPH	(mg/kg-soil)	(μg/kg-soil)	(µg/kg-soil)	(µg/kg-soil)	(μg/kg-soil)	(mg/kg-soil)
Date	(mg/L)	mg/L-water)	(μg/L-water)	(μg/L-water)	(μg/L-water)	(μg/L-water)	(μg/L-water)
-10-92	BDL	1,1,1-TCA 0.507	BDL	BDL	BDL	BDL	7.7
-11-92	1.7	BDL	BDL	BDL	BDL	BDL	BDL
	Date -10-92	Date (mg/L) -10-92 BDL	Hydrocarbons Sample TPH (mg/kg-soil) Date (mg/L) mg/L-water) -10-92 BDL 1,1,1-TCA 0.507	Hydrocarbons BNAs Sample TPH (mg/kg-soil) (μg/kg-soil) Date (mg/L) mg/L-water) (μg/L-water) -10-92 BDL 1,1,1-TCA 0.507 BDL	Hydrocarbons BNAs and PCBs Sample TPH (mg/kg-soil) (μg/kg-soil) (μg/kg-soil) Date (mg/L) mg/L-water) (μg/L-water) (μg/L-water) -10-92 BDL 1,1,1-TCA 0.507 BDL BDL	Hydrocarbons BNAs and PCBs Pesticides Sample TPH (mg/kg-soil) (μg/kg-soil) (μg/kg-soil) (μg/kg-soil) Date (mg/L) mg/L-water) (μg/L-water) (μg/L-water) (μg/L-water) -10-92 BDL 1,1,1-TCA 0.507 BDL BDL BDL BDL	Hydrocarbons BNAs and PCBs Pesticides Herbicides Sample TPH (mg/kg-soil) (μg/kg-soil) (μg/kg-soil) (μg/kg-soil) (μg/kg-soil) Date (mg/L) mg/L-water) (μg/L-water) (μg/L-water) (μg/L-water) -10-92 BDL 1,1,1-TCA 0.507 BDL BDL BDL BDL BDL

Notes:

Methods are from EPA "Test Methods for Evaluating Solid Waste Physical/Chemical Methods," EPA publication SW-846, 1986.

TPH = total petroleum hydrocarbons

PCBs = polychlorinated biphenyls

BNAs = base/neutral acids

BDL = below detection limits

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

μg/L = micrograms per liter

mg/L = milligrams per liter

JPR/72146005/F14-T3.wk4

- residues were removed. If no HVO compounds were detected during verification sampling and analysis, then previous assessment results would be considered temporally incomplete, i.e., any 1,1,1-TCA which may have been in the berm was most likely biodegraded or volatilized by sunlight and heat.
- 2. At least ten soil borings would be drilled in areas of CSSA that were not affected by any waste disposal actions and thus could be considered appropriate background sampling locations. The number of background samples was determined from 30 TAC 335.553[d][2]. Background samples would be from limestone rock below the soil horizon for analysis of background metals. The background metal results were statistically compared with nickel concentrations detected during the initial site assessment. If nickel concentrations in the site's subsurface were statistically greater than background, then the site would be remediated to reduce nickel levels to acceptable concentrations. If site nickel concentrations were less than background, then the site nickel concentrations would be considered attributable to native limestone rather than effects from wastes stored at the unit.
- 3. Arrangements would be made for disposal of investigation-derived soil/rock cuttings, decontamination water, and trash (Tyvek, gloves, etc.).

In December 1993, CSSA sent a letter of closure to Anthony Grigsby, Executive Director, TNRCC, to notify TNRCC of CSSA's intent to begin standard 1 closure actions under 30 TAC 335, Subchapter S, within 90 days (appendix A). On April 7, 1994, CSSA sent a letter to TNRCC Central and District 13 providing 10 working days notification of intent to proceed with closure actions in the field (appendix A).

Parsons ES personnel returned to the F-14 site during April 1994 to resample the berm and to collect background rock samples at CSSA-approved locations. Field activities occurred from April 20 to April 22, 1994.

3.2.1 Berm Sampling

3.2.1.1 Field Procedures

On April 20, Parsons ES personnel collected seven soil samples from the F-14 berm (Figure 3.1). One sample was collected from each of the seven sampling points used in collecting the September 1992 composite berm sample. The purpose of sampling each location was to determine the location of potential HVO contamination which might require site remediation.

Each berm sample was collected by using a pick to loosen the soil to 6 inches below the berm's surface. A stainless steel trowel was used to collect soil from the berm, which was placed in 8-ounce glass soil jars with Teflon®-lined lids. The hole was then scanned with an HNU photoionization detector to determine if VOCs were present. Field screening did not indicate the presence of any VOCs.

Decontamination of soil sampling equipment was performed before collection of each sample. Procedures included a phosphate-free soap wash, potable water rinse, and

isopropyl alcohol rinse, followed by a final distilled-water rinse. Decontamination fluids were contained in the wastewater drum from the September 1992 site assessment.

3.2.1.2 Analytical Results

After each sample was collected, it was capped, labeled, and packed on ice in coolers. The soil samples were shipped priority overnight to National Environmental Testing, Inc. (NET) for laboratory analysis of halogenated volatile organics by method SW 8010.

No concentrations of 1,1,1-TCA nor any other halogenated volatile organic compound were detected in the verification berm samples. The duplicate sample did not contain any of the analyzed chemical constituents. Table 3.4 shows the berm analytical results including date, time, and depth of sampling. The analytical reports for the berm samples are presented in appendix B.

3.2.2 Background Sampling

3.2.2.1 Field Procedures

Based on soil type, the underlying Glen Rose Formation, and history of the location, CSSA approved ten background sampling locations. Because analytical results from the samples were to represent background concentrations, locations were selected where no known waste management activities had taken place.

Between April 20 and April 22, 1994, background soil and subsurface rock samples were collected at CSSA (Figure 3.2). The surface soil samples were collected for analysis of background metals in different soil types at CSSA. The background soil samples do not apply to the F-14 unit, as there are no true soils at the site, and therefore soil analytical results are not discussed in this report.

Drilling for background rock samples was performed with a hollow stem auger rig with air coring capabilities. Because the samples to be collected were background samples and were not associated with contamination, monitoring for volatile organics and explosivity was not performed. All personnel remained upwind of the dust plume while drilling.

The subsurface rock sample was collected at the same location as the surface soil sample. The rock sample was obtained by drilling with a 2-inch air rotary drill. Drilling was performed by CCI/AEI Alliance Environmental, Inc. The rock was cored in 5-foot core barrels. Each section was lithologically described on soil boring logs (appendix C). Once competent limestone was encountered, a sample of the rock was collected for metal analysis. The 8-ounce glass soil jar was filled with rock, capped, labeled, and preserved on ice for shipment to the lab under chain-of custody procedures.

After sample collection, soil and rock cuttings from the boring were returned to the hole. Concrete was poured into the boring to fill the remaining void to surface level. A

Table 3.4. Verification Sample Analytical Results

Investigation Date:	Sept 1992	April 1994								
Sample ID: Depth (in-BGL): Date Collected:	Berm-1* 3-6 09/10/92	Berm-2 6-8 04/20/94	Berm-3 6-8 04/20/94	Berm-4 6-8 04/20/92	Berm-5 6-8 04/20/94	Berm-6 6-8 04/20/94	Berm-7 6-8 04/20/94	Berm-8 6-8 04/20/94	Trip Blank (liquid)	
Results: (mg/kg) 1,1,1-TCA	0.486	<2.3	<2.2(<2.2)	<2.2	<2.1	<2.2	<2.2	<2.1	<0.4 μg/L	

Verification soil samples analyzed in accordance with EPA method SW8010.

Duplicate sample results in parentheses.

* BERM-1 was a composite sample taken from the seven locations identified during 1994 verification sampling as samples BERM-2 through BERM-8.

in-BGL = inches below ground level 1,1,1-TCA = 1,1,1-trichloroethane

mg/kg = milligrams per kilogram

monument bearing the sample identification, boring number, and date of sampling was placed in the concrete.

Each sample was collected from the upper Glen Rose limestone. Shell fragments were found in the limestone, but the distinctive Corbula pelecypod bed which marks the contact between the upper Glen Rose and the lower Glen Rose was not encountered. Limestone rock collected during the September 1992 site assessment was also from the upper Glen Rose, and no indications of Corbula fossils were observed.

3.2.2.2 **Analytical Results**

Each rock sample was analyzed for metals (aluminum, barium, cadmium, chromium, copper, iron, silver, tin, and zinc), in accordance with EPA method 6010 by ICP, and total arsenic, lead, mercury, nickel, and selenium in accordance with EPA methods under the 7000 series. Background metal data other than nickel were collected for a CSSA database and are presented in appendix D. Nickel is the only potential waste metal of concern at the F-14 site, and therefore is the only metal discussed in this section.

Nickel was detected in each of the ten background rock samples collected (Table 3.5). Concentrations ranged from 18 to 26 mg/kg (the laboratory reported nickel concentrations in micrograms per gram, equivalent to milligrams per kilogram). The analytical results are shown in Table 3.5, and the laboratory reports are in appendix D. The maximum concentration detected during the September 1992 F-14 site assessment subsurface rock samples was 12 mg/kg.

To ensure the quality of the background metals data, the laboratory reports were evaluated by Parsons ES personnel qualified in data validation. The analytical work was performed under Level 3 quality assurance/quality control (QA/QC), and the data validation team reviewed the data under the same level of QA/QC. No flags or QA/QC problems were observed regarding the nickel data. The data validation report is presented in appendix E.

3.2.2.3 Statistical Evaluation of Background Nickel Concentrations

The TNRCC risk reduction rules at 30 TAC 335.553(d)(2) allow statistical evaluation of populations using student "t" test values, e.g., for ten or more values, analytical results can be compared using the 95 per cent confidence limit of the mean population concentration. The population under evaluation by this method is nickel concentrations in ten background rock samples from CSSA for comparison to nickel concentrations detected in F-14 subsurface rock samples.

The sample mean of the background nickel levels is 21.9 mg/kg with a standard deviation of 0.8 mg/kg (see appendix F for calculations). For a population of n=10 and a mean = 21.9 ± 0.8 mg/kg, the calculated student-t distribution mean is 21.45 mg/kg.

Comparison of F-14 subsurface rock nickel concentrations (Table 3.2) to the mean at the 95 percent confidence interval shows that the F-14 population ranges from BDL to 12 mg/kg total nickel. The F-14 nickel values are almost half the 95 percent confidence

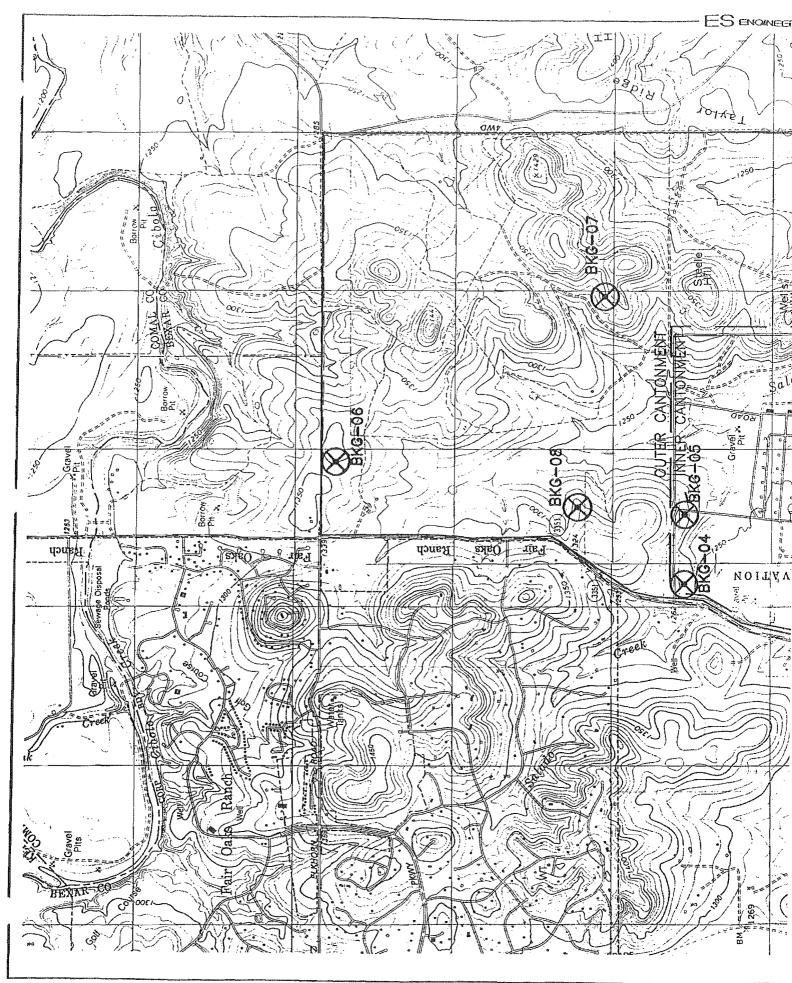


Table 3.5. Background Nickel Concentrations

Sample ID:		BKG-SB-02	BKG-SB-03	BKG-SB-04	BKG-SB-05	BKG-SB-06	BKG-SB-07	BKG-SB-08	BKG-SB-09	BKG-SB-10
Depth (ft BGL):		10	19.5	17.5	10	18	24	5	5	20
Date Collected:		04/22/94	04/21/94	04/21/94	04/21/94	04/21/94	04/21/94	04/21/94	04/22/94	04/22/94
Results: (µg/g) Total nickel	26	23	24	24	20	22	20	21	21	18

Range of 1992 investigations analytical results for total nickel = <1.0 to 12 mg/kg

μg/g= micrograms per gram; equivalent to milligrams per kilogram (mg/kg)

ft BGL = feet below ground level

interval of 21.45 mg/kg total nickel, indicating that the F-14 subsurface rock contains nickel at well below background levels. Therefore, the statistical comparison of background nickel, versus nickel as a potential waste residue at the F-14 site, demonstrates that nickel at the site is attributable to native concentrations found in the Upper Glen Rose Formation. Nickel is not a waste residue at the F-14 site and does not require remediation.

3.3 WASTE DISPOSAL

One drum of soil and rock cuttings and one drum of decontamination waste water were generated during site assessment activities. Analysis of a composite sample of drummed berm soil and rock cuttings indicated the presence of 0.507 mg/kg 1,1,1-TCA and 7.7 mg/kg nickel (Table 3.3). The drum of wastewater was sampled for analysis after the site assessment and was found to contain only 1.7 mg/L TPH; no other chemical constituents were detected in the wastewater (Table 3.3).

The drum of berm soil and rock cuttings was characterized by USPCI/Laidlaw of San Antonio, Texas. The waste characterization indicated non-hazardous waste. Due to the previous detection of 1,1,1-TCA, the drum was transported to USPCI/Laidlaw's class I facility in Waynoka, Oklahoma, for disposal. Waste documentation records are in appendix G.

Detection of TPH in investigation-derived wastewater was considered to be a similar situation to that of TPH in subsurface rock discussed in Section 1.4. The TNRCC risk reduction rules consider TPH to be an indicator parameter and indicate that other chemical constituents should be evaluated. No other chemical constituents were detected in the wastewater (Table 3.3). In addition, guidelines for disposal of water produced from leaking PST investigations were used. Groundwater with less than 15 mg/L TPH can be discharged to the surface under the PST surface discharge program. Because decontamination wastewater at the F-14 site contained only 1.7 mg/L TPH, the waste water was placed in CSSA's permitted wastewater treatment plant on June 23, 1994 (appendix G).

Because contamination was not detected in investigative samples, plastic wastes generated during the site investigation were considered industrial waste and were placed in a trash dumpster for disposal. One plastic bag containing plastic from decontamination procedures, sampling gloves, and Tyvek was disposed of on June 23, 1994.

3.4 SITE RESTORATION

Due to the lack of wastes or waste residues as determined by the 1992 site assessment and the 1994 verification sampling and analysis, no site restoration is considered necessary. The site is currently fenced in with a locked gate. CSSA will determine in the future if their operations require the continued presence of the fence and locked gate.

SECTION 4 CLOSURE SUMMARY

The F-14 waste management unit at CSSA was taken out of service in March 1992 by removal of all stored wastes and storage containers. A site assessment of the F-14 surface and subsurface was performed in September 1992. No visible signs of potential contamination were noted at the surface. Drilling was performed for collection of subsurface rock samples in the Upper Glen Rose Formation; there was no indication of groundwater.

Analytical testing of shallow soil/rock samples, subsurface rock, and a composite berm sample did not generally indicate contaminants which might be anticipated from the list of known wastes at the site (petroleum hydrocarbons, nickel penetrate, aromatic or halogenated volatile hydrocarbons, pesticides, PCBs, or herbicides). The exceptions were nickel and TPH in subsurface rock, and 1,1,1-TCA, nickel, and butyl benzyl phthalate in the berm sample. TPH was detected in the drum of decontamination water, and 1,1,1-TCA was detected in the drum of soil/rock cuttings derived from the investigation.

After evaluation of the site assessment data, TPH was considered an indicator parameter that might be associated with other probable contaminants such as benzene and toluene. No such associated compounds were detected. Therefore, TPH was not considered a waste or waste residue, and was not further considered for potential remediation. The butyl benzyl phthalate detection in the berm sample, at a concentration just above the laboratory detection limit, was considered a laboratory contaminant. Thus, verification sampling and analysis at the F-14 unit to determine if the unit was acceptable for closure under risk reduction standard number 1 was designed to determine if nickel in subsurface rock and 1,1,1-TCA in the berm sample constituted waste residues.

Verification samples collected in April 1994 consisted of samples collected from the berm at the original sampling points for the 1992 composite berm sample, and drilling for background rock samples. The berm samples were analyzed for halogenated volatile organics, and the background rock samples for nickel. No 1,1,1-TCA was detected in the berm samples, indicating that if that compound ever was present in the berm, it subsequently volatilized under natural conditions. Background nickel concentrations were statistically greater than those detected in F-14 subsurface rock, which demonstrated that nickel levels at the site are attributable to native nickel in limestone rather than affects of wastes stored at the unit.

Analytical results of the 1992 site assessment and 1994 verification testing indicate that the F-14 unit is acceptable for closure under TNRCC risk reduction standard 1. CSSA therefore requests TNRCC approval of closure of the site.

This page intentionally left blank.

REFERENCES

- Ashworth, 1983. Groundwater Availability of the Lower Cretaceous Formations in the Hill Country of South-Central Texas, Texas Water Development Board, Report 273, 1983.
- Engineering-Science, Inc., 1993a. F-14 Accumulation Point Site Assessment Report, Camp Stanley Storage Activity, Texas, February 1993.
- Engineering Science, Inc., 1993b. Environmental Assessment Report, Camp Stanley Storage Activity, Texas, September 1993.
- State of Texas. Title 30, Texas Administrative Code (TAC), Chapter 335, Industrial Solid Waste and Municipal Hazardous Waste, subchapter S, June 15, 1993.
- USDA Soil Conservation Service, 1966. Soil Survey of Bexar County, Texas. U.S. Department of Agriculture (USDA), Soil Conservation Service, June 1996.

This page intentionally left blank.

Appendix A

Closure Correspondence

FACSIMILE TRANSMITTAL

Total Pages Including This Cover Page	Proposal or Project Number	Date
Al.	72146D. 05 00	
	721160.000	10 4/23/11
	Brown	
	C · D13	
Fax phone: $\frac{210}{}$	545 - 4329	
From: Susan	Roberts	
7	GINEERING-SCIE 7800 Shoal Creek Blvd., Suit Austin, Texas 7875 Voice: 512/467-626 Telecopy: 512/467-7	te 222 West 57 00 7044
MESSAGE:	spy of closure notifice	ation letter for the storage area per your
Camp Stanley Stora	ge Activity 1-19:	storage area per your
request.	•	•
Facility: C	and Stanley Storage A	tctivity
Teyes Regis. +	69024	
Site: Less	anp Stanley Storage 1. 1. 69026 - Aun- 90-day Storage	arta (F-14)
Will Activity and a Cold 1939 of the construction of the Cold Activity and the Cold Option to the Cold Activity and the Cold Activit	- papasagannassa - manamus et francisco de que en prista de desarro de la composiçõe de desarro de desarro de d	Normanian para es
MCCCCC Transfer and a second substitute of the Conference of the C		
Фил из 90/46/1/44 у чилиндройский пилан постой на простой на постой на пистем в на простой на пистем в		uuruukagammagadan 1900 600 000 000 000 000 000 000 000 000
480 mm (1940 million (1940) 1950 (1960) (1960) (1960) (1960) (1960) (1960) (1960) (1960) (1960) (1960) (1960)		

DEPARTMENT OF THE ARMY

CAMP STANLEY STORAGE ACTIVITY, RRAD POST OFFICE BOX 690627, SAN ANTONIO, TEXAS 78269 - 0627

December 13, 1993

Office of the Commander

SUBJECT: Camp Stanley Storage Activity, RRAD, EPA Identification Number TX2210020739, Texas Registration Number 69026, 90 Day Notification of Closure Actions for the Inactive F-14, Less Than 90 Day, Storage Area

Mr. Anthony Grigsby, Executive Director Texas Natural Resource Conservation Commission P.O. Box 13807 Capitol Station Austin, Texas 78711-3087

Dear Mr. Grigsby:

Camp Stanley Storage Activity (CSSA) intends to close a less than 90 day storage area identified as the CSSA F-14 accumulation point. This letter constitutes 90 day notification to Texas Natural Resource Conservation Commission (TNRCC) of intended closure activities pursuant to 31 TAC 335.6(g). By copy of this letter, notification is also provided to TNRCC Region 13. The risk reduction standard to be attained under 31 TAC 335, Subchapter S, is Standard 1.

Engineering-Science (ES) performed an August 1992 site assessment for CSSA. Concentrations of 13 to 67 milligrams per kilogram (mg/kg) total petroleum hydrocarbons (TPH) and nondetect to 12 mg/kg nickel were detected in subsurface rock samples to 20 feet below ground level (BGL). No groundwater was detected, and the first groundwater is approximately 140 feet BGL. One soil/rock sample collected from the site berm contained 30 mg/kg TPH, 0.486 mg/kg 1,1,1-trichloroethane (TCA), 0.11 mg/kg butyl benzyl phthalate, and 2.8 mg/kg nickel.

The TPH concentrations are indicator parameters rather than contaminants (31 TAC 335.553(d)). Butyl benzyl phthalate was also detected in only one sample at low concentrations attributable to laboratory contamination. Therefore, to attain Standard 1, all wastes and waste residues shall be removed or remediated to constituent background levels or to nondetect for 1,1,1-TCA. Background levels are not known at this site or elsewhere at CSSA.

Based on the site assessment results, CSSA will pursue risk reduction Standard 1 by the following means:

a. Remove or remediate 1,1,1-TCA in the berm:

Resample the berm in previous composite locations to determine the area(s) that contain 1,1,1-TCA, remove that portion(s) of soil, verify by sampling and analysis that the solvent wastes have been removed, and transport the to-bedetermined amount of soil to a Class 1 nonhazardous facility.

b. Collect background samples to confirm subsurface nickel levels:

Sample a minimum data set of 10 unaffected background areas at CSSA and test for background metal levels. This background set of data shall then be used for comparison purposes. If nickel concentrations previously detected in the subsurface are at or below background, then no remediation of the site will be necessary. If nickel concentrations are above background, then those affected areas will be excavated and the soil/rock transported to a facility selected on the basis of the actual nickel concentrations. Completion of such remediation will be verified by sampling and analysis, and the remediated areas filled in with clean soil.

c. Closure actions will be conducted under the supervision of a state-registered professional engineer (P.E.) and certified for closure when the work meets P.E. approval. A closure report shall be submitted detailing the closure actions within 60 days of completion of closure activities.

Pursuant to 31 TAC 335.8(c), CSSA shall notify TNRCC in writing, at least 10 days prior to activities, of the facility/site name, the standard for closure, and the estimated time to complete the closure under Standard 1 (31 TAC 335.8(c)). Closure activities will commence 90 days from date of this notification letter. It is estimated that closure activities will be completed within 120 days of project initiation, and certification provided to the TNRCC within 180 days of initiation. CSSA will notify TNRCC Regional Office 10 days in advance of any sampling activities.

Should you have any comments or questions, please call Mr. Paul B. Oliver at (210) 221-7473 or Ms. Susan Roberts at (512) 467-6200.

Sincerely,

Joseph G. Robles

Lieutenant Colonel, U.S. Army

Commanding Officer

Copies Furnished:

Mr. Richard Garcia, TNRCC Region 13

LTC Montgomery, AL/OEB

Ms. Susan Roberts, E-S

ENGINEERING-SCIENCE, INC.

	JOB NUMBER 721460.05
	FILE DESIGNATION F-14
	FILE DESIGNATION F-14 DATE 4/18/94 TIME 11230 hrs
PHONE CALL FROM Jusan Roberts	PHONE NUMBER 210/490-3096, x324 industrial is they. Waste
PHONE CALL TO Billy Brown TNRCC · DI3	PHONE NUMBER 210/440-3016, x324
Hat & Jolin With Divisione In	ndustrial & Hay. Waste
CONFERENCE WITH FESSERY FACULTY THE PECOLOT	· · · · · · · · · · · · · · · · · · ·
PLACE	
SUBJECT Billy Brown is not in all	the week of April 18, 1994. I left have this was recommended as person. Brown's sites.
a wessage on voice mail for Henry K	amei who was recommended as person
most tikely to be dealing with any of the	Brown's sites.
4/12/94 No return call.	
New College Control of the Control o	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	A. De
•	SIGNED JUHAN FELDS

E1/ADMIN/FORMS/TELMEMO.FRM

	JOB NUMBER
	FILE DESIGNATIONFI4
	DATE 4/25/94 TIME 0935
0.16	1 1
PHONE CALL FROM Bill Brown, TURCC D. 13	PHONE NUMBER
PHONE CALL TO Susan Roberts	PHONE NUMBER
CONFERENCE WITH	
PLACE	
4	
SUBJECT the returned my phone call of last Mi	onday. I said we called to see
if he justed to meet Es at the FLM site of	for initial closure actions but
his phone machine sail he'd be out all week.	However CSSA sout him a letter
notifying him 10 days in solvance of field work.	
enough to indicate that he would have the	
assaled him that these are initial field action	
on final actions necessary for closure. hast	
from the F-14 bern to identify where 1,1,1-	
the previous soil semple was a composite. I	asked what specifics be would
like to see in future letters notifying him of for	irld work; he said to include:
- 10 days advance notice (10 working days)	
	1 \
- Specify action to be taken investigative	or perfication sampling excavation
dielling)	
- Note that "the field action is an opportun	ity for TNRCC of to split simples
He also said he couldn't find a copy of the	Dec. 193 closure notification letter.
I noted that TNRCC must have received a copy	
visit in late Du. 193 to the F-19 site. He o	,
Dec. 93 letter to him. He also asked if it was	alors a New - T co-0 the
Live 13 lead up non. He was asked y 17. Mes	acco il a la vista
letter noted choose actions expected but that as	(S)H WISTES to close The SIR
ander Risk Reduction Stn. 1 a closure plan is	hot required.
I told him that we expected analytical reso	Its not month & would decide
at that fine the next action, if any vecessar	y for closure.
, 1 0	

DEPARTMENT OF THE ARMY

CAMP STAULEY STORAGE ACTIVITY, RRAD POST OFFICE BOX 690627, SAN ANTONIO, TEXAS 78269 - 0627

Age1 ,7 LingA

Office of the Commander

SUBJECT: Camp Stanley Storage Activity, RRAD, EPA Identification Number TX2210020739, Texas Registration Number 69026, 90 Day Notification of Closure Actions for the Inactive F-14, Less Than 90 Day, Storage Area

Region 13
Texas Natural Resource Conservation Commission Attn: Mr. Billy Brown
140 Heimer Road, Suite 360
San Antonio, Texas 78232-5028

Dear Mr. Brown:

Reference letter from Camp Stanley dated December 13, 1993, Subject as above, that informed your office that Camp Stanley intended to close a less than 90 day storage area identified as the CSSA F-14 accumulation point.

The purpose of this letter is to provide your office 10 working days notice that Camp Stanley intends to proceed, on April 20, 1994, with the sampling actions indicated in our letter.

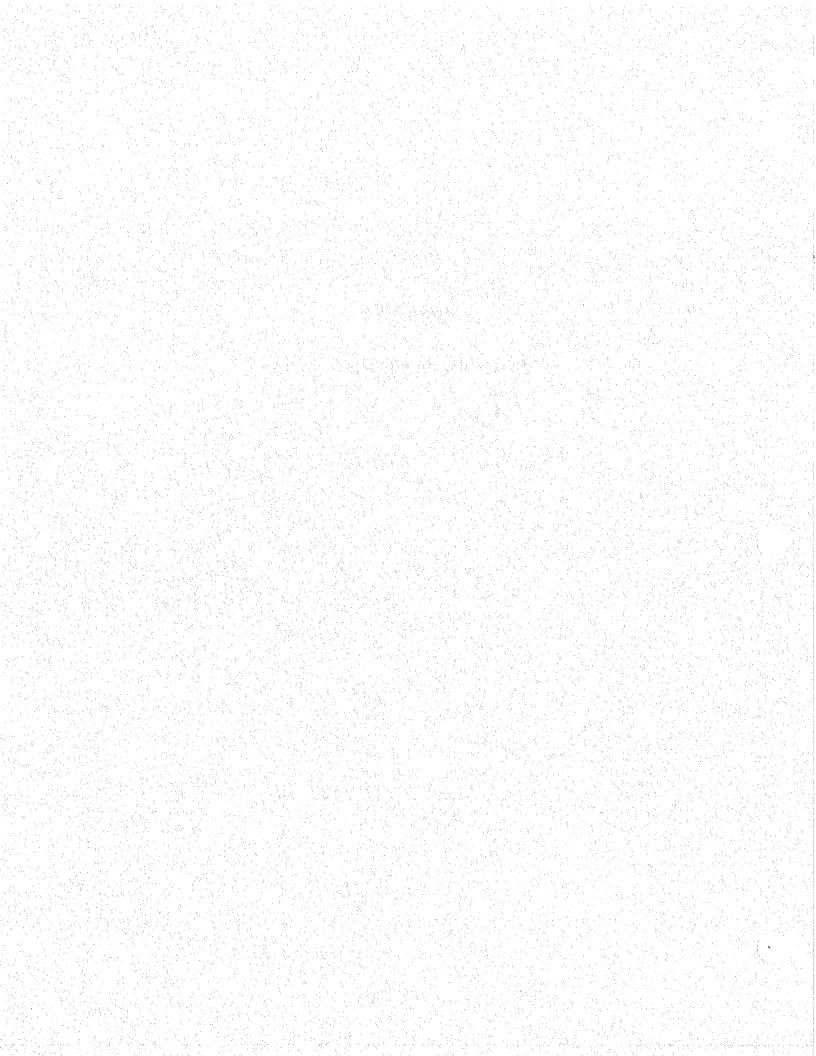
Should you have any questions, please call Mr. Paul B. Oliver at (210) 221-7473.

Sincerely,

r es

Joseph G. Robles

Lieutenant Colonel, U.S. Army Commanding Officer


Copies Furnished:

LTC Montgomery, AL/OEB Ms. Susan Roberts, E-S

u	
	(

Appendix B

Verification Analytical Results

Tel: (708) 289-3100 Fax: (708) 289-5445

CASE NARRATIVE

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02699

Project Description: 721460.05 CSSA F-14 Closure

Sample Number 257486 257487 257488 257489	Sample Description Berm 2 Berm 3 Berm 3 MS Berm 3 MSD	Date Taken 04/20/1994 04/20/1994 04/20/1994	Date Received 04/21/1994 04/21/1994 04/21/1994
257490	Berm 4 Berm 5	04/20/1994	04/21/1994
257491		04/20/1994	04/21/1994
257492	Berm 6	04/20/1994	04/21/1994
257493	Berm 7	04/20/1994	04/21/1994
257494	Berm 8	04/20/1994	04/21/1994
257495	Berm 3.3	04/20/1994	04/21/1994
257496	Trip Blank		04/21/1994

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms.

The following comments should be noted for the indicated fraction;

Volatile Organic Analysis

Sample analysis was subcontracted to NET Santa Rosa Division. The NET Santa Rosa Analytical and QC Report are attached for supporting QC documentation.

All sample holding times were met. . All QC indicators were within control limits.

This Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your samples were analyzed. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Kalicki Quality Assurance Coordinator

Tel: (708) 289-3100 Fax: (708) 289-5445

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02699

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.05 CSSA F-14 Closure

Sample Number	Sample Description	Date Taken	Date Received
257486 257487 257488 257489 257490 257491 257492 257493 257494 257496	Berm 2 Berm 3 MS Berm 3 MSD Berm 3 Berm 4 Berm 5 Berm 6 Berm 7 Berm 8 Berm 8 Berm 3.3	04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/20/1994	04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994
257496	Trip Blank		04/21/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

> QA Coordinator, for: Jean-Pierre C. Rouanet Operations Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No.:

257486

NET Job No.:

94.02699

Sample Description:

Berm 2

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994

Time Taken: 15:18 IEPA Cert. No. 100221

04/21/1994 Date Received:

11:00 Time Received: WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Anatysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	88.3	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
romodichloromethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromoform	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.7		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.3		ug/Xg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<57		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichlaropropene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.3		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S : Parameter analysis was sub-contracted to another NET location.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tet: (708) 289-3100

Tet: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 257486

NET Job No.: 94.02699

Sample Description:

Berm 2

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:18 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.3	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.3	ug/Kg	04/28/1994		mjs	15	8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994 Sample No. :

257487

Austin, TX 78754

NET Job No.:

94.02699

Sample Description:

Berm 3

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:00 IEPA Cert. No. 100221

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	90.2	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		S						
omodichloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
⊿romoform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.5		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.2	•	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<55		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S: Parameter analysis was sub-contracted to another NET location.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 257487

NET Job No.: 94.02699

Sample Description:

Berm 3

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:00 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method PQL	Analys	t Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.2	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.2	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

257488

Sample No. : NET Job No.:

94.02699

Sample Description:

Berm 3

721460.05 CSSA F-14 Closure

0000 06

lini en

Date Taken: 04/20/1994 Time Taken: 15:00

Decul to

IEPA Cert. No. 100221

Donomoton

Date Received: 04/21/1994 Time Received: 11:00 WDNR Cert. No. 999447130

Machael Amelican Connol Ma Amelication

Parameter	Results		Units	Date of	Method	Analyst	Batch No.	Analytical
				Analysis	PQL.		Prep/Run	Hethod
Solids, Total	90.6	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
romodichloromethane	102	103%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
.comoform	99.3	100%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	87.4	88.3%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	110	111%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	98.8	99.8%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	87.4	88.3%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	90.8	91.7%	ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	107	108%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	8.86	69.5%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	104	105%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	93.5	94.4%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	94.8	95.8%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	97.5	98.5%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	92.6	93.5%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	106	107%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	110	111%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	84.9	85.8%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	92.8	93.7%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	67.3	68.0	ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	106	107%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	100	101%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	102	103%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	128	129%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	106	107%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	109	110%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	115	116%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	110	111%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
						-		

S: Parameter analysis was sub-contracted to another NET location. Percentages listed under the "flag" column reflect spike recoveries.

04/20/1994

15:00

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No.: 257488

NET Job No.: 94.02699

Sample Description:

IEPA Cert. No. 100221

Austin, TX 78754

Date Taken:

Time Taken:

Berm 3

721460.05 CSSA F-14 Closure

Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	107	108%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	120	121%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

Percentages listed under the "flag" column reflect spike recoveries.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No. :

257489

NET Job No.:

94.02699

Sample Description:

Berm 3

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994

Time Taken: 15:00 IEPA Cert. No. 100221 Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.7	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
omodichloromethane	104	105%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
_romoform	100	101%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
8romomethane	67.0	67.7%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	116	117%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	99.1	100%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	67.0	67.7%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	81.6	82.4%	ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	113	114%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	61.7	62.3%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	103	104%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	97.3	98.3%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	102	103%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	105	106%	ug/Kg	04/28/1994	2.0	-mjs	15	8010 (1)
Dichlorodifluoromethane	88.4	89.3%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	103	104%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	108	109%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	65.8	66.5%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	72.7	73.4%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	41.5	41.9%	ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	108	109%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	112	113%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	110	111%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	130	131%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	109	110%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	116	117%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	115	116%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	110	111%	ug/Kg	04/28/1 99 4	2.0	mjs	15	8010 (1)

S : Parameter analysis was sub-contracted to another NET location. Percentages listed under the "flag" column reflect spike recoveries.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 257489

NET Job No.: 94.02699

Sample Description:

Berm 3

721460.05 CSSA F-14 Closure

(MSD)

Date Taken: 04/20/1994 Time Taken: 15:00 IEPA Cert. No. 100221

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	99.9	101%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	117	118%	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 257490

NET Job No.: 94.02699

Sample Description:

Berm 4

CSSA F-14 Closure 721460.05

Date Taken: 04/20/1994 15:04 Time Taken: IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.9	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
romodichloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromoform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.4		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<54		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S: Parameter analysis was sub-contracted to another NET location.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

257490

NET Job No.:

94.02699

Sample Description:

Berm 4

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:04 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichtorofluoromethane Vinyl chloride	<2.2 <2.2	ug/Kg ug/Kg	04/28/1994 04/28/1994	2.0	mjs mjs	15 15	8010 (1) 8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994 Sample No. :

257491

Austin, TX 78754

NET Job No.:

94.02699

Sample Description:

Berm 5

721460.05 CSSA F-

CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:38 IEPA Cert. No. 100221

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.9	S	%	04/29/1994	0.1	mjs	938	2540 (4)
PLATILES - 8010 NONAQUEOUS		s						
omodichloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromoform	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.3		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<53		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

 $[\]boldsymbol{S}$: Parameter analysis was sub-contracted to another NET location.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 257491

NET Job No.: 94.02699

Sample Description: Berm 5

721460.05

CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:38

IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.1	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.1	ug/Kg	04/28/1994		mjs	15	8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 257492

NET Job No.:

94.02699

Sample Description:

Berm 6

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:40 IEPA Cert. No. 100221

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	90.8	\$	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
omodichloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
⊴romoform .	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.5		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-0ichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<55		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S : Parameter analysis was sub-contracted to another NET location.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. :

257492

NET Job No.:

94.02699

Sample Description:

Berm 6

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:40 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method PQL	Analysi	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.2	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.2	ug/Kg	04/28/1994		mjs	15	8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No.: 257493

Austin, TX 78754

NET Job No.: 94.02699

Sample Description:

Berm 7

721460.05

CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:28 IEPA Cert. No. 100221

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	90.3	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
omodichloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
comoform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.5		ug/Kg	04/28/1994	5.0	mjs	15	.8010 (1)
Chloroform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<\$\$		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S: Parameter analysis was sub-contracted to another NET location.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 257493

NET Job No.: 94.02699

Sample Description:

Berm 7

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:28 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.2	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.2	ug/Kg	04/28/1994		mjs	15	8010 (1)

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No.: 257494

Austin, TX 78754

NET Job No.:

94.02699

Sample Description:

Berm 8

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:25 IEPA Cert. No. 100221 Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	96.9	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		\$						
omodichloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
∍romoform	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.1		ug/Kg	04/28/1994	2.0	mjε	15	8010 (1)
Carbon Tetrachloride	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.2		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<52		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.1		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

 $^{{\}bf S}$: Parameter analysis was sub-contracted to another NET location.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

257494

NET Job No.:

94.02699

Sample Description:

Berm 8

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 14:25

IEPA Cert. No. 100221

Date Received: 04/21/1994

11:00 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analys1	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane	<2.1	ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Vinyl chloride	<2.1	ug/Kg	04/28/1994		mjs	15	8010 (1)

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 25

257495

NET Job No.:

94.02699

Sample Description:

Berm 3.3

721460.05

CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:00

IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Resul ts		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	90.8	s	%	04/29/1994	0.1	mjs	938	2540 (4)
VOLATILES - 8010 NONAQUEOUS		s						
romodichloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromoform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Bromomethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Carbon Tetrachloride	<2.2		ug/Kg	04/28/1994	2.0	mjs	15.	8010 (1)
Chlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<5.5		ug/Kg	04/28/1994	5.0	mjs	15	8010 (1)
Chloroform	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Chloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dibromochloromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,3-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,4-Dichlorobenzene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichlorodifluoromethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,2-Dichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Dichloromethane	<55		ug/Kg	04/28/1994	50	mjs	15	8010 (1)
1,2-Dichloropropane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2,2-Tetrachloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Tetrachloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,1-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
1,1,2-Trichloroethane	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)
Trichloroethene	<2.2		ug/Kg	04/28/1994	2.0	mjs	15	8010 (1)

S : Parameter analysis was sub-contracted to another NET location.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No. : 257495

NET Job No.: 94.02699

Sample Description:

Austin, TX 78754

Berm 3.3

721460.05 CSSA F-14 Closure

Date Taken: 04/20/1994 Time Taken: 15:00 IEPA Cert. No. 100221 Date Received: 04/21/1994 Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Trichlorofluoromethane Vinyl chloride	<2.2 <2.2	ug/Kg ug/Kg	04/28/1994 04/28/1994	2.0	mjs mjs	15 15	8010 (1) 8010 (1)

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 257496

NET Job No.: 94.02699

Sample Description:

Trip Blank

CSSA F-14 Closure 721460.05

Date Taken: Date Received: 04/21/1994

Time Taken: Time Received: 11:00 IEPA Cert. No. 100221 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method POL	Analyst	Batch No. Prep/Run	Analytical Method
VOLATILES - 8010 AQUEOUS	\$						
Bromodichloromethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
gromoform	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
~omomethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Carbon Tetrachloride	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Chlorobenzene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Chloroethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
2-Chloroethylvinyl ether	<1.0	ug/L	04/28/1994	1.0	mjs	15	8010 (1)
Chloroform	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Chloromethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Dibromochloromethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,2-Dichlorobenzene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,3-Dichlorobenzene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,4-Dichlorobenzene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Dichlorodifluoromethane	<0.4	ug/L	04/28/1994	0.4	mjs	16	8010 (1)
1,1-Dichloroethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,2-Dichloroethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,1-Dichloroethene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
trans-1,2-Dichloroethene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Dichloromethane	<10	ug/L	04/28/1994	10	mjs	15	8010 (1)
1,2-Dichloropropane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
cis-1,3-Dichloropropene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
trans-1,3-Dichloropropene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)

S: Parameter analysis was sub-contracted to another NET location.

Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 257496

NET Job No.: 94.02699

Sample Description:

Trip Blank

721460.05 CSSA F-14 Closure

Date Taken: Time Taken:

IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 11:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
1,1,2,2-Tetrachloroethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Tetrachloroethene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,1,1-Trichloroethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
1,1,2-Trichloroethane	<1.0	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Trichloroethene	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Trichlorofluoromethane	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)
Vinyl chloride	<0.4	ug/L	04/28/1994	0.4	mjs	15	8010 (1)

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

<	: Less than; When appearing in the results column indicates the analyte was not detected at or above the reported value.
mg/L	: Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
ug/g	: Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
ug/L	: Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
ug/Kg	: Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
В	: Sample result flag indicating that the analyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
D	Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
J	: Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
TCLP	: These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
%	: Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
Dry Weight (dw)	: When indicated, the results are reported on a dry weight basis. The contribution of the moisture content in the sample is subtracted when calculating the concentration of the analyte.
ICP	: Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
AA	: Indicates analysis was performed using Atomic Absorption Spectroscopy.
GFAA	: Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
PQL	Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Method Referen	ces
(1)	Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.
(2)	ASTM "American Society for Testing Materials
(3)	Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.
(4)	See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.

(6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis

(5)

Austin, Texas

CHAIN OF CUSTODY RECORD

PROJECT NO		PROJECT I	NAME/LOCA	TION					<i>T</i>			Anal	ysis	Requi	red
721460.0	ンラ	CSSA	F.140	Insure	NO. OF CONTAINERS				7	7/	7	7	7/	//	
SAMPLERS,		s)_/	•		AINE		/	//		//	//		//	//	
Mille	Milio	10201	~ >	tion folds	O.O.			//	//		//	//		//	/ / REMARKS
SAMPLE	**	1		V / - 0	728	/.		/,	//	//		/ /	//	///	/ /
NO.	DATE	TIME	MATRIX	SAMPLE DESCRIPTION		/5%	<i>]</i> [/,	//	//	//	/ /	//	
BERN Z	4/2094	1518	Soil		Ì	X									
Bern 3	ħ	1500	1		1										
Bum3	1	1500	j	ms	١										
Belm 3		1500	1	MSD	1										
BERINY		1504			l										
Brem 5		1438													
Bounto		1440			1										
Burm 7		1428			1										
BORIN S		1425			1										
Bein33	ψ_{-}	15TO	√		1	V									
Tigo Blank		1432	water		2	X									
1		72		4/2/9/ 11:20 117	7 										preserved on ICE
Relipadished	NII - TI	MIT IN	Date Tin		Reli	nquist	ned b	y: (S	ignat	ure)		Dat	е	Time	Received by: (Signature)
Relinquished b		NAMES OF BUILDING PARTY OF THE	Date Tir		Reli	nquisi	ned b	y: (S	ignat	ure)		Dat	0	Time	Received by: (Signature)
					Annual Control						••				

"Relinquished by" and "Received by" boxes <u>must</u> be completed for all transfers.

White: laboratory returns with data, yellow: laboratory copy, pink: sampler copy

Appendix C

Background Soil Boring Logs

AND AND THE PROPERTY.			
그렇는 사람은 걸린 기는 마음을 받는 것들을,			
입다면서 발생하다면 가득하면서 속하는			
숙용 현재시작된 그를 사람은 그 모습니다.			
건물한 승규가 하는 이번 경기 가능한다.			
선물은 소문자는 호하는 사이를 되고요.			
엄마를 보았는다는 가능하는데 보고 있다.			
김동사는 도 회장 사람이 보고 있다. 하는 이렇게 하는			
[편 기념자 [편] 이 사실 등에 가게 되었다.			
생활을 통하실하는 이번을 통하실하는 이번째의			
말함은 경기 가진 보고 있는데, 라고함 (P			
됐는데 불어를 보는 그들을 걸게 하는데 그들 때문다.			

l		-SCIENCE, INC.	PAGE 1 OF 1
	SOIL BO	RING LOS	
CLIENT: ARMSTR	ONG LABORATORY/OEB	BORING NUMBER: BKG-SB-01	
SITE: CAMP STAI	NLEY STORAGE ACTIVITY	BORING LOCATION: 45 FT N C	DF U-28
PROJECT: BACKGE	ROUND SAMPLING	DRILLING CONTRACTOR: CCI	
LOGGED BY: MICH	HELLE TOWN	DRILLER: SHELDON LAURITS	EN
BOREHOLE DIAME	TER: 7.25 IN.	DRILLING RIG: MOBILE B-61	
BOREHOLE ELEVA	TION: APPROX. 1230 FT. MSL	SAMPLING METHOD: AIR CORE	
WATER FOUND (F	T. BGL): NONE	NO./TYPE OF SAMPLES: 1 SOI	SAMPLE
	ION: GROUTED TO SURFACE; TAGGED	BEGIN DRILLING: 0915 4/22/9	
TOTAL DEPTH (F		END DRILLING: 0925 4/22/94	
SAMPLE RECOVERY ANALYTICAL SAMPLE HNU HDSP form)	LITHOLOGIC DESCRIPTI	GRAPHIC ON LOG	COMMENTS
	CLAY: Dark brown, occasional limestone frag and cobbles, dry to damp.	gments, gravel	- All recovery intervals are
	LIMESTONE: Coarse grained, calcite grains	are very fine.	approximate.
$ \cdot $	MARLY LIMESTONE: Soft, top of limestone glength, cemented.	gravel, 1 cm	-
	Solid LIMESTONE, Color range grayish yello Pale yellowish orange (10YR 8/6). Breaks a		
5	coarse-grained infill, pelecypod macrofossi long.		-5 Sample ID: BKG-SB-01 (4.5').
	Same as above, veins of calcite less than fr	nm dia.	No water detected during drilling.
	TD = 5.0 feet.		
10-			-1 0
15-			-1 5
		·- ·	
20-			~20
25-			- 25
			_
File: BKGSB01.L	06		
FIIE, DNOODUIL	.00		

File: BKGSB02.L0G

	ORING LOG					
CLIENT: ARMSTRONG LABORATORY/OEB	BORING NUMBER: BKG-SB-03					
SITE: CAMP STANLEY STORAGE ACTIVITY	BORING LOCATION: S D-24, N U-26, 180 FT N OF DIRT ROAD					
PROJECT: BACKGROUND SAMPLING	DRILLING CONTRACTOR: CCI					
LOGGED BY: MICHELLE TOWN	DRILLER: SHELDON LAURITSEN					
BOREHOLE DIAMETER: 7.25 IN.	ORILLING RIG: MOBILE B-61					
BOREHOLE ELEVATION: APPROX. 1230 FT. MSL	SAMPLING METHOD: AIR ROTARY					
WATER FOUND (FT. BGL): NONE	NO./TYPE OF SAMPLES: 1 SOIL SAMPLE					
BORING COMPLETION: GROUTED TO SURFACE; TAGGED	BEGIN DRILLING: 1713 4/21/94					
TOTAL DEPTH (FT. BGL): 20	END DRILLING: 1743 4/21/94					
SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE HNU HDSP (PDM) (P	GRAPHIC COMMENTS					
CLAY: Dark brown, limestone fragments, su subrounded gravel, pebbles, coarse sand,						
LIMY CLAY: Pale yellowish orange (10YR 8 yellowish orange (10YR 6/6), damp.	(6) to dark approximate.					
LIMESTONE	Auger having some difficulty.					
LIMY CLAY: Very pale orange (10YR 8/2) yellowish orange (10YR 8/6).						
Same as above, limestone 20%, less than 1	cm in size.					
Same as above, very pale orange (10yr8/ orange (10YR 7/4).	(2) to grayish					
Same as above, Limestone subrounded to to 3.5cm.	subangular up					
LIMESTONE: Fine grained, grayish yellow pale orange (10YR 8/2), with black oxide						
Same as above, dark yellowish orange (10 brown (5YR 5/6), Fossiliferous.	Sample ID: SKG-SB-03					
20 - TD = 20.0 feet.	20 (19.5'). No water detected during drilling.					
25-	-25					
File: BKGSB03.L0G						

		-SCIENCE, INC.		PAGE 1 OF 1		
		RONS LOS				
CLIENT: ARMSTR	ONG LABORATORY/OEB	BORING NUMBER				
SITE: CAMP STA	NLEY STORAGE ACTIVITY	BORING LOCATION	ON: E INT. OF N	OUTER DRIVE AND WOUTER DRIV		
PROJECT: BACKGE	ROUND SAMPLING	DRILLING CONTRACTOR: CCI				
LOGGED BY: MICH	HELLE TOWN	DRILLER: SHELI	DON LAURITSEN			
BOREHOLE DIAME	TER: 7.25 IN	DRILLING RIG: 1	MOBILE B-61			
BOREHOLE ELEVA	TION: APPROX. 1230 FT. MSL	SAMPLING METH	IOD: AIR CORE			
WATER FOUND (F	T. BGL): NONE	NO./TYPE OF SA	AMPLES: 1 SOIL S	SAMPLE		
BORING COMPLET	ION: GROUTED TO SURFACE; TAGGED	BEGIN DRILLING	G: 1600 4/21/94			
TOTAL DEPTH (F		END DRILLING: 1	1633 4/21/94			
SAMPLE SAMPLE RECOVERY ANALYTICAL SAMPLE HNU HDSP	LITHOLOGIC DESCRIPTI	ON	GRAPHIC LOG	COMMENTS		
E SA SA E			500	00/11/21/10		
	SOIL: Dark reddish-brown, limestone fragme hard, stiff clay, dry, crumbles under finger p			All recovery intervals are approximate.		
	LIMY CLAY: Moderate brown (5YR 4/4) to li (5YR 5/6), 40% limestone, 2 mm to 15 mm, dr	-				
5-	Same as above, limestone dropped off to 2	5%.				
	Same as above, limestone increasing to 70% Same as above, color grayish orange (10YR yellowish orange (10YR 6/6). Same as above, very pale orange (10YR 8/	17/4) to dark		0		
5	orange pink (5Y 8/4), dry to damp. Same as above, very pale orange (10YR 8/yellowish orange (10YR 8/6).	2) and pale		5 Sample ID: SKG-SB-04		
	L1MESTONE, fine grained, very pale orange grayish orange (10YR 7/4), trace of black bedding.			(17.5'). Very hard to break with a hammer.		
/	TD = 22.5 feet.			No water detected during drilling.		
5-				? 5		

20 -20 25 -25

File: BKGSB05,L0G

	ENGINEERING:	-SCIENCE, INC.		PAGE 1 OF 1			
	SOIL BO	RING LOG					
CLIENT: ARMSTROM	NG LABORATORY/OEB	BORING NUMBER:	BKG-SB-06				
SITE: CAMP STANL	EY STORAGE ACTIVITY	BORING LOCATION: S 4TH POLE W OF FENCE AND E OF					
PROJECT: BACKGRO	OUND SAMPLING	DRILLING CONTR					
LOGGED BY: MICHE	ELLE TOWN	DRILLER: SHELD		N			
BOREHOLE DIAMETE		DRILLING RIG: M					
	ION: APPROX. 1230 FT. MSL	SAMPLING METHO					
WATER FOUND (FT.		NO./TYPE OF SAI		SAMPLE			
~~~~~	BORING COMPLETION: GROUTED TO SURFACE; TAGGED  BEGIN DRILLING: 1135 4/  TOTAL DEPTH (FT. BGL): 20.0  END DRILLING: 1200 4/2						
	000, 20.0		200 4721704				
SAMPLE RECOVERY ANALYTICAL SAMPLE HNU HDSP (ppm)	LITHOLOGIC DESCRIPTION		GRAPHIC LOG	COMMENTS			
	SOIL: Med to dark brown silty clay, 1/16" lime moist to damp, crumbly to finger pressure.	estone gravel,	0. 70. 70. 70	All recovery intervals are			
	LIMY CLAY: with 1/4 to 1" limestone. dark ye orange (10YR 6/6) to grayish orange (10YR to subangular, damp.			approximate.			
5-	SILTY CLAY Pale yellowish orange (10YR 8/ yellowish orange (10YR 6/6), 35-40% gravel			5			
	Same as above, color between 10yr8/2 and	10yr8/6.					
10-	Same as above.			Auger starting to grind.  40 Start coring, 6" recovery.			
15	LIMESTONE: Grayish orange (10YR 7/4) to corange (10YR 6/6), Fossiliferous, Pelycypod yellowish brown, (10YR 6/2) to very pale ora 8/2), Quartz grains up to 1mm.	s 50%, pale		H5 Air Coring			
	LIMESTONE: crystalline, grayish orange (10' dark yellowish orange (10YR 6/6) fine to me less than 1mm diameter, marl layers thick, sp. fossils.	dium matrix		Sample ID: SKG-SB-06 (18.0').  No water detected during			
20-	TD = 20.0 feet.	V V V V V V V V V V V V V V V V V V V	-	-20 drilling.			
25-			_	-25			
File: BKGSB06.L0	0 <b>G</b>						

		EURINEERIN	ORING LOG					
CLIENT	: ARMSTR	ONG LABORATORY/OEB	BORING NUMBE	R: BKG-SB-07				
		NLEY STORAGE ACTIVITY			D #25 E OF ROAD 29 FT N OF FE			
4		ROUND SAMPLING	DRILLING CONTRACTOR: CCI					
		HELLE TOWN		LDON LAURITSEN	<u> </u>			
		TER: 7.25 IN.	DRILLING RIG:					
		ATION: APPROX. 1230 FT. MSL	SAMPLING MET					
		T. BGL): NONE		SAMPLES: 1 SOIL	SAMPLE			
		ION: GROUTED TO SURFACE; TAGGED		IG: 0930 4/21/94				
		T. BGL): 25.0	END DRILLING:		The second secon			
-T	1			GRAPHIC				
SAMPLE RECOVERY	ANALYTICAL SAMPLE HNU HDSP	LITHOLOGIC DESCRIPT	TION	LOG	COMMENTS			
		SOIL: Dark brown to black silty clay, ston moist.	y limestone,	W A / V	All recovery intervals are			
		LIMY CLAY: with 1/8 to 1/4" limestone grave Grayish orange (10YR 7/4) to dark yellow (10YR 6/6), moist, easily indented with the fossils less than 1/4"	ish orange		approximate.			
					5			
		Same as above. Beginning to hit harder m	aterial.					
		Same as above. Limestone pieces increas percentage, size 1-1.5" in length.	sing in		0			
		Same as above, Very pale orange (10YR) orange (10YR 7/4). About 40% limestone damp in clay with traces of silt.						
-		Yellowish gray (5Y 7/2) to pale olive (10Y pelycypods and gravel size limestone piece augers.			5 Auger starting to grind.			
		2.5 inch limestone pieces, fossils replaced	with calcite.		20			
5-		MARLY LIMESTONE: Fairly hard, fossils ind depth from 45% to 85-90%, fine grain mat crystalline calcite (5%). Fossils, 2mm pely	rix, silty, some		Sample ID: SKG-SB-07 (24.0'). Begin coring. 1.5 ft recovery.			
, 1	1	TD = 25.0 feet.			No water detected during			

		G-SCIENCE, INC.		PAGE 1 OF 1				
0.7507		RINB LOB	5 51/5 55 55					
-	DNG LABORATORY/OEB	BORING NUMBE						
	LEY STORAGE ACTIVITY		ION: NORTH PAST	TURE				
PROJECT: BACKGR	W	DRILLING CONTRACTOR: CCI						
LOGGED BY: MICH		DRILLER: SHELDON LAURITSEN						
BOREHOLE DIAMET		DRILLING RIG:	MOBILE B-61					
BOREHOLE ELEVA	TION: APPROX. 1230 FT. MSL	SAMPLING MET	HOD: AIR CORE					
WATER FOUND (F	T. BGL): NONE	NO./TYPE OF S	AMPLES: 1 SOIL S	SAMPLE				
BORING COMPLETI	ION: GROUTED TO SURFACE; TAGGED	BEGIN DRILLIN	G: 1417 4/21/94					
TOTAL DEPTH (FT	The state of the s	END DRILLING:	1430 4/21/94					
DEPTH (feet) SAMPLE RECOVERY ANALYTICAL SAMPLE HNU HDSP (ppm)	LITHOLOGIC DESCRIPT	ION	GRAPHIC LOG	COMMENTS				
	S01L: Light gray brown silty clay, stony lim to dry.	estone, damp		All recovery intervals are approximate. Yellowish dust coming out of borehole.				
5-	LIMESTONE: Fine to medium grained, very r (10YR 8/2) to grayish orange (10YR 7/4), close to dark yellowish orange (10YR 6/6), possible bivalve or bryozoa.	small zone	-5	Sample ID: SKG-SB-08				
	TD = 5.5 feet.			5.0 (5.0-5.5').  No water detected during drilling.				
10-			-40	0				
15-		**		5				
20-			-2	0				
5			-2	5				
File: BKGSB08.L			-					

					RING LOG		FACE FOR I				
CI	IENT:	ARN	ISTRO	ONG LABORATORY/OEB	BORING NUMBER	: BKG-SB-09					
S	ITE: 0	CAMP	STAN	LEY STORAGE ACTIVITY	11		HI AREA ON TANBERG DR				
PF	ROJEC	T: BA	CKGR	OUND SAMPLING	DRILLING CONTRACTOR: CCI						
LC	OGGED	BY:	MICH	ELLE TOWN	DRILLER: SHELDON LAURITSEN						
				TER: 7.25 IN.	DRILLING RIG: N						
				TION: APPROX. 1230 FT. MSL	SAMPLING METH						
				T. BGL): NONE	NO./TYPE OF SA						
				ON: GROUTED TO SURFACE; TAGGED	BEGIN DRILLING						
				. BGL): 6	END DRILLING: 1						
the case	>-	AL.	ο.,		3444444		The second secon				
DEPTH (feet)	SAMPLE RECOVERY	ANALYTIC SAMPLE	HNU HDSP (ppm)	LITHOLOGIC DESCRIPTI	ON	GRAPHIC LOG	COMMENTS				
			<u></u>	SOIL: Dark brown, silt with some clay cobble to 3" dia, angular, dry.	limestone, up	VOV	- All recovery intervals are				
				LIMESTONE: Gravel angular to subangular, a 1.5 in. Coarse grained, some with fossils and replacement. some fine grained.		000	approximate. - -				
5-				LIMESTONE GRAVEL, most angular to subang subrounded, 3 to 10mm dia.			-5				
				LIMESTONE, Pale yellowish orange (10YR 8/ orange (10YR 7/4), Crystalline, calcite repla black oxide, some anhydrite, 5 to 10mm long	scement, 10%		Sample ID: SKG-SB-09 (5.0').				
	, , , , , , , , , , , , , , , , , , , ,			openings partially infilled w/calcite. $TD = 6.0 \text{ feet.}$		- No water detected during drilling.					
10-							- -10				
15-							- -15				
15-											
20-							<b>−20</b>				
	•										
	1										
25-	]										
	File: I	3KGS	309.L	06		A company of the control of the cont	_				

WATER FOUND (F	T, BGL); NONE	NO./TYPE OF SAMPLES: 1 SOI	L SAMPLE
BORING COMPLETI	ON: GROUTED TO SURFACE; TAGGED	BEGIN DRILLING: 1115 4/22/94	4
TOTAL DEPTH (F)	Г. BGL): 21	END DRILLING: 1200 4/22/94	
SAMPLE RECOVERY ANALYTICAL SAMPLE HNU HDSP (ppm)	LITHOLOGIC DESCRIPTI	GRAPHIC ON LOG	COMMENTS
5-	SOIL: Dark brown, silt with some clay cobble to 3" dia, angular, dry.  LIMY CLAY: With limestone, very pale orange to pale yellowish orange (10YR 8/6). Grains 3mm to 50mm, damp.	e (10YR 8/2)	All recovery intervals are approximate5 -10
15-	LIMESTONE GRAVEL: .5 to 1.5 inches in leng Microcrystalline calcareous white pieces, ve orange (10YR 8/2) to dark yellowish orange MARL: Color very pale orange (10YR 8/2) to yellowish orange (10YR 6/6).  Same as above, MARL, about 35% limestone. MARLY LIMESTONE: orange mottling, bandin	ery pale (10YR 6/6). 0 dark	<b>−</b> 45
25-	fossils 5mm or smaller, dark oxide staining. orange (10YR 8/2) to grayish orange (10YF  TD = 21.0 feet.	Very pale	-20 Sample ID: SKG-SB-10 (20.0").  No water detected during drilling.  -25

File: BKGSB10.L0G

# Appendix D

Analytical Results for Background Metals

1000	San Area San Area		1.33.3			11 12 12		3.4					$\sqrt{\alpha} = \sqrt{\alpha}$	\$ 30 h				W. The second	3 1 3 41 3 2 3 4 4	100	NE -
N.										Table 18 Aug.											
									$X_i^*$							10 H					
						1.0	e di avere,	e e e e e e e e e e e e e e e e e e e													
								e sty				A									
											Milita										
									4												
						400															
			No.																		
										4.14											
					A STAN																
															19,40 × 184						1
			t Park					31 M				ja s							Ne sun's		
																			Your Transfer of the Control of the		7 7 7 7 3 3 3
																				447	
							Name of							Asia. Maria						Santa III. Ngj	
	King and								414										4.4.9		
											Maria Nas						a de Jarie A de Jarie				4
				Alexander The Mark																A No.	ing Sel Selection
No.				Mag.																	
						14.57			Šatili.												
																					MA
	and the second	Milita															erika ili 189 Maria di Santa				1877
																	$\chi_{i+1} = \frac{1}{i}$				
																				1	vi vi
			Virginia a																		
						ka biy							1								
				TV-							519						4.5				
																	Nagaran Georgia				
															a jegita Kajaran						
												Jan (									
								Militaria Distrib												Magnetic Pagnetics	
			N.						W. A.												
					Mary C.																
Service Services						Maria.															
													an an Aria Marana								
														NA 4							
																		S. Alver			
and Marie																					
		May 1						5 15 N											v si		
																	arija di ka Karanta				
1								NA CO													
		vi Vi																			V d
																					Ų, į
																				101	
				\$25 kg 25.																	
																					The state of the s
			in a figur Singa war												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
							100 m											Boll Co			
						44 July 19															No.
														e de V			4779				
			J. Aye	and the					a Mily Sagana					til i til st Lighter gråd	e i Tillia. Hari Akay B				id y		
		100	CONTRACTOR				the second			4.5					1.37	12.5					(



May 31, 1994

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

REF: QC Deliverables For NET Job #'s 94.02697, 94.02853 and 94.02856 Subcontract 712460.05000-C1

Dear Ms. Roberts,

As follow-up to my letter of May 23, 1994, included here are results of the ICP spectral analysis for Sn and Method of Standard Additions (MSA) analysis for Se, GFAA.

* Tin Spectral Analysis:

A graph showing a spectral diagram for Sn analysis is included here for all samples with an absolute value > the Sn MDL. Spectral analysis shows no detection of Sn, wavelength 224.605nm. The high negative result was caused by a matrix interference at the Lower Background Correction Point (LBGC).

* Se, MSA Analysis:

NET Bartlett sample numbers 258108, 258109 and 258110 (NET Rockford sample numbers 135574, 135575 and 135576) were analyzed using MSA due to poor matrix spike and post-digestion spike recoveries during Se, GFAA analysis. In order to obtain acceptable MSA spike recoveries, the samples were diluted 100x. The calculated MSA results for these samples is <20.0ug/g.

Raw data is attached.

Please call if you have any questions or if you need any additional information.

Rav Kalicki

Quality Assurance Coordinator

cc: Ms. Sandy Czarnecki
ES Raleigh Durham
1 Harrison Park
401 Harrison Oaks Blvd.
Suite 210
Cary, NC 27513





May 31, 1994

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

REF: QC Deliverables For NET Job #'s 94.02697, 94.02853 and 94.02856 Subcontract 712460.05000-C1

Dear Ms. Roberts,

Enclosed is the original QC Report for Se, GFAA analysis.

Also enclosed are corrected pages 9 through 11 of job #94.02856 reflecting the Method of Standard Additions (MSA) analysis for Se, GFAA. Raw data for MSA analysis was sent with my May 31st letter.

Thank you for your follow-up on this project and please call if you have any questions or if you need any additional information.

Ray Kalicki Quality Assurance Coordinator

cc: Mr. David Glover
ES Raleigh Durham
1 Harrison Park
401 Harrison Oaks Blvd.
Suite 210

Cary, NC 27513



• •

258108

## ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200

Sample No. :

05/16/1994

Suite 200 Austin, TX 78754 NET Job No.: 94.02856

Sample Description:

BKG-SB01(4.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 09:40 IEPA Cert. No. 100221 · Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

CORRECTED REPORT

Parameter Results Units Date of Method Analyst Batch No. Analytical Analysis PQL Prep/Run Method Solids, Total 92.7 % 05/04/1994 0.1 dsf 923 2540 (4) METALS - ICP 2 Non-Aq Complete 05/09/1994 jmt 63 6010(1) 200.7(3) ug/g 245 605 6010 (1) Aluminum, ICP 790 ug/g 05/09/1994 5.0 jmt 205 13 'senic, GFAA <2.2 S,D10 ug/g 05/16/1994 0.20 dnc 7060 (1) Jarium, ICP 3.5 05/09/1994 1.0 jmt 245 675 ug/g 6010 (1) 245 646 Cadmium, ICP <0.54 05/09/1994 0.50 jmt 6010 (1) ug/g <2.0 05/09/1994 2.0 245 636 Chromium, ICP ug/g imt 6010 (1) Copper, ICP 245 858 0.61 05/09/1994 0.50 jmt 6010 (1) ug/g 910 245 683 05/09/1994 1.0 Iron, ICP ug/g jmt 6010 (1) Lead, AA 58 ug/g 05/04/1994 2.2 emh 205 222 7420 (1) Hercury, CVAA <0.03 05/11/1994 0.02 jmt 200 318 ug/g 7471 (1) Nickel, AA 26 05/11/1994 1.6 emh 205 100 7520 (1) S ug/g <20 205 9 Selenium, GFAA 05/15/1994 0.20 dmc 7740 (1) ug/g 89 801 4.8 2.5 Silver, AA ug/g 05/05/1994 jmt 7760 (1) <54 Tin, ICP 05/09/1994 50 imt 245 248 6010 (1) ug/g Zinc, ICP 2.1 05/09/1994 1.0 245 641 ug/g jmt 6010 (1) Metals Prep, Nonaqueous Complete 05/06/1994 imt 245 3050 (1) Metals Prep, Hg Nonaqueous Complete 05/11/1994 jmt 200 7471 (1) Metals Prep, Ag Nonaqueous Complete 05/05/1994 mic 89 7760 (1)

##: Parameter analysis performed by the Method of Standard Additions (MSA).

S: Parameter analysis was sub-contracted to another NET location.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258109

NET Job No.: 94.02856

Sample Description:

BKG-SB09(5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 10:45 IEPA Cert. No. 100221 · Date Received: 04/23/1994 Time Received: 09:00

CORRECTED REPORT

WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	98.9		%	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	2,100		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.0 S	5,010	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	7.8		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.51		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.1		ug/g	05/09/1994	0.50	ĵmt	245 858	6010 (1)
Iron, ICP	1,830		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	40 S	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Hercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 S	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<20 S	S,M+	ug/g	05/15/1994	0.20	dinc	245 9	7740 (1)
Silver, AA	4.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	· <51		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

M+ : Parameter analysis performed by the Method of Standard Additions (MSA).

S: Parameter analysis was sub-contracted to another NET location.

Page 10

# ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No. : 258110

Austin, TX 78754

NET Job No.:

94.02856

CORRECTED REPORT

Sample Description:

BKG-SB10(20)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.0		%	05/03/1994	0.1	dsf	924	2540 (4)
NETALS - ICP 2 Non-Aq .	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
*luminum,ICP	1,870		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.2	S,010	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
darium, ICP	6.4		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.55		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	3.7		ug/g	05/09/1994	2.0	jmt	245 <b>6</b> 36	6010 (1)
Copper, ICP	2.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,140		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	44	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	ĵmt	200 318	7471 (1)
Nickel, AA	18	S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<20	S,H+	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<55		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	4.3		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Hetals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.

M+ : Parameter analysis performed by the Method of Standard Additions (MSA).





Rockford Division 3548 35th Street Rockford, IL 61109 Tel: (815) 874-2171 Fax: (815) 874-5622 (800) 807-2877

# ANALYTICAL AND QUALITY CONTROL REPORT

Mr. Brian Wanner NET-MIDWEST INC/BARTLETT 850 West Bartlett Road Bartlett, IL 60103

05/16/1994

94.01454 NET Job Number:

IEPA Cert. No. 100220 WDNR Cert. No. 999447240

Enclosed is the Analytical and Quality Control reports for the following samples submitted to the Rockford Division of NET, Inc. for analysis:

Sample	Sample Description	D <b>at</b> e	Date
<u>Number</u>		<u>Taken</u>	<u>Received</u>
135557 135558 135559 135560 135561 135562 135563 135564 135565 135566 135567 135569 135569 135570 135571 135572 135573 135574	257480, Soil 77./ 257481, Soil 32.7 257482, Soil 81.7 257483, Soil 91.6 258064, Soil 83.7 258065, Soil 83.7 258066, Soil 83.7 258067, Soil 85.2 258069, Soil 83.7 258101, Soil 83.7 258102, Soil 93.7 258103, Soil 93.7 258104, Soil 93.7 258104, Soil 93.7 258105, Soil 93.7 258106, Soil 93.7 258106, Soil 93.7 258107, Soil 93.6 258107, Soil 93.7 258108, Soil 93.7	04/20/1994 04/20/1994 04/20/1994 04/20/1994 04/21/1994 04/21/1994 04/21/1994 04/22/1994 04/22/1994 04/22/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/22/1994	04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994 04/28/1994
135575	258109, Soil 98.9	04/22/1994	04/28/1994
135576	258110, Soil 91.0	04/22/1994	04/28/1994

The Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

National Environmental Testing, Inc. certifies that the analytical results contained herein apply only to the specific samples analyzed.

Reproduction of this analytical report is permitted only in its entirety.

Dîane Lohr, Operations Manager

Rockford Division



#### CASE NARRATIVE

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

05/31/1994

NET Job Number: 94.02697

Project Description: 721460.01 CSSA Background

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms.

The following comments should be noted for the indicated fraction;

#### Metals Analysis

Sample 257480: The sample preparation log indicates the correct weight of sample used during the total digestion process for ICP analysis (2.00g). The ICP run log shows a transcription error in recording the sample weight for sample 257480 and its MSD. The results have been recalculated and presented here: page 2 of the original analytical report and the MS/MSD summary.

Sample 257483: The run log indicates 0.98g of sample digested. The correct amount is 0.99g. Page 5 of your analytical report is presented here with a corrected silver result: 3.7ug/g, not 3.8ug/g as originally reported.

Supporting raw data is attached.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your samples were analyzed. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Approved By:

Ray Kalicki

Quality Assurance Coordinator



Faxed To: David Glover
Engineering Science
Phone: (919) 677-0080
Fax: (919) 677-0118



Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

257480

NET Job No.:

94.02697

Sample Description:

BKG-SS-04

721460.01

CSSA Background

Date Taken: 04/20/1994 Time Taken: 10:15

Date Received:

04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Hethod PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	77.1	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
Aluminum, ICP	29,800	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	<26 \$,0100	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barīum, ICP	133	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	0.67	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	29.3	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	14.1	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	29,600	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	32 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.6 S,010	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600 D10	ug/g	05/06/1994	50	jmt	244	6010 (1)
Zinc, ICP	41.2	ug/g	05/05/1994	1.0	_ jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. D100 : Parameter analysis performed at a 100x dilution due to a matrix interference at lower dilutions. S : Parameter analysis was sub-contracted to another NET location.





Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No. : 257483

NET Job No.: 94.02697

Sample Description:

BKG-SS-08

721460.01 CSSA Background

Date Taken: 04/20/1994 Time Taken: 11:45 IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.6	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
Aluminum, ICP	4,800	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	<11 S,D	50 ug/g	05/03/1994	0.20	dinc	205 13	7060 (1)
um, ICP	20.3	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
mium, ICP	<0.55	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	4.7	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.0	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	4,500	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Hercury, CVAA	0.04	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	23.6 s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2 \$,D	10 ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	3.7	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<500 010	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	7.5	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

CORRECTED REPORT

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

1 : Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions. Parameter analysis was sub-contracted to another NET location.





# QUALITY CONTROL REPORT

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02697

Analyte	Prep Batch Humber	Run Batch Number	Hatrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
Aluminum, ICP*	244	603	HS/HSD (	not recove	ered due	to high	analyte co	ncentrat	ion.			
Bacium, ICP*	244	673	177	133	50.0	ug/g	88.0	198	50.0	ug/g	130.0	38.5
Cedmium, ICP	244	644	28.4	0.67	25.0	ug/g	110.9	31.3	25.0	ug/g	122.5	9.9
Chromium, ICP	244	634	83.2	29.3	50.0	ug/g	107.8	84.2	50.0	ug/g	109.8	1.8
Copper, ICP	244	856	42.0	14.1	25.0	ug/g	111.6	44.7	25.0	ug/g	122.4	9.2
Iron, ICP*	244	681	HS/HSD	not recove	ered due	to high	analyte co	ncentrat	ion.			
Silver, AA	89	798	58.7	3.1	50.0	ug/g	111.2	55.7	50.0	ug/g	105.2	5.5
Zinc, ICP	244	639	93.6	41.2	50.0	ug/g	104.8	87.2	50.0	ug/g	92.0	13.0

*Please see the raw data for post-digestion spike analysis.

CORRECTED REPORT

5.31.9.

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike

MSO = Matrix Spike Duplicate

RPD = Relative Percent Difference





May 23, 1994 Page 1 of 2

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

REF: QC Deliverables For NET Job #'s 94.02697, 94.02853 and 94.02856

Dear Ms. Roberts,

Enclosed are the QC Deliverables for the NET Job #'s listed above submitted according to subcontract 712460.05000-C1.

As, GFAA; Pb, AA; Ni, AA and Se, GFAA were subcontracted to the NET Rockford Division. The Rockford Division Analytical and QC Report is attached with each Job.

* Included with the raw data (sample data sheets) and in summary form on your report are:

Continuing Calibration, Method Blank, Spike Sample Recovery, Replicate Samples and Laboratory Control Sample.

* Included with the raw data (sample data sheets) are:

Initial Calibration, ICP Interference Check Sample (ICP only), Post-Digestion Spike Sample Recovery (if required), Standard Addition Results (if required), ICP Serial Dilutions (performed on NET sample #257481), Preparation Log and Analysis Run Log.

* Also included in your package are:

Instrument Method Detection Limits (required to analyze annually), ICP Element Files showing background correction factors or interelement correction factors and ICP Linear Ranges (Linear Ranges are included with the sample data sheets on the Interference Check Standard for Fe and Al).

Tin, ICP shows results below the reporting limit but with a peculiarly high negative readout. A spectral analysis will be performed to further investigate this.

Se, GFAA requires a Method of Standard Additions. This will be forwarded to you upon receipt.

(Continued...)





May 23, 1994 Page 2 of 2

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

REF: QC Deliverables For NET Job #'s 94.02697, 94.02853 and 94.02856

I will follow-up with you as soon as possible concerning the Sn, ICP and Se, GFAA analysis.

Please call if you have any questions or if you need any additional information.

Sincerely,

Raý Kalicki Quality Assurance

Coordinator

cc: Ms. Sandy Czarnecki
ES Raleigh Durham
1 Harrison Park
401 Harrison Oaks Blvd.
Suite 210

Cary, NC 27513





Fax: (708) 289-5445

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02697

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.01 CSSA Background

Sample	Sample Description	Date	Date
Number		Taken	Received
257480	BKG-SS-04	04/20/1994	04/21/1994
257481	BKG-SS-06	04/20/1994	04/21/1994
257482	BKG-SS-07	04/20/1994	04/21/1994
257483	BKG-SS-08	04/20/1994	04/21/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Ray Kalicki RA Coordinator for:

Jean-Pierre C. Rouanet Operations Manager





# QUALITY CONTROL REPORT

#### CONTINUING CALIBRATION VERIFICATION

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02697

Run	CCA			
Batch	True	Conc.	Percent	
Number	Conc.	Found	Recovery	
603	2.00	2.06	103.0	
673	2.00	2.12	106.0	
644	1.00	1.09	109.0	
634	2.00	2.15	107.5	
856	1.00	1.09	109.0	
681	2.00	2.14	107.0	
316	0.0025	0.0027	108.0	
799	0.500	0.459	91.8	
247	2.12	2.00	106.0	
639	2.00	2.18	109.0	
	8atch Number 603 673 644 634 856 681 316 799 247	Batch True Number Conc.  603 2.00 673 2.00 644 1.00 634 2.00 856 1.00 681 2.00 316 0.0025 799 0.500 247 2.12	Batch True Conc. Number Conc. Found  603 2.00 2.06 673 2.00 2.12 644 1.00 1.09 634 2.00 2.15 856 1.00 1.09 681 2.00 2.14 316 0.0025 0.0027 799 0.500 0.459 247 2.12 2.00	





Fax: (708) 289-5445

# QUALITY CONTROL REPORT

#### BLANK ANALYSIS

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts

05/16/1994

NET Job Number: 94.02697

Analyte	Prep Batch Wumber	Run Batch Number	Blank Analysis Results	Units	Reporting Limit	Analytical Method
Aluminum, ICP	244	604	<5.0	ug/g	5.0	6010 (1)
Barium, ICP	244	674	<1.0	ug/g	1.0	6010 (1)
Cadmium, ICP	244	645	<0.50	ug/g	0.50	6010 (1)
Chromium, ICP	244	635	<2.0	ug/g	2.0	6010 (1)
Copper, ICP	244	857	<0.50	ug/g	0.50	6010 (1)
Iron, ICP	244	682	1.3	ug/g	1.0	6010 (1)
Mercury, CVAA	199	316	<0.02	ug/g	0.02	7471 (1)
litver, AA	89	798	<2.5	ug/g	2.5	7760 (1)
fin, ICP	244	247	<50.0	ug/g	50	6010 (1)
Zinc, ICP	244	640	<1.0	ug/g	1.0	6010 (1)

Advisory Control Limits for Blanks:

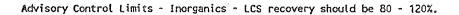
All compounds should be less than the Reporting Limit, except for phthalate esters, toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit.





Fax: (708) 289-5445

# QUALITY CONTROL REPORT


#### LABORATORY CONTROL STANDARD

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts

05/16/1994

NET Job Number: 94.02697

Analyte	Prep	Run			LCS
	Batch	Batch	True	Conc.	
	Humber	Number	Conc.	Found	% Recovery
Atuminum, ICP	244	609	50.0	48.8	97.6
Barium, ICP	244	679	50.0	48.4	96.8
Cadmium, ICP	244	650	25.0	23.5	94.0
Chromium, ICP	244	640	50.0	48.0	96.0
Copper, ICP	244	862	25.0	25.2	100.8
Iron, ICP	244	687	50.0	48.2	96.4
Mercury, CVAA	199	316	0.25	0.27	108.0
Silver, AA	89	798	50.0	48.8	97.6
Zinc, ICP	244	645	50.0	48.3	96.6







## QUALITY CONTROL REPORT

### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02697

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
Aluminum, ICP*	244	603	MS/MSD	not recove	ered due	to high	analyte co	ncentrat	ion.			
Barium, ICP	244	673	177	136	50.0	ug/g	82.0	194	50.0	ug/g	116.0	34.2
Cadmium, ICP	244	644	28.4	0.53	25.0	ug/g	111.5	30.7	25.0	ug/g	120.7	7.9
Chromium, ICP	244	634	83.2	23.1	50.0	ug/g	120.2	82.5	50.0	ug/g	118.8	1.2
Copper, ICP	244	856	42.0	14.1	25.0	ug/g	111.6	43.8	25:0	ug/g	118.8	6.2
Ir ICP*	244	681	MS/MSD	not recove	ered due	to high	analyte co	ncentrat	ion.			
Si , AA	89	798	58.7	3.1	50.0	ug/g	111.2	55.7	50.0	ug/g	105.2	5.5
Zinc, ICP	244	639	93.6	42.1	50.0	ug/g	103.0	85.5	50.0	ug/g	86.8	17.0

^{*}Please see the raw data for post-digestion spike analysis.

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike

= Relative Percent Difference





## QUALITY CONTROL REPORT

#### SPIKES

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02697

Analyte	Prep Batch Number	Run Batch Number	Spiked Sample Result	Sample Result	Spîke Added	Units	Percent Recovery
Mercury, CVAA	199	316	0.24	0.04	0.25	ug/g	80.0

NOTE: Spikes and Duplicates may not be samples from this job.

The values reported above are for post digestion/distillation spikes.

Advisory Control Limits for Spikes - Spike recovery should be 75 - 125%.





## QUALITY CONTROL REPORT

#### DUPLICATES

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02697

Analyte	Prep Batch Number	Run Batch Number	_	Duplicate Analysis	Units	RPD
Solids, Total	199	921	77.1	78.1	%	1.3
Mercury, CVAA		316	0.08	0.09	ug/g	11.8

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.





Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02856

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.05; CSSA F-14 Closures

Sample Number	Sample Description	Date Taken	Date Received
258101	BKG-SB07(24)	04/21/1994	
258102	BKG-SB06(18)	04/21/1994	04/23/1994
258103	BKG-SB08 (5)	04/21/1994	04/23/1994
258104	BKG-SB05(10)	04/21/1994	04/23/1994
258105	BKG-SB04(17.5)	04/21/1994	04/23/1994
258106	BKG-SB03(19.5)	04/21/1994	04/23/1994
258107	BKG-SB02(10)	04/22/1994	04/23/1994
258108	BKG-SB01(4.5)	04/22/1994	04/23/1994
258109	BKG-SB09(5)	04/22/1994	04/23/1994
258110	BKG-SB10(20)	04/22/1994	04/23/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Ray Kalicki QA Coordinator for:

Jean-Pierre C. Rouanet Operations Manager





Tel: (708) 289-3100 Fax: (708) 289-5445

# QUALITY CONTROL REPORT

### CONTINUING CALIBRATION VERIFICATION

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts

05/16/1994

NET Job Number: 94.02856

	Run	CCA			
	Batch	True	Conc.	Percent	
Analyte	Number	Conc.	Found	Recovery	
Aluminum, ICP	605	2.00	1.94	97.0	
Barium, ICP	675	2.00	2.07	103.5	
Cadmium, ICP	646	1.00	0.983	98.3	
Chromium, ICP	636	2.00	1.97	98.5	
Copper, ICP	858	1.00	1.01	101.0	
Iron, ICP	683	2.00	2.04	102.0	
Mercury, CVAA	318	0.0025	0.0023	92.0	
Silver, AA	801	0.500	0.501	100.2	
Tin, ICP	248	2.00	2,05	102.5	
Zinc, ICP	641	2.00	2.05	102.5	





Tel: (708) 289-3100 Fax: (708) 289-5445

## QUALITY CONTROL REPORT

#### BLANK ANALYSIS

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02856

	Prep Batch	Run Batch	Blank Analysis		Reporting	Analytical
Analyte	Number	Humber	Results	Units	Limit	Method
Aluminum, ICP	245	605	<5.0	ug/g	5.0	6010 (1)
Barium, ICP	245	675	<1.0	ug/g	1.0	6010 (1)
Cedmium, ICP	245	646	<0.50	ug/g	0.50	6010 (1)
Chromium, ICP	245	636	<2.0	ug/g	2.0	6010 (1)
Copper, ICP	245	858	<0.50	ug/g	0.50	6010 (1)
Iron, ICP	245	683	2.6	ug/g	1.0	6010 (1)
Mercury, CVAA	200	318	<0.02	ug/g	0.02	7471 (1)
Silver, AA	89	798	<2.5	ug/g	2.5	7760 (1)
Tin, ICP	245	248	<50	ug/g	50	6010 (1)
Zinc, ICP	245	641	1.2	ug/g	1.0	6010 (1)

Advisory Control Limits for Blanks:

All compounds should be less than the Reporting Limit, except for phthalate esters, toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit.





# QUALITY CONTROL REPORT

#### LABORATORY CONTROL STANDARD

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02856

	Ргер	Run			
	Batch	Batch	True	Conc.	LCS
Analyte	Number	Number	Conc.	Found	% Recovery
Aluminum, ICP	245	605	50.0	50.2	100.4
Barium, ICP	245	675	50.0	45.0	90.0
Cadmium, ICP	245	646	25.0	21.7	86.8
Chromium, ICP	245	636	50.0	46.1	92.2
Copper, ICP	245	858	25.0	23.0	92.0
Iron, ICP	245	683	50.0	47.7	95.4
Mercury, CVAA	200	318	0.25	0.23	92.0
Silver, AA	89	<b>79</b> 8	50.0	48.8	97.6
Zinc, ICP	245	641	50.0	45.2	90.4

Advisory Control Limits - Inorganics - LCS recovery should be 80 - 120%.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

## QUALITY CONTROL REPORT

### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02856

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	HSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
Aluminum, ICP*	245	605	MS/MSD d	diluted ou	it due to	high a	nalyte conc	entratio	n.			
Barium, ICP	245	675	116	69.4	50.0	ug/g	93.2	114	50.0	ug/g	89.2	4.4
Cadmium, ICP	245	646	23.9	<0.60	25.0	ug/g	95.6	23.4	25.0	ug/g	93.6	2.1
Chromium, ICP	245	636	63.3	16.3	50.0	ug/g	94.0	60.0	50.0	ug/g	87.4	7.3
Copper, ICP	245	858	32.1	8.4	25.0	ug/g	94.8	33.3	25.0	ug/g	99.6	4.9
Iron, ICP*	245	683	MS/MSD c	diluted ou	it due to	high a	nalyte conc	entratio	n.			
Mercury, CVAA	200	318	0.23	<0.02	0.25	ug/g	92.0	0.24	0.25	ug/g	96.0	4.3
Silver, AA	89	798	58.7	3.1	50.0	ug/g	111.2	55.7	50.0	ug/g	105.2	5.5
Zinc, ICP*	245	641	68.6	21.8	50.0	ug/g	93.6	53.3	50.0	ug/g	63.0	39.1

^{*}Please see the raw data for post-digestion spike analysis.

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference





Tel: (708) 289-3100 Fax: (708) 289-5445

## QUALITY CONTROL REPORT

#### DUPLICATES

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts

05/16/1994

NET Job Number: 94.02856

Analyte	Prep Batch Number	Run Batch Number	Original Analysis	Duplicate Analysis	Units	RPD
Solids, Total		923	81.6	82.9	%	1.6
Solids, Total		924	98.9	98.3	%	0.6

NOTE: Spikes and Duplicates may not be samples from this job.

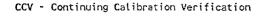
RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.





Tel: (708) 289-3100 Fax: (708) 289-5445


# QUALITY CONTROL REPORT

#### CONTINUING CALIBRATION VERIFICATION

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02853

	Run	CCA		
	Batch	True	Conc.	Percent
Analyte	Number	Conc.	Found	Recovery
Aluminum, ICP	605	2.00	1.94	97.0
Barium, ICP	675	2.00	2.07	103.5
Cadmium, ICP	646	1.00	0.983	98.3
Chromium, ICP	636	2.00	1.97	98.5
Copper, ICP	858	1.00	1.01	101.0
Iron, ICP	683	2.00	2.04	102.0
Mercury, CVAA	318	0.0025	0.0023	92.0
Silver, AA	801	0.500	0.501	100.2
Tin, ICP	248	2.00	2.05	102.5
Zinc, ICP	641	2.00	2.05	102.5







## QUALITY CONTROL REPORT

### BLANK ANALYSIS

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02853

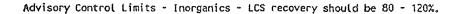
Analyte	Prep Batch Number	Run Batch Number	Blank Analysis Results	Units	Reporting Limit	Analytical Method
Mistyce	Halloci	Nonect	Results	Oilits	Limit	nection
Aluminum, ICP	245	605	<5.0	ug/g	5.0	6010 (1)
Barium, ICP	245	675	<1.0	ug/g	1.0	6010 (1)
Cadmium, ICP	245	646	<0.50	ug/g	0.50	6010 (1)
Chromium, ICP	245	636	<2.0	ug/g	2.0	6010 (1)
Copper, ICP	245	858	<0.50	ug/g	0.50	6010 (1)
Iron, ICP	245	683	2.6	ug/g	1.0	6010 (1)
Mercury, CVAA	200	318	<0.02	ug/g	0.02	7471 (1)
îlver, AA	89	798	<2.5	ug/g	2.5	7760 (1)
fin, ICP	245	248	<50	ug/g	50	6010 (1)
Zinc, ICP	245	641	1.2	ug/g	1.0	6010 (1)

Advisory Control Limits for Blanks:

All compounds should be less than the Reporting Limit, except for phthalate esters, toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit.






# QUALITY CONTROL REPORT

### LABORATORY CONTROL STANDARD

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02853

	Prep	Run			
	Batch	Batch	True	Conc.	LCS
Analyte	Number	Number	Conc.	Found	% Recovery
Aluminum, ICP	245	605	50.0	50.2	100.4
Barium, ICP	245	675	50.0	45.0	90.0
Cadmium, ICP	245	646	25.0	21.7	86.8
Chromium, ICP	245	636	50.0	46.1	92.2
Copper, ICP	245	858	25.0	23.0	92.0
Iron, ICP	245	683	50.0	47.7	95.4
Mercury, CVAA	200	318	0.25	0.23	92.0
Silver, AA	89	798	50.0	48.8	97.6
Zinc, ICP	245	641	50.0	45.2	90.4







## QUALITY CONTROL REPORT

## MATRIX SPIKE/MATRIX SPIKE DUPLICATE

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02853

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spîke Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
Aluminum, ICP*	245	605	MS/MSD	diluted ou	it due to	high ar	nalyte conc	entratio	n.			
Barium, ICP	245	675	116	69.4	50.0	ug/g	93.2	114	50.0	ug/g	89.2	4.4
Cadmium, ICP	245	646	23.9	<0.60	25.0	ug/g	95.6	23.4	25.0	ug/g	93.6	2.1
Chromium, ICP	245	636	63.3	16.3	50.0	ug/g	94.0	60.0	50.0	ug/g	87.4	7.3
Conner, ICP	245	858	32.1	8.4	25.0	ug/g	94.8	33.3	25.0	ug/g	99.6	4.9
ICP*	245	683	MS/MSD	diluted ou	it due to	high at	nalyte conc	entratio	n.			
Me. Lury, CVAA	200	318	0.23	<0.02	0.25	ug/g	92.0	0.24	0.25	ug/g	96.0	4.3
Silver, AA	89	798	58.7	3.1	50.0	ug/g	111.2	55.7	50.0	ug/g	105.2	5.5
Zinc, ICP*	245	641	68.6	21.8	50.0	ug/g	93.6	53.3	50.0	ug/g	63.0	39.1

^{*}Please see the raw data for post-digestion spike analysis.

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike

~0 = Matrix Spike Duplicate

3 = Relative Percent Difference





## QUALITY CONTROL REPORT

#### DUPLICATES

ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 Ms. Susan Roberts 05/16/1994

NET Job Number: 94.02853

Analyte	Prep Batch Number	Run Batch Number	•	Duplicate Analysis	Units	RPD
Solids, Total		923	81.6	82.9	%	1.6
Solids, Total		924	98.9	98.3	%	0.6

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.



## NET Midwest, Bartlett Division

#### KEY TO ABBREVIATIONS and METHOD REFERENCES

<	: Less than; When appearing in the results column indicates the analyte was not detected at or above the reported value.
mg/L	: Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
ug/g	: Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
ug/L	: Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
ug/Kg	: Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
B	: Sample result flag indicating that the analyte was also found in the method blank analysis.  The value after the B indicates the concentration found in the blank analysis.
D	: Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
J	: Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
TCLP	: These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
n	Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
Dry Weight (dw)	: When indicated, the results are reported on a dry weight basis. The contribution of the moisture content in the sample is subtracted when calculating the concentration of the analyte.
ICP	: Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
AA	: Indicates analysis was performed using Atomic Absorption Spectroscopy.
GFAA	: Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
PQL	Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Method Referen	nces
(1)	Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.
(2)	ASTM "American Society for Testing Materials
(3)	Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.
(4)	See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.
5)	Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis

of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

Drinking Water, " USEPA 600/4-88/039, Rev. 1988.

(6)

Methods 500 through 599: see "Methods for the Determination of Organic Compounds in



### CASE NARRATIVE

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02697

Project Description: 721460.01 CSSA Background

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms.

The following comments should be noted for the indicated fraction;

### Metals Analysis

As, GFAA; Pb, AA; Ni, AA and Se, GFAA were analyzed at NET Rockford Division. Supporting QC documentation from NET Bartlett and NET Rockford will follow.

Ag, AA: Silver could not be analyzed by ICP due to a matrix interference during ICP aspiration. Silver was analyzed by AA.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your samples were analyzed. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Approved By:

Ray Kalicki

Quality Assurance Coordinator





Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02697

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.01 CSSA Background

Sample	Sample Description	Date	Date
Number		Taken	Received
257480	BKG-SS-04	04/20/1994	04/21/1994
257481	BKG-SS-06	04/20/1994	04/21/1994
257482	BKG-SS-07	04/20/1994	04/21/1994
257483	BKG-SS-08	04/20/1994	04/21/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Ray Kelick:

QA Coordinator for

Jean-Pierre C. Rouanet Operations Manager





Bartlett Division 850 W. Bartlett Ro. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-3100

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No. : 2

257480

Austin, TX 78754 NET Job No.:

94.02697

Sample Description:

BKG-SS-04

721460.01 CSSA

CSSA Background

Date Taken: 04/20/1994 Time Taken: 10:15 IEPA Cert. No. 100221 Date Received: 04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	77.1	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
Aluminum, ICP	30,400	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	<26 S,D100	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	136	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	0.68	ug/g	05/05/1 <b>9</b> 94	0.50	jmt	244 644	6010 (1)
Chromium, ICP	29.9	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	14.1	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	30,100	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36 s	ug/g	05/04/1994	2.2	emh	205 222	·7420 (1)
Mercury, CVAA	<0.03	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	32 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.6 S,D16	) ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600 D10	ug/g	05/06/1994	50	jmt	244	6010 (1)
Zinc, ICP	42.1	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Monaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

010: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

D100: Parameter analysis performed at a 100x dilution due to a matrix interference at lower dilutions.

S: Parameter analysis was sub-contracted to another NET location.





## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 257481

NET Job No.: 94.02697

Sample Description:

BKG-SS-06

721460.01

CSSA Background

04/20/1994 Date Taken:

Time Taken: 12:15 IEPA Cert. No. 100221

04/21/1994 Date Received:

Time Received: 18:30 WDNR Cert. No. 999447130

Parameter			Method PQL	Analyst	Batch No. Prep/Run	Analytical Method		
Solids, Total	82.5		%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete					jmt	62	6010(1) 200.7(3)
minum, ICP	30,300		ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Jenic, GFAA	15.8	S	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	112		ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<Ò.61		ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	24.2		ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	10.3		ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	22,800		ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Hercury, CVAA	0.03		ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	24	Ş	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,D10	ug/g	05/15/1994	0.20	mjs	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600	D10	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	30.6		ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete			05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994 Sample No. :

257482

Austin, TX 78754

NET Job No.:

94.02697

Sample Description:

BKG-SS-07

721460.01

CSSA Background

Date Taken: 04/20/1994 Date Received: 04/21/1994

Time Taken: 11:27 Time Received: 18:30 IEPA Cert. No. 100221 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis			Batch No. Prep/Run	Analytical Method	
				•					
Solids, Total	81.5		%	05/02/1994	0.1	knj	921	2540 (4)	
METALS - ICP 2 Non-Aq	Compelte					jmt	62	6010(1) 200.7(3)	
Aluminum, ICP	8,090		ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)	
Arsenic, GFAA	<12	S,050	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)	
Barium, ICP	40.9		ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)	
Cadmium, ICP	<0.61		ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)	
Chromium, ICP	8.7		ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)	
Copper, ICP	4.2		ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)	
Iron, ICP	7,500		ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)	
Lead, AA	49	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)	
Mercury, CVAA	0.04		ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)	
Nickel, AA	25	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)	
Selenium, GFAA	<2.5	S,D10	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)	
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)	
Tin, ICP	<600	D10	ug/g	05/06/1994	50	jmt	244 247	6010 (1)	
Zinc, ICP	12.6		ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)	
Metals Prep, Nonaqueous	Complete			05/04/1994		jmt	244	3050 (1)	
Metals Prep, Hg Nonaqueous	Complete			05/03/1994		jmt	199	7471 (1)	
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)	

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. 050 : Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.

S : Parameter analysis was sub-contracted to another NET location.



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

257483 Sample No. :

NET Job No.: 94.02697

Sample Description:

BKG-SS-08

CSSA Background 721460.01

Date Taken: 04/20/1994 Time Taken: 11:45 IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.6	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
minum, ICP	4,800	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
senic, GFAA	<11 S,05	0 ug/g	05/03/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	20.3	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.55	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	4.7	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.0	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	4,500	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Wickel, AA	23.6 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2 \$,01	0 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	3.8	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<500 D10	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	7.5	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

^{050 :} Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.

#### NET Midwest, Bartlett Division

#### KEY TO ABBREVIATIONS and METHOD REFERENCES

<		s than; When appearing in the results column indicates the analyte was not detected at or ove the reported value.
mg/L		ncentration in units of milligrams of analyte per liter of sample. Measurement used for second second samples. Can also be expressed as parts per million (ppm).
ug/g		ncentration in units of micrograms of analyte per gram of sample. Measurement used for n-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
ug/L		ncentration in units of micrograms of analyte per liter of sample. Measurement used for decous samples. Can also be expressed as parts per billion (ppb).
ug/Kg		ncentration in units of micrograms of analyte per kilogram of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
В		uple result flag indicating that the analyte was also found in the method blank analysis. e value after the B indicates the concentration found in the blank analysis.
D		uple result flag indicating that the reported concentration is from an analysis performed at filution. The value following the D indicates the dilution factor of the analysis.
J		uple result flag indicating that the reported concentration is below the routine reporting nit but greater than the Method Detection Limit. The value should be considered estimated.
TCLP		ese initials appearing in front of an analyte name indicate that the Toxicity Characteristic aching Procedure (TCLP) was performed for this test.
%	: Per	reent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
Dry Weight (dw)		en indicated, the results are reported on a dry weight basis. The contribution of the sture content in the sample is subtracted when calculating the concentration of the analyte.
I CP	: Ind	dicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
AA	: Ind	dicates analysis was performed using Atomic Absorption Spectroscopy.
GFAA	: Ind	dicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
PQL		nctical Quantitation Limit; the lowest level that can be reliably achieved within specified nits of precision and accuracy during routine laboratory operating conditions.
Method Reference	es	
(1)		s 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, ition, 1986.
(2)	A" MTZA	Unerican Society for Testing Materials
(3)	4	s 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 79-020, Rev. 1983.
(4)	See "St	tandard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.

(6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

· (5)

Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis



Engineering 'ence Inc

Austin, Texas

# CHAIN OF CUSTODY RECORD

PROJECT NO.		PROJECT N								/		Analysis	Requir	red /
121460.C	1	CSSA	BA	2K6	round	RS				ZK		159 St. 4	3/	7777
SAMPÜERS (S)		Ew	7	fron	PAR	NO. OF CONTAINERS		/\ /\$/						REMARKS
SAMPLE NO.	DATE	TIME	MATRI	X	SAMPLE DESCRIPTION	žŏ								
BKG-55-04 H	120/94	1015	Soil			1	XX	X	X	$X  _{X}$				
5K4-55-060 G	7/20/94	1215		NACE LEGISLATION OF THE PARTY O		ţ			$ \hat{\ } $			-		
BKg-45 01		1127	- Section - Sect	KINDROMONICON										Method 7471
3K1 % 08	V	1145	V	- Contract of the Contract of		1	1	8		V				OK to replace
														method juzo
														per Sugar
														Roberts 4/25
				The state of the s										70
				at Michigan Charles										
													- Branch and American	proserved on ice
	0	100			4/2/1/4 11:00									/
Relinquished by:	Astorláti 7 ()	for Files	Date #20/7	GE81	Received by: (Signature)	, Reli	nquish	ed by:	: (Sig	gnatur	e)	Date	Time	Received by: (Signature)
Relinquished by:	(Signatu	nte)	Date	Time	Received by: (Signature)	Reli	nquish	ed by:	: (Sig	gnatur	e)	Date	Time	Received by: (Signature)

"Relinquished by" and "Received by" boxes <u>must</u> be completed for all transfers.

White: laboratory returns with data, yellow: laboratory copy, plnk: sampler copy



### CASE NARRATIVE

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02853

Project Description: 721460.01 CSSA Background

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms.

The following comments should be noted for the indicated fraction;

#### Metals Analysis

As, GFAA; Pb, AA; Ni, AA and Se, GFAA were analyzed at NET Rockford Division. Supporting QC documentation from NET Bartlett and NET Rockford will follow.

Ag, AA: Silver could not be analyzed by ICP due to a matrix interference during ICP aspiration. Silver was analyzed by AA.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your samples were analyzed. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Approved By:

Quality Assurance Coordinator





Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02853

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.01; CSSA Background

Sample	Sample Description	Date	Date
Number		Taken	Received
258064 258065 258066 258067 258068 258069	BKG-SS-05 BKG-SS-03 BKG-SS-02 BKG-SS-01 BKG-SS-09 BKG-SS-10	04/21/1994 04/21/1994 04/22/1994 04/22/1994 04/22/1994 04/22/1994	04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

pproved by:

Jean-Pierre C. Rouanet **Cperations Manager** 



## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994 Sample No. :

258064

NET Job No.:

94.02853

Sample Description:

BKG-SS-05

721460.01; CSSA Background

04/21/1994 Date Taken: Time Taken: 15:10 IEPA Cert. No. 100221

04/23/1994 Date Received: Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of	Method	Analyst	Batch No.	•
				Analysis	PQL		Prep/Run	Method
Solids, Total	83.2		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	5,060		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	20	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	33.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	4.8		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,950		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	50	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Hercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,010	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60		ug/g	05/09/1994.	50	jmt	245 248	6010 (1)
Zinc, ICP	15.8		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Netals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

S : Parameter analysis was sub-contracted to another NET location.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No.: 258065

NET Job No.:

94.02853

Sample Description:

BKG-SS-03

721460.01; CSSA Background

Date Taken: 04/21/1994 Time Taken: 17:15 IEPA Cert. No. 100221

Date Received: 04/23/1994

09:00 Time Received: WDNR Cert. No. 999447130

Paramete <b>r</b>	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	83.3		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
'luminum,ICP	20,300		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	20 s	;	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	69.4		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	16.3		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	8.4		ug/g	05/09/1994	0.50	jmt	245 <b>85</b> 8	6010 (1)
Iron, ICP	17,000		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48 S	;	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.05		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26 S	;	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 S	,010	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/09/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	21.8		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonsqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 258066

NET Job No.: 94.02853

Sample Description:

BKG-SS-02

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 08:15 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Resul ts		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
				•			•	
Solids, Total	85.0		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	17,500		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	26	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	76.3		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	15.2		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.9		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	15,300		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	49	\$	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.02		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	29	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,D10	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	3.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	20.3		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1) "
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

S : Parameter analysis was sub-contracted to another NET location.





Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Sample No. :

NET Job No.:

258067

Suite 200 Austin, TX 78754

05/16/1994

94.02853

Sample Description:

BKG-SS-01

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 09:10 IEPA Cert. No. 100221

Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	80.1		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
'minum, ICP	22,300		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
enic, GFAA	21 5	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	73.3		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.62		<b>u</b> g/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	18.3		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	7.9		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	16,900		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	56	S	ug/g	05/04/1994	2.2	enh	205 222	.7420 (1)
Mercury, CVAA	0.04		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	28 5	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.5	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<62		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	34.4		ug/g	05/09/1994	1.0	jmt	245 641"	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Honaqueous	Complete			05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No.: 258068

NET Job No.: 94.

Austin, TX 78754

94.02853

Sample Description:

BKG-SS-09

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 10:17 · IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	85.2		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	10,700		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	25	S	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	65.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	13.4		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, 1CP	17.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	11,900		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	92	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24.3	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,D10	ug/g	05/16/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3.1		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	90.0		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

S: Parameter analysis was sub-contracted to another NET location.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No.: 2

258069

NET Job No.:

94.02853

Sample Description:

Austin, TX 78754

BKG-SS-10

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 11:13 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.3		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
aminum, ICP	6,280		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	4.7	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	25.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	8.3		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	4.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	5,580		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	25	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,010	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	31.0		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

#### NET Midwest, Bartlett Division

#### KEY TO ABBREVIATIONS and METHOD REFERENCES

<ul> <li>Less than; When appearing in the results column indicates the analyte was not detected a above the reported value.</li> <li>mg/L : Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).</li> </ul>	at or
	)r
ug/g : Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.	
ug/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).	)r
ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement use non-aqueous samples. Can also be expressed as parts per billion (ppb).	i for
Sample result flag indicating that the analyte was also found in the method blank analys The value after the B indicates the concentration found in the blank analysis.	is.
Sample result flag indicating that the reported concentration is from an analysis performs a dilution. The value following the D indicates the dilution factor of the analysis.	ned at
Sample result flag indicating that the reported concentration is below the routine reported limit but greater than the Method Detection Limit. The value should be considered estimated.	
TCLP : These initials appearing in front of an analyte name indicate that the Toxicity Characte Leaching Procedure (TCLP) was performed for this test.	ristic
<pre>% : Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.</pre>	
Dry Weight : When indicated, the results are reported on a dry weight basis. The contribution of the (dw) moisture content in the sample is subtracted when calculating the concentration of the a	
ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.	
AA : Indicates analysis was performed using Atomic Absorption Spectroscopy.	
GFAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.	
PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within spectations of precision and accuracy during routine laboratory operating conditions.	ified
Method References	
(1) <u>Methods 1000 through 9999:</u> see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.	
(2) ASTM "American Society for Testing Materials	
Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.	
(4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.	

(6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

(5)

Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis

Engineering

'ence Inc

Austin, Texas

Fed X Airbill # by -. 11
8950662431 OK. P. Roberts

## CHAIN OF CUSTODY RECORD

PROJECT NO	1	PROJECT CSSA				BS				ACK OF	7 7. j	Z	7 /	Analy	Ais F	Requi	red
SAMPLEAS U	1/1/1\			8n	foley=	NO. OF		/-	/ 5						//		REMARKS
SAMPLE NO.	DATE	TIME	MATRI	<	SAMPLE DESCRIPTION	20	1		12				<b>Ž</b> /		/	//	
7K6-35-05		1510	Soil				X.	х	X	x	x	X					ICP metals = Al, Br, Ca
3KC. SS. 04	4/21/94	17-15	Soil				x	x	×	X	لد	X					Cr. Cu, Fe, Ag, Tin Zn
BKG-55.032	4/22/94	17-15 17-15 17-15	Soil	-		1	x	*	×		٨,	×				4	
		0910	Soil				Х	χ	X	X	X.	X					
DKG-55-01 BKG-\$-09	4/22/14	1017	Soil			1	X	×	×	×	X	X					
3x6-55-10		1113	Soil				x	×	×	× '		X					
						_											
				$\bot$													
											$\exists$	士	$\perp$				Preserved on ice
	,															$\uparrow$	Cooler llo°C
Refiguith Al		nte)	Date //22/2/	Time 170D	Received by: (Signature)	Rel	inqui	shec	l by:	(Sig	nat	nte)		Date		Time	Received by: (Signature)
Relinquished/o	y: (Signati	ure)	Date	Time	Received by: (Signature)	Rel	inqui	shec	by:	(Sig	nat	ure)		Date	a de la constanta de la consta	Time	Received by: (Signature)
•					<u> </u>									J			

[&]quot;Relinquished by" and "Received by" boxes must be completed for all transfers.

White: laboratory returns with data, yellow: laboratory copy, pink: sampler copy



#### CASE NARRATIVE

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

05/16/1994

NET Job Number: 94.02856

Project Description: 721460.05 CSSA F-14 Closure

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms.

The following comments should be noted for the indicated fraction;

### Metals Analysis

As, GFAA; Pb, AA; Ni, AA and Se, GFAA were analyzed at NET Rockford Division. Supporting QC documentation from NET Bartlett and NET Rockford will follow.

Ag, AA: Silver could not be analyzed by ICP due to a matrix interference during ICP aspiration. Silver was analyzed by AA.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your samples were analyzed. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Ray Kalicki

Quality Assurance Coordinator





Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

NET Job Number: 94.02856

Enclosed is the Quality Control Data and Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 721460.05; CSSA F-14 Closures

Sample	Sample Description	Date	Date
Number		Taken	Received
258101 258102 258103 258104 258105 258106 258107 258108 258109 258110	BKG-SB07(24) BKG-SB06(18) BKG-SB08(5) BKG-SB05(10) BKG-SB04(17.5) BKG-SB03(19.5) BKG-SB02(10) BKG-SB01(4.5) BKG-SB09(5) BKG-SB10(20)	04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/21/1994 04/22/1994 04/22/1994 04/22/1994	04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994 04/23/1994

Results are presented on a dry weight basis.

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Quality Control report is generated on a batch basis. information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

QA Coerdinator fol:

Jean-Pierre C. Rouanet Operations Manager



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

258101

NET Job No.:

94.02856

Sample Description:

BKG-SB07(24)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 10:20 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.8		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,130		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	2.7	\$	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	4.1		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cedmium, ICP	<0.52		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.5		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,810		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	51	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	•	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	20	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.4		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52		ug/g	05/09/1994 .	50	jmt	245 248	6010 (1)
Zinc, ICP	2.2		ug/g	05/09/1994	1.0	jmt "	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

S : Parameter analysis was sub-contracted to another NET location.





#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No.:

258102

NET Job No.:

94.02856

Sample Description:

BKG-SB06(18)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 12:05 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.7		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP Z Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
" uminum, ICP	2,200		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
enic, GFAA	4.3	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
warium, ICP	6.6		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.53		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.4		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	3.5		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,070		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	<b>3</b> 6	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,D10	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	4.5		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<53		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonequeous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{&#}x27;10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200

05/16/1994 Sample No.:

258103

Suite 200 Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB08(5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 14:38 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.3		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Atuminum, ICP	1,300		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.1 \$	,D10	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	3.8		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,200		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	46 S		ug/g	05/04/1994	2.2	emh	205 222	.7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 S		ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.1 S	,010	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	5.2		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	1.8		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. : 258104

NET Job No.: 94.02856

Sample Description:

BKG-SB05(10)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 15:38 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.8		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
'luminum,ICP	1,650		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	2.1	S	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
sarium, ICP	6.9		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.53		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.7		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,360		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	39	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	20	S	ug/g	05/11/1994	1.6	enth	205 100	7520 (1)
Selenium, GFAA	<2.1	S,010	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<53		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	3.2		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Monaqueous	Complete			05/05/1994		mic	89	7760 (1)

710 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC.

8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 258105

NET Job No.: 94.02856

Sample Description:

BKG-SB04(17.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 16:35 IEPA Cert. No. 100221

04/23/1994 Date Received:

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of	Method	Analyst		Analytical
				Analysis	PQL		Prep/Run	Method
Solids, Total	95.6		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,070		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.1	S,010	ug/g	05/16/1994	0.20	dac	205 13	7060 (1)
Barium, ICP	5.3		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.2		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,660		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	42	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,010	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	4.6		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.6		ug/g	05/09/1994	1.0	jac	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Mg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 258106

NET Job No.:

94.02856

Sample Description:

BKG-SB03(19.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 17:55 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.5		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
''uminum,ICP	1,100		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
enic, GFAA	<2.2	5,010	<b>u</b> g/g	05/16/1994	0.20	dnc	205 13	7060 (1)
parium, ICP	4.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.2		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,190		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	52	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Hickel, AA	24	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2	S,010	ug/g	05/15/1994	0.50	dnc	205 9	7740 (1)
Silver, AA	4.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<b>&lt;</b> 54		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Monaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{10:} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

258107

Suite 200 Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB02(10)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 08:45 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.5	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,700	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.1 S,D	10 ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	5.5	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.0	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	2,010	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48 S	ug/g	05/04/1994	2.2	emh	205 222	.7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	23 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 S,0	10 ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	4.3	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Hetals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.:

258108

NET Job No.:

94.02856

Sample Description:

BKG-SB01(4.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 09:40 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.7		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
'uminum, ICP	790		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.2	S,D10	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	3.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	0.61		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
iron, ICP	910		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	58 9	s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26	s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2	s,010	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	4.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<b>&lt;5</b> 4		ug/g	05/09/1994	- 50	jmt	245 248	6010 (1)
Zinc, ICP	2.1		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. : 258109

NET Job No.: 94.02856

Sample Description:

BKG-SB09(5)

721460.05; CSSA F-14 Closures

04/22/1994 Date Taken: Time Taken: 10:45 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	98.9		%	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Atuminum, ICP	2,100		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.0 S	S,D10	ug/g	05/16/1994	0.20	dimc	205 13	7060 (1)
Barium, ICP	7.8		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.51		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.1		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,830		ug/g	05/09/1994	1.0	jmt	<b>245 68</b> 3	6010 (1)
Lead, AA	40 S	3	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 S	5	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.0 S	S,D10	ug/g	05/15/1994	0.20	dmc	245 9	7740 (1)
Silver, AA	4.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<51		ug/g	05/09/1994.	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Monaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Mg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No. : 258110

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB10(20)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of	Method	Analyst	Batch No.	Analytical
				Analysis	PQL		Prep/Run	Method
Solids, Total	91.0		%	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,870		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
-senic, GFAA	<2.2	S,D10	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
warium, ICP	6.4		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.55		ug/g	05/09/1994	0.50	imt	245 646	6010 (1)
Chromium, ICP	3.7		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,140		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	44	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	18	\$	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<0.22	S	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	3.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<55		ug/g	05/09/1994 .	50	jmt	245 248	6010 (1)
Zinc, ICP	4.3		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



#### NET Midwest, Bartlett Division

#### KEY TO ABBREVIATIONS and METHOD REFERENCES

<	:	Less than; When appearing in the results column indicates the analyte was not detected at or above the reported value.
mg/L	e e	Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
ug/g	*	Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
ug/L	:	Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
ug/Kg	:	Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
8	:	Sample result flag indicating that the analyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
D	a 6	Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
J	:	Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
TCLP	:	These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
%	a a	Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
Dry Weight (dw)	*	When indicated, the results are reported on a dry weight basis. The contribution of the moisture content in the sample is subtracted when calculating the concentration of the analyte.
ICP	*	Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
AA	ę	Indicates analysis was performed using Atomic Absorption Spectroscopy.
GFAA	:	Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
PQL	s o	Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Method Reference	ces	
(1)		hods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, Edition, 1986.
(2)	AST	M "American Society for Testing Materials
(3)		hods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 1/4-79-020, Rev. 1983.

(6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

(5)

Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis

Engineerin

ience inc

Austin, Texas

## CHAIN OF CUSTODY RECORD

PROJECT NO.		PROJECT	NAME/LOCA	TION			•			7			Analy	sis l	Requi	red
121169.05	5	_ (LSSA	F-14 Cl		SHS				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ž.	<u> </u>	7/	/37	7	7	
SAMPLERS/S		s)	Aw	O^	NO. OF CONTAINERS		/							//	//	REMARKS
SAMPLE NO.	DATE	TIME	MATRIX	SAMPLE DESCRIPTION	N O	/r	15					) }/				
THE SECT (24)	"Vaift	1020	Rock		1	X	X	X	X	X	X					ICP metals =
The sprice	4/2/11	1205	Rak		Ì	X	X	Х	X	X	X					Al, Ba, Col, Cr,
BNG-5002 5	4/21/91	1438	Rock			X.	X	X	X	Х	X					Cu Fe Au Tin
[KG-3805(10)	4/21/4	1538	Rock	1		λ	ĸ	X	ス	x	X					In
76-5BO1 (17-3)	4/21/14	163:5	Rock		1	X.	X.	×	×	x	×					
BK6-5B03(19.3)	4/21/94	1	Rock		1	ۍد	Х	٧	×	×	X					
BKG-SB02 (10)	4/22/94	0845	Rock			X	X	X	Х							
BKG-5B01 (4.5)	4/22/14	0940	Pock		1	X	x	X	X	x	X					
3KG-SB09(5)	4/22/94	1045	Rock		1	×		1	x							
BKG-SB10 (20)	4/22/94	1205	Rock			X		1	ኢ		1					Preserved on ice
																Cooler 16°C
																- \ '
Marian K	18tgnaju	ite)	Date Tim 1/22/9/ 17-0		Reli	nqui	shed	d by:	(Si	gnat	ture)		Date	)	Time	Received by: (Signature)
Reliquished by	r: (Signatu	าเө)	Date Tim		Reli	nqui	shed	d by:	: (Si	gnai	ture)		Date	)	Time	Received by: (Signature)

[&]quot;Relinquished by" and "Received by" boxes must be completed for all transfers.

White: laboratory returns with data, yellow: laboratory copy, pink: sampler copy

# Appendix E

**Data Validation Report** 

			왕군의 원인한 그리 한	
	불이 하는데 된 하는데 모르는데 뭐			
		맞이 가격 가는 건강		
				图 医肾髓 经销售
			그리고 그 시간을 모을 보고 있다.	
계대 그렇다 이 어디었다				
	네트리트 시 이번 발표 밝혔다			
	그리 장막이 시 의사를 받는다.			
기사님들은 경기되어 회사				빛은료의 김 당시를
그렇게 없었는 보는 보다				
	17. 글이고 말하고 있는데 그			
	그리다 하다 사이를 살아보니 아니다.			
성상 연락 등 기가 되었다.	and the state of t		그리다는 이 사람이 되었다.	
그는 문제를 내려고 있었다.				
실천하다 상황하다 그 기차의				
			생물 교기를 하는 함께?	
된 경험하다 되었습니다.				
			수 전 나는 얼굴하는 것.	
			가 네 왕인 집합하다는 다	
	医克尔德氏征 医电流			

#### MEMORANDUM

May 31, 1994

To:

FILE

From:

David M. Glover

Subject:

CSSA WMU Closure Data Validation for Background Metals

R My

Metals analyses conducted by National Environmental Testing (NET) for aluminum, arsenic, barium, cadmium, chromium, copper, iron, lead, mercury, nickel, silver, tin, and zinc were reviewed for the twenty (20) soil samples included in NET job numbers 94.02697, 94.02853, and 94.02856. Selenium results are incomplete at this time; analysis by the method of standard addition (MSA) was required, validation of selenium results has been deferred until MSA results are available.

Data validation of the analyses for metals has been completed for the following laboratory job numbers.

94.02697	94.02853	94.02856
NET# ES#	NET# ES#	NET# ES#
257480 BKG-SS-04	258064 BKG-SS-05	258101 BKG-SB07(24)
257481 BKG-SS-06	258065 BKG-SS-03	258102 BKG-SB06(18)
257482 BKG-SS-07	258066 BKG-SS-02	258103 BKG-SB08(5)
257483 BKG-SS-08	258067 BKG-SS-01	258104 BKG-SB05(10)
	258068 BKG-SS-09	258105 BKG-SB04(17.5)
	258069 BKG-SS-10	258106 BKG-SB03(19.5)
		258107 BKG-SB02(10)
	•	258108 BKG-SB01(4.5)
		258109 BKG-SB09(5)
		258110 BKG-SB10(20)

These samples have been checked for the following items.

#### D DELIVERABLES

Each laboratory job delivery package was checked for the presence of required information as shown in Exhibit A of the Laboratory Standard Agreement. All deliverables were found to be present and accurate with the following exceptions.

Memorandum to FILE May 31, 1994 Page 2

- 1) No preparation (digest) log was provided for NET sample number 257480.
- 2) There is disagreement between the digest log and the atomic absorption (AA) analysis run log in the mass of NET sample number 257486. The digest log gives a value of 0.99g while the analysis log shows a value of 0.98g.
- 3) The MSA analyses for selenium have not yet been completed. All selenium results are preliminary values and have been qualified as estimated, flagged "J" or "UJ", because MSA data has not been provided.

The laboratory has been contacted about or is aware (see reference above) of these matters and is presently resolving them.

#### II) HOLDING TIMES

The holding time for mercury analysis is 28 days. The holding time for all other metals is 180 days. All analyses performed to date have met holding time criteria. Selenium MSA analyses finished before 10/17-19/94 will meet holding time criteria.

#### III) CALIBRATIONS

Calibration criteria require that the correlation coefficients for all AA analyses be greater than 0.995 and that percent recoveries for all calibration verifications be between 90 and 110% (80 and 120% for mercury). All criteria were met for all samples.

#### IV) BLANKS

No target compound should be present in any blank analyzed. Iron was found in many blank samples at very low levels. All sample results for iron were above the action level of five times (5X) the quantity found in the blank sample so no qualification of the iron results were made for blank contamination. The highest reported blank contamination of zinc in NET job number 94.02853 was 1.2  $\mu$ g/g. All sample results in job number 94.02853 were above the 5X action level of 6.0  $\mu$ g/g; no qualification of the data was made. The blank analyses summary sheet for job number 94.02856 reports blank contamination of 1.2  $\mu$ g/g zinc. However, no blank sample which brackets a sample included in this job shows any zinc contamination. No qualification of zinc analyses in job 94.02856 was made due to blank contamination.

#### V) MATRIX SPIKE SAMPLE RECOVERY

Matrix spike sample percent recovery must be within the limits of 75-125%. However, these limits do not apply when the sample result exceeds the spiking amount by a factor of four (4) or more. All percent recoveries met these limits, where applicable, except for zinc (63.0%) in jobs 94.02853 and 94.02856. All zinc results in jobs 94.02853 and 94.02856 have been qualified as estimated and flagged with a "J" for detected concentrations of zinc, or "UJ" when zinc was not detected.

721460\DVALMEMO.DOC May 31, 1994/2:31 PM

Memorandum to FILE May 31, 1994 Page 3

#### VI) ICP INTERFERENCE CHECK SAMPLE RECOVERY

Percent recovery of all ICP interference check sample results must be within 80-120%. All samples met this criteria.

#### VII) LABORATORY CONTROL SAMPLE RECOVERY

Percent recovery of all laboratory control sample results must be within 80-120%. All samples met this criteria.

#### VIII) DUPLICATE SAMPLE RECOVERY

The relative percent difference between a sample and its duplicate must be less than 35%. All duplicate samples met this criteria except for zinc in job numbers 94.02853 and 94.02856. All samples in these job numbers that had detectable zinc concentrations have been qualified as estimated and flagged with a "J".

#### IX) ICP SERIAL DILUTION

The percent difference between the sample result and the diluted sample result must be less than 10%. Iron and aluminum in job number 94.02697 required serial dilution and met this criteria.

#### X) AA METHOD OF STANDARD ADDITION

All selenium analyses required method of standard addition. These results have not yet been provided. All initial selenium results have been qualified as estimated and flagged "J" or "UJ".

cc: Susan Roberts, Austin Sandy Czarnecki, Raleigh

721460/DVALMEMO.DOC May 31, 1994/2:31 PM

401 Harrison Oaks Boulevard, Suite 210 • Cary, North Carolina 27513 • (919) 677-0080 • Fax: (919) 677-0118

June 7, 1994

Ms. Susan Roberts
Engineering-Science, Inc.
8000 Centre Park Drive, Suite 200
Austin, TX 78754

RE: CSSA WMU Closure Data Validation for Background Metals

Dear Ms. Roberts:

As a follow-up to my letter of May 31, 1994, I have completed the review of the additional materials provided by National Environmental Testing (NET) in the three letters dated May 31, 1994 that were sent to you. NET has addressed all of my concerns regarding possible data entry errors, see my memorandum of May 31, 1994. The laboratory has also provided the results of the selenium analyses which were previously missing and/or uncompleted.

Revised validated sample results, based on the corrected reports and the additional data, are enclosed. Samples BKG-SS-04 and BKG-SS-08 have had sample weights for one or more analyses corrected as explained in the NET case narrative of May 31, 1994. The results for the selenium analyses by the method of standard addition (MSA) in samples BKG-SB01(4.5), BKG-SB09(5), and BKG-SB10(20) indicate that selenium is not present in any of these three samples above the level of 20  $\mu$ g/g. Because of the additional steps required for MSA analyses these results have retained the estimated qualification and flagged "UJ". Qualification of all other selenium results have been removed.

Sincerely,

ENGINEERING-SCIENCE, INC.

David M. Glover Associate Scientist

cc: Sandra M. Czarnecki

**ENCLOSURE** 



Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No. : 258067

NET Job No.: 94.02853

Sample Description:

BKG-SS-01

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 09:10 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	80.1	*	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
f num, ICP	22,300	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Aic, GFAA	21 S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	73.3	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.62	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	18.3	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	7.9	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	16,900	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	56 s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	28 s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.5 S,0	010 ug/g	05/15/1994	0.20	cimc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	≪62	ug/g	05/09/1994 .	50	jmt	245 248	6010- (1)
Zinc, ICP	34.4 J	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonsqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Honaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



[:] Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tei: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

05/16/1994

Sample No. :

258066

NET Job No.:

94.02853

Sample Description:

BKG-SS-02

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 08:15 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	85.0		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Atuminum, ICP	17,500		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	26	S	ug/g	05/16/1994	0.20	dina	205 13	7060 (1)
Barium, ICP	76.3		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	15.2		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.9		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	15,300		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	49	\$	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.02		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	29	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,010	ug/g	05/15/1994	0.20	dima	205 9	7740 (1)
Silver, AA	3.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	20.3 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		míc	89	7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 258065

NET Job No.: 94.02853

Sample Description:

BKG-SS-03

721460.01; CSSA Background

Date Taken: 04/21/1994 Time Taken: 17:15 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	83.3	*	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
inum, ICP	20,300	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
nic, GFAA	20 \$	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	69.4	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	16.3	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	8.4	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	17,000	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.05	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26 s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 S,D10	) ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/09/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	21.8 J	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Monaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



[:] Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

257480

Suite 200 Austin, TX 78754 NET Job No.:

94.02697

Sample Description:

BKG-SS-04

721460.01

CSSA Background

Date Taken: 04/20/1994

Time Taken: 10:15

IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

Results Units Date of Method Analyst Batch No. Analytical Parameter Analysis PQL Prep/Run Method Solids, Total 77.1 X 05/02/1994 0.1 921 2540 (4) kni METALS - ICP 2 Non-Aq Complete jmt 62 6010(1) 200.7(3) Aluminum, ICP 29,800 05/05/1994 5.0 244 603 6010 (1) imt ug/g <26 S,D100 0.20 205 13 Arsenic, GFAA 05/16/1994 dmc 7060 (1) ug/g 133 05/05/1994 244 673 Barium, ICP 1.0 6010 (1) ug/g jmt 05/05/1994 0.50 244 644 Cadmium, ICP 0.67 ug/g jmt 6010 (1) Chromium, ICP 29.3 05/05/1994 2.0 jmt 244 634 6010 (1) ug/g Copper, ICP 05/05/1994 0.50 244 856 14.1 ug/g jmt 6010 (1) Iron, ICP 29,600 05/05/1994 1.0 jmt 244 681 6010 (1) ug/g Lead, AA 36 05/04/1994 2.2 emh 205 222 7420 (1) S ug/g <0.03 Mercury, CVAA 05/03/1994 0.02 jmt 199 316 7471 (1) ug/g Nickel, AA 32 05/11/1994 1.6 emh 205 100 7520 (1) ug/g Selenium, GFAA <2.6 S,D10 ug/g 05/15/1994 0.20 dinc 205 9 7740 (1) Silver, AA ⋖3.0 05/05/1994 2.5 imt 89. 799 7760 (1) ug/g <600 010 50 244 Tin, ICP 05/06/1994 imt 6010 (1) ug/g Zinc, ICP 41.2 244 639 ug/g 05/05/1994 1.0 jmt 6010 (1) 244 Metals Prep, Nonaqueous Complete 05/04/1994 jmt 3050 (1) Metals Prep, Hg Nonaqueous Complete 05/03/1994 jmt 199 7471 (1) Metals Prep, Ag Nonaqueous Complete 05/05/1994 89 mic 7760 (1)

CORRECTED REPORT

5.31.94

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. D100: Parameter analysis performed at a 100x dilution due to a matrix interference at lower dilutions. S: Parameter analysis was sub-contracted to another NET location.





## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No. : 258064

Austin, TX 78754

NET Job No.:

94.02853

Sample Description:

BKG-SS-05

721460.01; CSSA Background

Date Taken: 04/21/1994 Time Taken: 15:10 IEPA Cert. No. 100221

Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Paramet <b>er</b>	Results		Units	Date of	Hethod	Analyst	Batch No.	•
				Analysis	PQL		Prep/Run	Method
Solids, Total	83.2		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
înum, ICP	5,060		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
. enic, GFAA	20	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	33.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	4.8		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,950		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	50	S	ug/g	05/04/1994	2.2	emh	205-222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	3.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60		ug/g	05/09/1994.	50	jmt	245 248	6010 (1)
Zinc, ICP	15.8		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{):} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No. : 257481

NET Job No.:

94.02697

Sample Description:

BKG-SS-06

721460.01

CSSA Background

Date Taken: 04/20/1994 Time Taken: 12:15 IEPA Cert. No. 100221

Date Received: 04/21/1994 Time Received: 18:30 WDNR Cert. No. 999447130

Parameter ·	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	82.5		%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete					jmt	62	6010(1) 200.7(3)
Aluminum, ICP	30,300		ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	15.8	\$	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	112		ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.61		ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	24.2		ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	10.3		ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	22,800		<b>u</b> g/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.03		ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	24	s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4	S,D10	ug/g	05/15/1994	0.20	mjs	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600	010	ug/g	05/06/1994	·50	jmt	244 247	6010 (1)
Zinc, ICP	30.6		ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete			05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Honaqueous	Complete			05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. : 257482

NET Job No.: 94.02697

Sample Description:

BKG-SS-07

721460.01 CSSA Background

Date Taken: 04/20/1994 Time Taken: 11:27 IEPA Cert. No. 100221 Date Received: 04/21/1994 Time Received: 18:30

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	81.5	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Compelte				jmt	62	6010(1) 200.7(3)
vinum, ICP	8,090	ug/g	05/05/1994	5.0	jmr	244 603	6010 (1)
.nic, GFAA	<12 \$,05	0 ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	40.9	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.61	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	8.7	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.2	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	7,500	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	25 \$	ug/g	05/11/1994	1.6	emn	205 100	7520 (1)
Selenium, GFAA	<2.5 \$,01	0 ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, 1CP	<600 D10	ug/g	05/06/1994~	50	jmt	244 247	6010 (1)
Zinc, ICP	12.6	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{):} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

[ூ]O: Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.



## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No. :

257483

NET Job No.:

94.02697

Sample Description:

Austin, TX 78754

BKG-SS-08

CSSA Background 721460.01

04/21/1994

Date Taken: 04/20/1994 Time Taken: 11:45 IEPA Cert. No. 100221

Date Received: Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Analytical Method
Solids, Total	91.6		%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete					jmt	62	6010(1) 200.7(3)
Aluminum, ICP	4,800		ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	<11	\$,050	ug/g	05/03/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	20.3		ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.55		ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	4.7		ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.0		ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	4,500		ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04		ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	23.6	\$	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	3.7		ug/g	05/05/1994	2.5	jmt	89- 799	7760 (1)
Tin, ICP	<500	010	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	7.5		ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		,	05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Wonaqueous	Complete			05/05/1994		mic	89	7760 (1)

CORRECTED REPORT

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

050 : Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.





Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. :

258068

NET Job No.:

94.02853

Sample Description:

BKG-SS-09

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 10:17 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	85.2		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
inum, ICP	10,700		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
nic, GFAA	25 S		ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	65.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	13.4		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	17.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	11,900		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	92 s		ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24.3 S		ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 S	,D10	ug/g	05/16/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	3.1		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59		ug/g	05/09/1994 -	50	jmt -	245 248	6010 (1)
Zinc, ICP	90.0 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Monaqueous	Complete			05/05/1 <del>9</del> 94		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



[:] Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No.: 258069

NET Job No.: 94.02853

Sample Description:

BKG-SS-10

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 11:13 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.3		×	04/29/1994	0.1	dsf	920	2540 (4)
HETALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	6,280		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	4.7	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	25.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmîum, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	8.3		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	4.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	5,580		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Hercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	25	S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54		ug/g	05/09/1994-	50	jmt	245 248	6010 (1)
Zinc, ICP	31.0		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Monaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

NET Job No.:

94.02856

258108

Sample Description:

BKG-SB01(4.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 09:40 IEPA Cert. No. 100221

Date Received: 04/23/1994

CORRECTED REPORT

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.7	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	790	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
rsenic, GFAA	<2.2 S,D	10 ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Jarium, ICP	3.5	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	0.61	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	910	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	58 s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<20 UJ S,M	(+ ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	4.8	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.1	∵ug,/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

M+: Parameter analysis performed by the Method of Standard Additions (MSA).

S : Parameter analysis was sub-contracted to another NET location.



Page 9



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No. :

258107

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB02 (10)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 08:45 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.5		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Hon-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Atuminum, ICP	1,700		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.1	S,D10	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	5.5		ug/g	05/09/1994	1.0	ĵmt	245 675	6010 (1)
Cedmium, ICP	<0.52		ug/g	05/09/1994	0.50	ĵmt	245 646	6010 (1)
Chromium, ICP	2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.0		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	2,010		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Hercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	23	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	s,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.3		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52		ug/g	05/09/1994	50	jmt	247 248	6010 (1)
Zinc, ICP	2.0 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prop, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



## ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200

Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258106

NET Job No.: 94.02856

Sample Description:

BKG-SB03(19.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 17:55 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.5	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
uminum, ICP	1,100	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.2 S,0	iO ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	4.5	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.2	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,190	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, M	52 s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24 S	<b>u</b> g/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2 S,0°	lO ug/g	05/15/1994	0.50	dinc	205 9	7740 (1)
Silver, AA	4.7	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54	ug/g -	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5 J	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Honaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{110 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994 Sample No. :

258105

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB04(17.5)

721460.05; CSSA F-14 Closures

05/04/1994

05/11/1994

05/11/1994

05/15/1994

05/05/1994

05/09/1994

05/06/1994

05/11/1994

05/05/1994

05/09/1994 . 50

2.2

0.02

1.6

0.20

2.5

1.0

emh

jmt

enh

dmc

imt

imt

jmt

imt

imt

mic

Date Taken: 04/21/1994 Time Taken: 16:35 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

205 222

200 318

205 100

89 801

245 641

245

200

89

205 9

7420 (1)

7471 (1)

7520 (1)

7740 (1)

7760 (1)

6010 (1)

3050 (1)

7471 (1)

7760 (1)

245 248 6010 (1)

WDNR Cert. No. 999447130

Parameter Results Units Date of Method Analyst Batch No. Analytical Analysis PQL Prep/Run Method Solids, Total 95.6 X 05/04/1994 0.1 dsf 923 2540 (4) HETALS - ICP 2 Non-Aq Complete 05/09/1994 63 6010(1) 200.7(3) ug/g jmt Aluminum, ICP 1,070 05/09/1994 5.0 245 605 ug/g jmt 6010 (1) Arsenic, GFAA <2.1 0.20 205 13 S,010 ug/g 05/16/1994 dnc 7060 (1) Barium, ICP 5.3 05/09/1994 1.0 245 675 6010 (1) ug/g jmt Cadmium, ICP <0.52 ug/g 05/09/1994 0.50 jmt 245 646 6010 (1) 6010 (1) Chromium, ICP 2.2 05/09/1994 2.0 245 636 ug/g jmt Copper, ICP 1.2 05/09/1994 245 858 0.50 imt 6010 (1) ug/g Iron, ICP 1,660 05/09/1994 1.0 245 683 ug/g jmt 6010 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

S: Parameter analysis was sub-contracted to another NET location.

42

24

<0.03

<2.1

4.6

<52

2.6

Complete

Complete

Complete

S

S

5,010

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g



Lead, AA

Nickel, AA

Silver, AA

Tin, ICP

Zinc, ICP

Mercury, CVAA

Selenium, GFAA

Metals Prep, Nonaqueous

Metals Prep, Hg Nonaqueous

Metals Prep, Ag Nonaqueous



Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

258104

Suite 200 Austin, TX 78754 Sample No.:

94.02856

Sample Description:

BKG-SB05(10)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 15:38 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.8	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
ninum, ICP	1,650	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
nic, GFAA	2.1 S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	6.9	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadaium, ICP	<0.53	ug/g	05/09/1994	<b>0</b> .50	jmt	245 646	6010 (1)
Chromium, ICP	2.7	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.3	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,360	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	39 s	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	20 S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.1 S,D	10 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.0	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<53	ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	3.2	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	<b>2</b> 45	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		0 <b>5/05/19</b> 94		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



 $[\]mathfrak d$ : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258102

NET Job No.: 94.02856

Sample Description:

BKG-SB06(18)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.7		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	2,200		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	4.3	S	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	6.6		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.53		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.4		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	3.5		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,070		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	36	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,D10	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.5		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<53		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5 🗸		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Mg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Tel: (708) 289-3100 Fax: (708) 289-5445

## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

258101

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB07(24)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 10:20

IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.8		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
' "inum,ICP	1,130		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
nic, GFAA	2.7	S	ug/g	05/16/1994	0.20	dimo	205 13	7060 (1)
Barium, ICP	4.1		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.5		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,810		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	51	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Hercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	20	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1	S,D10	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	4.4		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52		ug/g	05/09/1994 .	50	jmt	245 248	6010 (1)
Zinc, ICP	2.2		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



[:] Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



## ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No. :

258103

NET Job No.:

94.02856

Sample Description:

BKG-SB08 (5)

721460.05; CSSA F-14 Closures

Date Taken: Time Taken: 04/21/1994 14:38 IEPA Cert. No. 100221

Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.3		%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994	*	jmt	63	6010(1) 200.7(3)
Atominum, ICP	1,300		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.1 \$	S,D10	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	3.8		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,200		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	46 S	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 5	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 S	S,D10	ug/g	05/15/1994	0.20	dina	205 9	7740 (1)
Silver, AA	5.2		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54		43/S	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	1.8 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

258109

Suite 200 Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB09(5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 10:45 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	98.9	%	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	2,100	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.0 S,D10	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
warium, ICP	7.8	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.51	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.1	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,830	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	40 s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<20 UJ s,H+	ug/g	05/15/1994	0.20	dinc	245 9	7740 (1)
Silver, AA	4.8	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<b>&lt;5</b> 1	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

H+: Parameter analysis performed by the Method of Standard Additions (MSA).

S : Parameter analysis was sub-contracted to another NET location.



Page 10

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

258110

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

· BKG-SB10(20)

721460.05; CSSA F-14 Closures

04/22/1994 Date Taken: Time Taken: 12:05 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.0		*	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,870		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.2 S	,010	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	6.4		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.55		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	3.7		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,140		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	44 S	3	<b>u</b> g/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	18 \$	;	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<20 UJ s	, H+	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	3.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<55		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	4.3	•	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

M+: Parameter analysis performed by the Method of Standard Additions (MSA).



401 Harrison Oaks Boulevard, Suite 210 • Cary, North Carolina, 27513 • (919) 677-0080 • Fax: (919) 677-0118

May 31, 1994

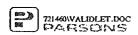
Ms. Susan Roberts
Engineering-Science, Inc.
8000 Centre Park Drive, Suite 200
Austin, TX 78754

RE: CSSA WMU Closure Data Validation for Background Metals

Dear Ms. Roberts:

As you had previously requested, I have reviewed the metals analyses of the background soil samples collected for the CSSA WMU Closures. Validated sample results accompany this letter. All sample results are usable; zinc results for samples BKG-SS-01, BKG-SS-02, BKG-SS-03, BKG-SS-05, BKG-SS-09, BKG-SS-10, BKG-SB01(4.5), BKG-SB02(10), BKG-SB03(19.5), BKG-SB04(17.5), BKG-SB05(10), BKG-SB06(18), BKG-SB07(24), BKG-SB08(5), BKG-SB09(5), and BKG-SB10(20) have been qualified as estimated (flagged with a "J" or "UJ") due to possible matrix interference effects identified by the Matrix Spike and Sample Duplicate samples analyzed along with these samples. All sample results for selenium, those samples listed above along with samples BKG-SS-04, BKG-SS-06, BKG-SS-07, and BKG-SS-08, have been qualified as estimated due to interferences indicated by the atomic absorption sample spikes; EPA protocol requires reanalysis under this condition. Final selenium analyses are not yet available, see NET letter of May 23, 1994, current selenium results should be considered preliminary values only. Please be sure that this office receives a copy of the selenium analyses results when they become available.

I am also enclosing the complete validation memorandum for your files.


Sincerely,

ENGINEERING-SCIENCE, INC.

David M. Glover Associate Scientist

cc: Sandra M. Czarnecki

**ENCLOSURE** 





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. : 258067

NET Job No.: 94.02853

Sample Description:

BKG-SS-01

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 09:10 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	80.1	*	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	22,300	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	21 S	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	73.3	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.62	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	18.3	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	7.9	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	16,900	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	56 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	28 S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.5 UU S.	010 ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<62	ug/g	05/09/1994 .	50	jmt	245 248	6010 (1)
Zinc, ICP	34.4 D	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Mg Monaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{010 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tet: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

Sample No. :

258066

Austin, TX 78754

NET Job No.:

94.02853

Sample Description:

BKG-SS-02

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 08:15 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	85.0	%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
minum,ICP	17,500	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Jenic, GFAA	26 S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	76.3	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	15.2	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.9	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	15,300	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.02	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	29 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 (10 S,D	10 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	3.0	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59	ug/g	05/09/1994 .	50	jmt	245 248	6010 (1)
Zinc, ICP	20.3 ਹ	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Monaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Monaqueous	Complete		05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{0 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 258065

NET Job No.: 94.02853

Sample Description:

BKG-SS-03

721460.01; CSSA Background

Date Taken: 04/21/1994 Time Taken: 17:15 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	83.3	×	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	20,300	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	20 S	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	69.4	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	16.3	ug/g	05/09/1994	2.0	jmt	245 <b>63</b> 6	6010 (1)
Copper, ICP	8.4	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	17,000	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.05	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26 S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.4 U D S,D	10 ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/09/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60	_ ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	21.8 J	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		míc	89	7760 (1) .

. D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

257480

Austin, TX 78754

Sample No. : NET Job No.:

94.02697

Sample Description:

BKG-SS-04

721460.01

CSSA Background

Date Taken: 04/20/1994 Time Taken:

10:15

IEPA Cert. No. 100221

Date Received: 04/21/1994

Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method POL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	77.1	%	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
`uminum,ICP	30,400	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
senic, GFAA	<26 \$,D100	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	136	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	0.68	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	29.9	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	14.1	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	30,100	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36 s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	32 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.6 UT 5,010	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600 . D10	ug/g	05/06/1994	50	jmt	244	6010 (1)
Zinc, ICP	42.1	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. J100 : Parameter analysis performed at a 100x dilution due to a matrix interference at lower dilutions. S : Parameter analysis was sub-contracted to another NET location.



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258064

NET Job No.: 94.02853

Sample Description:

BKG-SS-05

721460.01; CSSA Background

Date Taken: 04/21/1994 Time Taken: 15:10 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Yotal	83.2		*	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	5,060		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	20	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	33.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.60		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	4.8		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	5.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,950		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	50	S	ug/g	05/04/1994	2.2	enh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 UJ	S,010	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3,8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<60		ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	15.8 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Honaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994

257481

Austin, TX 78754

Sample No. : NET Job No.:

94.02697

Sample Description:

BKG-SS-06

721460.01

CSSA Background

Date Taken: 04/20/1994 12:15 Time Taken: IEPA Cert. No. 100221

Date Received: 04/21/1994 Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method . PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	82.5		*	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP Z Non-Aq	Complete					jmt	62	6010(1) 200.7(3)
1 cminum, ICP	30,300		ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
senic, GFAA	15.8	S	ug/g	05/16/1994	0.20	dinc	205 13	7060 (1)
sarium, ICP	112		ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.61		ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	24.2		ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	10.3		ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	22,800		ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	36	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.03		ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	24	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4 Ut	S,D10	ug/g	05/15/1994	0.20	mjs	205 9	7740 (1)
Silver, AA	<3.0		ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
- Tin, ICP	<600	D10	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	30.6		ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete			05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S: Parameter analysis was sub-contracted to another NET location.



^{110 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

05/16/1994 Sample No. :

257482

Austin, TX 78754

NET Job No.: 94.02697

Sample Description:

BKG-SS-07

721460.01

CSSA Background

Date Taken: 04/20/1994 Time Taken: 11:27 IEPA Cert. No. 100221

Date Received: 04/21/1994 Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	81.5	*	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Hon-Aq	Compelte				jmt	62	6010(1) 200.7(3)
Aluminum, ICP	8,090	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
Arsenic, GFAA	<12 S,1	050 ug/g	05/16/1994	0.20	drnc	205 13	7060 (1)
Barium, ICP	40.9	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.61	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	8.7	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.2	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	7,500	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	enth	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Nickel, AA	25 \$	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.5 UU S.1	010 ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<600 D10	0 ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	12.6	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. D50 : Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 257483

NET Job No.: 94.02697

Sample Description:

BKG-SS-08

721460.01 CSSA Background

Date Taken: 04/20/1994 Time Taken: 11:45 IEPA Cert. No. 100221 Date Received: 04/21/1994 Time Received: 18:30 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	91.6	*	05/02/1994	0.1	knj	921	2540 (4)
METALS - ICP 2 Non-Aq	Complete				jmt	62	6010(1) 200.7(3)
minum, ICP	4,800	ug/g	05/05/1994	5.0	jmt	244 603	6010 (1)
senic, GFAA	<11 S,05	0 ug/g	05/03/1994	0.20	dinc	205 13	7060 (1)
Barium, ICP	20.3	ug/g	05/05/1994	1.0	jmt	244 673	6010 (1)
Cadmium, ICP	<0.55	ug/g	05/05/1994	0.50	jmt	244 644	6010 (1)
Chromium, ICP	4.7	ug/g	05/05/1994	2.0	jmt	244 634	6010 (1)
Copper, ICP	4.0	ug/g	05/05/1994	0.50	jmt	244 856	6010 (1)
Iron, ICP	4,500	ug/g	05/05/1994	1.0	jmt	244 681	6010 (1)
Lead, AA	49 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	0.04	ug/g	05/03/1994	0.02	jmt	199 316	7471 (1)
Hicket, AA	23.6 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.2 UU S.D1	0 ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3.8	ug/g	05/05/1994	2.5	jmt	89 799	7760 (1)
Tin, ICP	<500 D10	ug/g	05/06/1994	50	jmt	244 247	6010 (1)
Zinc, ICP	7.5	ug/g	05/05/1994	1.0	jmt	244 639	6010 (1)
Metals Prep, Nonaqueous	Complete		05/04/1994		jmt	244	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/03/1994		jmt	199	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



¹⁰: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions. u50: Parameter analysis performed at a 50x dilution due to a matrix interference at lower dilutions.



Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel; (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No. : 258068

NET Job No.: 94.02853

Sample Description:

BKG-SS-09

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 10:17 IEPA Cert. No. 100221

Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	85.2		%	04/29/1994	0.1	dsf	920	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	10,700		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	25	S	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	65.0		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.59		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	13.4		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	17.2		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
iron, ICP	11,900		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	92	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Hercury, CVAA	0.04		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24.3	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.4UJ	S,010	ug/g	05/16/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	3.1	•	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<59	_	ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	90.0 J	•	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258069

NET Job No.: 94.02853

Sample Description:

BKG-SS-10

721460.01; CSSA Background

Date Taken: 04/22/1994 Time Taken: 11:13 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method POL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	93.3	*	04/29/1994	0.1	dsf	920	2540 (4)
METALS - 1CP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
inum, ICP	6,280	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
. nic, GFAA	4.7 S	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	25.5	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	8.3	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	4.8	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
iron, iCP	5,580	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	25 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UU S,01	0 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	<3.0	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54	ug/g	05/09/1994 -	50	jmt	245 248	6010 (1)
Zinc, ICP	31.0	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{1:} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No. :

258108

NET Job No.:

94.02856

Sample Description:

BKG-SB01(4.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 09:40

IEPA Cert. No. 100221

Date Received:

04/23/1994

Time Received: 09:00
WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	92.7	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	790	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.2 S,01	0 ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	3.5	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	0.61	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	910	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	58 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	26 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.24 V S.01	) ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.8	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.1 7	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

05/16/1994

Sample No.: 258107

NET Job No.: 94.02856

Sample Description:

BKG-SB02(10)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 08:45 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of	Method	Analyst	Batch No.	Analytical
				Analysis	PQL		Prep/Run	Hethod
Solids, Total	95.5		*	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
ninum, ICP	1,700		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.1	S,D10	ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	5.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	2.0		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	2,010		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	48	s	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nîckel, AA	23 :	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UJ :	S,010	ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.3		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{0:} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200

Sample No. :

05/16/1994

258106

Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB03(19.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 17:55 IEPA Cert. No. 100221

Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	92.5		×	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,100		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.2	S,D10	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	4.5		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.2		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,190		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	52	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	24	S	ug/g	05/11/1994	1.6	enh	205 100	7520 (1)
Selenium, GFAA	<2.2 UJ :	S,D10	ug/g	05/15/1994	0.50	dnc	205 9	7740 (1)
Silver, AA	4.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Monaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200

Sample No. :

05/16/1994

258105

Suite 200 Austin, TX 78754

NET Job No.:

94.02856

Sample Description:

BKG-SB04(17.5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 16:35 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

IEPA Cert. No. 100221 WDNR Cert. No. 999447130

Parameter Results Units Date of Method Analyst Batch No. Analytical

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.6	%	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
`luminum,ICP	1,070	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.1 S,010	) ug/g	05/16/1994	0.20	dmc	205 13	7060 (1)
Barium, ICP	5.3	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.2	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.2	ug/g	05/09/1994	0.50	jmt	245 <b>85</b> 8	6010 (1)
Iron, ICP	1,660	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	42 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	<b>7</b> 471 (1)
Nickel, AA	24 s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UU s,010	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	4.6	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.6 5	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{)10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754

05/16/1994

Sample No.: 258104

NET Job No.: 94.02856

Sample Description:

BKG-SB05(10)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 15:38 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	93.8		*	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq Aluminum, ICP	Complete 1,650		ug/g ug/g	05/09/1994 05/09/1994	5.0	jmt jmt	63 245 605	6010(1) 200.7(3) 6010 (1)
Arsenic, GFAA	2.1	S	ug/g	05/16/1994	0.20	drnc	205 13	7060 (1)
Barium, ICP Cadmium, ICP	6.9 <0.53		ug/g	05/09/1994	1.0 0.50	jmt :	245 675 245 646	6010 (1) 6010 (1)
Chromium, ICP	2.7		ug/g ug/g	05/09/1994 05/09/1994	2.0	jmt jmt	245 636	6010 (1)
Copper, ICP	2.3		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,360		ug/g	05/09/1994	1.0	jmt		6010 (1)
Lead, AA	39	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA Nickel, AA	<0.03 20	s	ug/g ug/g	05/11/1994 05/11/1994	0.02 1.6	jmt emh	200 318 205 100	7471 (1) 7520 (1)
Selenium, GFAA	<2.1 UT		ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	4.0	~	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<53		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	3.2		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous Metals Prep, Ag Nonaqueous	Complete Complete			05/11/1994 05/05/1994		jmt mic	200 89	7471 (1) 7760 (1)

010 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL. 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive

Suite 200

Austin, TX 78754

05/16/1994

Sample No.: 258102

NET Job No.: 94.02856

Sample Description:

BKG-SB06(18)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 04/23/1994

Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	93.7	×	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
minum, ICP	2,200	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	4.3 s	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	6.6	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.53	<b>u</b> g/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.4	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	3.5	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,070	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	36 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	22 s	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UJ s.	D10 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	4.5	ug/g	05/05/1994	2,5	jmt	89 801	7760 (1)
Tin, ICP	<53	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.5	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Mg Monaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive
Suite 200
Austin, TX 78754

05/16/1994

Sample No. : 258101

NET Job No.: 94.02856

Sample Description:

BKG-SB07(24)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 10:20 IEPA Cert. No. 100221

Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	95.8	*	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	1,130	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	2.7 s	ug/g	05/16/1994	0.20	dina	205 13	7060 (1)
Barium, ICP	4.1	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.52	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.5	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.2	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,810	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	51 s	ug/g	05/04/1994	2.2	enti	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	20 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UJ S,010	ug/g	05/15/1994	0.20	dinc	205 9	7740 (1)
Silver, AA	4.4	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<52	ug/g	05/09/1994	50	jmt	245248	6010 (1)
Zinc, ICP	2.2 5	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

D10: Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 05/16/1994

Sample No.: 258103

NET Job No.: 94.02856

Sample Description:

Austin, TX 78754

BKG-SB08 (5)

721460.05; CSSA F-14 Closures

Date Taken: 04/21/1994 Time Taken: 14:38 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	93.3	*	05/04/1994	0.1	dsf	923	2540 (4)
METALS - ICP 2 Non-Aq	Complete	ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
'uminum,ICP	1,300	ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
senic, GFAA	<2.1 S,D1	0 ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	3.8	ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.54	ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	<2.0	ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.3	ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,200	ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	46 S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03	ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA	21 S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.1 UT s,01	0 ug/g	05/15/1994	0.20	dmc	205 9	7740 (1)
Silver, AA	5.2	ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<54	ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	1.8 🎵	ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Compléte		05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete		05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete		05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{110 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts ENGINEERING-SCIENCE, INC. 8000 Centre Park Drive Suite 200 Austin, TX 78754 05/16/1994

Sample No.: 258109

NET Job No.: 94.02856

Sample Description:

BKG-SB09(5)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 10:45 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	98.9		×	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
Aluminum, ICP	2,100		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
Arsenic, GFAA	<2.0	S,D10	ug/g	05/16/1994	0.20	dnc	205 13	7060 (1)
Barium, ICP	7.8		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.51		ug/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	2.0		ug/g	05/09/1994	2.0	jmt	245 636	6010 (1)
Copper, ICP	1.1		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	1,830		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	40	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Hickel, AA	21	S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<2.0 UJ	S,D10	ug/g	05/15/1994	0.20	dmc	245 9	7740 (1)
Silver, AA	4.8		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<b>&lt;</b> 51		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	2.0 J		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Monaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Metals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

D10 : Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.



Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Ms. Susan Roberts
ENGINEERING-SCIENCE, INC.
8000 Centre Park Drive

Sample No. : 258110

05/16/1994

Suite 200 Austin, TX 78754

NET Job No.: 94.02856

Sample Description:

BKG-SB10(20)

721460.05; CSSA F-14 Closures

Date Taken: 04/22/1994 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 04/23/1994 Time Received: 09:00

WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Hethod
Solids, Total	91.0		×	05/03/1994	0.1	dsf	924	2540 (4)
METALS - ICP 2 Non-Aq	Complete		ug/g	05/09/1994		jmt	63	6010(1) 200.7(3)
minum, ICP	1,870		ug/g	05/09/1994	5.0	jmt	245 605	6010 (1)
enic, GFAA	<2.2	S,D10	ug/g	05/16/1994	0.20	drac	205 13	7060 (1)
Barium, ICP	6.4		ug/g	05/09/1994	1.0	jmt	245 675	6010 (1)
Cadmium, ICP	<0.55		<b>u</b> g/g	05/09/1994	0.50	jmt	245 646	6010 (1)
Chromium, ICP	3.7		ug/g	05/09/1994	2.0	ĵmt	245 636	6010 (1)
Copper, ICP	2.8		ug/g	05/09/1994	0.50	jmt	245 858	6010 (1)
Iron, ICP	3,140		ug/g	05/09/1994	1.0	jmt	245 683	6010 (1)
Lead, AA	44	S	ug/g	05/04/1994	2.2	emh	205 222	7420 (1)
Mercury, CVAA	<0.03		ug/g	05/11/1994	0.02	jmt	200 318	7471 (1)
Nickel, AA		S	ug/g	05/11/1994	1.6	emh	205 100	7520 (1)
Selenium, GFAA	<0.22UJ	S	ug/g	05/15/1994	0.20	dnc	205 9	7740 (1)
Silver, AA	3.7		ug/g	05/05/1994	2.5	jmt	89 801	7760 (1)
Tin, ICP	<b>.&lt;55</b>		ug/g	05/09/1994	50	jmt	245 248	6010 (1)
Zinc, ICP	4.3 5		ug/g	05/09/1994	1.0	jmt	245 641	6010 (1)
Metals Prep, Nonaqueous	Complete			05/06/1994		jmt	245	3050 (1)
Metals Prep, Hg Nonaqueous	Complete			05/11/1994		jmt	200	7471 (1)
Hetals Prep, Ag Nonaqueous	Complete			05/05/1994		mic	89	7760 (1)

S : Parameter analysis was sub-contracted to another NET location.



^{10 :} Parameter analysis performed at a 10x dilution due to a matrix interference at lower dilutions.

• j,

## Appendix F

## Statistical Evaluation of Background Nickel Concentrations

	5 - 1 - 1 - 1 - 1								A A Committee			Carlotte Contract			383	CARLO.
											1.5			放火机		in sville of The first to
****																
														i ta		
N.				A. S.												
														Services		
141																
and the								And the second								
	vy jih									100						
													and Andrea			
											and the second					
								tyle file of			1000					
	e la									4434						3.34
		JAN S														
314																
								Alleha ya 1994 Kanabaran								
							Control Williams									
						er jakeria. Lisapana										
		to the co														
			A241 4 2													
								***								
			S. 17. 3. 5					A Now								
														STAN		
			A N												an Salah	
																43.24
														n dafail Nasa		
														Maria.		
													day Table			
							NWG.									
																ye by
										FASAN				[N,N]	17 18 18	
						28.8										
					Marie Paris									gsin bi		
											Alexander.					
					N 150											18 18
														n Nilan y Borner		
					Garage.											
	A A DOMESTIC							化线性压力 医多形成								
																21. 13 L
は、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは 日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本ので																

# APPENDIX F STATISTICAL EVALUATION OF BACKGROUND NICKEL CONCENTRATIONS

#### Sample Mean

$$X = \frac{X_1 + X_2 + ... + Xn}{n}$$

$$x = \frac{26 + 23 + 24 + 24 + 20 + 22 + 20 + 21 + 21 + 18}{10}$$

$$X = \frac{219}{10} = 21.9 = \overline{X} = 21.9 \text{ mg/kg}$$

#### **Standard Deviation**

$$S^{2} = \Sigma i \frac{(yi - \overline{y})^{2}}{(n-1)^{2}}$$
  $\overline{y} = 21.9$ 

$$S^2 = \frac{(26-21.9)^2 + (23-21.9)^2 + (24-21.9)^2 + (24-21.9)^2 + (20-21.9)^2 + (22-21.9)^2 + (20-21.9)^2}{(10-1)^2}$$

$$+ \frac{(21-21.9)^2 + (21-21.9)^2 + (18-21.9)^2}{(10-1)^2} = \frac{50.9}{81} = 0.628$$

$$S = SQRT(S^2) = SQRT(0.628) = 0.793 \approx 0.8$$

#### Student-t distribution

$$\bar{y} = 21.9$$
  
 $n = 10$   
 $S = 0.79$ 

$$t = \frac{\overline{y} - \mu_0}{S/SQRT(N)}$$

$$alf = n-1$$

for 
$$n = 10$$
,  $t = 1.812$ 

1.812 = 
$$\frac{21.9 - \mu_o}{0.79/\text{SQRT}(10)}$$

$$\frac{(1.812 \times 0.79)}{\text{SQRT} (10)} = 21.9 - \mu_0$$

$$\mu_{\rm o} = 21.9 - (0.45)$$

$$\mu_{\rm o} = 21.45$$

## Appendix G

Waste Disposition Documentation

				1976年1976年
The state of the same of the same of the same of				
	경찰 독실 소원 중심 중 수			
		교육의 성격이 있습니다		
되슬하다면 되다. 그라고 하는데				
	존대가 덩어가는 물리에 살다			
		사람들이 얼마나 다음 이 모든		
, 하십시작 : 그는 왕이, 나는 살았다.				
1. 그런 역 그는 것이 되었습니다.				
고병하다 하지만 일을 되는 가는 어려운				
보다는 그것은 하기 되는 지수 있다.				
			송는 이 불빛하다는 일반 생각	
	지 않아야 한 원들, 글			
	화상과 한 원이는 원생 :			
마지만 늘어가 되고 그 시간다.				
				원칙 학교학교
		Control of the Association of Con-		

とチータチ トドエ はりこうさ しょうら



#### DEPARTMENT OF THE ARMY

OAMP STANLEY STORAGE ACTIVITY, RRAD POST OFFICE BOX 690627, SAN ANTONIO, TEXAS 78260 - 0627

June 24, 1994

Support Division

Ms. Susan Roberts
Engineering-Science, Inc.
8000 Centre Park Drive, Suite 200
Austin, Texas 78754

Dear Susan:

Reference our telephone conversation on June 22, 1994, concerning disposal of waste water and plastic bags containing trash at the F-14 site.

The trash bags were deposited in a Garbage Gobbler dumpster on the installation on June 23.

The waste water was emptied into the sanitary sewer system, per your quidance, on June 23.

Please call if I can be of further assistance.

Sincerely,

Chief, Support Division

SEP 29 40 16 87 DEEPING-ECT. INC.
TEXAS . STURAL RESOURCE CONSERVATION C. AISSION

rad to do rate come as

#### request for texas waste code for subment of class 1, 2, 3 and epa hazardous waste

Pursualities the general notification requirements of 30 TAC Bection 335.6, the parameter is asolid meste is required to extend to the ThirtiCC decided written information perpending to the composition and characteristics of the wester.

to the TMFEXT decision written intrimedian perpending to the con	underson end an	electered c	CHENNE	esia.			
Brion Durniny, Environmental Office Comp Stonley Storage Facility, RAD	-1	Phono by Denera Genera	TOR CE	myac	t pero		
P.O. Box 690627 Son Antonio, Texas 75269-0627		CITY, ST PHONE I	ATE. ZIF	0008	<u> </u>		
Boild Weste Registration No. 69026 U.S. EPA (continued on No. 172210020739  Beautiful description of							
Generating She Loomson _ 25ROC Ralph Pair Road &	Non-	( Martis	*				
Chock par & seller at Lephin							
Destribled Treatment Elorege, end/or Disposed Facility Names		VOPSI	milee	L. Desco	1 mx	Lec	
TANK TO SELECTION OF THE PARTY		CRAV	770%	AS WA	ord na		
description of wasts	- 120CE A		-	The second second second			
(60 not use DAT decomposes or trade meme)	THE REAL PROPERTY.		DOM:	GOOK	6404 6404	COA6	
1. soii cuttings	CTNH:	3011	301	1	N/A	7	
2		AND COURT					
		and of the Control					
						500,0	
principle and require the second seco	The state of						
GENERATTIAN REPRESENTATIVE  I county that the above information is contact to the best of my	PAGESTATE D	ATE /	10-69	14	Manual Control of the		
Burnary of the All Stores	PROCESSES IN	n 4	'd				
L DEAN C SHUELLING, and employed by	TWEE REGION	. 0			ornge		
Com Starley Storage Activity PRAD	leu.	ic Thrc	3				
P.O. Box 690679. Sen Antonio. Tx 38269.0629		P.O. BO	epon au	h Test	4		
and am supported to sion this certification for:	•	Ausda, 1	Texas 787	1-305	7		
Caro Transley Stritters ACTIVITY PROD		FAXC (89	(\$12) 230 12) 230-6				
Man Colin > aprofess	(210) 22 moderness	21-7416	- Carrier Constitution of the Constitution of	-			
Carried State of the Carried S	A. s. allowance & Laboratolistics A.						
THEOCETTS (Par. 000004)							

IX WAIRR COMM

\$ cc:41 86/60/20

8000 Centre Park Drive, Suite 200 . Austin, Texas 78754 . (512) 719-6000 . Fax: (512) 719-6099

February 15, 1995

Via Federal Express

Patricia Hoyle
Oklahoma Department of Environmental Quality
Waste Management Division
Solid Waste Compliance Unit
1000 NE 10th Street
Oklahoma City, OK 73117-1212

Re: Contract F33615-89-D-4003, Order 126

Submittal of Oklahoma non-hazardous industrial waste request form for

F-14 soil cuttings

Dear Ms. Hoyle:

As we discussed over the phone in January 1995, Parsons Engineering-Science would like to submit the request form for our client, Camp Stanley Storage Activity (CSSA), Texas. The request is for a one-time shipment of non-hazardous industrial waste to the USPCI Lone Mountain facility in Waynoka, Oklahoma. The shipment is one 55-gallon drum of dry rock cuttings, derived from a subsurface investigation at the F-14 site on CSSA. The cuttings contained 1,1,1-trichloroethane at a concentration of 0.507 mg/kg and are acceptable as a Class I non-hazardous waste at the USPCI Lone Mountain facility.

Enclosed is an owner-signed copy of the Oklahoma Department of Environmental Quality "Non-hazardous Industrial Waste Disposal Request" form, USPCI notification of waste acceptance, waste stream analysis information, and analytical results for the soil cuttings. Copies of this information will also be sent to CSSA and USPCI Lone Mountain.

Should you need additional information, please feel free to call me at 512/719-6051.

Sincerely.

Susan V. Roberts Project Manager

enclosure

xc: USPCI Lone Mountain Brian Murphy, CSSA Lt Col Montgomery, AL/OEB D. Highland, Parsons ES

#### Oldahoma Department of Environmental Quality Solid Waste & Groundwater Protection Bureau 1000 N. E. 10th Oldahoma City, OK 73117-1212

Non-Hazardous Industrial Waste Disposal Request

RRAD	Street Address 25800 Ralph Fair Road			Mailing Address P.O. Box 690627 San Antonio, TX 78269-0627			
City		State	Zip Code		Telephor	r	
Boerne		TX 78006			(210 ) 221 —		_ 7453
Street Address Where Waste <u>was</u> lis Generated same as above			Gīv Boe	me		State TX	Zip Code 78006
The generator listed above requests aut a separate form must be completed for	each was	ne stream		-hazardou:	industrial	waste as	described below
A. Name of waste: soil cuttings							
B. Is this waste stream: 81 New	√ □ Prev	gqs ylznor	iroved, ple	ase provid	le Approva	i Number:	
F. Disposal Frequency and Amou	d ed durin the waste ) % so	tables  ig the in  ? \$\$ \$6	and labo vestigat	ratory r ion. Th	eports). is drum I Sludge	One 55 has been nonhazar	-gallon drum of
🖾 One time disposal							
Ongoing waste stream	ı (list belo	w the amo	ount of wa	aste to be	disposed d	of per year	-1
Amount of waste to be o	lisposed o	f.	1 0	Cu. Yd.	□ Tans	□ Lbs. 8	Llsg 22)zmvnQ 🗵
•	☐ Gallons ☐ Other:						
G. What Facility will be accepting	g this was	rte?					
Name of Facility: USPCI	Lone Mo	untain F	acility	principal de la companya de la compa	idlity Pern	nir No.:	SD47002
Address: Route 2, B	ox_170				_ Count	v: Majo	
City: Waynoka			State:	OK		Zip:	73860

Form Continued on Page 2

description of the sampling procedures.

ung firm (if applicable)	Contact Person			Mailing Address
ons Engineering Science	Su	Susan Roberts		8000 Centre Park Drive Suite 200
;		State .	Zip Code	Telephone Number
stin		TX	78754	( 512 ) 719 - 6000
USPCI		Contact Person  Brice Dille		Mailing Address 24125 Aldine Westfield Road
		State	Zip Code	Telephone Number
Spring		TX	77373	. (713 ) 350 ~ 7200

I hereby certify that the information contained herein and in the attached documents is accurate, complete, and representative of the waste described. I certify that the waste described on Page 1 of this request and in the attached documents is not a "Listed Waste" and is not contaminated with a "Listed Waste" as described by 40 CFR 261 Subpart D. I certify that the waste described on Page 1 of this request and in the attached documents is not a "Characteristic Waste" as described by 40 CFR 261 Subpart C, or otherwise defined as a "Hazardous Waste" by the Oklahoma State Department of Health Rules and Regulations for Hazardous Waste Management (OSDH Entin 0525). I certify that the attached documents and my knowledge of process are adequate to satisfy the Hazardous Waste Determination requirements of 40 CFR 262.11. I understand that there are significant criminal penalties for purposely or knowingly making false statements, representations, or certifications, including the possibility of fine and imprisenment.

ator Signature

Denin C. STHINTELLING-

Printed or Typed Name

Chundringa

Position (Title)

Dare

n Form To:

noma Department of Environmental Quality

d'Waste Complisièe Unit N. E. 10th

ioma City, OK 73117-1212

FOR OFFICE	<u>USE ONLY</u>

O Logged

☐ Incomplete

☐ Approved

☐ Regular

Abo:

(

16



#### A Substitution Pacific Corporation NOTIFICATION OF WASTE ACCEPTANCE

11/09/94

Lone Mountain FIME

CUSTONER INFORMATION EPA ID#: TX2210020739 USAF (CAMP STANLEY) 25800 RALPH FAIR RD SAN ANTONIO, TX 78269 CONTACT: CLEO PFEIFFER PHONE:

INVOICE INFORMATION REF #: TXENGINEERIN ENGINEERING SCIENCE INC -8000 CENTRE PARK DR STE 200 AUSTIN, TX 78754 CONTACT: KEVIN TYNES PHONE: (713) 943-5432

PROFILE SHEET #: 158064 SAMPLE #: WP94-13909 WASTE STREAM #: LM94-0772 RECEIVED: 10/24/94 RECEIVED: 10/24/94 SOIL CUTTINGS

Last Change Date: 11/09/94

Thank you for selecting USPCI for your waste management requirements. Your waste stream has been reviewed and is acceptable for management at our facility based on the information provided on the profile sheet number listed above and conditions listed below. Our facility has the 'necessary permits to allow the storage, treatment, or disposal of this waste. The above referenced acceptance number should be listed on all shipping documents and correspondence. Please retain these documents for your records and future reference.

Prior to scheduling or shipping this waste for the first time, a non-hazardous Disposal Plan must be approved by the Oklahoma Department of Environmental Quality (DEQ).

Please contact Customer Service at (405) 697-3500 should you have any questions. To schedule a shipment, contact USPCI customer service at 1-800-877-2416.

USPCI Sales Representative: ROBERT KISER (210) 490-9790

#### ACCEPTANCE INFORMATION

The waste stream identified by the reference number above is CONTAINER STORAGE, LANDFILL/DISPOSAL. Acceptable for: This waste is acceptable for delivery beginning on 11/09/94 thru 11/08/95, at which time an update review may be required for continued acceptability. Comments:

CLASS 6.

Shipping Requirements:

NON-HAZARDOUS certificate required per 40 CFR 261.4. and/or Part 261 where said waste is not classified a hazardous waste in Subpart C. A current Disposal Plan must be on file with the DEQ and also with the Lone Mountain Facility.

Type of Container: CONTAINERS (DRUMS..)

11/09/94

PROFILE SHEET #: 15806

SAMPLE #: WP94-13909

5TE NUMBER #: LM94-0772

### WASTE STREAM ANALYSIS INFORMATION

Waste Name..... SOIL CUTTINGS

Physical State..... SOLID

ocess Producing Waste ..: INVESTIGATION

EPA Waste Codes:

NONE

NEG WasteColor: BROWN Free Lig..: 1.46 9.06 Sp. Grav..: pH....: Solids Scr: Normality.: NA NA TLV Sniff.: <200 Flach Pt..: NEG CN Scr...: H2O Sol...: NEG NEG HOC Scr...: S SCI....: NEG NEG Water RX..: Oxid. Scr.: NEG NEG Radio Scr.: NEG

This analysis is solely for use by USPCI employees for the purpose of determining waste acceptability. No other claims are made or implied.

**AUTHORIZATION** 

Table 3.3
1992 Analytical Results for Waste Disposition Samples

Analytical Method:		SW418.1	SW8260	SW8270	SW8080	SW8140	SW8150	SW7520
			Aromatic and		Organochlorine			
			Halogenated		Pesticides	Organophosphorous		Total
			Hydrocarbons	BNAs	and PCBs	Pesticides	Herbicides	Nickel
Sample	Sample	TPH	(mg/kg-soil)	(µg/kg-soil)	(μg/kg-soil)	(μg/kg-soil)	(µg/kg-soil)	(mg/kg-soil)
ID	Date	(mg/L)	mg/L-water)	(µg/L-water)	(μg/L-water)	(µg/L-water)	(μg/L-water)	(µg/L-water)
Cuttings 1	9-10-92	BDL	1,1,1-TCA 0.507	BDL	BDL	BDL	BDL	7.7
Decon Water 1	9-11-92	1.7	BDL	BDL	BDL	BDL	BDL	BDL

## Notes:

Methods are from EPA "Test Methods for Evaluating Solid Waste Physical/Chemical Methods," EPA publication SW-846, 1986.

TPH = total petroleum hydrocarbons

PCBs = polychlorinated biphenyls

BNAs = base/neutral acids

- = not analyzed

BDL = below detection limits

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

μg/L = micrograms per liter

mg/L = milligrams per liter

JPR/72146005/F14-TD.wk4



Client: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/11/92 Chemron Sample #: 20063

Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

Sample Description: CSSA F14 Assessment Cuttings 1

Date Received: 09/11/92

CHEMI	CAL	ANALYSIS	REPORT

Value	Units	Date Analyzed	Test Method
<1900	UG/KG	10/05/92	8150
<90.	• .	, ,	8150
<220.	UG/KG	• •	8150
<400.	UG/KG	, ,	8150
<60.	UG/KG	10/05/92	8150
<70.	UG/KG	10/05/92	8150
<300.	UG/KG	10/05/92	8150
<23.	UG/KG	10/05/92	8150
	<1900 <90. <220. <400. <60. <70.	<1900 UG/KG <90. UG/KG <220. UG/KG <400. UG/KG <60. UG/KG <70. UG/KG <300. UG/KG	Value Units Analyzed  <1900 UG/KG 10/05/92 <90. UG/KG 10/05/92 <220. UG/KG 10/05/92 <400. UG/KG 10/05/92 <60. UG/KG 10/05/92 <70. UG/KG 10/05/92 <300. UG/KG 10/05/92

n. elduam



Client: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/14/92 Chemron Sample #: 20063 Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

Date Sampled: 09/10/92

Page # : 1

Sample Description: CSSA F14 Assessment Cuttings 1 Date & Time Received: 09/11/92, 18:00

#### CHEMICAL ANALYSIS REPORT

OHMINI		1 01(1	Date	Test
Parameter	Value	Units	Analyzed	Method
		<del></del>		Westernament 100 100 100 100 100 100 100 100 100 10
Acenaphthene	<100.	UG/KG	10/12/92	8270
Acenaphthylene	<100.	UG/KG	10/12/92	8270
Anthracene	<100.	UG/KG	10/12/92	8270
Benzo(a)anthracene	<100.	UG/KG	10/12/92	8270
Benzo(b) fluoranthene	<100.	UG/KG	10/12/92	8270
Benzo(k) fluoranthene	<100.	UG/KG	10/12/92	827Ċ
Benzo(a) pyrene	<100.	UG/KG	10/12/92	8270
Benzo(g,h,i)perylene	<150.	UG/KG	10/12/92	8270
Benzidine	<200.	UG/KG	10/12/92	8270
Bis(2-chloroethyl) ether	<100.	UG/KG	10/12/92	8270
Bis(2-chloroethoxy) methane	<100.	UG/KG	10/12/92	8270
Bis(2-ethylhexyl) phthalate	<100.	UG/KG	10/12/92	8270
Bis(2-chloroisopropyl) ether	<100.	UG/KG	10/12/92	8270
4-Bromophenyl phenyl ether	<100.	UG/KG	10/12/92	8270
Butyl benzyl phthalate	<100.	UG/KG	10/12/92	8270
2-Chloronaphthalene	<100.	UG/KG	10/12/92	8270
4-Chlorophenyl phenyl ether	<100.	UG/KG	10/12/92	8270
Chrysene	<100.	UG/KG	10/12/92	8270
Dibenzo(a,h)anthracene	<100.	UG/KG	10/12/92	8270
Di-n-butyl phthalate	<100.	UG/KG	10/12/92	8270
3,3-Dichlorobenzidine	<150,	UG/KG	10/12/92	8270
Diethyl phthalate	<100.	UG/KG	10/12/92	8270
Dimethyl phthalate	<100.	UG/KG	10/12/92	8270
2,4,Dinitrotoluene	<100.	UG/KG	10/12/92	8270
2,6-Dinitrotoluene	<100.	UG/KG	10/12/92	8270
Diocytl phthalate	<100.	UG/KG	10/12/92	8270
1,2-Diphenylhydrazine	<100.	UG/KG	10/12/92	8270

Approved	By:	16.	01	du	an	



C_ ant: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/14/92 Chemron Sample #: 20063

nemron sample #: 20063
Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

Date Sampled: 09/10/92

Page #: 2

Sample Description: CSSA F14 Assessment Cuttings 1 Date & Time Received: 09/11/92, 18:00

CHEM	ICAL ANALYSIS RE	PORT		
Parameter	Value	Units	Date Analyzed	Test Method
	dissipation designation of the state of the	and the second s	Williams Stages and Profile Assessment	
Fluoranthene	<100.	UG/KG	10/12/92	8270
Fluorene	<100.	UG/KG	10/12/92	8270
lexachlorobenzene	<100.	UG/KG	10/12/92	8270
<pre>lexachlorobutadiene</pre>	<100.	UG/KG	10/12/92	8270
les iloroethane	<100.	UG/KG	10/12/92	8270
lexachlorocyclopentadiene	<100.	UG/KG	10/12/92	8270
ndeno(1,2,3-cd)pyrene	<100.	UG/KG	10/12/92	8270
sophorone	<100.	UG/KG	10/12/92	8270
aphthalene	<100.	UG/KG	10/12/92	8270
itrobenzene	<100.	UG/KG	10/12/92	8270
-Nitrosodimethylamine	<100.	UG/KG	10/12/92	8270
-Nitrosodi-n-propylamine	<100.	UG/KG	10/12/92	8270
-Nitrosodiphenylamine	<100.	UG/KG	10/12/92	8270
henanthrene	<100.	UG/KG	10/12/92	8270
yrene	<100.	UG/KG	10/12/92	8270
,2,4-Trichlorobenzene	<100.	UG/KG	10/12/92	8270
-Chloro-3-methylphenol	<100.	UG/KG	10/12/92	8270
-Chlorophenol	<150.	UG/KG	10/12/92	8270
,4-Dichlorophenol	<150.	UG/KG	10/12/92	8270
,4,-Dimethylphenol	<150.	UG/KG	10/12/92	8270
,4-Dinitrophenol	<250.	UG/KG	10/12/92	8270
-Methyl-4,6-Dinitrophenol	<250.	UG/KG	10/12/92	8270
-Nitrophenol	<150.	UG/KG	10/12/92	8270
-Nitrophenol	<150.	UG/KG	10/12/92	8270
antachlorophenol	<150.	UG/KG	10/12/92	8270
henol	<150.	UG/KG	10/12/92	8270
,4,6-Trichlorophenol	<150.	UG/KG	10/12/92	8270

oprived By: M. Oldham



Client:

Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/1/92

Chemron Sample #: 20063
Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

Date Sampled: 9/10/92

Date & Time Received:

9/11/92

Analysis

18:00

Sample Description: CSSA F14_Assessment

Cuttings 1

			THIST TRIE	
Parameter	<u>Value</u>	Units	Date	Method
Acrolein	< 1.5	mg/kg	10/1/92	8260
Acrylonitrile	<1.5	mg/kg	10/1/92	8260
Benzene	< 0.3	mg/kg	10/1/92	8260
Bromodichloromethene	< 0.3	mg/kg	10/1/92	8260
Styrene	< 0.3	mg/kg	10/1/92	8260
Bromomethane	< 0.6	mg/kg	10/1/92	8260
Carbon tetrachloride	< 0.3	mg/kg	10/1/92	8260
Chlorobenzene	< 0.3	mg/kg	10/1/92	8260
Chlorodibromomethane	< 0.3	mg/kg	10/1/92	8260
Chloroethane	< 0.8	mg/kg	10/1/92	8260
2-Chloroethyl vinyl ether	< 0.4	mg/kg	10/1/92	8260
Chloroform	< 0.4	mg/kg	10/1/92	8260
Chloromethane	< 0.8	mg/kg	10/1/92	8260
1,2 Dichlorobenzene	< 0.6	mg/kg	10/1/92	8260
1.3 Dichlorobenzene	< 0.4	mg/kg	10/1/92	8260
1.4 Dichlorobenzene	< 0.4	mg/kg	10/1/92	8260
Dichlorodifluoromethane	< 0.8	mg/kg	10/1/92	8260
1,1 Dichloroethane	< 0.3	mg/kg	10/1/92	<b>826</b> 0
1,2 Dichloroethane	< 0.3	mg/kg	10/1/92	8260
1,1 Dichloroethene	< 0.3	mg/kg	10/1/92	8260
trans 1,2 Dichloroethene	< 0.3	mg/kg	10/1/92	8260
1,2 Dichloropropane	< 0.3	mg/kg	10/1/92	8260
cis 1,3 Dichloropropene	< 0.3	mg/kg	10/1/92	8260
trans 1,3 Dichloropropene	< 0.3	mg/kg	10/1/92	8260
Ethylbenzene	< 0.3	mg/kg	10/1/92	8260
Ethylene-di-bromide	< 0.4	mg/kg	10/1/92	8260
Methylene Chloride	<2.1	mg/kg	10/1/92	8260
MEK	<3.8	mg/kg	10/1/92	8260
Bromoform	< 0.3	mg/kg	10/1/92	<b>82</b> 60
1,1,1,2 Tetrachloroethane	< 0.3	mg/kg	10/1/92	8260
1,1,2,2 Tetrachlomethane	< 0,3	mg/kg	10/1/92	8260
Tetrachloroethene	< 0.3	mg/kg	10/1/92	8260
Toluene	< 0.3	mg/kg	10/1/92	8260
1.1.1 Trichloroethane	0.507	mg/kg	10/1/92	8260
1,1,2 Trichloroethane	₹0.3	mg/kg	10/1/92	8260
Trichloroethene	< 0.3	mg/kg	10/1/92	8260
Trichlorofluoromethane	<0.6	mg/kg	10/1/92	8260
Trichloropropane	< 0.3	mg/kg	10/1/92	<b>82</b> 60
m/p Xylone	< 0.7	mg/kg	10/1/92	8260
o Xylone	< 0.3	mg/kg	10/1/92	8260
Vinyl Chloride	< 0.8	mg/kg	10/1/92	8260
	•	~ ~		

Vinyl Chloride <0.8 mg/kg

Approved by: 1. Ol M. a.



'lient: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/05/92 Chemron Sample #: 20063 Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

ample Description: SSA F14 Assessment

uttinge 1

Date Received: 09/11/92

CH	EMICAL ANALYSIS RE	PORT		
Parameter	Value	Units	Date Analyzed	Test Method
inophos methyl	<.10	UG/KG	09/22/92	8140
lstar (Sulprofos)	<.07	UG/KG	09/22/92	8140
lorpyrifos	< . 07	UG/KG	09/22/92	8140
umaphos	<.20	UG/KG	09/22/92	8140
meton, O, S	<.12	UG/KG	09/22/92	8140
azinon	<.20	UG/KG	09/22/92	8140
ci :vos	<.80	UG/KG	09/22/92	8140
metnoate	<.26	UG/KG	09/22/92	8140
sulfoton	<.07	UG/KG	09/22/92	8140
N	<.04	UG/KG	09/22/92	8140
hoprop	<.20	UG/KG	09/22/92	8140
nsulfothion	<.08	UG/KG	09/22/92	8140
nthion	<.08	UG/KG	09/22/92	8140
lathion	<.11	UG/KG	09/22/92	8140
rphos	<.20	UG/KG	09/22/92	8140
vinphos	<.50	UG/KG	09/22/92	8140
led	<.50	UG/KG	09/22/92	8140
rathion - ethyl	<.06	UG/KG	09/22/92	8140
rathion - methyl	<.12	UG/KG	09/22/92	8140
orate	<.04	UG/KG	09/22/92	6140
nnel	<.07	UG/KG	09/22/92	8140
lfotep	<.07	UG/KG	09/22/92	8140
PP	· <.80	UG/KG	09/22/92	8140
trachlorovinphos	<.80	UG/KG	09/22/92	8140
kuthion (Protothiofos)	<.07	UG/KG	09/22/92	8140
ichloronate	<.80	UG/KG	09/22/92	8140

proved By: R. Oldyans



Client: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Client's Job #: AU334.01

COC #:

Report Date: 09/16/92

Date & Time Received: 09/11/92, 18:00

Date Sampled: 09/10/92

#### CHEMICAL ANALYSIS REPORT

Themron #	Sample Description	Sample Matrix	Date Analyzed	TPH (PPM)
		***************************************		
20063	CSSA F14 Assessment Cuttings 1	Soil	09/16/92	< 10.
20064	CSSA F14 Assessment Berm 1	Soil	09/16/92	30.
i	_			

n. elduan

Analytical Methods: TPH in Soil - 3540/418.1 or 3550/418.1, TPH in Water - 418.1



Client: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Client's Job #: AU334.01

COC #:

Report Date: 09/23/92

Date & Time Received:

09/11/92, 18:00

Date Sampled: 09/10/92

#### CHEMICAL ANALYSIS REPORT

nemron #	Sample Description	Date Analyzed	Total Nickel (PPM)
, deriver and the second s	Constitution to the drive and distribution and section to the constitution and the constituti		
063	CSSA F14 Assessment Cuttings 1	09/22/92	7.7
064	CSSA F14 Assessment Berm 1	09/22/92	2.8

n. Olduan

Analytical Methods: Solids/Soils - 3050/7520; Water - 3005/7520



Client: Engineering-Science Inc.

7800 Shoal Creek Blvd, Suite 222W

Austin, TX 78757

Report Date: 10/03/92 Chemron Sample #: 20063 Sample Matrix: Soil

Client's Job #: AU334.01

COC #:

Sample Description: CSSA F14 Assessment Cuttings 1 Date Received: 09/11/92

CHEMICAL ANALYSIS REPORT

Cnr	MICAL WINNEISTS KE	PORT	•			
Parameter	Value	Units	Date Analyzed	Test Method		
Aldrin	<1.3	UG/KG	09/30/92	8080		
Alpha-BHC	<1.0	UG/KG	09/30/92	8080		
Beta-BHC	<2.0	UG/KG	09/30/92	8080		
Delta-BHC	<3.0	UG/KG	09/30/92	0808		
Gamma-BHC	<1.3	UG/KG	09/30/92	8080		
Chlordane	<4.7	UG/KG	09/30/92	808		
4,4'-DDD	<3.7	UG/KG	09/30/92	808 _\		
4,4'-DDE	<1.3	UG/KG	09/30/92	8080		
4,4'-DDT	<4.0	UG/KG	09/30/92	8080		
Dieldrin	<.7	UG/KG	09/30/92	8080		
Endosulfan I	<4.7	UG/KG	09/30/92	8080		
Endosulfan II	<1.3	UG/KG	09/30/92	8080		
Endosulfan Sulfate	<22.	UG/KG	09/30/92	8080		
Endrin	<2.0	UG/KG	09/30/92	8080		
Endrin Aldehyde	<7.7	UG/KG	09/30/92	8080		
Heptachlor	<1.0	UG/KG	09/30/92	8080		
Heptachlor Epoxide	<28.	UG/KG	09/30/92	8080		
Methoxychlor	<59.	UG/KG	09/30/92	8080		
Toxaphene	<80.	UG/KG	09/30/92	8080		
PCB - 1016	<22.	UG/KG	09/30/92	8080		
PCB - 1221	<22.	UG/KG	09/30/92	8080		
PCB - 1232	<22.	UG/KG	09/30/92	8080		
PCB - 1242	<22.	UG/KG	09/30/92	8080		
PCB - 1248	<22.	UG/KG	09/30/92	8080		
PCB - 1254	<22.	UG/KG	09/30/92	8080		
PCB - 1260	<22.	UG/KG	09/30/92	8080		

Approved By: N. Oldlam

Engine g-Science Inc. 7800 Shoal Greek Blvd, Suite 222W Austin, Texas 78757 512/467-6200 FAX 512/467-7044

# CHAIN OF CUSTODY RECORD

PROJECT AL)3	TNO. 44.01	PRC	DJECT SSA	NAME T''	Assersion of	. SHE					_	, ,	Ar	nalys	sis F	Require	d ///	
SAMPLE	RS (Signat	ures)				NO. OF CONTAINERS		/		[    -	[	//	[ ]	//				REMARKS
DATE	TIME	MATR	ix	SA	MPLE IDENTIFICATION	20		[5]		//	//	//		//				
9/11/12	6113	<b>3</b> 0 र्		136	<i>i</i>				7		\(\sigma\)	/						
	Heron	<u> </u>		Pit -	<i>t</i> :					:	<u> </u>	:						
	1145			B7-	<u> </u>	,		1	1			:						
	11 [5			71-	! (.	;	;	:	í	:	:							
	1320			B8-	25		i :		,			li						
	1841			Be-	;						;	-						
	1115			<u> 139 -</u>	:	12		;				ļ!					i	
	141 0			89-		. 2	·	!			-	:					!	
	1445		e e e e e e e e e e e e e e e e e e e	Bis	· ! -	:					!						,	_
	1505			il.	<u> </u>	4		:			:							
	12.	1	SECTION SECTION	J. Hi	as to the	,					<u> </u>	;	X				į	
V	1670	$\bigvee$		Bern	C ¹ 1	·;		,,	:. :	177	i	1	人				Ų.	
Relinquish	ned by: (Sig	nature)	Date	Time 1800 >	Received by: (Signature)		R	elin	quis	shed	d by	: (5	Signa	ature	)	Date	Time	Received by: (Signature)
	ned by: (Sig		Date	Time	Received by: (Signature)		R	elin	quis	shed	y by	: (\$	Sign:	ature	1)	Date	Time	Received by: (Signature)

White: laboratory returns with data, yellow: laboratory copy, pink: sampler copy

ORIGINAL MANIFEST IS MAILED DIRECTLY TO GENERATOR FROM SITE UNIFORM HAZARDOUS Generator US EPA ID Manifest No. Page 1 Of WASTE MANIFEST TX2210020739 50867 00001 Generator Name and Mailing Address State Manifest Doc No. USAF (CAMP STANLEY) 00550867 25800 RALPH FAIR RD State Generator ID SAN ANTONIO TX78269 -0627TX2210020739 Transporter 1 Company Name State Trans ID TXD988052494 Transport Phone Transporter 2 Company Name State Trans ID Transport Phone Designated Facility Name and Address State Facility No. LONE MOUNTAIN FACILITY ROUTE 2 - BOX 170 OKD065438376 Facility Phone (405)697-3500 WAYNOKA OK 073860-9622 OKD065438376 0 Container Total Unit Waste Number US DOT Description (including name, hazard class, and ID number) quantity Wt/VI No. Type E.NON-REGULATED 00001 DM 55.00 ш ш Additional Description for Materials Listed Above Handling Codes for Above S01D80 Special Handling Instructions and Additional Information Authorization Date Transporter 1 Authorization Date Date Transporter 2 Authorization Discrepancy Indication Space Authorization Date



# CERTIFICATE OF DISPOSAL

U.S.Pollution Control, Inc. (USPCI), an Oklahoma corporation duly permitted and operating under the approval of the Oklahoma State Department of Health does hereby certify that the controlled industrial waste of

USAF (CAMP STANLEY)

MANIFEST # 50867

WITH THE FOLLOWING WASTE CODES

has been disposed of at the Lone Mountain Controlled Industrial Waste Surface Disposal Site, located in Major County, Oklahoma, and that such treatment, neutralization and disposal has been accomplished in accordance with all applicable rules and regulations of the State of Oklahoma and the U.S. EPA.

WASTE ID ---- LM94-0772 QUANTITY ---- 55 G

U.S. POLLUTION CONTROL, INC.

DISPOSAL SITE PERMIT NO.

OKD065438376

586 LBS

DISPOSAL DATE ---- 02/15/95

LOAD NUMBER ---- 01443

Facility Manager '

Records Administrator

		7
*		
		ż
:		
		The state of the s