
PARSONS ENGINEERING SCIENCE LABORATORY DATA PACKAGES AND DATA USABILITY SUMMARIES MARCH 2012 REMOVAL ACTION

TRENCH NT-1

DATA VERIFICATION SUMMARY REPORT

for B4 samples collected from

CAMP STANLEY STORAGE ACTIVITY

BOERNE, TEXAS

Data Verification by: Tammy Chang Parsons - Austin

INTRODUCTION

The following data verification summary report covers soil samples and associated field quality control (QC) samples collected from B4 at Camp Stanley Storage Activity (CSSA) on February 27, 2012. The samples were assigned to the following Sample Delivery Group (SDG):

67072

The samples in this SDG were analyzed for volatile organic compounds (VOCs), semi-VOCs (SVOCs), explosives, total metals and TCLP metals. Not all samples were analyzed for all parameters. QC samples included one trip blank (TB) for VOC only, two sets of parent and field duplicate (FD), and one pair of matrix spike/matrix spike duplicate (MS/MSD) samples.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 2.0°C, which was within the 2-6°C range recommended by the CSSA QAPP.

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

ICP-AES Metals

General

The ICP-AES metal portion of this SDG consisted of seventeen (17) soil samples and three (3) waste characterization soil samples. All total metal samples were analyzed for arsenic, barium, cadmium, chromium, copper, nickel, lead, and zinc. In addition, the three waste characterization soil samples were analyzed for TCLP-silver, arsenic, barium, cadmium, chromium, lead, and selenium.

PAGE 1 OF 10

The metal analyses were performed using USEPA SW846 Method 6010B and TCLP was performed using SW1311. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples were digested in two batches (#164424 for TCLP batch and #164465 for total metals). The samples were injected in two injection batches under two sets of initial calibration curve (ICAL). All analyses were performed undiluted except most digestates were diluted 5 fold for one or all of the following metals: barium, copper, and zinc.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the two laboratory control samples (LCSs), one for total metals and one for TCLP-metals, and MS/MSD results.

The LCS recoveries for all target metals were within acceptance criteria for both batches.

Sample B4-NT1-BOT01 was designated as the parent sample for the MS/MSD analyses. All non-compliant %Rs for the MS/MSD are listed below:

	D4-N11-DO101					
Metals	MS, %R	MSD, %R	Criteria, %R			
Arsenic	72	(75)				
Barium	156	158				
Cadmium	64	64				
Chromium	70	68	75-125			
Copper	375	145				
Lead	(79)	63				
Nickel	(76)	66				
Zinc	161	135				

R4_NT1_ROT01

Precision

Precision was evaluated by the relative percent difference (%RPD) of the two sets of parent and FD sample results and MS/MSD results. Samples B4-NT1-BOT01 and B4-NT1-SW6 were collected in duplicate.

%RPD of MS/MSD were compliant except copper which had a %RPD of 88% (criteria is $\leq 20\%$). "M" flag has already been applied to the parent sample result due to accuracy issue, no further flagging is needed.

%RPD calculation is only applicable when both parent and FD sample results are greater than RL.

^() indicates the %R was compliant.

[&]quot;M" flags were applied to the above metal results of the parent sample.

B4-NT1-BOT01

Metals	Parent, mg/kg	FD, mg/kg	%RPD	Criteria, %RPD
Barium	41.7	25.0	50	
Copper	135.20	34.46	119	
Lead	12.30	10.65	14	≤20
Nickel	5.62	3.51	46	
Zinc	54.9	42.8	25	

B4-NT1-SW6

Metals	Parent, mg/kg	FD, mg/kg	%RPD	Criteria, %RPD
Barium	8.5	10.4	20	
Copper	3.31	4.03	20	≤20
Zinc	14.4	5.2	94	

[&]quot;J" flags were applied to all total barium, copper, nickel, and zinc results of all samples in this SDG.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

All samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding times required by the method.

- All instrument initial calibration criteria were met.
- Low-level check standard met the criteria.
- All second source criteria were met. Both ICV samples were prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met.
- The dilution test (DT) was performed on sample B4-NT1-BOT01. This test was

PAGE 3 OF 10

applicable to barium, chromium, copper, lead, nickel and zinc:

Metal	%D	Criteria
Barium	5.0	
Chromium	19	
Copper	2.8	0/D < 10
Lead	28	$%D \le 10$
Nickel	30	
Zinc	5.8	

• The post digestion spike (PDS) was performed on the same sample as the DT. It was applicable for arsenic, cadmium, chromium, lead, and nickel:

Metal	%R	Criteria
Arsenic	89	
Cadmium	74	
Chromium	79	75 – 125%
Lead	74	
Nickel	78	

"J" flags were applied to all total cadmium and total lead results of all soil samples in this SDG by the lab. Parsons data validator removed all those flags due to 1% noncompliance of the PDS results.

There were two method blanks and several calibration blanks associated with the metal analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metal results (total and TCLP) for the samples in this SDG were considered usable. Therefore, the completeness for the metal portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERURY

General

The mercury portion of this SDG consisted of seventeen (17) soil samples for total mercury and three (3) waste characterization samples for TCLP-mercury. All samples were collected on February 27, 2012 and were prepared and analyzed for total mercury using USEPA Method SW1311/7470A for the TCLP mercury and SW7471B for total mercury.

All samples were analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

The sample was digested in batch #164409 for total mercury and batch #164393 for the TCLP-mercury. All analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtain from the two LCSs and MS/MSD. Sample B4-NT1-BOT01 was designated as the parent sample for the MS/MSD analyses.

The %R for the two LCSs and MS/MSD for mercury were within acceptance criteria.

Precision

Precision was evaluated based on the %RPD of the two sets of parent/FD and MS/MSD results. Samples B4-NT1-BOT01 and B4-NT1-SW6 were collected in duplicate.

%RPD of MS/MSD was compliant.

B4-NT1-BOT01

Metal	Parent, mg/kg	FD, mg/kg	%RPD	Criteria, %RPD
Mercury	0.30	0.34	12	≤20

Mercury was not detected at or above RL for the parent and FD of sample B4-NT1-SW6.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

All samples in this SDG were analyzed following the COC and the analytical procedures described in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. Both two ICVs were prepared using a secondary source.
- All calibration verification criteria were met.
- DT and PDS are not applicable.

There were two method blanks and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

The total and TCLP mercury result for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

VOLATILES

General

This data package consisted of fourteen (14) soil samples and one TB. The samples were collected on February 27, 2012 and were analyzed for a full list of VOCs.

The VOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8260B. The samples were analyzed in four analytical batches under four sets of initial calibration (ICAL) curves. All samples were analyzed following the procedures outlined in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method. All samples were analyzed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the four LCSs, MS/MSD, and the surrogate spikes. MS/MSD analyses were performed with sample B4-NT1-BOT01.

All LCSs recoveries were within acceptance criteria for all four batches.

There were 28 VOCs with non-compliant MS and/or MSD %R. "M" flags were applied to the parent sample results.

All surrogates were recovered within the limits.

Precision

Precision was evaluated with the %RPD of the MS/MSD and the two sets of parent and field duplicate sample results. Samples B4-NT1-BOT01 and B4-NT1-SW6 were collected in duplicate.

There were two compounds with %RPD greater than 30% of the MS/MSD analyses. "M" flags have already been applied to the parent sample results due to accuracy issue; therefore, no additional flags were needed.

None of the target compounds were detected above the RLs in both parent and FD samples, therefore, the %RPD calculation is not applicable.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining TB and laboratory blanks for cross contamination of samples during sample collection and analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- All four LCS samples were prepared with a secondary source. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.

There were four MBs, one TB, and few calibration blanks associated with the VOC analyses in this SDG. All blanks were non-detect for all target VOCs at RLs.

Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All VOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

SEMI-VOLATILES

General

This data package consisted of fourteen (14) soil samples including QC samples of one pair of MS/MSD and two FDs. The samples were collected on February 27, 2012 and were analyzed for a full list of SVOCs.

The SVOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8270C. The samples were analyzed in one analytical batch under one set of initial calibration (ICAL) curves. All samples were analyzed following the procedures outlined in the CSSA QAPP. All samples were prepared and PAGE 7 OF 10

analyzed within the holding time required by the method. All samples were analyzed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the LCS, MS/MSD, and the surrogate spikes. MS/MSD analyses were performed with sample B4-NT1-BOT01.

All LCS and surrogate spike recoveries were within acceptance criteria.

Benzoic acid had non-compliant %Rs for the MS and MSD. "M" flag was applied to the parent sample result of benzoic acid.

Precision

Precision was evaluated with the %RPD of the MS/MSD and parent and field duplicate sample results. Samples B4-NT1-BOT01 and B4-NT1-SW6 were collected in duplicate.

All %RPDs of the MS/MSD results were compliant.

None of the target SVOCs were detected in both sets of parent and FD at or greater than RLs.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- The LCS sample was prepared with a secondary source. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- All internal standard criteria were met.

There were one MB and few calibration blanks associated with the SVOC analyses in this SDG. All blanks were non-detect for all target SVOCs.

Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All SVOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

EXPLOSIVES

General

This data package consisted of fourteen (14) soil samples including QC samples. All samples were collected on February 29, 2012 and were analyzed for a full list of explosives by SW8330B.

The explosive analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8330B. The samples were analyzed in one analytical batch under one set of initial calibration (ICAL) curves. All samples were analyzed following the procedures outlined in the CSSA QAPP. All samples were prepared and analyzed undiluted within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the LCS, MS, MSD, and the surrogate spikes. Sample B4-NT1-BOT01 was designated as the parent sample for the MS/MSD analyses by Parsons.

All LCS, MS, MSD, and surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated based on the %RPD of MS/MSD and parent/FD. Samples B4-NT1-BOT01 and B4-NT1-SW6 were collected in duplicate.

Neither parent or FD had explosives detected at reporting limits in both pairs of parent and FD, therefore, the %RPD calculation is not applicable.

All %RPDs of MS/MSD were compliant.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;

- Evaluating holding times; and
- Examining laboratory blank for cross contamination of samples during sample preparation and analysis.

All samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. All samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- The LCS was prepared with a secondary source. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.

There were one MB and several calibration blanks associated with the explosive analyses in this SDG. All blanks were non-detect for all target explosives.

Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All explosive results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

Laboratory Report

Parsons

Project #: 748372.06000 CSSA B-4

ARF: 67072

Samples collected: February 27, 2012

APPL, Inc.

Data Validatable Package

for

Project #: 748372.06000 CSSA B-4

ARF 67072

TABLE OF CONTENTS

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	_3
Chain of Custody and ARF	77
EPA 8270C SVOC Analysis	<u> 2</u> 5_
AFCEE Forms	<u>a6</u>
Calibration Data	89
Raw Data	190
EPA 8260B VOC Analysis	167
AFCEE Forms	168
Calibration Data	<i>₽</i>
Raw Data	<u>181</u>
EPA 8330B Explosive Analysis	<u>488</u>
AFCEE Forms	489
Calibration Data	513
Raw Data	<u>542</u>
EPA 6010B Metals Analysis	<u>596</u>
AFCEE Forms	<u> </u>
Calibration Data	<u>لحماما</u>
Raw Data	703
EPA 7470A & 7471B Analyses	752
AFCEE Forms	753
Calibration Data	<u> ግዓገ</u>
Raw Data	208

CASE NARRATIVE

Case Narrative

ARF:

67072

Project: 748372.06000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)

Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The sample group was received February 28, 2012, at 2.0°C. The samples were assigned Analytical Request Form (ARF) number 67072. The sample numbers and requested analyses were compared to the chains of custody and email communications. No exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
TB-1	AY55845	WATER	02/27/12	02/28/12
B4-NT1-SW9	AY55846	SOIL	02/27/12	02/28/12
B4-NT1-SW6	AY55847	SOIL	02/27/12	02/28/12
B4-NT1-SW3	AY55848	SOIL	02/27/12	02/28/12
B4-NT1-BOT03	AY55849	SOIL	02/27/12	02/28/12
B4-NT1-SW8	AY55850	SOIL	02/27/12	02/28/12
B4-NT1-BOT02	AY55851	SOIL	02/27/12	02/28/12
B4-NT1-SW4	AY55852	SOIL	02/27/12	02/28/12
B4-NT1-SW7	AY55853	SOIL	02/27/12	02/28/12
B4-NT1-BOT01 FD	AY55854	SOIL	02/27/12	02/28/12
B4-NT1-BOT01	AY55855	SOIL	02/27/12	02/28/12
B4-NT1-SW5	AY55856	SOIL	02/27/12	02/28/12
B4-WC01	AY55857	SOIL	02/27/12	02/28/12
B4-WC02	AY55858	SOIL	02/27/12	02/28/12
B4-WC03	AY55859	SOIL	02/27/12	02/28/12
B4-NT1-SW6 FD	AY55869	SOIL	02/27/12	02/28/12

Percent moisture was determined using CLP 4.0.

EPA Method 8270C Semi-Volatile Organic Compounds

Sample Preparation:

The soil samples were extracted according to EPA method 3550B. All holding times were met.

Sample Analysis Information:

The samples were analyzed according to the method using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector.

Quality Control/Assurance

Calibrations:

Initial and continuing calibrations were performed according to the method. All calibration criteria were met.

Blanks:

No target compound was detected at or above the reporting limit.

Spikes:

A Laboratory Control Spike (LCS) was used for quality assurance. All recoveries were acceptable.

Sample B4-NT1-BOT01 was designated by the client for MS/MSD analysis. For the MS/MSD, Benzoic acid recovered below the 25% lower control limit at 11.4% and 11.4%. Benzoic acid was "M" flagged in the parent sample, in accordance with the CSSA QAPP. All other recoveries met acceptance criteria.

Surrogates

All surrogate recoveries met acceptance criteria.

Tuning:

The instrument was tuned using DFTPP. All method criteria were met.

Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8270. All method criteria were met.

Summary:

No other problem was encountered. The data generated are acceptable.

Volatile Organic Compounds EPA Method 8260B

Sample Preparation:

The water sample was purged according to EPA method 5030B and the soil samples were purged according to EPA method 5035. All holding times were met.

Sample Analysis Information:

The sample was analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

Quality Control/Assurance:

Spike Recovery:

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard (SS) was used for the LCS. All LCS criteria were met.

Sample B4-NT1-BOT01 was designated by the client for MS/MSD analysis. Twenty eight compounds recovered outside the control limits in the MS, MSD, and/or RPD. All 28 compounds are flagged with an "M" in the parent sample, in accordance with the CSSA QAPP.

Surrogates:

All surrogate recoveries met acceptance criteria.

Method blanks:

No target compound was detected above its reporting limit in the method blanks.

Calibration:

Initial and continuing calibrations were analyzed according to the method. All calibration criteria were met.

Tuning:

The instrument was tuned using BFB. All method criteria were met.

Internal Standards:

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

Summary:

No other analytical exception was noted. All data generated are acceptable.

EPA Method 8330B Energetics

Sample Preparation:

The soil samples were dried and extracted according to EPA method 8330B, without using incremental sampling procedures. All holding times were met.

Analysis:

The samples were analyzed according to EPA Method 8330B using an Agilent 1290 HPLC with DA detector.

Quality Control/Assurance:

Spike Recovery

A Laboratory Control Spike (LCS) was used for quality assurance. All spike acceptance criteria was met.

Sample B4-NT1-BOT01 was designated by the client for MS/MSD analysis. All recoveries met acceptance criteria.

Method blanks:

No target analyte was detected at or above the reporting limit in the method blank.

Surrogates:

All surrogates had acceptable recoveries.

Calibration:

The initial and continuing calibrations and second source were analyzed according to the method. All calibration criteria were met.

Summary:

No analytical problem was encountered. The data generated are acceptable.

EPA Method 6010B Metals

Digestion Information:

The soil samples were digested according to EPA method 3050B. Designated soil samples were leached according to EPA method 1311, and the leachates were digested according to EPA method 3010A. No exceptions were encountered. All holding times were met.

Analysis Information:

Samples:

The samples were analyzed according to EPA method 6010B using a Perkin Elmer Optima 5300DV ICP.

Calibrations:

Calibrations were performed according to the methods for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

Blanks:

No target metal was detected above the reporting limit (RL) in the method blanks.

Spikes:

Laboratory Control Spikes (LCS), matrix spikes (MS/MSD), Post Digestion Spike (PDS) and a serial dilution test (DT) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-NT1-BOT01 was designated by the client for MS/MSD analysis. In the MS/MSD, all eight target analytes recover outside of the 75% to 125% control limits: arsenic at 72.5% in the MS, barium 156% and 158%, cadmium at 63.8% and 63.5%, chromium at 69.9% and 67.5%, copper at 375% and 145%, lead at 63.2% in the MSD, nickel at 66.5% in the MSD, and zinc at 161% and 135%. All analytes are "M" flagged in the parent sample, in accordance with CSSA QAPP guidelines. The DT was applicable to six metals; chromium, lead and nickel exceeded the 10% deviation limit at 18.7%, 28.3%, and 30.5%, respectively; barium copper and zinc had acceptable recoveries in the DT. The PDS was applicable to five analytes; cadmium and lead recovered below the 75% lower control limit at 74.1% and 74.1%. Cadmium and lead are "J" flagged in all associated samples, in accordance with CSSA QAPP guidelines.

Summary:

No other analytical exception is noted.

EPA Methods 7470A and 7471B Mercury

Digestion Information:

The soil samples were digested according to EPA method 7471B. Designated soil samples were leached according to EPA method 1311, and the leachates were digested according to EPA method 7470A. All holding times were met.

Analysis Information:

Samples:

The samples were analyzed according to EPA methods 7470A and 7471B using a Perkin Elmer AAnalyst 300.

Calibrations:

Calibrations were performed according to the methods for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

Blanks:

No target metal was detected above the reporting limit (RL) in the method blanks.

Spikes:

Laboratory Control Spikes (LCS), Matrix Spikes (MS/MSD) and serial dilution test (DT) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-NT1-BOT01 was designated by the client for MS/MSD analysis. All acceptance criteria were met in the MS/MSD.

The dilution test was applicable to several samples because the response for mercury exceeded 25 times the MDL. Sample B4-NT1-BOT03 was selected for the DT. All acceptance criteria were met in the DT and no further action was taken.

Summary:

No analytical exception is noted.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or her designee, as verified by the following signature.

Sharon Dehmlow, Laboratory Director / Date

CHAIN OF CUSTODY AND ARF

Client: Parsons	Received by: TBV
Address: 8000 Centre Park Drive Ste 200	Date Received: 02/28/12 Time: 09:50
Austin, TX 78754	Delivered by: FED EX
Attn: Tammy Chang	Shuttle Custody Seals (Y/N): Y Time Zone: CST
Phone: <u>512-719-6092</u> Fax: <u>512-719-6099</u>	Chest Temp(s): 2.0°C
Job: 748372.06000 CSSA	Color: H-PURGRN,VOA
PO #: 748336.30000-00 (prime *G012)	Samples Chilled until Placed in Refrig/Freezer: Y
Chain of Custody (Y/N): Y # 022712APPFA	Project Manager: Dlane Anderson A
RAD Screen (Y/N): Y pH (Y/N): N	QC Report Type: DVP4/AFCEE/ERPIMS/TX
Turn Around Type: 5 DAYS	Due Date: 03/05/12

Comments:

pdf ARF to Tammy & Pam; send HC 2 DVP3 to Tammy; send DVP4 on CD. For Off-Post samples, send pdf of result pages to Katherine & Tammy. New contract: definitive data needs DVP 4; needs AFCEE forms and package.

Cese Narrative. CSSA QAPP. Only report MS/MSD when requested. EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com Samples are on 5-day or sooner TAT per email from Tammy. 2-28-12

2-29 Sent ARF

Sample Distribution: GC: 12-\$827AF		<u>Charges</u>	invoice To: BOA 748336.30000 TO# 2
Extractions: 12- MSE018, 1 VOA: 1-\$86AW, 12-\$826AF			8000 Centre Park Drive Ste 200 Austin, TX 76754-5140
.CMS: 12-\$83CS Metals: 15-\$HGAFBS, 15- BMTAFS(As,Ba,Cd,Cr,Cu,N	I.Ph.Zn). 3-		Attn: Ellen Felfe
860LP(Ag,As,Ba,Cd,Cr,Pb,S Vetlab: 15-MOIST		· · · · · · · · · · · · · · · · · · ·	
Other: 15M3050GROSS, M3010TCLP, 3M7470TC			
Client ID	APPL ID	Sampled	Analyses Requested
1. TB-1	AY55B45W	02/27/12 09:00	\$86AW

Client ID	APPL ID	Sampled	Analyses Requested
1. TB-1	AY55845W (N.H.II.AN)HIII	02/27/12 09:00	\$86AW
2. B4-NT1-SW9	AY55846S 	02/27/12 10:20	\$826AF, \$827AF, \$83CS, \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
3. B4-NT1-SW6	AY55847S	02/27/12 10:25	\$826AF, \$827AF, \$83CS, \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
4. B4-NT1-SW3	AY55848\$	02/27/12 10:30	\$826AF, \$827AF, \$83CS, \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
5. B4-NT1-BOT03	AY55849\$	02/27/12 10:32	\$826AF, \$827AF, \$83CS, \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MO(ST

		A	NPPL - Analysis Re	quest	: Form	6/0/2
6.	B4-NT1-SW8		AY55850S 02/27/12	10:35	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,P	AFBS, b,Zn), MOIST
7.	B4-NT1-BOT02		AY55851S 02/27/12	10:40	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Nl,P	AFBS, b,Zn), MOIST
8.	B4-NT1-SW4		AY55852S 02/27/12	10:42	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,P	AFBS, b,Zn), MOIST
9.	в4-NT1-SW7	••••••	AY55853S 02/27/12	10:45	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,P	
10.	B4-NT1-BOT01 FD		AY55854S 02/27/12	10:50	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,P	
 11.	B4-NT1-BOT01	MS/MSD	AY55855S 02/27/12	10:50	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,NI,P	
12.	B4-NT1-SW5		AY55856\$ 02/27/12	10:55	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,P	
13.	B4-WC01		AY55857S 02/27/12	13:10	\$60LP(Ag,As,Ba,Cd,Cr,Pb,Se) \$HGT, \$MTAFS(As,Ba,Cd,Cr,0 MOIST	, \$HGAFBS, Cu,Ni,Pb,Zn),
14.	B4-WC02		AY55858S 02/27/12	13:15	\$60LP(Ag,As,Ba,Cd,Cr,Pb,Se) \$HGT, \$MTAFS(As,Ba,Cd,Cr,0 MOIST	
15.	B4-WC03		AY55859S 02/27/12	13:30	\$60LP(Ag,As,Ba,Cd,Cr,Pb,Se) \$HGT, \$MTAFS(As,Ba,Cd,Cr,0 MOIST	
16.	B4-NT1-SW6 FD		AY55869S 02/27/12	10:25	\$826AF, \$827AF, \$83CS, \$HG \$MTAFS(As,Ba,Cd,Cr,Cu,Nl,Pl	

APPL Sample Receipt Form

Sample	Container Type	Count	рH
AY55845	13 VOAs - HCL	2	NA
AY55846	20 4oz Jar	3	МА
AY55847	²⁰ 4oz Jar	3	NΑ
AY55848	²⁰ 4oz Jar	3	ŅĀ
AY55849	²⁰ 4oz Jar	3	NA
AY55850	20 4oz Jar	3	NA
AY55851	²⁰ 4oz Jar	3	NΑ
AY55852	²⁰ 4oz Jar	3	NΑ
AY55853	²⁰ 4oz Jar	3	NA
AY55854	²⁰ 40z Jar	3	NA
AY55855	²⁰ 4oz Jar	3	NA
AY55856	²⁰ 4oz Jar	3	NA
AY55857	²⁰ 402 Jar	2	NA
AY55858	20 4oz Jar	2	λИ
AY55859	²⁰ 40% Jar	2	NA
AY55869	20 4oz Jar	3	NA

Sample	Container Type	Соипт рН
	e de la companya del companya de la companya del companya de la co	٠.,
		e e e e e e e e e e e e e e e e e e e
	s	
		`

Receiving

From:

"Renee Patterson" <rpatterson@applinc.com>

To:

<receiving@applinc.com>

Sent:

Tuesday, February 28, 2012 9:10 AM

Attach:

022712_APPL.PDF

Subject:

FW: B4 sampling (CSSA)

Tom,

Please log in the soil samples from CSSA on 5-day TAT.

Thank you, Renee

From: Chang, Tammy [mailto:Tammy.Chang@parsons.com]

Sent: Tuesday, February 28, 2012 8:29 AM To: Renee Patterson; Diane Anderson Cc: Marbury, Laura; de las Fuentes, Sandra

Subject: FW: B4 sampling (CSSA)

Renee:

We still prefer to have all results in 3 business days. Pieces data, without the TCLP and SVOC, does not help the project. Either all analyses in 3 business days or all analyses in 5 business days. Currently, we do not have 4 business days TAT rates set in the lab subcontract, but are willing to add to it if all analyses may be done in 4 business days.

Will you please update the status of this shipment by the end of this Friday and give us an estimated completion date for ALL analyses. Thank you for your help.

Tammy

From: Renee Patterson [mailto:rpatterson@applinc.com]

Sent: Monday, February 27, 2012 5:42 PM To: Chang, Tammy; 'Diane Anderson' Cc: Ford, Pamela; de las Fuentes, Sandra

Subject: RE: B4 sampling (CSSA)

Tammy,

We've polled all the sections.

VOCs and total metals are OK with 3-day TAT. TCLP metals may need one more day.

SVOCs and explosives may need 3-5 days to complete the analysis.

Will that work for you?

Renée

From: Chang, Tammy [mailto:Tammy.Chang@parsons.com]

Sent: Monday, February 27, 2012 2:34 PM

To: Renée Patterson; Diane Anderson; Robert Wise; Jeremy Hale

Cc: Ford, Pamela; de las Fuentes, Sandra

Subject: FW: B4 sampling (CSSA)

Cooler ID:

LabCode:

APPF FødEv 876436443220

Sampler(s): Sam

Ha:113

COC 15:

022712APPFA

Creation Date: Job Number. Project Location: CSSA

748372,06000 2/27/2012

Relinquished_By:

K(0 5:00 PM

Collection Team: Relinquish_Time:

SE_JDB

Airbill Carries. Carrier:

> 5 days or sonner.

COCID. B4-VIT1-SWG						·									
DECEMBER LOCIDATE 2077/2, TENSON ENOTE AATROX: WQ TELOT: AATROX: Regulared: SWEGGE SWEGG	OSIVES SUITE	ĺ		SEMINOLATIL	SW8Z70C			į		 -		1		1	: -
Or. TB-1 LOCENTE: 227/2012 MATRO: WQ TBLOT: 0.000 MR: 227/2012 MATRO: WQ TBLOT: 2702/201 MR: 227/2012 MATRO: SO TBLOT: 2702/201 MR: 227/2012 MR	ATILE DRIGANIC CO			MERCURY	SWIAIT		:								
DE LOGINE 9:00 SACODE TB SACODE			SWE	é	BOLOGAS										
D. FEP-1	P		SWA	COPPER	Spidows									ଊ	Remark
D. FE-1	DWITH.		SWS	CADMIUM	8	Containers	BLOT:	<u>m</u>	32	2712_N100	IT1-BOT03_02	PiO B4-N	FLOSAM	0	C.
D. TB-1	ĆM .		SWS	ARSENIC	SWS		BLOT:			2	oncope.	20:02		, ,	}
TR-1			; ; : [·	Required:	Analysis						PACODA III	3	FOLOS-LIN		S (2)
Manager Laura Marbury Sample Definitive TAT:	OSIVES SUITE			SEMI-VOLATI	SW4Z/OC						1			. [3
Manager Laura Marbury Sample Definitive TAT:	ATILE ORGANIC CO			MERCURY	175/105										
Mainager Laura Marbury Sample Data Type Dathitive TAT: 178yTAX2 2783 2783 2783 2783 2783 288			SWS	LEAD	BOLOGWIS										
Manager Laura Marbury Sample Data Type Definitive TAT: 1784/TAX2 2787/2012 2487/3012 2	_ 		SMS	COPPER	SPHOOTOR					. !				û.	Reman
Manager Laura Marbury Sample Data Type Doftnitive TAT: 3.Day.TAP2 Arabysis Required:	OMIUM		SWS	CADANUM		Containers:	:TOTE	Œ	_	712 N1030	1T1-SW3_0227	PD 841	FLDSAM	0	SED
Manager Laura Marbury Sample Daffa Type Doffinitive TAT: 3.734/TAPC Arabysis Required: DOGDATE 2277/2012 MATRIX: WQ TBLOT: EBLOT: DOGDATE 2277/2012 MATRIX: WQ TBLOT: EBLOT: DOGDATE 2277/2012 MATRIX: SO TBLOT: 27021/201 Arabysis Required: DOGDATE 2277/2	TM I		SWE	ARSENIC	SWIGHT		BLOT:		SMCODE	Z	SACODE	10:30	COR INNE:	-	000
Manager Laura Marbury Sample Dafa Type Definitive TAT: 3.Day_TATC Analysis Required: 5. TBL-1 LOGDATE: 2/27/2/12012 MATROX: WQ TBLOT: 5. Marbox 5. Ma		! '	 	Required	Analysis				• • •	2/2//2012	EOGDATE:		WE THE		
Manager Laura Marbury Sample Dafa Type Definitive TAT: 2.0xyTAX2 Aralysis Required: 5.0x000 COGDATE: 227/2012 MATRIX: WQ TBLOT: 2702/201 Containers: 2 2.0x000 COGDATE: 227/2012 MATRIX: SO TBLOT: 2702/201 Containers: 2 2.0x000 COGTINE: 10:20 SACODE: N SMCODE:	OSIVES SUITE			SEMI-VULATII	JUL POME		1	Ţ	•			-		1.	3
Manager Laura Marbury Sampke Dafa Type Daffnitive TAT: 3.Day TAX2 3.Day T	ATILE ORGANIC CO			MCRCCRS	CAPANG									:	
Manager Laura Marbury Sample Dafa Type Daffnátive TAT: 3.Day_TAX2			SVA	LEAD.	SOLDOWS										
Manager Laura Marbury Sample Data Type Definitive TAT: 1 Day TAT2 Analysis Required:	- H		SWS	N3deC:	BOLOGAAS						٠.			9	Remar
Manager Laura Marbury Sample Dafta Type Definitive TAT: 3.Day.TAT2 Analysis Required: Sweding Swe	OWIUM		SW6	CADMIUM		Contamers:	•	Ш	_ •	712_N1025	1T1-SW6_0227	PIO BAN	FLDSAM	0	C III
Manager Laura Marbury Samphe Data Type Definitive TAT: 3.Day TAR2 Analysis Required:			SWest	ARSENIC					SMCODE:	2	SACODE:	10:20	LOG DINC.	· 'c) (
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day TAR2 Analysis Required:		;		Zequired:	Mayso				•	75.000					9
Manager Laura Marbury Sample Dafta Type Daffnitive TAT: 3.Day_TAT2 Analysis Required: National Processes National Pr		١				}	- 1		. !	Crucator	i		T1 CWG	ŀ	<u>[</u>
Manager Laura Marbury Sample Dafta Type Daftnitive TAT: 3.Day_TAT2 Analysis Required:	OSIVES SUITE			SEMPOLATIL	SWEETOC				•				٠		
Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TATE	VIILE ORGANIC CO		SWS	MERCURY.	:SW7471		:								
Manager Laura Marbury Sample Data Type Data Data Type Data Type Data Type Data Data Type Data Data Type Data Data Data Data Data Data Data Dat			SWE	ě	ED LOSWICE						-		, .	ş	, verification
Manager Laura Marbury Sample Data Type: Definitive TAT: 3 Day TAX2 Analysis Required: D: TB-1 LOGDATE: 2/27/2012 MATROX: WQ TBLOT: Analysis Required: SW2508 Analysis Required: SW2508 0 LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: ABLOT: Containers: 2 0 FLDSAMPID 7B-1_022712_TB0900 EBLOT: Z7021201 Analysis Required: SW2508 SW2508 0: B4-NT1-SW9 LOGDATE: Z77/2012 MATRIX: SO TBLOT: Z7021201 TBLOT: Z7021201 Analysis Required: SW25008 0: LOGTIME: 10:20 SACODE: N SMCODE: G ABLOT: SW25008 EBLOT: Containers: 3 SW25008 SW25008 0: LOGTIME: 10:20 SACODE: N SMCODE: G ABLOT: Containers: 3 SW25008 SW25008 SW25008 0: FLDSAMPID B4-NT1-SW9 22712_N1020 MATRIX: SO TBLOT: Z7021201 Containers: 3 SW25008 SW25008 0: B4-NT1-SW6 LOGDATE: Z17/2012 MATRIX: SO TBLOT: Z7021201 SW25008 SW25008 0: LOGTIME: 10:25 SACODE: FD SMCODE: G ABLOT: Containers: 3 SW25008 SW25008 0: LOGTIME: 10:25 SACODE: FD SMCODE: G ABLOT: Containers: 3 SW25008 SW25008	p		SWE	COPPER	SWS0109			. [i	10.00		•		•	0 1
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day TAT2 Analysis Required: D: FB-1 LOGDATE: 2/27/2012 MATRIX: WG TBLOT: 3.Day TAT2 Analysis Required: 0 LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: Containers: 2 0 FLDSAMPRD TB-1_022712_TB0900 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021291 Analysis Required: SW60/08 SW60/0			SWEE	CADMIUM	3 (SW60108	Containers				40 ED409	171_SWS_027		FLDSAM	0	SED
Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAR2 D: TB-1 LOGDATE: 2/27/2012 MATRO: WQ TBLOT: Analysis Required: Swazzos VolaTLE ORGANIC CD 0 LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: EBLOT: Containers: 2 Swazzos VolaTLE ORGANIC CD 0 FLDSAMPID TB-1_022/12_TB0900 EBLOT: T702/1201 Analysis Required: Swazos VolaTLE ORGANIC CD 0 FLDSAMPID TB-1_022/12_TB0900 SMCODE: G ABLOT: Containers: 3 Swazos Swazo	ŀ	!	SWEC	ARSENIC	80109WS		BLOT:				SACODE:		LOGITME:	0	SBD
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day TAR2 Analysis Required: Swesses VolaTLE ORGANIC CO EBLOT: Containers: Containers: Containers: Analysis Required: Swesses VolaTLE ORGANIC CO EBLOT: Containers: Containers: Containers: Containers: Swesses VolaTLE ORGANIC CO Analysis Required: Swesses VolaTLE ORGANIC CO Swesses VolaTLE ORGANIC CO Swesses VolaTLE ORGANIC CO Swesses				Required:	Analysis			Ĺ		2/27/2012			Ξ,		Locib
Manager Laura Marbury Sample Data Type Definitive TAT: 3. TB-1 LOGDATE: 2/27/2012 MATRIX: WQ TBLOT: LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: RELOT: Containers: 2 Containers: 2 Analysis Required: SW2208 VOLATLE ORGANIC CD EBLOT: Containers: 2 Analysis Required: SW2208 VOLATLE ORGANIC CD Analysis Required: SW2208 VOLATLE ORGANIC CD SW2208 VOLATLE ORGANIC C	OSMES SUITE			SEMI-VOLATE	ISW8Z70C					<u> </u>	 				
Manager Laura Marbury Sample Data Type Definitive TAT: 3. Tay TAR Analysis Required: Swezos VolaTLE ORSANIC CO EBLOT: Containers: Analysis Required: Swezos VolaTLE ORSANIC CO Swezos Swezos Swezos Swezos	THE DROAME CO		EBANS	MERCURY	SW7471										
Manager Laura Marbury Sample Data Type Definitive TAT: 3. Day TAR2 Analysis Required: Analysis Required: Analysis Required: Swesses VolaTLE ORSANNIC CD EBLOT: Containers: D. B4-NT1-SW9 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: Swesses Analysis Required: Swesses VolaTLE ORSANNIC CD Analysis Required: Swesses Analysis Required: Swesses	· {		SWED	ERA B	SW6010B									ý	Yelligh
Manager Laura Marbury Sample Data Type Definitive TAT: 3. TB-1 LOGDATE: 2/27/2012 MATRIX: WQ TBLOT: LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: PLDSAMPID TB-1_022712_TB0900 B4-NT1-SW9 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: Containers: 2 Analysis Required: SW60106	1		SWED	COPPER	GWS.		-	ַ		1				ì	0
Manager Laura Marbury Sample Data Type Definitive TAT: 3. Day TAT2 Analysis Required: SWEDOB VOLATILE ORGANIC CO EBLOT: 27021201 Analysis Required: Analysis Required: SWEDOB ANALYSIS OF TBLOT: 27021201 Analysis Required: Analysis Required: Analysis Required: Analysis Required: SWEDOB ANALYSIS OF TBLOT: 27021201 Analysis Required: SWEDOB ANALYSIS OF TBLOT: 27021201	THE REPORT OF THE PERSON OF TH		Swea	CADMICK	₩	Containers					7000 DWS_171		FLDSAM	0	SED
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day, TAT2 D: TB-1 LOGDATE: 2/27/2012 MATRO: WQ TBLOT: Analysis Re LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: Containers: 2 D: B4-NT1-SW9 LOGDATE: 2/27/2012 MATROX: SO TBLOT: 27021201 Analysis Re		į	SWED	ARSENIC	EDIOSMS:		BLOT:					-	LOGTIMES	0	SBO
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day, TAT2 D: TB-1 LOGDATE: 2/27/2012 MATRO: WQ TBLOT: Analysis Re LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: SW82508 O FLDSAMPID TB-1_0227/12_TB0900 EBLOT: Containers: 2		:		Required	Amalysis					2/27/2012				7	COCID
Manager Laura Marbury Sample Data Type Definitive TAT: 3.Day. TAT2 D: TB-1 LOGDATE: 2/27/2012 MATRO: WQ TBLOT: LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: SWazes EBLOT: Containers: 2				•				! !	 		 	1) 	- Certification
Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TATC D: TB-1 LOGDATE: 2/27/2012 MATRIX: WQ TBLOT: Analysis Re O LOGTIME: 9:00 SACODE: TB SMCODE: NA ABLOT: Swassas					N G	Contamers:		口		900	_022712_TB0:	18 O 18 4	FLUSAM	_	100
Manager Laura Marbury Sample Data Type. Definitive TAT: 3 Day TATO Di TB-1 LOGDATE: 2/27/2012 MATRIX: WQ TBLOT: Analysis Re		 	GANIC CO	VOLATE OR							מאלים מיני) 		,	7
Laura Marbury Sample Data Type Definitive TAT:				Required:	Analysis		BLOT:			7/2012	177				SB CO
Laura Marbury Sample Data Type, Definitive TAT			•.		!										
	\$D/			-	· - -	STATION IN	1	₹	e Definitive	는 Data Typ	Samp	Į	Laura Marbo	anager	Task N

Date Dane

Time 뛼

ŀ

Recieved by: Refinquished by:

9571 mm 17.48 8

| Time

Recieved by: Relinquished by:

Date

_ Recieved by:_ Relinquished by:

5 days or Sooner

Š

SED: SBD: SED: SBO Job Number: Project Location: CSSA 9 9 9 9 <u>C⊗i</u> Locio: P CCID Creation Date: SBD: SBO: COCID SBD: Task Manager 880 [OCID: SED Ü Remarks Remarks Remarks Remarks: 000 Remarks Remarks B4-NT1-BOT02 B4-NT1-SW8 **B4-NT1-BOT01** B4-NT1-BOT01 B4NT1-SW4 take from parent sample 74837206000 Laura Marbun 022712APPFA 2/27/2012 LOGTIME: LOGTIME: **LOGTIME**: **LOGTIME** LOGTIME LOGTIME FLOSAMPID B4-NT1-SW8_022712_N1035 FLDSAMPID 84-NT1-BOT02_022712_N1040 FLDSAMPID:B4-NT1-BOT01_022712_MS1050 FLDSAMPID B4-NT1-BOT01_022712_FD1050 FLDSAMPID B4-NT1-SW7_022712_N1045 FLDSAMPID:B4-NT1-SW4_022712_N1042 10:35 SACODE: 10:50 SACODE: MS 10:45 SACODE 10:40 SACODE: 10:50 SACODE: 10:42 SACODE: LOGDATE: LOGDATE LOGDATE LOGDATE: 2/27/2012 MATRIX: SO LOGDATE: LOGDATE Relinquished_By: Retinquish_Time; Relinquish_Date: Collection Team: Sample Data Type 2/27/2012 MATRIX: 2/27/2012 MATRUX: 2/27/2012 MATRIX: SO 2/27/2012 MATRIX: 2/27/2012 MATRIX SMCODE: SMCODE: G SMCODE: SMCODE: SMCODE: SMCODE: G Dafinitive 5:00 PM ₹ C SE_JDB 2/27/2012 ဗ ő ନ ၈ 8 0 ଜ S TBLOT T A Airbill Carrier Cooler ID: TOTE ABLOT ABLOT: ABLOT: TBLOT EBLOT: ABLOT: 1807 Carrier TabCode: ABLOT: EBLOT: TBLOT: 27021201 LOTE OF LO183 HOTE EBLOT: 27021201 27021201 27021201 27021201 27021201 876436443220 APPF 3 Day TATE FedEx Containers: Containers: Containers: Containers: Containers: Containers: 3 SW60108 SCHOSWS 0 3 ISWEDTOB 3 SW80108 3 iswediae 3 ISM60108 80:09MS SW82700 SM6010B SW7474 BO109MS SWEZTOC SWED108 SW60108 SW7471 SW60108 SW60108 SW60108 30109WS SW7473 Analysis Required: SW82700 Analysis Required: Analysis Required: SW7471 SWEETER SW7471 SW6010B SWISOTOB Analysis Required: SW82700 SW7471 SW60108 BD1409WS Analysis Required: 80109WS SW60108 SW60108 Analysis Required: Sampler(s): E COPPER Š CADMUM SEMINOLATILE ORGAN STIMBY3 ARSENIC E Ę ARSENIC CADMIUM SEMPLYOL 6 ě SEMHYOU KERCUA! COPPER CADMIUN ARSENIC MRQ23 SEMI-VOLATILE ORGAN **535440** MERCUS ARSENIO SEMEVOLATILE ORGAN MERCURY 8999 CASSO ARSENIC 888 CACOMO PASHNO MERCURY MERCUR San Elliste AT'LE ORGAN BOLOSMS DEEBMS SWIGOTOR SWEETING SM20108 BOSZBAKS 80109WS **SMRONGB** BOLDSMS SW82608 80109MS BOLOGAKS 20109MS SW6010E SW82806 **CCERMS** SMECTICE SW60108 SW6D10B SW8260E SWEETING SW82600 SWISONOE SW6010E SWEDIOS SWEETER SW8320 30928WS 20109MS SWEETICE SW60108 **EDIOSWIS** BARGUM S S S S BARIUM EXPLOSIVES SUITE VOLATILE ORGANIC CO 2<u>5</u> CHROMIUN EXPLOSIVES SUITE <u>¥</u> **WOLATILE ORGANIC CO** ă るの CHROMIUM MUTHAR EXPLOSIVES SUITE NOP CHRONIUN Š NCXE! 봈 EXPLOSIVES SUITE **VOLATILE ORGANIC CO** N N N EXPLOSIVES SUITE **VOLATILE DRIGANIC CO** CHRONIUM VOLATILE ORGANIC CO NC CELL CHROMEIN BASCIM EXPLOSIVES SUITE **VOLATILE ORGANIC CO** BARIUM 17

Page 2 of 4

Time.

Recieved by:

Date 14710 me 1630

Relinquished by:

Time

Recieved by:

ole Ped Ped

Jume

Time

Recieved by:

Jake d

Relinquish_Date: Camp Stanley Storage Activity Chain Of Custody 2/27/2012

022712APPFA

S days 2 Sooner

SBO 880 SED 88 LOCID: ö 88 0.7 LOCID: SED SBD; LOCID: SHO <u>6</u> Creation Date: Job Number: Project Location: CSSA Remarks: QC 0 Remarks Kemarks: Temarks: Remarks Task Manager B4-NT1-BOT01 **B4-NT1-BOT01** 84WC02 B4NT1-SW5 take from parest sample Laura Marbury 2/27/2012 748372,06000 LOCTIME: LOCTIME: LOGITME: LOGTIME: LOGTIME FLDSAMPID 84-NT1-BOT01_022712_SD1050 FLDSAMPID 84-WC02_022712_N1315 FLDSAMPID:84-NT1-80T01_022712_N1050 FLDSAMPID 84-WC01_022712_N1310 FLOSAMPID 84-NT1-SW5_022712_N1055 10:50 SACODE: 13:15 SACODE: 10:55 SACODE: 10:50 SACODE: 13:10 SACODE: LOGDATE: LOGDATE LOGDATE: LOGDATE: LOGDATE Relinquish_Time: Sample Data Type Definitive Collection Team: Refinquished_By: 2/27/2012 2/27/2012 MATRIX: 2/27/2012 MATRIX: S 2/27/2012 MATRIX: 2/27/2012 SMICODE SMCODE: G SMCODE: SMCODE SMCODE MATRIX: MATRIX <u>র</u> BOL'3S 5:00 PM S S ດ ő ő ଉ ő Ø a ABLOT ABLOT: Airbill Camer ABLOT: APLOT: TOUBT ABLOT: HOTEL Select LabCode: Cooler iD: EBLOT: EBLOT TBLOT EBLOT: TELOT: EBLOT: 18101 27021201 27021201 27021201 FedEx Appr 3 Day TAIL 876438443220 Containers: Containers: Containers: Contamers: Containers: O SWEDIDE 3 SW60108 2 SW6010B 3 SWEET B 2 iswande SW60108 SW60108 SW7471 E0109ANS 80108WS BOTOSMS) SWED TOB SW60108 SWEETING 80109MS Analysis Required: SWY BOLCSMS BOLOSMS SW6010B SW60108 SW60108 SW60108 Analysis Required: SW82700 SM60108 SMECTOR Analysis Required: SW7471 SW60108 SW60108 SW6010B Analysis Required: SW7471 SW6010B SM6010B SW60108 Analysis Required: Sampler(s): CADMIUM COPPER 8 SEMI-VOLAT 8 ě COPPER ARSENIC ě MERCURY F 6 MERCURY Spera MAINER CADMICK CACINIUM SEMP-VOLATILE ORGAN SEMI-VOLATILE ORGAN TCLP - Lood (Pb) TCLP - Cagnium (Cd) TCLP - Arsonic (As) COPPER ARSENIC 100 - Load (Pb) TCLP - Cadmium (Cd) TCLP - Arsenio (Au) COPPER CADMICA ARSENIO MERCER ARSONO ARSENIC MERCURY ILE ORGAN SMEGIOR SW50108 SWEDZO SW60108 SWEENS SWEDICE BOLOBIMS **SM8010B** SM5010B SM60108 BOLOGMS SW6010B SWEDTE SWEDTO SW8280E SW50106 SW6010 SW80108 DGZBWS SW60106 SWEDTO SWIGOTOF **BOSCBWS** SW60108 SW6010E 80109WS SM60108 SW60108 SW60106 SM4010E SWEDIDE SW7400 7577R Juli 60 BARIUM BARKUN BARIUS. ZINC **VOLATILE ORGANIC CO** Š Ķ Š VOLATILE ORGANIC CO EXPLOSIVES SUITE CHROMAUM EXPLOSIVES SUITE **VOLATILE ORGANIC CO** TCLP - Silver (Ag) CHROMICIM TCLP - Silver (Ag) CHROMEUN BARUM EXPLOSIVES SUITE NO. CHROMAUM 뜇 CHROMIUM TCLP - Selanium (Se) TCLP - Oheomium (Cr) TOLE - Barium (Bu) TCLP - Marcury (Hg) TCLP - Salenium (Se) TCLP - Chromium (Cr) TCLP - Barham (Bu) TCLP - Mercury (Hg) 18

Page 3 of

Relinquished by: Recieved by:

Date 2 07.12 ime_

1430

Relinquished by:

Recieved by:

, Date

Jame"

Relinquished by: Recieved by:

Date Date

Time , Time

Relinquish_Date: 2/27/2012	Cal
2/27/2012	np Stanle
Cooler ID:	y Storage
>	Activity
	Storage Activity Chain Of Custody_
	7
<u> </u>	W
	down
·.	or SooneR
	,

SED: SBD: Project Location: CSSA 000 Creation Date: Job Number Remarks: Task Manager **B4-WC03** Laura Marbury 748372.06000 .022712APPFA 2/27/2012 LOGTIME: 13:30 SACODE: FLDSAMPID B4-WC03_022712_N1330 LOGDATE: 2/27/2012 MATRIX: SO Relinquish_Time: 5:00 PM Sample Data Type Definitive Collection Team; SMCODE: G SE_JDB LabCode: Carrier: ABLOT: EBLOT: LBTOL: TAT Airbill Carrier. APPS 876436443220 3.Day TAT-CO Tedity. Containers: 5W60108 2 5W60108 5W60108 SW60108 SW60108 SM20108 Analysis Required: 80108MS SW7471 EAS TCLP - Cadmium (Cd) TCLP - Lead (Pt) TCLP - Arsenic (As) 왕 CADMIUM ARSENIC SW60108 SW60108 SCLOSMS SW50108 SMS0108 SW60108 SW7470A TCLP - Barlum (Ba)
TCLP - Chromium (Cr)
TCLP - Selenium (Se) BARUUM CHROMIUM NICKEL TCLP - Mercury (Hg) TCLP - Silver (Ag)

	Recieved by: Date Time	d by: Stuff Date 2.37-12 ime 163
	Recieved by:DateTime	O Relinquished by:DateTime
Page	Recieved by Date Time	Relinguished by: Date Time
Page 4 of 4	Ĭ	ā

Project Location: CSSA Laura Marbury 748372,06000 022712APPFA 2/27/2012 LOGDATE: Relinquish_Time: Relinquished_By: Relinquish_Date: Sample Data Type Definitive Collection Team; 2/27/2012 MATRIX: WQ TBLOT: 5:00 PM SE_JDB Ŕ 2/27/2012 ŢĄŢ. Carrier. LabCode: Cooler ID: -Airbill Carrier. FedEx APPF 876436443220 3 Day TAT Analysis Required:
SW02608 VOLATILE ORGANIC CO Sampler(s): Sam 2,0,

SBD: FOCID:

TB-1

COC ID:

Creation Date: Job Number:

Task Manager

	EXPLOSIVES SUITE	SW8330	SEMI-VOLATILE ORGAN	SW8270C									
	VOLATILE ORGANIC CO	SW82608	MERCURY	SVV/471							. •	۲.	
	ZINC	SW60108	LEAD	SW6010B									
	NICKEL	SW60108	COPPER	SWOODB					-				Remarks:
	CHROMIUM	SW6010B	CADMIUM	3 SW6010B	Containers:	EBLOT:		32	2712_N10	FLUSAMPID B4-NT1-BOT03_022712_N1032	DSAMPID BA	7) (E)
	BARIUM	SW6010B	ARSENIC	SW6010B	•	ABLOT:	ດ	ACOUE:	2	SK SKCODE:		; 5	2 (
			tequired:	Analysis Required:		TBLOT: 27021201	Q	MATRIX:	2/27/2012	FOGDATE:	• -	DA-NIT-BOIOS	
	EXPLOSIVES SUITE	SW8330	SEMI-VOLATILE ORGAN	SVV8Z70C				1					3
	VOLATILE ORGANIC CO	SW8260B	MERCURY	SW7471		·.		;				,	٠
	ZINC	SW6010B	LEAD	SW6010B									٠
	NICKEL	SW6010B	COPPER	SW6010B	٠			-	:	:			Remarks:
	CHROMIUM	SW8010B	CADMIUM	3 SW6010B	Containers:	EBLOT:		_	712_N103C	FLDSAMPID B4-NT1-SW3_022712_N1030	DSAMPID B	- E	(F)
	BARIUM	SW6010B	ARSENIC	SW6010B	ı	ABLOT:	G	SMCODE:		SU SACOUE:	LOCIONE: 70:30		2 (
			equired:	Analysis Required:		TBLOT: 27021201	8		2/27/2012	COGDATE:	ì	B4N/3-SW3	
	EXPLOSIVES SUITE	SW8330	SEMI-VOLATILE ORGAN	SANS7.00									5
	VOLATILE ORGANIC CO	SW62608	MERCURY	SW7471									
	ZINC	SWEOTOB	LEAD	SW6010B									
	NICKEL	SW6010B	COPPER	SW6010B								•	Remarks:
	CHROMIUM	SW6010B	CADMIUM	3 SW6010B	Containers:	EBLOT:		5 1	712_N102	FLDSAMPID B4-NT1-SW6_022712_N1025	DSAMPID B	O E	SHO:
	BARIUM	SW60108	ARSENIC	SW6010B		ABLOT:	<u>ດ</u>	SMCODE:	Z	25 SACOUE:	CORTIME: 10:25		9 6
			nalysis Required:	Analysis R		IBLOT: 27021201	SO.		2177777	COGUATE:	Ì	D4WI-SW6	2 (
20	EXPLOSIVES SUITE	SW8330	SEMPACIALILE ORGAN	20170840				ŀ		- 1	Air	DA NTA 2	<u> </u>
	VOLATILE ORGANIC CO	SWSZSVB	PATACOAT	CURPANA.					:			,	
	4室0	SMOODS	Rubo inc	SW274									
	NICKEL	SWEDTOB	(C) TEX	00100									Remarks:
	CHROMIUM	. SW6010B	CADMIUM	3 SW60108	Containers:	EBLOT:		8	712_FD10;	FLDSAMPID B4-NT1-SW6_022712_FD1025	_DSAMPID B	0	, K
	BARIUM	SW6010B	ARSENIC	SW6010B	ı	ABLOT:	ດ	SMCODE:	FD	25 SACODE:	LOG ME: 10:25	, <u>c</u>	
			nalysis Required:	Analysis F		TBLOT: 27021201	ö		2/27/2012	LOGDATE	i	B4-NT1-SW6	
	EXPLOSIVES SUITE	SW8330	SEMI-VOLATILE ORGAN	SW8270C									
	VOLATILE ORGANIC CO	SW8260B	MERCURY	SW7471								ņ	
1	ZINC	SW6010B	LEAD	SW6010B							:		
	NICKEL	SW60108	COPPER	SW6010B		!			ı				Remarks:
	CHROMIUM	SW6010B	CADMIUM	3 SW60108	Containers:	EBLOT:		J	712 N102X	FLDSAMPID B4-NT1-SW9_022712_N1020	LDSAMPID B	0	SED:
	BARIUM	SV/60108	ARSENIC	SW6010B		ABLOT:	മ	SMCODE:	Z	10:20 SACODE:	LOGTIME: 10:	0 [0	SBD:
			tequired:	Analysis Required:		TBLOT: 27021201	So	MATRIX:	2/27/2012	177	_	B4-NT1-SW9	LOCID:
													Remarks
į				2	Containers:	EBLOT:			900	FLDSAMPID TB-1_022712_TB0900	LDSAMPID TI	0	SHID:
			VOLATILE ORGANIC CO	SW8260B		ABLOT:	×	SMCODE:	18	O SACOUE:	LOCITME: 9:00	5	000
			nalysis Required:	Analysis r)			200

Recieved by: _Date 4/24 ime_7.50 Recieved by: Relinquished by:

Date Date. _Time_ _Imme_

Recieved by: Relinquished by: Date_ Date.

Page 1 of 4

Time

									•			
ı	EXPLOSIVES SOLLE	Occordo	SERVI-VOLATILE ORGAN	20,520,40								1
	VOCATILE ORGANIC CO	SOCIONE	SEMI VOI ATE DODO AN	20700	-							
	ZINC	SW60108	E-AD	SWEGTOB				:				
	NICKEL	SW6010B	COPPER	SWEDTUB					¥.	take from parent sample		Remarks:
,	CHROMIUM	SW60108	CADMIUM	0 SW60108	Containers:	EBLOT:		12_MS1050	FLDSAMPID B4-NT1-BOT01_022712_MS1050	FLDSAMPID E	0	SED:
	BARIUM	SW6010B	ARSENIC	SW60108	•	ABLOT:	ODE: G	S SMCODE:	10:50 SACODE: MS	LOGTIME: 10	0	SBC:
			Required:	Analysis Required:		TBLOT: 27021201	MATRIX: SO	7/2012	LOGDA IE:		ŗ	3 5
	EXPLOSIVES SUITE	SWASSO	SEMI-VOLATILE CROAN	201/20AB				1			1	<u>[</u>
	VOLATILE ORGANIC CO	SWASSOR	STACCAT	207707								
	ZINC	SW6010B	LEAD	SW6010B			. •				į	
	NICKEL	SW6010B	COPPER	SW6010B							<u>.</u>	Remarks:
	CHROMIUM	SW6010B	CADMIUM	3 SW80108	Containers: :	EBLOT:		12 FD1050	FLDSAMPID B4-NT1-BOT01_022712_FD1050	FLDSAMPID E	Ģ	SED:
_,	BARIUM	SW6010B	ARSENIC	SW6010B		. ABLOT:	ODE: G	SMCODE:	10:50 SACODE: FD	LOGTIME: 10	0	SBD:
١			Required:	Analysis Required:		TBLOT: 27021201	MATRIX: SO	2/27/2012 MAT	LOGDATE: 2/2	B4-NT1-BOT01		LOCID:
	EXPLOSIVES SUITE	SW8330	SEMI-VOLATILE ORGAN	SW8270C								
	VOLATILE ORGANIC CO	SW8260B	MERCURY	SW7471						٠.		
	ZINC	SW6010B	LEAD	SW6010B				,			irks:	Remarks;
	NIOKEL	SW6010B	COPPER	SW6010B	Contamers.	EBLOT:		2_N1045	FLUSAMPID B4-N13-SW7_022712_N1045	T C USAMPID		יי מו
	BARIUM	SW6010B	ARSENIC			ABLOT:	ODE: G	SMCODE	10:45 SACODE: N	LOGIAME: 10		
			Required:	Analysis Required:		TBLOT: 27021201		2/27/2012 MA	LOGDATE:			3 5
! _	EXPLOSIVES SOLLE	Occordo	ODMINACENT TEL CACHA	OC TORROW								3
21	SOUTH ORGANIC CO	SWEZEUE	SERVICEST PORCAN	SIA/8770								4
	ZINC	SW6010B	LEAD	SW6010B							į	į
	NICKEL	SW60108	COPPER			1040				.!	index :	Remarks
	CHROMIUM	SW6010B	CADMIUM		Containers: 3	EBLOT:			FLDSAMPID B4-NT1-SW4 022712 N1042	FLDSAMPID E	0	SED
	BARIUM	SW6010B	ARSENIC	SW6010B		ABLOT:	ODE; G	SMCODE:	10:42 SACODE: N	LOGTIME: 10	0	SBD:
ļ			Required:	Analysis R		TBLOT: 27021201	MATRIX: SO	2/27/2012 MAT	••	B4-NT1-SW4	Ņ	LOCID:
_	EXPLOSIVES SUITE	SW8330	SEMEVOLATILE ORGAN	SW8270C			1					
	VOLATILE ORGANIC CO	SW8260B	MERCURY	SW7471					-			
	ZINC	SW60108	LEAD	SW8010B							IIKS:	Kemarks
	NICKEL	SW6010B	COPPER		Contained of	EBLO1:		12_N1040	FEDSAMPID 64-N 11-80 102_022/12_N1040	רבטאואודיוט נ		, (
	CHROMILM	SWECTOR	CADMIUM	SWS0108		ABLOT:	e CDE	SMCODE	TOTAL MACCOURT N			2 6
			dequired:	Analysis Required:		IBLOT: 27021201		2/2//2012 MATRIX:	LOGUATE:			
1	EARLOSIVES SOILE	OCCOA46	OCIVITY CE ONGAN	307700			1	- 1	1		1	
	VOCATILE ORGANIC CO	SWEZEOB	MERCURY	SW7471								
	ZINO	SW6010B	(EAD	SW6010B					•		Ş	1 Killian Na
	NICKEL	SWECTOR	COPPER			EBEC 1:		_N1030		T EUGYGANT IO E		0 (
	CHROMICM	SW6010B	CADMIUM		Containers: 3	7000			NA PLEA CHARGO COLL IN		- (2 (
	BARILIM	SWEDTOR	ARSENIC					'n		ij	0	SBD
•			Required:	Analysis R		TBLOT: 27021201	írix: so	2/27/2012 MATRIX:	LOGDATE: 2/2	B4-NT1-SW8		Locib:
		(3 Day TAT	TAT:	Definitive	Sample Data Type De	Sample I	Laura Marbury	Task Manager	Task
	ARC	7	Sur Eller		876436443220	Airbill Carrier:	SE_JDB		Collection Team;	2/27/2012	Creation Date:	Creati
		4	1		FedEx	Carrier.	5:00 PM		Relinquish_Time:	748372.06000	Job Number:	Job N
		<u>.</u>	r(s): Sun Elliatt	Sampler(s):	APPF	LabCode: /	ຄ	shed_By: KKC	Relinquished_By:	n: CSSA	Project Location:	Projec
		_			A	Cooler ID:	2/27/2012		Relinquish_Date:	022712APPFA		COC ID:
			•								į)

Date Page 2 of 4

Date

Time

Relinquished by:

Jens Toate 1/2/1/ Time 1630 Recieved by:

Date

Time

Recieved by:_ Relinquished by:

Coatloin: CSSA: Relinquished by: RACK Labcode: Relinquish_Time: St.DB B APPE Sample(s): \$\frac{1}{2}\$	D22712APPFA Relinquish_Date: Z2772012 Coder ID. A	TCLP - Mercury (Hg)	SW7470A	MERCURY	SW7471							
Container CSSA: Relinquisted_By: KRC LabCooker APPE Sampler(s): Sampler(s)	DZZ712APPFA Relinquish_Date: ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	TCLP - Selenium (BOLDGAAS	THE CENT (PD)	3400.00	•						
### dication: CSSA. Relinquished By: KGC Labour APPE Sampler(s): \$\frac{1}{2} \text{Limith}	Container Cont	TCLP - Chromium (SW6010B	TCLP - Cadmium (Cd)	SW6010B					:		
Container CSSA Reimquished_By: KKC LabCode: APP: Sampler(6): \$ a Ella H Juli	Cardinarios	TCLP - Benium (Ba)	SW6010B	TCLP - Arsenic (As)	SW60108							
Acception: CSSA. Palinquished_By: KKC LabCode: APP Carrier: 744372.08000 Palinquish_Time: 5.00 PM Carrier: 744372.08000 Carrier: 744372.08000 Palinquish_Time: 5.00 PM Carrier: 744372.08000 Palinquish_Time: 5.00 PM Arbiil Carrier: 8764343220	Container Cont	TCLP - Silver (Ag)	SW6010B	LEAD	SW60108							į
Apple	CZZ712APPFA Relinquish_Cate: ZZ7Z012 Cooler ID: A	NICKEL	SW6010B	COPPER					1			larks:
ALANTI-BOT01 LOGDATE 227/2012 MATRIX: SO TELOT: 2702/2011 Sample DataType Definitive TACT: 3 Day TAT	COZT124PPFA Relinquish_Cate: Z0Z12012 Cooler ID: A	CHROMIUM	SW6010B	CADMIUM			EBI OT:			B4-WC02 022712	FLDSAMPID	
Container CSSA: Relimquished_by KRC LabCode: APPF Sampler(s): Sa. Ellat Juli Sampler(s): Sa. Ellat Juli Sampler(s): Sa. Ellat Juli Sampler(s):	Color Colo	BARIUM	SW6010B	ARSENIC	SW60108		ABLOT:			SACODE		
Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA Container CSSA CSSA Container CSSA CSSA Container CSSA	CONTINUE 10:55 SACODE: N SMCODE: N			Required:	Analysis F		TBLOT:					5
Container CSSA Container CSSA CSSA CONTAIN COntainer CSSA CONTAIN CONTAINER	Control Cont	:		MERCURY	SW7471							
Container CSSA Relinquished By: KKC LabCode: APPE Sampler(s): \$\(\) \$\	CONTINUE 10:55 SACODE: N SMCODE: SD SMCODE: SALOTI: STORY SMCODE: SD SM	TCLP - Mercury (Ho	SW7470A	ZINC	ISW6010B							
Containor: CSSA	Continue	TCLP - Selenium (SW6010B	TCLP - Lead (Pb)	SW60108							
Container: CSSA- Relinquished_By: KRC LabCode: APPF Sampler(s): \$a. Ellst Juliumber: 748372.06000 Relinquished_By: KRC LabCode: APPF Sampler(s): \$a. Ellst Juliumber: 748372.06000 Relinquished_By: Required: Collection Team: SE_UBB Arbinilities TAT: 3 Day TAT	Coz2712APPPA Relinquish_Date: 227172012 Cooler ID: Appriled: SACODE: Relinquish_Dime Soo DPM Camer FedEx	TCLP - Chromium (SW8010B	TCLP - Cadmium (Cd)	SW6010B							
Container CSSA- Relinquished_By: KKC LabCode: APPF Sampler(s): \$\infty = \text{Lib} \text{Limber: } 74372.05000 Relinquished_By: KKC LabCode: APPF Sampler(s): \$\infty = \text{Lib} \text{Limber: } 74372.05000 Relinquished_By: KKC LabCode: Relinquished_By: KKC LabCode: Relinquished_By: KKC LabCode: Relinquished_By: KKC LabCode: Relinquished_By: Required: \text{Lib} \text{Limber: } 876436443220 \text{Limber: } 876436443220 \text{Limber: } 876436443220 \text{Limber: }	Containers Con	TCLP - Barium (Be)	SW6010B	TCLP - Arsenic (As)	SW6010B							
Container CSSA Container CSSA CAPP Carrier CSSA CAPP C	Coz71/2APPFA Relinquish_Date: 2/27/2012 Cooler ID: A	TCLP - Silver (Ag)	SW6010B	LEAD	SW6010B							
Container CSSA- Relinquished By KKC LabCode: APPF Sampler(s): San Ellish Julianmer: 748372.06000 Relinquish_Time: 5:00 PM Carrier: 976436443220 Sampler(s): San Ellish Julianmer: 976436443220 Sampler(s): Sampl	Cation: CSSA- Relinquish_Date: 227/2012 Cooler ID: A Cation: CSSA- Relinquish_Date: 227/2012 Cooler ID: A Cation: CSSA- Cation: CSSA- Cation: CSSA- Cation: CSSA- Cation: CSSA- Cation: CSSA- Cation: CSSA- Cation: Cooler ID: A Cation: Cooler ID: Cation: Stample Data Type Definitive TAT: Stample:	NICKEL	SW6010B	COPPER	SW6010B							narks:
Container CSSA: Relinquished By: KICC LabCode: APPF Sampler(s): Sax Ellish Julimber: 743772.06000 Relinquish_Time: Sc0 PM Carrier: 976436443220 Sampler(s): Sax Ellish Julimber: 743772.06000 Relinquish_Time: Sc0 PM Carrier: 976436443220 Sampler(s): Sax Ellish Julimber: Julimber: 3509 PM Julimber: 3764443220 Sampler(s): Sax Ellish Julimber: Smooth Sampler Samp	DOZ712APPFA Relinquish_Date: 227/2012 Cooler ID: A Caration: CSSA* Relinquish_Drate: 277/2012 Cooler ID: A Relinquish_Drate: 277/2012 Relinquish_Drate: Stoo PM Carrier: 878438443220 Sample (s): Sample (CHROMIUM	SW6010B	CADMIUM	SW6010B		EBLOT:		N1310	B4-WC01_022712	+LDSAMPID I	
Coloration: CSSA: Relinquished_By: KICC LabCode: APPF Sampler(s): Saw Elliatt Julian Immer: 743372.06000 Relinquish_Time: 5:00 PM Carrier: 976436443220 Sample (s): Saw Elliatt Julian Marbury Sample Data Type Definitive TAT: 3 Day TAT	D027/12APPFA Relinquish_Date: 2/27/2012 Cooler ID: A Relinquish_Date: 2/27/2012 Cooler ID: A Relinquish_Date: 2/27/2012 ABDOOde: APPF Sampler(s): \$\$\infty\$ ABPF Add	BARIUM	SW60108	ARSENIC	SW60108		ABLOT:			מנוס מאניטטבי		
Coloration: CSSA: Relinquished_By: KKC LabCode: AppE Sampler(s): Sa. Elliph Julian Julia	D027/12APPFA Relinquish_Date: 277/7012 Cooler ID: A Cation: CSSA:			Required:	Analysis F		מבטו.		7103117			
Container	D22712APPFA Relinquish_Date: 227712012 Cooler ID: A Cartior: CSSA+ CSSA+ Relinquish_Time: E:00 PM Carrier: FedEx Fed						TBI OT		-	OGDATE	C01	
Coloration: CSSA Relinquished By: KKC LabCode: APPF Sampler(s): Sample	D22712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A	EXPLOSIVES SUM	SW8330	SEMI-VOLATILE ORGAN	SW8270C							
Container: CSSA+ Relinquished By: KKC LabCode: APPF Sampler(s): Sample	D02712APPFA Relinquish_Date: 27772012 Cooler ID: A	VOLATILE ORGANI	SW82608	MERCURY	SW7471							
Containing CSSA Collection CSSA Collection CSSA Collection CSSA Collection Carrier FedEx	D22712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A Cartier: SSSA- Relinquish_Date: 2/27/2012 CalbCode: ABPF Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Arbill Carrier: 876436443220 Sample Data Type Definitive TAT: 3 Day TAT	ZINC	SW60108	15AD	SW6010B							0
Collection: CSSA Relinquished By: KKC LabCode: APPF: Sampler(s): \$\infty = Clifath July Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT TAT: 4 Day TAT: 4	December Containers Conta	NICKEL	SW6010B	COPPER			מפרטוו		7 (4_14)			7
Colocation: CSSA:	D02712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A	CHROMILIM	SWEDIDE	CAOMIUM			EBI OF			PALNTI SWE 000	FLDSAMPID	
tumber: 748372.06000 Relinquished_By: KKC LabCode: APPE tumber: 748372.06000 Relinquished_By: KKC LabCode: 748372.06000 Relinquish_Time: 5:00 PM Carrier: 876436443220 Manager: Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2727/2012 MATRIX: SO TBLOT: 27021201 D: COTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 Swering CADMIUM Swering Swering Swering CADMIUM Swering Swering Swering CADMIUM Swering Swer	D027/12APPFA Relinquish_Date: 2/27/2012 Cooler ID: A	BARIUM	SW6010B	ARSENIC	SW60108							
tumber: 748372.06000 Relinquished_By: KKC LabCode: APPF. Sampler(s): Sa. Ellistt Julion Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Manager: Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 D: COTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 Swe0108 CADMIUM Swe0108 Swe0	Comparison			Required:	Analysis F					LOGDATE:	T1-SW5	5
Cartion: CSSA Relinquished_By: KKC LabCode: APPF Sampler(s): Sa. Ellaht Julion Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: FedEx	Relinquish_Date:	EXPLOSIVES SUIT	SW8330	SEMEVOLATILE ORGAN	SW8Z70C				1			-
tumber: 748372.06000 Relinquished_By: KKC LabCode: APPF. Tumber: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx Ion Date: 2/27/2012 Collection Team: SE_JDB Arbill Carrier: 876436443220 Manager: Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Swe0108 ARSENIC Swe0108 Swe	Color Colo	VOLATILE ORGAN	SW82608	MERCURY	SW7471							
tricis take from parent sample Relinquished_By: KKC Relinquished		ZINC	SW60108	LEAD	SW6010B					7		
de Location: CSSA: Relinquished_By: KKC: Relinquished_By: KKC. Relinquished_By: KKC: Relinquished_By: KKC: Relinquished_By: KKC. Relinquished_By: KKC. Relinquished_By: KKC. Relinquished_By: KKC. Relinquished_By: KKC. Redix # Stansactor Ranaysis Required: Swe0108	022712APPFA	NICKEL	SW60108	COPPER				•	1]	from parent sam	
thumber: 748372.06000 Relinquished_By: KKC LabCode: APPF. Tumber: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx Ton Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 O LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 Sw60108 ARSENIC Sw60108		CHROMIUM	SW6010B	CADMIUM			EBLOT:		22712 SD105	B4-NT1-BOT01_0;	FLDSAMPID	•
d Location: CSSA: Relinquished_By: KKC LabCode: APPF Lumber: 748372.06000 Relinquished_By: KKC LabCode: APPF Lumber: 748372.06000 Relinquished_By: KKC LabCode: APPF LabCode: APPF LabCode: APPF LabCode: APPF LabCode: APPF Manager: PedEx Marity: Se_jdb Airbill Carrier: 876436443220 Manager: Laura Marbury D: B4-NT1-BOT01 LOGDATE: 277/2012 MATRIX: SO TBLOT: 27021201 D: Containers: 3 Swe0108 ARSENIC Swe0108 ARSENIC Swe0108 Swe01	O22712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A Price CSSA Relinquished_By: KKC LabCode: APPF A3372.06000 Relinquished_By: KKC LabCode: APPF A3372.06000 Relinquish_Time: 5:00 PM Camier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Sample Data Type Definitive TAT: 3 Day TAT	BARIUM	SW60108	ARSENIC	SW6010B		ABLOT:					
d Location: CSSA: Relinquished_By: KKC LabCode: APPF. Sampler(s): Sa. Ellist Ju. FedEx fon Date: 2/27/2012 Collection Team: SE_JDB	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nn: CSSA: Relinquished_By: KKC LabCode: APPF. 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 SW6010B SW6010B SW6010B FLDSAMPID B4-NT1-BOT01_022712_N1050 EBLOT: Containers: 3 SW6010B CADMILIM SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B LEAD SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW6010B SW			Required:	Analysis F					LOGDATE:	T1-B0T01	
d Location: CSSA: Relinquished_By: KKC LabCode: APPF. Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A 748372.06000 Relinquished_By: KKC LabCode: APPF. 2/27/2012 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 2/2021201 LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 Sweorios Copper FLDSAMPID B4-NT1-BOT01_022712_N1050 EBLOT: Containers: 3 Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweorios Sweo	EXPLOSIVES SUIT	SW8330	SEMI-VOLATILE ORGAN	SW8270C							1
dt Location: CSSA: Relinquished_By: KKC LabCode: APPF. tumber: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx fon Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 SW60108 ARSENIC SW60108 GADMIUM SW60108 SW601	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A 743372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 Sw60108 ARSENIC SW60108 FLDSAMPID B4-NT1-BOT01_022712_N1050 EBLOT: Containers: 3 Sw60108 CADMIUM SW60108 Sw60108 SW60108 SW60108 SW60108	VOLATILE ORGANI	SW8260B	MERCURY	SW7471							
d Location: CSSA: Relinquished_By: KKC LabCode: APPF. Tumber: 748372.06000 Relinquish_Time: 5:00 PM Camier: FedEx fon Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 SMCODE: G ABLOT: Swe0108 ARSENIC Swe0108 COPPER 0 FLDSAMPID B4-NT1-BOT01_022712_N1050 EBLOT: Containers: 3 Swe0108 COPPER Swe0108 swe0108 chiss.	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A n: CSSA: Relinquished_By: KKC LabCode: LabCode: APPF APPF Sampler(s): Sa. Elliott	ZINC	\$W8010B	LEAD	SW6010B		,					ļ
d Location: CSSA: Relinquished_By: KKC LabCode: APPF. tumber: 748372.06000 Relinquish_Time: 5:00 PM Camier: FedEx fon Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 87643643220 Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: O LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Containers: 3 SW60108 ARSENIC SW60108 O FLDSAMPID B4-NT1-BOT01 022712 N1050 EBLOT: Containers: 3 SW60108 CADMIUM SW60108	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nn: CSSA: Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: SW60108 ARSENIC SW60108 FLDSAMIPID B4-NT1-BOT01 Containers: 3 SW60108 CADMIUM SW60108	NICKEL	SW5010B	COPPER	SW6010B				ı	•		narks:
d Location: CSSA: Relinquished_By: KKC LabCode: APPF tumber: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx fon Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: Swedits Arsenic Swedits BARII	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nn: CSSA: Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required: LOGTIME: 10:50 SACODE: N SMCODE: G ABLOT: Sw60108 BARII	CHROMIUM	SW50108	CADMIUM			EBLOT:		22712 N1050	B4-NT1-BOT01_0;	FLDSAMPIDI	
A Location: CSSA: Relinquished_By: KKC LabCode: APPF lumber: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx fon Date: 2/27/2012 Collection Team: SE_JDB Manager Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT D: B4-NT1-B0T01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required:	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nn: CSSA: Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT NT1-BOT01 LOGDATE: 2/27/2012 MATRIX: SO TBLOT: 27021201 Analysis Required:	BARIUM	SW6010B	ARSENIC	SW6010B		ABLOT:					
Location: CSSA: Relinquished_By: KKC LabCode: APPF Ther: 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx Date: 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Anager: Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nn: CSSA- Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220 Laura Marbury Sample Data Type Definitive TAT: 3 Day TAT			Required:	Analysis F					_		Ų
748372.06000 Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nr. CSSA: Relinquished_By: KKC LabCode: APPF 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Arbill Carrier: 876436443220	d. 6				3 Day I A I		Deminiae	pic Data Type	Quital Control	The second of th	
748372.06000 Relinquished_By: KKC LabCode: APPE Sampler(s): Sa. Ellatt Julit LabCode: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A nr. CSSA: Relinquished_By: KKC LabCode: APPF Sampler(s): Sa. Ellatt Julit 748372.06000 Relinquish_Time: 5:00 PM Carrier: FedEx 2/27/2012 Collection Team: SE_JDB Airbill Carrier: 876436443220								nie Data Tana	203		k Manager
ion: CSSA Relinquished_By: KKC LabCode: APPF Sampler(s): Sampler(s	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID: A ion: CSSA- Relinquished_By: KKC LabCode: APPF Sampler(s): Sam		N.	2000		876436443220		SE_JDB	ction Team:	Colle	2/27/2012	ation Date:
ion: CSSA Relinquished_By: KKC LabCode: APPF Sampler(s): Car F/1/1/1	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID; A ion: CSSA Relinquished_By: KKC LabCode: APPF Sampler(s): Car F//2/F Julia	٠,	*	1		FedEx		5:00 PM	quish_Time:	Relin	748372.06000	Number
	022712APPFA Relinquish_Date: 2/27/2012 Cooler ID:	.	T	<u>ر</u>	Sample	APPE		KKC	quished_By:	Relin		Sect Focation
	Relinquish Date: 2/27/2013)	•	12774014	44.6.1			inal paration

Page 3 of 4

Date.

Time

Relinquished by:

Time 4:50

Recieved by:

Date

Time

Relinquished by:

Recieved by:

Date 2 47-17 Inne 1638 Relinquished by.

,	
•	ဂ္ဂ
•	置
l	-0
	ş
	꽏
	≓
,	Ş.
•	S
•	ਰ
i	ă
	Õ
	Φ
	Ď
	멅
•	₹.
	₹
	\bar{a}
	오
	_
	Q
	Ŧ
	Ω
	SuS
	ਰੋ
	•

COC ID: 022712APPFA	Relinquish_Date: 2/27/2012	Cooler ID:			}
Project Location: CSSA	Relinquished_By: KKC	LabCode:	APPF	Sampler(s): Sampler(s): Sampler(s): Sampler(s):	Ş
Job Number: 748372.06000	Relinquish_Time: 5:00 PM	Сапіет	FedEx		
Creation Date: 2/27/2012	Collection Team: SE_JDB	Airbill Carrier:	876436443220	20 20 Mar () 14/	ر
Task Manager Laura Marbury	Sample Data Type Definitive	TAT:	3 Day TAT		<i>J</i>
LOCID: B4-WC03	LOGDATE: 2/27/2012 MATRIX: SO TBLOT	TBLOT:		Analysis Required:	
SBD: 0 LOGTIME: 13:30 SACODE: N	SMCODE: G	ABLOT:		SW60108 ARSENIC SW60108 BARIUM	
SED: 0 FLDSAMPID B4-WC03 022712 N1330	3 022712 N1330	EBLOT:	Containers: 2	SW6010B CADMIUM SW6010B CHROMIUM	
Reidains.				SW80108 LEAD SW80108 TCLP - Silver (Ag)	-
				SW6010B TCLP - Arsenic (As) SW6010B TCLP - Barium (Ba)	\$a)
				SW6010B TCLP - Cadmium (Cd) SW5010B TCLP - Chromium (Cr)	₹ (?)
-				SW6010B TCLP - Lead (Pb) SW6010B TCLP - Selenium (Se)	(Se)
				SW6010B ZINC SW7470A TCLP - Mercury (Hg)	(H ₀)
				SW7471 MERCHRY	


Reli Reci		· ·	LOCID: SBD: SED: Remarks:
Relinquished by:			
formal of the state of the stat			B4-WC03 0 LOGTIME: 1:
			3 LOGDATE: 2/27/2012 OGTIME: 13:30 SACODE: N FLDSAMPID B4-WC03_022712_N1330
Relinquished by:			MATRIX: SO SMCODE: G
by:	e in en		ABLOT:
Date			Containers:
Time			Analysis 1
Relinquished by:			Analysis Required: SW60108 ARSENIC SW60108 CADMILM SW60108 COPPER SW60108 TCLP - Arsenic (As) SW60108 TCLP - Cadmium (Cd) SW60108 TCLP - Lead (Pb) SW60108 TCLP - Lead (Pb)
			SW60108 SW60108 SW60108 SW60108 SW60108 SW60108 SW60108 SW60108 SW7470A
Date			BARIUM CHROMIUM NICKEL TCLP - Silver (Ag) TCLP - Barium (Ba) TCLP - Chromium (Cr) TCLP - Sebenium (Se) TCLP - Mercuny (Hg)
Time			= 2 G

24

EPA METHOD 8270C Semivolatile Organic Compounds

EPA METHOD 8270C Semivolatile Organic Compounds AFCEE Forms

AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8270C

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Base/Command: CSSA

Prime Contractor: Parsons

Field Sample ID	Lab Sample ID
B4-NT1-SW9	AY55846
B4-NT1-SW6	AY55847
B4-NT1-SW3	AY55848
B4-NT1-BOT03	AY55849
B4-NTI-SW8	AY55850
B4-NT1-BOT02	AY55851
B4-NT1-SW4	AY55852
B4-NT1-SW7	AY55853
B4-NT1-BOT01 FD	AY55854
B4-NT1-BOT01	AY55855
B4-NT1-SW5	AY55856
B4-NT1-SW6 FD	AY55869

Comments:	ARF: 67072		
completeness, package and it	for other than the conditions detailed	d above. Releated on diskette	nditions of the contract, both technically and for ase of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	fhyll-	Name: _	Diane Anderson
Date:	3-13-12	Title: -	Project Manager

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

3550B

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7		1	<u>-</u> .	U
1,2-DCB	0.03	0.7		1		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		Ü
2.4.5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3		1	<u></u>	U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1	******	U
2,4-DINITROPHENOL	0.03	3.3		1		U
2,4-DNT	0.05	0.7		1		U
2,6-DNT	0.04	0.7				U
2-CHLORONAPHTHALENE	0.04	0.7		1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		<u>บ</u> บ
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3				Ü
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		U
3-NITROANILINE	0.01	3.3	0.01	1		U
4.6-DINITRO-2-METHYLPHENOL	0.03	3.3				U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1	<u> </u>	U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3	0.04	1	. <u> </u>	U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		Ų
4-METHYLPHENOL	0.04	0.3				บ
4-NITROANILINE	0.03	3.3	0.03	11	<u></u>	U
4-NITROPHENOL	0.04	1.6				U
ACENAPHTHENE	0.04	0.7	0.04	1	. <u></u> .	U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7			<u> </u>	U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		U
BENZO (A) PYRENE	0.05	0.7			·	U
BENZO (B) FLUORANTHENE	0.06	0.7			<u> </u>	U
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	1	l	u
BENZOIC ACID	0.02	1.0	0.02	. 1	l <u></u>	U

Comments:		
177 (7070	<u> </u>	
ARF: 67072		

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1		<u>U</u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7		1		
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7		1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7		1		<u>U</u>
CHRYSENE	0.04	0.7		. 1		U
DI-N-BUTYLPHTHALATE	0.04	0.7		1		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7		1		<u>U</u>
DIBENZOFURAN	0.04	0.7	· · · · · · · · · · · · · · · · · · ·	1		<u>U</u>
DIETHYL PHTHALATE	0.04	0.7		t		U
DIMETHYLPHTHALATE	0.04	0.7	· · · · · · · · · · · · · · · · · · ·	1		U
FLUORANTHENE	0.04	0.7		1	,	U
FLUORENE	0.04	0.7		1		U
HEXACHLOROBENZENE	0.05	0.7		1		U
HEXACHLOROBUTADIENE	0.06	0.7		1		U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7		1		<u> </u>
HEXACHLOROETHANE	0.04	0.7		1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7		1		. U
ISOPHORONE	0.04	0.7		1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7		1		U
NAPHTHALENE	0.04	0.7	0.04	1		U
NITROBENZENE	0.05	0.7		1		U
PENTACHLOROPHENOL	0.03			1		<u>U</u>
PHENANTHRENE	0.04	0.7		1		U
PHENOL	0.04	0.3		1		U
PYRENE	0.05	0.7		1	Ovalifia	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	59.4	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	56.5	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	63.9	25-135	
SURROGATE: NITROBENZENE-D5 (S)	63.9	25-135	
SURROGATE: PHENOL (S)	69.7	25-135	

Comment	ts	
---------	----	--

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

3550B

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Surrogate		Recovery	Control Limit	s Qualifier
SURROGATE: TERPHENYL-D14 (S)		69.3	32-	136
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE			
	ACENAPTHTHENE-D10 (IS)			
	CHRYSENE-D12 (IS)			
	NAPHTHALENE-D8 (IS)			
PERYLENE-D12 (IS)				
	PHENANTHRENE-DIC) (IS)		

Comments:	· · · · · · · · · · · · · · · · · · ·
ARF: 67072	

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		U
1,3-DCB	0.04	0.7	0.04	1	<u></u>	U
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		Ü
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		· U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		U
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1]	U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		บ
2-NITROPHENOL	0.04	0.3	0.04	1		<u> </u>
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		บ
3-NITROANILINE	0.01	3.3	0.01	1		υ
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	<u>1</u>		ູ້ນ
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3	0.04	l		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		U
4-METHYLPHENOL	0.04	0.3	0.04			U
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6	0.04	1		U
ACENAPHTHENE	0.04	0.7	0.04	.1		บ
ACENAPHTHYLENE	0.03	. 0.7	0.03	1		υ
ANTHRACENE	0.04	0.7	0.04	1		υ
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		Ü
BENZO (A) PYRENE	0.05	0.7	0.05	1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		υ
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	1		U
BENZOIC ACID	0.02	1.6	0.02	1		Ü

Comment	s:
---------	----

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

3550B

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3		1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1		<u> </u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		Ü
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	l		U
CHRYSENE	0.04	0.7	0.04	1		U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1		Ŭ
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		<u>บ</u> บ
DIBENZOFURAN	0.04	0.7	0.04	1		
DIETHYL PHTHALATE	0.04	0.7	0.04	1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7	0.04	1		Ü
FLUORENE	0.04	0.7	0.04	<u> </u>		U
HEXACHLOROBENZENE	0.05	0.7	0.05	<u></u> j		U
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1		U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1		U
HEXACHLOROETHANE	0.04	0.7	0.04	1		<u>u</u>
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	1		U
ISOPHORONE	0.04	0.7	0.04	1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		Ų
NAPHTHALENE	0.04	0.7	0.04	1		U
NITROBENZENE	0.05	0.7		1		U
PENTACHLOROPHENOL	0.03	3.3		1		U
PHENANTHRENE	0.04	0.7		1		U. U
PHENOL	0.04	0.3		1		U
PYRENE	0.05	0.7		1	Lo ie.	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	61.7	25-144	·
SURROGATE: 2-FLUORBIPHENYL (S)	49.5	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	56.9	25-135	
SURROGATE: NITROBENZENE-D5 (S)	62.0	25-135	
SURROGATE: PHENOL (S)	66.0	25-135	

Con			٠
m	пп	нп	

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

3550B

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Surrogate	····	Recovery	Control Limit	s Qualifier
	RPHENYL-D14 (S)	62.6	32-	136
<u> </u>	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
	ACENAPTHTHENE-D1	10 (IS)		
	CHRYSENE-D12 (IS)	<u> </u>		
	NAPHTHALENE-D8 (I	S)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-DIC	(IS)		

Comments:	
ARF: 67072	

Analytical Method: EPA 8270C

Preparatory Method:

A

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

3550B

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		U
1,3-DCB	0.04	0.7	0.04	1		Ü
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	<u> </u>		U U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1	ļ.,	U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		Ü
2,4-DINITROPHENOL	0.03	3.3	0.03	1	<u>. </u>	U
2,4-DNT	0.05	0.7	0.05	1		U
2,6-DNT	0.04	0.7	0.04	1		
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1	ļ	U
2-CHLOROPHENOL	0.03	0.3	0.03	1		Ü
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		Ü
2-METHYLPHENOL	0.02	0.3	0.02	1	<u>-</u>	U
2-NITROANILINB	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	_		<u>u</u>
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		U
3-NITROANILINE	0.01	3.3	0.01	1	-	U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3		1		Ų
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3		_1		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		<u>U</u>
4-METHYLPHENOL	0.04	0.3		1		Ü
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6		1		U
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7				U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1	1	U
BENZO (A) PYRENE	0.05	0.7	0.05	1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	1		U
BENZOIC ACID	0.02	1.6	0.02	1	<u></u>	U

Comments:	
-----------	--

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	- 1	<u> </u>	U
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1	<u></u>	U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7		1		<u> </u>
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	<u> </u>		U
BUTYLBENZYLPHTHALATE	0.04	0.7		i		<u> </u>
CHRYSENE	0.04	0.7		1		<u> </u>
DI-N-BUTYLPHTHALATE	0.04	0.7	-	1		U
DI-N-OCTYLPHTHALATE	0.03	0.7		1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7		1		U
DIBENZOFURAN	0.04	0.7		1		<u>u</u>
DIETHYL PHTHALATE	0.04	0.7		1		U
DIMETHYLPHTHALATE	0.04	0.7		1		U
FLUORANTHENE	0.04	0.7		1	<u></u>	U
FLUORENE	0.04	0.7		1	<u></u>	<u>.u</u>
HEXACHLOROBENZENE	0.05	0.7	·	1	<u>.</u>	U
HEXACHLOROBUTADIENE	0.06	0.7		1		U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7		!	<u> </u>	<u> </u>
HEXACHLOROETHANE	0.04	0.7		<u>l</u>	-	U
INDENO (1,2,3-CD) PYRENE	0.04	0.7		l		U
ISOPHORONE	0.04	0.7		1	<u> </u>	U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	· · · · · · · · · · · · · · · · · · ·		·	U
N-NITROSODIPHENYLAMINE	0.05	0.7		1		U
NAPHTHALENE	0.04	0.7			<u> </u>	U
NITROBENZENE	0.05	0.7			<u> </u>	U
PENTACHLOROPHENOL	0.03	3.3			·	<u> </u>
PHENANTHRENE	0.04	0.7				U
PHENOL	0.04				<u> </u>	U
PYRENE	0.05	0.1	0.05	1	10.20	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	60.3	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	58.8	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	59.4	25-135	
SURROGATE: NITROBENZENE-D5 (S)	66.4	25-135	
SURROGATE: PHENOL (S)	67.8	25-135	

Comments:

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Lab Sample ID: AY55848

Matrix: Soil

Field Sample ID: B4-NT1-SW3 % Solids: 88.3

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 02-Mar-12

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: TERPHENYL-D14 (S) 66.0	32-1	36
Internal Std		Qualifier	
1,4-DICHLOROB	ENZENE-D4 (IS)		
ACENAPTHTHE			
CHRYSENE-D12			
NAPHTHALENE	-D8 (IS)		
PERYLENE-D12		<u> </u>	
PHENANTHREN	E-D10 (IS)		

Comments:	
ARF: 67072	
7114 : 07072	

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7		1		<u> </u>
1,2-DCB	0.03	0.7		<u> </u>		U
1,3-DCB	0.04	0.7	0.04	1		<u> </u>
I,4-DCB	0.03	0.7	0.03	1		
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3		1		U
2,4-DICHLOROPHENOL	0.04	0.3		1	<u></u>	U
2.4-DIMETHYLPHENOL	0.08	0.3		1	<u> </u>	U
2,4-DINITROPHENOL	0.03	3.3		1	ļ	U
2,4-DNT	0.05	0.7		<u> 1</u>		U
2,6-DNT	0.04	0.7		<u> </u>		U
2-CHLORONAPHTHALENE	0.04	0.7		1		U
2-CHLOROPHENOL	0.03	0.3		<u> </u>		U
2-METHYLNAPHTHALENE	0.05	0.7		1		U
2-METHYLPHENOL	0.02	0.3				U
2-NITROANILINE	0.04	3.3				U
2-NITROPHENOL	0.04	0.3		ļ <u>_</u> 1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3		1		U
3-NITROANILINE	0.01	3.3		1	!	U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3			·	U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7			<u> </u>	Ü
4-CHLORO-3-METHYLPHENOL	0.04				<u> </u>	U
4-CHLOROANILINE	0.04	1.3			<u>. </u>	U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.1			<u> </u>	U
4-METHYLPHENOL	0.04				<u> </u>	Ü
4-NITROANILINE	0.03	3.3			<u> </u>	U
4-NITROPHENOL	0.04	1.0			<u> </u>	Ų
ACENAPHTHENE	0.04	0.	· I	ļ. <u> </u>	<u>l</u>	U
ACENAPHTHYLENE	0.03	0.	·		<u> </u>	U
ANTHRACENE	0.04				<u> </u>	U
BENZ (A) ANTHRACENE	0.04	0.			1	U
BENZO (A) PYRENE	0.05				1	U
BENZO (B) FLUORANTHENE	0.06				1	U
BENZO (G,H,I) PERYLENE	0.04	0.		+	1 -	U
BENZOIC ACID	0.02	1.	6 0.02	<u> </u>	Щ	Ü

Comn	nents:	 		<u>.</u> <u>-</u> .	 <u>.</u>	
ARF:	67072	 	· · · · · · · · · · · · · · · · · · ·	<u></u>	 	. .

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	. 1		<u> </u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		<u> </u>
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		Ŭ
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		Ü
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1		Ŭ
CHRYSENE	0.04	0.7	0.04	1		U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04			Ŭ
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7	0.04	1		U
DIETHYL PHTHALATE	0.04	0.7	0.04	1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7	0.04	1		U U
FLUORENE	0.04	0.7	0.04	1		U
HEXACHLOROBENZENE	0.05	0.7	0.05	1		<u> </u>
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1	_	U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1		U
HEXACHLOROETHANE	0.04	0.7	0.04			ัก
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	1		U
ISOPHORONE	0.04	0.7	0.04	1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		<u> </u>
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		U
NAPHTHALENE	0.04	0.7	0.04	1		U
NITROBENZENE	0.05	0.7	0.05	1		U
PENTACHLOROPHENOL	0.03	3.3	0.03			U
PHENANTHRENE	0.04	0.7	0.04	1		UU
PHENOL	0.04	0.3	0.04	1		U
PYRENE	0.05	0.7	0.05	1	<u> </u>	L ŭ

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	48.2	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	45.8	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	44.2	25-135	
SURROGATE: NITROBENZENE-D5 (S)	49.7	25-135	
SURPOGATE: PHENOL (S)	51.3	25-135	

Co			
ľ	mn	nei	ıre.

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Surrogate		Recovery	Control Limits	Qualifier
	TERPHENYL-D14 (S)	56.3	32-1	36
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
	ACENAPTHTHENE-D	10 (IS)		
	CHRYSENE-D12 (IS)		,	
	NAPHTHALENE-D8 (I	S)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-D10) (IS)	<u> </u>	

Comments:		 	
ARF; 67072	 		

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		ប
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		ប
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		ບ
2-CHLOROPHENOL	0.03	0.3	0.03	. 1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		U
3-NITROANILINE	0.01	3.3	0.01			Ū
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		υ
4-CHLOROANILINE	0.04	1.3	0.04	1		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		Ü
4-METHYLPHENOL	0.04	0.3	0.04	1		U
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6	0.04	1		υ
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7	0.04	1		U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		U
BENZO (A) PYRENE	0.05	0.7	0.05	1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		U
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	_1		U
BENZOIC ACID	0.02	1.6	0.02	1		U

C	۰.			_		ŀa	
t i	M	m	m	e	m	IS.	:

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1		<u>U</u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1		U
CHRYSENE	0.04	0.7	0.04	1		U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1	, _ .	U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7	0.04	1		U
DIETHYL PHTHALATE	0.04	0.7	0.04	1		
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7	0.04	1		υ
FLUORENE	0.04	0.7	0.04	1]		U
HEXACHLOROBENZENE	0.05	0.7	0.05	1		U
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1		<u> </u>
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1		U
HEXACHLOROETHANE	0.04	0.7	0.04	1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	1		U
ISOPHORONE	0.04	0.7	0.04	1		<u>U</u>
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		U
NAPHTHALENE	0.04	0.7	0.04	1.		U
NITROBENZENE	0.05	0.7	0.05	1		U
PENTACHLOROPHENOL	0.03	3.3	0.03	1		<u>U</u>
PHENANTHRENE	0.04	0.7	0.04	1		L U
PHENOL	0.04	0.3	0.04	1		<u> </u>
PYRENE	0.05	0.7	0.05	1	01:6:	U

1 0,00			
Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	56.3	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	51.3	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	49.9	25-135	
SURROGATE: NITROBENZENE-D5 (S)	56.7	25-135	
SUPPOGATE: PHENOL (S)	58.9	25-135	

r	٦,	••		1e	111	·a·
١.	м	ш	ш	ne	ш	18.

Analytical Method: EPA 8270C

Preparatory Method: 3550B AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Matrix: Soil

Field Sample ID: B4-NT1-SW8

Initial Calibration ID: Y120301B

Lab Sample ID: AY55850

% Solids: 85.5

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Surrogate		Recovery	Control Limits	Qualifier
SURROGATE: TERPHENYL-D14 (S)		64.7	32-1	36
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
	ACENAPTHTHENE-DI	0 (IS)		
	CHRYSENE-D12 (IS)			
	NAPHTHALENE-D8 (IS	S)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-D10	(IS)		

Comments:		 	
ARF: 67072		 	

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

3550B

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7		1		υ
1,2-DCB	0.03	0.7	0.03	1		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3		1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	i		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		U
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7		1		<u> </u>
2-CHLOROPHENOL	0.03	0.3	0.03	1		<u> </u>
2-METHYLNAPHTHALENE	0.05	0.7		1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3		1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3		1		U
3-NITROANILINE	0.01	3.3		1		UU
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3		1		<u> </u>
4-BROMOPHENYL PHENYL ETHER	0.05	0.7		1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3		1		U
4-CHLOROANILINE	0.04	1.3		1		UU
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		U
4-METHYLPHENOL	0.04	0.3	0.04	1		<u>.u</u>
4-NITROANILINE	0.03	3.3		1		υ
4-NITROPHENOL	0.04	1.6		1		υ
ACENAPHTHENE	0.04	0.7		1		U
ACENAPHTHYLENE	0.03	0.7		1		
ANTHRACENE	0.04	0.7	0.04	1		U
BENZ (A) ANTHRACENE	0.04	0.7				U
BENZO (A) PYRENE	0.05	0.7				U
BENZO (B) FLUORANTHENE	0.06	0.7				U
BENZO (G,H,I) PERYLENE	0.04	0.7				Ü
BENZOIC ACID	0.02	1.6	0.02	_1]	ι

Comments	i
----------	---

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

MDL	RL	Concentration	Dilution	Confirm	Qualifier
0.12	1.3	0.12	1		U
0.06	0.7	0.06	1		
0.04	0.7		1		<u>U</u>
0.05	0.7		1		Ü
0.03			1		U U
0.04			1		U
0.04					U
0.04			1		<u> </u>
0.03			1		<u> </u>
0.04			1		<u>u</u>
0.04					<u>u</u>
					U
0.04					U
0.04					U
0.04					U
0.05			1		<u> </u>
0.06					<u>U</u>
0.03					U
0.04					U
0.04	0.7				UU
0.04	0.7				<u>U</u>
0.04		ļ			U
0.05			1		U
0.04	0.7		1		U
0.05					U
0.03					U
0.04					U
0.04				<u> </u>	Ü
0.05	0.7		J., 	L.,	υ
	0.12 0.06 0.04 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.03 0.06 0.03 0.06 0.03 0.04 0.05 0.05 0.04 0.04	0.12 1.3 0.06 0.7 0.04 0.7 0.05 0.7 0.03 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.04 0.7 0.05 0.7 0.06 0.7 0.09 0.7 0.09 0.7 0.00 0.7 0.0	0.12 1.3 0.12 0.06 0.7 0.06 0.04 0.7 0.04 0.05 0.7 0.05 0.03 0.7 0.03 0.04 0.7 0.04 0.04 0.7 0.04 0.03 0.7 0.03 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.05 0.7 0.05 0.06 0.7 0.04 0.03 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.04 0.7 0.04 0.05 <td>0.12 1.3 0.12 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.03 0.7 0.03 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.03 0.7 0.03 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.05 0.7 0.06 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1</td> <td>0.12 1.3 0.12 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.06 0.7 0.05 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1</td>	0.12 1.3 0.12 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.03 0.7 0.03 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.03 0.7 0.03 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.05 0.7 0.06 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1	0.12 1.3 0.12 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.03 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.04 0.7 0.04 1 0.05 0.7 0.05 1 0.06 0.7 0.05 1 0.06 0.7 0.06 1 0.04 0.7 0.04 1

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	63.9	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	57.4	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	59.3	25-135	
SURROGATE: NITROBENZENE-D5 (S)	62.3	25-135	
SURROGATE: PHENOL (S)	66.9	25-135	

Comments:	
-----------	--

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: Y120301B

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Surrogate		Recovery	Control Limi	ts Qualifler
SURROGATE: TERPHENYL-D14 (S)		69.0	32	-136
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
	ACENAPTHTHENE-DI	0 (IS)		
	CHRYSENE-D12 (IS)			
	NAPHTHALENE-D8 (IS	S)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-D10	(IS)		

Comments:	 	 	
ARF: 67072	 <u> </u>		

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	<u> </u>		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7		1		<u>U</u>
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3		1		<u>U</u>
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7		1	ļ <u>-</u>	U
2,6-DNT	0.04	0.7		1		<u>u</u>
2-CHLORONAPHTHALENE	0.04	0.7	_ 	1		U
2-CHLOROPHENOL	0.03	0.3		1	ļ	U
2-METHYLNAPHTHALENE	0.05	0.7		1		U
2-METHYLPHENOL	0.02	0.3		1		U
2-NITROANILINE	0.04			l	ļ. .	U
2-NITROPHENOL	0.04			1		<u> </u>
3,3'-DICHLOROBENZIDINE	0.02	1.3		1		U
3-NITROANILINE	0.01	3.3		1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3		1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0,7				U
4-CHLORO-3-METHYLPHENOL	0.04	1.3				U U
4-CHLOROANILINE	0.04	1.3				
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	·			U
4-METHYLPHENOL	0.04	0.3				U
4-NITROANILINE	0.03	3.3				υ
4-NITROPHENOL	0.04	1.0	·			U
ACENAPHTHENE	0.04				ļ	U
ACENAPHTHYLENE	0.03	0.7				U
ANTHRACENE	0.04				<u> </u>	U
BENZ (A) ANTHRACENE	0.04		· · · · · · · · · · · · · · · · · · ·			U
BENZO (A) PYRENE	0.05					Ų
BENZO (B) FLUORANTHENE	0.06		.) 		<u></u>	Ü
BENZO (G,H,I) PERYLENE	0.04			1		U
BENZOIC ACID	0.02	1.6	0.02	!1	<u> </u>	U

Comments:	
ARF: 67072	

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

3550B

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qι	alifier
BENZYL ALCOHOL	0.12	1.3		1			U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1			<u>U</u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04				
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1			U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03				<u>u</u>
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1			<u>_</u>
CHRYSENE	0.04	0.7	0.04				
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1			<u> </u>
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1			<u> </u>
DIBENZ (A,H) ANTHRACENE	0.04	0.7		1			U
DIBENZOFURAN	0.04	0.7		1		. <u>-</u>	U
DIETHYL PHTHALATE	0.04	0.7			<u></u>		<u>-</u> _
DIMETHYLPHTHALATE	0.04	0.7		1		<u> </u>	<u>U</u>
FLUORANTHENE	0.04			1		ļ <u>.</u>	<u>U</u>
FLUORENE	0.04	0.7		1			U
HEXACHLOROBENZENE	0.05	0.7					U
HEXACHLOROBUTADIENE	0.06					<u> </u>	
HEXACHLOROCYCLOPENTADIENE	0.03	0.7				ļ. - —	
HEXACHLOROETHANE	0.04						U
INDENO (1,2,3-CD) PYRENE	0.04	· -				<u> </u>	
ISOPHORONE	0.04	0.7				<u></u>	
N-NITROSODI-N-PROPYLAMINE	_0.04			· · · · · · · · · · · · · · · · · · ·			<u> </u>
N-NITROSODIPHENYLAMINE	0.05				•		<u>U</u>
NAPHTHALENE	0.04	0.7				_	U
NITROBENZENE	0.05		t			ļ	U
PENTACHLOROPHENOL	0.03	3.3		t	<u> </u>	1	U
PHENANTHRENE	0.04						U
PHENOL	0.04	0.3				<u> </u>	<u> </u>
PYRENE	0.05	0.7		l l	Qualific	L;	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	62.4	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	59.9	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	64.4	25-135	<u>-</u>
SURROGATE: NITROBENZENE-D5 (S)	67.9	25-135	
SURROGATE: PHENOL (S)	72.4	25-135	

Comments:

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

3550B

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Surrogate		Recovery	Control Limit	s Qualifier
SURROGATE: TERPHENYL-D14 (S)		73.0	32-	136
<u> </u>	Internal Std		Qualifier	
	1,4-DICHLOROBENZI	ENE-D4 (IS)		
	ACENAPTHTHENE-D	10 (IS)	<u> </u>	
	CHRYSENE-D12 (IS)		<u> </u>	
	NAPHTHALENE-D8 (1	IS)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-DI	0 (IS)		

Comments:	
ARF; 67072	 ***************************************

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

3550B

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	ì		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		Ū
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		U
3-NITROANILINE	0.01	3.3	0.01	1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3	0.04	I		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		Ŭ
4-METHYLPHENOL	0.04	0.3	0.04	1		υ
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6	0.04	1		<u> </u>
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7	0.04	1		U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		U
BENZO (A) PYRENE	0.05	0.7	0.05	1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		U
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	į		Ŭ
BENZOIC ACID	0.02	1.6	0.02	1		Ü

\sim			
	m	nen	TC.
\sim	1111		

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

3550B

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	. 1		Ü
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		<u>U</u>
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1		U
CHRYSENE	0.04	0.7	0.04	1		U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	_1	 :	U
DIBENZOFURAN	0.04	0.7	0.04	1		U
DIETHYL PHTHALATE	0.04	0.7	0.04	1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7	0.04			U
FLUORENE	0.04	0.7	0.04	1	<u></u>	U
HEXACHLOROBENZENE	0.05	0.7	0.05	1		U
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1		U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1.		U
HEXACHLOROETHANE	0.04	0.7	0.04	1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	_1		U
ISOPHORONE	0.04	0.7	0.04	1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		U
NAPHTHALENE	0.04	0.7	0.04	1		U
NITROBENZENE	0.05	0.7	0.05	1		U
PENTACHLOROPHENOL	0.03	3.3	0.03	1	<u></u>	U
PHENANTHRENE	0.04	0.7	0.04	1		U
PHENOL	0.04	0.3	0.04	1		U
PYRENE	0.05	0.7	0.05	1	Oveller	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	62.5	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	53.6	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	53.0	25-135	
SURROGATE: NITROBENZENE-D5 (S)	59.1	25-135	
SURROGATE: PHENOL (S)	61.6	25-135	

Comm	ents:
------	-------

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

3550B

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Surrogate SURROGATE: TERPHENYL-D14 (S)		Recovery	Control Limits	Qualifier
		71.1	32-1	36
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
ACENAPTHTHENE-D1		10 (IS)	<u> </u>	
	CHRYSENE-D12 (IS)			
NAPHTHALENE-D8 (IS)				
	PERYLENE-D12 (IS)			
	DURNANTHRENE DIE	(21)	1	

Comments:	
ARF: 67072	

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

3550B

Field Sample ID: B4-NT1-BOT01 FD Lab Sample ID: AY55854 Matrix: Soil

% Solids: 92.9

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1.2.4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1	<u></u>	U
1,3-DCB	0.04	0.7	0.04	1		U
I,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		Ų.
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		<u> </u>
2,4-DNT	0.05	0.7		1	ļ	U
2,6-DNT	0.04	0.7		1		<u>U</u>
2-CHLORONAPHTHALENE	0.04	0.7		1		U
2-CHLOROPHENOL	0.03	0.3		1		<u> </u>
2-METHYLNAPHTHALENE	0.05	0.7		1	ļ	U
2-METHYLPHENOL	0.02			1		U U
2-NITROANILINE	0.04			1	ļ. 	U
2-NITROPHENOL	0.04	0.3		1		y
3,3'-DICHLOROBENZIDINE	0.02	1.3		1		<u> </u>
3-NITROANILINE	0.01	3.3		1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3		1	<u> </u>	U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7		1		<u> </u>
4-CHLORO-3-METHYLPHENOL	0.04					U
4-CHLOROANILINE	0.04		· · · - · ·	1	<u> </u>	U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7				U
4-METHYLPHENOL	0.04					U
4-NITROANILINE	0.03	3.3				U
4-NITROPHENOL	0.04	1.6				U U
ACENAPHTHENE	0.04					UU
ACENAPHTHYLENE	0.03	0.7				U
ANTHRACENE	0.04					0
BENZ (A) ANTHRACENE	0.04				ļ	U
BENZO (A) PYRENE	0.05					U
BENZO (B) FLUORANTHENE	0.06					U
BENZO (G,H,1) PERYLENE	0.04	0.7				U
BENZOIC ACID	0.02	1.6	0.02	1		U

Comm	ents:
------	-------

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

3550B

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1		U
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		<u> </u>
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		
BUTYLBENZYLPHTHALATE	0.04	0.7		1		U
CHRYSENE	0.04	0.7		1		U
DI-N-BUTYLPHTHALATE	0.04	0.7		1		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		<u>U</u>
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7		1		<u>U</u>
DIETHYL PHTHALATE	0.04	0.7	0.04	1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7		1		U
FLUORENE	0.04	0.7	0.04	1		<u>U</u>
HEXACHLOROBENZENE	0.05	0.7	0.05	. 1		U
HEXACHLOROBUTADIENE	0.06	0.7	0.06	. 1		<u> </u>
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1		<u>U</u>
HEXACHLOROETHANE	0.04	0,7	0.04			<u> </u>
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04		<u></u> .	U
ISOPHORONE	0.04	0.7				<u> </u>
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04			U
N-NITROSODIPHENYLAMINE	0.05	0.7		1		<u> </u>
NAPHTHALENE	0.04	0.7				U
NITROBENZENE	0.05	0.7				U U
PENTACHLOROPHENOL	0.03	3.3				U
PHENANTHRENE	0.04	0.7		- 		U
PHENOL	0.04	0.3				Ų
PYRENE	0.05	0.7		1 X 2 44 .	OUG	U

Surrogate	Recovery	Control Limits	Qualifier_
SURROGATE: 2,4,6-TRIBROMOPHENOL	54.7	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	51.9	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	51.6	25-135	
SURROGATE: NITROBENZENE-D5 (S)	54.6	25-135	
SURROGATE: PHENOL (S)	58.2	25-135	

Comments:

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

3550B

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Surrogate	Recovery	Control Lin	its	Qualifier
SURROGATE: TERPHENYL-D14 (S)	65.6	3	2-136	
Internal Std		Qualifier		
1,4-DICHLOROBENZE	NE-D4 (IS)			

Internal Std	Qualifler
1,4-DICHLOROBENZENE-D4 (IS)	
ACENAPTHTHENE-D10 (IS)	
CHRYSENE-D12 (IS)	
NAPHTHALENE-D8 (IS)	
PERYLENE-D12 (IS)	
PHENANTHRENE-D10 (IS)	

Comments:		
ARF: 67072		

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

3550B

Matrix: Soil

% Solids: 92.9

Initial Calibration ID; Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		U. U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		Ü
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		υ
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		υ
2,6-DNT	0.04	0.7	0.04	1		υ
2-CHLORONAPHTHALENE	0.04	0.7	0.04	_1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		Ū
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		Ü
2-NITROPHENOL	0.04	0.3	0.04	1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1	<u></u>	U
3-NITROANILINE	0.01	3.3	0.01	1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	. 1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		Ü
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04			U
4-CHLOROANILINE	0.04	1.3	0.04	1		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1		U
4-METHYLPHENOL	0.04	0.3	0.04	1	, <u></u>	U
4-NITROANILINE	0.03	3.3	0.03	1		Ų
4-NITROPHENOL	0.04	1.6	0.04	1		<u>U</u> U
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7	0.04	1		U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		υ
BENZO (A) PYRENE	0.05	0.7	0.05	1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		U
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	1		U
BENZOIC ACID	0.02	1.6	0.02	1		М

Comments:

M = Matrix effect.

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

3550B

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1	<u></u>	Ü
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1		U
CHRYSENE	0.04	0.7		1		<u>U</u>
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1		U
DI-N-OCTYLPHTHALATE	0.03	0.7		1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7		1		U
DIETHYL PHTHALATE	0.04	0.7		1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		<u> </u>
FLUORANTHENE	0.04	0.7	0.04	1		U
FLUORENE	0.04	0.7	0.04	1		<u> </u>
HEXACHLOROBENZENE	0.05	0.7	0.05	1		<u> </u>
HEXACHLOROBUTADIENE	0.06	0.7	0.06			U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7		1		Ų
HEXACHLOROETHANE	0.04	0.7	0.04	1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	1		U
ISOPHORONE	0.04	0.7		1		บ
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		ับ
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		υ
NAPHTHALENE	0.04	0.7	0.04	1	<u> </u>	U
NITROBENZENE	0.05	0.7	0.05	1		U
PENTACHLOROPHENOL	0.03	3.3	0.03	1		<u> </u>
PHENANTHRENE	0.04	0.7	0.04	1		U
PHENOL	0.04	0.3		1		U
PYRENE	0.05	0.7	0.05	1	10 110	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	67.5	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	63.8	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	69.3	25-135	
SURROGATE: NITROBENZENE-D5 (S)	70.3	25-135	
SURROGATE: PHENOL (S)	76.1	25-135	

Comments:

M = Matrix effect.

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

3550B

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Surrogate		Recovery	Control Limits Quali	
SURROGATE: TERPHENYL-D14 (S)		76.4	32-1	36
	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	NE-D4 (IS)		
	ACENAPTHTHENE-D	10 (IS)		
	CHRYSENE-D12 (IS)	<u> </u>		
	NAPHTHALENE-D8 (I	S)		
	PERYLENE-D12 (IS)			
	PHENANTHRENE-DIO) (IS)		

Comments:	M = Matrix effect.	
ARF: 67072		

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

3550B

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	_1		U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08			Ü
2,4-DINITROPHENOL	0.03	3.3	0.03	1		Ű
2,4-DNT	0.05	0.7	0.05	1		Ŭ
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		Ü
2-CHLOROPHENOL	0.03	0.3	0.03	1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	<u> </u>		U
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		U
3-NITROANILINE	0.01	3.3	0.01	1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03			Ŭ
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		Ü
4-CHLOROANILINE	0.04	1.3	0.04	1		υ
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	1	ļ	U
4-METHYLPHENOL	0.04	0.3		1		U
4-NITROANILINE	0.03	3.3	0.03	1		υ
4-NITROPHENOL	0.04	1.6		1		U
ACENAPHTHENE	0.04	0.7		1		U
ACENAPHTHYLENE	0.03	0.7		1		.U
ANTHRACENE	0.04	0.7				Ü
BENZ (A) ANTHRACENE	0.04	0.7		1		U
BENZO (A) PYRENE	_0.05	0.7		1		U
BENZO (B) FLUORANTHENE	0.06	0.7	0.06			U
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04			U
BENZOIC ACID	0.02	1.6	0.02	1		U

~		
('nr	ита	mte:
CUL	шис	nts:

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

3550B

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7		1		Ü
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7		1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7	-	1		U
CHRYSENE	0.04	0.7		1		U
DI-N-BUTYLPHTHALATE	0.04	0.7		1.		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		
DIBENZ (A,H) ANTHRACENE	0.04	0.7		1		U
DIBENZOFURAN	0.04	0.7		1		U
DIETHYL PHTHALATE	0.04	0.7		1		U
DIMETHYLPHTHALATE	0.04	0.7		1		U
FLUORANTHENE	0.04	0.7		1		<u>U</u>
FLUORENE	0.04	0.7		1		U
HEXACHLOROBENZENE	0.05	0.7		1		<u>U</u>
HEXACHLOROBUTADIENE	0.06	0.7		1		U
HEXACHLOROCYCLOPENTADIENE	0.03	0.7		1		U
HEXACHLOROETHANE	0.04	0.7		. 1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7		1		U
ISOPHORONE	0.04	0.7		1		Ü
N-NITROSODI-N-PROPYLAMINE	0.04	0.7		1		U
N-NITROSODIPHENYLAMINE	0.05	0.7		1	_	<u> </u>
NAPHTHALENE	0.04	0.7	0.04	1		U
NITROBENZENE	0.05	0.7		1		<u>.u</u>
PENTACHLOROPHENOL	0.03	3.3		1		U
PHENANTHRENE	0.04	0.7		1		U
PHENOL	0.04	0.3		1		U
PYRENE	0.05	0.7		1	01161	<u> </u>

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	58.8	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	56,5	34-135	-
SURROGATE: 2-FLUOROPHBNOL (S)	59.3	25-135	
SURROGATE: NITROBENZENE-D5 (S)	63.0	25-135	
SURROGATE: PHENOL (S)	66.6	25-135	

Comments	:
----------	---

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

3550B

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

PHENANTHRENE-D10 (IS)

Date Analyzed: 03-Mar-12

Surrogate		Recovery	Control Limits	Qualifier
	TERPHENYL-D14 (S)	65.7	32-1	36
<u> </u>	Internal Std		Qualifier	
	1,4-DICHLOROBENZE	ENE-D4 (IS)		
	ACENAPTHTHENE-D			
	CHRYSENE-D12 (IS)			
	NAPHTHALENE-D8 (I	S)	<u></u>	
	PERYLENE-D12 (IS)			

Comments:	
ARF: 67072	•

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C

Preparatory Method:

3550B

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	1		<u>u</u>
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1	<u>.</u> .	U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		U
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	1		U
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	1		
3-NITROANILINE	0.01	3.3	0.01	1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05	1		U
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3	0.04	1		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7		1		Ų
4-METHYLPHENOL	0.04	0.3		1		U
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6		1		U
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7		1		U
ANTHRACENE	0.04	0.7		1		U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		U
BENZO (A) PYRENE	0.05	0.7		1		U
BENZO (B) FLUORANTHENE	0.06	0.7		1		U
BENZO (G,H,I) PERYLENE	0.04	0.7		1		Ŭ
BENZOIC ACID	0.02	1.6	0.02	<u> </u>		U

Comments	:

ARF: 67072

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

3550B

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	. 1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06	1	 .	<u>U</u>
BIS (2-CHLOROETHYL) ETHER	0.04	0.7	0.04	1		<u>U</u>
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1		U
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1		<u> </u>
CHRYSENE	0.04	0.7		1		U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	1		<u> </u>
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	1		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7	0.04	1		U
DIETHYL PHTHALATE	0.04	0.7	0.04	1		<u>U</u>
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		U
FLUORANTHENE	0.04	0.7	0.04	1		U
FLUORENE	0.04	0.7	0.04	1		U
HEXACHLOROBENZENE	0.05	0.7		1		U U
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1		<u> </u>
HEXACHLOROCYCLOPENTADIENE	0.03	0.7		1		Ú
HEXACHLOROETHANE	0.04	0.7		1		U
INDENO (1,2,3-CD) PYRENE	0.04	0.7		1		<u>U</u>
ISOPHORONE	0.04	0.7	0.04	1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		<u>U</u>
NAPHTHALENE	0.04	0.7	0.04	1		U U
NITROBENZENE	0.05	0.7	0.05	1		Ų
PENTACHLOROPHENOL	0.03	3.3	0.03	1		U
PHENANTHRENE	0.04	0.7		1		Ü
PHENOL	0.04	0.3		1		U,
PYRENE	0.05	0.7	0.05	1	T 0 110	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	63.8	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	57.1	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	59.1	25-135	
SURROGATE: NITROBENZENE-D5 (S)	63.7	25-135	40,400
SURROGATE: PHENOL (S)	67.4	25-135	

Comments:

ARF: 67072

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

3550B

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: Y120301B

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Surrogate	Recovery	Control Limits	Qualifier		
SURROGATE: TERPHENYL-D14 (S)	66.0	32-1	36		
Internal Std		Qualifier			
1,4-DICHLOROBENZE	1,4-DICHLOROBENZENE-D4 (IS)				
ACENAPTHTHENE-D	ACENAPTHTHENE-D10 (IS)				
CHRYSENE-D12 (IS)					
NAPHTHALENE-D8 (I	IS)				
PERYLENE-D12 (IS)					
PHENANTHRENE-D1	0 (IS)	<u></u> j			

Comments:		 	
ARF: 67072	 		

AFCEB ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytic	al Method:	EPA 827	0C			-			AAB#:	120229A	-164437							
1	Lab Name:	APPL, In	c			Contract #: *G012						•						
Inst	nument ID:	YODA				_	Date o	finitial Ca	alibration:		OL-M	ar-12						
Initial Cali	bration ID:	Y120301	В			Concent	ration Uni	ts (ug/Lo	or mg/kg):	mg/kg								
Analyte	Std 1	RF I	S1.3 2	RF 2	Stď	RF J	StJ 4	RF ↓	Std 5	R)*	Std.	RF 6	81d 7	RF 7	\$1.3 8	RF 8	S1d 9	RF 9
lexachlorocyclopentadiene	5.0		10.0	0.218	20.0	0.259	40.0	0.283	50.0	0,305	60.0	0.318	80.0	0.324	100.0	0.319		
Nitrosodi-n-propylamine *	5.0	1.672	10.0	1.610	20.0	1.451	40.0	1.323	50.0	1.328	60.0	1.159	80.0		100.0		$ldsymbol{\sqcup}$	
4-Dinitrophenol *	5.0	[· · · · _	10.0	0.098	20.0	0.152	40.0	0.192	\$0.0	0.217	60.0	0.245	80.0	0.245	100.0	0.244		
Nitrophenol *	5.0		10.0	0.119	20.0	0.138	40.0	0.155	50.0	0.162	60.0	0.173	80.0	0.177	100.0	0.174	ļ	
4-DCB#	5.0	2.247	10.0	2.247	20.0	2.022	40.0	1.858	50.0	1,890	60.0	1.986	80.0	1,848	100.0	1.813	igwdown	
cenaphthene #	5.0	1.651	10.0	1.591	20.0	1,482	40.0	1.349	50.0	1.382	60.0	1.332	80.0	1.358	100.0	1.252		
lenzo (a) pyrone#	5.0	1.259	10.0	1.385	20.0	1.281	40.0	1.239	50.0	1.253	60.0	1.274	80.0	1.242	100.0	1.161		
i-n-octylphthalate#	5.0	1.626	10.0	1.712	20.0	1.674	40.0	1.630	50.0	1.668	60.0	1.653	80.0	1.695	100.0	1.637		
hioranthene#	5.0	1.463	10.0	1.488	20.0	1.432	40.0	1.325	50.0	1.318	60.0	1.305	80.0	1,352	100.0	1.188	igwdow	
lexachlorobutadiene #	5.0	0.218	10.0	0.217	20.0	0.202	40.0	0.188	50.0	0.188	60.0	0.191	80.0	0.182	100.0	0.181	igwdow	
Nitrosodiphenylamine#	5.0	0.557	10.0	0,546	20.0	0.507	40.0	0.439	50.0	0.434	60.0	0.454	80.0	0.48	100.0	0.415		
A,6-Trichlorophenol#	5.0	0.453	10.0	0.474	20.0	0.447	40.0	0.430	50.0	0.435	60.0	0.456	80.0	0.438	100.0	0.427		
4-Dichtorophenol #	5.0	0.371	10.0	0.398	20.0	0.370	40.0	0.346	50.0	0.349	60.0	0.353	80.0	0.344	100.0	0.324	igsquare	
Nitrophenol #	5.0	0.253	10.0	0.266	20.0	0.260	40.0	0.245	\$0.0	0.248	60.0	0.254	80.0	0.252	100.0	Q.247		
-Chloro-3-methylphenol#	5.0	0.382	10.0	0.406	20.0	0.383	40.0	0.370	50.0	0.371	60.0	0.385	80.0	0.371	100.0	0.37		
entachlorophenol#	5.0	0.104	10.0	0.121	20.0	0.132	40.0	0.140	50.0	0.141	60.0	0.153	80.0	0.155	100.0	0.15	igsquare	
henol #	5.0	2.478	10,0	2.543	20.0	2.396	40.0	2.244	50.0	2.259	60.0	2.341	80.0	2.21	100.0	2.18	igwdow	
						<u> </u>				نــــــــــــــــــــــــــــــــــــــ								
SPCCs Comments	# CCCs																	

APCEB ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Lab Name: APPL, Inc.						Contract #	#: *G012
Instrument ID: YODA				Da	te of Initial	Calibration	n: Ot-Mar-12
Calibration ID: Y120301B	10-7		Con	ncentration 1	Units (ug/L	or mg/kg	(): nng/kg
	Analyte	- 55	mean	7	COD	Q Q	1
		RSD	MRSD			<u> </u>	
	Hexachlorocyclopentadiene *	13.5					
	n-Nitrosodi-n-propylamine *	12.1					4
	2,4-Dinitrophenol *	28.3		0.9960			_i
	4-Nitrophenol *	13.8				ļ	4
	1,4-DCB#	8.8		L.,			_
	Acenaphthene #	9.8				ļ	
	Вепго (а) ругеле #	4.9				ļ	
	Di-n-octylphthalate#	1.9				ļ	
	Fluoranthene#	7.2					
	Hexachlorobutadiene#	7.5				<u> </u>	
	n-Nitrosodiphenylamine#	11.2	1			1	
	2,4,6-Trichlorophenol#	3.6					
	2,4-Dichlorophenol#	6.2				ļ.,	
	2-Nitrophenol #	2.7				ļ <u>.</u>	
	4-Chloro-3-methylphenol#	3.2		I		ļ	4
	Pentachlorophenol #	12.7		<u> </u>	L		_i
	Phenol #	5.6				L	
			I	<u> </u>			
CCs # CCCs							
Comments:							
				<u>.</u>			· · · · · · · · · · · · · · · · · · ·

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/AIS ANALYSIS

Analytical Method: EPA 8270C	AAB#: 12	20729A-164437
Lab Name: APPL, Inc.	Contract #: *6	G012
Instrument JD: YODA	Date of Initial Calibration:	01-Mar-12
Initial Calibration ID: Y120301B	Concentration Units (ug/L or mg/kg): m	g/kg

Analyte	Stal	RP	Std	RF	Std	AF 1	SM	RF	SIJ	RF	Sid	RF 6	Sid	RF	S16	RF 1	Sid	RF
1,2,4-Trichlorobenzene	5,0	0.430	10.0	0.435	20.0	0.390	40.0	0.388	50.0	0.389	60.0	0.379	80.0	0.369	100.0	0.358		
1,2-DCB	5.0	2.049	10.0	2.061	20.0	1,888	40.0	1.714	50.0	1.748	60.0	1.797	80.0	1.691	100.0	1.661		
1,3-DCB	5.0	2.120	10.0	2.159	20.0	1.974	40.0	1,838	50.0	1.852	60.0	1.931	80.0	1.629	100.0	1.793	 	_
2,4-DNT	5.0	0.530	10.0	0.575	20.0	0.550	40.0	0.524	50.0	0.519	60.0	0,557	80.0	0.530	100.0	0.499	 	
2.6 DNT	5.0	0.394	10.0	0.394	20.0	0.405	40.0	0.386	50.0	0.378	60.0	0.399	80.0	0.371	100.0	0.376		
2-Chloronaphthalene	5.0	1.657	10.0	1.634	20.0	1.488	40.0	1.361	50.0	1.364	60.0	1.412	80.0	1.323	100.0	1.312		
2-Methylnaphthalene	5.0	0.975	10.0	1.008	20.0	0.930	40.0	0.849	50.0	0.854	60.0	0.872	80.0	0.872	100.0	0.803		
2-Nitroaniline	5.0	0.548	10.0	0.571	20.0	0.552	40.0	0.534	50.0	0.547	60.0	0.543	80.0	0.550	100.0	0.545		
3-Nitroaniline	5.0	0.581	10.0	0.546	20.0	0.529	40.0	0.517	50.0	0.518	60.0	0.518	80.0	0.513	100.0	0.494		
3,3'-Dichlorobenzidine	5.0	0.418	10.0	0.432	20.0	0.450	40.0	0.441	50.0	0.445	60.0	0.433	80.0	0.428	100.0	0.400		
4-Bromophenyl phenyl ether	5.0	0.254	10.0	0.258	20.0	0.236	40.0	0.218	50.0	0.214	60.0	0.220	80.0	0.225	100.0	0.201		
4-Chlorognitine	5.0	0.488	10.0	0.522	20.0	0.512	40.0	0.485	50.0	0.487	60.0	0.481	80.0	0.426	100.0	0.416		
4-Chlorophenyl phenyl ether	5.0	0.904	10.0	0.896	20.0	0.816	40.0	0.746	50.0	0.754	60.0	0.748	80.0	0.770	100.0	0.670		
4-Nitroaniline	5.0	0.447	10.0	0.433	20.0	0.429	40.0	0.414	50.0	0.418	60.0	0.430	80.0	0.435	100.0	0.395		
Acenaphthylene	5.0	2.668	10.0	2.644	20.0	2.530	40.0	2.277	50.0	2.294	60.0	2.320	80.Q	2.330	100.0	2.132		
Anthracene	5.0	1.592	10.0	1.565	20.0	1.425	40.0	1.299	50.0	1.302	60.0	1.292	80.0	1.306	0.001	1.166		
Benz (a) anthracene	5.0	1.370	10.0	1.401	20.0	1.304	40.0	1.221	50.0	1.240	60.0	1.284	80.0	1.199	100.0	1.237		
Benzo (b) fluoranthene	5.0	1.503	10.0	1.554	20.0	1.318	40.0	1.261	50.0	1.284	60.0	1.477	80.0		100.0			
Denzo (g,h,i) perylene	5.0	1.193	10.0	1.249	20.0	1.164	40.0	1.133	50.0	1.136	60.0	1.162	80.0	1.151	100.0	1.106		
Benzyl alcohol	5.0	1.360	10.0	1.426	20.0	1.338	40.0	1.257	\$0.0	1.271	60.0	1.335	80.0	1.280	100.0	1.252		
Bis (2-chloroethoxy) methane	5.0	0.537	10.0	0.532	20.0	0.506	40.0	0.473	50.0	0.468	60.0	0.478	80.0	0.478	100.0	0.447	-	
Bis (2-chloroethyl) ether	5.0	1.303	10.0	1.294	20.0	1.245	40.0	1,191	50.0	1.247	60.0	1.685	80.0	1,593	100.0	1.567		
Bis (2-chloroisopropyi) ether	5.0	3.014	10.0	2.993	20.0	2.738	40.0	2.470	\$0.0	2.475	60.0	2.589	80.0	2.401	100.0	2.302		
Bis (2-ethylhexyl) phthalate	5.0	1.103	10.0	1.137	20.0	1.051	40.0	1.000	50.0	1.009	60.0	1.018	80.0	0.937	100.0	0.995		
Butyi benzylphthalate	5.0	0.688	10.0	0.710	20.0	0.708	40.0	0.690	50.0	0.695	60.0	0.718	80.0	0.654	100.0	0.724		
Chrysene	5.0	1.560	10.0	1.505	20.0	1.365	40.0	1.252	50.0	1.296	60.0	1.270	80.0	1,318	100.0	1.232		
Di-n-buty/phthalate	5.0	1.550	10.0	1.597	20.0	1.489	40.0	1.387	50.0	1.366	60.0	1.406	80.0	1.497	100.0	1.299		
Dibenz (a,h) anthracene	5.0	1.148	10.0	1.228	20.0	1.206	40.0	1.165	50.0	1.183	60.0	1.205	80.0	1.199	100.0	1.113		
Dibenzofuran	5.0	0.788	10.0	0.809	20.0	1.042	40.0	1.018	50.0	1.025	60.0	1.060	80.0	1.021	100.0	1.028		
Diethyl phthalate	5.0	1.809	10.0	1.789	20.0	1.664	40.0	1.543	50.0	1.553	60.0	1.605	80.0	1.585	100.0	1.527		
Dimethyl phthalate	5.0	1.800	10.0	1.802	20.0	1.693	40.0	1.544	50.0	1.551	60.0	1.642	80.0	1,568	100.0	1.562		
Phiorene	5.0	1.716	10.0	1.732	20.0	1.575	40.0	1.440	\$0.0	1.437	60.0	1.518	80.0	1.419	100.0	1.372		
Hexachlorobenzene	5.0	0.276	10.0	0.277	20.0	0.253	40.0	0.234	50.0	0.235	60.0	0.241	80.0	0.237	100.0	0.223		
Hexachloroethans	5.0	0.749	10.0	0.743	20.0	0.688	40.0	0.634	50.0	0.643	60.0	0.668	80.Q	0.630	100.0	0.594		
Indeno (1,2,3-cd) pyrene	5.0	1.333	10.0	1.382	20.0	1.332	40.0	1.302	50.0	1.344	60.0	1.415	80.0	1.380	100.0	1.400		
Isophorone	5.0	0.667	10.0	0.892	20.0	0.819	40.0	0.774	50.0	0.763	60.0	0.813	80.0	0.797	100.0	0.776		
Naphthalene !	5.0	1.525	10.0	1.520	20.0	1.382	40.0	1.277	50.0	1.271	60.0	1.323	80.0	1.221	100.0	1.212		
Nitrobenzene	5.0	0.488	10.0	0.507	20.0	0.463	40.0	0.438	50.0	0.439	60.0	0.451	80.0	0.433	100.0	0.437		
Phenanthrene	5.0	1.593	10.0	1.541	20.0	1.376	40.0	1.230	50.0	1.210	60.0	1.288	80.0	1.221	100.0	1.187		
Рутене	5.0	1.692	10.0	1.738	20.0	1.640	40.0	1.511	50.0	1.535	60.0	1.521	80.0	1.523	100.0	1.443		
2,4,5-Trichlorophenol	5.0	0.510	10.0	0.500	20.0	0.485	40.0	0.487	50.0	0.475	60.0	0.469	80.0	0.452	100.0	0.439	·	
2,4 Dimethylphenol	5.0	0.482	10.0	0.482	20.0	0.449	40.0	0.418	50.0	0.415	60.0	0.440	80.0	0.416	100.0	0.403		
2-Chlorophenol	5.0	1.629	10.0	1.904	20.0	1.769	40.0	1.644	50.0	1.659	60.0	1.737	80.0	1.647	100.0	1.617		
2-Methylphenol	5.0	1.746	10.0	1.771	20.0	1.615	40.0	1.509	50.0	1.517	60.0	1.585	80.0	1.489	100.0	1.449		
4,6-Dinitro-2-methylphenot	5.0		10.0	0.147	20.0	0.168	40.0	0.171	50.0	0.178	60.0	0.188	80.0	0.189	100.0	0.178		
Benzoic acid	5.0	0.047	10.0	0.175	20.0	0.192	40.0	0.205	50.0	0.235	60.0	0.250	80.0	0.255	100.0	0.263	I	
2,4,6-Tribromephenol(S)	5.0	0.173	10.0	0.184	20.0	0.173	40.0	0.168	50.0	0.165	60.0	0.168	80.0	0.188	100.0	0.161		
2-Fluorobiphenyl(S)	5.0	1.590	10.0	1.615	20.0	1.439	40.0	1.352	50.0	1.321	60.0	1.338	80.0	1.321	100.0	1.220		
2-Fluorophenol (\$)	5.0	1.584	10.0	1.594	20.0	1.463	40.0	1.431	50.0	1.385	60.0	1.455	80.0	1.391	100.0	1.349		
Nitrobenzene-DS(S)	5.0	0.410	10.0	0.415	20.0	0.382	40.0	0.374	50.0	0.380	60.0	0.373	80.0	0.389	100.0	0.353	T]
Phenot D6 (S)	5.0	1.835	10.0	1.901	20.0	1.763	40.0	1.708	50.0	1.650	60.0	1.723	80.0	1.633	100.0	1.582		
Ferphenyl-D14(S)	5.0	0.897	10.0	0.930	20.0	0.847	40.0	0.819	50.0	0.788	60.0	0.824	80.0	0.805	100.0	0.775		
						I				T						I		

Comments:		
• • • • • • • • • • • • • • • • • • • •	 	

AFCER ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: EPA 8270C	AAB#: 120229A-164437	
Lab Name: APPL, Inc.	Contract #: *G012	
Instrument ID: YODA	Date of Initial Calibration: 01-Mar-12	
Initial Calibration ID: Y120301B	Concentration Units (ug/L or mg/kg): mg/kg	

Analyte	%	mean	. Т	COD	Q
-	R\$D	%RSD			-
1,2,4.Trichlorobenzene	7.8				
I,2-DCB	8.6			-	
1,3-DCB	7.1				
2,4-DNT	4.5				
2,6-DNT	3.1				
2-Chloronaphthalene	9.4				J
2-Methylnaphthalene	7.8				
2-Nitroaniline	1.9				
3-Nitroaniline	5.0				
3,3'-Dichlorobenzidine	3.7				
4-Bromophenyl phenyl ether	8.6				
4-Chloroaniline	7.9				
4-Chlorophenyl phenyl ether	10.1				
4-Nitroaniline	3.7				
Acenaphthylenc	8.0				
Anthracene	10.8				
Benz (a) anthracene	5.7				
Benzo (b) fluoranthene	9.0				
Benzo (g,h,i) perylene	3.8				
Benzyl alcohol	4.6				
Bis (2-chloroethoxy) methane	6.5			_	
Bis (2-chloroethyl) ether	13.8				
Bis (2-chloroisopropyl) ether	10.2				
Bis (2-ethylhexyl) phthalate	6.2				
Butyl benzylphthalate	3.2				
Chrysene	9.0				
Di-n-butylphthalate	7.0				
Dibenz (a,h) anthracene	3.2				
Dibenzofuran	11.2				
Diethyl phthalate	6.7				
Dimethyl phthalate	6.6	·	·		
Fluorene	9.0				
Hexachlorobenzene	8.1				
Hexachloroethane	8.3				
Indeno (1,2,3-cd) pyrene	2.9				
Isophorone	5.3				
Naphthalene	9.3				
Nitrobenzene	6.0				
Phenanthrene	11.9				
Рутепе	6.5				
2,4,5-Trichlorophenol	5.3				
2,4-Dimethylphenol	6.8				
2-Chlorophenol	5.9				
2-Methylphenol	7.5				
4,6-Dinitro-2-methylphenol	8.1				
Benzoic acid	34.8		0.998		
2,4,6-Tribromophenol(S)	4.0				
2-Fluorobiphenyl(S)	9.9				
2-Fluorophenol (S)	6.2				
Nitrobenzene-D5(S)	5.8				
Phenol-D6 (S)	6.2				

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: EPA 8270C			_		AAB#: <u>12</u>	0229A-164437	
Lab Name:	APPL, Inc.				Contract #: •G	012	
Instrument ID: YODA			_	Date of In	itial Calibration:	01-	Mar-12
Initial Calibration ID:	Y120301B		Concentr	ation Units ((ug/L or nig/kg): mg	₃/kg	
ı	Analyte	% RSD	mean %RSD	г	COD	Q	
	Terphenyl-D14(S)	6.4	70K5D				
l							
Comments:							
							

AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

Analytical Method: EPA 8270C	AAB#:	120229A-164437
Lab Name: APPL, Inc.	Contract #:	*G012
Instrument ID: YODA	Initial Calibration ID:	Y120301B
2nd Source ID: 0301Y010.D	Concentration Units (ug/L or ng/kg):	ntg/kg

Analyte	Expected	Found	%D	Q
1,2,4-Trichlorobenzene	50.00	49.29	1.4	
1,2-DCB	50.00	47.41	5.2	
1,3-DCB	50.00	48.23	3.5	· · · · · ·
1,4-DCB	50.00	47.40	5.2	
2,4-DNT	50.00	49.37	1.3	
2,6-DNT	50.00	48.74	2.5	
2-Chloronaphthalene	50.00	48.13	3.7	
2-Methylnaphthalene	50.00	48.66	2.7	
2-Nitroaniline	50.00	50.65	1.3	
3-Nitroaniline	50.00	49.56	0.9	
3,3'-Dichlorobenzidine	50.00	52.56	5.1	
4-Bromophenyl phenyl ethe	50.00	48.19	3.6	
4-Chloroaniline	50.00	51.34	2.7	
4-Chlorophenyl phenyl ethe	50.00	47.38	5.2	
4-Nitroaniline	50.00	51.13	2.3	
Acenaphthylene	50.00	48.72	2.6	
Acenaphthene	50.00	47.99	4.0	
Anthracene	50.00	48.70	2.6	
Benz (a) anthracene	50.00	49.31	1.4	
Benzo (a) pyrene	50.00	50.29	0.6	
Benzo (b) fluoranthene	50.00	54.60	9.2	
Benzo (g,h,i) perylene	50.00	48.77	2.5	
Benzyl alcohol	50.00	48.30	3.4	
Bis (2-chioroethoxy) metha	50.00	50.14	0.3	
Bis (2-chloroethyl) ether	50.00	44.34	fi	
Bis (2-chloroisopropyl) eth	50.00	47.19	5.6	
Bis (2-ethylhexyl) phthalate	50.00	50.38	0.8	,
Butyl benzylphthalate	50.00	51.40	2.8	
Chrysene	50.00	48.67	2.7	
Di-n-butylphthalate	50.00	48.68	2.6	
Di-n-octylphthalate	50.00	50.55	1.1	
Dibenz (a,h) anthracene	50.00	51.94	3.9	
Dibenzofuran	50.00	54.56	9.1	
Diethyl phthalate	50.00	48.90	2.2	
Dimethyl phthalate	50.00	48.25	3.5	
Fluoranthene	50.00	49.58	0.8	
Fluorene	50.00	48.60	2.8	
Hexachlorobenzene	50.00	49.19	1.6	
Hexachlorobutadiene	50.00	47.81	4.4	
Hexachlorocyclopentadiene	50.00	52.38	4.8	
Hexachloroethane	50.00	48.39	3.2	
Indeno (1,2,3-cd) pyrene	50.00	51.42	2.8	
Isophorone	50.00	49.33	1.3	
n-Nitrosodiphenylamine	50.00	49.06	1.9	
n-Nitrosodi-n-propylamine	50.00	47.41	5.2	
Naphthalene	50.00	49.46	1.1	

AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

Analytical Method: EPA 8270C	AAB #: <u>120229A-164437</u>	
Lab Name: APPL, Inc.	Contract #: *G012	
Instrument ID: YODA	Initial Calibration ID: Y120301B	
2nd Source ID: 0301Y010.D	Concentration Units (ug/1, or mg/kg): mg/kg	

Analyte	Expected	Found	%D	Q
Nitrobenzene	50.00	49.50	1.0	
Phenanthrene	50.00	47.03	5.9	
Pyrene	50.00	48.42	3.2	
2,4,5-Trichlorophenol	50.00	51.05	2.1	
2,4,6-Trichlorophenol	50.00	50.07	0.1	
2,4-Dichlerophenol	50.00	49.66	0.7	
2,4-Dimethylphenol	50.00	49.23	1.5	
2,4-Dinitrophenol	50.00	52.81	5.6	
2-Chlorophenoi	50.00	47.96	4.1	
2-Methylphenol	50.00	47.56	4.9	
2-Nitrophenol	50.00	50.76	1.5	
4,6-Dinitro-2-methylpheno	50.00	54.35	8.7	
4-Chloro-3-methylphenol	50.00	49.79	0.4	
4-Nitrophenol	50.00	53.39	6.8	
Benzoic acid	50.00	40.37	19	
Pentachlorophenol	50.00	56.49	13	
Phenol	50.00	47.50	5.0	
			, i	

Comments:			•			 	
			- 				
-	 			· · · · · · · · · · · · · · · · · · ·			
			DOTED DOD	DMAN DA	an of		

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

Analytical Method:	EPA 8270C		AAB#:	120229A-164437	
Lab Name:	APPL, Inc.		Contract #:	*G012	
Instrument ID:	YODA		Initial Calibration ID:	Y120301B	
ICV ID: 0302Y00	02.D	CCV #1 ID:		CCV #2 ID:	

	IC	ICV		7 #1	CC	V #2	
Analyte	RF	% D	RF	% D	RF	% D	Q
Hexachlorocyclopentadiene *	0.277618	4.1					
n-Nitrosodi-n-propylamine *	1.28767	8.5					
2,4-Dinitrophenol *	0.174268	12					
4-Nitrophenol *	0.141963	9.5					
1,4-DCB#	1.84758	7.1					
Acenaphthene#	1.33139	6.4		-			
Benzo (a) pyrene #	1.22371	3.0					
Di-n-octylphthalate#	1.64292	1.1,					
Fluoranthene#	1.27834	5.9					
Hexachlorobutadiene #	0.184346	5.8					
n-Nitrosodiphenylamine#	0.419342	12	Α				
2,4,6-Trichlorophenol#	0.422489	5.0					
2,4-Dichlorophenol#	0.342202	4.1					
2-Nitrophenol#	0.243293	3.9					
4-Chloro-3-methylphenol #	0.366309	3.5					
Pentachlorophenol #	0.144587	5.5					
Phenol#	2.16046	7.3					

* SPCCs # CCCs

Comments:		
	AFCEE FORM O-5A Page of	

AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method: EPA 8270C		AAB#: 120229A-164437		
Lab Name: APPL, Inc.		Contract #: *G012		
Instrument ID: YODA		Initial Calibration ID: Y120301B		
ICV ID: 0302Y002.D	CCV #1 ID:	CCV #2 ID:		

	ICV	CCV#1	CCV#2	
Analyte	%D or % drift	%D or % drift	%D or % drift	Q
1,2,4-Trichlorobenzene	5.7		 	
1,2-DCB	7.4			
1,3-DCB	7.3			
2,4-DNT	5.9			
2,6-DNT	4.5			
2-Chloronaphthalene	6.8			
2-Methylnaphthalene	6.2			
2-Nitroaniline	2.7			
3-Nitroaniline	3.2			
3,3'-Dichlorobenzidine	1.0			
4-Bromophenyl phenyl ether	7.1			
4-Chloroaniline	3.8			·
4-Chlorophenyl phenyl ether	7.1			
4-Nitroaniline	6.2			
Acenaphthylene	6.2			
Anthracene	7.2			
Benz (a) anthracene	4.6	·		
Benzo (k) fluoranthene	2.0			
Benzo (b) fluoranthene	11			
Benzo (g,h,i) perylene	1.9		•	
Benzyl alcohol	7.3			
Bis (2-chloroethoxy) methane	3.5			
Bis (2-chloroethyl) ether	14			
Bis (2-chloroisopropyl) ether	6.6			
Bis (2-ethylhexyl) phthalate	6.7			
Butyl benzylphthalate	0.0			
Chrysene	5.6			
Di-n-butylphthalate	4.4			
Dibenz (a,h) anthracene	2.3			
Dibenzofuran	1.7			
Diethyl phthalate	7.3			
Dimethyl phthalate	6.8			
Fluorene	7.3			
Hexachlorobenzene	5.3			
Hexachtoroethane	7.1			
Indeno (1,2,3-cd) pyrene	1.8			
Isophorone	4.2			
Naphthalene	5.0			

AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method: EPA 8270C		AAB #: <u>120229A-164437</u>
Lab Name: APPL, Inc.		Contract #: *G012
Instrument ID: YODA		Initial Calibration ID: Y120301B
CV ID: 0302Y002.D	CCV #1 ID:	CCV #2 ID:

··········	ICV	CCV#1	CCV#2	·
Analyte	%D or % drift	%D or % drift	%D or % drift	Q
Nitrobenzene	2.8			
Phenanthrene	12		<u> </u>	
Pyrene	3.4		<u></u>	
2,4,5-Trichlorophenol	3.6			
2,4-Dimethylphenol	5.8			
2-Chlorophenol	7.4			
2-Methylphenol	8.7			
4,6-Dinitro-2-methylphenol	3.5			
Benzoic acid	18			
				

Comments:	 	
	 	

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8270C

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120229A-BLK 13000 West 1

Initial Calibration ID: Y120301B

Analyte	Method Blank	RL_	Q
1,2,4-TRICHLOROBENZENE	< RL	0.7	U
1,2-DCB	< RL	0.7	U
1,3-DCB	< RL	0.7	U
1,4-DCB	< RL	0.7	U
2,4,5-TRICHLOROPHENOL	< RL	3.3	U
2,4,6-TRICHLOROPHENOL	< RL	0.3	U
2,4-DICHLOROPHENOL	< RL	0.3	U
2,4-DIMETHYLPHENOL	< RL	0.3	U
2,4-DINITROPHENOL	< RL	3.3	U
2,4-DNT	< RL	0.7	U
2,6-DNT	< RL	0.7	U
2-CHLORONAPHTHALENE	< RL	0.7	U
2-CHLOROPHENOL	< RL	0.3	υ
2-METHYLNAPHTHALENE	< RL	0.7	U
2-METHYLPHENOL	< RL	0.3	U
2-NITROANILINE	< RL	3.3	U
2-NITROPHENOL	< RL	0.3	
3,3'-DICHLOROBENZIDINE	< RL	1.3	Ų
3-NITROANILINE	< RL	3.3	U
4,6-DINITRO-2-METHYLPHENOL	< RL	3.3	U
4-BROMOPHENYL PHENYL ETHER	< RL	0.7	Û
4-CHLORO-3-METHYLPHENOL	< RL	1.3	U
4-CHLOROANILINE	< RL	1.3	U
4-CHLOROPHENYL PHENYL ETHER	< RL	0.7	υ
4-METHYLPHENOL	< RL	0.3	U
4-NITROANILINE	< RL	3.3	U
4-NITROPHENOL	< RL	1.6	U
ACENAPHTHENE	< RL	0.7	Ü
ACENAPHTHYLENE	< RL	0.7	U
ANTHRACENE	< RL	0.7	U
BENZ (A) ANTHRACENE	< RL	0.7	U
BENZO (A) PYRENE	< RL	0.7	U
BENZO (B) FLUORANTHENE	< RL	0.7	U
BENZO (G,H,I) PERYLENE	< RL	0.7	U
BENZOIC ACID	< RL	1.6	Ū,
BENZYL ALCOHOL	< RL	1.3	U
BIS (2-CHLOROETHOXY) METHANE	< RL	0.7	U
BIS (2-CHLOROETHYL) ETHER	< RL	0.7	U
BIS (2-CHLOROISOPROPYL) ETHER	< RL	0.7	U
BIS (2-ETHYLHEXYL) PHTHALATE	< RL	0.7	U
BUTYLBENZYLPHTHALATE	< RL	0.7	U

Comments:

ARF: 67072, Sample: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8270C

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120229A-BLK 1/30A4

Initial Calibration ID: Y120301B

Analyte	Method Blank	RL	Q
CHRYSENE	< RL	0.7	U
DI-N-BUTYLPHTHALATE	< RL	0.7	Ų
DI-N-OCTYLPHTHALATE	< RL	0.7	U
DIBENZ (A,H) ANTHRACENE	< RL	0.7	U
DIBENZOFURAN	< RL	0.7	U
DIETHYL PHTHALATE	< RL	0.7	<u>U</u>
DIMETHYLPHTHALATE	< RL	0.7	U
FLUORANTHENE	< RL	0.7	U
FLUORENE	< RL	0.7	U
HEXACHLOROBENZENE	< RL	0.7	U
HEXACHLOROBUTADIENE	< RL	0.7	U
HEXACHLOROCYCLOPENTADIENE	< RL	0.7	U
HEXACHLOROETHANE	< RL	0.7	U
INDENO (1,2,3-CD) PYRENE	< RL	0.7	U
ISOPHORONE	< <u>RL</u>	0.7	U
N-NITROSODI-N-PROPYLAMINE	< RL	0.7	U
N-NITROSODIPHENYLAMINE	< RL	0.7	<u> </u>
NAPHTHALENE	< RL	0.7	U
NITROBENZENE	< RL	0.7	U
PENTACHLOROPHENOL	< RL	3.3	U
PHENANTHRENE	< RL	0.7	U
PHENOL	< RL	0.3	U
PYRENE	< RL	0.7	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHEN	67.6	25-144	
SURROGATE: 2-FLUORBIPHENYL (S	67.8	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	69.7	25-135	
SURROGATE: NITROBENZENE-D5 (S	70.5	25-135	
SURROGATE: PHENOL (S)	74.3	25-135	
SURROGATE: TERPHENYL-D14 (S)	78.0	32-136	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
ACENAPTHTHENE-D10 (IS)	
CHRYSENE-D12 (IS)	
NAPHTHALENE-D8 (IS)	
PERYLENE-D12 (IS)	
PHENANTHRENE-D10 (IS)	

Cor	ททา	ent	e.
\sim 01	P 14 1 1	CIT	э.

ARF: 67072, Sample: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8270C

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120229A LCS -1 1/2000 18 3/1/2

Initial Calibration ID: Y120301B

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,2,4-TRICHLOROBENZENE	1.67	0.93	55.7		
1,2-DCB	1.67	0.94	56.3	32-135	
1,3-DCB	1.67	0.93	55.7	26-135	
1,4-DCB	1.67	0.92	55.1	25-135	L
2,4,5-TRICHLOROPHENOL	1.67	0.94	56.3	25-175	
2,4,6-TRICHLOROPHENOL	1.67	0.95	56.9	29-138	
2,4-DICHLOROPHENOL	1.67	0.97	58.1	36-135	
2,4-DIMETHYLPHENOL	1.67	0.89	53.3	35-149	
2,4-DINITROPHENOL	1.67	0.77	46.1	25-161	
2,4-DNT	1.67	0.95	56.9	29-149	
2,6-DNT	1.67	0.93	55.7	41-135	
2-CHLORONAPHTHALENE	1.67	0.94	56.3	50-135	
2-CHLOROPHENOL	1.67	1.00	59.9	31-135	
2-METHYLNAPHTHALENE	1.67	1.00	59.9	31-135	
2-METHYLPHENOL	1.67	0.99	59.3	25-135	
2-NITROANILINE	1.67	0.94	56.3	40-135	
2-NITROPHENOL	1.67	0.96	57.5	34-135	
3,3'-DICHLOROBENZIDINE	1.67	0.74	44.3	25-175	
3-NITROANILINE	1.67	0.90	53.9	41-135	
4,6-DINITRO-2-METHYLPHENOL	1.67	0.88	52.7	25-144	
4-BROMOPHENYL PHENYL ETHER	1.67	0.95	56.9	43-137	
4-CHLORO-3-METHYLPHENOL	1.67	0.98	58.7	34-135	
4-CHLOROANILINE	1.67	0.92	55,1	35-146	
4-CHLOROPHENYL PHENYL ETHER	1.67	0.98	58.7	41-142	
4-METHYLPHENOL	3.33	1.99	59.8	25-135	L
4-NITROANILINE	1.67	0.88	52.7	30-153	
4-NITROPHENOL	1.67	0.88	52.7	25-141	
ACENAPHTHENE	1.67	0.93	55.7	39-135	
ACENAPHTHYLENE	1.67	0.93	55.7	37-135	
ANTHRACENE	1.67	0.91	54.5	35-175	
BENZ (A) ANTHRACENE	1.67	0.95	56.9	41-143	
BENZO (A) PYRENE	1.67	0.96	57.5	31-135	
BENZO (B) FLUORANTHENE	1.67	0.96	57.5	27-135	
BENZO (G,H,I) PERYLENE	1.67	0.98	58.7	25-159	
BENZOIC ACID	1.67	0.60	35.9	25-172	
BENZYL ALCOHOL	1.67	1.04	62.3	25-135	
BIS (2-CHLOROETHOXY) METHANE	1.67	0.97	58.1	39-135	
BIS (2-CHLOROETHYL) ETHER	1.67	0.94	56.3	34-135	
BIS (2-CHLOROISOPROPYL) ETHER	1.67	1.02	61.1	26-175	
BIS (2-ETHYLHEXYL) PHTHALATE	1.67	0.93	55.7	25-139	

Comments:

ARF: 67072, QC Sample ID: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8270C

AAB #: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120229A LCS ~ 1 130.004

Initial Calibration ID: Y120301B

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
BUTYLBENZYLPHTHALATE	1.67	0.95	56.9	25 -135	
CHRYSENE	1.67	0.90	53.9	45-143	
DI-N-BUTYLPHTHALATE	1.67	1.01	60.5	25-136	
DI-N-OCTYLPHTHALATE	1.67	0.93	55.7	28-137	
DIBENZ (A,H) ANTHRACENE	1.67	0.99	59.3	40-135	
DIBENZOFURAN	1.67	1.02	61,1	42-135	
DIETHYL PHTHALATE	1.67	0.97	58.1	27-135	
DIMETHYLPHTHALATE	1.67	0.95	56.9	25-175	
FLUORANTHENE	1.67	0.93	55.7	37-135	
FLUORENE	1.67	0.97	58.1	38-149	
HEXACHLOROBENZENE	1.67	0.91	54.5	36-143	
HEXACHLOROBUTADIENE	1.67	0.92	55.1	25-135	
HEXACHLOROCYCLOPENTADIENE	1.67	0.61	36.5	31-135	
HEXACHLOROETHANE	1.67	0.94	56.3	25-163	
INDENO (1,2,3-CD) PYRENE	1.67	0.93	55.7	25-170	
ISOPHORONE	1.67	0.99	59.3	25-175	
N-NITROSODI-N-PROPYLAMINE	1.67	1.02	61.1	27-135	
N-NITROSODIPHENYLAMINE	1.67	0.93	55.7	25-135	
NAPHTHALENE	1.67	0.94	56.3	40-135	
NITROBENZENE	1.67	0.96	57.5	36-143	
PENTACHLOROPHENOL	1.67	0.91	54.5	38-146	
PHENANTHRENE	1.67	0.93	55.7	44-135	
PHENOL	1.67	0.98	58.7	25-135	
PYRENE	1.67	0.90	53.9	37-146	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	66.4	25-144	•
SURROGATE: 2-FLUORBIPHENYL (S)	61.6	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	63.1	25-135	
SURROGATE: NITROBENZENE-D5 (S)	64.3	25-135	•
SURROGATE: PHENOL (S)	68.2	25-135	
SURROGATE: TERPHENYL-D14 (S)	70.9	32-136	•

Comments:

ARF: 67072, QC Sample ID: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8270C

Initial Calibration ID: Y120301B

Lab Name: APPL, Inc.

Contract #: *G012

Concentration Units: mg/kg

% Solids: 92.9

Parent Field Sample ID: B4-NT1-BOT01

1/22.404 MSD ID: 120229 558558 MSD 1 1/32 444 MS ID: 120229 4558558 MS-1 160/1/12

wohla

Control Controi Duplicate Parent Spiked Spiked %RPD Limits Q % R % R Limits Analyte Sample Spike Sample % RPD % R Result Added Result Sample Result 34-152 30 49.4 1.66 0.8953.6 0.828.2 1,2,4-TRICHLOROBENZENE 0.83 50.0 0.7847.0 6.2 32-135 30 1.66 1,2-DCB 48.2 0.7545.2 6.5 26-135 30 1.66 0.80 1,3-DCB 25-135 30 48.8 0.7645.8 6.4 1.66 0.81 1.4-DCB 0.9054.2 2.2 25-175 30 0.92 55.4 2,4,5-TRICHLOROPHENOL 1.66 29-138 30 0.94 56.6 0.9054.2 4.3 1.66 2.4.6-TRICHLOROPHENOL 53.6 4.4 36-135 30 0.9356.0 0.891.66 2,4-DICHLOROPHENOL 0.69 1.4 35-149 30 42.2 41.6 2,4-DIMETHYLPHENOL 0.701.66 25-161 30 33.1 5.3 1.66 0.5834.9 0.55 2,4-DINITROPHENOL 29-149 30 57.2 0.8953.6 6.5 1.66 0.95 2,4-DNT 41-135 30 53.0 7.7 57.2 0.881.66 0.952,6-DNT 50-135 30 0.8953.6 3.3 1.66 0.9255.4 2-CHLORONAPHTHALENE 0.88 53.0 3.4 31-135 30 0.91 54.8 1.66 2-CHLOROPHENOL 31-135 30 54.2 4.3 0.90 2-METHYLNAPHTHALENE 0.94 56.6 1.66 30 25-135 51.8 3.4 53.6 0.862-METHYLPHENOL 1.66 0.89 40-135 30 0.93 56.0 4.2 0.97 58.4 2-NITROANILINE 1.66 34-135 30 5.5 0.93 56.0 0.88 53.0 2-NITROPHENOL 1.66 30 7.3 25-175 0.71 0.66 39.8 .3'-DICHLOROBENZIDINE 1.66 42.8 53.6 2.2 41-135 30 0.89 3-NITROANILINE 1.66 0.91 54.8 8.7 25-144 30 0.77 46.4 4,6-DINITRO-2-METHYLPHENOL 1.66 0.84 50.6 43-137 30 0.88 53.0 6.6 1.66 0.9456.6 4-BROMOPHENYL PHENYL ETHER 34-135 30 4-CHLORO-3-METHYLPHENOL 1.66 0.97 58.4 0.91 54.8 6.4 35-146 4.5 30 1.66 0.91 54.8 0.8752.4 4-CHLOROANILINE 41-142 30 54.8 0.90 54.2 1.1 4-CHLOROPHENYL PHENYL ETHE 0.91 1.66 25-135 30 3.3 55.3 1.78 53.5 3.33 1.84 4-METHYLPHENOL 30 0.89 53.6 0.85 51.2 4.6 30-153 1.66 4-NITROANILINE 2.2 25-141 30 0.8953.6 1.66 0.91 54.8 4-NITROPHENOL 30 0.87 52.4 5.6 39-135 0.9255.4 1.66 ACENAPHTHENE 0.91 54.8 0.89 53.6 2.2 37-135 30 1.66 **ACENAPHTHYLENE** 35-175 30 0.86 51.8 8.9 1.66 0.94 56.6 ANTHRACENE 52.4 7.7 41-143 30 0.9456.6 0.87 1.66 BENZ (A) ANTHRACENE <u>5</u>6.0 0.91 54.8 2.2 31-135 30 0.93 1.66 BENZO (A) PYRENE 47.0 27-135 30 51.2 0.788.6 1.66 0.85 BENZO (B) FLUORANTHENE 54.2 25-159 30 0.95 57.2 0.90 5.4 1.66 BENZO (G,H,I) PERYLENE 0.19 0.0 25-172 30 M 11.4 11.4 0.19BENZOIC ACID 1.66 4.7 25-135 30 53.0 0.84 50.6 1.66 0.88 BENZYL ALCOHOL 39-135 30 57.2 0.88 53.0 BIS (2-CHLOROETHOXY) METHAN 1.66 0.95

Comments:			·	

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8270C

Initial Calibration ID: Y120301B

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 1/32.404 M B ID: 1202229 558555 MSD-1 1/32.404 MSD ID: 1202229 55855 MSD-1 1/32.404 MSD ID: 1202229 MS

P****						ויויסט				$\overline{}$
Analyte	Parent Sample Result		Spiked Sample Result	% R	Duplicate Spiked Sample	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
	Ziouit	710000	resure		Result			/ U IX	70 141 15	
BIS (2-CHLOROETHYL) ETHER		1.66	1.11	66.9	1.07	64.5	3.7	34-135	30	
BIS (2-CHLOROISOPROPYL) ETHE		1.66	0.92	55.4	0.88	53.0	4.4	26-175	30	
BIS (2-ETHYLHEXYL) PHTHALATE		1.66	0.96	57.8	0.84	50.6	13.3	25-139	30	
BUTYLBENZYLPHTHALATE		1.66	0.95	57.2	0.86	51.8	9.9	25-135	30	
CHRYSENE		1.66	0.93	56.0	0.87	52.4	6.7	45-143		
DI-N-BUTYLPHTHALATE		1.66	0.95	57.2	0.94	56.6	1.1	25-136	30	
DI-N-OCTYLPHTHALATE		1.66	0.98	59.0	0.87	52.4	11.9	28-137	30	
DIBENZ (A,H) ANTHRACENE		1.66	0.94	56.6	0.91	54.8	3.2	40-135	30	
DIBENZOFURAN		1.66	1.01	60.8	0.98	59.0	3.0	42-135	30	
DIETHYL PHTHALATE		1.66	0.94	56.6	0.90	54.2	4.3	27-135	30	
DIMETHYLPHTHALATE		1.66	0.94	56.6	0.92	55.4	2.2	25-175	30	
FLUORANTHENE		1.66	0.95	57.2	0.89	53.6	6.5	37-135	30	
FLUORENE		1.66	0.95	57.2	0.91	54.8	4.3	38-149	30	
HEXACHLOROBENZENE		1.66	0.95	57.2	0.87	52.4	8.8	36-143	30	
HEXACHLOROBUTADIENE		1.66	0.86	51.8	0.79	47.6	8.5	25-135	30	
HEXACHLOROCYCLOPENTADIEN		1.66	0.60	36.1	0.54	32.5	10.5	31-135	30	
HEXACHLOROETHANE		1.66	0.80	48.2	0.76	45.8	5.1	25-163	30	
INDENO (1,2,3-CD) PYRENE		1.66	0.93	56.0	0.86	51.8	7.8	25-170	30	
ISOPHORONE		1.66	0.94	56.6	0.89	53.6	5.5	25-175	30	
N-NITROSODI-N-PROPYLAMINE		1.66	0.93	56.0	0.91	54.8	2.2	27-135	30	
N-NITROSODIPHENYLAMINE		1.66	0.90	54.2	0.87	52.4	3.4	25-135	30	
NAPHTHALENE		1.66	0.90	54.2	0.84	50.6	6.9	40-135	30	
NITROBENZENE		1.66	0.93	56.0	0.87	52.4	6.7	36-143	30	
PENTACHLOROPHENOL		1.66	0.91	54.8	0.87	52.4	4.5	38-146	30	
PHENANTHRENE		1.66	0.92	55.4	0.89	53.6	3.3	44-135	30	
PHENOL		1.66	0.92	55.4	0.87	52.4	5.6	25-135	30	
PYRENE		1.66	0.93	56.0	0.86	51.8	7.8	37-146	30	

Analyte		Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
SURROGATE: 2,4,6-TRIBROMOPHE	•	6.17	4.05	65.6	4.08	66.1		25-144		
SURROGATE: 2-FLUORBIPHENYL (3.09	1.83	59.2	1.83	59.2		34-135		
SURROGATE: 2-FLUOROPHENOL (6.17	3.50	56.7	3.38	54.8		25-135		
SURROGATE: NITROBENZENE-D5		3.09	1.90	61.5	1.80	58.3		25-135		
SURROGATE: PHENOL (S)		6.17	3.91	63.4	3.79	61.4		25-135		

Comments.			

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8270C

Initial Calibration ID: Y120301B

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 4 03
MS ID: 120229-55855S MSD-1 42249

MSD ID: 120229-55855S MSD-1 42249

MSD ID: 120229-55855S MSD-1 42249

MSD ID: 120229-55855S MSD-1 42249

Analyte	 Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
SURROGATE: TERPHENYL-D14 (S)	 3.09		68.9	2.08	67.3		32-136		

Comments:

AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8270C

AAB#: 120229A-164437

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Extracted	Max. Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal,	Q
B4-NT1-BOT01	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-BOT01 FD	27-Feb-12	28-Fcb-12	29-Feb-12	14	2	03-Mar-12	40	3	L!
B4-NT1-BOT02	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-SW3	27-Feb-12	28-Feb-12	29-Feb-12	14	2	02-Mar-12	40	2	
B4-NT1-SW4	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3.	L
B4-NT1-SW5	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-SW6	27-Feb-12	28-Feb-12	29-Feb-12	14	2	02-Mar-12	40	2	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	29-Feb-12	14	. 2	03-Mar-12	40	3	
B4-NT1-SW7	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-SW8	27-Feb-12	28-Feb-12	29-Feb-12	14	2	03-Mar-12	40	3	
B4-NT1-SW9	27-Feb-12	28-Feb-12	29-Feb-12	14	2	02-Mar-12	40	2	

Comments: ARF: 67072

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: EPA 8270C		
Lab Name: APPL, Inc.	Contract #: •G012	
Instrument ID: YODA	Compound: DFTPP Injection Date/Time: 1 Mar 12 18:36	_
Initial Calibration ID: Y120301B		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
51	30 - 60.04% of mass 198	37.4	PASS
68	0 - 2% of mass 69	0.0	PASS
70	0 - 2% of mass 69	0.5	PASS
127	40 - 60% of mass 198	46.9	PASS
197	0 - 1% of mass 198	0.0	PASS
198	100 - 100% of mass 198	100.0	PASS
199	5 - 9% of mass 198	6.6	PASS
275	10 - 30% of mass 198	22.6	PASS
365	1 - 100% of mass 198	2.2	PASS
441	0.01 - 100% of mass 443	79.9	PASS
442	40 - 150% of mass 198	74.3	PASS
443	17 - 23% of mass 442	18.9	PASS

AFCEE FORM O-11 Page ____ of ____

AFCBE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFD or DFTPP)

Analytical Method: EPA 8270C		
Lab Name: APPL, Inc.	Contract #:	*G012
Instrument ID: YODA	Compound: DFTPP	Injection Date/Time: 2 Mar 12 17:44
Initial Calibration ID: Y120301B		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
51	30 - 60.04% of mass 198	46.9	PASS
68	0 - 2% of mass 69	1.6	PASS
70	0 - 2% of mass 69	0.4	PASS
127	40 - 60% of mass 198	48.3	PASS
197	0 - 1% of mass 198	0.0	PASS
198	100 - 100% of mass 198	100.0	PASS
199	5 - 9% of mass 198	6.7	PASS
275	10 - 30% of mass 198	26.3	PASS
365	I - 100% of mass 198	3.3	PASS
441	0.01 - 100% of mass 443	77.6	PASS
442	40 - 150% of mass 198	96.9	PASS
443	17 - 23% of mass 442	19.9	PASS

AFCEE FORM O-11 Page ___ of ___

AFCEE ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:	EPA	8270C	

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: YODA ICAL ID: Y120301B

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
SV TUNE 02-28-12	01-Mar-12	18:36	01-Mar-12	18:46
5.0 ug/mL SVOC 03-01-12	01-Mar-12	18:54	01-Mar-12	19:12
10 ug/mL SVOC	01-Mar-12	19:20	01-Mar-12	19:38
20 ug/mL SVOC	01-Mar-12	19:46	01-Mar-12	20:04
40 ug/mL SVOC	01-Mar-12	20:12	01-Mar-12	20;29
50 ug/mL SVOC	01-Mar-12	20:37	01-Mar-12	20:55
60 ug/mL SVOC	01-Mar-12	21:03	01-Mar-12	21:21
80 ug/mL SVOC	01-Mar-12	21;29	01-Mar-12	21:47
100 ug/mL SVOC	01-Mar-12	21:54	01-Mar-12	22:12
50 ug/mL SVOC SS 03-01-12	01-Mar-12	22:20	01-Mar-12	22:38
SV TUNE 02-28-12	02-Mar-12	17:44	02-Mar-12	17:54
50 ug/mL SVOC 03-01-12	02-Mar-12	18:02	02-Mar-12	18:20
120229A BLK 1/30.00G	02-Mar-12	20:11	02-Mar-12	20:29
120229A LCS-1 1/30.00G	02-Mar-12	20:37	02-Mar-12	20:55
AY55855S03 MS-1 1/32.40G	02-Mar-12	21:02	02-Mar-12	21:20
AY55855S03 MSD-1 1/32.69G	02-Mar-12	21;28	02-Mar-12	21:46
AY55846S02 1/34.82G	02-Mar-12	22:45	02-Mar-12	23:03
AY55847S02 1/36.60G	02-Mar-12	23:10	02-Mar-12	23:28
AY55848S02 1/33.99G	02-Mar-12	23:36	02-Mar-12	23:54
AY55849S02 1/33.66G	03-Mar-12	00:02	03-Mar-12	0:19
AY55850S03 1/35.19G	03-Mar-12	00:27	03-Mar-12	0:45
AY55851802 1/31.33G	03-Mar-12	00:52	03-Mar-12	1:10
AY55852S03 1/32.55G	03-Mar-12	1:18	03-Mar-12	1:36
AY55853S02 1/34.25G	03-Mar-12	1:43	03-Mar-12	2:01
AY55854S02 1/32.32G	03-Mar-12	2:09	03-Mar-12	2:26
AY55855S03 1/35.58G	03-Mar-12	2:34	03-Mar-12	2:52

Comments:				
	 	 	 	.

AFCEE FORM O-10 Page ___ of ____

AFCEE

ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method	d: EPA 8270C	-		
Lab Name	e: APPL, Inc.	Contract #:	*G012	_
Instrument ID	#: YODA	ICAL ID:	Y120301B	-
Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Y55856803 1/32.37G	03-Mar-12	2:59	03-Mar-12	3:17
Y55869S02 1/33.99G	03-Mar-12	3:25	03-Mar-12	3:43
			·	
		«-		
	<u> </u>			
			<u> </u>	
<u></u>		<u></u>		μ
				
				······································
			······	
	<u> </u>			
Comments:				
		<u> </u>		

AFCEE FORM O-10 Page ___ of ____

Injection Log

Directory:	M:\YODA\DATA\Y120301B\
DII CCIOI Y.	191.11 ODDIDD TO 12000 101

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0301Y001.D	1	SV TUNE 02-28-12		1 Mar 12 18:36
2	2	0301Y002.D		5.0 ug/mL SVOC 03-01-12		1 Mar 12 18:54
3	3	0301Y003.D		10 ug/mL SVOC		1 Mar 12 19:20
4	4	0301Y004.D		20 ug/mL SVOC		1 Mar 12 19:46
5	5	0301Y005.D	1	40 ug/mL SVOC		1 Mar 12 20:12
6	6	0301Y006,D		50 ug/mL SVOC		1 Mar 12 20:37
7	7	0301Y007.D	1	60 ug/mL SVOC		1 Mar 12 21:03
8	8	0301Y008.D	1	80 ug/mL SVOC		1 Mar 12 21:29
9	9	0301Y009.D	1	100 ug/mL SVOC		1 Mar 12 21:54
10	10	0301Y010.D	1	50 ug/mL SVOC SS 03-01-12		1 Mar 12 22:20
11	1	0302Y001.D	1	SV TUNE 02-28-12		2 Mar 12 17:44
12	2	0302Y002.D	1	50 ug/mL SVOC 03-01-12		2 Mar 12 18:02
13	7	0302Y007.D	33.3333	120229A BLK 1/30.00G		2 Mar 12 20:11
14	8	0302Y008.D	33.3333	120229A LCS-1 1/30.00G		2 Mar 12 20:37
15	9	0302Y009.D	30.8642	AY55855S03 MS-1 1/32.40G		2 Mar 12 21:02
16	10	0302Y010.D	30.5904	AY55855S03 MSD-1 1/32.69G		2 Mar 12 21:28
17	13	0302Y013.D	28.7191	AY55846S02 1/34.82G		2 Mar 12 22:45
18	14	0302Y014.D	27.3224	AY55847S02 1/36.60G		2 Mar 12 23:10
19	15	0302Y015.D	29.4204	AY55848\$02 1/33.99G		2 Mar 12 23:36
20	16	0302Y016.D	29.7089	AY55849\$02 1/33.66G		3 Mar 12 00:02
21	17	0302Y017.D	28.4172	AY55850S03 1/35.19G		3 Mar 12 00:27
22	18	0302Y018.D	31.9183	AY55851S02 1/31.33G		3 Mar 12 00:52
23	19	0302Y019.D	30.722	AY55852S03 1/32.55G		3 Mar 12 1:18
24	20	0302Y020.D	29.1971	AY55853S02 1/34.25G		3 Mar 12 1:43
25	21	0302Y021.D	30.9406	AY55854S02 1/32.32G		3 Mar 12 2:09
26	22	0302Y022.D	28.1057	AY55855S03 1/35.58G		3 Mar 12 2:34
27	23	0302Y023.D	30.8928	AY55856S03 1/32.37G		3 Mar 12 2:59
28	24	0302Y024.D	29,4204	AY55869S02 1/33.99G		3 Mar 12 3:25

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: *G012
Lab Code:		SDG No.: 67072
Lab File ID (Standard): 0301Y006.D		Date Analyzed: 1 Mar 12 20:37
Instrument ID: YODA		Time Analyzed: 1 Mar 12 20:37
GC Column:	ID:	Heated Purge: (Y/N)

	1,4-dic	nlorobenzene-D	4(IS) Na	pthalene-D8(IS)	Acena	phthene-D10(l	IS)
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	377888	4.57	1425320	5.95	790452	7.95
	UPPER LIMIT	755776	5.07	2850640	6.45	1580904	8.45
	LOWER LIMIT	188944	4.07	712660	5.45	395226	7.45
	SAMPLE				· ·		
	NO.						
01	120229A BLK 1/30.00G	376354	4.57	1409060	5.94	792996	7.95
02	120229A LCS-1 1/30.00	374633	4.57	1495470	5.95	861580	7.95
03	AY55855S03 MS-1 1/32	390201	4.56	1485570	5.95	848324	7.95
04	AY55855S03 MSD-1 1/3	384045	4.57	1495480	5.95	832160	7.95
	AY55846S02 1/34.82G	376097	4.57	1443570	5.94	837943	7.95
06	AY55847S02 1/36.60G	365765	4.56	1408130	5.94	819156	7.95
07	AY55848S02 1/33.99G	389597	4.56	1468710	5.95	830923	7.94
80	AY55849S02 1/33.66G	399289	4.56	1487800	5.94	860645	7.95
09	AY55850S03 1/35.19G	390382	4.57	1476670	5.94	829960	7.95
10	AY55851S02 1/31.33G	371319	4.56	1417980	5.95	809199	7.94
11	AY55852S03 1/32.55G	383535	4.56	1466990	5.94	856375	7.95
12	AY55853S02 1/34.25G	378399	4.56	1412210	5.94	802870	7.95
13	AY55854S02 1/32.32G	432594	4.56	1619290	5.94	894410	7.95
14	AY55855S03 1/35.58G	384897	4.56	1473970	5.94	832907	7.95
15	AY55856S03 1/32.37G	398080	4.56	1514630	5.94	878338	7.95
16	AY55869S02 1/33.99G	397218	4.56	1550530	5.95	857107	7.94
17							
18		-					
19							
20							
21							
22							

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: *G0	012
Lab Code:		SDG No.:	67072
Lab File ID (Standard): 0301Y006.D		Date Analyzed: 1	Mar 12 20:37
Instrument ID: YODA		Time Analyzed: 1	Mar 12 20:37
GC Column:	ID:	Heated Purge: (Y/N)	

····	Pher	nanthrene-D	10(1	S)	Ch	rysene-D12(is)			ylene-D12(
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
12 HOUR STO)	1457150		9.68		1307990		12.76		1280470		14.3	3
UPPER LIMIT	•	2914300		10.18		2615980		13.26		2560940		14.8	3
LOWER LIMIT	_	728575	5	9.18		653995		12.26		640235		13.8	3
SAMPLE													
NO.										····			
01 120229A BLK 1/30	.00G	1418560)]	9.66		1320250		12.75		1209930		14.3	1
02 120229A LCS-1 1/3	30.00	1590560)	9.67		1454060		12.76		1380570	_	14.3	2
03 AY55855S03 MS-1	1/32	1519160)	9.67		1399100		12.75		1368470	_	14.3	_
04 AY55855S03 MSD	- 1 1/3	1529240)	9.67	·	1418020		12.76		1347140		14.3	
05 AY55846S02 1/34.3	82G	1479050) _	9.67	·	1384710		12.75	_	1250040	_	14.3	
06 AY55847S02 1/36.0	60G	1442830)	9.67	_	1386100		12.75		1232580	_	14.3	
07 AY55848S02 1/33.9	99G	1511300		9.67		1413270		12.74		1245560		14.3	
08 AY55849S02 1/33.0	66G	1509340)	9.67	_	1446610		12.75		1293280		14.3	2
09 AY55850S03 1/35.	19G	1462410)	9.67		1402820		12.75		1226520		14.3	_
10 AY55851S02 1/31.3	33G	1450210)	9.67	·	1389690		12.75	_	1261670		14.3	
11 AY55852S03 1/32	55G	1506700)	9.67		1457130		12.75	_	1307690	$\overline{}$	14.3	
12 AY55853S02 1/34.	25G	1396290		9.67		1344860		12.75		1191160	$\overline{}$	14.3	2
13 AY55854S02 1/32.3	32G	1619490	\Box	9.66		1480950		12.75		1383260	_	14.3	
14 AY55855S03 1/35.	58G	1455320)	9.67	·	1408400		12.75		1272900		14.3	
15 AY55856S03 1/32.3	37G	1549590		9.67		1473530		12.75	_	1329360		14.3	
16 AY55869S02 1/33.9	99G	1521800	,	9.67		1473150		12.75		1282790		14.3	2
17													
18													
19													
20													
21													
22													-

AREA UPPER LIMIT = +100% of internal standard area.


AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

EPA METHOD 8270C Semivolatile Organic Compounds Calibration Data

Data File : M:\YODA\DATA\Y120301B\0301Y002.D Vial: 2 Acq On : 1 Mar 12 18:54
Sample : 5.0 ug/mL SVOC 03-01-12 Operator: LF Sample Inst : YODA Multiplr: 1.00 Misc

Ouant Results File: Y827AF.RES Ouant Time: Mar 5 8:44 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update: Mon Mar 05 08:37:15 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	393082		qq 00000	
20) Napthalene-D8(IS)	5.95	136	1506406		00000 pr	
38) Acenaphthene-D10(IS)	7.95	164	824381		9q 00000	
62) Phenanthrene-D10(IS)	9.67	188	1446785	40.	00000 pp	ob 0.00
76) Chrysene-D12(IS)	12,75	240	1306076		00000 pr	
86) Perylene-D12(IS)	14.31	264	1288127	40.	qq 00000	ob -0.01
System Monitoring Compounds						
4) 2-Fluorophenol (S)	3.24	112	155640	10.	87519 pp	
Spiked Amount 200.000			Recove			38%
5) Phenol-D6 (S)	4.23	99	180362		64318 pp	
Spiked Amount 200.000			Recove	ry _ :		22%
21) Nitrobenzene-D5(S)	5.17	82	77224		41080 pp	
Spiked Amount 100.000			Recove			11%
44) 2-Fluorobiphenyl(S)	7.19	172	163854		68074 pp	
Spiked Amount 100.000			Recove			81%
61) 2,4,6-Tribromophenol(S)	8.87	330	35587		17573 pp	
Spiked Amount 200.000			Recove	ry _	= 5.0	88%
78) Terphenyl-D14(S)	11,55	244	146441		36641 pp	
Spiked Amount 100.000			Recove	ry :	= 5.3	66%
Target Compounds						Qvalue
n-Nitrosodimethylamine	1.95	42	74938		62369 pp	
6) Phenol	4.24	94	121773		31509 pp	
7) Aniline	4.31	93	101768		71072 pp	
8) Bis (2-chloroethyl) ether	4.31	63	64044		68672 pp	
9) 2-Chlorophenol	4.36	128	89857		29842 pp	
10) 1,3-DCB	4.50	146	104166		47236 pp	
11) 1,4-DCB	4.58	146	110414		64867 pp	
12) Benzyl alcohol	4.75	79	66800		16989 pp	
13) 1,2-DĊB	4.74	146	100661		61798 pp	
14) 2-Methylphenol	4.88	108	857 8 8		50767 pp	
<pre>15) Bis (2-chloroisopropyl) et</pre>	4.88	45	148073		75130 pp	
16) Acetophenone	5.01	105	121141		41755 pp	
17) 3&4-Methylphenol	5.04	107	189500		73406 pp	
18) n-Nitrosodi-n-propylamine	5.01	43	77230		10226 pp	
19) Hexachloroethane	5.09	117	36806		60446 pp	
22) Nitrobenzene	5.19	77	91950		35411 pp	
23) Isophorone	5.46	82	163333		32886 pp	
24) 2-Nitrophenol	5.54	139	47673		00568 pp	
25) 2,4-Dimethylphenol	5.62	107	90735		50220 pp	
26) Benzoic acid	5.84	105	8850		32012 pp	
27) Bis (2-chloroethoxy) metha	5.71	93	101034		48534 pp	
28) 2,4-Dichlorophenol	5.82	162	69818		20399 pp	
29) 1,2,4-Trichlorobenzene	5.89	180	80979		56878 pp	
30) Naphthalene	5.97	128	287250		69536 pp	
31) 4-Chloroaniline	6.06	127	91912 75518		17773 pp 75846 pp	
32) 2,6-Dichlorophenol	6.06	162				
33) Hexachloropropene	6.06	213	40681		04537 pp 57452 pp	
34) Hexachlorobutadiene	6.11	225	41040 28279		19833 pp	
35) Caprolactum		113				
36) 4-Chloro-3-methylphenol	6.65	107	71881		03540 pp 45553 pp	
37) 2-Methylnaphthalene	6.76	142	183661 14571		19933 pp 19921 pp	
39) Hexachlorocyclopentadiene	6.93	237	 		 10251 bb	, JJ

^{(#) =} qualifier out of range (m) = manual integration 0301Y002.D Y827AF.M Thu Mar 08 14:59:25 29012

Data File : M:\YODA\DATA\Y120301B\0301Y002.D

Vial: 2 Acq On : 1 Mar 12 18:54 Operator: LF : 5.0 ug/mL SVOC 03-01-12 Sample Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:44 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:37:15 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	:
40)	1,2,4,5-Tetrachlorobenzene	6.95	216	76383	5.67391 p	da	91
	2,4,6-Trichlorophenol	7,10	196	46662			95 -
	2,4,5-Trichlorophenol	7.16	196	52564.			95
	2-Chloronaphthalene	7.31	162	170712	5.73721 p		98
	1,1'-Biphenyl	7.30	154	223595	5.83589 p		99
	2-Nitroaniline	7.46	138	56423	4.98761 p	dq	99
47)	Dimethyl phthalate	7.68	163	185518	5.47105 p	da	95
	2,6-DNT	7.75	165	40590	5.08008 p		80
-	Acenaphthylene	7.78	152	274925	5.55954 p	da	100
	3-Nitroaniline	7.95	65	59841	5.51041 p		95
	Acenaphthene	7.98	154	170151	5.80669 p		99
	2,4-Dinitrophenol	8.11	184	1274	7.29158 p		55
	4-Nitrophenol	8,18	109	688	0.24169 p	# da	1
	Dibenzofuran	8,19	139	81160	4.04429 p	da	78
	2,4-DNT	8.21	165	54564		da da	84
	2,3,4,6-Tetrachlorophenol	8.36	232	34786	4.76173 p	da	99
-	Diethyl phthalate	8.50	149	186438	5.53472 p		99
	4-Chlorophenyl phenyl ethe	8.60	204	93202	5.73780 p		92
59)	Fluorene	8.58	165	176861	5.62365 p		99
	4-Nitroaniline	8.65	138	46045	5.25589 p	dq	99
	Diphenyl amine	8.75	168	187840	5.79140 p	pb	99
	4,6-Dinitro-2-methylphenol	8.68	198	18478	3.10063 p		87
	n-Nitrosodiphenylamine	8.75	167	100712	5.84981 p		100
	1,2-Diphenylhydrazine	8.78	182	56647	5.72893 p		79
	4-Bromophenyl phenyl ether	9.16	248	45954	5.56999 p		99
	Hexachlorobenzene	9.21	284	49919	5.59221 p		98
	Atrazine	9.40	200	3624	2.47981 pj		93
70)	Pentachlorophenol	9.47	266	18890	3.86931 p		92
	Phenanthrene	9.69	178	288113	5.99120 pj		100
72)	Anthracene	9.75	178	287873	5.82163 p		99
73)	Carbazol	9.97	167	247514	5.55861 p		97
74)	Di-n-butylphthalate	10.40	149	280315	5.35316 pr	dq	99
	Fluoranthene	11.08	202	264603	5.38801 pr	pb	99
77)	Pyrene	11.33	202	276314	5.37258 pr	# dq	82
79)	Butyl benzylphthalate	12.14	149	112254	4.92392 pr	pb	90
80)	3,3'-Dichlorobenzidine	12.74	252	68319	4.85585 pr	pb	96
81)	Benz (a) anthracene	12.74	228	223596	5.35256 pr	pb	98
82)	Bis (2-ethylhexyl) phthala	12.82	149	180009	5.34724 pr	pb	96
83)	Chrysene	12.77	228	254687	5.77786 pr	pb #	97
84)	Di-n-octylphthalate	13.54	149	265417	4.89182 pg	dq	99
85)	Indeno (1,2,3-cd) pyrene	15.67	276	217673	4.89840 pr	pb	94
87)	Benzo (b) fluoranthene	13.90	252	242006	4.47210 pr	pb	99
88)	Benzo (k) fluoranthene	13.92	252	209292	4.06350 pr		97
	Benzo (a) pyrene	14.25	252	202723	4.98875 pg	ob	99
	Dibenz (a,h) anthracene	15.70	278	184534	4.85319 pp		100
91)	Benzo (g,h,i) perylene	16.06	276	192051	5.13331 pg	ob do	99

Data File : M:\YODA\DATA\Y120301B\0301Y002.D

Acq On Sample

: 1 Mar 12 18:54 : 5.0 ug/mL SVOC 03-01-12

Operator: LF : YODA Inst Multiplr: 1.00

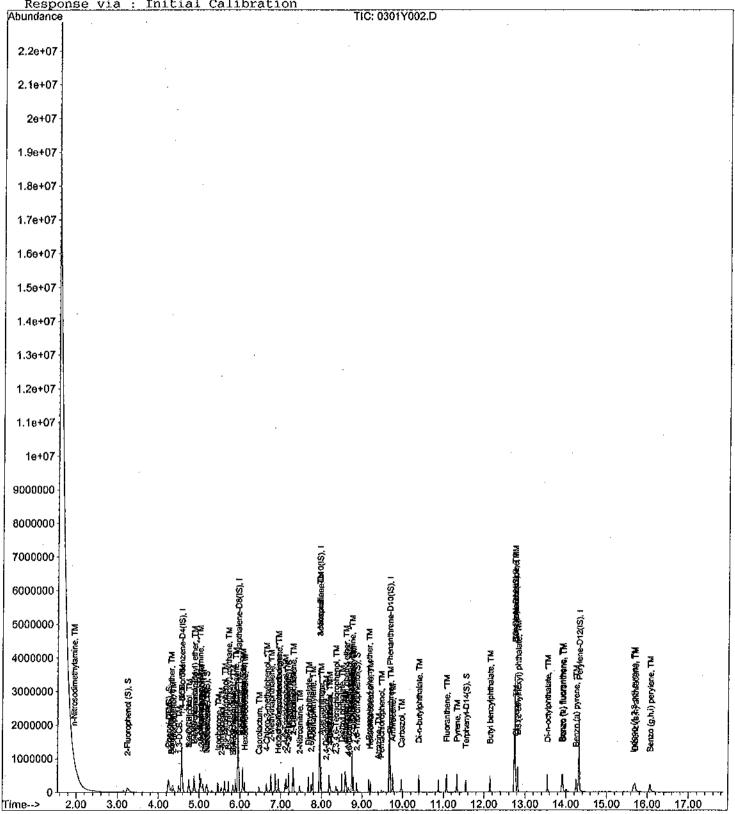
Vial: 2

8:44 2012 Quant Time: Mar

Quant Results File: Y827AF.RES

Method

Misc


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

Vial: 3 Data File : M:\YODA\DATA\Y120301B\0301Y003.D Acq On : 1 Mar 12 19:20 Sample : 10 ug/mL SVOC Operator: LF Inst : YODA Multiplr: 1.00 Misc :

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:37:15 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	389044	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.95	136	1500970	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	845002	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1480554	40.00000 ppb	0.00
76) Chrysene-D12(IS)	9.67 12.75 14.32	240	1357398	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.32	264	1314752	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3,24	112	310157		0.00
Spiked Amount 200.000	4.23	99	Recove 369810	ry = 10.949% 22.04902 ppb	0.00
5) Phenol-D6 (S) Spiked Amount 200,000	4.23	99	Recove		0.00
21) Nitrobenzene-D5(S)	5.18	82	155572	10.93984 ppb	0.00
Spiked Amount 100.000			Recove		
44) 2-Fluorobiphenyl(S)	7.19	172	341076	11.53638 ppb	0.00
Spiked Amount 100.000				ry = 11.536	
61) 2,4,6-Tribromophenol(S)	8.87	330	77563		-0.02
Spiked Amount 200,000	11 54	244		ry = 10,819%	0.00
78) Terphenyl-D14(S)	11.54	244	315668	11,13045 ppb ry = 11.130%	0.00
Spiked Amount 100.000	•		Recove	1y - 11.1308	
Target Compounds				Qv	alue
n-Nitrosodimethylamine	1,95	42	113449	13.19095 ppb	82
Pyridine	1.97	52	101228	9.53362 ppb	100
6) Phenol	4.25	94	247370	10.90916 ppb	80
7) Aniline	4.31	93	195768	11.09957 ppb	98
8) Bis (2-chloroethyl) ether	4.31	63 128	125808 185213	9.30216 ppb 11.03445 ppb	97 98
9) 2-Chlorophenol 10) 1,3-DCB	4,36 4,50	146	209974	11.03445 ppb 11.14547 ppb	99
11) 1,4-DCB	4.58	146	218579	11,29835 ppb	99
12) Benzyl alcohol	4.74	79	138669	10.84347 ppb	96
13) 1,2-DCB	4.74	146	200453	11.30359 ppb	99
14) 2-Methylphenol	4.87	108	172229	11.17203 ppb	98
15) Bis (2-chloroisopropyl) et	4,88	45	291071	11.42282 ppb	97
16) Acetophenone	5.02	105	252249	11,39793 ppb	95 06
17) 3&4-Methylphenol 18) n-Nitrosodi-n-propylamine	5.05 5.02	107 43	401116 156590	22.95668 ppb 12.50124 ppb	96 87
19) Hexachloroethane	5.09	117	72297	11.12294 ppb	90
22) Nitrobenzene	5,19	77	190089	11.10869 ppb	96
	5.45	82	334532	10.95389 ppb	98
24) 2-Nitrophenol	5.54	139	99908	10,52836 ppb	95
25) 2,4-Dimethylphenol	5.61	107	180694	10.99702 ppb	100
26) Benzoic acid	5.81	105	65581	9.81790 ppb	92
27) Bis (2-chloroethoxy) metha	5.71 5.82	93 162	199746	10.88389 ppb 11,16906 ppb	98 96
28) 2,4-Dichlorophenol 29) 1,2,4-Trichlorobenzene	5.89	180	14930 6 163317	11.27170 ppb	99
30) Naphthalene	5.97	128	570252	11.34744 ppb	99
31) 4-Chloroaniline	6,06	127	195891	11.07520 ppb	99
32) 2,6-Dichlorophenol	6.06	162	147976	11.32445 ppb	99
33) Hexachloropropene	6.07	213	86731	10.79557 ppb	97
34) Hexachlorobutadiene	6.10	225	81293	11.08213 ppb	95
35) Caprolactum	6.48	113	60481	11.15807 ppb	97
	6.64 6.75	107 142	152099 378294	10.69342 ppb 11.27767 ppb	91 99
37) 2-Methylnaphthalene				11.21101 ppp	

^{(#) =} qualifier out of range (m) = manual integration 0301Y003.D Y827AF.M Thu Mar 08 14:59:28 2012

Data File : M:\YODA\DATA\Y120301B\0301Y003.D Vial: 3 : 1 Mar 12 19:20 : 10 ug/mL SVOC Acq On Operator: LF Inst : YODA
Multiplr: 1.00 Sample Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 08:37:15 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qva1	ue
39)	Hexachlorocyclopentadiene	6.93	237	46058	8.04628	nnh	97
	1,2,4,5-Tetrachlorobenzene	6.95	216	154982	11.23149		
	2,4,6-Trichlorophenol	7.11		100140	10.65572		93
-	2,4,5-Trichlorophenol	7,15	196	107376	10.69090	# dag	94
	2-Chloronaphthalene	7.31	162	345172	11.31729		98
	l,1'-Biphenyl	7.30	154	449456	11.44464		99
	2-Nitroaniline	7.46	138	120663	10.40591	ppb	83
47)	Dimethyl phthalate	7.68	163	380707	10.95332	ppb	91
	2,6-DNT	7.75	165	83176	10.15594		82
49)	Acenaphthylene	7.78	·152	558467	11.01774	ppb	99
50}	3-Nitroaniline	7.94	65	115303	10.35847		95
51)	Acenaphthene	7.99	154	336010	11.18707		100
	2,4-Dinitrophenol	8.08	184	20715	10.77872		18
53)	4-Nitrophenol	8.22	109	25127	8.61164		93
54)	Dibenzofuran	8.18	139	170914	8.30899		98
	2,4-DNT	8.21	165	121471	10.73820		98
	2,3,4,6-Tetrachlorophenol	8.35	232	75633	10.10049		97
	Diethyl phthalate	8.50	149	377925	10.94553		98
58)	4-Chlorophenyl phenyl ethe	8.60	204	189210	11.36408		99
59)	Fluorene	8.58	165	365883	11.35008		100
	4-Nitroaniline	8.66	138	91550	10.19511		95
	Diphenyl amine	8.75	168	374364	11.27897		100
	4,6-Dinitro-2-methylphenol	8.68	198	54333	8,90920	ppb	93
	n-Nitrosodiphenylamine	8.75	167	201963	11.46336		97
	1,2-Diphenylhydrazine	8.79	182	116377	11.50122	ppb	64
	4-Bromophenyl phenyl ether	9.17	248	95425	11.30246	ppb	99
	Hexachlorobenzene	9.20	284	102644	11.23649	ppb #	78
	Atrazine	9.40	200	8538	5.70908	ppb	90
	Pentachlorophenol	9.46	266	44751	8.95745		99
	Phenanthrene	9.70	178	570541	11.59358		99
	Anthracene	9.75	178	579273	11.44739		99
	Carbazol	9.96	167	521286	11.43990		100
	Di-n-butylphthalate	10.40	149	591070	11.03017		100
,	Fluoranthene	11.07	202	550715	10.95822		84
	Pyrene	11.33	202	589160	11.02236		87
	Butyl benzylphthalate	12.15	149	240862	10.16574		97
	3,3'-Dichlorobenzidine	12.73	252	146559	10.02299		96
-	Benz (a) anthracene	12.73	228	475529	10.95307		98
	Bis (2-ethylhexyl) phthala	12.82	149	385964	11.03172		99
	Chrysene	12.78	228	510857	11.15119		97
	Di-n-octylphthalate	13.55	149	580944	10.30237		99
	Indeno (1,2,3-cd) pyrene	15.67	276	468818	10.15115		95
	Benzo (b) fluoranthene	13.90	252	510777	9.24765		98
	Benzo (k) fluoranthene	13.93	252	446076	8,48537	ըր Մին	98 98
	Benzo (a) pyrene	14.25	252	455138	10.97354		98 98
	Dibenz (a,h) anthracene	15.70	278 276	403688	10.40188 10.75343		96 97
211	Benzo (g,h,i) perylene	16.07	210	410631	10.75545	- Իրս	91

Data File: M:\YODA\DATA\Y120301B\0301Y003.D

: 1 Mar 12 19:20 Acq On

Vial: 3 Operator: LF : YODA Inst

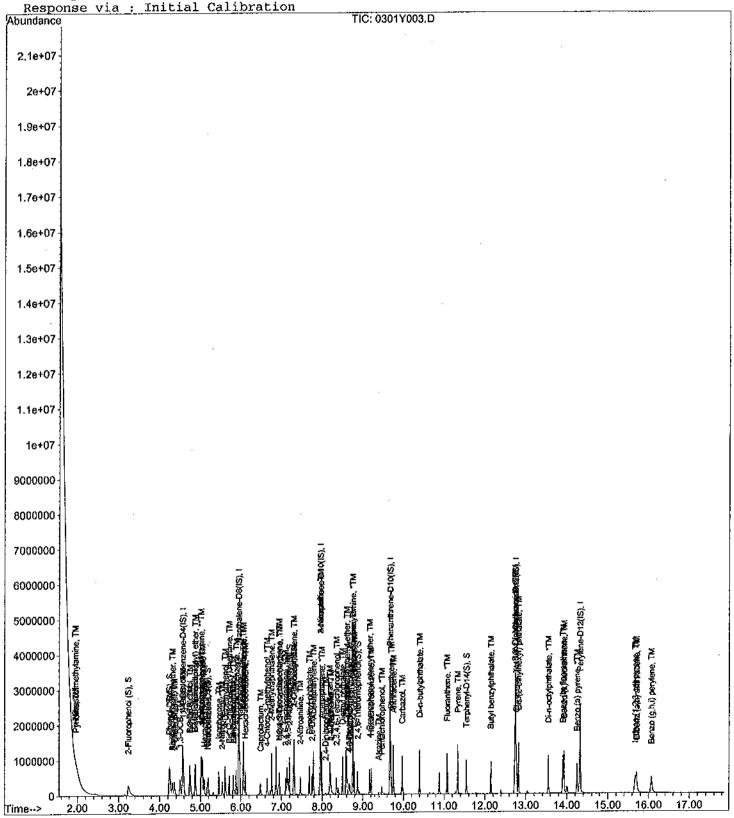
Sample Misc

: 10 ug/mL SVOC

Multiplr: 1.00

Quant Time: Mar 5 8:40 2012

Quant Results File: Y827AF.RES


Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update

: Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

Vial: 4 Data File: M:\YODA\DATA\Y120301B\0301Y004.D Acq On : 1 Mar 12 19:46 Sample : 20 ug/mL SVOC Misc : Operator: LF Inst : YODA Multiplr: 1.00

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc	Unit:	s D	ev (1	Min)
	4.56	152	382365		00000			0.00
20) Napthalene-D8(IS)	5,95	136	1462702		00000			0.00
20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS)	7.95	164	814051		00000			0.00
	9.67	188	1454482		00000			0.00
76) Chrysene-D12(15)	12.73	240	1328601		00000			0.00
86) Perylene-D12(IS)	14.32	264	1308060	40.	00000	ppb		0.00
System Monitoring Compounds			E = 0.0 < 0	40		1.		
4) 2-Fluorophenol (S) Spiked Amount 200.000	3.24	112	559368 Recove		18079 = 20	ppb 0.091	8	0.00
5) Phenol-D6 (S)	4.23	99	674063	40.	89138	ppb		0.00
Spiked Amount 200.000			Recove	xy ;		0.446	*	
21) Nitrobenzene-D5(S)	5.18	82	279510		16940		٥.	0.00
Spiked Amount 100.000	- 40	400	Recove	ry	= ZI	0.169	ъ	0 00
44) 2-Fluorobiphenyl(S)	7.19	172	585903		57076		0.	0.00
Spiked Amount 100.000		222	Recove			0,571°	8	0 00
61) 2,4,6-Tribromophenol(S)	8.88	330	140905		80156		a.	0.00
Spiked Amount 200,000	44 54	0.1.1	Recove			0.401	75	0.00
78) Terphenyl-D14(S) Spiked Amount 100.000	11.54	244	562480 Recove			ррь 0,263	8	0.00
				-		,	Qva]	lue
Target Compounds 2) n-Nitrosodimethylamine	1,95	42	152067	21 '	77892		Q • Ca.	91
	1.96	52	201527		31128			97
3) Pyridine 6) Phenol	4.24	94	458086		55473		#	69
7) Aniline	4.31	93	337366		16194			99
8) Bis (2-chloroethyl) ether		63	237928		39953			99
9) 2-Chlorophenol	4.35	128	338118		19595			99
10) 1,3-DCB	4.50	146	377414		38316			99
11) 1,4-DCB	4.58	146	386633		33415			99
12) Benzyl alcohol	4.74	79	255852		35627			98
13) 1,2-DCB	4.74	146	357184	20.4	19351	ppb		99
14) 2-Methylphenol	4.87	108	308671	20.3	37240	ppb		97
15) Bis (2-chloroisopropyl) et	4.87	45	523020	20.8	38398	ppb		98
16) Acetophenone	5.02	105	445408	20.4	17741	ppb		97
17) 3&4-Methylphenol	5.05	107	717015	41.7	75302	ppb		97
18) n-Nitrosodi-n-propylamine	5.02	43	277319		51743		#	81
19) Hexachloroethane	5.09	117	131164		3215			93
22) Nitrobenzene	5,19	77	3 38787		31649			98
23) Isophorone	5.46	82	598728		L1760			90
24) 2-Nitrophenol	5.54	139	190029		4927			97
25) 2,4-Dimethylphenol	5.61	107	328323		50448			100
26) Benzoic acid	5.78	105	140686		55648			95
27) Bis (2-chloroethoxy) metha	5.71	93	369916		8355			100
28) 2,4-Dichlorophenol	5.82	162	270523		76633			99
29) 1,2,4-Trichlorobenzene	5.89	180	285393		21238			99
30) Naphthalene	5.97	128	1010762		3936			100
31) 4-Chloroaniline	6.06	127	374560		73074			99
32) 2,6-Dichlorophenol	6,06	162	267640		1808			99
33) Hexachloropropene	6.06	213	162568		76454			100
34) Hexachlorobutadiene	6.10	225	147389		51823			95
35) Caprolactum	6.50	113	110660		94965			98
36) 4-Chloro-3-methylphenol	6.64	107	279838		18892			94
37) 2-Methylnaphthalene	6.75	142	680396	20.8	3 146 0			99

^{(#) =} qualifier out of range (m) = manual integration 0301Y004.D Y827AF.M Thu Mar 08 14:59:31 2012

Data File : M:\YODA\DATA\Y120301B\0301Y004.D
Acq On : 1 Mar 12 19:46
Sample : 20 ug/mL SVOC Vial: 4 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue	
39)	Hexachlorocyclopentadiene	6,93	237	105332	17.87968	dqq		99
	1,2,4,5-Tetrachlorobenzene	6.95	216	274218	20.62805		#	89
	2,4,6-Trichlorophenol	7.10	196	182069	20.11025			98
42)	2,4,5-Trichlorophenol	7.15	196	197373	20,39863	ppb	Ħ	97
	2-Chloronaphthalene	7.31	162	605807	20.61803			99
45)	1,1'-Biphenyl	7.30	154	801130	21.17504	ppb		99
	2-Nitroaniline	7.46	138	224610	20.10673	ppb	Ħ	77
47)	Dimethyl phthalate	7.68	163	689165	20.58184			95
48)	2,6-DNT	7.76	165	164675	20.87160			81
49)	Acenaphthylene	7.78	152	1029819	21.08929	ppb		99
	3-Nitroaniline	7.94	65	215485	20.09455			94
51)	Acenaphthene	7.99	154	603069	20.84189			99
	2,4-Dinitrophenol	8.07	184	62053	19.51490		Ħ	21
53)	4-Nitrophenol	8.20	109	56029	17.54706			77
	Dibenzofuran	8.18	139	424049	21.39898			100
	2', 4-DNT	8.21	165	223858	20.54176			85
56)	2,3,4,6-Tetrachlorophenol	8.35	232	146460	20.30281			98
	Diethyl phthalate	8.50	149	677128	20.35674			100
58)	4-Chlorophenyl phenyl ethe	8.60	204	332193	20.71032			97
59)	Fluorene	8.58	165	641087	20.64333			99
	4-Nitroaniline	8.67	138	174492	20.17044			94
	Diphenyl amine	8.76	168	688421	21,11277			100
	4,6-Dinitro-2-methylphenol	8.68	198	122467	19.37956		#	79
	n-Nitrosodiphenylamine	8.76	167	368488	21.29018			98
66)	1,2-Diphenylhydrazine	8.79	182	207390	20.86317			87
	4-Bromophenyl phenyl ether	9.17	248	171833	20.71730			99
,	Hexachlorobenzene	9.20	284	183748	20.47556	ppb	#	70
	Atrazine	9.40	200	14539	9.89602			97
	Pentachlorophenol	9.46	266	96229	18.67533			99
	Phenanthrene	9.70	178	1000678	20.69860			100
	Anthracene	9.75	178	1036256	20.84521			99
	Carbazol	9.97	167	923845	20.63770			99
	Di-n-butylphthalate	10.40	149	1082855	20.56978			99
	Fluoranthene	11.08	202	1041387	21.09313		ш	99
•	Pyrene	11.33	202	1089719	20.82901		#	82
	Butyl benzylphthalate	12.15	149	470333	20.28098			95
	3,3'-Dichlorobenzidine	12.74	252	299254	20.90919			99 99
	Benz (a) anthracene	12.73	228	866074	20.38104			
	Bis (2-ethylhexyl) phthala	12.82	149	698174	20.38792		4	97 96
	Chrysene	12.78	228	906963 1112049	20.22665 20.14834		#	100
	Di-n-octylphthalate	13.55	149 276	884997	19.57787			93
	Indeno (1,2,3-cd) pyrene	15.68 13.90	252	861998	18.83623	րը որե	#I	95 95
	Benzo (b) fluoranthene	13.94	252	901824	21.35507		fl #	94
	Benzo (k) fluoranthene Benzo (a) pyrene	14.25	252	838057	20,30922		17	98
-	Dibenz (a,h) anthracene	15.71	252 278	789053	20.43564			99
	Benzo (g,h,i) perylene	16.08	276	761218	20.03644			97
J I	peuro (8'u'i) batarene	10.00	270	701210	20.03044	Ի Խո		21

^{(#) =} qualifier out of range (m) = manual integration 0301Y004.D Y827AF.M Thu Mar 08 14:59:32 2012

Data File : M:\YODA\DATA\Y120301B\0301Y004.D Acq On

1 Mar 12 19:46

Operator: LF Inst : YODA

Vial: 4

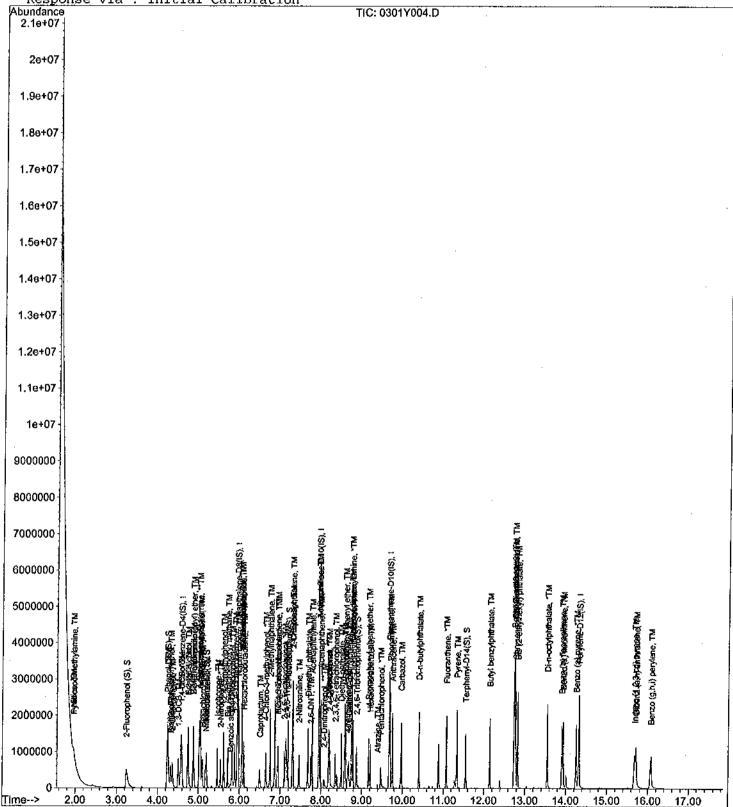
Misc

: 20 ug/mL SVOC

Multiplr: 1.00

Ouant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Method


Sample

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration

Data File: M:\YODA\DATA\Y120301B\0301Y005.D

Vial: 5 Operator: LF Inst : YODA Multiplr: 1.00 Acq On : 1 Mar 12 20:12 : 40 ug/mL SVOC Sample Misc

Quant Results File: Y827AF.RES Quant Time: Mar 5 8:40 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	392850	40.00000 pg	ob 0.00
20) Napthalene-D8(IS)	5.95	136	1483214	40,00000 pg	ob 0.00
38) Acenaphthene-D10(IS)	7,95	164	826552	40.00000 pg	
62) Phenanthrene-D10(IS)	9.67	188	1506673	40.00000 pg	
76) Chrysene-D12(IS)	12.76	240	1366661	40.00000 pg	
86) Perylene-D12(IS)	14.32	264	1338704	40.00000 p	ob 0.00
System Monitoring Compounds				HO 50056	
4) 2-Fluorophenol (S)	3.24	112	1124071	78.58976 pg	
Spiked Amount 200.000	4 00	0.0	Recove		
5) Phenol-D6 (S)	4.23	99	1341714	79.22141 pg	
Spiked Amount 200.000	5 10	ná:	Recove	ry = 39.6 39.51294 pg	
21) Nitrobenzene-D5(S)	5.18	82	55525 4	200	
Spiked Amount 100,000	7 20	177	Recove 1117443	38.63949 pp	
44) 2-Fluorobiphenyl(S)	7.20	172			
Spiked Amount 100.000	0 00	220	Recove 277475	79.13264 pr	
61) 2,4,6-Tribromophenol(S)	8.88	330		20.	
Spiked Amount 200.000	11 55	244	Recove 1119814	39,21701 pg	
78) Terphenyl-D14(S)	11.55	244		200	
Spiked Amount 100.000			Recove	ty - 37.2	
Target Compounds					Qvalue
2) n-Nitrosodimethylamine	1.94	42	297622	41,48755 pg	
3) Pyridine	1.95	52	429624	40,06986 pg	
6) Phenol	4.25	94	881431	38.49502 pg	
7) Aniline	4.32	93	656968	36.88761 pr	
8) Bis (2-chloroethyl) ether	4.32	63	467820	34.25517 pg	
9) 2-Chlorophenol	4.36	128	645929	38.10973 pr	
10) 1,3-DCB	4.50	146	722084	37.95706 pg	
11) 1,4-DCB	4.59	146	730034	37.36987 pg	
12) Benzyl alcohol	4.75	79	493847	38.24311 pr	
13) 1,2-DCB	4.74	146	673315	37.60053 pr	
<pre>14) 2-Methylphenol</pre>	4.88	108	592619	38.06916 pr	
15) Bis (2-chloroisopropyl) et	4.88	45	970461	37.71590 pg	
16) Acetophenone	5.02	105	843853	37.76028 pg	
17) 3&4-Methylphenol	5.05	107	1354856	76.78991 pr	
18) n-Nitrosodi-n-propylamine	5.03	43	519827	37.61535 pr	
19) Hexachloroethane	5.09	117	248894	37.92151 pp	
22) Nitrobenzene	5.20	77	646644	38.24188 pg	
23) Isophorone	5.47	82	1148009	38.04031 pg	
24) 2-Nitrophenol	5.54	139	363960	38,81344 pg	_
25) 2,4-Dimethylphenol	5.62	107	619306	38.14212 pg	
26) Benzoic acid	5.82		303460	41.60000 pr	
27) Bis (2-chloroethoxy) metha	5.72	93	701744	38.69482 pp 38.83454 pp	
28) 2,4-Dichlorophenol	5.82	162	512992	37.88334 pr	
29) 1,2,4-Trichlorobenzene	5.89	180	542403	38.12763 pr	
30) Naphthalene	5.98	128 127	1893392 689238	39.43432 pr	
31) 4-Chloroaniline	6.06		491596	38.07172 pr	_
32) 2,6-Dichlorophenol	6.06	162 213	306824	38.64815 pr	
33) Hexachloropropene	6.06	225	278206	38,37998 pr	· . ·
34) Hexachlorobutadiene	$6.11 \\ 6.54$	113	214787	40.10016 pr	
35) Caprolactum	6.66	107	549249	39.07758 pr	
36) 4-Chloro-3-methylphenol	6.76	142	1258813	37.97690 pg	
37) 2-Methylnaphthalene	0.70		1250015	37,37030 PE	

^{(#) =} qualifier out of range (m) = manual integration 0301Y005.D Y827AF.M Thu Mar 08 14:59:34 2012

Data File : M:\YODA\DATA\Y120301B\0301Y005.D Acq On : 1 Mar 12 20:12 Sample : 40 ug/mL SVOC Vial: 5 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 08:32:48 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

	Compound	R,T,	QIon	Response	Conc Unit	Qvalue)
391	Hexachlorocyclopentadiene	6.93	237	233865	39.09724	dag	99
	1,2,4,5-Tetrachlorobenzene	6.94	216	515124	38.16413	ppb	98
41)	2,4,6-Trichlorophenol	7.10	196	355404	38.66208		9 9
	2,4,5-Trichlorophenol	7.17	196	385615	39.25081		99
	2-Chloronaphthalene	7.32	162	1124851	37.70416		100
45)	1,1'-Biphenyl	7.31	154	1483738	38.62423		99
	2-Nitroaniline	7.47	138	441683	38,94076		98
47)	Dimethyl phthalate	7.69	163	1276403	37.54311		99
48)	2,6-DNT	7.76	165	318658	39.77721		95
	Acenaphthylene	7.79	152	1882182	37.96156	ppb	100
	3-Nitroaniline	7.96	65	427140	39.22950		95
	Acenaphthene	7.99	154	1115054	37.95312		100
-	2,4-Dinitrophenol	8.08	184	158433	36,74132		81
	4-Nitrophenol	8.21	109	127942	39,46263		96
	Dibenzofuran	8.19	139	841390	41.81728		99
	2,4-DNT	8.23	165	432937	39.12651		94
	2,3,4,6-Tetrachlorophenol	8.36	232	288036	39.32468	ppp	98
	Diethyl phthalate	8.51	149	1275095	37.75387		100
	4-Chlorophenyl phenyl ethe	8.61	204	616973	37.88295		100
	Fluorene	8.59	165	1190077	37.74150		100
	4-Nitroaniline	8.68	138	342203	38.95875		98
	Diphenyl amine	8.76	168	1237055	36.62431		100
	4,6-Dinitro-2-methylphenol	8.70	198	257780	39.37888		82
	n-Nitrosodiphenylamine	8.76	167	660833	36.85845		100
	1,2-Diphenylhydrazine	8.79	182	383135	37.20777		94
	4-Bromophenyl phenyl ether	9.17	248	327793	38.15185		99
	Hexachlorobenzene	9.22	284	352671	37.93780		99
	Atrazine	9.40	200	29742 210771	19.54275 39.48775		98 100
-	Pentach1orophenol	9.47	266	1852653	36.99389		100
	Phenanthrene	9,70 9,77	178 178	1957613	38.01503		100
	Anthracene	9.77	167	1743714	37.60337		99
	Carbazol	10.41	149	2090352	38.33259		100
	Di-n-butylphthalate Fluoranthene	11.08	202	1995775	39.02383		100
•	Pyrene	11.34	202	2064579	38.36360		98
	Butyl benzylphthalate	12,15	149	942427	39,50617		96
	3,3'-Dichlorobenzidine	12.75	252	603335	40.98166		100
	Benz (a) anthracene	12.74	228	1668959	38.18131	ppb	100
	Bis (2-ethylhexyl) phthala	12.83	149	1367118	38.81047		98
	Chrysene	12,78	228	1711029	37.09588		95
	Di-n-octylphthalate	13.55	149	2227653	39,23708		100
	Indeno (1,2,3-cd) pyrene	15.70	276	1778942	38.25772		97
	Benzo (b) fluoranthene	13.92	252	1687499	36.03083		99
	Benzo (k) fluoranthene	13.94	252	1697322	39.27232		98
89)	Benzo (a) pyrene	14.27	252	1658639	39.27486		98
	Dibenz (a,h) anthracene	15.73	278	1559762	39.47149		93
	Benzo (g,h,i) perylene	16.10	276	1516848	39,01187	ppb	98
-							

^{(#) =} qualifier out of range (m) = manual integration 0301Y005.D Y827AF.M Thu Mar 08 14:59:35 19012

Data File: M:\YODA\DATA\Y120301B\0301Y005.D

: 1 Mar 12 20:12

Operator: LF : YODA Inst

Sample Misc

: 40 ug/mL SVOC

Vial: 5

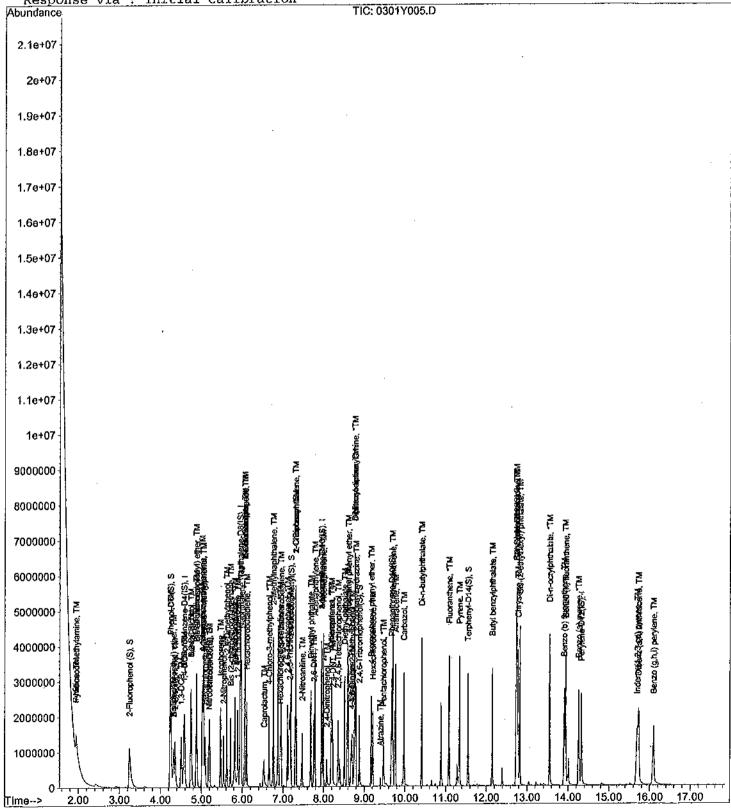
Multiplr: 1.00

5 8:40 2012 Quant Time: Mar

Quant Results File: Y827AF.RES

Method

Acq On


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

: Mon Mar 05 10:46:48 2012 Last Update

Response via : Initial Calibration

Data File : M:\YODA\DATA\Y120301B\0301Y006.D

Acq On : 1 Mar 12 20:37 Sample : 50 ug/mL SVOC

Operator: LF Inst : YODA Multiplr: 1.00

Vial: 6

Quant Results File: Y827AF.RES Quant Time: Mar 5 8:42 2012

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Misc

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	377888	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.95	136	1425320	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	790452	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.68	188	1457154	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.76	240	1307987	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.33	264	1280471	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.24	112	1308582	95.11233 ppb	0.00
Spiked Amount 200,000			Recove		0.00
5) Phenol-D6 (S)	4.24	99	1558962	95.69336 ppb ery = 47.847%	0.00
Spiked Amount 200,000	- 10	00	Recove	ery = 47.847% 47.46602 ppb	0.00
21) Nitrobenzene-D5(S)	5.18	82	640979	48 14660	0.00
Spiked Amount 100.000	7.20	172	Recove 1305557	47,20592 ppb	0.00
44) 2-Fluorobiphenyl(S)	7.20	1/2	Recove		****
Spiked Amount 100.000	8.89	330	325309	97.01136 ppb	0.00
61) 2,4,6-Tribromopheno1(S) Spiked Amount 200.000	0.03	330	Recove	40 0000	
	11.55	244	1288536	47.15009 ppb	0.00
78) Terphenyl-D14(S) Spiked Amount 100.000	11.75	244	Recove		
Spiked Amount 100.000				-	
Target Compounds				Qv	alue
2) n-Nitrosodimethylamine	1.94	42	321014	46.52007 ppb	100
3) Pyridine	1.94	52	494399	47.93696 ppb	100
6) Phenol	4,26	94	1067264	48,45646 ppb	100
7) Aniline	4.32	93	800057	46.70043 ppb	100
8) Bis (2-chloroethyl) ether	4.32	63	589039	44.83891 ppb	100
9) 2-Chlorophenol	4.36	128	783645	48.06557 ppb	100
10) 1,3-DCB	4.51	146	874755	47.80297 ppb	100 100
11) 1,4-DCB	4.59	146	892845	47.51363 ppb	100
12) Benzyl alcohol	4.75	79	600262	48.32427 ppb 47.86736 ppb	100
13) 1,2-DCB	4.74	146	824518	47.86815 ppb	100
14) 2-Methylphenol	4.88	108 45	716779 1169181	47.23803 ppb	100
15) Bis (2-chloroisopropyl) et	4.88 5.03	105	1021374	47.51348 ppb	100
16) Acetophenone	5.06	103	1617123	95.28351 ppb	100
17) 3&4-Methylphenol	5.03	43.	627354	47.19354 ppb	100
<pre>18) n-Nitrosodi-n-propylamine 19) Hexachloroethane</pre>	5.09	117	303691	48.10241 ppb	100
22) Nitrobenzene	5.20	77	781792	48.11235 ppb	100
23) Isophorone	5.47	82	1395866	48.13200 ppb	100
24) 2-Nitrophenol	5.55	139	441994	49.04970 ppb	100
25) 2,4-Dimethylphenol	5,62	107	739438	47.39065 ppb	100
26) Benzoic acid	5,83	105	418697	59.72871 ppb	100
27) Bis (2-chloroethoxy) metha	5.72	93	833860	47.84744 ppb	100
28) 2,4-Dichlorophenol	5.82	162	621192	48.93559 ppb	100
29) 1,2,4-Trichlorobenzene	5.89	180	655033	47.60810 ppb	100
30) Naphthalene	5.98	128	2264393	47.45069 ppb	100
31) 4-Chloroaniline	6.06	127	831488	49.50540 ppb	100
32) 2,6-Dichlorophenol	6.06	162	587579	47,35347 ppb	100
33) Hexachloropropene	6.06	213	371986	48.75929 ppb	100
34) Hexachlorobutadiene	6.11		335263	48.12994 ppb	100 100
35) Caprolactum	6.55	113	259662	50.44731 ppb	100
36) 4-Chloro-3-methylphenol	6.66	107	259662 660696 1520980	48.91607 ppb 47.74998 ppb	100
37) 2-Methylnaphthalene	0.70	142	1320300	I'I'I'I'	

^{(#) =} qualifier out of range (m) = manual integration 0301Y006.D Y827AF.M Thu Mar 08 14:59:37 2012

Data File : M:\YODA\DATA\Y120301B\0301Y006.D

Vial: 6 Acq On : 1 Mar 12 20:37 Operator: LF Sample : 50 ug/mL SVOC Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:42 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

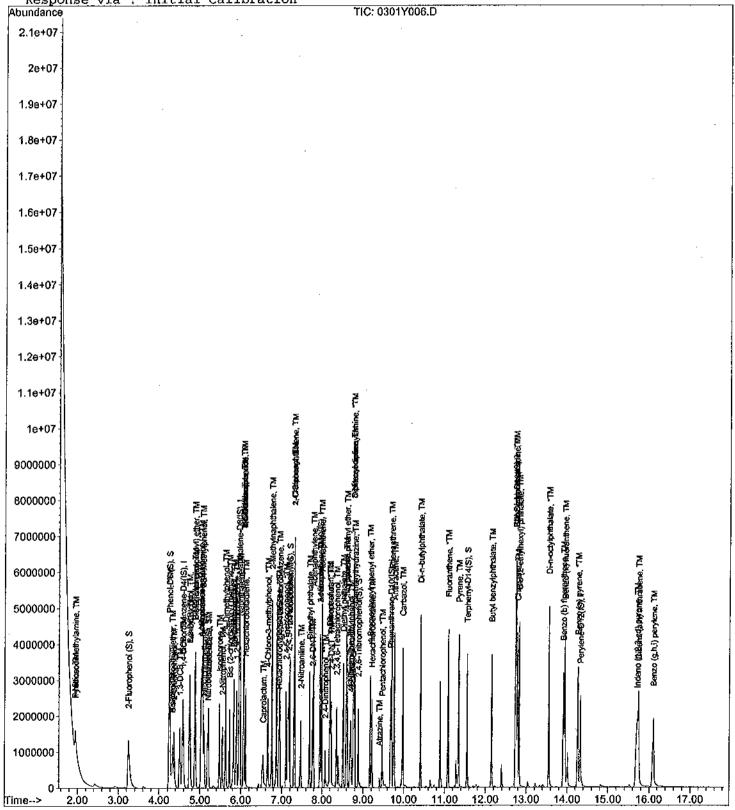
Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
39) Hexachlorocyclopentadiene	6.93	237	301752	52.75039	ppb	100
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	612041	47.41533		100
41) 2,4,6-Trichlorophenol	7.10	196	429891	48.90080		100
42) 2,4,5-Trichlorophenol	7.17	196	468865	49.90422	ppb	100
43) 2-Chloronaphthalene	7.32	162	1347262	47,22164		100
45) 1,1'-Biphenyl	7.31	154	1755279	47.77971		100
46) 2-Nitroaniline	7,48	138	540829	49.85955		100
47) Dimethyl phthalate	7.69	163	1532324	47.12895	ppb	100
48) 2,6-DNT	7.76	165	373004	48.68752		100
49) Acenaphthylene	7.79	152	2266952	47.81008	ppb .	100
50) 3-Nitroaniline	7.96	65	511632	49.13545		100
51) Acenaphthene	8.00	154	1345858	47.90110		100
52) 2,4-Dinitrophenol	8.08	184	214270	48.58749		100
53) 4-Nitrophenol	8.21	109	160012	51.60837		100
54) Dibenzofuran	8.19	139	1012680	52.62903		100
55) 2,4-DNT	8.23	165	512939	48.47378		100
56) 2,3,4,6-Tetrachlorophenol	8.36	232	352904	50.38134		100
57) Diethyl phthalate	8.52	149	1534694	47.51551	aqq	100
58) 4-Chlorophenyl phenyl ethe	8.61	204	745235	47.84820	agg	100
59) Fluorene	8.59	165	1419805	47.08337		100
60) 4-Nitroaniline	8.69	138	412572	49,11517		100
63) Diphenyl amine	8.77	168	1485614	45,47786		100
64) 4,6-Dinitro-2-methylphenol	8.71	198	323569	51.10868		100
65) n-Nitrosodiphenylamine	8.77	167	789807	45.54911		100
66) 1,2-Diphenylhydrazine	8.79	182	458446	46.03452		L00
67) 4-Bromophenyl phenyl ether	9.17	248	390228	46.96214		100
68) Hexachlorobenzene 69) Atrazine	$9.22 \\ 9.41$	284 200	428372 36803	47.64716 p 25.00416 p		100
70) Pentachlorophenol	9.47	266	256030	49.59706		100 100
70) Pentachiorophenoi 71) Phenanthrene	9.70	178	2203871	45.50254		100
71) Anthracene	9.77	178	2371312	47.61357		100
73) Carbazol	9.97	167	2117266	47.21071		100
74) Di-n-butylphthalate	10,41	149	2488818	47.19059		100
75) Fluoranthene	11.09	202	2401099	48.54471		00
77) Pyrene	11.35	202	2509566	48.72411		.00
79) Butyl benzylphthalate	12.15	149	1136367	49.77293		00
80) 3,3'-Dichlorobenzidine	12.75	252	727426	51.62704		.00
81) Benz (a) anthracene	12,74	228	2027007	48.45268		.00
82) Bis (2-ethylhexyl) phthala	12.83	149	1649423	48.92517		.00
83) Chrysene	12.79	228	2119416	48.01112	· •	.00
84) Di-n-octylphthalate	13,55	149	2727031	50.18762		.00
85) Indeno (1,2,3-cd) pyrene	15,70	276	2196972	49.36728		.00
87) Benzo (b) fluoranthene	13.92	252	2054949	45.87189	· - -	.00
88) Benzo (k) fluoranthene	13.94	252	2041119	49.37482 g		00
89) Benzo (a) pyrene	14.27	252	2004925	49.63359		00
90) Dibenz (a,h) anthracene	15.74	278	1893880	50.10632 g		00
91) Benzo (g,h,i) perylene	16,11	276	1818516	48.89750 p		00
				-		

Data File : M:\YODA\DATA\Y120301B\0301Y006.D

: 1 Mar 12 20:37 Acq On Sample : 50 ug/mL SVOC

Vial: 6 Operator: LF Inst : YODA Multiplr: 1.00

Misc


Quant Time: Mar 5 8:42 2012

Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration

Data File: M:\YODA\DATA\Y120301B\0301Y007.D

Vial: 7 Acq On : 1 Mar 12 21:03
Sample : 60 ug/mL SVOC
Misc : Operator: LF Inst : YODA Multiplr: 1.00

Ouant Results File: Y827AF.RES Quant Time: Mar 5 8:33 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	378196	40.00000 1	
20) Napthalene-D8(IS)	5.95	136	1444404	40.00000 1	
38) Acenaphthene-D10(IS)	7.95	164	802058	40,00000 1	
62) Phenanthrene-D10(IS)	9.68	188	1471589	40.00000 1	
76) Chrysene-D12(IS)	12,76	240	1319788	40.00000 1	
86) Perylene-D12(IS)	14.33	264	1322864	40.00000 1	ppb 0.00
System Monitoring Compounds			4.55004.0	140 05303	
4) 2-Fluorophenol (S)	3.24	112	1650318	119.85321 j erv = 59	ppb 0.00 .926%
Spiked Amount 200,000	4 25	99	Recove 1954853	119.89651	
5) Phenol-D6 (S) Spiked Amount 200.000	4.25	37	Recove		.9498
Spiked Amount 200.000 21) Nitrobenzene-D5(S)	5.18	82	807772	59.02711	
Spiked Amount 100.000	3,10	O II	Recove	= ^	,027%
44) 2-Fluorobiphenyl(S)	7.20	172	1610180	57.37792	0.00 dege
Spiked Amount 100.000			Recove	~ ~	.378%
61) 2,4,6-Tribromophenol(S)	8.89	330	400445	117.68987 <u>1</u>	0.00
Spiked Amount 200,000			Recove		.845%
78) Terphenyl-D14(S)	11,55	244	1631496	59,16587	
Spiked Amount 100.000			Recove	ery = 59	.166%
Target Compounds					Qvalue
n-Nitrosodimethylamine	1.94	42	428057	61.98180)	
Pyridine	1.94	52	675667	65,45937 1	
6) Phenol	4.26	94	1327759	60.23449 1	
7) Aniline	4.33	93	1003990	58.55655 j	
8) Bis (2-chloroethyl) ether	4.33	63	955772	72.69616 1	
9) 2-Chlorophenol	4.36	128	985663	60.40729 p 59.80220 p	· -
10) 1,3-DCB	4.51	146	1095223 1126644	59.90665	
11) 1,4-DCB	4.59 4.75	146 79	757618	60.94259	· -
12) Benzyl alcohol	4.74	146	1019287	59.12648	
13) 1,2-DCB	4.88	108	899199	60.00167	· •
14) 2-Methylphenol 15) Bis (2-chloroisopropyl) et	4.88	45	1457502	58,83901	• • • • • • • • • • • • • • • • • • • •
16) Acetophenone	5.03		1278035	59.40472	opb 97
17) 3&4-Methylphenol	5,06	107	2025815	119.26710	opb 98
18) n-Nitrosodi-n-propylamine	5.04	43	657474	49.41908	ppb 88
19) Hexachloroethane	5.09	117	378810	59.95184]	
22) Nitrobenzene	5.20	77	977367	59,35356 լ	
23) Isophorone	5.48	82	1761305	59. 9 3057]	
24) 2-Nitrophenol	5.55	139	550135	60.24388 1	opb 95
25) 2,4-Dimethylphenol	5.63	107	953064	60.27493	
26) Benzoic acid	5.86		541494	76.22556 1	
27) Bis (2-chloroethoxy) metha	5.72	93	1034620	58,58280)	
28) 2,4-Dichlorophenol	5.82	162	764166	59.40327 j	
29) 1,2,4-Trichlorobenzene	5.89	180	822201	58.96840 j	
30) Naphthalene	5.98	128	2866909	59.28275 p 61.28611 p	
31) 4-Chloroaniline	6.07	127	1043138 725358	57.68484	· • .
32) 2,6-Dichlorophenol	6.07	162	466871	60.38810	
33) Hexachloropropene	6.07 6.11	213 225	414715	58.74936	-
34) Hexachlorobutadiene	6.57	113	326906	62.67238	
35) Caprolactum 36) 4-Chloro-3-methylphenol	6.66	107	834826	60.99153	• •
36) 4-Chioro-3-methylphenol 37) 2-Methylnaphthalene	6.76	142	1889124	58.52398	-
5// Z-Mednymaphenatene					

^{(#) =} qualifier out of range (m) = manual integration 0301Y007.D Y827AF.M Thu Mar 08 14:59:40 100

Vial: 7 Operator: LF Inst : YODA Data File : M:\YODA\DATA\Y120301B\0301Y007.D Acq On : 1 Mar 12 21:03
Sample : 60 ug/mL SVOC
Misc : Multiplr: 1.00

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 08:32:48 2012 Response via : Initial Calibration DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit Q	value	€
39) Hexachlorocyclopentadiene	6.93	237	382485	65.89609 ppb		- 98
40) 1,2,4,5-Tetrachlorobenzene	6.96	216	767689	58.61292 ppb	#	90
41) 2,4,6-Trichlorophenol	7.11	196	549026	61.54889 ppb		99
42) 2,4,5-Trichlorophenol	7.17	196	563803	59.14071 ppb	Ħ	96
43) 2-Chloronaphthalene	7.33	162	1699094	58.69162 ppb		94
45) 1,1'-Biphenyl	7.31	154	2085802	55.95516 ppb		98
46) 2-Nitroaniline	7.48	138	653542	59.37883 ppb		88
47) Dimethyl phthalate	7.69	163	1975690	59,88605 ppb		98
48) 2,6-DNT	7.76	165	480474	61.80787 ppb		89
49) Acenaphthylene	7.79	152	2790808	58.00652 ppb		99
50) 3-Nitroaniline	7.96	65	622868	58.95260 ppb		93
51) Acenaphthene	8.00	154	1601935	56.19024 ppb		99
52) 2,4-Dinitrophenol	8.09	184	294265	62.88386 ppb	#	75
53) 4-Nitrophenol	8.22	109	208643	66.31949 ppb		94
54) Dibenzofuran	8.20	139	1274828	65.29417 ppb		86
55) 2,4-DNT	8.23	165	669774	62.37910 ppb		90
56) 2,3,4,6-Tetrachlorophenol	8.36 8.53	232	437366	61.53581 ppb		95
57) Diethyl phthalate		149 204	1931468	58.93467 ppb		98
58) 4-Chlorophenyl phenyl ethe 59) Fluorene	8.61 8.59	165	900389 1823947	56.97342 ppb 59.61022 ppb		95 99
60) 4-Nitroaniline	8.70	138	517035	60.66044 ppb		97
63) Diphenyl amine	8.78	168	1872930	56.77204 ppb		100
64) 4,6-Dinitro-2-methylphenol	8.71	198	410286	64,17019 ppb	#	71
65) n-Nitrosodiphenylamine	8.78	167	1002223	57.23244 ppb	π	100
66) 1,2-Diphenylhydrazine	8.80	182	602084	59.86479 ppb	#	41
67) 4-Bromophenyl phenyl ether	9.17	248	485302	57.83096 ppb	Ir.	99
68) Hexachlorobenzene	9.22	284	532342	58.63077 ppb	#	89
69) Atrazine	9,41	200	44186	29.72574 ppb	"	97
70) Pentachlorophenol	9.47	266	338325	64.89603 ppb		99
71) Phenanthrene	9.70	178	2843294	58.12864 ppb		100
72) Anthracene	9.77	178	2851877	56.70114 ppb		99
73) Carbazol	9.98	167	2679632	59.16423 ppb		98
74) Di-n-butylphthalate	10.41	149	3100539	58.21278 ppb		100
75) Fluoranthene	11.09	202	2880299	57.66182 ppb	#	91
77) Pyrene	11.35	202	3010737	57.93184 ppb	#	90
79) Butyl benzylphthalate	12.15	149	1421808	61.71842 ppb		90
80) 3,3'-Dichlorobenzidine	12.75	252	857650	60.32505 ppb		98
81) Benz (a) anthracene	12.74	228	2501865	59.26874 ppb		100
82) Bis (2-ethylhexyl) phthala	12.83	149	2011073	59.11904 ppb		99
83) Chrysene	12.79	228	2514798	56,45832 ppb	#	96
84) Di-n-octylphthalate	13.56	149	3272233	59.68291 ppb		100
85) Indeno (1,2,3-cd) pyrene	15.72	276	2800949	62.37624 ppb		93
87) Benzo (b) fluoranthene	13.92	252	2930954	63.32995 ppb		97
88) Benzo (k) fluoranthene	13.95	252	2320261	54.32861 ppb		96
89) Benzo (a) pyrene	14.27	252	2528795	60.59625 ppb	#	96
90) Dibenz (a,h) anthracene	15.75	278	2390470	61.21782 ppb		99
91) Benzo (g,h,i) perylene	16.12	276	2306594	60.03371 ppb		99

δαάμετεαετοπ ναδοτε

Data File: M:\YODA\DATA\Y120301B\0301Y007.D

1 Mar 12 21:03

Vial: 7 Operator: LF Inst : YODA

Sample Misc

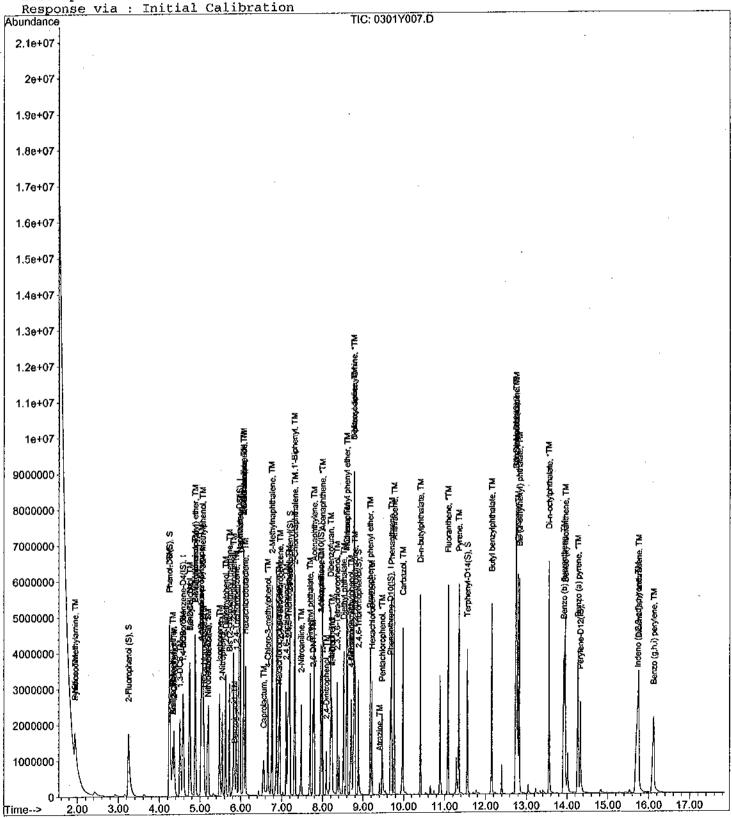
: 60 ug/mL SVOC

Multiplr: 1.00

Quant Time: Mar 5 8:33 2012

Ouant Results File: Y827AF.RES

Method


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

Acq On

EPA 8270C

: Mon Mar 05 10:46:48 2012 Last Update

Data File: M:\YODA\DATA\Y120301B\0301Y008.D

Vial: 8 Acq On : 1 Mar 12 21:29
Sample : 80 ug/mL SVOC
Misc : Operator: LF Inst : YODA Multiplr: 1.00

Ouant Results File: Y827AF.RES Quant Time: Mar 5 8:33 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	372401	40.00000	
20) Napthalene-D8(IS)	5.95	136	1380350	40.00000 j	
38) Acenaphthene-D10(IS)	7.96	164	762909	40.00000	
62) Phenanthrene-D10(IS)	9.67	188	1388679	40.00000 j	
76) Chrysene-D12(IS)	12.77	240	1276168	40.00000	
86) Perylene-D12(IS)	14.33	264	1252423	40.00000	opb 0.00
System Monitoring Compounds				450 88005	1 0 00
4) 2-Fluorophenol (S) Spiked Amount 200.000	3.25	112	2071334 Recove	152.77006 _] erv = 76	ppb 0.00 .385%
5) Phenol-D6 (S)	4.25	99	2432459	151.51096	opb 0.02
Spiked Amount 200.000			Recove		.756%
21) Nitrobenzene-D5(S) Spiked Amount 100.000	5.18	82	1019456 Recove	77.95262 p erv = 77	opb 0.00 .953%
	7.20	172	2014854	75.48263	
44) 2-Fluorobiphenyl(S) Spiked Amount 100.000	7.20	112	Recove		.483%
61) 2,4,6-Tribromophenol(S)	8.90	330	512481	158,34598	
Spiked Amount 200.000	0.50	330	Recove		.173%
78) Terphenyl-D14(S)	11,56	244	2054402	77.04900	
Spiked Amount 100.000	11,00		Recove		.049%
Target Compounds					Qvalue
2) n-Nitrosodimethylamine	1.94	42	525 282	77.24336 I	
3) Pyridine	1.94	52	837651	82.41539 I	ppb 98
6) Phenol	4,26	94	1646246	75.84498]	
7) Aniline	4.33	93	1295036	76.70683]	
8) Bis (2-chloroethyl) ether	4.33	63	1186508	91.65031	
9) 2-Chlorophenol	4.37	128	1226575	76.34158 1	
10) 1,3-DCB	4.50	146	1362428	75.5 4997 I	
11) 1,4-DCB	4.59	146	1376502	74.33123	
12) Benzyl alcohol	4.76	79	953511	77.89372	
13) 1,2-DCB	4.75	146	1259779	74.21403 r	•
14) 2-Methylphenol	4.89	108	1108932	75.14820 r	
15) Bis (2-chloroisopropyl) et	4.88	45	1788159	73.31087 r 74.91833 r	
16) Acetophenone	5.03	105	1587098 2493292	149.07338 p	
17) 3&4-Methylphenol	5.07	107	743601	56.76258 p	•
18) n-Nitrosodi-n-propylamine	5.04 5.09	43 117	469205	75.41362 p	_
19) Hexachloroethane	5.21	77	1195969	75.99910 p	
22) Nitrobenzene	5.49	82	2199071	78.29834 I	
23) Isophorone	5.54	139	696616	79.82457	
24) 2-Nitrophenol 25) 2,4-Dimethylphenol	5.63	107	1147237	75.92193 p	
26) Benzoic acid	5.88	105	703477	103.62304 p	-
27) Bis (2-chloroethoxy) metha	5.72	93	1319376	78,17309 g	
28) 2,4-Dichlorophenol	5.83	162	950716	77,33444	
29) 1,2,4-Trichlorobenzene	5.90	180	1019898	76.54160 g	
30) Naphthalene	5.98	128	3369528	72.90931 g	
31) 4-Chloroaniline	6.07	127	1175934	72.29407 g	
32) 2,6-Dichlorophenol	6.07	162	893114	74.32170	
33) Hexachloropropene	6,06	213	577583	78.17508 g	opb 98
34) Hexachlorobutadiene	6.11	225	502882	74.54507 g	
35) Caprolactum	6.58	113	355487	71.31428 r	
36) 4-Chloro-3-methylphenol	6.67	107	1023505	78.24615 r	
37) 2-Methylnaphthalene	6.77	142	2406456	78.01009 g	opb 99

^{(#) =} qualifier out of range (m) = manual integration 0301Y008.D Y827AF.M Thu Mar 08 14:59:43 20012

Data File : M:\YODA\DATA\Y120301B\0301Y008.D Vial: 8 Operator: LF : 1 Mar 12 21:29 Acq On Inst : YODA Multiplr: 1.00 : 80 ug/mL SVOC Sample Misc

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Compound	R.Т.	QIon	Response	Conc Unit	Qval	ue
39) Hexachlorocyclopentadiene	6.93	237	494035	89.48206	daa	98
40) 1,2,4,5-Tetrachlorobenzene	6.96	216	925879	74.31822	ppb	95
41) 2,4,6-Trichlorophenol	7.11	196	665678	78.45571		96
42) 2,4,5-Trichlorophenol	7.18	196	689171	76.00098	ppb	97
43) 2-Chloronaphthalene	7.33	162	2018498	73.30271	ppb	98
45) 1,1'-Biphenyl	7.32	154	2709823	76,42598		99
46) 2-Nitroaniline	7.48	138	839684	80,20603		95
47) Dimethyl phthalate	7.70	163	2391933	76.22351		97
48) 2,6-DNT	7.77	165	566559	76.62174		94
49) Acenaphthylene	7,80	152	3555617	77.69532		100
50) 3-Nitroaniline	7.97	65,	782500	77.86179		96
51) Acenaphthene	7.99	154	2068945	76.29533		100
52) 2,4-Dinitrophenol	8.10	184	374498	81.38485		
53) 4-Nitrophenol	8.23	109	270299	90.32642		95
54) Dibenzofuran	8.20	139	1558056	83.89555		94
55) 2,4-DNT	8.24	165	809318	79.24340		93
56) 2,3,4,6-Tetrachlorophenol	8.37	232	564307	83.47018		97
57) Diethyl phthalate	8,52	149	2418397	77.57896		100
58) 4-Chlorophenyl phenyl ethe	8.62	204	1174119	78.10651		91
59) Fluorene	8.60	165	2165612	74.40844		100
60) 4-Nitroaniline	8.72	138	663666	81.85933		94
63) Diphenyl amine	8.78	168	2471851	79.39989		98
64) 4,6-Dinitro-2-methylphenol	8.73	198	525383	87.07778		97
65) n-Nitrosodiphenylamine	8.78	167	1278882	77.39145		99
66) 1,2-Diphenylhydrazine	8.80	182	700905	73.85130		92
67) 4-Bromophenyl phenyl ether	9.18	248	625522	78.99064		100
68) Hexachlorobenzene	9.22	284	657301	76.71563		
69) Atrazine	9.41	200	54870	39.11719		94 99
70) Pentachlorophenol	9.48	266	431554	87.72105		100
71) Phenanthrene	9,71	178	3391357	73.47279 76.41544		100
72) Anthracene	9.78		3626899	74.71724		100
73) Carbazol	9.98	167 149	3193391 4159024	82.74795		99
74) Di-n-butylphthalate	10.42 11.09	202	3755700	79.67578		
75) Fluoranthene	11.35	202	3885947	77.32817		
77) Pyrene	12.15	149	1668227	74.89026		84
79) Butyl benzylphthalate	12.76	252	1088299	79.16481		100
80) 3,3'-Dichlorobenzidine 81) Benz (a) anthracene	12.75	228	3060333	74.97679		99
82) Bis (2-ethylhexyl) phthala	12.83	149	2391650	72.70989		95
83) Chrysene	12.80	228	3364921	78.12609		99
84) Di-n-octylphthalate	13,56	149	4324941	81.57973		100
85) Indeno (1,2,3-cd) pyrene	15.74	276	3521995	81,11460		89
87) Benzo (b) fluoranthene	13.95	252	6537172	149.19498		= = =
88) Benzo (k) fluoranthene	13.95	252	6537172	161.67609		99
89) Benzo (a) pyrene	14,28	252	3112107	78.76818		96
90) Dibenz (a,h) anthracene	15.76	278	3003390	81,24011		
91) Benzo (g,h,i) perylene	16.13	276	2882494	79.24222	ppb	99

Data File : M:\YODA\DATA\Y120301B\0301Y008.D

Acq On : 1 Mar 12 21:29

Sample

: 80 ug/mL SVOC

Operator: LF : YODA Inst

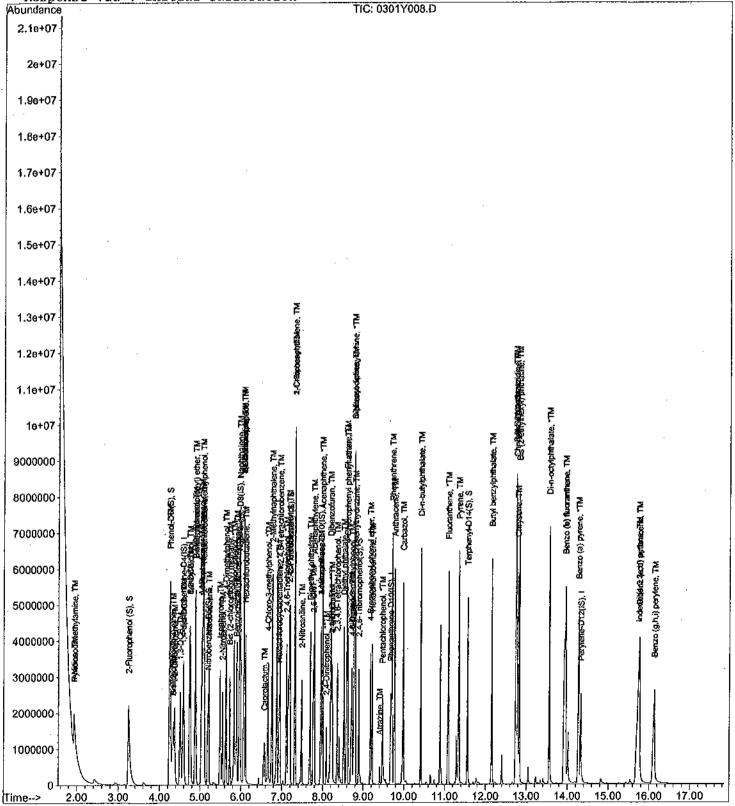
Quant Results File: Y827AF.RES

Multiplr: 1.00

Vial: 8

Quant Time: Mar 5 8:33 2012

Method


Misc

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

Data File : M:\YODA\DATA\Y120301B\0301Y009.D
Acq On : 1 Mar 12 21:54
Sample : 100 ug/mL SVOC Vial: 9 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:33 2012 Ouant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc	Unit	s De	v(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	378100		00000		0.00
20) Napthalene-D8(IS)	5.96	136	1408593		00000		0.00
38) Acenaphthene-D10(IS)	7.96	164	787447		00000		0.00
62) Phenanthrene-D10(IS)	9.68	188	1455434		00000		0.00
76) Chrysene-D12(IS)	12.77	240	1256364		00000		0.00
86) Perylene-D12(IS)	14.33	264	1313439	40.	00000	ppb	0.00
System Monitoring Compounds							
4) 2-Fluorophenol (S)	3.25	112	2549554		20662		0.00
Spiked Amount 200.000			Recove			2.604%	0.00
5) Phenol-D6 (S)	4.26	99	2991654		53295		0.03
Spiked Amount 200.000		00	Recove			1.766%	0 00
21) Nitrobenzene-D5(S)	5.19	82	1244154		22664		0.00
Spiked Amount 100,000	2 01	170	Recove			3.227%	0.00
44) 2-Fluorobiphenyl(S)	7.21	172	2401769		17382	ррь 7.174%	0.00
Spiked Amount 100.000	0 00	220	Recove		= 87 17019		0.00
61) 2,4,6-Tribromophenol(S)	8.89	330	635275			5.085%	0.00
Spiked Amount 200.000	11.56	244	Recove 2435694	_	- 78903		0,00
78) Terphenyl-D14(S) Spiked Amount 100.000	11.50	244	Recove			2.789%	0,00
-						0	value
Target Compounds	1 04	42	652202	0.4	48919		99
n-Nitrosodimethylamine	1.94	42 52	652393 1031318		94060		99
3) Pyridine	$\frac{1.94}{4.27}$	94	2060191		48539		87
6) Phenol	4.34	93	1686404		38252		99
7) Aniline	4.34	63	1481443		70739		87
8) Bis (2-chloroethyl) ether	4.37	128	1528446		69605		99
9) 2-Chlorophenol	4.50	146	1695015		57600		99
10) 1,3-DCB 11) 1,4-DCB	4.59	146	1714016		16192		99
12) Benzyl alcohol	4.76	79	1183092		19177		99
13) 1,2-DCB	4.75	146	1569896		08916		98
14) 2-Methylphenol	4.89	108	1369650		41709		99
15) Bis (2-chloroisopropy1) et	4.89	45	2175744		85656		99
16) Acetophenone	5.04	105	2004581		19918		98
17) 3&4-Methylphenol	5.08	107	3045156		32493		98
18) n-Nitrosodi-n-propylamine	5.04	43	814747		25606		74
19) Hexachloroethane	5.10	117	561107		32537		89
22) Nitrobenzene	5.22	77	1537218		72551		93
23) Isophorone	5.50	82	2733932		39041		95
24) 2-Nitrophenol	5.55	139	870521		75209		98
25) 2,4-Dimethylphenol	5.64	107	1437000		L9112		100
26) Benzoic acid	5.91	105	925906		55248		99
27) Bis (2-chloroethoxy) metha	5.73	93	1575534		17874		95
28) 2,4-Dichlorophenol	5.83	162	1141763		01266		96
29) 1,2,4-Trichlorobenzene	5.90	180	1253570		19197		100
30) Naphthalene	5.99	128	4268152		50186		100
31) 4-Chloroaniline	6.08	127	1464018		20025		94
32) 2,6-Dichlorophenol	6.07	162	1089115		31497		100
33) Hexachloropropene	6.07	213	724086		3904		100
34) Hexachlorobutadiene	6.12	225	636944		52472		100
35) Caprolactum	6.60	113	438597		22280		97 94
36) 4-Chloro-3-methylphenol	6.68	107	1303345		54187 78823		99
37) 2-Methylnaphthalene	6.77	142	2826460	07.7	0043	ֆեր ՝	

^{(#) =} qualifier out of range (m) = manual integration 0301Y009.D Y827AF.M Thu Mar 08 14:59:47 2012

Data File : M:\YODA\DATA\Y120301B\0301Y009.D
Acq On : 1 Mar 12 21:54
Sample : 100 ug/mL SVOC Vial: 9 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit	Qvalu	e
39) Hexachlorocyclopentadiene	6.94	237	628903	110.36042	daa	99
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	1160393	90,23968		99
41) 2,4,6-Trichlorophenol	7.12	196	840693	95.99513	ppb	92
42) 2,4,5-Trichlorophenol	7.19	196	863929	92.30424	ppb	98
43) 2-Chloronaphthalene	7.34	162	2581908	90.84142		94
45) 1,1'-Biphenyl	7.32	154	3002788	82.04954		98
46) 2-Nitroaniline	7.48	138	1073686	99.36189		87
47) Dimethyl phthalate	7.71	163	3074812	94,93140	ppb	91
48) 2,6-DNT	7.78	165	739338	96.87268		94
49) Acenaphthylene	7.80	152	4197568	88,86465		100
50) 3-Nitroaniline	7.98	65	973082	93.80821		98
51) Acenaphthene	8.00	154	2465385	88.08160		99
52) 2,4-Dinitrophenol	8.10	184	479975	99.08866	ppb #	75
53) 4-Nitrophenol	8,24	109	343283	111,14094	aqq	96
54) Dibenzofuran	8.21	139	2022969	105.53499		87
55) 2,4-DNT	8.24	165		93.24222		91
56) 2,3,4,6-Tetrachlorophenol	8.37	232	671807	96.27463		93 99
57) Diethyl phthalate	8.53	149	3006936	93.45272		98
58) 4-Chlorophenyl phenyl ethe	8.62	204	1319758	85.05911 89.92816		. 99
59) Fluorene	8.60	165	2701486			96
60) 4-Nitroaniline	8.73 8.78	138 168	778464 2940299	93.02690 90.11529		100
63) Diphenyl amine	8.74	198	646112	102.17590		77
64) 4,6-Dinitro-2-methylphenol 65) n-Nitrosodiphenylamine	8.78	167	1510900	87.23838		99
	8.81	182	891170	89.59194		54
66) 1,2-Diphenylhydrazine 67) 4-Bromophenyl phenyl ether	9.18	248	732185	88.21922		99
68) Hexachlorobenzene	9.23	284	811078	90.32158		9ó
69) Atrazine	9.41	200	68833	46.82079		99
70) Pentachlorophenol	9.48	266	544376	105.57887		99
71) Phenanthrene	9,71	178	4317259	89.24224		100
72) Anthracene	9.78	178	4241633	85.26839		99
73) Carbazol	9.99	167	4096993	91.46255		98
74) Di-n-butylphthalate	10.42	149	4727743	89.74888		100
75) Fluoranthene	11.09	202	4321840	87.48094		89
77) Pyrene	11.35	202	4532163	91.60913	ppb #	87
79) Butyl benzylphthalate	12.16	149	2273499	103.67101	ppb	98
80) 3,3'-Dichlorobenzidine	12.76	252	1257319	92.90130		98
81) Benz (a) anthracene	12.75	228	3883831	96.65200		100
82) Bis (2-ethylhexyl) phthala	12.84	149	3125013	96.50283		99
83) Chrysene	12.80	228	3870489	91.28079		96
84) Di-n-octylphthalate	13.56	149	5140104	98.48416	ppb	100
85) Indeno (1,2,3-cd) pyrene	15.75	276	4398524	102.89864	ppb	88
87) Benzo (b) fluoranthene	13.96	252	8002265	174.14795 p		96
88) Benzo (k) fluoranthene	13.96	252	8002265	188.71653 p		99
89) Benzo (a) pyrene	14.29	252	3813441	92.03530 1		96
90) Dibenz (a,h) anthracene	15.77	278	3654804	94.26793 p		99
91) Benzo (g,h,i) perylene	16.15	276	3631059	95.18371 p	ppo	95
•						

Data File : M:\YODA\DATA\Y120301B\0301Y009.D

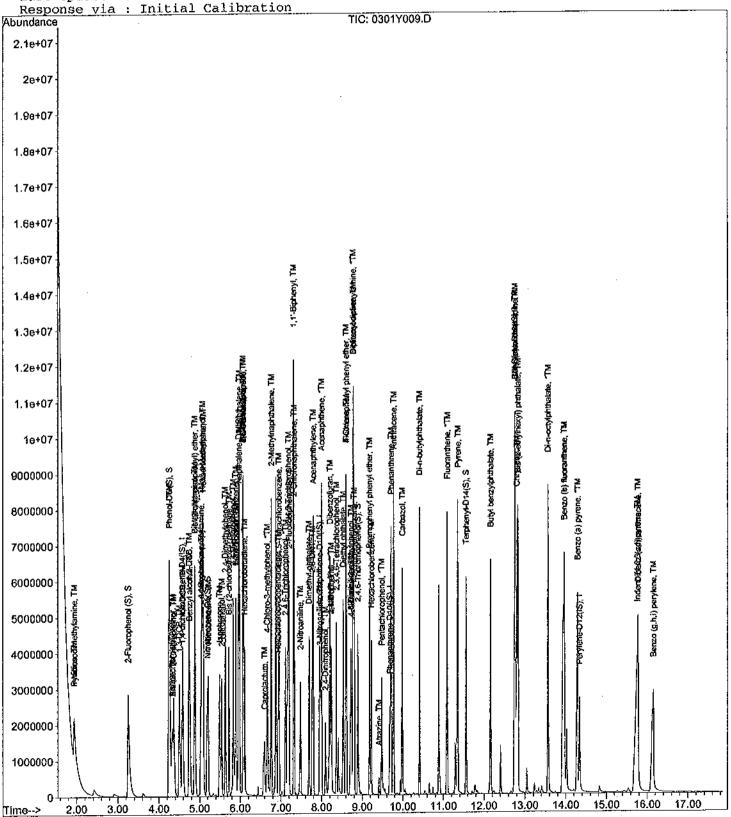
: 1 Mar 12 21:54

Sample : 100 ug/mL SVOC Misc :

Acq On

Operator: LF Inst : YODA Multiplr: 1.00

Vial:


Quant Time: Mar 5 8:33 2012

Quant Results File: Y827AF.RES

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Data File : M:\YODA\DATA\Y120301B\0301Y010.D

Acq On : 1 Mar 12 22:20

Sample : 50 ug/mL SVOC SS 03-01-12 Vial: 10 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 10:48 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	396037	40.00000	ppb 0.00
20) Napthalene-D8(IS)	5.95	136	1457440	40.00000	
38) Acenaphthene-D10(IS)	7.95	164	812099	40.00000	
62) Phenanthrene-D10(IS)	9.67	188	1480398	40.00000	
76) Chrysene-D12(IS)	12.76	240	1343179	40.00000	
86) Perylene-D12(IS)	14.32	264	1318198	40.00000	0.00 dqq
System Monitoring Compounds		110	•	0.0000	1.
4) 2-Fluorophenol (S)	0.00	112	0	0.00000	
Spiked Amount 200,000	0.00	99	Recove 0	ery = 0 0.00000	.000%
5) Phenol-D6 (S) Spiked Amount 200.000	0.00	99	Recove		.000%
Spiked Amount 200,000 21) Nitrobenzene-D5(S)	0.00	82	Od	0.00000	
Spiked Amount 100.000	0.00	02	Recove		.0008
44) 2-Fluorobiphenyl(S)	0.00	172	0d	0,00000	
Spiked Amount 100.000	• • • •		Recove		.000%
61) 2,4,6-Tribromophenol(S)	0.00	330	0d	0.00000	
Spiked Amount 200.000			Recove	ery = 0	.000%
78) Terphenyl-D14(S)	0.00	244	0d	0.00000	ρpb
Spiked Amount 100.000			Recove	ery = 0	.000%
Target Compounds					Qvalue
n-Nitrosodimethylamine	1.94	42	358137	49.30914	
3) Pyridine	1.94	52	526087	48.67185	
6) Phenol	4.24	94	1096417	47.49883	
7) Aniline	4.32	93	829026	46,17378 j 44,34326 j	
8) Bis (2-chloroethyl) ether	4.32	63	610505	47.96430	
9) 2-Chlorophenol	4.36 4.50	128 146	819551 924872	48.22558	· •
10) 1,3-DCB 11) 1,4-DCB	4.59	146	933569	47 40410	
11) 1,4-DCB 12) Benzyl alcohol	4.75	79	628771	48.29969	
13) 1,2-DCB	4.74	146	855816	47.40751	
14) 2-Methylphenol	4.88	108	746404	47.56228	
15) Bis (2-chloroisopropyl) et	4.88	45	1224008	47.18692	
16) Acetophenone	5.02	105	1082542	48.05119	
17) 3&4-Methylphenol	5.06	107	1691180	95.08059	opb 100
18) n-Nitrosodi-n-propylamine	5.03	43	660444	47.40599 I	
19) Hexachloroethane	5.09	117	320191	48.39175 p	
22) Nitrobenzene	5.20		823685	49.49737 r	
23) Isophorone	5.48	82	1465139	49.33223 I	
24) 2-Nitrophenol	5,54	139	468421	50.75964 r	
25) 2,4-Dimethylpheno1	5,62	107	786610	49.22748 p	opb 99
26) Benzoic acid	5.84		345828	40.36737 r	
27) Bis (2-chloroethoxy) metha	5.72	93	894917	50.14223 r	
28) 2,4-Dichlorophenol	5.82	162	645636	49.66296 g	
29) 1,2,4-Trichlorobenzene	5.89	180	694473	49.28652 p	
30) Naphthalene	5.98	128	2417012	49,45584 p	
31) 4-Chloroaniline	6.07 6.06	127 162	883098 617531	51,33804 g 48.59466 g	
32) 2,6-Dichlorophenol	6.06	213	393239	50.33177 g	
33) Hexachloropropene	6.11	225	341087	47.81311 g	
34) Hexachlorobutadiene 35) Caprolactum	6.55	113	279030	52.93204 g	
36) 4-Chloro-3-methylphenol	6.66	107	688653	49.78665 g	
37) 2-Methylnaphthalene	6.76	142	1587245	48.65651 g	

^{(#) =} qualifier out of range (m) = manual integration 0301Y010.D Y827AF.M Thu Mar 08 15:00:17 2012

Data File : M:\YODA\DATA\Y120301B\0301Y010.D Vial: 10 Operator: LF Inst : YODA Multiplr: 1.00 Acq On : 1 Mar 12 22:20 Sample : 50 ug/mL SVOC SS 03-01-12 Misc

Quant Time: Mar 5 10:48 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

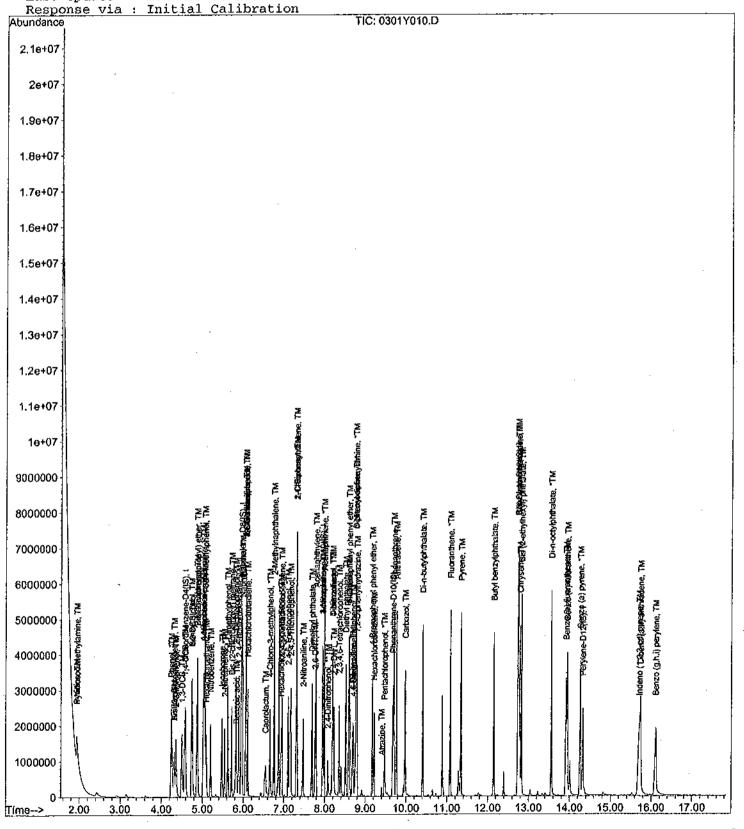
Title : EPA 8270C Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qvalı	ıe e
39)	Hexachlorocyclopentadiene	6.93	237	307839	52,38002	ppb ·	97
40)	1,2,4,5-Tetrachlorobenzene	6.95	216	651315	49.11294		88
	2,4,6-Trichlorophenol	7.10	196	452259	50.07389		99
		7,17		492789	51,05249		98
43)	2-Chloronaphthalene	7.32	162	1410718	48.12777	ppb	99
- :	1,1'-Biphenyl	7.31	154	1844696	48.87521		100
	2-Nitroaniline	7.47	138	564480	50.65280		93
	Dimethyl phthalate	7.69	163	1611822	48.25261		97
	2,6-DNT	7.76	165	383648	48.74203		92
	Acenaphthylene	7.79	152	2373164	48.71597		99
	3-Nitroaniline	7.96	65	530192	49.56064		98
	Acenaphthene	7,99	154	1385242	47.98864		100
	2,4-Dinitrophenol	8.09	184	243133	52.81242		67
	4-Nitrophenol	8.21	109	170072	53.39087	ppb	95
	Dibenzofuran	8.20	139	1078506	54.55596	ppb	91
	2,4-DNT	8.23	165	536705	49.36775	add	92
	2,3,4,6-Tetrachlorophenol	8.36	232 149	368639 1622533	51.22488 48.89604	add	98 100
	Diethyl phthalate	8.51 8.61	204	758149	47.37982		98
	4-Chlorophenyl phenyl ethe Fluorene	8.59	165	1505527	48.59526	ppb	100
	4-Nitroaniline	8.69	138	441275	51,13187	րրի Մի	98
	Diphenyl amine	8.76	168	1624095	48.89469		100
	4,6-Dinitro-2-methylphenol	8,71	198	349551	54.34571		98
	n-Nitrosodiphenylamine	8.76	167	865085	49.06482		99
	1,2-Diphenylhydrazine	8.79	182	493843	48.76908		93
	4-Bromophenyl phenyl ether	9.17	248	407149	48.18958		99
	Hexachlorobenzene	9.22	284	449667	49,18990		98
	Atrazine	9.41	200	37292	24,92035		99
	Pentachlorophenol	9.47	266	286544	56.49304		100
	Phenanthrene	9.70	178	2316037	47.02603	ppb	100
-	Anthracene	9.77	178	2466154	48.69861	ppb	99
73)	Carbazol	9.98	167	2223777	48.76716	ppb	96
74)	Di-n-butylphthalate	10.41	149	2610612	48.68429		100
75)	Fluoranthene	11.09	202	2493281	49.57755	ppb	95
77)	Pyrene	11.35	202	2561067	48.42122		93
	Butyl benzylphthalate	12.15	149	1205019	51.39703		92
	3,3'-Dichlorobenzidine	12.75	252	760437	52.55586		100
	Benz (a) anthracene	12.74	228	2118423	49.31111		100
	Bis (2-ethylhexyl) phthala	12.83	149	1744020	50.37572		98
	Chrysene	12.79	228	2206526	48.67480		97
	Di-n-octylphthalate	13.55	149	2820358	50.54524	ppb	100
	Indeno (1,2,3-cd) pyrene	15.70	276	2349746	51.41682		100
	Benzo (b) fluoranthene	13.92	252 252	2517860	54.59668		98
	Benzo (k) fluoranthene	13.95 14,27	252 252	1877833 2091183	44.12485 50.28734		92 98
	Benzo (a) pyrene Dibenz (a,h) anthracene	15.74	278	2020934	51,93753		93
	Benzo (g,h,i) perylene	16.11	276	1867209	48.76986		93 98
71)	peugo (A)ulti berliene	10.11	270		40.70500	PPN	,,,

Quant Results File: Y827AF.RES

Vial: 10 Data File : M:\YODA\DATA\Y120301B\0301Y010.D Acq On : 1 Mar 12 22:20 Operator: LF : 50 ug/mL SVOC SS 03-01-12 Sample Inst


; YODA Multiplr: 1.00 Misc

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title : EPA 8270C

Quant Time: Mar 5 10:48 2012

Last Update : Mon Mar 05 10:46:48 2012

Vial: 2 Data File: M:\YODA\DATA\Y120301B\0302Y002.D Acq On : 2 Mar 12 18:02 Sample : 50 ug/mL SVOC 03-01-12 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Ouant Time: Mar 5 10:49 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

1	Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
20) Napthalene-D8(IS)	1) 1,4-dichlorobenzene-D4(IS)	4.57	152	405747	40.00000 ppb	0.00
Target Compounds		5.95	136	1464131	40.00000 ppb	0.00
Target Compounds		7.95	164	810897		
System Monitoring Compounds		9.68	188			
System Monitoring Compounds 4 2 - Fluorophenol (S)						
A	86) Perylene-D12(IS)	14.33	264	1292795	40.00000 ppb	0.00
Spiked Amount						
Spiked Amount 200.000 Spiked Amount 200.000 Spiked Amount 100.000 Spiked Amount 100.000 Recovery = 45.300% 0.00 Spiked Amount 100.000 Recovery = 46.460% 0.00 Spiked Amount 100.000 Recovery = 46.460% 0.00 Spiked Amount 100.000 Recovery = 45.552% 0.00 Spiked Amount 100.000 Recovery = 45.552% 0.00 Spiked Amount 200.000 Spiked Amount 100.000 Recovery = 45.835% 0.00		3.24	112			
Spiked Amount 200.000 Spiked Amount 100.000 Recovery 46.4608 Decovery 46.4508 Decovery 46.4508	<u> </u>					
21) Nitrobenzene-D5(S)		4.24	99			
Spiked Amount 100.000 Recovery = 46.4608		E 10	0.0			
## A4) 2-Fluorobiphenyl(S)		2.18	82			
Spiked Amount 100.000 Recovery = 45.5528		7 20	172			
61) 2,4,6-Tribromophenol(S)		7.20	1/2			
Recovery = 45.8358 Terphenyl-D14(S)	-	0 00	330			0 00
78) Terphenyl-D14(S) Spiked Amount 100.000 Target Compounds 2) n-Nitrosodimethylamine 1.94 42 361730 48.52333 ppb 95 6) Phenol 4.26 94 1095752 46.33401 ppb 97 7) Aniline 4.32 93 855738 46.52094 ppb 100 8) Bis (2-chloroethyl) ether 4.32 63 608296 43.12546 ppb 98 9) 2-Chlorophenol 4.36 128 810224 46.28365 ppb 98 10) 1,3-DCB 4.51 146 910964 46.36363 ppb 99 11) 1,4-DCB 4.59 146 937061 46.44274 ppb 99 12) Benzyl alcohol 4.75 79 617854 46.33529 ppb 99 13) 1,2-DCB 4.74 146 856228 46.29527 ppb 99 14) 2-Methylphenol 4.88 108 733938 45.64871 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 18) hexachloroethane 5.09 117 314866 44.4815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.029999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 29) 1,2,4-Trichlorobenzene 5.99 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb		0.03	330			
Target Compounds 2) n-Nitrosodimethylamine 1.94 42 361730 48.52333 ppb 95 3) Pyridine 1.95 52 514934 46.49993 ppb 95 6) Phenol 4.26 94 1095752 46.33401 ppb 97 7) Aniline 4.32 93 855738 46.52094 ppb 100 8) Bis (2-chloroethyl) ether 4.32 63 608296 43.12546 ppb 98 9) 2-Chlorophenol 4.36 128 810224 46.28365 ppb 98 10) 1,3-DCB 4.51 146 910964 46.36363 ppb 99 11) 1,4-DCB 4.51 146 937061 46.44274 ppb 99 12) Benzyl alcohol 4.75 79 617854 46.32529 ppb 99 13) 1,2-DCB 4.74 146 856228 46.29527 ppb 99 13) 1,2-DCB 4.74 146 856228 46.29527 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 108 733938 45.64871 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47, 91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82799 ppb 99 26) Benzoic acid 5.84 105 352024 40.82799 ppb 99 26) Benzoic acid 5.84 105 352024 40.82799 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 846864 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 127 831032 48.09045 ppb 99 33) Hexachloroptopene 6.07 127 831032 48.09045 ppb 99 34) Hexachloroptopene 6.07 123 373712 47.61386 ppb 99 34) Hexachloroptopene 6.07 123 373712 47.61386 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99		11 55	244			
2) n-Nitrosodimethylamine		11.55	244			
2) n-Nitrosodimethylamine	Target Compounds					Ovalue
3) Pyridine 1.95 52 514934 46.49993 ppb 99 6) Phenol 4.26 94 1095752 46.333401 ppb 97 7) Aniline 4.32 93 855738 46.52094 ppb 100 8) Bis (2-chloroethyl) ether 4.32 63 608296 43.12546 ppb 98 9) 2-Chlorophenol 4.36 128 810224 46.28365 ppb 98 10) 1,3-DCB 4.51 146 910964 46.36363 ppb 99 11) 1,4-DCB 4.59 146 937061 46.44274 ppb 99 12) Benzyl alcohol 4.75 79 617854 46.32529 ppb 99 13) 1,2-DCB 4.74 146 856228 46.29527 ppb 99 14) 2-Methylphenol 4.88 108 733938 45.64871 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.62 107 755973 47.09396 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 25) 2,4-Dimethylphenol 5.84 105 352024 40.82756 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) (6-Dichlorophenol 6.07 127 831032 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 47.52264 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb	2) n-Nitrosodimethylamine	1.94	42	361730	48.52333 ppb	
6) Phenol 7) Aniline 8) Bis (2-chloroethyl) ether 9) 2-Chlorophenol 1,3-DCB 10) 1,3-DCB 11) 1,4-DCB 12) Benzyl alcohol 13,1,2-DCB 13) 1,2-DCB 14,74 146 159 160 173 186 187 187 187 188 180224 188 180224 188 180224 188 188 188 188 188 188 188 188 188 18					46.49993 ppb	99
7) Aniline 8) Bis (2-chloroethyl) ether 4.32 93 855738 46.52094 ppb 98 9) 2-Chlorophenol 4.36 128 810224 46.28365 ppb 98 10) 1,3-DCB 4.51 146 910964 46.36363 ppb 99 11) 1,4-DCB 4.59 146 937061 46.44274 ppb 99 12) Benzyl alcohol 4.75 79 617854 46.32529 ppb 99 13) 1,2-DCB. 4.74 146 856228 46.29527 ppb 99 14) 2-Methylphenol 4.88 108 733938 45.64871 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.98 128 2333195 47.52264 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachloropropene 6.10 660 107 670405 48.64479 ppb 99 35) Caprolactum 6.56 113 257607 48.64479 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb			94			97
8) Bis (2-chloroethyl) ether 4.32 63 608296 43.12546 ppb 98 9) 2-Chlorophenol 4.36 128 810224 46.28365 ppb 98 10) 1.3-DCB 4.51 146 910964 46.36363 ppb 99 11) 1.4-DCB 4.59 146 937061 46.44274 ppb 99 12) Benzyl alcohol 4.75 79 617854 46.32529 ppb 99 13) 1.2-DCB 4.74 146 856228 46.29527 ppb 99 14) 2-Methylphenol 4.88 108 733938 45.64871 ppb 99 15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 120 Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.0299 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachlorophenol 6.07 162 595825 46.67231 ppb 99 34 Hexachloropropene 6.07 213 373712 47.61386 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro3-methylphenol 6.66 107 670405 48.24590 ppb 99 36) 4-Chloro3-methylphenol 6.66 107 670405 48.24590 ppb 99 36) 4-Chloro3-methylphenol 6.66 107 670405 48.24590 ppb			93	855738	46.52094 ppb	
9) 2-Chlorophenol		4.32	63	608296		
11) 1,4-DCB		4.36	128			
12) Benzyl alcohol	10) 1,3-DCB					
13) 1,2-DCB						
14) 2-Methylphenol						
15) Bis (2-chloroisopropyl) et 4.88 45 1241207 46.70485 ppb 99 16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 127 831032 48.09045 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb						
16) Acetophenone 5.03 105 1057786 45.82871 ppb 99 17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 127 831032 48.09045 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99	14) 2-Methylphenol					
17) 3&4-Methylphenol 5.06 107 1648205 90.44691 ppb 99 18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropopene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
18) n-Nitrosodi-n-propylamine 5.04 43 653086 45.75600 ppb 97 19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
19) Hexachloroethane 5.09 117 314866 46.44815 ppb 99 22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
22) Nitrobenzene 5.20 77 812839 48.62239 ppb 100 23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
23) Isophorone 5.47 82 1429699 47.91895 ppb 100 24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
24) 2-Nitrophenol 5.55 139 445266 48.02999 ppb 99 25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99	,					
25) 2,4-Dimethylphenol 5.62 107 755973 47.09396 ppb 99 26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99			_			
26) Benzoic acid 5.84 105 352024 40.82756 ppb 99 27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
27) Bis (2-chloroethoxy) metha 5.72 93 864854 48.23635 ppb 100 28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99					40.82756 ppb	
28) 2,4-Dichlorophenol 5.82 162 626286 47.95439 ppb 100 29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99					48.23635 ppb	
29) 1,2,4-Trichlorobenzene 5.89 180 667575 47.16106 ppb 100 30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
30) Naphthalene 5.98 128 2333195 47.52264 ppb 100 31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
31) 4-Chloroaniline 6.07 127 831032 48.09045 ppb 99 32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
32) 2,6-Dichlorophenol 6.07 162 595825 46.67231 ppb 99 33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
33) Hexachloropropene 6.07 213 373712 47.61386 ppb 99 34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
34) Hexachlorobutadiene 6.11 225 337383 47.07776 ppb 99 35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99						
35) Caprolactum 6.56 113 257607 48.64477 ppb 99 36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99					47.07776 ppb	99
36) 4-Chloro-3-methylphenol 6.66 107 670405 48.24590 ppb 99		6.56	113	257607	48.64477 ppb	. 99
					48.24590 ppb	
	37) 2-Methylnaphthalene	6.76	142	1537137	46.90512 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0302Y002.D Y827AF,M Thu Mar 08 15:00:54 12012

Vial: 2

Data File : M:\YODA\DATA\Y120301B\0302Y002.D Acq On : 2 Mar 12 18:02 Sample : 50 ug/mL SVOC 03-01-12 Operator: LF Inst : YODA Multiplr: 1.00 Misc

Ouant Results File: Y827AF.RES Quant Time: Mar 5 10:49 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

	Compound	к.т.	QIon	Response	Conc Unit	Qvalue	
391	Hexachlorocyclopentadiene	6.93	237	281400	47.95230	ppb	99
40)	1,2,4,5-Tetrachlorobenzene	6.95	216	614529	46.40775	ppb	98
	2,4,6-Trichlorophenol	7.11	196	428244	47.48525	ppb	99
	2,4,5-Trichlorophenol	7.17	196	464332	48.17568	ppb	99
	2-Chloronaphthalene	7.32	162	1363580	46.58857	ppb	99
	1,1'-Biphenyl	7.31	154	1806010	47.92116	ppb	99
	2-Nitroaniline	7,48	138	541185	48.63444	ppb	98
47)	Dimethyl phthalate	7.69	163	1554944	46.61887	gpb	100
	2,6-DNT	7.76	165	375137	47.73136		99
-	Acenaphthylene	7.79	152	2280374	46.88058		100
50)	3-Nitroaniline	7.96	65	517185	48.41645		99
51)	Acenaphthene	8.00	154	1349528	46.82071		100
52)	2,4-Dinitrophenol	8.09	184	176642	40.64401		71
53)	4-Nitrophenol	8.21	109	143897	45.24068		94
54)	Dibenzofuran	8.19	139	1003467	50.83537		98
55)	2,4-DNT	8.23	165	510950	47.06839		99
56)	2,3,4,6-Tetrachlorophenol	8.36	232	350438	48.76791		98
57)	Diethyl phthalate	8.52	149	1535783	46.35038		100
58)	4-Chlorophenyl phenyl ethe	8.61	204	742158	46.44923		100
	Fluorene	8.59	165	1434501	46.37132		99
	4-Nitroaniline	8.69	138	404014	46.88372		98
63)	Diphenyl amine	8.77	168	1450821	43.63383		100 96
	4,6-Dinitro-2-methylphenol	8.71	198	310540	48.23159		99
	n-Nitrosodiphenylamine	8.77	167	776780	44.01176		99
	1,2-Diphenylhydrazine	8.79	182	465255	45.89929		100
	4-Bromophenyl phenyl ether	9.17	248	392644	46.42566		98
,	Hexachlorobenzene	9.22	284	433098	47.32933 23.69812		98
,	Atrazine	9.41	200	35499	52.74977		98
	Pentachlorophenol	9.47	266	267829	43.87206		100
	Phenanthrene	9.70	178	2162897	46,41246		100
	Anthracene	9.77 9.97	178 167	2352767 2116984	46.37812		99
	Carbazol	10.41	149	2564970	47,78461		100
	Di-n-butylphthalate	11.09	202	2367970	47.03806		100
	Fluoranthene	11.35	202	2495127	48:27506		100
	Pyrene	12.15	149	1144998	49,97632		96
191	Butyl benzylphthalate 3,3'-Dichlorobenzidine	12.75	252	713730	50,47859		99
	Benz (a) anthracene	12.74	228	2002386	47.69747		100
	Bis (2-ethylhexyl) phthala	12.82	149	1577645	46.63312		94
	Chrysene	12.79	228	2090407	47.18907		95
	Di-n-octy1phthalate	13.56	149	2695533	49.43518		100
	Indeno (1,2,3-cd) pyrene	15,70	276	2192917	49.10456		99
	Benzo (b) fluoranthene	13.92	252	2006449	44.36227		99
	Benzo (k) fluoranthene	13.95	252	2046094	49.02333		99
	Benzo (a) pyrene	14,27	252	1977513	48.48830	ppb	99
	Dibenz (a,h) anthracene	15.74	278	1864978	48.87129	ppb	98
911	Benzo (g,h,i) perylene	16.11	276	1842580	49.07225	ppb	99
	- +0,4						

Data File : M:\YODA\DATA\Y120301B\0302Y002.D

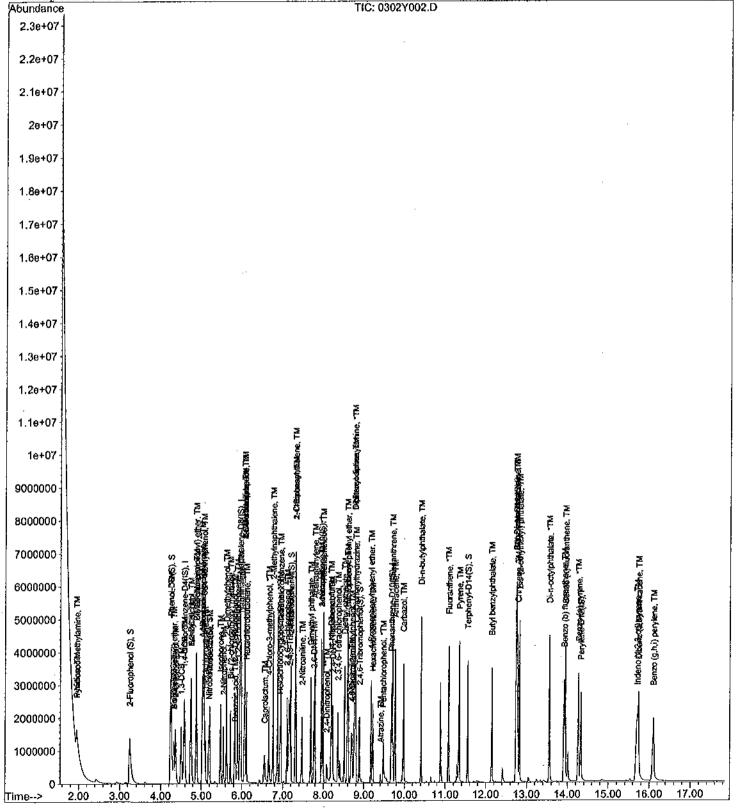
; 2 Mar 12 18:02 Acq On Sample

Operator: LF : 50 ug/mL SVOC 03-01-12 : YODA Multiplr: 1.00

Quant Time: Mar 5 10:49 2012

Quant Results File: Y827AF.RES

Vial: 2


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title : EPA 8270C

Misc

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

EPA METHOD 8270C Semivolatile Organic Compounds Raw Data

Quantitication report THE REPLECTIONS

Vial: 13 Data File: M:\YODA\DATA\Y120301B\0302Y013.D Operator: LF Inst : YODA Multiplr: 28.72 Acq On : 2 Mar 12 22:45 Sample : AY55846S02 1/34.82G Misc

Quant Results File: Y827AF.RES Quant Time: Mar 5 9:09 2012

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:45:16 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS) 86) Perylene-D12(IS)	4.57 5.94 7.95 9.67 12.75 14.32	152 136 164 188 240 264	376097 1443574 837943 1479051 1384706 1250035	40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb	0.00 -0.01 0.00 -0.01 -0.01 -0.01
System Monitoring Compounds 4) 2-Fluorophenol (S) Spiked Amount 5743.825	3.23	112		3668.56680 ppb ery = 63.870%	-0.01
5) Phenol-D6 (S) Spiked Amount 5743.825	4,23	99	2260873	4004.57969 ppb ery = 69.720%	-0.01
21) Nitrobenzene-D5(S) Spiked Amount 2871.913	5.17	82		1835.59798 ppb ery = 63.9168	-0.01
44) 2-Fluorobiphenyl(S) Spiked Amount 2871.913	7.19	172		1623.88842 ppb $exy = 56.5448$	-0.01
61) 2,4,6-Tribromophenol(S) Spiked Amount 5743.825	8.88	330	422342	3412.11039 ppb ery = 59.405%	-0.01
78) Terphenyl-D14(S) Spiked Amount 2871.913	11.56	244	2005040 Recove	1990.33487 ppb	0.00

Target Compounds

Ovalue

Data File : M:\YODA\DATA\Y120301B\0302Y013.D

: 2 Mar 12 22:45

Vial: 13 Operator: LF Inst : YODA

Sample : Misc :

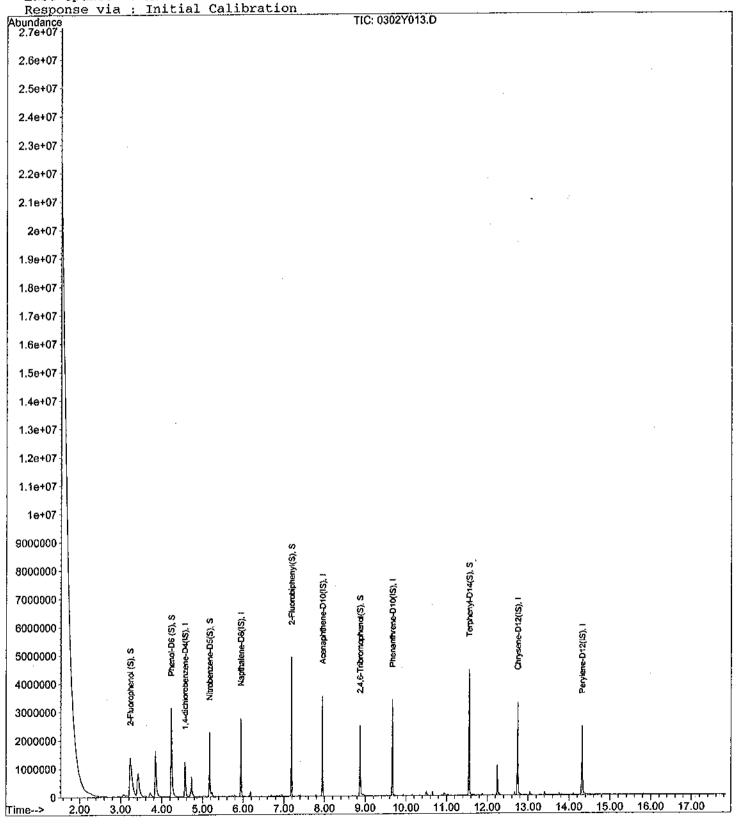
Acq On

Method

: AY55846S02 1/34.82G

Multiplr: 28.72

Quant Time: Mar 5 9:09 2012


Quant Results File: Y827AF.RES

Quante Time: Nat 3 3:03 2012

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Data File : M:\YODA\DATA\Y120301B\0302Y014.D

Vial: 14 Acq On : 2 Mar 12 23:10 Operator: LF Sample : AY55847S02 1/36.60G Inst : YODA Misc Multiplr: 27.32

Quant Time: Mar 5 9:09 2012 Quant Results File: Y827AF, RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update: Mon Mar 05 08:45:16 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS)	4.56 5.94	152 136	365765 1408133	40,00000 pp	
38) Acenaphthene-D10(IS)	7.95	164	819156	40.00000 pp 40.00000 pp	b 0.00 b 0.00
62) Phenanthrene-D10(IS)	9.67	188	1442826	40.00000 pp	
76) Chrysene-D12(IS)		240	1386103	40.00000 pp	
86) Perylene-D12(IS)	14.32	264	1232578	40.00000 pp	
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1515274	3108.90056 p	00.0 dg
Spiked Amount 5464.481				ry = 56.8	
5) Phenol-D6 (S)	4.23	99		3608.43938 p	
Spiked Amount 5464.481				xy = 66.0	
21) Nitrobenzene-D5(S)	5,17	82	828968	1695.12462 p	00.0 dq
Spiked Amount 2732.240			Recove	ry = 62.0	428
44) 2-Fluorobiphenyl(S)	7.19	172	1419892	1353.57927 p	pb 0.00
Spiked Amount 2732.240			Recove	ry = 49.5	41%
<pre>61) 2,4,6-Tribromophenol(S)</pre>	8.88	330	428573	3369.60531 p	pb 0.00
Spiked Amount 5464.481			Recove	ry = 61.6	648
78) Terphenyl-D14(S)	11.55	244	1811972	1709.48081 p	pb 0.00
Spiked Amount 2732.240			Recove	ry = 62.5	67%

Target Compounds

Ovalue

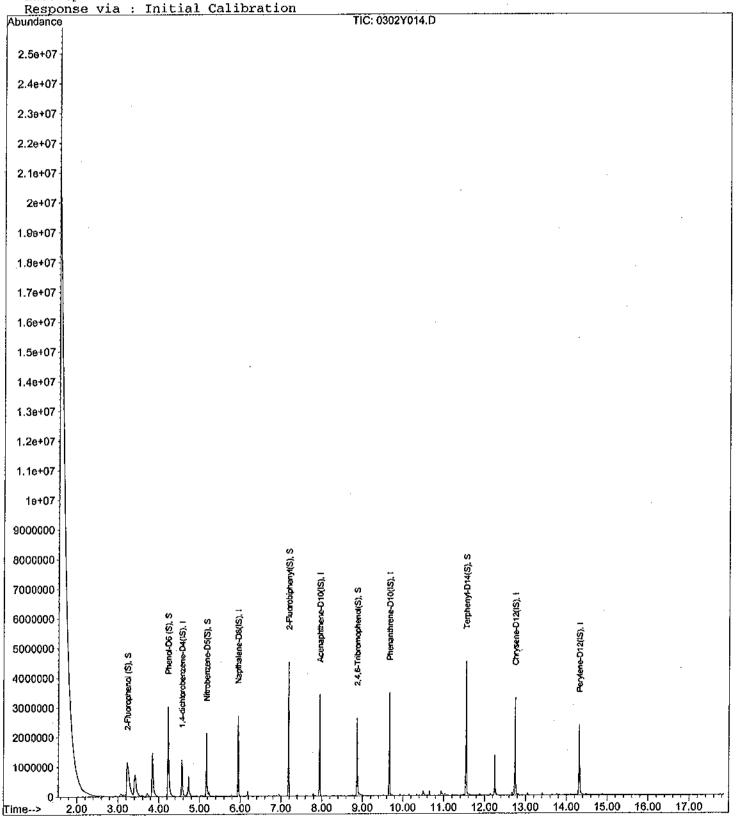
Data File: M:\YODA\DATA\Y120301B\0302Y014.D

: 2 Mar 12 23:10 Acq On Sample

Operator: LF : YODA : AY55847S02 1/36.60G Inst Multiplr: 27.32

Quant Time: Mar 5 9:09 2012

Ouant Results File: Y827AF.RES


Vial: 14

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title : EPA 8270C

Misc

Last Update : Mon Mar 05 10:46:48 2012

Data File : M:\YODA\DATA\Y120301B\0302Y015.D

Vial: 15 Acq On : 2 Mar 12 23:36 Operator: LF : AY55848S02 1/33.99G Inst : YODA Multiplr: 29.42 Sample Misc

Quant Time: Mar 5 9:10 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:45:16 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	389597	40.00000 ppb	
20) Napthalene-D8(IS)	5.95	136	1468710	40.00000 pph	
38) Acenaphthene-D10(IS)	7.94	164	830923	40.00000 ppb	
62) Phenanthrene-D10(IS)	9.67	188	1511297	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12,74	240	1413267	40.00000 ppb	-0.02
86) Perylene-D12(IS)	14.32	264	1245560	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.24	112	1685842	3496.62528 pp	b 0.00
Spiked Amount 5884.084				ry = 59.42	
5) Phenol-D6 (S)	4.23	99		3991.44335 pp	
Spiked Amount 5884,084				ry = 67.83	
21) Nitrobenzene-D5(S)	5,18	82	924793	1952,29772 pp	b 0.00
Spiked Amount 2942.042			Recove	ry = 66.35	98
44) 2-Fluorobiphenyl(S)	7.19	172		1729.89657 pp	b 0.00
Spiked Amount 2942.042			Recove	ry = 58.79	9%
61) 2,4,6-Tribromophenol(S)	8.87	330		3546.61145 pp	b -0.02
Spiked Amount 5884.084				rv = 60.27	
78) Terphenyl-D14(S)	11,55	244		1940.34435 pp	b 0,00
Spiked Amount 2942,042	, , ,			ry = 65.95	

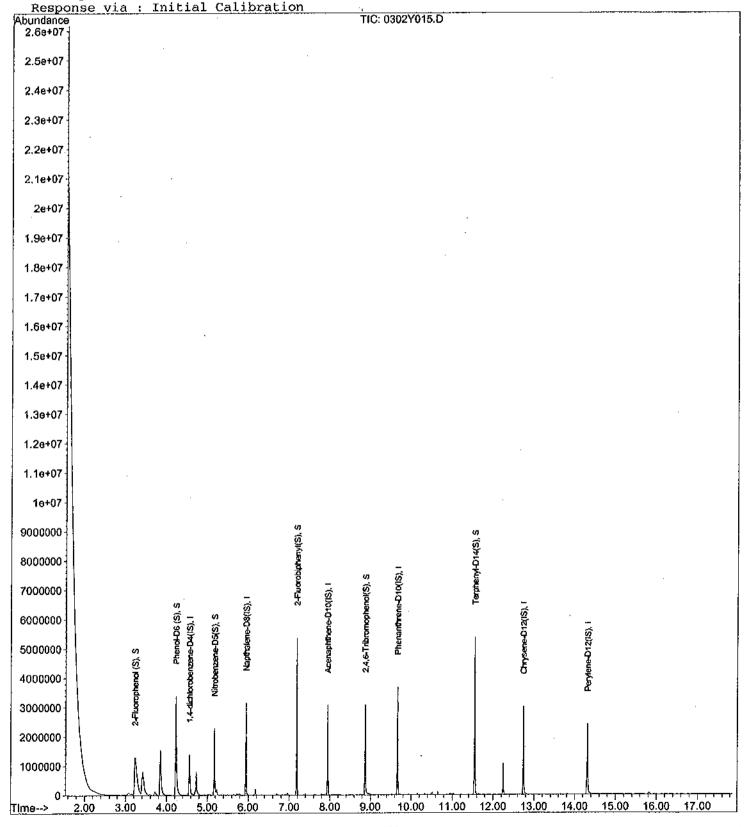
Target Compounds

Qvalue

Data File: M:\YODA\DATA\Y120301B\0302Y015.D

Vial: 15 : 2 Mar 12 23:36 Operator: LF : AY55848S02 1/33.99G Inst : YODA

Sample Multiplr: 29.42 Misc


Quant Time: Mar 5 9:10 2012 Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title : EPA 8270C

Acq On

: Mon Mar 05 10:46:48 2012 Last Update

Quant Results File: Y827AF.RES

Data File : M:\YODA\DATA\Y120301B\0302Y016.D Vial: 16 Operator: LF Inst : YODA Multiplr: 29.71 Acq On : 3 Mar 12 00:02 : AY55849S02 1/33,66G Sample

Misc

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Quant Time: Mar 5 9:11 2012

Last Update: Mon Mar 05 08:45:16 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	399289	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.94	136	1487803	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	860645	40,00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1509344	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.75	240	1446608	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.32	264	1293283	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1286402	2628,90057 ppb	0.00
Spiked Amount 5941.771			Recove	ry = 44.2448	
5) Phenol-D6 (S)	4.23	99		3048,95835 ppb	0.00
Spiked Amount 5941.771			Recove	ry = 51.314%	
21) Nitrobenzene-D5(S)	5,17	82	701109	1475.41654 ppb	0.00
Spiked Amount 2970.885			Recove	ry = 49.663%	
44) 2-Fluorobiphenyl(S)	7.19	172	1380618	1362,10779 ppb	0.00
Spiked Amount 2970,885			Recove	xy = 45.8498	
61) 2,4,6-Tribromophenol(S)	8.88	330		2861.93403 ppb	0.00
Spiked Amount 5941.771			Recove	ry = 48.166%	
78) Terphenyl-D14(S)	11,55	244		1687.45598 ppb	0.00
Spiked Amount 2970.885				ry = 56.800%	

Target Compounds

Qvalue

Angueteacton vebote

Data File: M:\YODA\DATA\Y120301B\0302Y016.D

: M:\\ODA\DATA\\1120301B\\03021010.B : 3 Mar 12 00:02 Vial: 16 Operator: LF

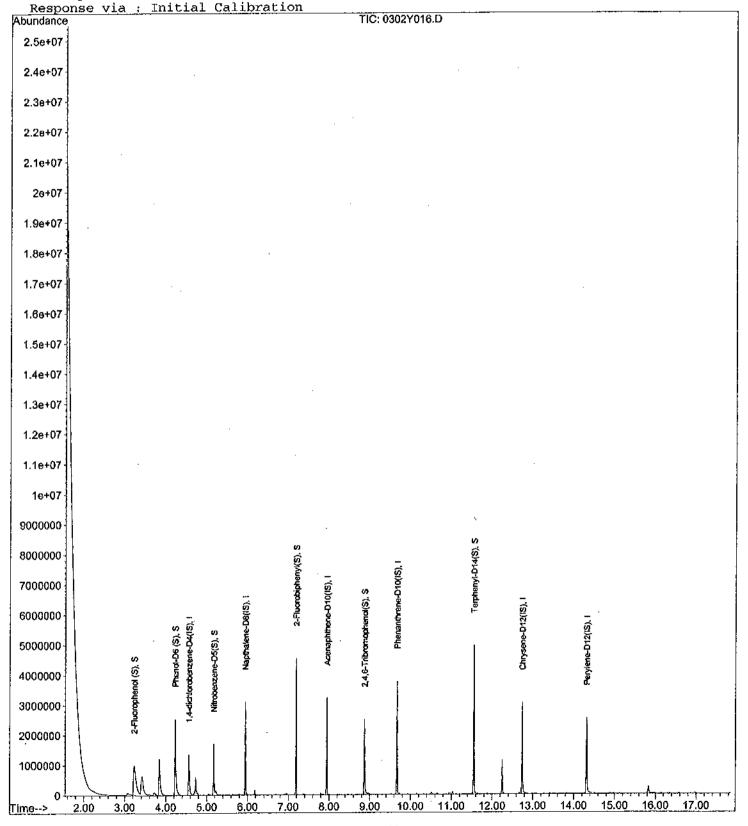
Sample Misc

: AY55849S02 1/33.66G

Inst : YODA Multiplr: 29.71

Quant Time: Mar 5 9:11 2012

Quant Results File: Y827AF.RES


Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : El

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Data File: M:\YODA\DATA\Y120301B\0302Y017.D

: 3 Mar 12 00:27 Acq On Sample : AY55850S03 1/35.19G

Operator: LF Inst : YODA Multiplr: 28.42

Vial: 17

Quant Time: Mar 5 9:11 2012

Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title: EPA 8270C
Last Update: Mon Mar 05 08:45:16 2012
Response via: Initial Calibration
DataAcq Meth: Y8270AQ

Misc

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	390382	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.94	136	1476667	40.00000 ppb	-0.01
38) Acenaphthene-D10(IS)	7,95	164	829960	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1462412	40.00000 ppb	-0.01
76) Chrysene-D12(IS)	12.75	240	1402820	40.00000 ppb	-0.01
86) Perylene-D12(IS)	14.32	264	1226517	40.00000 ppb	-0.01
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1418808	2836.70044 ppb	-0.01
Spiked Amount 5683.433				xy = 49.912	
5) Phenol-D6 (S)	4.23	99	1982034	3346,65813 ppb	-0.01
Spiked Amount 5683.433				ry = 58.884%	
21) Nitrobenzene-D5(S)	5.17	82	795090	1612.51250 ppb	-0.01
Spiked Amount 2841.716				ry = 56.744%	
44) 2-Fluorobiphenyl(S)	7.19	172	1488283	1456,41514 ppb	-0.01
Spiked Amount 2841.716				ry = 51.251	
61) 2,4,6-Tribromophenol(S)	8,88	330	396458	3199.79897 ppb	-0.01
Spiked Amount 5683.433	•		Recove		
78) Terphenyl-D14(S)	11.55	244	1897211	1839.43211 ppb	0,00
Spiked Amount 2841.716			Recove		

Target Compounds

Qvalue

Data File: M:\YODA\DATA\Y120301B\0302Y017.D

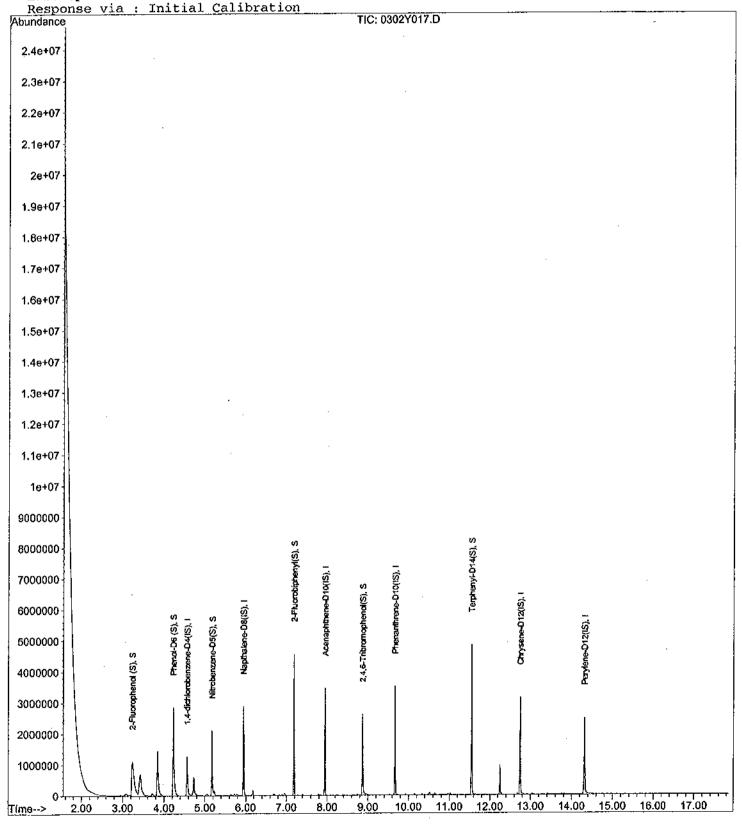
: 3 Mar 12 · 00:27 Acq On : AY55850S03 1/35.19G Sample

Operator: LF : YODA Inst Multiplr: 28.42

Misc

Method

Quant Results File: Y827AF.RES


Vial: 17

Quant Time: Mar 5 9:11 2012

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

: EPA 8270C Title

: Mon Mar 05 10:46:48 2012 Last Update

Data File : M:\YODA\DATA\Y120301B\0302Y018.D

Acq On : 3 Mar 12 00:52

Operator: LF

Vial: 18

Sample Misc

Inst : YODA Multiplr: 31.92 : AY55851S02 1/31.33G

Quant Results File: Y827AF.RES Quant Time: Mar 5 9:12 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 08:45:16 2012 Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS)	4.56	152 136	371319 1417981	40,00000 ppb 40,00000 ppb	0.00 0.00
38) Acenaphthene-D10(IS)	7.94	164	809199	40,00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1450213	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.75	240	1389693	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.32	264	1261669	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1602332	3783.06593 ppb	-0.02
Spiked Amount 6383,658			Recove	ry = 59.262%	
5) Phenol-D6 (S)	4.23	99		4273.06183 ppb	0.00
Spiked Amount 6383,658				xy = 66.938%	
21) Nitrobenzene-D5(S)	5.18	82	83760 7	1987.00152 ppb	0.00
Spiked Amount 3191.829			Recove		
44) 2-Fluorobiphenyl(S)	7.19	172	1624333	1831,19882 ppb	0.00
Spiked Amount 3191.829			Recove	xy = 57.371%	
61) 2,4,6-Tribromophenol(S)	8.88	330	438863		0.00
Spiked Amount 6383.658				ry = 63.921%	
78) Terphenyl-D14(S)	11,55	244		2201.32404 ppb	0.00
Spiked Amount 3191.829			Recove	ry = 68.967%	•

Target Compounds

Qvalue

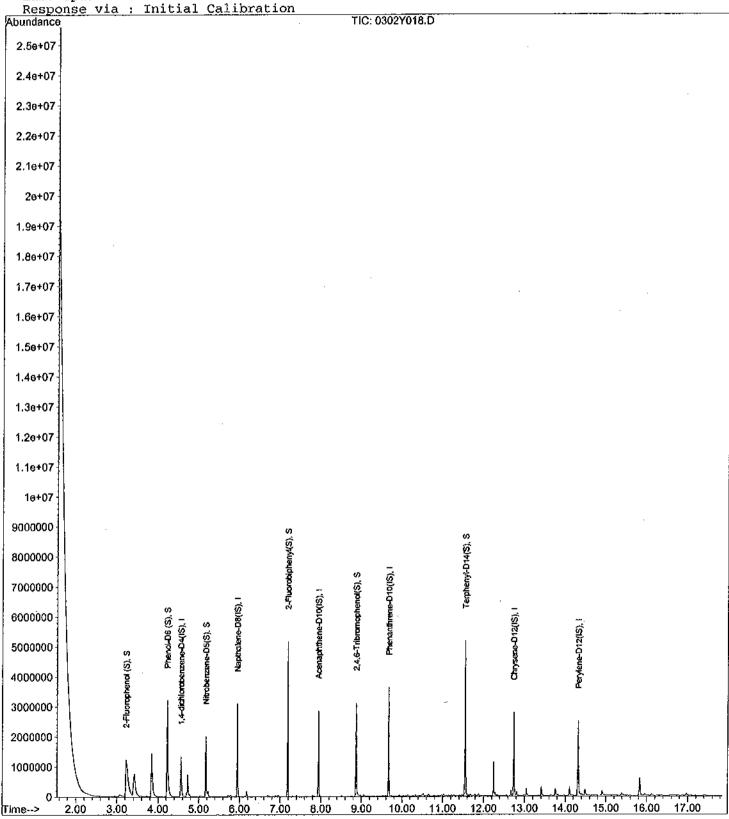
Data File: M:\YODA\DATA\Y120301B\0302Y018.D

Acq On : 3 Mar 12 00:52 : AY55851S02 1/31.33G Sample

Operator: LF : YODA Inst Multiplr: 31.92

Vial: 18

Misc


Quant Time: Mar 5 9:12 2012 Ouant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Method Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Quantitación Report . (Q1 Reviewed)

Data File: M:\YODA\DATA\Y120301B\0302Y019.D Vial: 19 Acq On : 3 Mar 12 1:18 Operator: LF Sample : AY55852S03 1/32.55G Inst : YODA Misc Multiplr: 30.72

Quant Time: Mar 5 9:12 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:45:16 2012 Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	383535	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.94	136	1466989	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	856375	40,00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1506702	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.75	240	1457130	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.32	264	1307685	40.00000 ppb	0.00
System Monitoring Compounds			•		
4) 2-Fluorophenol (S)	3.23	112	1799035	3958.06234 ppb	0.00
Spiked Amount 6144.393			Recove	ry = 64.4178	
5) Phenol-D6 (S)	4.23	99	2392843	4445.98124 ppb	0.00
Spiked Amount 6144.393			Recove	ry = 72.358%	
21) Nitrobenzene-D5(S)	5.17	82	945449	2086.64710 ppb	0.00
Spiked Amount 3072.197			Recove	ry = 67.920%	
44) 2-Fluorobiphenyl(S)	7.19	172	1794974	1840.43039 ppb	0.00
Spiked Amount 3072.197			Recove	ry = 59.906%	
61) 2,4,6-Tribromophenol(S)	8.88	330	453273	3833.07157 ppb	0.00
Spiked Amount 6144.393			Recove	ry = 62.383%	
78) Terphenyl-D14(S)	11.55	244	2222017	2242,26813 ppb	0.00
Spiked Amount 3072.197			Recove		

Target Compounds

Qvalue

Data File: M:\YODA\DATA\Y120301B\0302Y019.D

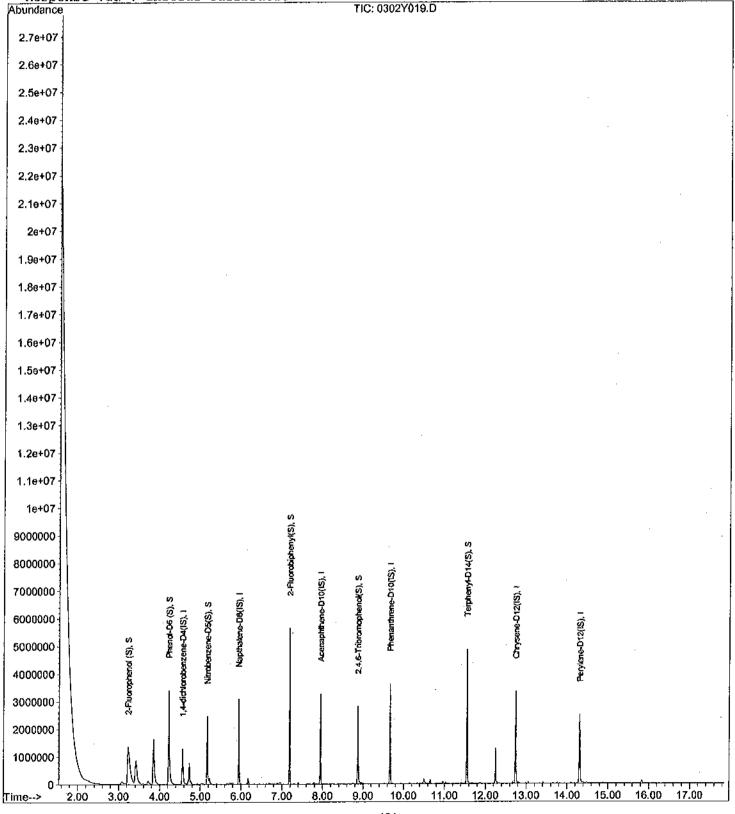
Acq On : 3 Mar 12 1:18 Sample

: AY55852S03 1/32.55G

Operator: LF ; YODA Inst Multiplr: 30.72

Vial: 19

Quant Time: Mar 5 9:12 2012


Quant Results File: Y827AF.RES

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Misc

: Mon Mar 05 10:46:48 2012 Last Update Response via : Initial Calibration

Data File : M:\YODA\DATA\Y120301B\0302Y020.D Vial: 20 Acq On : 3 Mar 12 1:43 Operator: LF Inst : YODA Multiplr: 29.20 Sample : AY55853S02 1/34.25G Misc

Quant Time: Mar 5 9:14 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:45:16 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS)	4.56 5.94 7.95 9.67 12.75	152 136 164 188 240	378399 1412206 802870 1396290 1344860	40.00000 pp 40.00000 pp 40.00000 pp 40.00000 pp 40.00000 pp	b 0.00 b 0.00 b 0.00 b 0.00
86) Perylene-D12(IS)	14.32	264	1191158	40.00000 pp	b 0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S) Spiked Amount 5839,416	3.23	112		3092.20161 p ry = 52.9	
5) Phenol-D6 (S) Spiked Amount 5839.416	4.23	99		3599.43742 p	
21) Nitrobenzene-D5(S) Spiked Amount 2919,708	5.17	82	791417	1724.38977 p ry = 59.0	0.00 dq
44) 2-Fluorobiphenyl(S) Spiked Amount 2919,708	7.19	172	1505470	1564.74095 py = 53.55	0.00 dq
61) 2,4,6-Tribromophenol(S) Spiked Amount 5839,416	8.88	330		3648.06099 p	0.00 dq
78) Terphenyl-D14(S) Spiked Amount 2919.708	11.55	244	1998503	2076.61771 p ry = 71.1	0.00 dq

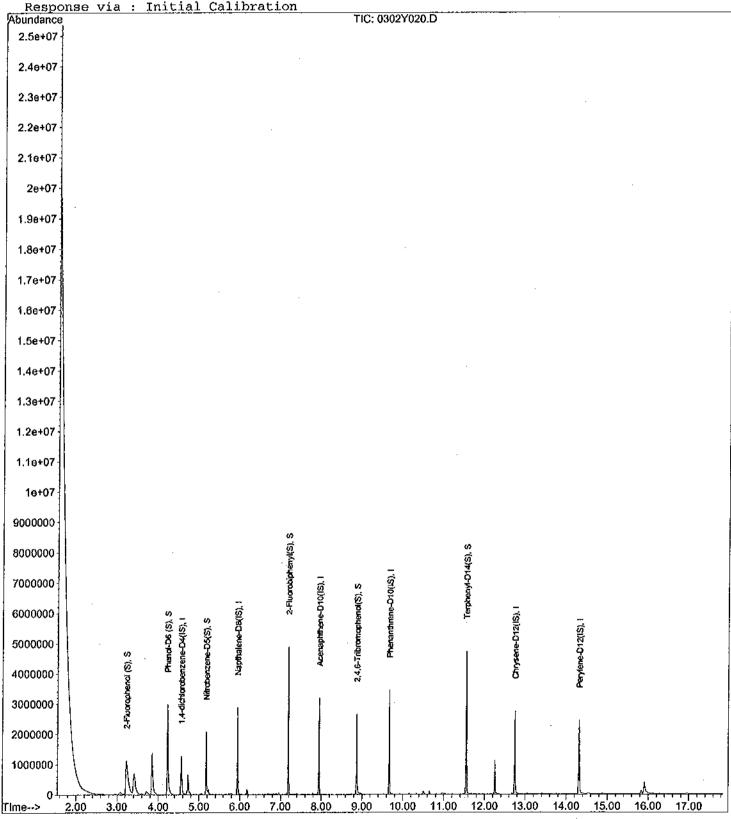
Qvalue

Data File : M:\YODA\DATA\Y120301B\0302Y020.D

Acq On : 3 Mar 12 1:43 Sample : AY55853S02 1/34.25G

Vial: 20 Operator: LF : YODA Inst Multiplr: 29.20

Quant Time: Mar 5 9:14 2012


Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

: EPA 8270C Title

Misc

Last Update : Mon Mar 05 10:46:48 2012

Data File: M:\YODA\DATA\Y120301B\0302Y021.D Vial: 21 Acq On : 3 Mar 12 2:09 Operator: LF Sample : AY55854S02 1/32.32G

Inst : YODA Misc : Multiplr: 30.94

Quant Time: Mar 5 9:16 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:45:16 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

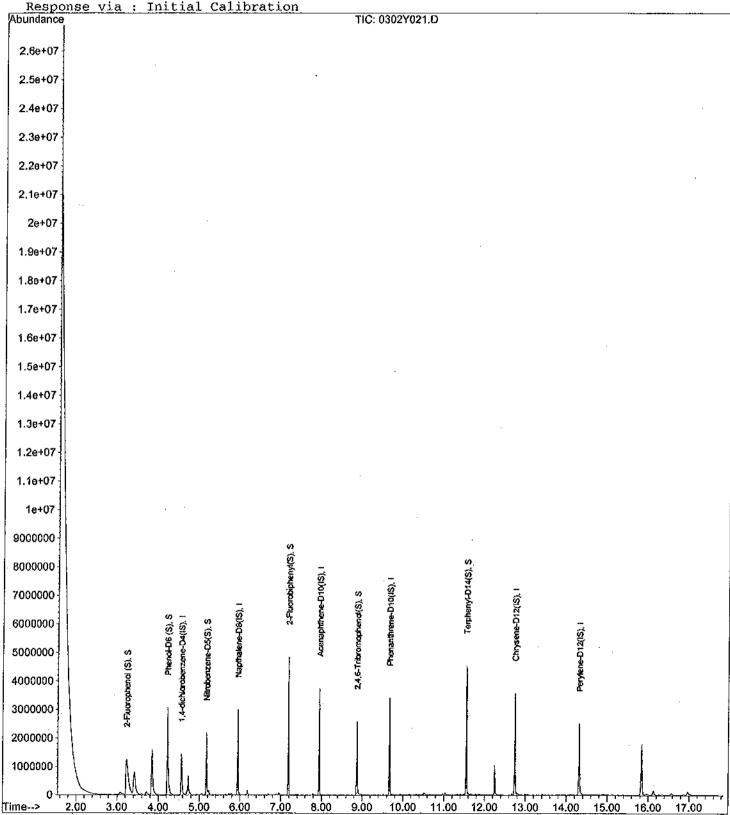
Internal Standards	R.T.	QIon	Response	Conc Units Do	ev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	432594	40.00000 ppb	-0.01
20) Napthalene-D8(IS)	5.94	136	1619293	40.00000 ppb	-0.01
38) Acenaphthene-D10(IS)	7.95	164	894410	40.00000 ppb	0.00.
62) Phenanthrene-D10(IS)	9.66	188	1619486	40.00000 ppb	-0.01
76) Chrysene-D12(IS)	12.75	240	1480954	40.00000 ppb	-0.01
86) Perylene-D12(IS)	14.31	264	1383261	40.00000 ppb	-0.01
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1624932	3192.14235 ppb	-0.01
Spiked Amount 6188,119				ry = 51.5858	
5) Phenol-D6 (S)	4.23	99	2171179	3602.07782 ppb	
Spiked Amount 6188.119			Recove	ry = 58.2109	ł .
21) Nitrobenzene-D5(S)	5.17	82	839049	1689.58160 ppb	-0.01
Spiked Amount 3094.059			Recove	ry = 54.6078	· ·
44) 2-Fluorobiphenyl(S)	7.19	172	1622662	1604.33909 ppb	-0.01
Spiked Amount 3094.059				ry = 51.8528	
61) 2,4,6-Tribromophenol(S)	8.88	330	415049	3384.49062 ppb	-0.01
Spiked Amount 6188.119			Recove	ry = .54.6938	s
78) Terphenyl-D14(S)	11.56	244		2030.97976 ppb	
Spiked Amount 3094,059				ry = 65.6418	

Target Compounds

Qvalue

Quantitation report

Data File: M:\YODA\DATA\Y120301B\0302Y021.D


Vial: 21 Acq On : 3 Mar 12 2:09 Operator: LF Sample : AY55854S02 1/32.32G : YODA Inst Misc Multiplr: 30.94

Quant Time: Mar 5 9:16 2012 Quant Results File: Y827AF.RES

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Data File: M:\YODA\DATA\Y120301B\0302Y022.D Via1: 22 Acq On : 3 Mar 12 2:34 Operator: LF Inst : YODA Multiplr: 28.11 Sample : AY55855S03 1/35.58G Misc :

Quant Time: Mar 5 9:17 2012 Quant Results File: Y827AF, RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update: Mon Mar 05 08:45:16 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS)	4.56 5.94	152 136	384897 1473968	40.00000 ppb 40.00000 ppb	
38) Acenaphthene-D10(IS)	7.95	164	832907	40.00000 ppb	
62) Phenanthrene-D10(IS)	9.67	188	1455316	40.00000 ppb	
76) Chrysene-D12(IS)	12.75	240	1408396	40.00000 ppb	
86) Perylene-D12(IS)	14.32	264	1272896	40.00000 ppb	
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1942034	3894.98114 pp	b -0.01
Spiked Amount 5621.135				xy = 69.29	
5) Phenol-D6 (S)	4.23	99	2523933	4275.00627 pp	b -0.01
Spiked Amount 5621,135			Recove	ry = 76.05	2%
<pre>21) Nitrobenzene-D5(S)</pre>	5.17	82	983438	1976.24927 pp.	-0.01
Spiked Amount 2810.568				ry = 70.31	_
<pre>44) 2-Fluorobiphenyl(S)</pre>	7.19	172	1859629	1793.49450 pp	b -0.01
Spiked Amount 2810.568				ry = 63.81	
<pre>61) 2,4,6-Tribromophenol(S)</pre>	8.88	330	476837	3792.88374 pp	
Spiked Amount 5621.135				ry = 67.47	
78) Terphenyl-D14(S)	11.55	244		2146.53577 pp	
Spiked Amount 2810.568			Recove	ry = 76.376	48

Target Compounds

Ovalue

Data File: M:\YODA\DATA\Y120301B\0302Y022.D

: 3 Mar 12 2:34 Operator: LF

Sample

Inst : YODA

Vial: 22

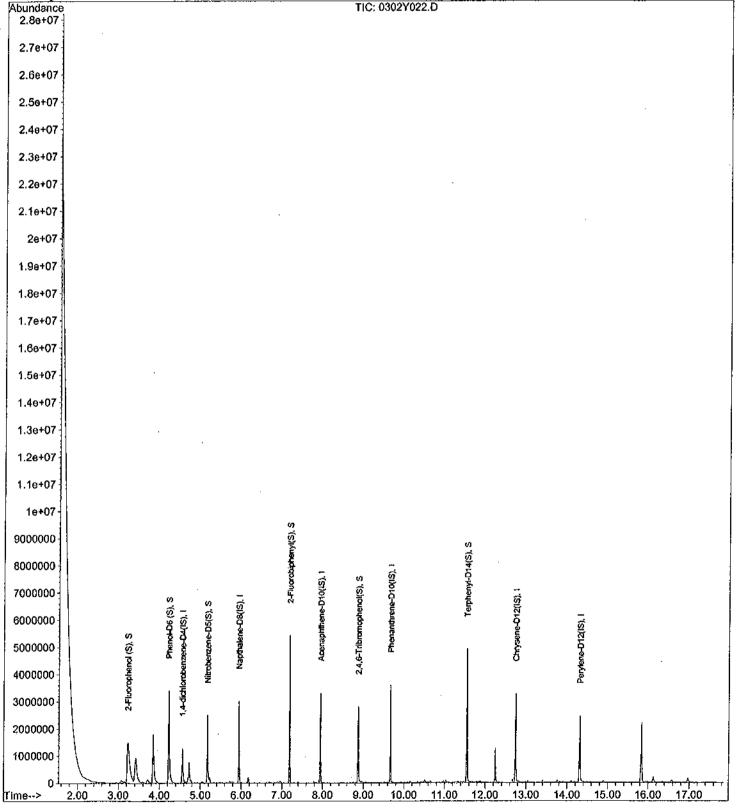
Misc

: AY55855S03 1/35.58G

Multiplr: 28.11

Quant Time: Mar 5 9:17 2012

Quant Results File: Y827AF.RES


Method Title

Acq On

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

Data File : M:\YODA\DATA\Y120301B\0302Y023.D

Acq On : 3 Mar 12 2:59 Sample : AY55856S03 1/32.37G Misc

Inst : YODA Multiplr: 30.89

Vial: 23

Operator: LF

Quant Time: Mar 5 9:17 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update: Mon Mar 05 08:45:16 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units 1	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	398080	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.94	136	1514631	40.00000 ppb	
38) Acenaphthene-D10(IS)	7.95	164	878338	40.00000 ppb	
62) Phenanthrene-D10(IS)	9.67	188	1549585	40.00000 ppb	
76) Chrysene-D12(IS)	12.75	240	1473534	40,00000 ppb	
86) Perylene-D12(IS)	14,32	264	1329363	40.00000 ppb	
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1718942	3663,92940 ppk	o. 0.00
Spiked Amount 6178.560				ry = 59.301	
5) Phenol-D6 (S)	4.23	99		4112.08747 ppk	
Spiked Amount 6178.560				ry = 66.554	
21) Nitrobenzene-D5(S)	5.17	82		1946.48510 ppk	
Spiked Amount 3089,280		•		rv = 63.008	
44) 2-Fluorobiphenyl(S)	7.19	172	1737579	1746.69193 ppk	0.00
Spiked Amount 3089,280				ry = 56.540	
61) 2,4,6-Tribromophenol(S)	8.88	330		3632.39158 ppb	0.00
Spiked Amount 6178.560				rv = 58.790	
78) Terphenyl-D14(S)	11.55	244		2029.53689 pph	
Spiked Amount 3089.280				ry = 65.696	

Target Compounds

Qvalue

Data File: M:\YODA\DATA\Y120301B\0302Y023.D

2:59 Acq On : 3 Mar 12

Operator: LF : YODA Inst

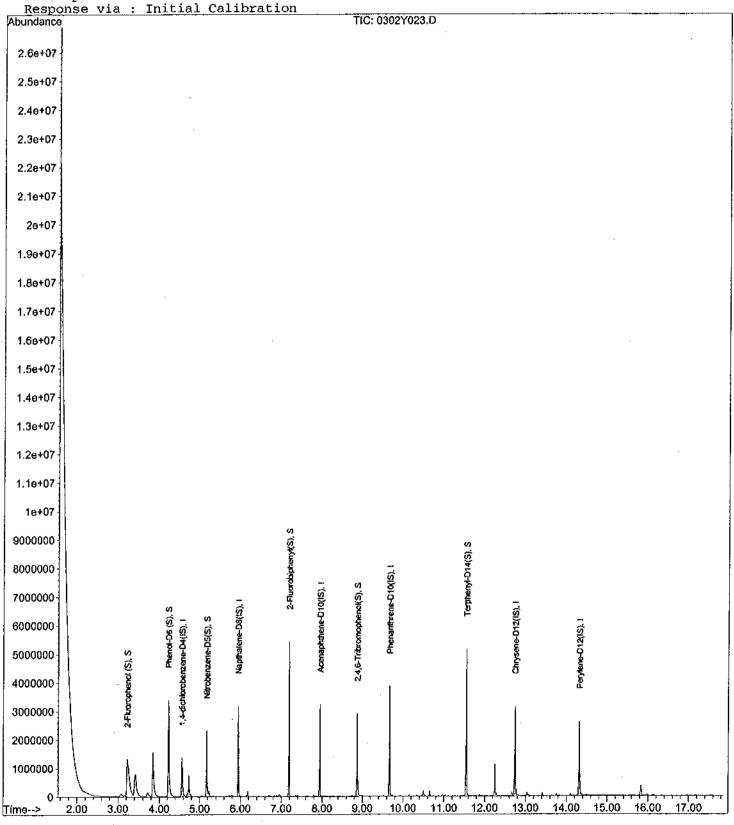
Vial: 23

Sample Misc

: AY55856S03 1/32.37G

Multiplr: 30.89

Quant Time: Mar 5 9:17 2012


Quant Results File: Y827AF.RES

Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title EPA 8270C

: Mon Mar 05 10:46:48 2012 Last Update

Data File: M:\YODA\DATA\Y120301B\0302Y024.D

Vial: 24 Operator: LF Inst : YODA Multiplr: 29.42 Acq On : 3 Mar 12 3:25 : AY55869S02 1/33.99G Sample Misc

Quant Results File: Y827AF.RES Quant Time: Mar 5 9:18 2012

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:45:16 2012

Response via : Initial Calibration

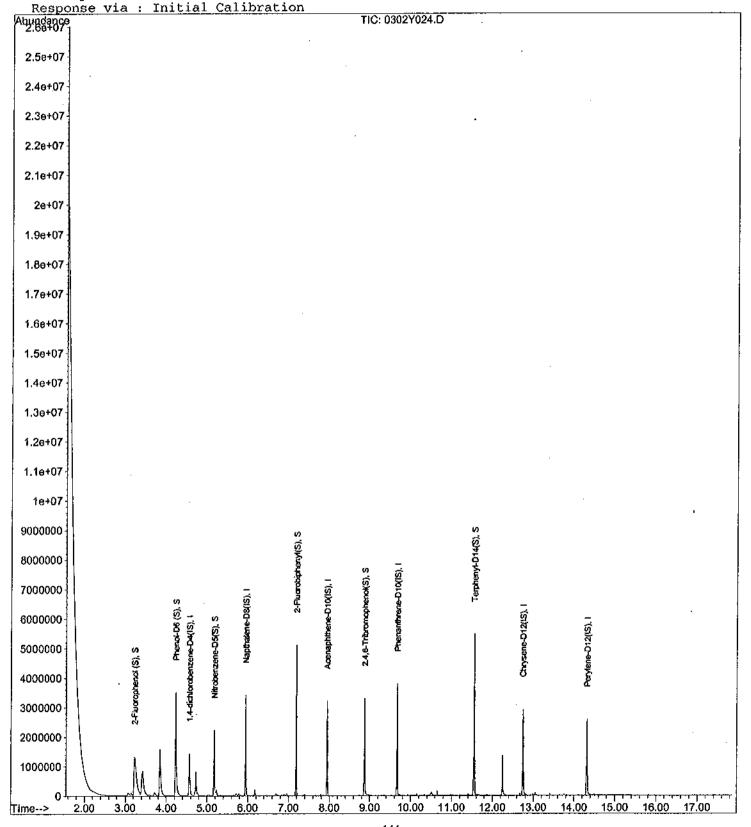
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units Dev	v(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS) 86) Perylene-D12(IS)	4.56 5.95 7.94 9.67 12.75 14.32	152 136 164 188 240 264	397218 1550526 857107 1521800 1473149 1282793	40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol (S) Spiked Amount 5884.084	3.23	112		3475.33582 ppb ry = 59.063%	-0.02
5) Phenol-D6 (S) Spiked Amount 5884.084	4.23	99	2306891	3963.29487 ppb ry = 67.356%	0.00
21) Nitrobenzene-D5(S) Spiked Amount 2942.042	5.18	82	937079	1873.84954 ppb $xy = 63.6928$	0.00
44) 2-Fluorobiphenyl(S) Spiked Amount 2942.042	7.19	172		1679.78758 ppb $xy = 57.0968$	0.00
61) 2,4,6-Tribromophenol(S) Spiked Amount 5884.084	8.87	330		3755.83056 ppb ry = 63.8308	-0.02
78) Terphenyl-D14(S) Spiked Amount 2942.042	11,55	244	2031266 Recove	1941.59389 ppb ry = 65.995%	0.00

Ovalue

ушанствавтой керогс

Data File: M:\YODA\DATA\Y120301B\0302Y024.D


Vial: 24 : 3 Mar 12 Acq On 3:25 Operator: LF : YODA : AY55869S02 1/33.99G Inst Sample Misc Multiplr: 29.42

Quant Time: Mar 5 9:18 2012 Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

Title ; EPA 8270C

: Mon Mar 05 10:46:48 2012 Last Update

Quarter control report

Data File : M:\YODA\DATA\Y120301B\0302Y007.D Vial: 7 Operator: LF Acg On : 2 Mar 12 20:11 : 120229A BLK 1/30,00G Inst : YODA Sample Multiplr: 33.33 Misc

Quant Results File: Y827AF.RES Quant Time: Mar 5 9:00 2012

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:45:16 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Target Compounds

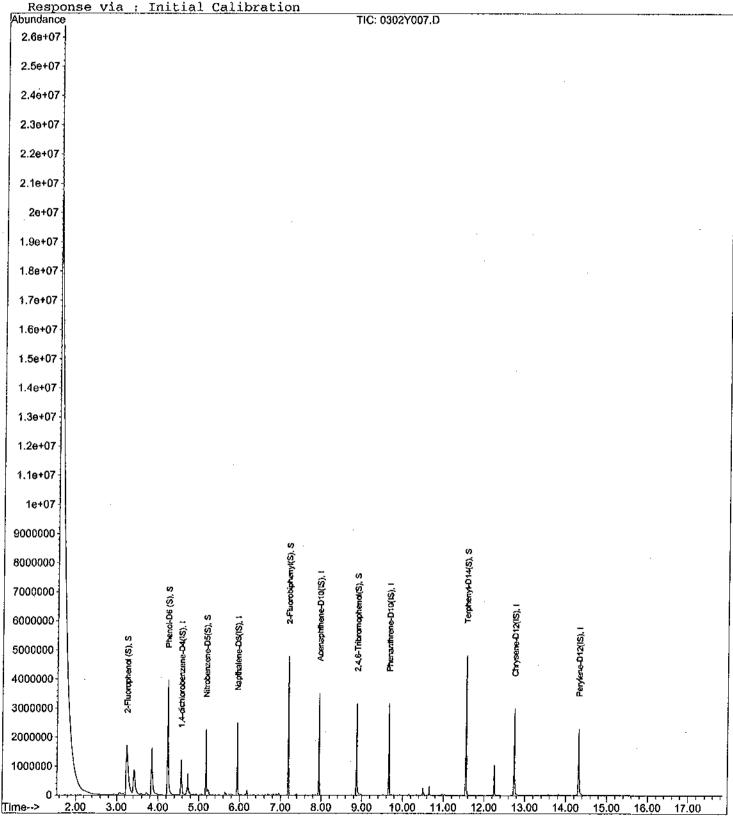
Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS)	4.57 5.94 7.95 9.66 12.75 14.31		376354 1409064 792996 1418560 1320254 1209934	40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb	0,00 -0.01 0.00 -0.01 -0.01 -0.01
86) Perylene-D12(IS)	14,51	203	1200004	40100000 pp.	0,02
System Monitoring Compounds 4) 2-Fluorophenol (S) Spiked Amount 6666.667	3.24	112		4644.63329 ppk	
5) Phenol-D6 (S) Spiked Amount 6666.667	4.24	99	2412628	4956.57739 ppk ry = 74.349	
21) Nitrobenzene-D5(S) Spiked Amount 3333.333	5.17	82	942729	2350.30132 pph ry = 70.509	-0.01
44) 2-Fluorobiphenyl(S) Spiked Amount 3333.333	7.19	172	1881613	2260.55024 ppk ry = 67.817	-0.01
61) 2,4,6-Tribromophenol(S) Spiked Amount 6666.667	8.88	330	455129	$\frac{1}{4}509.66428$ ppk	
78) Terphenyl-D14(S) Spiked Amount 3333.333	11.56	244		2601.12027 pph	0.00

Qvalue

Data File : M:\YODA\DATA\Y120301B\0302Y007.D

Vial: 7 : 2 Mar 12 20:11 Acq On Operator: LF : 120229A BLK 1/30,00G Sample Inst : YODA Misc Multiplr: 33.33

Quant Time: Mar 5 9:00 2012


Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Method

Last Update : Mon Mar 05 10:46:48 2012

Data File : M:\YODA\DATA\Y120301B\0302Y008.D Vial: 8 Acq On : 2 Mar 12 20:37 Sample : 120229A LCS-1 1/30.00G Misc : Operator: LF Inst : YODA Multiplr: 33.33

Quant Time: Mar 5 10:58 2012 Ouant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

	•					
Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)	
1) 1,4-dichlorobenzene-D4(IS)	4 57	152	374633	40.00000 ppb	0.00	
20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS) 86) Perylene-D12(IS)	5 95	136	1495465		0.00	
38) Acenaphthene-D10(IS)	7.95	164	861580	40.00000 ppb	0.00	
62) Phenanthrene-D10(IS)	9.67	188	1590557	40.00000 ppb	0.00	
76) Chrysene-D12(TS)	12.76	240	1454055	40,00000 ppb	0.00	
86) Pervlene-D12(IS)	14.32	264	1590557 1454055 1380571	40.00000 ppb	0,00	
00, 101,10110 511(55,				III PPD	7,70	
System Monitoring Compounds						
4) 2-Fluorophenol (S)	3.23	112	1722914		-0.01	
Spiked Amount 6666.667			Recov			
5) Phenol-D6 (S)	4,24	99		4547.64355 ppb	0.00	
Spiked Amount 6666.667	F 10	0.0		ery = 68.215%	0.00	
21) Nitrobenzene-D5(S)	5.18	82	909074	2135.45479 ppb	0.00	
Spiked Amount 3333.333 44) 2-Fluorobiphenv1(S)	7.20	170		ery = 64.064%	0 00	
	7.20	172	1849979		0.00	•
Spiked Amount 3333.333 61) 2,4,6-Tribromophenol(S)	8.89	330	Recov	ery = 61.369% 4428.47229 ppb	0.00	
Spiked Amount 6666.667	0.03	330		ery = 66.427%	0.00	
78) Terphenyl-D14(S)	11.56	244	2148790	2357,66039 ppb	0.00	
Spiked Amount 3333.333	11.50	244		ery = 70.730%	0.00	
Spiked Adodite 5555.555			Recov	ery = /0:/504		.1
Target Compounds			-		alue	112301 x 40x 13,33 374633 x 1,092 5561 (53/9/12
n-Nitrosodimethylamine	1.95	42	209050	934.21058 ppb	87	11220 1 8 90 7
3) Pyridine	1.98	52	172207	561,40917 ppb	95	1.092
	4,24	94	644979		76	238
7) Aniline	4.32	93	507001		100	371467
8) Bis (2-chloroethyl) ether	4.32	63	365323		99	, 56t
9) 2-Chlorophenol	4.36	128	483297		99	
10) 1,3-DCB	4.50 4.59	146	506247		99	6219112
11) 1,4-DCB	4.59	146	513868	919.45299 ppb	99	1 11
12) Benzyl alcohol	4.75	79	383769		98	
1.5 % 1 . 2 ~ 1.0 18	4./4	146	481221	939.33329 ppb	37	
14) 2-Methylphenol	4.88	108	441072	990.39090 ppb	99	
15) Bis (2-chloroisopropyl) et	$\frac{4.88}{5.01}$	45	751884	1021.40179 ppb 936.00681 ppb	99	
<pre>16) Acetophenone 17) 3&4-Methylphenol</pre>	5.05	105 107	598427 1006591	1994.17616 ppb	94 98	
18) n-Nitrosodi-n-propylamine		43	404773	1023.80485 ppb	90 97	
19) Hexachloroethane	5.00	117	177124	943.29619 ppb	99	
22) Nitrobenzene	5 20	77	492392		98	•
23) Isophorone 24) 2-Nitrophenol 25) 2,4-Dimethylphenol	5.47	82	903983		92	-
24) 2-Nitrophenol	5.54	139	272878		97	
25) 2.4-Dimethylphenol	5.62	107	438197	890.86258 ppb	96	
26) Benzoic acid	5.80	105	124840	595.99546 ppb	94	-
27) Bis (2-chloroethoxy) metha	5.71	93	531027	966.56399 ppb	92	
28) 2,4-Dichlorophenol	5.82	162	386217	965.09357 ppb	98	
29) 1,2,4-Trichlorobenzene	5,89	180	401905	926.59367 ppb	100	
30) Naphthalene	5.97	128	1416927	941.84486 ppb	99	
31) 4-Chloroaniline	6.06	127	487004	919.72087 ppb	96	
32) 2,6-Dichlorophenol	6.06	162	375869	960.85855 ppb	99	
33) Hexachloropropene	6.06	213	227989	947.96568 ppb	99	
34) Hexachlorobutadiene	6.11	225	201837	919.12750 ppb	99	
35) Caprolactum	6.52	113	155372	957.48859 ppb	95	
36) 4-Chloro-3-methylphenol37) 2-Methylnaphthalene	6.65	107	416900	979.12347 ppb	96	
37) 2-Methylnaphthalene	6.76	142	1000860	996.69761 ppb	99	
140						

^{(#) =} qualifier out of range (m) = manual integration 0302Y008,D Y827AF.M Thu Mar 08 15:01:27 2012

Data File : M:\YODA\DATA\Y120301B\0302Y008.D Vial: 8 Acq On : 2 Mar 12 20:37 Operator: LF : 120229A LCS-1 1/30.00G Inst : YODA Multiplr: 33.33 Sample Misc

Quant Time: Mar 5 10:58 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration DataAcq Meth : Y8270AQ

Compound		R.T.	QIon	Response	Con	c Unit	Qv	alue	
39) Hexachlor	ocyclopentadiene	6.93	237	115036	614	.98974	daa		98
	etrachlorobenzene	6.95	216	388673	920	.83382	ppb		94
41) 2,4,6-Tric	chlorophenol	7.10	196	272207	946	.92479	ppb		97
42) 2,4,5-Trio		7.16	196	287868	937	.00391	ppb		96
43) 2-Chlorona		7.32	162	876854		.88528			97
45) 1,1'-Biphe	eny1	7.30	154	1148189		.80501			98
46) 2-Nitroan:		7.47	138	333940	941	.48935	ppb		88
47) Dimethyl p	phthalate	7.69	163	1012159	952	.01655	ppb		88
48) 2,6-DNT	_	7.75	165	233252		.08237			87
49) Acenaphthy		7.78	152	1440561		.11050			99
50) 3-Nitroani		7.95	65	304893		.45404			93
51) Acenaphthe		7.98	154	857183		.99304			99
52) 2,4-Dinita		8.08	184	85936		.45076			94
53) 4-Nitrophe		8.21	109	89289		.69223			95
54) Dibenzofur	ran	8.19	139	640450		.88079			98
55) 2,4-DNT		8.22	165	328645		.78815			93
	etrachlorophenol	8.36	232	214742		.53770			97
57) Diethyl ph		8.50	149	1026921		.32003			99
	nenyl phenyl ethe	8.61 8.59	204 165	500000 954623		.75009 .12022			91 99
59) Fluorene	line	8.67	138	242649		39099			98
60) 4-Nitroani 63) Diphenyl a	_	8.76	168	993326		.79067			100
	o-2-methylphenol	8.70	198	181636		12199			95
65) n-Nitrosod		8.76	167	531234	934	77100	ppb		98
66) 1,2-Dipher		8.79	182	303911	931	12932	ppb	#	45
	nyl phenyl ether	9.17	248	257590	945	88156	nnh	"	97
68) Hexachloro		9.21	284	269402	914	31047	daa	#	80
69) Atrazine		9.40	200	114577		43914			98
70) Pentachlor	ophenol	9.47	266	149494		39818			97
71) Phenanthre		9.70	178	1470533	926	35103	daa		100
72) Anthracene		9.76	178	1477770	905	33879	dag		99
73) Carbazol		9.97	167	1367457		37463			99
74) Di-n-butyl	phthalate	10.41	149	1753629	1014.	59370	ppb		100
75) Fluoranthe	ne	11.08	202	1505653	928.	85241	ppb	#	88
77) Pyrene		11.34	202	1545398		67762		#	86
79) Butyl benz		12.14	149	720775		61990			82
80) 3,3'-Dichl		12.74	252	348623		90058			100
81) Benz (a) a		12.74	228	1324150		07616			100
	ylhexyl) phthala	12.82	149	1044830	929.	28135	ppb	#	94
83) Chrysene		12.78	228	1325931		63298		#	97
84) Di-n-octyl		13.54	149	1690374	932.	80447	ppp		100
	2,3-cd) pyrene	15.69	276	1384993	933.	17607	ppp		99
87) Benzo (b)		13.91	252	1397258	964.	29941	agg	u	98
88) Benzo (k)		13.94	252	1268931		99711		#	93
89) Benzo (a)		14.26	252	1253753		57570			98
90) Dibenz (a, 91) Benzo (g,h		15.73 16.10	278 276	1205615 1182843		13958			94 95
enzo (g,n	'I' berlie	TO.TO	210	TTOSO#3	303,	30060	քըս		30

Data File: M:\YODA\DATA\Y120301B\0302Y008.D

: 2 Mar 12 20:37 : 120229A LCS-1 1/30.00G

Vial: 8 Operator: LF : YODA Inst

Quant Results File: Y827AF.RES

Multiplr: 33.33

Quant Time: Mar 5 10:58 2012

Method

Acq On

Sample

Misc

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

:

: Mon Mar 05 10:46:48 2012 Last Update Response via : Initial Calibration TIC: 0302Y008.D Abundance 2.7e+07 2.6e+07 2.5e+07 2.4e+07 2.3e+07 2.2e+07 2.1e+07 2e+07 1.9e+07 1.8e+07 1.7e+07 1.6e+07 1.5e+07 1.4e+07 1.3e+07 1.2e+07 1.1e+07 1e+07 9000000 8000000 MZO (R) fluoranthene, TM Butyl benzylphthalate, TM 7000000 a Company, Raday Change and Tark 6000000-Serzo (g,h,i) perylene, TM 5000000 4000000 3000000 2000000 1000000 11.00 12.00 14.00 15.00 16.00 17.00 10.00 13.00 2.00 3.00 6.00 Time-->

Data File : M:\YODA\DATA\Y120301B\0302Y009.D Acq On : 2 Mar 12 21:02 Sample : AY55855S03 MS-1 1/32.40G Vial: 9 Operator: LF Inst : YODA Multiplr: 30.86 Misc

Quant Time: Mar 5 10:58 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 10:46:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards		QIon	Response	Conc Units D	ev(Min)
1) 1,4-dichlorobenzene-D4(IS)		152	390201	40.00000 ppb	0.00
<pre>20) Napthalene-D8(IS)</pre>	5.95	136	1485570	40.00000 ppb	0.00
<pre>38) Acenaphthene-D10(IS)</pre>	7.95	164	848324	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188			0.00
76) Chrysene-D12(IS)	12.75	240		40.00000 ppb	0.00
86) Perylene-Dl2(IS)	14.33	264	1368473	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.24	112	1609737		
Spiked Amount 6172,840			Recov		8
5) Phenol-D6 (S)	4.24	99	2131971		
Spiked Amount 6172.840	F 10	0.0	Recove		
21) Nitrobenzene-D5(S)	5.18	82	868559	1901.73467 ppb	
Spiked Amount 3086.420 44) 2-Fluorobiphenyl(S)	7.19	172	Recove	ery = 61.6169 1826.45998 ppb	
Spiked Amount 3086.420	7,19	1/2	Recove		
61) 2,4,6-Tribromophenol(S)	8.88	330	472017		0.00
Spiked Amount 6172.840	0.00	330	Recove		
78) Terphenyl-D14(S)	11.55	244	2014867	2127.36219 ppb	
Spiked Amount 3086.420	11,00		Recove		
				_	
Target Compounds			400000		Qvalue
2) n-Nitrosodimethylamine	1.96	42	192297	741,33648 ppb	91
6) Phenol 7) Aniline	4.25 4.32	94 93	626822	850.65572 ppb 819.56519 ppb	93
8) Bis (2-chloroethyl) ether	4.32	63	469736 451620	1027.57596 ppb	99 87
9) 2-Chlorophenol	4.36	128	461441	845.98115 ppb	100
10) 1,3-DCB	4.50	146	454183	741.87218 ppb	98
11) 1,4-DCB	4.58	146	472935	752.26938 ppb	97
12) Benzyl alcohol	4.75	79	341134	820.87917 ppb	99
13) 1,2-DCB	4.74	146	443964	770.40106 ppb	100
14) 2-Methylphenol	4.87	108	411979	822.36801 ppb	100
15) Bis (2-chloroisopropyl) et	4.88	45	707548	854.46771 ppb	99
16) Acetophenone	5.02	105	581129	808.04277 ppb	99
17) 3&4-Methylphenol	5.05	107	972031	1711.92434 ppb	95
18) n-Nitrosodi-n-propylamine	5.03	43	383616	862.57394 ppb	93
19) Hexachloroethane	5.09	117	156491	740.89047 ppb	93
22) Nitrobenzene 23) Isophorone	5.19 5.46	77	476560	867.14386 ppb	95
	5.54	82 139	856282 263616	873.01431 ppb 864.98094 ppb	100
25) 2,4-Dimethylphenol	5.61	107	343842	651.56792 ppb	92 99
26) Benzoic acid	5.81	105	1332	179.18831 ppb	# 45
27) Bis (2-chloroethoxy) metha	5.71	93	517895	878.64852 ppb	95
28) 2,4-Dichlorophenol	5.82	162	372612	867.86930 ppb	97
29) 1,2,4-Trichlorobenzene	5.89	180	384642	826.57465 ppb	100
30) Naphthalene	5.97	128	1347397	834.80862 ppb	99
31) 4-Chloroaniline	6.07	127	480617	846.02286 ppb	# 92
32) 2,6-Dichlorophenol	6.06	162	361206	860.67138 ppb	99
33) Hexachloropropene	6.06	213	210896	817.34708 ppb	98
34) Hexachlorobutadiene	6.10	225	187610	796.32512 ppb	97
35) Caprolactum	6.50	113	165562	951.00099 ppb	94
36) 4-Chloro-3-methylphenol	6.65	107	412935	903.95480 ppb	98
37) 2-Methylnaphthalene	6.75	142	940727	873.19883 ppb	99
39) Hexachlorocyclopentadiene	6.93	237	110540	555.72987 ppb	97

^{(#) =} qualifier out of range (m) = manual integration 0302Y009.D Y827AF.M Thu Mar 08 15:01:30 25012

Data File : M:\YODA\DATA\Y120301B\0302Y009.D Vial: 9 Acq On : 2 Mar 12 21:02 Sample : AY55855S03 MS-1 1/32.40G Operator: LF Inst : YODA Multiplr: 30.86 Misc

Quant Time: Mar 5 10:58 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Compound	R.Τ.	QIon	Response	Conc Unit Q	value
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	374555	834,49293 ppb	# 89
41) 2,4,6-Trichloropheno1	7.11	196	265981	870.11567 ppb	94
42) 2,4,5-Trichlorophenol	7.16	196	279771	856.36889 ppb	98
43) 2-Chloronaphthalene	7.31	162	846965	853.73523 ppb	99
45) 1,1'-Biphenyl	7.30	154	1083013	847.81241 ppb	99
46) 2-Nitroaniline	7.47	138	339287	899.54805 ppb	98
47) Dimethyl phthalate	7.68	163	983800	870.18733 ppb	98
48) 2,6-DNT	7.76	165	235645	884.56781 ppb	100
49) Acenaphthylene	7.78	152	1387224	841.38059 ppb	99
50) 3-Nitroaniline	7.95	65	305838	844.69022 ppb	97
51) Acenaphthene	7.99	154	833363	853.00043 ppb	100
52) 2,4-Dinitrophenol	8.08	184	53203	540.08627 ppb	# 62
53) 4-Nitrophenol	8.21	109	91122	845.20027 ppb	95
54) Dibenzofuran	8.19	139	630058	941.67794 ppb	82
55) 2,4-DNT	8.22	165	325975		91
56) 2,3,4,6-Tetrachlorophenol	8.35	232	212394	872.01543 ppb	95
57) Diethyl phthalate	8.51	149	978425	871.18405 ppb	100
58) 4-Chlorophenyl phenyl ethe	8.60	204	459686	848.79420 ppb	96
59) Fluorene	8.58	165	921377	878.70874 ppb	100
60) 4-Nitroaniline	8.68	138	240954	824.93319 ppb	97
63) Diphenyl amine	8.76	168	917858	831.10525 ppb	99
64) 4,6-Dinitro-2-methylphenol	8.69	198	167168	781.69643 ppb	# 78.
65) n-Nitrosodiphenylamine	8.76	167	488795	833.81260 ppb	99
66) 1,2-Diphenylhydrazine	8.79	182	287743	854.65468 ppb	99
67) 4-Bromophenyl phenyl ether	9.17	248	246059	875.92989 ppb	98
68) Hexachlorobenzene	9.21	284	267092	878.77175 ppb	95
69) Atrazine	9.41	200	117583	2363.26992 ppb	95
70) Pentachlorophenol	9.47	266	142843	847.01848 ppb	98
71) Phenanthrene 72) Anthracene	9.70	178	1405371	858.25063 ppb	99
	9.76	178	1466645	871.06712 ppb	100
73) Carbazol	9,97	167	1329579	876.96176 ppb	99
74) Di-n-butylphthalate 75) Fluoranthene	10.40 11.08	149 202	1567066	878.94978 ppb	99
73) Fluoranchene 77) Pyrene	11.08	202	1471698	880.16247 ppb	94
79) Butyl benzylphthalate	12.15	149	1544406	865.19865 ppb	96
80) 3,3'-Dichlorobenzidine	12.13	252	694682 320938	877.94991 ppb	89
81) Benz (a) anthracene	12.74	228		657.23184 ppb	99
82) Bis (2-ethylhexyl) phthala	12.73	149	1263589 1046537	871.52027 ppb	99
83) Chrysene	12.79	228	1325327	895.70285 ppb 866.27892 ppb	97
84) Di-n-octylphthalate	13.55	149	1709898	907.99989 ppb	99
85) Indeno (1,2,3-cd) pyrene	15.68	276	1327630	860.79722 ppb	100
87) Benzo (b) fluoranthene	13.91	252	1219235	785.99820 ppb	97 99
88) Benzo (k) fluoranthene	13.94	252 252	1304545	911.34913 ppb	99
89) Benzo (a) pyrene	14.26	252	1206310	862.43231 ppb	98
90) Dibenz (a,h) anthracene	15.72	278	1145354	875.12144 ppb	99
91) Benzo (g,h,i) perylene	16.09	276	1136897	882.83422 ppb	98
- , (g,,a, posjao		2,0		CONTROL PPD	20

Data File: M:\YODA\DATA\Y120301B\0302Y009.D

: 2 Mar 12 21:02 : AY55855S03 MS-1 1/32.40G Acq On Sample

Operator: LF : YODA Inst Multiplr: 30.86

Vial: 9

5 10:58 2012 Quant Time: Mar

Ouant Results File: Y827AF.RES

Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

: EPA 8270C Title

Misc

: Mon Mar 05 10:46:48 2012 Last Update

Response via : Initial Calibration TIC: 0302Y009.D Abundance 2.5e+07 2.46+07 2.3e+07 2.29+07 2.1e+07 2e+07 1.9e+07 1.8e+07 1.7e+07 1.6e+07 1.5e+07 1.4e+07 1.3e+07 1.2e+07 1,1e+07 1e+07 9000000 8000000 7000000 nd@metra@comparenenterin 6000000 Senzo (g.h.i) perylene, TM 5000000 4000000 3000000 2000000 1000000 14.00 15.00 10.00 16.00 5.00 6.00 9.00 11.00 12.00 13.00 3.00

Data File : M:\YODA\DATA\Y120301B\0302Y010.D
Acq On : 2 Mar 12 21:28
Sample : AY55855S03 MSD-1 1/32.69G
Misc : Vial: 10 Operator: LF Inst : YODA Multiplr: 30.59

Quant Time: Mar 5 10:58 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Internal Standards		QIon	Response	Conc Units D	ev(Min)
	4.57	152	384045	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.95	136	1495484	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	832160	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1529244	40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.76	240		40.00000 ppb	0.00
86) Perylene-D12(IS)	14.32	264	1347136	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1544204	3378.36470 ppb	-0.01
Spiked Amount 6118.079			Recove	ery = 55.219	
5) Phenol-D6 (S)	4.24	99	2050746	2.5	
Spiked Amount 6118.079			Recove		
21) Nitrobenzene-D5(S)	5.18	82	837113		
Spiked Amount 3059,039 44) 2-Fluorobipheny1(S)	7.20	172	Recove 1745176		
Spiked Amount 3059.039	7.20	112	Recove	1833.55340 ppb ery = 59.939	
61) 2,4,6-Tribromophenol(S)	8.89	330	470880	4080.28427 ppb	
Spiked Amount 6118.079	0.05	550	Recove		
78) Terphenyl-D14(S)	11.55	244	2015192		
Spiked Amount 3059.039			Recove		
Target Compounds 2) n-Nitrosodimethylamine	1 05	40	016001		Qvalue
6) Phenol	$\frac{1.95}{4.24}$	42 94	216091 593654	866.09395 ppb 811.29583 ppb	92
7) Aniline	4.32	93	452170	794.45198 ppb	88 100
8) Bis (2-chloroethyl) ether	4.32	63	432680	991.38842 ppb	90
9) 2-Chlorophenol	4.36	128	440415	813.09794 ppb	97
10) 1,3-DCB	4.50	146	423772	697,05448 ppb	99
11) 1,4-DCB	4.59	146	438549	702.46762 ppb	99
12) Benzyl alcohol	4.75	79	323031	782.77092 ppb	99
13) 1,2-DCB	4.74	146	412669	721.11946 ppb	100
14) 2-Methylphenol	4.88	108	395189	794.38718 ppb	99
15) Bis (2-chloroisopropyl) et	4.88	45	671825	817.01901 ppb	99
16) Acetophenone	5.01 5.05	105 107	545422	763.71392 ppb	95
17) 3&4-Methylphenol 18) n-Nitrosodi-n-propylamine	5.03	43	933598 372613	1655.77231 ppb 843.71132 ppb	100 86
19) Hexachloroethane	5.09	117	147212	701.84968 ppb	98
22) Nitrobenzene	5.20	77	451290	808.48249 ppb	97
23) Isophorone	5.46	82	821768	824.88824 ppb	97
24) 2-Nitrophenol	5,54	139	252545	815.85858 ppb	97
25) 2,4-Dimethylphenol	5.62	107	344620	642.95798 ppb	95
26) Benzoic acid	5.79	105	986	176.53729 ppb	# 41
27) Bis (2-chloroethoxy) metha	5.71	93	489651	817.90233 ppb	93
28) 2,4-Dichlorophenol	5.81	162	360208	826,02308 ppb	93
29) 1,2,4-Trichlorobenzene	5.89	180	358375	758.23604 ppb	99
30) Naphthalene	5,97	128	1274574	777.49525 ppb	99 05
31) 4-Chloroaniline 32) 2,6-Dichlorophenol	6.06 6.06	127 162	468192	811.42483 ppb	. 95
33) Hexachloropropene	6.06	213	352367 196276	826.64486 ppb 748.93946 ppb	97 100
34) Hexachlorobutadiene	6,11	225	175527	733.53308 ppb	99
35) Caprolactum	6.50	113	160811	909.44700 ppb	92
36) 4-Chloro-3-methylphenol	6.65	107	391750	844.33611 ppb	96
37) 2-Methylnaphthalene	6.76	142	913114	834.47990 ppb	100
39) Hexachlorocyclopentadiene	6.93	237	98624	500.97009 ppb	100

^{(#) =} qualifier out of range (m) = manual integration 0302Y010.D Y827AF.M Thu Mar 08 15:01:33 2612

Data File : M:\YODA\DATA\Y120301B\0302Y010.D Vial: 10 Acq On : 2 Mar 12 21:28 Operator: LF : AY55855S03 MSD-1 1/32.69G Sample Inst : YODA Misc Multiplr: 30.59

Quant Time: Mar 5 10:58 2012 Quant Results File: Y827AF, RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 10:46:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qν	alue	
40)	1,2,4,5-Tetrachlorobenzene	6.95	216	351117	790.39435	nnh		94
	2,4,6-Trichlorophenol	7.10	196	253918	839.27594			97
	2,4,5-Trichlorophenol	7.16	196	270342	836.09691			96
	2-Chloronaphthalene	7.32	162	809971	824.92053			96
45)	1,1'-Biphenyl	7.30	154	1028042	813.13352			97
46)	2-Nitroaniline	7.47	138	321958	862.46459			89
47)	Dimethyl phthalate	7.69	163	951203	850.08833		#	87
	2,6-DNT	7.75	165	216491	821.10303			88
	Acenaphthylene	7.78	152	1344009	823.63155			99
	3-Nitroaniline	7.95	65	295129	823.57436			95
	Acenaphthene	7.98	154	782376	809.12470			99
	2,4-Dinitrophenol	8.09	184	48295	513.93510		#	18
	4-Nitrophenol	8.21	109	88193	826.52388			97
	Dibenzofuran	8.19	139	601231	907.92116			90
	2,4-DNT	8.22	165	300852	826.12869			93
	2,3,4,6-Tetrachlorophenol	8.35	232	201106	834.24163		Ħ	88
57)	Diethyl phthalate	8.50	149	925134	832,28473			100
	4-Chlorophenyl phenyl ethe	8.61	204	446946	833.83685			89
	Fluorene	8.59	165	877127	845.19119			100
	4-Nitroaniline	8.67	138	227144	785.72544			98
	Diphenyl amine	8.76	168	891156	794.49414			99
	4,6-Dinitro-2-methylphenol	8.69	198	155420	715.56373		#	72
	n-Nitrosodiphenylamine	8.76	167	482397	810.21958	ppb		96
	1,2-Diphenylhydrazine	8.79	182	278565	814.64593		Ħ	38
	4-Bromophenyl phenyl ether	9,16	248	234532	822.03183			99
	Hexachlorobenzene	9.21	284	248408	804.70596		#	83
	Atrazine	9.40	200	112834	2232,87911			97
	Pentachlorophenol Phenanthrene	9.47	266	139032	811.71790	ppp		99
	Anthracene	9.70 9.76	$\begin{array}{c} 178 \\ 178 \end{array}$	1372968 1368498	825.54355 800.25282	ppp		99
-	Carbazol	9.70	167	1272784	826.56622			99 99
	Di-n-butylphthalate	10.41	149	1579684	872.37543			99
	Fluoranthene	11.08	202	1404770	827.19101		#	90
	Pyrene	11,34	202	1456982	798.18809	ppb	#	91
	Butyl benzylphthalate	12.14	149	643584	795.40009		77	83
	3,3'-Dichlorobenzidine	12.74	252	307881	616.56241			99
	Benz (a) anthracene	12.74	228	1193799	805.19223			100
	Bis (2-ethylhexyl) phthala	12.82	149	928465	777.09051			95
83)	Chrysene	12.78	228	1258760	804.58946		#	98
	Di-n-octylphthalate	13.54	149	1552439	806.17039		"	100
85)		15,68	276	1266437	802.97882	dqq		98
87)	Benzo (b) fluoranthene	13.91	252	1115895	724.28959	ppb		98
88)	Benzo (k) fluoranthene	13.93	252	1285071	903.87343	ppb		99
89)	Benzo (a) pyrene	14.26	252	1169193	841.60262	ppb		100
	Dibenz (a,h) anthracene	15.72	278	1095393	842.66184			98
91)	Benzo (g,h,i) perylene	16.10	276	1071001	837.34165			95

Data File : M:\YODA\DATA\Y120301B\0302Y010.D

2 Mar 12 21:28 Sample

: AY55855S03 MSD-1 1/32.69G

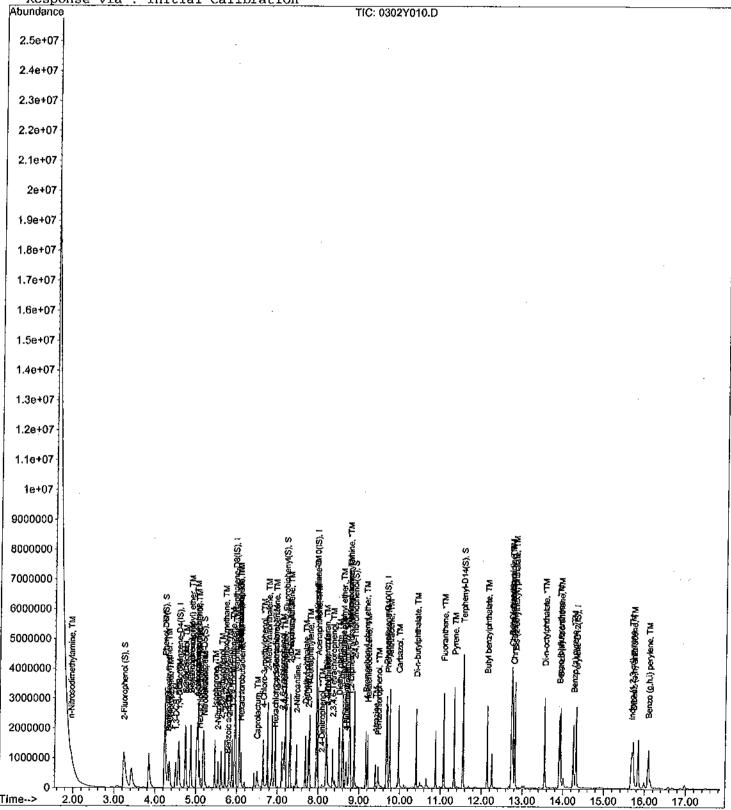
Vial: 10 Operator: LF Inst : YODA Multiplr: 30.59

Quant Time: Mar 5 10:58 2012

Quant Results File: Y827AF.RES

Method

Misc

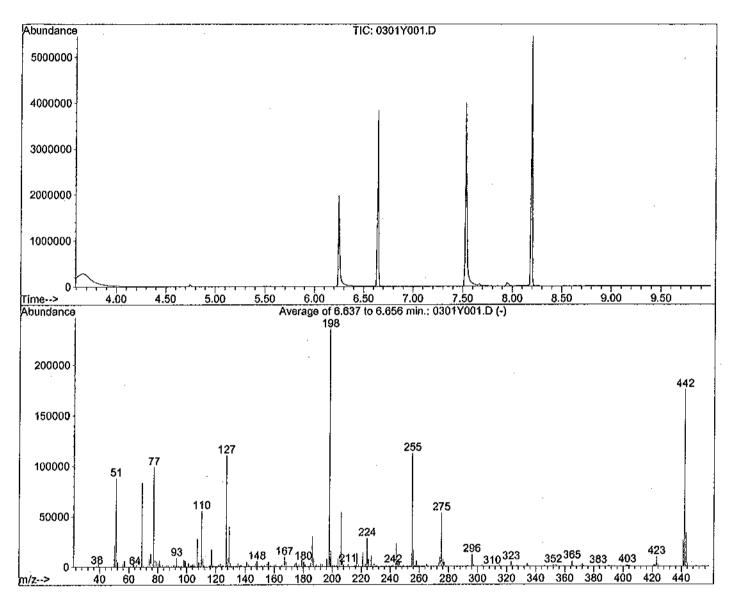

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration



Data File : M:\YODA\DATA\Y120301B\0301Y001.D

Vial: 1 : 1 Mar 12 18:36 Operator: LF : SV TUNE 02-28-12 Sample Inst ; YODA Misc Multiplr: 1.00

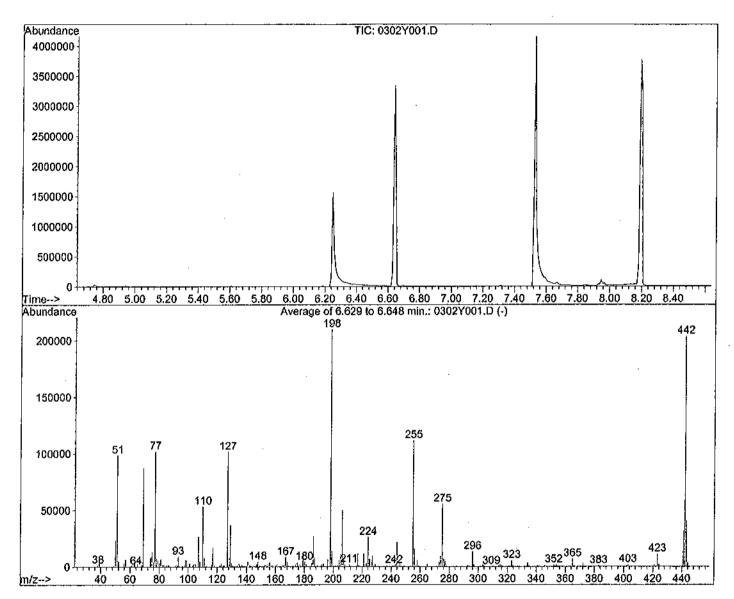
Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Spectrum Information: Average of 6.637 to 6.656 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
51 68 70 127 197 198 199 275 365 441 442	198 69 69 198 198 198 198 198 198	30 0.00 0.00 40 0.00 100 5 10 1 0.01	60 2 2 60 1 100 9 30 100 100 150	37.4 0.0 0.5 46.9 0.0 100.0 6.6 22.6 2.2 79.9 74.3	87963 0 444 110293 0 235262 15525 53203 5167 26397 174735	PASS PASS PASS PASS PASS PASS PASS PASS
443	442	17 .	23	18.9	33049	PASS

Data File: M:\YODA\DATA\Y120301B\0302Y001.D


Acq On : 2 Mar 12 17:44 Sample : SV TUNE 02-28-12 Vial: 1
Operator: LF
Inst : YODA
Multiplr: 1.00

Misc :

Method

: M:\YODA\DATA\Y120301B\Y827AF,M (RTE Integrator)

Title : EPA 8270C

Spectrum Information: Average of 6.629 to 6.648 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
51	198	30	60	46.9	98442	PASS
68	69	0.00	. 2	1.6	1427	PASS
70	69	0.00	2	0.4	350	PASS
127	198	40	60	48.3	101491	PASS
197	198	0.00	1	0.0	0	PASS
198	198	100	100	100.0	210083	PASS
199	198	5	9	6.7	14130	PASS
275	198	10	30	26.3	55148	PASS
365	198	1	100	3.3	6835	PASS
441	443	0.01	100	77.6	31405	PASS
442	198	40	150	96.9	203552	PASS
443	442	17	23	19.9	40477	PASS

MIPIN

PREP DATE:	01-17-11			-		
8270C Stoc	k/Spike Standerd					-
Exp:	05-29-11					
		Conc.		Date	CODE	P
Supplier	ID #	μg/mն	Lot #	Code	Exp.Date	μL
Absolute	10001	2000	032009-28092	01/17/11	03-20-12	1000
Absolute	10001	2000	032009-28091	01/17/11	03-20-12	1000
Absolute	10002	2000	073109-27974	01/17/11	07-31-12	1000
Absolute	10002	2000	073109-27973	01/17/11	07-31-12	1000
Absolute	10004	2000	101509-27979	01/17/11	10-15-14	1000
Absolute	10004	2000	101509-27978	01/17/11	10-15-14	1000
Absolute	10005	2000	061209-27984	01/17/11	06-12-14	1000
Absolute	10005	2000	061209-27983	01/17/11	05-12-14	1000
Absolute	10006	2000	120810-27989	01/17/11	12-08-13	1000
Absolute	10006	2000	120810-27988	01/17/11	12-08-13	1000
Absolute	10007	2000	100909-28010	01/17/11	10-09-14	1000
Absolute	10007	2000	100909-28013	01/17/11	10-09-14	1000
Absolute	10018	2000	073109-27994	01/17/11	07-31-14	1000
Absolute	10018	2000	073109-27993	01/17/11	07-31-14	1000
bsolute	70023	1000	080310-28008	01/17/11	08-03-15	1000
bsolute	70023	1000	080310-28009	01/17/11	08-03-15	1000
bsolute	82705	2000	121010-27999	01/17/11	12-10-13	1000
bsolute	82705	2000	121010-27998	01/17/11	12-10-13	1000
bsolute	94552	2000	052908-28004	01/17/11	05-29-11	1000
bsolute	94552	2000	052908-28003	01/17/11	05-29-11	1000
	Ţ.,				Final Vol	20000

RASIN

PREP DATE:	01-25-11	!	1		1				1	1				, .		
	DARD CURVE	<u> </u>	···-		+			 	-	 	ļ	-		├ \∧	₩	
Exp:	02-24-11 .				1	9,1	0.2	1	5	10	20	40	50	50	80	100
		Conc.		Date								 -		***	1	
Supplier	10 0	µg/mL	Lot #	Code	Exp.Date			بان	μЬ	μL	μĹ	μL	μĹ	иL	μЬ	μL
	8270T Stock	200	[]	12/17/10	05-29-11	0	0	0	5	5	10	20	25	30	40	50
	5. Gug/mL		1	01/25/11	T	0	0	20	0	0	0	0		10-	0	
	1.20ug/mL			01/25/11		10	20	0	0	1 -	n	<u> </u>	- 0		1 2	
	Surrogate Stock	VAR	160533-27576	11/11/10	11-11-11	0	0	0		5	10	30	25	30	40	50
M Science	Methylene Chlori	de	47080			90	80	80	190	90	80	60	50	40	20	0
					Final Vol.			100	200	100	100	100	100	100	100	100
	<u> </u>															

AE ILIZIN

PREP DATE:	01-25-11				I	
8270 Secor	14 Bource (88)	50ug/mL			1	
	· -					50
		Conc.		Date	CÓDE	
Supplier	ID #	μφ/πՆ	Lot #	Code	Exp.Date	μL
	8270C SS	200		10/05/10	10-06-11	25
EK Science	Hethylene Chl	oride	47080		1	75
					Final Vol.	100
]				1	

IF ibau

Method \$270 Internal Standard Solution, 2,000 mg/l₂ 1 ml

Lots Storage Explry

ap 1/24/12

8270 Internal Standard Lot #: 167766 - 28148

Rec: 1/20/11 MFR exp. 04/20/13

1KUKIN

Method 9270 Internal Standard Solution, 2,000 mg/L, 1 ml

11001-41 Lai R Storage Faper 167706 S-10 Degrees C 420-11 Soin: Mathylece Chlorida

epp 1/26/12

8270 Internal Standard Lot #: 167788 - 28147

Lot #: 167788 - 28147

1323 lu

Part #: 94552

Laboratory Use Only-See MSDS

Lot #:

052908 Exp: 052911

Semi-Volatile Standard 11 components

Varied ug/mL in

Lot#: 052908 - 28001

ABSOLUTE STANDA

Rec: 12/16/10 MFR exp. 05/29/11

183/23/11

Part #: 94552

Laboratory Use Only-See MSDS

Lot #:

052908 Exp: 052911

11 componente

Semi-Volatile Standard Semi-Volatile Standard Lot #: 052908 - 28002

Varied ug/mL in ABSOLUTE STANDAL

11/50/21

Part #: 82705

Laboratory Use Only - See MSDS

Lot #:

121010 Exp: 121013

Storage 4 'C

EPA Method 8270A EPA Method 8270A-Mix#11

4 сотроленте

Lot #: 121010 - 27896

2000 ug/mL in ace Rec: 12/16/10 MFf1 exp. 12/10/13

ABSOLUTE STANDAHUS, INV.

F 3/23/11

82705 Lot #:

121010

Laboratory Use Only - See MSDS Exp: 121013 Storage 4 'C

EPA Method 8270A - Mix #11 4 components

EPA Method 8270A-Mix#11

2000 ug/mL in ace ABSOLUTE STANDAF

Lot #: 121010 - 27997 Rec: 12/16/10 MFA exp. 12/10/13 UP STOPLI

cup spaly

By 51214

exp Spalls

W3/23/4

PREP DATE:]				
8270C Sto	ck/Spike Standard	-	 		- 	
Exp:	05-29-11	† -	 	- 	- 	↓
G		Conc.		Date	CODE	-
Supplier	ID #	µg/mL	Lot 1	Code	Exp.Date	
Absolute	10001	2000	032009-28089	03/23/11		μL 1000
Absolute	10001	2000	320009-28090	03/23/11	03-20-12	1000
Absolute	10002	2000	073109-27971	03/23/11	07-31-12	1000
Absolute	10002	2000	073109-27972	03/23/11	07-31-12	1000
bsolute	10004	2000	101509-27976	03/23/11	10-15-14	1000
bsolute	10004	2000	101509-27977	03/23/11		1000
bsolute	10005	2000	061209-27981	03/23/11	10-15-14	1000
bsolute	10005	2000	061209-27982	03/23/11	06-12-14	1000
bsolute	10006	2000	120810-27986	03/23/11	06-12-14	1000
bsolute	10006	2000	120810-27987		12-08-13	1000
bsolute	10007	2000	100909-28015	03/23/11	12-08-13	1000
bsolute	10007	2000	100909-28014	03/23/11	10-09-14	1000
bsolute	10018	2000	073109-27991	03/23/11	10-09-14	1000
bsolute	10018	2000		03/23/11	07-31-14	1000
osolute	70023	1000	073109-27992	03/23/11	07-31-14	1000
solute	70023	1000	080310-28006	03/23/11	08-03-15	1000
solute	82705	2000	080310-28007	03/23/11	08-03-15	1000
Solute	82705	2000	052908-28001	03/23/11	05-29-11	1000
solute	94552		052908-28002	03/23/11	05-29-11	1000
solute	94552	2000	121010-27996	03/23/11	12-10-13	1000
	77332	2000	121010-27997	03/23/11	12-10-13	1000
· · · · ·	└──				Final Vol	20000

K3123/4

SIM IS ere univ

1500 pt & Suince MC Let # 47080

100 ple 820 15 aprind 1/25/11 ap 1/25/12

173/28LU

8270 BN:A (200:400) Surrogate Solution, 4 mi

6/10/1011

8270 BN:A (200:400) Surrogate Solution

Lot #: 160538 - 27574

Rec: 10/18/10 MFR exp. 08/10/12

W)	WIN
----	-----

### ### ##############################						<u> </u>						1				: 03-28-11	PREP DATE:
Conc. Date	T'' —		T		L	<u>/\</u>	<u> </u>		 			 	·			TOARD CURVE	8270T STAN
Supplier ID # pg/mL Lot # Code Exp.Date			1								 					04-27-11	ехо:
upplier ID # μg/mL Lot # Code Exp.Date μL μ	100	80	50	50	40	20	10	5	1 1	9.2	<u> </u>	-	Date		Conc.		
82707 Stock 200 03/23/11 05-29-11 0 0 0 5 5 10 20 25 30 40							· · ·			<u></u>		Exp. Date		Lot	μg/mL		
5.0ug/mL	μL	μL	μĿ	_			<u>μ</u> μ	<u>μ</u> ь		0	0		03/23/11		200		
Surrogate Stock VAR 160538-27574 03/28/11 10 20 0 0 0 0 0 0 0 0	50	40	30		20	10							03/28/11				
Science Nathylene Chloride 47080 90 80 80 190 80 80 80 80 80 80 80 80 80 80 80 80 80		ļ			0	<u> </u>	- 0	-		20	10		03/28/11				
90 80 80 190 00 00 00 00	0	0			·	10	- 5	- 5		D	0	03-26-12	03/28/11				
	50		40	50	60	80	90	190	80	80	90			47080	de	MACHAIGH CUIDE!	Colline
Pinal vol. 100 200 100 100 100 100 100 100 100	100							200	100		[Pinal Vol.				 	~

W3/2014

8270 Secon	d Source (SS)	50ug/mi		1		- 1
						50
		Conc.		Date	CODE:	
Supplier	ID #	μg/πL	Lot #	Code	Exp.Date	μL
	8270C SS	200		10/06/10	10-06-11	25
EM Science	Hethylens Chl	oride	47080		1	75
					Pinal Vol.	100

15 Albert 1

GCM-160-1

Lot: CF-2995 Exp: 08/31/2011

Semi-volatiles GC/MS Tuning Standard

Lot #: CF-2995 - 26131

Of 8/31/4

ap 3/28/12

Semi-Volatiles GC/MS Tuning Standard

4 analyte(s) at 1000 µg/mt, in dichloromethane

Rec: 2/17/10 MFA exp. 08/31/11

250,Smith St. No Kingstown, AJ 07652 USA ^A

VF 411314

	u.u				_	
PREP DATE:	04-23-11				-,	
SV Tune Hi	x 50ug/ml	T		 		!/
Exp:	08-31-11					l li l
		Conc.		Date	CODE	В
Supplier	ID #	µg/mL	Lot #	Code	Exp.Date	μĿ
U. Scientifi	GCM-150	1000	CF-2995-26131	04/13/11	08-31-11	1000
EM Science	MeCl2		47080	<u> </u>		19000
		-			Final Vol	20000

emp 8/31/4

₩ 4P0 H

9270D PAH SIM Solution,

200 mg/L, 2 mj

exp 4/20/12

Rylodu

8270D PAH SIM

BOM Methylate Chibride

Lot #: 170253 - 28485

Rec: 3/10/11 MFR exp. 3/3/2013

8170D PAH SIM Seludon, Second Source, 200 mg/l₂, 1

110780-01-59

exp 4/20/12

9270D PAH SIM (SS)

Lot #: 170256 - 28487

160

Fr

188/16/11

PREP DATE:	08/16/11		exp:	08/23/11			
10ug/mL 1,	2,3-TCP						1
	50uL of 1000ug	/mL 1,2	,3 TCP into	a final vol	ume of 5mL o	f P&T	Methanol
	1000ug/mL 1,2,				05/27/11		1
	P & T Methonal	Lot #			9077-02		-
PREP DATE:	08/16/11	· · · · · · · · ·	exp:	08/23/11		······································	
lug/mL 1,2	,3-TCP						
···	5uL of 1000ug/n	L 1,2,3	TCP into	a final volum	e of 5mL of	P&T Me	thanol
	1000ug/mL 1,2,3				05/27/11		
	P & T Methanol	Lot #		JT			
PREP DATE:	08/16/11		exp:	08/23/11			
ug/mL 1,2,	3-TCPd5						
	10uL of 2000ug/	mL 1,2,	3 TCP into	a final volu	me of 10mL o	ef P&T :	Methanol
· · · · · · · · · · · · · · · · · · ·	2000ug/mL 1,2,3				05/27/11		
	P & T Methanol	Lot #			9077-02		

NEGRAN

8270 BN1A (200:400) Surrogate Solution, 1 ml

Surrogue sortion, 1 mt

11004-17

Lot * Storege Eintry

esp 8122/12

861v: Methylese Caloride 8270 BN:A (200:400) Surrogale Solution

Lot #: 167802 - 29313

Rec: 8/8/11 MFR exp. 01/09/13

KNISHN

PREP DATE:	08-22-11	l	1		 	T (¥	T	Υ		1		
8270 STAND	ARD CURVE				1		· ·	· · · · ·	 	 -	 -	 -	
Exp:	08-29-11					5	10	20	40	50	.60	80	1700
		Conc.	Ĺ	Date			1	· ·			 	↑	700
Supplier	ID I	μg/mL	Lot #	Code	Exp.Date	μL	μι	μι	ut.	μL	иL	μt	
	8270T Stock	200		07/26/11	01-26-12	5	5	10	20	25	30	40	μL 50
	Surrogate Stock	VAR	167802-29311	08/22/11	08-22-12	5	5	10	20	25	30	40	50
EM Science	Hethylens Chlori	do	47186			190	90	80	60	50	40	30	0
	·				Final Vol.	200	100	100	100	100	100	200	100
	I. , <u>l</u>		Ji		1					1			

148balli

PREP DATE:	08-22-11			1		
8270 Secon	d Source (88)	50ug/ml	· ····	T		
	<u> </u>					5Q \
	<u> </u>	Conc.		Date	CODE	
Supplier	ID I	μg/mL	Lot 1	Code	Exp.Date	μL
	8270C SS	200		10/06/10	10-06-11	25
EK Science	Hethylene Chi	oride	47186			75
	ļ				Final Vol.	100
	<u> </u>					

क्षिमा

PREP DATE:	09-21-11			224.	11	,							
8270 BIM S	TANDARD CURVE						-	 	 _	 			T
·	- 	Conc.				0.10	0.20	0.50	1.00	5.00	10.00	50.00	100.0
Supplier	ID #		 -	Date	CODE	Α	λ	C	D	E	P		100.0
		μg/mL	Lot #	Code	Exp.Date	μL	иL	بانر	μĹ	μι,	 	9	н
	82700 PAH SIM	200	170253-28485	04/20/11	04-20-12	0	0	0			μ <u>ι</u> .	μ1.	μЬ.
	5.0ug/mL	5		09/21/11		0			0	5	5	25	50
	1.Oug/mL	1		09/21/11	 		0	10	20	0	0	0	0
	Surrogate Stock	VAR	167802-29313		 	10	20	0 1	0	0	0	0	0
M Science	Kethylene Chloride			08/22/11	08-23-11	. 0	0	0	0	S	5	25	50
	the styrene entoring		47186		164-	90	80	90	80	190	90		
	- 				161 Final Vol.	100	100	100	100			50	0
	_ 	ľ						- 100	100	300	100	100	100

upclari

			1001147104	Final Volu		200
<u> </u>	MeC12		Lot #47185	 	 	195
······	8270D PAH SIN (S	S) 170256-28487	200	04/20/11	04-20-12	5
Supplier	ID I	Lot #	μg/mЪ	Code	Exp.Date	μL
· · · · · · · · · · · · · · · · · · ·			Conc.	Date	CODE:	
Bxp:	10-05-11					
SIN 8270 Se	cond Source (5µg/	ml)				
PREP DATE:	09-21-11				.].	

V ioliju

Molde

8270 BN Solution 14-4, 2,000 mg/L, 1 ml

Cat. No: 110391-01 S Cat. No. 110391-8270BN Solution 14-4 Lot #: 158119 - 28021

Exp: 4/17/2013 Storage: </= -10 Degrees C Solvent: Methylene Chloride For Research Use Only

K Off wills

exp while

exp colulia

eyr while

V-

Rec: 12/16/10 MFR exp. 04/17/13

8270 BN Solution 14-3, 2,000 mg/L, 1 ml

Cat. No: 110392-01 Lot No: 158120

Exp: 4/17/2013

8270BN Solution 14-3

Storage: </= -10 Degrees C

Solvent: Methylene Chloride For Research Use Only

Lot #: 158120 - 28023 Rec: 12/16/10 MFR exp. 04/17/13

Midule

8270 Acid Solution 4-6, 2,000 mg/L, 1 ml

Cat. No: 110393-01

Exp: 4/17/2013

Lot No: 158121 8270B Acid Solution 4-6

Storage: </si>
-10 Degrees C Solvent: Methylene Chloride For Research Use Only

Lot #: 158121 - 26025

Rec: 12/16/10 MFR exp. 04/17/13

Modell

TCL Hazardous Substances Solution 2, 2,000 mg/L, 1 ml

Cat. No: 110394-01

Exp. 4/17/2013

Cat. No: 110394-TCL Hzd. Soln. 2

Storage: <= -10 Degrees C

Lot #: 158122 - 28018

Solvent: Methylene Chloride For Research Use Only

Rec: 12/16/10 MFR exp. 04/17/13

Wiolula

PAH Solution 17-3, 2,000 mg/L, 1 ml

Cat. No: 116070-02 Lot No: 158123

Exp: 4/17/2013

Storage: <= 10 Degrees C

Solvent: Methylene Chloride For Research Use Only

Lot #: 158123 - 28027 Rec: 12/16/10 MFR exp. 07/17/13

8270 Acid Solution 13-4, 2,000 mg/L, 1 ml Cat. No: 110396-01 Acid Solution 15.458124

Exp: 4/17/2013

Solvent: Methylene Chloride

Lol #: 158124 - 28029

Rec: 12/18/10 MFR exp. 04/17/13

exp winter

oep while

162

Vholulu

Storage: <= -10 Degrees C

For Research Use Only

Molulu

8270 DN Solution 4-21, 2,000 mg/L, 1 mi

8270BN Solution 4-21

Cat. No: 110395-01

Lot No: 158125

Storage: <= -10 Degrees C

Solvent: Methylene Chloride For Research Use Only

Moulu

8270 11 Compound Custom Mix, 200:2,000 mg/L, 1 ml

Lol #: 158125 - 28031 Rec: 12/16/10 MFR exp. 04/17/13

Cat. No: 110397-01

Lot No: 158127

8270 11 Compound Mix Lot #: 158127 - 28033

Lot #: 158126 - 28019

Rec: 12/16/10 MFR exp. 04/12/12

Rec: 12/16/10 MFR exp, 04/12/12

Storage: <= -10 Degrees C Solvent: Methylene Chloride

For Research Use Only

Exp: 4/12/2012

K.

acr 4/2/12

Manh

Atrazine Solution, 1,000 mg/L, 1 ml

Alrezine

Cat. No: 010337-01 Lot No: 158126

Exp: 4/12/2012

Storage: </= -10 Degrees C Solvent: Methylene Chloride

For Research Use Only

K

0494/2/12

Mapal

PREP DATE:	10-11-11				T	
8270C Seco	nd Source Stoc	k Standard		- 	- 	
Екр:	04-12-12					
· · · · ·		Conc.		Date	CODE	
Supplier	ID #	μg/πՆ	Lot #	Code	Exp.Date	μħ
0281	110391-01	2000	158119-28021	10-11-11	04-17-13	1000
0281	110392-01	2000	158120-28023	10-11-11	04-17-13	1000
2281	110393-01	2000	158121-28025	10-11-11	04-17-13	1000
251	110394-01	2000	158122-28018	10-11-11	04-17-13	1000
)2SI	116070-02	2000	158123-28027	10-11-11	04-17-13	1000
251	110395-01	2000	158125-28031	10-11-11	04-17-13	1000
281	110396-01	2000	158124-28029	10-11-12	04-17-13	
251	110397-01	2000	158127-28033	10-11-11	04-12-12	1000
251	010337-01	1000	158126-28019	10-11-11	04-12-12	1000
M Science	MeC12		47186		04-12-12	1000
		T			Final Vol	10000

Mounth

PREP DATE:	10-11-11		-							1	1		T
8270 STAND	ARD CURVE				-					 			
Ежр :	10-18-11				7	5	10	20	40	50	60	80	100
<u>.</u>		Conc.		Date	1			F		<u></u>			-
Supplier	ID I	μg/mL	Lot #	Code	Exp.Date	иь.	uL	_{uz}	րև	μb	at	μĹ	uL.
	8270T Stock	200		07/26/11	01-26-12	5	5	10	20	25	30	40	50
	Surrogate Stock	YAR	167802-29313	08/22/11	08-22-12	5	5	10	20	25	30	40	50
M Science	Kethylene Chlori	de	47186			190	90	80	60	50	40	20	0
	<u> </u>				Final Vol.	200	100	100	100	100	100	100	100
	l		l							1			1

[RO[R/11

	10-11-11 d Source (SS)		<u>.</u>		 	
2210 98501	4 900E09 (88)	2000/WT		 -	ļ. <u></u> .	
	· -					50
·		Conc.		Date	CODE:	
Supplier	ID #	μg/mL	Lot f	Code	Exp.Date	μL
	8270C SS	200		10/11/11	04-12-12	25
EM Science	Methylene Chl	oride	47186	1	 : 	75
				1	Final Vol.	100

UE WHIN

GCM-150-1 Lot: CH-2137 Exp: 07/31/2013

Semi-Volatiles GC/MS Tuning Standard 4 analyte(s) at 1000 µg/mL in dichloromethane

50/m/ml SV TUNE MIS

I'm of 163cm - 150-1 opened willy with lands Em Science MC Lot 410th ex0 10/12 10/11/12

were later

Part #: 10001 042910 Laboratory Use Only - See MSDS Storage 0 'C Exp: 042913

Lot #:

CLP Semi-Volatiles Base/Neutrals Mix #1

14 componente

CLP Semi-Volatiles Base/Neutrals Mix #1

2000 ug/ml, in methy ABSOLUTE STANDARC

Lot#: 042910 - 28440 Cm Rec: 3/8/11 MFR exp. 4/29/2013 ap jolistic

eyp 10/18/12

OKO MI 7/31/12

exp 7/31/12

ger willy

eys whele

egp 6/18/12

M-

K WK 14

Part #: 10001 Laboratory Use Only - See MSDS

Lot #: 042910 Exp: 042913 Storage 0 °C

14 components 2000 ug/mL (r; m

CLP Semi-Volatiles Base/Neutrals Mix #1 and mix

ABSOLUTE STANDA

Lot #: 042910 - 29085

Rec: 8/4/11 MFR exp. 04/29/13

1918/1919

10002 Part #:

Laboratory Use Only - See MSDS

Lot #: 073109 Exp: 073112 Storage 4 'C

CLP Semi-Volatiles Base/Neutrale Mix #2

14 componente

CLP Semi-Volalites Base/Neutrals Mix #2

2000 ug/mL in methyle

Loi #. 073109 - 28446

ABSOLUTE STANDARDS

Rec. 3/8/11 MFR exp. 7/31/2012 @F

1841814

10002 Part #: 073109 Lot #:

Laboratory Use Only - See MSDS Storage 4 'C Exp: 073112

CLP Semi-Volatilee Base/Neutrale Mix #2

CLP Semi-Volatiles Base Neutrals Mix #2

14 components 2000 ug/mL in met

Lot #: 073109 - 29090

Rec: 8/4/11 MFR exp. 07/31/12

Malda

Part #:

10004

Laboratory Use Only - See MSDS

Lot #:

101509

ABSOLUTE STANDAF

Storage 4 'C Exp: 101514

CLP Semi-Volatiles Toxic Substances #

4 components

2000 ug/mL in methyk

CLP Semi-Voiatiles Toxic Substances #1 iot#: 101509-28453 hum

ABSOLUTE STANDARD!

Rec: 3/8/11 MFR exp. 10/15/201 13/4

Malsh

Part #:

10004 101509

Laboratory Use Only - See MSDS

Exp: 101514 Storage 4 'C

CLP Semi-Volatiles Toxic Substances #1

4 components 2000 ug/mL in meth

CLP Semi-Volatiles Toxic Substances #1

ABSOLUTE' STANDAR

Lot #: 101509 - 29095 Rec: 8/4/11 MFR exp. 10/15/14

Molela

Part #: 10005

Laboratory Use Only - See MSDS ♥ p>

Lot #: 061209 Exp: 061214

Storage 4 'C

CLP Semi-Volatiles Terris Substances #2

8 componente

2000 ug/mL in methy ABSOLUTE STANDARD.

CLP Sami-Volatiles Toxic Substances #2 Lot #: 081209 - 28458 Com Rec: 3/8/11 MFR exp. 6/12/2014 1

Molegia

Part #: 10005

Laboratory Use Only - See MSDS

Lot #: 121208 Exp: 121213

Storage 4 'C

CLP Semi-Volatiles Toxic Substances #2

B components

CLP Semi-Volatiles Toxic Substances #2

2000 ug/mL in met Lot #: 121208 · 29100 ABSOLUTE STANDAR Rec: 8/4/11 MFR exp. 12/12/13 exp wishir

Kidina

10006 Part #: 120810 Laboratory Use Only - See MSDS Storage 4 'C

Lot #:

EXD: 120813

CLP Semi-Volatiles - Benzidines 2 components 2000 ug/mL in methai

CLP Semi-Volatiles - Benzicines

ABSOLUTE STANDARD

Lot# 120810 - 28462 Cm Rec: 3/8/11 MFR exp. 12/6/2013 BK app Wishin

Khalklu

10006 Part #: 071211 Lot #:

Laboratory Use Only - See MSDS

Exp: 071214

Storage 4 'C

CLP Semi-Volatiles - Benzidines 2 componente

Lot#: 071211 - 29105

Sec: 8/4/11 MFR exp. 07/12/14

2000 ug/mL in meti

ABSOLUTE STANDAF

\P\o\ba

10007 Part #: 100909 Laboratory Use Only - See MSDS

Exp: 100914

Storage 4 'C

CLP Semi-Volatiles - PAH Standard

CLP Semi-Volatiles - PAH Mix **

17 components 2000 ug/mL in methy

Lot#: 100909 - 28469 Cur

ABSOLUTE STANDAR

Rec: 3/8/11 MFR exp. 10/9/2014 (3)

Vholisin

10007 Part #: 100909 Laboratory Use Only - See MSDS Storage 4 °C

Lot #:

CLP Semi-Volatilee - PAH Standard

EXD: 100914

17 companente

CLP Semi-Volatiles - PAH Mix

2000 ug/mL in met

Lot #: 100909 - 29110

ABSOLUTE STANDAR

Rec. 8/4/11 MFR exp. 10/09/14

1KO/810

Part #: Lot #:

10018 073109 Laboratory Use Only - See MSDS

Storage 4 C Exp: 073114

EPA Method 6270A - Analytes Mix #8

🗝 13 components - Pher 2000 ug/mL in methyl

CLP Semi-Votatites Mix #8 - Phenois Lot #: 073109 - 28410

ABSOLUTE STANDARD

Rec: 3/8/11 MFR exp. 7/31/2014 8 14

LEW 1814

10018 Part #:

Laboratory Use Only - See MSDS

062111

Exp: 062116

EPA Method 8270A - Analytes Mix #8

EPA Method 8270A - Analytes Mix #8 13 components - Ph

2000 ug/mL in meth

Lot#: 062111 · 29115

ABSOLUTE STANDARI

Rec: 8/4/11 MFR exp. 06/21/16

Vholegia

Part #: Lot #:

70023 080310 Laboratory Use Only - See MSDS Storage 4 'C Exp: 080315

Atrezine

1000 ug/mL in aceto

Lot#: 080310 - 28416

ABSOLUTE STANDARI

Rec: 3/8/11 MFR exp. 8/13/2015 TOP

VEW 188111

Part #: 70023

Laboratory Use Only - See MSDS

Storage 4 'C

Lot #: 031611

Atrazine -

Exp: 031616 Alrazine

1000 ug/mL in ace

Lot#: 031611 - 29120 Rec: 8/4/11 MFR exp. 03/16/16 ABSOLUTE' STANDADD

eyp wish

eep wish

exp 2018/12

eep wish

WWINIY

exp wlishin

eep whate

Organic Extraction Worksheet

Method 8270 Sonicat Ext. Methyl (GROSS) 3550B	Extraction Set 120229A	Extraction Method	SON009GROSS Units mL
Spiked ID 1 8270T Spike 02/13/12 BX 07/31/12	Surrogate ID 1	8270 Surrogate 177982-29470	5
Spiked ID 2	Surrogate ID 2	, , , , , , , , , , , , , , , , , , , ,	
Spiked ID 3	Surrogate JD 3		
Spiked ID 4	Surrogate ID 4		
Spiked ID 5	Surrogate ID 5		
Spiked ID 6	Sufficient Vol fo	r Matrix QC: yes	
Spiked ID 7	Ext. Start Time:		
Spiked ID 8	Ext. End Time:		
	GC Requires Bx	tract By: 03/05/12 0:00	
•	pH1	<u>, , , , , , , , , , , , , , , , , , , </u>	Water Bath Temp Criteria 80 °C
•	pH2		1
	рН3		7

Spiked By: DL		Date 02/29/1	2		Witne	ssed E	By: GF	ł		Date 02/29/	12
		Spike		Surrogate					рН	Extract	Comments
1120229A Blk	Container	Amount	ID	Amount	ID			Volume		Date/Time	
1120229A BIK	######################################	! ! A sii shai ka ee a sii aa sii aa a	I	[1	[I	30.0		<u> </u>	NA.	02/29/12 15:30	
2120229A LCS-1		0.250	I ı	1		30.0	5 E-WB	<u> </u>	Dra I	02/29/12 15:30	
		TULINI NI BILITARI IN S		1 1	1	_	70g 4 E-WB:	1 c	INA	02/29/12 15:30	į
	AY55846S02			1	1	34.8		1	NA	02/29/12 15:30	67072-5 day rush
			! .	1,	•		^{,2} в <u> </u>	, 5	IVA	02/25/12 13.30	4oz Jar
	AY55847S02	1 ETT 81 11 10 11 10 12 13 14 14 15 14 15 15 15 15		1	1	36.6			NA	02/29/12 15:30	67072-5 day rush
			' .		ı		2 E-WB:		<u> </u>	VII 27112 10:00	4oz Jar
	AY55848S02			1	1	33.9		1	NA	02/29/12 15:30	67072-5 day rush
			,	'	equi		1.2 E-W	B5	-		4oz Jar
6AY55849	AY55849S02			1	Í	33.6	i6g	1	NA	02/29/12 15:30	67072-5 day rush
				•	egui	p B-S1	1.1 E-W	B5			4oz Jar
	AY55850S03			1	1	35.19	9g	1	NA	02/29/12 15:30	67072-5 day rush
			1		equi	P E-S5	5 E-WB	5			4oz Jar
	AY55851S02			1	1	31.33	3g	1	NA	02/29/12 15:30	67072-5 day rush
					equi		4 E-WB:				4oz Jar
	AY55852S03			1	L ·	32.5			NA	02/29/12 15:30	67072-5 day rush
							BE-WB5		,		4oz Jar
10 AY55853	AY55853\$02	8 W 11 10 13 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1		1	. 1	34.2			NA	02/29/12 15:30	67072-5 day rush
							E-WB				4oz Jar
	AY55854S02	I BITTER II EL RIVITE	١ ا	1	1 .	32.32			NA	02/29/12 15:30	67072-5 day rush 4oz Jar
				_			1.2 E-WI				
	AY55855S03	0.250 IBRIDIOARRAMANIA	1 111	1	1	32.40			NA	02/29/12 15:30	67072-5 day rush 4oz Jar
							1.1 E-WI			***************************************	
13AY55855 MSD-1		0.250	T T	1	1	32.69			NA	02/29/12 15:30	67072-5 day rush 4oz Jar
14AY55855	AY55855S03			. ,			E-WB		N. A.	00/00/15 15 50	
	A153853505	I BOLOGODO PIO BOJETO P	! !	1	1	35.58	^{8g} IE-WB6		NA	02/29/12 15:30	67072-5 day rush 4oz Jar
	AY55856S03	<u> </u>	 .	1.	i equi	32.37			NA	02/29/12 15:30	67072-5 day rush
		1 eru e 1 jul e 1 0 juli		1.	-		ر <u>۲۷</u> B-WB7 کا		AFI	0 <i>212</i> 3112 15:50	4oz Jar
	AY55869S02	I EM II BITITI II (17/17)	·	1	1	33.99			NA	02/29/12 15:30	67072-5 day rush
	A 133809302			1			ין <u>פי</u> 2 E-WB7		IAN		4oz Jar
T T T T T T T T T T T T T T T T T T T	ENITE BLUCKNINN NEWSTERN BLUCK					0-02	, LP HD/	•	<u> </u>		

	iolvent and Lot#
	ИC
	la2SO4
	Acidified Na2SO4
	Mawa Sand
BMD5 2351C 10/31/ TH12E	2351C 10/31/

DRA
الل ا
32112
700
Hobar

	Technician's Initials
Scanned By	GH .
Sample Preparation	GH.
Extraction	IC
Concentration	IC

Modified	03/01/12 9:53:42 AM

Reviewed By: DRA

166 Date 03/01/12

03/01/12 3:33:14 PM

Ext_ID

35052

EPA METHOD 8260B Volatile Organic Compounds

EPA METHOD 8260B Volatile Organic Compounds AFCEE Forms

Analytical Method: EPA 8260B AAB #: 120229AC-164500 Contract #: *G012 Lab Name: APPL, Inc Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID AY55845 TB-1 ARF: 67072 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

AFCEE FORM 0-1

Title:

Date:

_ Name: _

Diane Anderson

Project Manager

Analytical Method: EPA 8260B AAB #: 120305AN-164483 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-SW9 AY55846 B4-NT1-SW6 AY55847 ARF: 67072 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data

AFCEE FORM 0-1

Title:

package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

Diane Anderson

Project Manager

the Manager's designee, as verified by the following signature.

Signature:

Date:

Analytical Method: EPA 8260B

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Base/Command: CSSA

Prime Contractor: Parsons

Field Sample ID	Lab Sample ID
B4-NT1-SW3	AY55848
B4-NT1-BOT03	AY55849
B4-NT1-SW8	AY55850
B4-NT1-BOT02	AY55851
B4-NT1-SW4	AY55852
B4-NT1-SW7	AY55853
B4-NT1-BOT01 FD	AY55854
B4-NT1-SW5	AY55856
B4-NT1-SW6 FD	AY55869

Comments:	ARF: 67072		
completeness, package and i	for other than the conditions detailed	above. Rele	nditions of the contract, both technically and for ase of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	Sholl	Name: .	Diane Anderson
Date:	3-13-12	Title;	Project Manager

Analytical Method: EPA 8260B AAB #: 120306AT-164608 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID AY55855 B4-NT1-BOT01 ARF: 67072 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

Diane Anderson

Project Manager

the Manager's designee, as verified by the following signature.

Signature:

Date:

Analytical Method: EPA 8260B

Preparatory Method: 5030B

AAB #: 120229AC-164500

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: TB-1

Lab Sample ID: AY55845

Matrix: Water

% Solids: NA

Initial Calibration ID: C120224

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 29-Feb-12

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1		U
1,1,1-TCA	0.03	0.8	0.03	1		U
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U.
1,1,2-TCA	0.06	1.0	0.06	1		U
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		U
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1:		U
1,2,3-TRICHLOROPROPANE	0.17	3,2	0.17	1		U
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1		U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		Ü
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		U
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	11		U
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		Ü
1,3-DCB	0.03	1.2	0.03	1		υ
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1		U
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		Ü
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		U
4-CHLOROTOLUENE	0.04	0.6	0.04	1		U
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		U
BROMOCHLOROMETHANE	0.11	0.4	0.11	1		U
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		Ŭ
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2.1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1		U
CHLOROETHANE	0.07	1.0	0.07	1	·	U
CHLOROFORM	0.06	0.3	0.06	1		U
CHLOROMETHANE	0.16	1.3	0.16	1		Ü

Co	-	m	4	ıto.
டப	ш	111	ы	us.

Analytical Method: EPA 8260B

Preparatory Method: 5030B

AAB #: 120229AC-164500

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: TB-1

Lab Sample ID: AY55845

Matrix: Water

% Solids: NA

Initial Calibration ID: C120224

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 29-Feb-12

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		U
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		U
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	1		U
DIBROMOMETHANE	0.06	2.4	0.06	1		υ
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1		ַ ַ ַ ַ ַ ַ ַ
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1		U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		Ŭ
M&P-XYLENE	0.07	0.5	0.07	1		UU
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		Ü
O-XYLENE	0.06	1.1	0.06	1		L U
P-ISOPROPYLTOLUENE	0.05	1,2	0.05	1		U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		U
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		บ
TETRACHLOROETHENE	0.06	1.4	0.06	1		U
TOLUENE	0.06	1.1	0.06	1		U
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	95.8	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	99.2	75-125	· -
SURROGATE: DIBROMOFLUOROMETH	95.1	75-125	
SURROGATE: TOLUENE-D8 (S)	97.5	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

_			
~			
t .c	mr	пег	HN.

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: N120305

Date Received: 28-Feb-12

Date Prepared: 06-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		ัน
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1	:	U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		Ü
BROMOBENZENE	0.0009	0.002	0.0009	1		ü
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	. 1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		υ
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Con	nment	s:
-----	-------	----

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

5035

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: N120305

Date Received: 28-Feb-12

Date Prepared: 06-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		บ
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		Ü
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		Ü
O-XYLENE	0.0007	0.005	0.0007	1		ť
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		υ
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1:		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		บ
TETRACHLOROETHENE	0.0008	0.007	0.0013	1		F
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		Ü
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	84.0	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	109	65-135	
SURROGATE: DIBROMOFLUOROMETH	88.6	65-135	
SURROGATE: TOLUENE-D8 (S)	118	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (JS)	

Comments:	
ARF: 67072	

Analytical Method: EPA 8260B Preparatory Method: 5035 AAB #: 120305AN-164483

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-NT1-SW6 Lab Sample ID: AY55847 Matrix: Soil

% Solids: 83.2 Initial Calibration ID: N120305

Date Received: 28-Feb-12 Date Prepared: 06-Mar-12 Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008			ឋ
1,1,1-TCA	0.0009	0.004	0.0009	1		
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	i		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0100.0	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		Ü
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1,		υ
1,2-EDB	0.0013	0.003	0.0013	1,		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		Ū
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		ับ
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	Ī		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		υ
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Comment	s:
---------	----

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

5035

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: N120305

Date Received: 28-Feb-12

Date Prepared: 06-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		ī
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		τ
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		Ţ.
DIBROMOMETHANE	0.001	0.010	0.001	1		τ .
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		ľ
ETHYLBENZENE	0.0010	0.003	0.0010	1		ι
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		Ţ
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		ι
M&P-XYLENE	0.0018	0.007	0.0018	1		τ
METHYLENE CHLORIDE	0.0013	0.005	0.0026	1		F
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		Ü
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		υ
STYRENE	0.0009	0.002	0.0009	1		ט
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		υ
TETRACHLOROETHENE	0.0008	0.007	0.0009	1		F
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1.		Ü
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U
G						

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	101	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	101	65-135	
SURROGATE: DIBROMOFLUOROMETH	104	65-135	
SURROGATE: TOLUENE-D8 (S)	111	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:		
ARF: 67072	 	

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 29-Feb-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U.
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U .
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1	:	U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009			U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		Ŭ
CHLOROETHANE	0.0015	0.005	0.0015	1		ŭ
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

\mathbf{C} o	mı	110	nte	٠
v.u		пс	HIS	

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 29-Feb-12

Date Analyzed: 29-Feb-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	j		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009		-	Ü
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		ΰ
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	li	i	U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		ับ
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		บ
TCE	0.0012	0.010	0.0012	1		Ü
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1	<u>-</u>	Ü
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	i		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	128	52-149	-
SURROGATE: 4-BROMOFLUOROBENZE	98.1	65-135	
SURROGATE: DIBROMOFLUOROMETH	119	65-135	
SURROGATE: TOLUENE-D8 (S)	96.8	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:	
-----------	--

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0,0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		ับ
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		υ
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	i		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1:		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		บ
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1	·	U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		Ü

٨	D	п.	6	70	72
н	R	r:	0	/U	14

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

5035

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		Ü
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1.		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		ΰ
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1;		U
NAPHTHALENE	0.0010	0.020	0.0010	1		Ū
O-XYLENE	0.0007	0.005	0.0007	1		Ū
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		บ
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		Ü
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	124	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	101	65-135	
SURROGATE: DIBROMOFLUOROMETH	117	65-135	
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

Preparatory Method: 5035 AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1	****	U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		Ū
1,1,2-TCA	0.0009	0.005	0.0009	1	••	U
1,1-DCA	0.0010	0.002	0.0010	1	•	U
1,1-DCE	0.0011	0.006	0.0011	1		Ü
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		υ
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		υ
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		Ŭ
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		Ü
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		ΰ
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1	·	U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1,		U
BROMOFORM	0.0011	0.006	0.0011	1		Ü
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Comn	
t .mmn	ienis.

Analytical Method: EPA 8260B

Preparatory Method: 5035 AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

MDL	RL	Concentration	Dilution	Confirm	Qualifier
0.0008	0.006	0.0008	1		ī
0.0009	0.005	0.0009	1		Ţ.
0.0009	0.003	0.0009	1		l t
0.001	0.010	0.001	1		τ
0.0018	0.005	0.0018	1		U
0.0010	0.003	0.0010	1		Į.
0.0011	0.005	0.0011	1		Ü
0.0010	0.008	0.0010	1		U
0.0018	0.007	0.0018	1		υ
0.0013	0.005	0.0013	1		U
0.0010	0.005	0.0010	1		U
0.0012	0.002	0.0012	1		υ
0.0010	0.020	0.0010	1		U
0.0007	0.005	0.0007	1		υ
0.0012	0.006	0.0012	1		υ
0.0011	0.007	0.0011	1	•••	U
0.0009	0.002	0.0009	1		U
0.0012	0.010	0.0012	1		Ü
0.0012	0.007	0.0012	1		υ
0.0008	0.007	0.0008	1		U
0.0010	0.005	0.0010	1		U
0.0008	0.003	0.0008	1		U
0.0009	0.005	0.0009	1		U
0.0013	0.004	0.0013	1		U
0.0013	0.009		1		U
	0.0008 0.0009 0.0019 0.0018 0.0010 0.0011 0.0018 0.0013 0.0010 0.0012 0.0010 0.0012 0.0011 0.0009 0.0012 0.0010 0.0009 0.0010 0.0008 0.0009 0.0013	0.0008 0.006 0.0009 0.005 0.0009 0.003 0.001 0.010 0.0018 0.005 0.0010 0.003 0.0011 0.005 0.0010 0.008 0.0018 0.007 0.0019 0.005 0.0010 0.005 0.0011 0.002 0.0012 0.005 0.0011 0.005 0.0012 0.006 0.0011 0.007 0.0012 0.006 0.0011 0.007 0.0012 0.010 0.0012 0.007 0.0012 0.007 0.0013 0.005 0.0008 0.003 0.0013 0.004	0.0008 0.006 0.0009 0.0009 0.005 0.0009 0.0009 0.003 0.0009 0.001 0.010 0.0018 0.0010 0.003 0.0010 0.0011 0.003 0.0010 0.0011 0.005 0.0011 0.0010 0.008 0.0010 0.0013 0.005 0.0013 0.0013 0.005 0.0013 0.0014 0.005 0.0010 0.0015 0.0010 0.0012 0.0010 0.002 0.0012 0.0011 0.002 0.0010 0.0007 0.005 0.0012 0.0011 0.007 0.0011 0.0012 0.006 0.0012 0.0011 0.007 0.0011 0.0012 0.0009 0.0012 0.0012 0.007 0.0012 0.0012 0.007 0.0012 0.0012 0.007 0.0012 0.0010 0.005	0.0008 0.006 0.0008 1 0.0009 0.005 0.0009 1 0.0009 0.003 0.0009 1 0.001 0.010 0.001 1 0.0018 0.005 0.0018 1 0.0010 0.003 0.0010 1 0.0011 0.005 0.0011 1 0.0010 0.008 0.0010 1 0.0013 0.005 0.0018 1 0.0013 0.005 0.0013 1 0.0013 0.005 0.0013 1 0.0014 0.005 0.0010 1 0.0015 0.0012 0.0012 1 0.0010 0.002 0.0012 1 0.0011 0.002 0.0010 1 0.0012 0.006 0.0012 1 0.0011 0.007 0.0012 1 0.0012 0.007 0.0012 1 0.0012 0.007 0.0012	0.0008 0.006 0.0008 1 0.0009 0.005 0.0009 1 0.0009 0.003 0.0009 1 0.001 0.010 0.001 1 0.0018 0.005 0.0018 1 0.0010 0.003 0.0010 1 0.0011 0.005 0.0011 1 0.0010 0.008 0.0010 1 0.0013 0.005 0.0013 1 0.0013 0.005 0.0013 1 0.0013 0.005 0.0010 1 0.0012 0.005 0.0010 1 0.0012 0.002 0.0012 1 0.0012 0.005 0.0010 1 0.0012 0.006 0.0012 1 0.0011 0.007 0.0011 1 0.0012 0.007 0.0012 1 0.0012 0.007 0.0012 1 0.0008 0.007 0.0008

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	126	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	99.0	65-135	
SURROGATE: DIBROMOFLUOROMETH	120	65-135	
SURROGATE: TOLUENE-D8 (S)	101	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

~				
Сc	1777	ne	nt	ο,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ш		

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

5035

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		υ
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		υ
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	l		U
1,2-DCB	0.0010	0,002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		ט
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1	_	U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		. บ
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Co	min	ents:	
----	-----	-------	--

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

5035

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0,006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	i		Ü
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		Ü
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		υ
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0,0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		บ
NAPHTHALENE	0.0010	0.020	0.0010	1		บ
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		υ
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		บี
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		บ
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	115	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	93.2	65-135	
SURROGATE: DIBROMOFLUOROMETH	107	65-135	
SURROGATE: TOLUENE-D8 (S)	87.2	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments	:
----------	---

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		<u> </u>
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1	-	Ü
1,1,2-TCA	0.0009	0.005	0.0009	1		Ū
1,1-DCA	0,0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		บ
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		ับ
1,2-DCB	0.0010	0.002	0.0010	1		บ
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		υ
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1	·	U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	i		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		Ü
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		υ
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	i		U

Committents.	Coi	nme	nts:
--------------	-----	-----	------

Analytical Method: EPA 8260B

Preparatory Method: 5035 AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		ί
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		Ţ
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		T.
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		τ
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		Ū
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1	-	U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		Ü
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1,		Ū
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1	•	U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		Ü.
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		Ü
VINYL CHLORIDE	0.0013	0.009	0.0013	1	-	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	116	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	108	65-135	
SURROGATE: DIBROMOFLUOROMETH	113	65-135	
SURROGATE: TOLUENE-D8 (S)	105	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

•		
('Am	ments:	

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		- Ū
1,1,2-TCA	0.0009	0.005	0.0009	1		Ü
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		ŭ
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		Ü
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	t		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		ŭ
1,2-DCA	0.0010	0.003	0.0010	1		υ
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1	·	U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		Ū
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		ŭ
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		บ
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		Ü
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		Ū
CHLOROETHANE	0.0015	0.005	0.0015	1	··	Ū
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		Ü

~				
C٥	m	me	nt	ς.

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

5035

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1	•	U
ETHYLBENZENE	0.0010	0.003	0.0010	1		บ
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1		U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	i		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		Ŭ
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		บ
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1	ĺ	U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		υ
VINYL CHLORIDE	0.0013	0.009	0.0013	1	-	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	136	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	106	65-135	-
SURROGATE: DIBROMOFLUOROMETH	124	65-135	·
SURROGATE: TOLUENE-D8 (S)	103	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

ARF: 67072	Comments:		
	ARF: 67072		

Analytical Method: EPA 8260B

Preparatory Method:

5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		ΰ
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010			ŭ
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	. 0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		uv
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		ŭ
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1	ŀ	U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Con	m	ent	s:
\sim	HII.	~111	υ.

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		ī
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1	-	ī
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		ī
DIBROMOMETHANE	0.001	0.010	0.001	1,		Ţ
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		T.
ETHYLBENZENE	0.0010	0.003	0.0010	1		T.
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1	•	T.
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1	·	T.
M&P-XYLENE	0.0018	0.007	0.0018	1		τ:
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		TI TI
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		T.
NAPHTHALENE	0.0010	0.020	0.0010	1		
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1	. —	Ū
TCE	0.0012	0.010	0.0012	1		
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		. U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		<u>_</u>
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		17
VINYL CHLORIDE	0.0013	0.009	0.0013	1	ľ	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	126	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	91.3	65-135	
SURROGATE: DIBROMOFLUOROMETH	115	65-135	
SURROGATE: TOLUENE-D8 (S)	97.7	65-135	•

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:			
ARF: 67072	· · · · · · · · · · · · · · · · · · ·	 ·	

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120306AT-164608

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

5035

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: T120307

Date Received: 28-Feb-12

Date Prepared: 07-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
I,1,1-TCA	0.0009	0.004	0.0009	1		М
1,1,2,2-TETRACHLOROETHANE	0,0009	0.002	0.0009	1		U,
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		М
1,1-DCE	0.0011	0.006	0.0011	1		М
1,1-DICHLOROPROPENE	0.0012	0.005	0,0012	1		М
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	i		υ
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		บ
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		M
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		Ū
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0,002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		M
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		M
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1]		М
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		Ü
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		М
BROMOBENZENE	0.0009	0.002	0.0009	ì		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		M
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0022	1		М
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		М

Comments:

M = Matrix effect.

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120306AT-164608

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: T120307

Date Received: 28-Feb-12

Date Prepared: 07-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	\mathbf{RL}	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		M
ETHYLBENZENE	0,0010	0,003	0.0010	1		M
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	ĺ		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		M
M&P-XYLENE	8100.0	0.007	0.0018	1		М
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		М
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		M
NAPHTHALENE	0.0010	0.020	0.0010	1		М
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		M
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		M
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		M
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	t		M
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		M
TOLUENE	0.0010	0.005	0.0010	1		M
TRANS-1,2-DCE	0.0008	0.003	0,0008	1		М
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	i		υ
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		M
VINYL CHLORIDE	0.0013	0.009	0.0013	1		M

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	104	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	89.0	65-135	
SURROGATE: DIBROMOFLUOROMETH	104	65-135	
SURROGATE: TOLUENE-D8 (S)	102	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

•	٦.				its:
ŧ.	CI	m	m	ш	HS:

M = Matrix effect.

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

5035

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1	·· ·	Ü
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	1		U
1,1-DCA	0.0010	0.002	0.0010	1		Ü
1,1-DCE	0.0011	0.006	0.0011	1		Ŭ
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		Ū
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		บ
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		Ü
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		
1,2-EDB	0.0013	0.003	0.0013	1		Ü
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		U
1,3-DCB	0.0011	0.006	0.0011	1		U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		ับ
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		บ
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		Ü
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		Ū
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		บ
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		U
BROMOFORM	0.0011	0.006	0.0011	1	-	U
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1	"	U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		TJ
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

-			
\sim		·~··	••
w	11111	ients	٠.

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

5035

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		U
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		TI
DIBROMOMETHANE	0.001	0.010	0.001	1		Ŭ
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		U
ETHYLBENZENE	0.0010	0.003	0.0010	1		<u> </u>
HEXACHLOROBUTADIENE	0.0011	0.005		1		U
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		U
M&P-XYLENE	0.0018	0.007	0.0018	1	,	- U
METHYLENE CHLORIDE	0.0013	0.005	0.0013	<u> </u>		<u>~</u> U
N-BUTYLBENZENE	0.0010	0.005	0.0010	11		Ü
N-PROPYLBENZENE	0.0012	0.002	0.0012	1	· · · · · -	11
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		
STYRENE	0.0009	0.002	0.0009	i		Ü
TCE	0.0012	0.010	0.0012	1		Ü
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		U
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		<u>U</u>
TOLUENE	0.0010	0.005	0.0010	1.		
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		Ŭ

Surrogate	Danasa	1 X + - 14	- NO.	\neg
Sucrogate	Recovery	Control Limits	Qualifie	r
SURROGATE: 1,2-DICHLOROETHANE-	122	52-149		
SURROGATE: 4-BROMOFLUOROBENZE	90.0	65-135	-	
SURROGATE: DIBROMOFLUOROMETH	114	65-135		
SURROGATE: TOLUENE-D8 (S)	88.8	65-135		

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:		
ARF: 67072	 	

Analytical Method: EPA 8260B

Preparatory Method: 5035

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		Ū
1,1,1-TCA	0.0009	0.004	0.0009	1		Ü
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		U
1,1,2-TCA	0.0009	0.005	0.0009	l;		U
1,1-DCA	0.0010	0.002	0.0010	1	•	U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1.		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		Ü
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	i		U
1,3-DCB	0.0011	0.006	0.0011	1	·	U
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		Ü
I-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1	·	U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	1		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		ับ
BENZENE	0.0009	0.002	0.0009	1		U
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	0.0008	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	1		Ū
BROMOFORM	0.0011	0.006	0.0011	1		υ
BROMOMETHANE	0.0007	0.005	0.0007	1		U
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		U
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1		U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Comment	s:
---------	----

Analytical Method: EPA 8260B

OB Preparatory Method:

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

5035

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: N120229

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	1		_ v
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
DIBROMOCHLOROMETHANE	0.0009	0.003	0.0009	1		U
DIBROMOMETHANE	0.001	0.010	0.001	1		U
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1	•	Ü
ETHYLBENZENE	0.0010	0.003	0.0010	1		U
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		Ü
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		Ū
M&P-XYLENE	0.0018	0.007	0.0018	1		υ
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1	···	U
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		U
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		υ
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		U
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		U
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		Ŭ
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-		52-149	_
SURROGATE: 4-BROMOFLUOROBENZ	E 101	65-135	
SURROGATE: DIBROMOFLUOROMETH	I 115	65-135	
SURROGATE: TOLUENE-D8 (S)	96.1	65-135	· · · · · · ·

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:	
-----------	--

APCEE ORGANIC ANALYSES DATA SHEET 3 DITUAL ARILTIPOINT CALIBRATION OCCASS ANALYSIS

Analytical Method: METHOG 1989	AAB (:	120229AC-164500
Lab Nume APPL, Inc.	Control F:	*G012
Instrument ID: Chico	Date of Initial Culturations	24-Feb-12
ried Calthourn IDs C120224	Crossora Gra Units (Up L or mp ty)	Np.L

Auljū	ka	. 11	54	1 10	Eiz	1 7/	274	197	F4	77	54°	"	542	'w'	. 54	, w	F4	{ P.F
	•	1	1	1 7	,	3	<u> </u>	٠.	;	\$,	,			,	,
I, I, I, 2-Tetraphioroet/ane	63	564.0	0.5	0.910	1.0	0.943	200.0	0 835	10.0	0.958	100.0	0.934	40.0	0.634	5.0	1.068	l	
I,I,I-TCA	63	1214	63	1212	1.0	1.210	200.0	1.007	10.0	1.251	[00.6	1,105	40.0	1.461	5.0	1,200	₹	
I,1,2-TCA	6.3	0.482	6.5	0.429	1.0	0.644	200,0	0.367	10.0	0.422	1000	610.0	40.0	0.306	\$.0	0.478		
1,1-Dichloropropene	6.3	1.14	0.5	1,105	1.0	0.000	200,0	6,978	10.0	1 071	100,0	0.945	49,0	0.072	5,0	1,126	ļ	
1,2,3-Trichlombergene	0.3	0.6525	0.5	0.075	1.0	0 903	200,0	0.835	10.0	1,002	[00.0	0.850	49.0	9644	5.0	1.015	 	
1,2,3-Trickloropropuse	0.3	0.127	0.5	0.114	1.0	0.000	200.0	0.064	10.0	0.110	100.0	0.101	49.0	0.100	5.0	0.116		
1,7,4-Tricklandergene	63	1.174	0.5	1.106	I.O	1.115	200.0	0.997	[0:0]	1.60	100.0	1.018	49.0	1.079	5.0	1.184		
1,2A-Trimotythorzone	0.3	7,350	0.5	6.766	1.0	6.565	200.0	5.560	10.0	8.764	100.0	6009	49.0	6.232	5.0	6.960		
12-DCA	0.3	0.645	0.5	0.782	1.0	0.747	200.0	0.660	10.0	0.804	100.0	0.670	47.0	0.709	5.0	0.865		
I,)-Des	03	3.495	0.5	3.652	3.0	3.766	200.0	3.093	10.0	3,689	100.0	3.287	40.0	3,652	5.0	3.624		
I ₂ 2-Diberture-1-eblerkyterytens	93	0.224	0.5	0.143	10	0.211	200.0	0.147	10.0	0.170	100.0	0.185	40,0	0.165	5.0	0.183		l
1,2-E08	03	0.583	0.5	0.897	1.0	0.593	200.0	0.664	[0,6	0.044	100.0	0.000	40.0	0.617	. 50	0.665		1
1,3,5-Trimethylemene	Q3	6.768	0.5	0.643	_1.0_	6.550	200.0	6.411	10.0	6,420	100.0	6.260	40.0	0.027	5.0	6.710		
I,J-DCB	03	4.078	9.5	4,042	1.0	4.105	200,0	3.546	10.0	4.163	100.0	3.095	40.0	9.620	5.0	4276		
1,3-Dichloropropuss	03	1,008	9.5	1,020	1.0	1,024	200.0	0.874	10.0	3.313	100:0	0.963	40.0	1,020	5.0	1214		
IA-DCB	63	4.066	0.5	3.901	1.0	3.639	200.6	3.451	10.0	3.972	100.0	3,600	40.0	5.174	5.0	4.074		
1-Chicebours	6 J	1.654	9.5	1,350	1.0	1.265	200.0	1,335	10.0	1.417	100.0	1,313	40.0	1384	5.0	1.455		
7,2-Dielfotoptopuna	6.3		0.5		1.0	1.110	200.6	0.997	10.0	1,191	100.0	1.027	40.0	1.079	5.0	1246		
2-Chicrotelucor	0.3	0.323	0.5	7.020	1.0	0.422	200.6	5.076	10.0	9,290	0.001	6.029	40.0	6.715	5.0	6.683		
1-Chlorolotucor	0.3	6,985	0.5	6019	1.0	6.700	200.0	4.937	10.0	6 (69	100.6	4,960	40.0	6 342	5.0	6 834		
Acricos	0.3	0.330	0.5	0.207	1.0	0.152	200.0	0.083	10.0	0.083	100.6	0.063	49.0	0.080	5.0	0.101		
Bendent	0.3	3,400	0.5	3.215	1.0	3.263	100.0	2.630	10.0	3264	100.0	2 964	49.0	2.997	5.0	3,674		
Brownberstans	63	3 065	0.5	2.253	1.0	2 274	200.0	1,857	10.0	2162	100.0	1.652	49.0	2.037	5.Q	2.350		
Broatchiocenethros	0.3	0.427	0.5	0.343	1.0	0.343	200.0	0.320	10.0	0.375	100.0	0327	40.0	0.348	5.0	0.420		
Kermonischloreconfluint	03	0.006	0.5	0.923	2.0	0.879	200.0	0 668	10.0	0.091	100.0	9611	40.0	0.934	5.0	5.075		
Breatenethene	03	0.171	0.5	0.182	1.0	0.143	200.0	0.189	10.0	0.179	100.0	0.187	40.0	0.183	5.0	0.170		
Curbon Tetrachioride	03	0.885	0.5	1,000	10	0.934	200.0	0.978	10.0	1.658	100,0	0.077	40.0	1,012	5.0	1,129		
Chlorochusa	93	0.155	0.5	0.150	18	0.975	200.0	0.132	0.03	0.100	100.0	0.140	47.0	0.169	5.0	0.158		
G+1,2-DCE	93		0.5	1272	1.0	0.635	200.0	0.853	10.0	5.011	100.0	0.877	40.0	0.869	5.0	1.095		
Gi-1,J-Diddangagene	03	1,189	0.5	1,391	1.0	1.120	200.0	1,049	10.0	5,154	100.0	1.071	40.0	1,102	5.0	1270		
Dibromstikeromstane	63	0.680	9.5	0.550	1.0	0.685	200.0	0.797	10.0	0.787	100,0	0.804	40.0	0.794	5.0	0881		
Diferentementace	63	0.322	0.5	0.380	1.0	0.371	200.0	0.374	10.0	0.425	100.0	0.378	40.0	0344	5.0	0.458		
Dishlotvåflurromshupt	03	0.630	0.5	0 680	1.0	0.170	200.0	0.832	10.0	0.845	100.0	0.827	40.0	0875	5.0	0.708		-
Hexaelicentrological	0.3		0.5	1.322	1.0	1.678	200.0	0.925	10.0	1.061	100.0	0.059	49.0	1,010	5.0	1.043		
I ingropy then zero	0.3	7,927	0.5	8,126	1.0	7,674	200,0	0.574	10.0	7,618	100,0	7,009	40.0	7,341	5.0	L14		\neg
n to Aliano	03	1.712	0.5	1,792	1.0	1,762	200.0	2075	10.0	1 600	100.0	1,000	49.0	1,000	5.0	1,897		-
Metholena efforide	0.3		0.5		1.0		200.0	0.711	10.0	0.635	100.0	0.716	49.0	0.735	5.0	0.976		-
Significant char(MTBE)	0.3	1.783	0.5	1,555	1.0	1,485	200,0	1,216	10.0	1,615	100,0	1.347	40.0	1,375	5.0	1,682		$\overline{}$
MEK (1-Bylanom)	03		0.5	0.108	3.0	0.109	200.0	1211	10.0	0.087	100.0	0.079	40.0	0.074	5.0	0.099		
MBK (metal isobetal ketons)	03	0.076	0.5	0.902	1.0	0.771	200.0	0.093	10.0	0.744	100.0	9.760	40.0	0.700	5.0	0.744		-
a-Buly Denvens	93	0.325	0.5	0.210	10	F.954	200.0	6 370	10.0	6.334	100.0	5.529	43.0	5,634	5.0	0.418		-
o Proprio exeme	03	0.658	0.5	0.00	1.0	9.294	200.0	3.743	10.0	0.653	100.0	8.354	40.0	8,874	5.0	0.820		-
Niphthaleor	03	3,607	05	4.022	1.0	3.768	200.0	3 650	10.0	4.652	100.0	3,741	40.0	3,839	5.0	4,329		-
> XySane	63	1,626	0.5	1.719	1.0	1.253	200,0	1.580	10.0	1,637	100.0	1.022	40.0	1.764	5.0	1,954		_
> lappopy tojumo	63	2.451	05	1.252	1.0	1264	200.0	0.522	10.0	7.029	100.0	0.350	40.0	0 100	5.0	7.190		
Seo Buty Descens	63	0.700	0.5	9237	1.0	# P51	200.0	2.613	10.0	# 63G	107.0	7.707	42.0	8.261	5.0	0 857		
Stree	60	2,660	0.5	2,844	1.0	2.734	200.0	2.650	10.0	2 849	[00.6	2 8 6 2	40.0	2.89	5.0	3.068		
TCE	03	0.708	0.5	0.880	1.0	0.804	200.0	0.763	10.0	0.860	100.0	0.774	40.0	158.0	5.0	1980		
Test But/Skenzene	0.3	1,044	0.5	0.941	1.0	J.046	200.0	5.N5	10.0	6.No.2	100.0	0.060	40.0	5.365	5.0	7,006	-	
Ietractifocoethene	03	0.834	0.5	1.603	1.0	0.004	200.0	0.652	10.0	0.974	100.0	0.844	40.0	614.0	5.0	1.047		
Inst 12-DCE	03	2007	0.5	1.103	1.9	0.010	200.0	0.800	10.0	0.800	100.0	0.800	40.0	0.825	5.0	0.600		
Frans 1,3-Dichloropropone	03	0.893	0.5	0.507	1.0	0.769	200.0	0.791	10.0	128.0	100.0	0.810	45.0	0.828	5.0	0.948		
Indivolence the	03	0.173	0.5	0.207	3.0	0.179	200.0		10.0	0.200	100.0	0.135	42.0	0.183	5.0	0.185		
1,2-DCA-D4(6)	03	0.178	0.5	0.262	1.0	0.655	203.0		10.0	0.658	100.0	0.659	40.0	0.010	5.Q	0.757		
l-Bremedwordenzana(5)	03		05	1.492	10	5.648	203.0		10.0	1,260	100.0	1.182	62.0	1.225	5.0	1.369	-	—
Ditroneformeran(5)	03		05	0.650	1.0	0.707	200.0		0.01	0.818	100.0	0.760	42.0	0.778	5.0	0.832		
Accomenycompenancys) Februs D8(6)	03	-	0.5	3.618	1.0	3.844	200.0		10.0	3,38)	100.0	3.166	40.0	3.162	5.0	3,450	-	
inconstro(a)	0.5	\rightarrow	כט	3,514	1.0	J.844	7000	-	10.0	3387	100.0	4.750	40.00	J.107	3.0	3400		
	-+		-		-	-												
									 '									

Comments			
			_

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytical Method: MBTHOD 8260	AAB #: 120229AC-164500
Lab Name: APPL, Inc.	Contract #: 40012
Instrument ID: Chico	Date of Initial Calibration: 24-Feb-12
Initial Calibration ID: C120224	Concentration Units fue/L or me kelt us/L

Analyte	%	mean	1	COD	Q
L	R8D	ИRSD		1	
1,1,1,2-Tetrachloroethane	7.0				<u> </u>
1,1,1-TCA	7.1				
1,1,1-TCA	9.3		ļ	ļ	
1,1-Dichlorogropene	8.2		<u> </u>		
1,2,1-Trichlorobenzene	ÿ.I			ļ	<u> </u>
1,2,3-Trichloropropane	10.5				
1,2,4-Trichlorobenzene	7.1				
1,2,4-Trimethyloenzene	8.4			l	L
1,2-DCA	10.7				
I,2-DCB	7.5				
1,2-Dibrotno-3-chioropropane	13.1				
1,2-EOD	5.6			<u> </u>	
1,3,5-Trimethylbenzene	7.9				
1,3-DCB	6.1				
1,3-Dichlocopropane	7.6				
1,4-DCB	5.8			L	
I-Chlorobexano	6.0				
2,2-Dichloropropane	8.6				
2-Chlorotohicne	10.3				
4-Chkvotohune	7.4				
Acctone	63.4		1.0000	1	
Buzzene	7.1			1	
Bromobenzene	16.3		1.0000		
Bromochleromethane	11.2				
Bromodichloronethane	6.6				
Bromomethane	8.0				
Carbon Tetrachloride	7.4				
Chierosthang	8.7				T
Cis-1,2-DCB	15				T.,
Cis-1,3-Dichloropropose	9.7				
Dibromochloromethane	9.4				
Dibromorosthane	10.7				
Dichloredi fluoremethane	21.4				
Hexacidorobutadione	23.2		1.0000		
Isopropylbunzene	7.4				
m&p-Xylene	8.0				
Methylene chlorida	14.3				
Methyl I-butyl ether (MTBE)	11.3				
MEK (2-Butanoor)	14.9				
MBK (methyl (sobutyl ketone)	14.0				
a Buly Desizene	6.2				
n-Propylbenzene	7.9			Ì	
Naphthalene	8.9			1	1
o-Xylere	6,8			i	
p-Isopropyliohurue	6.8				
Soc-Burylbonzone	7.2			· · · · · · · · · · · · · · · · · · ·	
Strone	6.5				
TC8	8.1				
Turt-Butylburzene	7.9			i	
Tetrachioroethene	7.5	-		l	i
Trans-1,2-DCE	14.2			· · · · ·	
Trans-1,3-Dichlorepropene	6.5				
Trichlocollucromethane	12.4				$\overline{}$
1.2-DCA-D4(S)	8.9				
4-Bremofluorobenzeno(S)	9.3			· · · · · · · · · · · · · · · · · · ·	l i
Dibromofluoromethane(S)	4.5				
Tolume D8(S)	5.1			-	
and the Dolog	- 5.5				
1					
L					

Comments:	 ·····	

AFCEB ORGANIC ANALYSES DATA SHEET JA INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

AFCER FORM O-3A Page ____ of ____

Analyi	AAB #: 120229AC-164500								-									
	Lab Name:	APPI, I	K			_		(Contract #:	*G012				_				
In	strument ID:	Chico				_	Date o	f Initial Ca	alibrations	24-Feb-12								
Initia) Ca	libration (D:	C120224	ı <u>.</u>			Concert	tration Un	its (ug/L	or mg/kg);	บฐใ				-				
Analyte	SH	RF .	Skl	ЯF	SM	RF	SM	RF	SN	RF	513	RF	Stal	RF	2/1	RF	217	RF
	- '-	<u> </u>	1	2	3	3	1	1	5	5	- 6	6	7	,	В	B	9	
Chloronsethane *	0.3	0.284	0.5	0.302	1.0	0.278	200.0	 	10.0	0.269	100.0	ļ	40.0	0.244	5.0	0.254		<u> </u>
Vinyl chloride #	0.3	0.215	0.5	0.249	1.0	0.208	200.0	0.191	10.0	0.177	100.0	0.200	40.0	0.183	5.0	0.212		
),1-DC8#	0.3		0.5	0.930	1.0	0.659	200.0	0.653	10.0	0.720	100.0	0.660	40.0	0.692	5.0	0.774		
L1-DCA •	0.3	1.583	0,5	1.386	1.0	1.457	200.0	1.229	10.0	1.474	100.0	1.265	40.0	1.279	5.0	1.568		
Chloroform #	0.3	1.014	0.5	0.953	1.0	0.908	200.0	0.658	10.0	D.958	100.0	0.870	40.0	888.0	5.0	1.076	 .	ļ.,,
1,2-Dichloropropane#	0.3	0.842	0.5	0.830	1.0	0.730	200.0	0.697	10.0	0.814	0.001	0.717	40.0	0.745	5.0	0.884		
Toluene#	0.3	3.705	0.5	3.392	1.0	3.130	200,0	2.698	10,0	3.359	100,0	2.983	40.0	3.129	5.0	3.668		
Chlorobenzene *	0.3	2.738	0.5	2.711	L.O	2.691	200.0	2.411	10.0	2.829	100.0	2.458	40.0	2,649	5.0	2.955		
Ethylbenzene #	0.3	4.778	0.5	4.828	1.0	4.541	200.0	4.055	10.0	4.660	100.0	4.147	40.0	4.373	5.0	4.81		.
Bromoform *	0.3	0.470	0.5	0,358	1.0	0.355	200.0	0.511	10.0	0.451	100,0	0.483	40.0	0.485	5.0	0.478		
1,1,2,2-Tetrachloroethane *	0.3	1.012	0.5	1,141	i.0	1.122	260.0	1.007	10,0	1.106	100.0	1.031	40.0	1.05	5.0	1.222		
* SPCCs	# CCCs							<u></u>										
Common																		

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

						-		
					Contract #	: *G012		
		Date of Initial Calibration: 24-Feb-12						
		Сол	centration	Units (ug/L	or mg/kg):	ug/L		
Anthia	1 4	men		COD	n	1		
1023,	RSD	%RSD	•	1 442	٧			
Chloromethane *	7.6					f		
1,1-DCA •	9.8					1		
Bromaform •	13.2					1		
Chlorobenzene •	6.7	****				1		
1,1,2,2-TCA •	6.9					1		
I,1-DCE#	13.8							
Chloroform#	8.0					1		
1,2-DCP#	8.7					•		
Toluene #	9.1							
Sthylbenzene #	6.7							
Vinyl chloride #	11.1				,			
	1,1-DCA * Bromeform * Chlorobenzene * 1,1,2,2-TCA * 1,1-DCB # Chloroform # 1,2-DCP # Foluene #	RSD Chloromethane * 7.6 1,1-DCA * 9.8 Bromeform * 13.2 Chlorobenzene * 6.7 1,1,2,2-TCA * 6.9 1,1-DCB # 13.8 Chloroform # 8.0 1,2-DCP # 8.7 Tohene # 9.1 Ethylbenzene # 6.7	Analyse	Anabis # # ### #### #### ##### ############	Analyse ## mean r COD RSD #RSD #RSD Chloromethane * 7.6 1,1-DCA * 9.8 Bromofonn * 13.2 Chlorobenzene * 6.7 1,1,2,2-TCA * 6.9 1,1-DCB # 13.8 Chlorofonn # 8.0 1,2-DCP # 8.7 Tohene # 9.1 Ethylbenzene # 6.7	RSD WRSD		

AFCEE FORM O-3A Page ____ of ____

AFCEE ORGANIC ANALYSES DATA SHEET 3 INHIAL MULTIPOINT CALEBRATION-GCMS ANALYSIS

Analytical Michael: METHOD 1201B	AAB J: 120229AN-164497
Jah Name; APPI, Inc.	Contract #: *G012
Instrument IO; Neo	Date of kritisl Calibratico: 29-Feb-12
Initial Calibration (D; N120229	Cooccutration Units (ug/L or mg/kg): mg/kg

Azal)4e	I SZI	RF 1	Su 1	RF t	Std	RF 3	229	RF 4	54d 5	RF Š	2/1	RF	Srq.	RF 7	Std I	RF (
1,1,1,2-Tetrachiocoethane	0.005	1.065	0.002	1,051	0.020	1.019	0.100	1.081	0,050	1.027	0.200	1.048	0.010	0.937	L	
I,I,1-TCA	0,005	1,858	0.001	1.717	0.020	1.888	0.100	1.829	0,050	1.482	0.200	1.590	0.010	1.533	L	
I,I,Z-ICA	0.005	0.835	0.002	0.540	0.020	0.587	0.100	0.897	0.050	0.874	0.200	0.575	0.010	0.534		L
I,I-Dichlerepropens	0.005	1,612	0.002	1,640	0.020	1.700	0.100	1.889	0.050	1.504	0.200	1.594	0.010	1.505	1	
1,2,3-Tricklerobenzene	0.005	2.347	0,002	2.589	0.020	2 235	0.100	2.178	0.050	2.101	0,200	2.242	0.010	2.498	i	
1,2,3-Trichloropropane	0.005	0.733	0.002	0.617	0.020	0.614	0.100	0 632	0.050	0.582	0,200	0.714	0.010	0.651		
i,2,4-Trichlombenzene	0.005	2.725	0.002	3,262	0.020	2.638	0.100	2,562	0.050	2.546	0.200	2.723	0.010	2.850		
1,2,4-Trimethylbenzene	0.005	0.984	0.002	8.925	0.020	9.627	0.100	9.053	0.050	8.566	0.200	10.674	0,010	0.998		
1,2-DCA	0.005	1.292	0.002	1.233	0.020	1.214	0.100	1.721	0.050	1.328	0.200	1.187	0.010	1.135	l '	
L1DCB	0.003	4.333	0.003	4.149	0.020	3.768	0.100	4.052	0.050	3,995	0.200	4.350	010.0	4.094		
1,2-Dibecos-J-chloropropuse	0.005	0.468	0.002	0.370	0.020	0.391	0.100	0.395	0.050	0.319	0.200	0.430	0.010	0,342	· · · · · · · · · · · · · · · · · · ·	
1,24E0B	0.005	1.004	0.002	0.958	0.020	1.024	0.100	1.065	0.050	0.978	0.200	1.028	0.010	0.943	 -	
1,3,5-Trimethylbenzene	0.005	9.075	0.002	8.664	0.020	9.292	0.100	9.320	0.050	9.005	0.200	10.783	0.010	10.241	-	
1.3-DCB	0.005	4.517	0.002	4.305	0.020	4.639	0.100	4.562	0.050	5.443	0.200	4.901	0.010	4,888	-	
1,3-Dichloroptopane	0.005	1.790	0.602	1.504	0.020	1.754	0.100	1.820	0.050	1.791	0.200	1.703	0.010	1,678	-	
1,4-DCB	0,005	4.920	0,002	4.817	0.020	4.350	0.100	4.438	0.050	4.320	0.200	4,700	0.010	4.875		
1-Chkyobenane	0,003	2 215	0,002	2.068	0.020	2.407	0.103	2.357	0.050	1.933	0.200	2.432	0.010	2,149	-	
		_	0.002	5.771	0.020	1,747	0.103	1,683	0.050		0.200	1,028	0.010	1.546	 	
2,2-Dichloropropuse	0.005	1.681				9,988				1.593	0.200	10,684	0.010	11,114	├─	
2-Chlorotoluene	0.005	10.540	0.002	10.269	0.020		0.100	9.916	0.050	9,484					├	
1-Chloretolyene	0.005	8.596	0.002	6.643	0.030	8.400	0.100	6.189	0.050	8.179	0.200	813.9	0.010	8.928	├──	
Acetone	0.003	0.951	0.002	1.073	0.020	0.508	0.100	0.371	0.050	0.307	0.200	0.377	0.010	0.569	⊢—	—-
lienzene	0,005	4.336	0,002	4.260	0.020	4.160	0.100	4.180	0.050	4.318	0.200	4,185	0.016	3.972		—
Bromobenzene	0.005	2.621	0,002	2.542	0.020	2.360	0.100	2.393	0.050	2,485	0.200	2.650	0.010	2.672		—
Bronechlesemethane	0.005	0.400	0,002	0.413	0,020	0.362	0.100	0.318	0.050	0.345	0.200	0.309	0.010	0.343		
Bromodichloromethane	0.005	1.323	0,002	1.168	0.020	1.207	0.100	1.307	0.050	1.384	0.200	1.235	0.010	1.215		
Bromomethane	0.005	0.533	0.002	0.784	0.020	0.815	0,100	0.878	0.050	0.845	0.200	0.775	0.010	0.415		
Carbon Tetrachloride	0.005	1.234	0.002	1.019	0.020	1.313	0.100	1.339	0,050	1.223	0.200	1.331	0.010	1.106		
Chkroethane	0.005	0.970	0.002	1.008	0.020	1,008	0,100	0.913	0.050	0.669	0.200	0.928	0.010	0.932		
Cis-1,2-DCB	0.005	1.093	0.002	5.152	0.020	1.110	0.100	1.094	0.050	1.124	0.200	1.045	0.010	1.008		
Cis-1,3-Dichleropropene	0.003	1.554	0.002	1.570	0.020	1.495	0.100	1.810	0.050	1.729	0.200	1.535	0.010	1.354		
Dibromorhiorconthane	0.005	1.218	0.002	1.120	0.020	1.164	0,100	1.217	0.050	1.208	0.200	1.211	0.010	1.114		
Dibramonethane	0.005	0.625	0.002	0.689	0.020	0.548	0,100	0.569	0.050	0.605	0.200	0.642	0.010	0.541		
Dichloseditheromethane	0.005	2.051	0,002	1.831	0.020	1.87D	0.100	1.731	0.050	1.507	0.200	1.748	0.010	1.733		
liesachlorobutadiene	0,00\$	1.008	0.002	0.810	0.020	0.810	0.100		0.050	0.692	0.200		0.01D	0.884		
kayeegy(fernzéné	0.005	12.555	0,002	12.053	0.020	12.103	031.0	12.188	0.050	10.667	0.200	13.647	0.010	13,088		
n&p-Xylene	0.005	2.200	0,002	2.218	0.020	2.113	0.160	2.117	0.050	1.924	0.200	2.122	0.010	2,121		
Metholene chloride	0,005	0.774	0.002		0.020	0.673	0.100	0.635	0.050	0.582	0.200	0,618	0.010	0.690		
Methol I-bulyl ether (NI 11315)	0.005	2.281	0,002	2.242	0.020	2.255	0.100	2.303	0.050	2,493	0.200	2.197	0.010	2,010		
MEK (2-Butanene)	0.005	1.115	0.002	1.252	0.020	0.950	0.100	0.852	0.050	0.888	0.200	0.842	0.010	0.915		
MIBK (methy) isobotyl betcoe)	0.003	3.655	0,002	3.722	0.020	3.311	0.100	3.421	0.050	3.254	0.200	3,810	0.010	3,664		$\overline{}$
n-Butythenizene	0.005	11.823	0.002	12.491	0.020	15.424	0.100	11.032	0.050	0.831	0.203	13.145	0.010	12.350		
	0.005	17.045	0.002	15,419	0.020	18.260	0.100	18.281	0.050	14.321	0.200	18.577	0.010	18,799		
n-Propythenzene				6.047	0.020	5.031	0.100	4.888	0.050	4.467	0.200	5.050	0.010	5.263		
Naphthalene	0,005	5,106	0.002	_					***	1.663	0.200		0.010	1.061		
-Xylene	0.003	2,002	0.001	1.980	0.020	1.901 10,361	0.100	1.962 10.368	0,050	8.788	0.200	1.859	0.010	10.654		
a-Isopropyltoluene	0.005	10,903	0.001	10.494	0.027											
See-Butylbenzene	0.005	14,082	0.002	13,419	0.020	13.664	0.100	13.399	0,050	11.753	0.200	15.674	0.010	15.065		
Stynene	0,005	2.125	0.002	2.048	0.029	1.989	0.100	1.953	0.050	1.034	0.200	1.860	0.010	1.916		
ICE	0.035	1,108	0.002	1.123	0.020	1.086	0.100	1.072	0.050	1.015	0.200	1.038	0.010	0.973		
Fert-Buty/benzene	0.005	9.937	0.002	9,602	0.020	8.924	0,100	8.851	0.050	8.185	0.200	10.777	0.010	10.117		
[etrachloroethene	0.005	1.005	0.002	0.938	0.010	1,102	0.100	1.027	0.050	0.855	0.200	1.067	0.010	0.987		
Frans-1,2-DCE	0,005	1,149	0.002	1.027	0.010	1.081	0.100	1.058	0.050	1.058	0.200	1.057	0.010	0.951		
Frans-1,3-Dichleropropene	0.005	1.365	0.002	1.334	0.020	1.296	0.100	1.322	0.050	1.431	0.200	1.284	0.010	1.213		
Friebleroftneremethane	0.005	1.335	0.003	1.495	0.020	1,505	0.100	1.409	0.050	1.327	0.200	1.479	0.010	1.431		
,2-DCA-D4(S)	0.005	1.134	0.002	1.642	0.020	0.926	0.100	1.042	0.050	0.815	0.200	1.022	0.010	0.888		
-Bremoffuorobenzene(S)	0.005	1.780	0.002	2,689	0.020	1.405	0.100	1.523	0.050	1.033	0,200	1.503	0.010	5.477		
Normofherconething(S)	0.003	0.961	0.002	1.340	0.020	0.667	0.100	0.096	0.050	0.718	0,200	0.965	0.010	0.840		
foluene-D8(S)	0.005	4.968	0.002	7,135	0,020	4,303	0.100	4.544	0.050	2.980	0.200	4.711	0.010	4.234		

Comments:	

AFCEE ORGANIC ANALYSES DATA SHEET I INITIAL MULTIPOINT CAUBRATION-OCMS ANALYSIS

Analytical Muhed: METHOD 8260B	AAB#: 120229AN-161497
Fab Name: APPL, Inc.	Contract #: *G012
Instrument ID: Noo	Date of Initial Calibratico: 29-Feb-12
Initial Calibration ID: N120229	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	75 RSD	neen MRSD	r	COD	Q
1,1,1,2-Tetrachleroethane	1.6		· -		1
I,I,I-TCA	7.9				1
I,I,2-TCA	8.5		-		· · · · · ·
f,1-Dichleropropene	4.7				
1,2,3-Trichkrobenzene	7.6				
1,2,3-Trichieropropuse	8.5			 	
1,2,4-Trichlorobouzone	9.0				-
1,2,4-Trinxthylbenzene	7.7				
1,2-DCA	5.4	├──			
1,2-DCB	4.7	 			· ·
1,2-Dibromo-3-chloropropane	13.1				
1,2-ED8	43			-	
1,3,5-Trimythylbenzena	7.3		-		
1,3,3-11mcoryndazena 1,3-DCB	4.3	├──	├ ──	 	1
	5.1	 			 -
1,3-Dichloropropane 1,4-DCB	4.6	— —		 	
				ļ. —	· · · · · · · · · · · · · · · · · · ·
1-Chlorebexane	8.5]
2,2-Dichlocopropane	6,6			!	-
2-Chlorotohaue	5.6				
4-Chlorotolume	5.8				
Acctone	48,6		D.9990		
Ваглане	2.9				
Bremobunzene	5.1				
Bromochioromethane	11.0				
Bromodichloromethane	5.7				
Bromomethane	20.6		0.9980		
Carbon Tetrachloride	9.9				
Chloroethane	4.8				
Cis-1,2-DCB	3.9				
Cis-1,3-Dichkropropene	6.8				
Dibcomochleromethane	4.3				
Dictomonschune	5.8				
Dichlorodifluoromehane	9.7				
Hexachlorobutadiene	13.6				
Isopropylistizate	7.6				
ni&p-Xylene	4,5				· · · · · ·
Methylene chloride	10.1				
Methyl t-busyl other (MTBB)	6.4			-	
MEX (2-Butanooc)	15				
MIBK (methyl isobutyl ketone)	6.1				-
n-Butyfbenzene	9.8				
n-Propylemzene	8.1				
	9.2				-
Naphthalene	3.0			- -	
o-Xylene					
p-Isopropyltolizae	9.2				-
See Buylbenzene					
Styrone	4.4				ļ
TCE	5.1				L
Tart-Butylbenzene	9.3				—
Tetrachlorouthene	8.3				ļ
Trans-1,2-DCF	4.8				
Trans-1,3-Dichloropropeue	5.2				
Trichloroftperemethane	4.5				
1,2-DCA-D4(\$)	22.8		0.9985		
4-Bromofluorobenzene(S)	35.0		0.9965		
Dibromolluorouxthuse(S)	20.4		0.9975		
Tohune D8(S)	26.6		0.9955		
•					

Comments:		 	

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analy	ical Method:	метно	D \$260B			_			AAB#:	120229AN-16	4497					
	Lab Name:	APPL, It	1C.					c	ontract #:	*G012				_		
In	strument ID:	Neo				-	Date o	f Initial C	alibration:	29-Feb-12				_		
Initial Ca	Ebration ID:	או20229)			Concenti	ation Uni	ts (ug/Lo	rmg/kg):	mg/kg						
Analyte	Std 1	RF 1	Std 2	RF 2	Std	RF 3	Std	RF	S44 5	RF S	Sv.4	RP 6	Std 7	RF	Ştd R	RF
Chloromethane *	0.005	2.760	0.002	2,993	0.020	2,441	0.100	2.106	0.050	2.241	0,200	2.153	0.010	2.308		-
Vinyl chloride #	0.005	0.553	0.002	0.486	0.020	0.505	0.100	0.460	0.050	0.475	0.200	0.466	0.010	0.499		
I,1-DCE#	0.00\$	1.084	0,002	0.936	0,020	1.017	0.100	0.951	0.050	0.913	0.200	0.976	0.010	0.947		
1,1-DCA *	0.005	2.320	0.002	1.988	0.020	2.230	0,100	2.144	0.050	2.242	0.200	2.119	0,010	2.062		
Chloroform#	0.005	1.864	0.002	1.738	0.020	1.778	0.100	1.803	0.050	1.911	0.200	1.747	0.010	1.65		
1,2-Dichloropropane#	0.005	1,137	0.002	1.120	0.020	1.125	0.100	1.138	0.050	1.239	0.200	1.113	0.010	1.042		
Tohiene#	0.005	4.164	0.002	4.407	0.020	3.968	0.100	3.908	0.050	3.940	0.200	3.904	030.0	3.827		
Chlorobenzene *	0.005	3.265	0.002	2.862	0.020	3.165	0.100	3.166	0.050	3.024	0.200	3.124	0.010	3.05		
Ethylbenzene #	0.005	6.710	0.002	6.226	0.020	6.263	0.100	6.161	0.050	5.802	0.200	6.278	0.010	6.112		
Bromoform *	0.005	0.710	0.002	0.639	0.020	0.705	0.100	0.763	0.050	0.714	0.200	0.739	0.010	0.688		
1,1,2,2-Tetrachloroethane *	0.005	2.855	0.002	2.654	0.020	2.751	0.100	2.774	0.050	2.674	0.200	2.993	0.010	2.935		
• SPCCs	# CCCs															
Conuncu	is;															

AFCER FORM 0-3A Page ____ of ____

AFCEB ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCAIS ANALYSIS

Analytical Method: METHOD	8260B		-			AAB	#: 120229AN-164497
Lab Name: APPL, Inc.						Contract	#: <u>*G012</u>
Instrument ID; Neo			_	D	ate of Initial	Calibratio	nt 29-Feb-12
Initial Calibration ID: N120229			Co	ncentration	Units (ug/1	or mg/kg	g): mg/kg
	Analyte				COD		-
	Analyte	RSD	mean MRSD	r	(00	Ŷ	
	Chloromethane *	13.6					7
	I,I-DCA *	5.3					7
	Bromoform *	5.5					7
	Chlorobenzene *	4.2	1		T		
	1,1,2,2-TCA *	4.6			1		7
	1,1-DCE#	6.0					
	Chloroform#	4.8			Ī		7
	1,2-DCP #	5,1.			Γ		
	Toluene#	5.0					
	Ethylbenzeno#	4.3	lI				
	Vinyl chloride#	6,5]
Cs # CCCs							_
Comments:							

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytical Method: NETHOD \$250B	AAB#: 120105AN-164483
Lab Name: APPL, Inc.	Contract 8: *G0(2
Instrument ID: Neo	Date of Initial Calibration: 5 Mar #2
Initial Calibration ID: N120303	Concentration Units (ug/L or mg/kg); mg/kg

Analyle	รูป 1	RJF L	3 १त	RF	Stal	RF 3	Sid 4	RF 4	56J	RF 5	\$td 6	RF 6	51\$	RF	Std	RF 1
1,1,1,2-Tetrachloroethane	0.005	1.210	0.002	1.231	0.020	1.115	0.100	1.117	0.050	1,106	0.200	1.115	0.010	1,105	'	
J,1,1-TCA	0.005	1,388	0.002	1.071	0.020	1.209	0.100	1.259	0.050	1.156	0.200	1,150	0.010	1,292		
1,1,2-TCA	0.005	0.659	0,002	0.642	0.020	0.613	0.100	0.624	0.050	0.830	0,200	0.552	0.010	0,668		
1,1-Dichloropropene	0.005	1.323	0.002	1.073	0.020	1.209	0.200	1.190	0.050	1.044	0.200	1.130	0.010	1,256		-
1,2,3 Trichlerobenzene	0.003	3.238	0.002	3.986	0.020	2.360	0.100	2.403	0.050	2.640	0.200	2,400	0.010	2.843	 	-
1,2,3-Trichloropropane	0.003	0.864	0.002	1.003	0.020	0.636	0.100	0.709	0.050	0.778	0.200	0.723	0.010	0.714	·	
1,2,4-Trichlorobenzene	0.005	3.503	0.002	3.655	0.020	2.701	0.100	2,668	0.050	2.945	0.200	2,693	0.010	2.781		
1,2,4-Trimethylbenzene	0.005	10.791	0.002	10.395	0.020	9.373	0.100	9.011	0.050	10.090	0,200	9.564	0.010	8,698	$\overline{}$	1
1,2·DCA	0.005	1.443	0.002	1.314	0.020	1.169	0.100	1.290	0.050	1.263	0.200	1.151	0.010	1.247	i	\vdash
1,2-DCB	0.005	5.117	0.002	5.282	0.020	4.162	0.100	4.234	0.050	4.905	0.200	4.400	0.010	4,100		$\overline{}$
1,2-Dibromo-3-chloropropane	0.005	0.435	0.002	0.420	0.020	0.358	0.100	0.385	0.050	0.460	0.200	0.411	0.010	0.317		
1,2-EDB	0.005	1.233	0.002	1.134	0.020	1.099	001.0	1.087	0.050	1.064	0.200	1.111	0.010	1.097		
1,3,5 ·Trimethylbenzene	0.005	10.741	0.002	9.832	0.020	9.173	0.100	9.027	0.050	9.743	0.200	9.457	0.010	8.723		
(,3-DC8	0.005	5.765	0.002	6.224	0.020	4.755	0.100	4.522	0.050	5.379	0.200	4.738	0.010	4,763		·
1,3-Dichloropropane	0.005	2.175	0.002	1.961	0.020	1.990	0.100	1.942	0.050	1.799	0.200	1.955	0.010	1.853		
I,4-DCB	0.005	5.768	0.002	8,287	0.020	4.728	0.100	4.438	0.050	4.847	0.200	4.615	0.010	4.860		
1-Chlorobexane	0.005	1.818	0.002	1.438	0.020	1.829	0,100	1,654	0.050	1.454	0.200	1.689	0.010	1.729		
2,2-Dichloropropane	0.005	1.626	0,002	1,343	0.020	1.333	0.100	1.333	0.050	1.214	0.200	1.230	0.010	1,292		
2-Chlerotoluene	0.005	11.747	0.002	11.982	0.020	9,914	0.100	9.746	0.050	10.659	0.200	9.996	0.010	9.357		
4-Chlorotoluzae	0.005	10,696	0.002	10.290	0.020	8.704	0.100	0.083	0.050	9.586	0.200	8.810	0.010	8.729		
Acctone	0.003	0.737	0.002	1.343	0.020	0.490	0.100	0.324	0.050	0.345	0.200	0.280	0.010	0.871		
Benzene	0.003	4.283	0.002	3.924	0.020	3.602	0.100	3.685	0.050	3.622	0.200	3.401	0.010	3.679		
Bromobcazene	0.005	3.275	0.002	3.483	0.020	2.694	0.100	2.661	0.050	2.663	0.200	2.792	0.010	2.708		
Bromochioromethane	0.005	0.423	0.002	0.333	0.020	0.362	0.100	0.326	0.050	0.332	0.200	0.287	0.010	0.361		
Bromodichloromethane	0.005	1.476	0.002	1.311	0.020	1.235	0.100	1.373	0.050	1.300	0.200	1.197	0,010	1.185		
Bromomethane	0.005	0.611	0.002	0.783	0.020	0.483	0.200	0.674	0.050	0.441	0.200	0.653	0.010	0.444		
Carbon Tetrachloride	0.005	0.938	0.002		0.020	0.891	0,100	1.000	0.050	0.884	0.200	0.932	0.010	0.922		
Chloroethane	0.005	0.009	0.002	0.651	0.020	0.713	0.100	0.709	0.050	0.625	0,200	0.655	0.010	0.766		
Cis-1,2-DCE	0.005	1.022	0,002	1.052	0.020	0.988	0.100	1.008	0.050	0.999	0.200	0.903	0.010	0.977		
Cis-1,3 Dichloropropens	0.005	1.769	0.002	1.071	0,020	1.543	0.100	1.612	0.050	1.637	0.200	1.425	0.010	1,566		
Dibromorbloromethang	0.005	1.395	0.002	1.363	0.020	1.314	0.100	1.361	0.050	1.279	0.200	1.364	0.010	1.175		
Dibromomeshane	0.005	0.671	0.002	0.660	0.020	0.567	0.100	0.594	0.050	0.570	0.200	0.516	0.010	0.677		
Dichlorodifluoromethane	0.005	1.165	0.002	0.648	0.020	1.191	0,100	0,983	0.050	0.632	0,200	0.934	0.010	1,154		
Hexachlorobutadisus	0.005	1.974	0,002	1.752	0.020	1.754	0.100	1.737	0.050	1.777	0.200	1.839	0.010	1.747		
Isopropyfbenzeno	0.005	12.992	0.002	11.350	0,020	11.101	9.100	10.390	0,050	11.682	0.200	11.957	0.010	11.291		
m&p-Xylene	0.003	2.173	0.002	1.916	0.020	1.905	0.100	1.811	0.050	1.806	0.200	1.990	0.010	F.910	_	
Methylene chloride	0,00\$	0.800	0.002	0.902	0.020	0.628	0,100	0.614	0.050	0.622	0.200		0.010	0.608		
Mothyl t-butyl ether (MTBE)	0.005	2.628	0,002	2.643	0.020	2.316	0.100	2.492	0.050	2.427	0.200	2.164	0.010	2.288		
MEK (2-Butanone)	0.005	1.116	0.002	1.484	0,020	0.919	0.100	0.847	0.050	0.821	0.200	0.760	0.010	0.918		
MIBK (methyl isobutyl ketone)	0.005	5.079	0.002		0.020	4.126	0.100	3.604	0.050	4.141	0.200	3.717	0.010	4.049		
n-Bulyibenzene	0,005	11.949	0.002	10.202	0.020	9.164	0.100	0.292	0.050	10.045	0.200	10.054	0.010	9.686		
n-Propylbenzene	0.005	17.142	0.002	15.332	0.020	14.769	0.100	14.273	0.050	15,412	0.200	15.685	0.010	15.068		
Naphthalene	0.003	8.629	0.002	7.658	0.020	5.749	0.100	5.630	0.050	8.262	0.200	5.394	0.010	5,624		
n-Xylene	0.005	2.206	0.002	1.918	0.020	1.851	0.100	1.874	0.050	1.912	0.200	1,949	0.010	1.838	[
- Isopropyltoluene	0,005	10.930	0.002	9.655	0.020	9.165	0.100	9.004	0.050	9.291	0.200	9.574	0.010	9.309		
Sec-Butylbenzene	0.005	13.915	0.002	11,658	0.020	12.154	0.100	11.605	0.050	12.487	0.200	13.034	0.010	11.914		
δήτσιο	0.005	2.236	0.002	2.159	0.010	1.982	0.100	2011	0.030	2.022	0.200	2.040	0.010	1.981		
rce	0.005	0.931	0.002	0.832	0.020	0.877	0.100	0.895	0,050	0.837	0.200	0.790	0.010	0.849		
fert-Bulyibenzene	0.005	10.227	0.002	8.634	0.020	8.587	0.100	8.191	0.050	9.086	0.200	9,013	0.010	8.749		
Tetrachloroethene	0.003	0.929	0.002	0.699	0.020	0.891	0.100	0.784	0.050	0.797	0.200	0.881	0.010	0.833		
frans-1,2-DCE	0.005	1.009	0.002	0.944	0.020	0.071	0.100	0.877	0.050	0.613	0.200	0,793	0.010	0.872		
rans-1,3-Dichloropropene	0.005	1.487	0,002	1.512	0.020	1.323	0.100	1.373	0.050	1.245	0.200	3.184	0.010	1.358		
richteroffvoromethane	0.005	1.084	0.002	0.647	0.020	1.038	0.100	0.978	0.050	0.725	0.200	0.917	0.010	1.040		
,2-DCA-D4(\$)	0.005	1.212	0.002		0.020	1.074	0.100	1.059	0.060	0.934	0.200	0.940	0.010	1.085		
-Bromoffworobenzene(\$)	0.005	2.127	0.002	!	0.020	1.641	0.100	1.549	0.050	1.365	0.200	1.513	0.010	1.706		
Dibromofluoromethane(\$)	0.005	1.086	0.002	1.201	0.020	0.938	0.100	0.938	0.050	0.840	0.200	0.835	0.010	0.947		
olucoe-D8(S)	0.00\$	4.991	0.002	 -	0.020	4.466	0,100	3,996	0.050	3.757	0.200	4.435	0.010	4.285		
		ļ														

Comments:		

AFCEB ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytical Method: METHOD 8250B	AAB#: 120105AN-16448J
Lab Name: APPL, Inc.	Contract 8: *G0}2
Instrument ID: Noo	Date of Initial Calibration: 5 Mar 12
Initial Calibration ID: N120303	Concentration Units (wg/Lor mg/kg): mg/kg

. Analyte	- X	cycan	Г	COD	Q.
1,	RSD	1/RSD	1 '	1 (0)	١ ٧
1,1,1,2-Tetrachioroethune	4.8		 	·· ·	
I,1,1-TCA	83		 		
1,1,2-TCA	6.6		 		
1,1-Dichloroproproe	8.5		 		
1,2,3 Trichkrobenzene	23	 	0.9990		t
1,2,3-Trichlorepropans	16		0.9990		
1,2,4-Trichlerobenzene	14		111111		
1,2,4-Trimethylbenzene	7.3				
1,2-DCA	7.4				
1,2-DCB	11				
1,2-Dibromo-3-chloropropane	[2				
1,2-EDB	5.1				1
1,3,5-Trimethylbenzene	7.0				
1,3-DCB	8.9	□			
1,3-Dichloropropane	5.9				
I,4-DCB	13				
1-Chlorobetane	11				
2,2-Dichloropropane	7.8				
2-Chlorotoluene	9.8				
4-Chlorotolume	.10				
Accione	64		0.9960		
Benzene	7.6				
Bromobenzene	11				
Bromochloromethane	12				
Bromodichloromethane	8.0				
Bromomethane	22		0.9970		
Carbon Tetrachloride	5.7				
Chloroethane	44		0.9970		
Cis-1,2-DCB	9.3				
Cis-1,3-Dichloropropene Dibromochloromethane	5.6				
Disconomethane	9.2				
Dichlorodiffuoromethane	25		0.9900		
Herschlorobutadiene	4.7		U.9900		
Isopropyibenzene	7.0		-		·
mép-Xylene	6.5				
Methylene chloride	18		1.0000	-	
Mothyl I-buryl ether (MTBE)	93		1.000		
MEX (2-Butanone)	23		0.9970		
MIBK (methyl isobutyl ketone)	13		0.3713		
n-Butylbenzene	9.1				
п-Рторуї белгене	5.9				
Naphthalene	13				
o-Xylene	6.5				
p-Isopropyliohiene	6.7				
Sec-Buty Rocuzene	6,7				
Styrene	4.9				
TCB	5.3				
Text-Butylbenzene	7.4	1			
Tetrachloroschene	10				
Trans-1,2-DCS	8.4				
Tracs-1,3-Dichloropropene	8.5				
TrichloroPuoromethane	18		0.9950		
1,2-DCA-D4(\$)	9.8				
4-Bromofuorobenzene(S)	16		0.9990		
Dilyomofluoromethane(8)	14				
Toluene-D8(8)	9.9				
· · · · ·		I			

Comments:	

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytic	cal Method:	METHO	D 8260B			-			AAB#:	120305A	N-16448	3				
	Lab Name:	APPL, In	ic,			_		c	ontract#:	•G012						
Ins	trament ID:	Neo				-	Date of	f Initial Ca	alibration:	5 Mar 12	2					
Initial Cal	ibration ID:	N120305	i			Concent	ration Uni	is (ug/Lo	or mg/kg):	mg/kg						
Analyte	Sid	R.F	Sid 2	RF 2	Svi 3	RP 3	Std.	RF	Sid 5	RF S	SIA 6	RF 6	S43	RF 7	Std 8	RP 8
Chloromethane *	0,005	2.460	0.002	2.520	0.020	1.937	0.100	1.666	0.050	1.541	0.200	1.554	0.010	1.937		Ť
Vinyl chloride #	0.005	0.479	0.002	0.295	0.020	0.385	0.100	0.366	0.050	0.321	0.200	0.335	0.010	0,432		
I,1-DCE#	0.005	0.738	0,002	0.608	0.020	0.739	001.0	0.697	0.050	0.590	0,200	0.684	0.010	0.723		
1,1-DCA *	0.005	2.148	0.002	1.957	0.020	1.910	0.100	1.928	0.050	1.887	0.200	1,797	0.010	1.92		
Chloroform#	0.005	1.874	0.002	1.790	0.020	1.627	0.100	1.736	0.050	1.690	0.200	1.545	0.010	1.65		
2-Dichloropropane#	0.005	1.228	0.002	1.162	0.020	1.110	0.100	1.157	0.050	1.138	0.200	1.014	0.010	1.02		
foluene#	0,005	3,759	0.002	3.696	0,020	3.435	0.100	3.455	0,050	3.531	0.200	3.191	0,010	3,385		
Chlorobenzene •	0.005	3.380	0.002	3.262	0.020	3.111	0.100	2.993	0.050	3.122	0.200	3.092	0.010	3.038		
Ethylbenzene#	0.005	6.459	0.002	5.492	0.020	5.687	0.100	6.584	0.050	5.404	0.200	6.834	0.010	5.623		
Bromoform *	0.005	0.873	0.002	0.857	0.020	0.773	0.100	0.798	0.050	0.761	0.200	0.803	0.010	0.717		
,1,2,2-Tetrachloroethane *	0.005	3.791	0.002	4.007	0.020	3.105	0.100	3.132	0.050	3.474	0.200	3.271	0.010	3.044		
onog	# 000															
SPCCs Comments	# OCCs			AFCEE I	FORM O-	3A Page	of				<u>.</u> .					

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Lab Name: APPL, Inc.			-			Contract #:	: <u>*G012</u>
Instrument 1D; Neo			-	Da	te of Initial (Calibration	5 Mar 12
Initial Calibration ID: N120305			_ c	noitation	Units (ug/L	or mg/kg):	: mg/kg
	Analyse	-	шеал		СОР	Q	1
		RSD	%RSD	1 '	COD	٧ .	
	Chloromethane *	20.8		0.9990			1
	1,1-DCA •	5.5					1
	Bromoform *	6.6					1
	Chlorobenzene *	4.3					1
	1,1,2,2-TCA *	10.9					1
	LL-DCB#	9.1					1
	Chloroform#	6.4					1
	1,2-DCP #	6.9					1
	Tolucue #	6.7					Ī.
	Ethylbenzene #	6.1					1
	Vinyl chloride #	17.3					
COs # COCs							•
Comments:							

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytical Method: METHOD 8260B	AAB #: 120306AT-164608
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: Thor	Date of Initial Calibration: 7 Mar 12
Initial Calibration ID: T120307	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	Sid	RF 1	Sid 2	RF 2	SM 3	RF 3	Std	RF 4	Stal	RJF 'S	SM 6	RF A	SLI	R):	Std	RF B
1,1,1,2-Tetrachleroethane	0.002	0,365	0.050	0.413	0.100	0,400	0.020	0.341	0,005	0.360	0.010	0.363	0.200	0.409	 	
1,1,1-TCA	0.002	0.319	0.050	0.344	0.100	0.363	0.020	0.343	0.005	0.340	0.016	0.334	0.200	0.380	! 	
1,1,2-TCA	0.002	0.271	0.050	0.256	0.100	0.251	0.020	0.221	0.005	0.229	0.010	0.212	0.200	0.251		╅
1,1-Dichloropropene	0.002	0.287	0.050	0.286	0.300	9,308	0.020	0.282	0,005	0.279	0.010	0.284	0.200	0.332		
1,2,3-Trichlorobenzene	0.002	1.214	0.050	1.202	0.100	1.173	0,020	1.001	0.005	1.027	0.010	0.966	0.200	1.223	1	•
1,2,3-Trichloropropane	0.002	0.249	0.050	0.228	0.100	0.219	0.020	0.198	0.005	0.220	0.010	0.216	0.200	0.216		1
1,2,4-Trichlorobenzene	0.002	1.515	0.050	1.400	0.100	1.387	0.020	1.181	0.005	1,382	0.010	1,210	0.200	1.417		1
1,2,4-Trimethylbenzene	0.002	2.089	0.050	2.639	0.100	2.701	0.020	2.108	0.005	2.004	0.010	2.111	0.200	2.723		
1,2-DCA	0,002	0.445	0.050	0.457	0.100	0.421	0.020	0.380	0.005	0.425	0.010	0.406	0.200	0.428		
1,2-DCB	0.002	1.851	0.050	1.783	0,100	1,692	0.020	1.518	0.005	1.679	0.010	1.575	0.200	1.721	· · · · ·	†
1,2-Dibromo-3-chloropropane	0.002	0.131	0.050	0.143	0.100	0.153	0.026	0.126	0.005	0.127	0.010	0.133	0.200	0.153		
1,2-EDB	0.002	0,315	0.050	0.380	0.100	0.356	0.020	0,308	0.005	0.325	0.010	0.321	0.200	0.353		
t,3,5-Trimethylbenzene	0.002	1.997	0.050	2.551	0.100	2.601	0.020	2.127	0.005	1.973	0.010	2.101	0.200	2.616		
1,3-DCB	0.002	1.859	0.050	1.848	0.100	1.765	0.020	1.808	0.005	1.911	0.010	1.695	0.200	1,761		
1,3-Dichloropropane	0.002	0.588	0.050	0.605	0.100	0.592	0.020	0.509	0.005	0.552	0.010	0.647	0.200	0.591		
I,4-DCB	0.002	2.176	0.050	1.900	0.100	1.765	0.020	1.643	0.005	1.858	0.010	1,697	0.200	1.709		
I-Chlorohexane	0.002	0.405	0.050	0.339	0.100	0.399	0.020	0.349	0.005	0.352	0.010	0.352	0.200	0.440	$\overline{}$	l
2,2-Dichloropropane	0.002	0.357	0,050	0.318	0.100	0.331	0.020	0.306	0.005	0.322	0.010	0.319	0.200	0.350	· · · · ·	
2-Chlorotoluena	0,002	2.335	0.050	2.470	0.100	2.443	0.020	2.101	0.005	2.118	0.010	2.157	0.200	2.434		
4-Chlorotolpene	0.002	2.371	0.050	2.663	0.100	2.821	0.020	2.221	0.005	2.295	0.010	2.329	0.200	2.625		T
Acetone	0.002	0.383	0.050	0.081	0.100	0.075	0.020	0.108	0.005	0.208	0.010	0.134	0.200	0.071		
Banzare	0,002	1,199	0.050	1.186	0.100	1.178	0.020	1.018	0.005	1.088	0.010	1.037	0.200	1.187		
Bromobenzene	0.002	0.978	0.050	0.980	0.100	0.914	0.020	0.815	0.005	0.917	0.010	0.849	0.200	0.908		
Bromochloromethane	0.002	0.178	0.050	0.188	0.100	0.180	0.020	0.182	0.005	0.574	0.010	0,169	0.200	0.180		
Bromedichloromethane	0.002	0.414	0.050	0,444	0.100	0.418	0.020	0,387	0.005	0.395	0.010	0,378	0.200	0.420		
Bromomethane	0.002	0.259	0.050	0.211	0.100	0.238	0.020	0.232	0.005	0.235	0.010	0.269	0.200	0.253		· · · · · · · · · · · · · · · · · · ·
Cerbon Tetrachloride	0.002	0,316	0.050	0.283	0.100	0.302	0.020	0.279	0.005	0.293	0.010	0.294	0.200	0.330		
Chloroethane	0.002	0.035	0.050	0.028	0.100	0.027	0.020	0.026	0.005	0.034	0.010	0.033	0.200	0.028		-
Cis-1,2-DCE	0.002	0.368	0.050	0.358	0.100	0.342	0.020	0.293	0.005	0.340	0.010	0.318	0.200	0.348		
Cis-1,3-Dichloropropene	0.002	0.438	0.050	0.477	0.100	0.468	0.020	0.388	0.005	0.402	0.010	0.409	0.200	0.476		
Dibromechloromethane	0.002	0.377	0.050	0,408	0.100	0.407	0.020	0.344	0.005	0.371	0.010	0.374	0.200	0.414		
Dibromomethane	0.002	0.200	0.050	0.215	0.100	0.204	0.020	0.181	0.003	0.185	0.010	0.193	0.200	0.205		
Dichforodifluoromethane	0.002	0,209	0.050	0.192	0,100		0.020	0.256	0,005	0.194	0.010	0.160	0,200	9205		—
Hexachlorobutadiene	0.002	0.738	0,050	0.617	0.100	0.831	0.020	0.698	0.005	0.651	0.010	0.609	0.200	0.685		
Isopropylibenzene	0.002	2.286	0.050	2.472	0.100	2.573	0.020	2.178	0.005	2.239	0.010	2.201	0.200	2.844		
m&p-Xylene	0.002	0.556	0.050	0.665	0.100	0.689	0.020	0.549	0.005	0.524	0.010	0.553	0.200	0.714		
Methylese chloride	0.002	0.525	0.050	0.357	0.100	0.330	0.020	0.304	0.005	0.391	0.010	0.349	0.200	0.328	·	
Methyl t-butyl ether (MTBE)	0.002	0.768	0.050	0.830	0.100	0.768	0.020	0.704	0.005	0.768	0.010	0.719	0.200	0.787		
MEK (2-Butanone)	0.002	0,164	0.050	890.0	0.100	0.098	0.020	0.104	0.005	0.133	0.010	0.125	0.200	0.098		
n-Butylbenzene	0.002	2.029	0.050	2.288	0.100	2.459	0.020	2.070	0.005	2.009	0.010	1.998	0.200	2.631		
n-Propylbenzene	0.002	3.035	0.050	3.265	0.100	3,400	0.020	2.851	0.005	2.820	0.010	2.871	0.200	3,494		
Naphthaleno	0.002	1.781	0.050	2.117	0.100	2.332	0.020	1,644	0.005	1.701	0.010	1.592	0.200	2.499		
o-Xylene	0.002	0.556	0.050	0,682	0.100	0.688	0.020	0.547	0.005	0.527	0.010	0.552	0.200	0.718		
p-Isopropyltoluene	0.002	2.025	0.030	2.498	0,100	2.632	0.020	2.180	0.005	2.051	0.010	2.109	0.200	2.779		
Sec-Butylbenzene	0.002	2.459	0.050	2.806	0.100	2.951	0.020	2.583	0.005	2.434	0.010	2.489	0.200	3.144		
Styrene	0.002	0.907	0.050	1.245	0.100	1.283	0.020	0.964	0.005	0.883	0,010	0.946	0.200	1.326		
ICE	0.002	0,371	0.050	0.292	0.100	0.290	0.020	0.269	0.005	0.289	0.010	0.278	0.200	0.298		
Fert-Bulylbenzene	0.002	1.827	0.050	1.905	0.100	2.009	0.020	1,720	0.005	1.696	0.010	1.699	0.200	2.146		
l'etrachloroethene	0,002	0.331	0.050	0.281	0.100	0.303	0.020	0.289	0.005	0.262	0,010	0,308	0.200	0.313	-	
Frans-1,2-DCE	0.002	0.304	0.050	0.274	0.100	0.274	0.020	0.254	0.005	0.254	0.010	0.264	0.200	0.279		
Frans-1,3-Dichloropropene	0.002	0.388	0,050	0.415	0.100	0.413	0.020	0.328	0.005	0.348	0.010	0.347	0.200	0.425		
Prichloroftworomethane	0.002	0.352	0.050	0.304	0.100	0.342	0.020	0.360	0.005	0.316	0.010	0.339	0.200	0.371		••
(2-DCA-D4(S)	0.002	0.453	0.050	0.324	0.100	0,336	0.020	0.323	0.005	0.387	0.010	0.335	0.200	0.342		
-Bromofluorobenzene(S)	0.002	0.823	0.050	0.499	0.100	0.540	0.020	0.492	0.003	0.516	0.010	0.481	0.200	0.573		
Dibromofluoromethane(\$)	0.002	0.354	0.050	0.299	0.100	0.308	0.020	0.282	0.003	0.313	0.010	0.295	0.200	0.314		
Foluene-D8(S)	0.002	1.525	0.050	1.147	0.100	1.255	0.020	1,122	0.005	1.240	0.010	1.179	0.200	1,302		
	V.000		5,030			7,507	0.020	1,122	. 0.003	1.640	4/010	LIN	0,200	1.302		
I	- 1															

Comments:			
-	•	 	

AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCASS ANALYSIS

Analytical Method: METHOD \$260B	AAB #; 120306AT-164608
Lab Warner APPL, Inc.	Contract #: *G012
Instrument ID: Thor	Date of Initial Califration: 7 Mar 12
itist Calibration ID: T178307	Concentration Units Junif or matters mades

1,1,1,2-Tetrachkreethane	Analyte	%	ncan	-	COD	_ ^
1,1,1,2-Texechkecethase	nimpte			r	(0)	Q
1,1-17CA	1112 Februaria		иков	_		
1,12-TCA					ļ	ļ
1,2-Dichloropropence					ļ	
1,2,3-Trichleropopane					· · · · · · · · · · · · · · · · · · ·	
1,2,3-Trichleroproposes						
1,2,4-Trichrobozzene					ļ	
12,4-Trimethylibazene				Ь——		
1,2-DCA						
1,2-Dictions-3-ablropropane 8,3 1,2-Dictions-3-ablropropane 8,3 1,2-EDB 6,5 1,3,5-Trimaty/benzere 13 1,3-Dictions/benzere 13 1,3-Dictions/benzere 15 1,3-Dictions/benzere 10 1,4-DCB 9,4 1-Calorobeane 10 10 10 10 10 10 10 1				<u> </u>		
1,2-Diteomod-abtoropropane 8.3 1,2-EDB 6.5 1,3-5-Trimethytherane 13 1,3-DCB 5.1 1,3-Dribloropropane 6.0 1,4-DCB 5.1 1,3-Dribloropropane 6.0 1,4-DCB 9.4 1-Chlorobenane 10 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.5 1,2-Dchloropropane 5.7 1,0000 1,2-Dchloropropane 1,			Ļ	 -		
1,2.EDB						
1,3,5-DimalyNenzene				ļ <u>.</u>		
1,3-DCB				<u> </u>		
1,3-Dichloropropose 6,0 1,4-DCB 9,4 1-Chlorobexace 10 1-Chlorobexace 7,2 1-Chlorobexace 7,2 1-Chlorobexace 7,2 1-Chlorobexace 7,7 1-Chlorobexace 7,7 1-Chlorobexace 6,7 1-Chlorobexace 6,7 1-Chlorobexace 6,7 1-Chlorobexace 6,7 1-Chlorobexace 6,7 1-Chlorobexace 6,7 1-Chlorobexace 6,6 1-Chlorobexace 6,6 1-Chlorobexace 8,0 1-Chlorobexace 8,0 1-Chlorobexace 1,3 1-Chlorobexace 1,3 1-Chlorobexace 1,3 1-Chlorobexace 1,5 1-Chlo						
1,4-DCB						
1-Calorobescace 10 2,2-Dishloropropopopopopopopopopopopopopopopopop						
2,2 Dishloropropone 5.5				⊢—	 	
2-Chlorotolucus				ļ		
A-Chlerotelucite 7.7 Acetoce 72 1.0008			\vdash	—-		
Acctoce			ļ	<u> </u>		
Brunche 6.9			<u> </u>			
Bromotheromethane				1.0000		
Bromothloromethate						
Bemodichloromethane						
Bromomethane 8,0 Carbon Tetrachkoride 6.4 Carbon Tetrachkoride 6.4 Carbon Tetrachkoride 6.4 Carbon Tetrachkoride 6.4 Carbon Tetrachkoride 6.5 Cis-1,2-DCB 7.5 Cis-1,3-Dichloeopeopen 8.5 Dibenomethane 6.5 Dibenomethane 6.5 Dibenomethane 6.5 Dibenomethane 6.1 Diblorodifficoromethane 1.3 Carbon Dichlorodifficoromethane 1.3 Carbon Dichlorodifficoromethane 1.5 Carbon Dichlorodifficoromet						
Carbon Tetrachloride						
Chloroethane						
Cis-1,2-DCE						
Cis-1,3-Dichleropropert 8.5						
Dibromochloromethane 6.6						
Ditromonathane 6.1	Cis-1,3-Dichloropropene					
Dichlorodifisoromethane						
Heasthorobaddine 1.7						
Isopropylename 3,1						
mdp-Xylone						
Methylane chloride 20 0.9990						
Methyl t-buyl char (ATIBE) 5.8 1.0000						
MEK (2-Butacene) 21				0.9990		
n-Butythousane						
Description				1.0000		
Naphtheline 19 0.9980						
O-Xylene 13 p-Isopropiloione 13 Sec-But/Ibrazere 10 Siyrene 18 0,9990 TCE 11 Tot-But/Ibrazere 11 Trinchloreathere 5,7 Trans-1/2-DCE 63 Truns-1/3-Dichloreopoput 11 Trinkokrofloromethere 7,0 1/2-DCA-D4(5) 13 6-Bromofloromethere 7,0 Directonofloromethere(5) 21 Directonofloromethere(5) 24						
P-Isopropyltolume 13				0.9980		
Sec-Bulythrozzet 10						
Shrone 18 0.9990						
TCE						
Tot-Buy/fenzene				0.9990		
Tetrachlercethear 5.7						
Trans-1,2-DCE 6.3						
Trius-1,3-Dichloropropens						
Trichlorofluoromethane 7.0						
12-DCA-D4(S) 13 4-Bromofloorobuzene(S) 21 0.9980 Ditermoflooromethyne(S) 7.4						
4-Bromofloorobazene(S) 21 0.9980 Ditromoflooromethane(S) 7.4						
Difeomofluoromethane(S) 7.4					1	
	4-Bromofloorobenzene(S)			0.9980		
Taluesa Dofe) (t						
100000-D0(3)	Toluene-D8(S)	- 11				
			Τ			
			T			

Comments:			
	•		
		 - · · -	

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: METHOD 8260B					AAB #: 120306AT-164608 Contract #: *G012											
Lab Name: APPL, Inc.																
Inst	rument ID:	Thor				-	Date o	f Initial C	alibration:	7 Mar 12	2					
Initial Calif	bration ID:	T120307				Concent	ration Uni	ts (ug/L	er mg/kg):	mg/kg				-		
Алађае	S4d I	RF I	Sid 2	RF 2	\$1d 3	RF 3	Sid 4	RJF 4	Std 5	RF S	Std 6	RF 6	Std 1	RF 7	St4 8	RF 8
Chloromethane •	0.002	0.360	0.050	0.320	0.100	0.312	0.020	0.325	0.005	0.320	0.010	0.332	0.200	0.33		
Vinyl chloride#	0.002	0.254	0,050	0.200	0.100	0.194	0.020	0.204	0.005	0.222	0.010	0.219	0,200	0.211	~	
1,1-DCE#	0.002	0.217	0.050	0.197	0.100	0.207	0.020	0.207	0.005	0.202	0.010	0.207	0.200	0.221		
I,1-DCA •	0.002	0.479	0.050	0.500	0.100	0.490	0.020	0.437	0.005	0.485	0.010	0.465	0.200	0.493		
Chloreform#	0.002	0.573	0.050	0.565	0.100	0.532	0.020	0.477	0.005	0.525	0.010	0.489	0.200	0.531		
1,2-Dîchloropropane#	0.002	0.345	0.050	0.353	0.100	0.335	0.020	0.294	0.005	0.313	0.010	0.304	0.200	0.336		
Foluene#	0.002	0.783	0.050	0.807	0.100	0.819	0.020	0.661	0.005	0.711	0.010	0.663	0.200	0.839		
Chlorobenzene *	0.002	1.231	0.050	1.164	0.100	1.145	0.020	0.985	0.005	1.068	0.010	1.085	0.200	1.155		
Exhylbenzene#	0.002	1.530	0.050	1.672	0.100	1.763	0.020	1.422	0.005	1.443	0.010	1.444	0.200	1,822		
Bromoform *	0.002	0.251	0.050	0.282	0.100	0.286	0.020	0.236	0.005	0.252	0.010	0.231	0.200	0.298		
t,1,2,2-Tetrachloroethane *	0.002	0.859	0.050	0.786	0.100	0.777	0.020	0.669	0.005	0.723	0.010	0.729	0,200	0.764		
															\dashv	
• SPCCs	# CCCs				-											
Comments	·															
				AFCEE I	FORM O-	3A Page	of				•					

AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Lab Name: APPL, Inc.						Contract #:	*G012
	· · · · · · · · · · · · · · · · · · ·		-			COUCINCE #;	-0012
Instrument ID: Thor			-	Da	te of Initial (Calibration:	7 Mar 12
ritiat Catibration ID: T120307			Cor	centration	Units (ug/L	. or me/ke\·	· ma/ka
	<u> </u>		•		· (1g.	, cg, g, ,	Piging
	Analyte	- %	mean		сор	Q	1
	· ·	R\$D	WRSD	-	""	`	F
	Chloromethane •	4.6			-		i
	I,I-DCA *	4.5					
	Bromoform *	9.9					
	Chlorobenzene *	7.2					l
	1,1,2,2-TCA *	7.9					!
	1,1-DCE#	3.9					1
	Chleroform #	6.7					
	1,2-DCP#	6.8					
	Toluene#	10.0					
	Ethylbenzene#	10.5					
	Vinyl chloride#	9.3					
is #CCCs							
Comments							
Constituting							·

APCFR ORGANIC ANALYSES DATA SIERT 4 SECOND BOURCE CALIBRATION YERIFICATION

Analytical Method: METHOD 8120	AAH#: 120229AC-164500
Lab Name: AFPL, Inc.	Contract#: *6012
Instrument ID: Chico	hitial Calibration ID: C120224
2ad Source ID: 120224A LCS-IWC (88)	Coopentration Units (ug/L or mg/kg): ug/l.

Analyte	Expected	Found	1/D	Q
1.1.1.2-Tetrachloroethana	10.0	9.85	1.5	
I,1,I-TCA	10.0	10.10	1,4	
1,1,2,2-Tetrachloroethane	10.0	9.09	9,1	
1,1,2-TCA	10,0	9.70	3,0	
1,1-DCA	10.0	10.40	3.8	
1,1-DCE	10.0	10.30	3.0	
1,1-Diebleropropene	10.0	10.50	5.1	
1,2,1-Trichlorobenzene	10.0	10.20	1,6 8.6	
1,2,1-Trichloropropane	10.0	9.14 10.40	3,9	
1,2,4 Trichlorobenzene	10.0	10.30	2.8	
1,2,4-Trimethylbenzene 1,2-DCA	10.0	9.50	3.0	
1,2-DCB	10.0	10.30	2,6	
1,2-D bronso-3-chloropropane	10.0	8.80	12	
1,2-Dichlerograpane	10.0	10.30	3.3	
1,2 FDB	10.0	9.51	4,9	
1,3,5-Trimethylbenzene	10.0	t0.10	1.5	
1.3-DCB	10.0	10.50	5.3	
1,34Echkeopropane	10,0	9.70	3.0	
1,4DCB	10.0	10,30	2.9	
1-Chlorobexane	10.0	10.20	2.4	
2,2-Dichleropropane	10.0	9.18	8.2	
2-Chlorotoluene	10.0	10.20	1.6	
4-Chloroteluene	10.0	10.20	1.7	 -
Applone	10.0	9.45	5.5	ļ. <u> </u>
Benzene	10.0	10.10	3.1	 -
Bremehensene	10.0	10.40	4.4	
Bremechlerosoethane	10.0	10.40	3.6	
Bromedichloromethane	10.0	9.08	9.2	
Bremoform	10.0	10.30	3.3	
Brememethane	10,0	10.30	2.6	·
Carbon Tetrachloride Chlorobenzene	10.0	9,96	0.4	
Chloroethane	10.0	10.20	9.3	
Chloroform	10.0	10.20	23	
Caloromethane	10.0	9.22	7.8	
Cu-1,2-DCE	10.0	9.97	0.1	
Cu-1,1 Dichloropropene	10.0	9,40	6,0	
Dibromochloremethane	10.0	9,92	0.8	
Dibromomethane	10.0	10,40	3.9	
Dichlorodifluoromethane	10.0	T1,40	14	
Dhylbenzene	10.0	10.00	0.1	igwdown
Hexachlorobuladiene	10.0	9,88	1.2	
Isopropylicurene	10.0	10.60	6.1	L
nskp-Xylene	20.0	19.50	2.3	
Methylene thloride	10.0	10.60	5.7 1.1	——
Methyl t-lund elber (MTBE)	10.0	9.89	9.3	
MEK (2-Dutanosie)	10.0	9.02	9.8	$\vdash \vdash$
MBK (methyl isobutyl ketone)	10.0	10.50	5.2	
n-Butylbenzene	10.0	10.60	6.0	
n-Propylbenzené Naphthalene	10.0	9.81	1.9	
o-Xylene	10.0	10,10	1.1	\vdash
p-Bopropyiteluene	10.0	(0.40	4.0	-
See-Butythenzene	10.0	10.40	3.7	
Styrene	10.0	10.30	2.7	
ICE	10.0	11.10	11	
Feet-Butythenzene	10.0	10.20	2.0	
Tetrachloroethene	10,0	10.30	3.5	
Teluçue	10,0	10.30	2.7	L
Irani-1,2-DCE	10.0	10.20	2.1	
Frant 1,3-Dichloropropene	10.0	9,55	4.5	├
Dieblevofluoromethane	10.0	10.50	5.0	├
Vinyl elikvide	10.0	10.10	1.1	├
				-
	l			ldot

Comments:	 			· · · · · · · · · · · · · · · · · · ·	
		APCER FORM O	Page of		

AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERHICATION

Ambrical Method: METHOD 8200B	AAB #: 170229AN-164497
Lab Name: APPL, Inc.	Certnet #: *6012
Estrange (D: Neo	Initial Calibration ID: N120239
2nd Scarce 10: 1207 DA LCS-1Sa(SS)	Consernation that (up/L or mg/kg): mg/kg

Analyte	Expected	Food	%D	Q
1.1.1.2-Tetrachbroethare	0.050	0.054	B.4	
I,I,I-TCA	0.050	0.047	6.6	
1,1,2,1-Tetrachiocontains	0.050	0.055	9.0	
1,1,2-1CA	0.030	0.057	13.9	
1,I-DCA	0,030	0.053	43	<u> </u>
1,1-DCB	0.030	0.046	\$.7	
1,1-Dichloreprepare	0.050	0.047	6.0	<u> </u>
1,2,3-Trichlevobernene	0.030	0.049	15	
1,7,3-Trichloropropane	0.050	0.043	13.6	-
1,2,4-Trichiorobenzene 1,2,4-Trimethy@ervene	0.030	0.050	1.0	
1,2-DCA	0.050	0.034	\$.L	-
1,2-DCB	0.050	0.051	1.9	
I, I-Dimeno-I-eklomempuns	0,030	0.052	12	
1,2-Dichbergergune	0.050	0.054	7.0	
1,1-1338	0.050	0.054	7.5	
13.5-Trimetto/kervere	0.050	0,049	2.1	L
ID-DC8	0.050	0.051	1,4	
L.I-Dichbrogropuse	0.050	0.055	93	
IA-DCB	0.050	0.050	0.1	
I-Chlorybeaune	0.050	0,014	6.0	
2.2-Dichlompropum	0.050	0.047	1.0	
2-Chlorotykene	0.050	0.050	0.4	
4-Chlorotokiene Acetone	0.050	0.048	43	_
Betteete	0.050	0.019	13	
Bromobenzene	0.050	0.054	83	
Bromochlosomethane	0,050	0.031	23	
Broandichlecomethane	0.030	0.058	163	
Broams form	0,050	0.036	12.7	
Dependenthane	0.030	0 ,D49	2.2	
Carton Tetrochbride	0.050	0.049	1.4	
Chloroberszens	0.050	0,033	53	
Chloroethane	0.050	0.049	1.7	_
Chloruforus	0.050	0.054	82	-
Chlorenethane	0,030	0.045	7.0	
Civ1.2-DCE	0.050	0.058	15.7	
Cis-LJ-Dichlempropero Dienorchlommethure	0.050	0.054	75	
Direccomethine	0.050	0.055	10.9	-
Dichloredi/Loromethane	0.050	0.040	20.3	
Dinkeret	0.050	0,649	1,6	
Heuchbrotutalime	0.050	0.045	1.9	
begreggitervent	0.050	0.048	4.2	
m&p-Xylere	0.100	0,091	1.9	\Box
Methylere chloride	0,050	0.051	10.0	
Steibyl t-buyl ether (MTBE)	0.050	0.059	183	_
MEK (2-Butarree)	0.050	0.047	65	
MITIK (methyl isobutyl letene)	0.050	0.049	11.9	
o Buly Verzens	0.050	0.048	33	-
n Europa gourages	0.050	0.048	4.4	
Suphthalere	0.050	0.043	42	
o-Xylene p-Isopropyltolume	0.050	0.047	6.5	
Sec-Butylboniene	0.050	0.046	8.6	<u> </u>
Styrene	0.050	0.051	2.4	
ICB	0.050	0.047	6.0	I
Fert-Butykervere	0.050	0.647	5.4	
Fetneklomethera	0.050	0.041	13.0	
Foluere	0.050	0,631	2.6	
Frank-1, 2-DCE	0.050	0.649	13	
Frans-13-Dichbropropere	0.050	0.035	9.1	_
Frieddon/Dercometains	0.050	0.044	12,7	
Viryl chloride	0.050	0.044	12.4	— —
<u>-</u>	-1	├		
	1		l	

Commute:	

APCERFORM O-4 Page __of ___

AFCEB ORGANIC ANALYSES DATA SHEET 4 SECOND BOURCE CALIBRATION VERFICATION

Analytical Method: MBTMDD 828)B	AAB #: 120303AN-164483
Lab Nama; APPI, Inc.	Contract #: *G012
Instrument ID; Neo	hitial Calibratics ID: N120365
2nd Source ID: 120305A LC8-1537 (SS)	Concentration Units (up/Let mg/kg); mg/kg

Analyte	Exected	Found	1/AD	L Q
1,1,1,2-Tetrachloroethane	0.050	0.051	1,4	- `` -
I,I,I-TCA	0.050	0.058	12	-
1,1,2,2-Tetrachloroethane	0.050	0.047	5.6	
1,3,2-TCA	0.050	0.052	43	
I,I-DCA	0.050	0.053	6.0	
I,t-DCB	0.050	0.056	12	
I,I-Dichloropropene	0.050	0.056	. 11	
1,2,1-Trichlembenzene	0.050	0.052	4.5	
1,2,3-Triculoropropane	0.050	0.049	1.0	
1,2,4-Trichlorobenzene	0.050	0.044	13	
1,2.4-Trimethy/benzese 1,2-DCA	0.050	0.050	0.5	
1,24CB	0.050	0.049	1.6	
1,2-Dibromo-3-chloropropane	0.050	0.049	1.7	_
1,2-Dichloropropuse	0.050	0.052	3,1	\vdash
1,2-EDB	0.050	0.049	2.6	_
1,3,5 Trimethylbeazene	0.050	0.054	8.2	-
I,J-DCB	0.050	0.048	4.3	-
1,3-Dichloropropane	0.050	0.052	1.0	\vdash
1,4-DCB	0.050	0.046	7.6	
1-Chlorobexane	0.050	0.054	7.6	
2,2-Dichleropropane	0.050	0,053	6.7	
2-Chlorotoluese	0.050	0.054	7.2	
4-Chiorototuese	0.050	0,046	9.1	
Acetone	_ 0.050	0,047	5.I	
Benzesc	0.050	0.052	3.3	
Bremorenzese	0.050	0.047	5.4	
Bromochloromethane	0.050	0.047	6.4	
Bromodichloromethane Bromoform	0.050	0.052	4.6	
Bromonethuse	0.050	0.050	0.6	
Carbon Tetrachloride	0.050	0.054	7.5	
Chlendenatie	0.030	0.058	16	
Chlemethane	0.050	0.059	1.L 17	
Chloroform	0.050	0.052	3.9	-
Chloromethane	0.050	0.056	13	
Cis-1,2-DCE	0.050	0.054	8.0	
Cis-1,3-Dichloropropens	0.050	0.051	21	
Dibromochloromethane	0.050	0.052	4.3	-
Difconomethane	0.050	0.050	0.6	
Dichlocodifhoromethano	0.050	0.056	12	_
Ethylbenzene	0.050	0.053	6.9	
Hexachlorobutadiene	0.050	0.054	8.6	
bogropylicazene	0.050	0.053	6.0	
m&p-Xylene	0.100	0,107	7.3	
Methylene chloride	0.050	0.052	4.6	
Methyl I-butyl ether (MTBE)	0.050	0.047	5.7	
MEK (2-Butazone)	0.050	0.049	1.5	
MBK (methyl isobutyl ketone)	0.050	0.045	- 11	
n-Butylbenzene n-Propylbenzene	0.050	0.031	1.7	
Naphthalene	0.050	0.034	7.3	
о-Хуйеве	0.050	0,047	6.6 3.3	
p-isopropyliofuene	0.050	0.032	3.3 1.l	—
Sec-Butylbenause	0.050	0.054	7.0	
Styrene	0.050	0.050	0.4	
ICE	0.050	0.054	6.9	
Test-Butyleenzene	0.050	0.052	3.7	
Tetrachloroethene	0.050	0.035	9.2	
Toluene	0.050	0.053	6.5	
Trans-1,2-DCB	0.050	0.054	7.8	
Trans-1,3-Dichleregeopene	0.050	0.051	1.0	
Trichkroffuoremethane	0.050	0.058	15	

Comments:	
	AFCEE FORM O-4 Page of

AFCEE ORGANIC ANALYSEB DATA SHEET 4 SECOND SOURCE CALIERATION VERIFICATION

Analytical Method: MESTIOD 8260B	AAB #: 120306AT-154608
Lab Name: APPL, Inc.	Contract #: *CO12
Instrument ID: Ther	Initial Calibration ID: 1120107
2nd Source ID: 50ug/kg Vol Std 03-06-12 (S\$)	Concentration Units (ng/L or mg/kg): mg/kg

			1 4400	
Analyte [,1,1,2-Tetrachkercethase	Expected	Found 0.055	%D 9,2	9
IAI-TCA	0.050	0.055	2.0	
1.1.3.2-Tetrachkroethane	0.050	0.056	12	
I,J,2-TCA	0.050	0.054	7.2	
I,t-DCA	0.050	0.032	3.1	
1,1-DCB	0.050	0.046	8.0	
1,1-Dichloropropene	0.050	0.043	4.1	$\overline{}$
1,2,3-Trichlorobeazene	0.050	0.054	7.5	
1,2,3-Trichloropropane	0.050	0.054	7.5	
1,2,4-Trichlorobeozene	0.050	0.050	0,8	
1,2,4-Trimethy@eazese	0.050	0.056	11	
1,2-DCA	0.050	0.033	5.7	
),2-DCB	0.050	0.032	4.7	
1,2-Dibromo-1 chloropropane	0.050	0.055	9.8	
1,2-Dichloropropane	0.050	0.652	4.7	
I,2-EDB	0.050	0.058	16	
1,3,5-Trimethylkenzeoe	0.050	0.054	8.8	
I,3-DCB	0.050	0.051	2.5	
1,3-Dichloropropane	0.050	0.056	13	
I,4-DCB	0.050	0.050	0.8	
1-Chlorobexane	0.050	0.046	8.6	
2,2-Dichlompropane	0.050	0.046	7.4	—
2-Chlorotolisens	0.050	0.053	6.7	├ ──
4-Chlorotoluene	0.050	0.054	7.4	
Acctone	0.050	0.051	2.1	ļ
Велипе	0.050	0.051	2.3	┞——
Bromobenzene	0.050	0.053	6.6	├
Bromochloromethane Bromodichloromethane	0.050 0.050	0.054	8.0 6.8	
Bromoform	0.050	0.056	12	-
Bromomethane	0.050	0.036	· · · · · · · · · · · · · · · · · · ·	
Carbon Tetrachloride	0.050	0.047	6.3	
Chlerobenzene	0.050	0.052	3.0	-
Chleroethane	0.650	0.032	18	\vdash
Chloroform	0.050	0.052	3.7	
Chloromethane	0.050	0.044	12	
Chloromethane Cis-1,2-DCE	0.050	0.051	1.8	\vdash
Cis-1,3 Dichloropropess	0.050	0.053	6.5	
Dibremechioromethane	0.050	0,055	10	
Dibromomethane	020.0	0,055	11	
Dichlorediffuoremethane	0.050	0.040	20	
Ethylbenzene	0,050	0.053	5.5	
Hexachlorobutadiene	0.050	0.047	6.9	
(sopropy then acros	0.050	0.052	3.2	
m&p-Xylene	0.100	0.110	9.7	
Methylene chloride	0.050	0.056	12	
Methyl (-botyl ether (MTRE)	0.050	0.056	12	
MEX (2-Butanene)	0.050	0.054	7.8	
n-Butyfbenzene	0.050	0.050	0.6	
a-Propylbenzene	0.050	0.052	3.2	
Naphthalene	0.050	0.050	0.9	
o-Xylene	0.050	0.055	9.5	
p-Isopropytia/uese	0.050	0.052	43	
Sec-Bulylkenzene	0.050	0.051	1.8	
Styrene	0.050	0.050	0.3	
TCE	0.050	0.047	6.7	
Test-Bulylbenzene	0.050	0.052	3.2	
Tetrschloroethene	0.050	0.048	4.6	
Foluene Frans-1,2-DCB	0.050	0.052	3.0	
	0.050	0.049	1.4	
Frans-1,3-Dichleropropene	0.050	0.056	[[
frichkreftveremethane Vinst chleride	0.050	0.041	18	
· m) i sucrise	0.000	0.042	10	

Comments:	 	

ATCEE FORM 04 Page ___of ___

AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method: METHOD 8260		AAB#: 120229AC-164500	<u> </u>
Lab Name: APPL, Inc.		Contract #: •G012	
Instrument ID: Chico		Initial Calibration ID: C120214	
ICV ID: 10ug/L Vol Std 02-29-12 (CCV)	CCV#I ID:	CCV ID ID:	

Analyte J. J. J. 2-Tetrachlorosthane J. J. J. 2-Tetrachlorosthane J. J. J. Tetrachlorosthane J. J. Decan J. J. J. Decan J. J. J. Decan J. J. Decan J. J. Decan J. J. J. Decan J. J. J. Decan J. J. J. L. J. L. J. L.	%D of % drift 0.3 2.6 6.4 0.4 0.3 8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0 1.8	%D or % drift	%Dor % driA	Q
1,1,1-TCA 1,1,2-TCA 1,1,2-TCA 1,1,2-TCA 1,1,2-TCA 1,1,2-TCA 1,2-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Trichloropropane 1,2,4-Trichloropropane 1,2,4-Trichloropropane 1,2-DCA 1,2-DENOMO-3-chloropropane 1,2-DCB 1,2-DENOMO-3-chloropropane 1,3-DCB 1,3-Trimuthylbenzene 1,3-DCB 1,3-Dichloropropane 1,3-DCB 1-Chloroheane 1,4-DCB 1-Chloroheane 2,2-Dichloropropane 2-Chlorotohune 4-Chlorotohune Acutione Borzone Borzone Borzone Borzone Bremonchloromethane Remonchloromethane Remonchloromethane Remonchloromethane Remonchloromethane Carbon Turachloride Chlorothane	2.6 6.4 0.4 0.3 8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
I.I.2-TCA I.I.Dichloropropone I.2.3-Trichloropropone I.2.3-Trichloropropone I.2.4-Trichloropropone I.2.4-Trichloropropone I.2.4-Trichloropropone I.2.4-Trichloropropone I.2.4-Trichloropropone I.2ECB I.2-Dichrono-3-chloropropone I.2-ECB I.2-Dichrono-3-chloropropone I.2-ECB I.3-Dichloropropone I.3-Dichloropropone I.3-Dichloropropone I.4-ECB I-Chloropropone 2-Chlorotolurue 4-Chlorotolurue Actione Borzone Borzone Bromochloromethane Romochloromethane Corton Turachloride Chlorothane Coli-1,2-DCE	6.4 0.4 0.3 8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1,1-Dichloropropone 1,2,3-Trichloropropone 1,2,4-Trichloropropone 1,2,4-Trichloropropone 1,2,4-Trichloropropone 1,2,4-Trichloropropone 1,2,4-Trichloropropone 1,2-Dichloropropone 1,2-Dichloropropone 1,2-Dichloropropone 1,3-Dichloropropone 1,3-Dichloropropone 1,3-Dichloropropone 1,4-DCB 1,3-Dichloropropone 2,2-Dichloropropone 2,2-Dichloropropone 4-Chlorothoropropone 8-Chlorothoropropone	0.4 0.3 8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1,2,3-Tritchlorobecazene 1,2,3-Tritchloropropame 1,2,4-Tritchlorobecazene 1,2,4-Tritchlorobecazene 1,2,4-Tritchlorobecazene 1,2-DCA 1,2-DETOMO-3-chloropropame 1,2-DBB 1,3,5-Trimuthylbenzene 1,3-DCB 1,3-Dichloropropame 1,4-DCB 1-Chlorobecame 2,2-Dichloropropame 2-Chlorotolusue 4-Chlorotolusue 4-Chlorotolusue 8-Chlorotolusue 8-Chlorot	0.3 8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimotyphonzene 1,2-DCA 1,2-DCB 1,2-DCB 1,2-DCB 1,2-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1-Chloropropane 1,4-DCB 1-Chloroheane 2-Chlorotohume Actione Burzone Brezone Brezo	8.8 4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1,2,4-Trichlorobetzene 1,2,4-Trichlorobetzene 1,2,2-DCA 1,2-DCB 1,2-DCB 1,2-Dirichlorobetzene 1,2-Dirichlorobetzene 1,3-DCB 1,3-5-Triunthylbenzene 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,4-DCB 1-Chlorobetzene 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Chlorothetzene 8-remochloromethane 8-remochloromethane 8-remochloromethane 8-remochloromethane 8-remochloromethane 8-remochloromethane 8-remochloromethane Carben Tutrachloride Chlorochlane Carben Tutrachloride Chlorochlane Cist-3,2-DCB	4.0 4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1.2.4 Trimethylbonzese 1.2-DCA 1.2-DCA 1.2-DCB 1.2-Ditromo-3-thloropropane 1.2-EDB 1.3-Trimethylbenzene 1.3-DCB 1.3-Trimethylbenzene 1.3-DCB 1.3-Dithloropropane 1.4-DCB 1-Chloroheane 2.2-Dichloropropane 2Chlorotheane 4-Chlorotheane 8-Chlorotheane 8-Chlorotheane 8-Chlorotheane 8-Chlorotheane 8-Remontheane 8-Remontheane 8-Remontheane 8-Remontheane 8-Remontheane 8-Remontheane Carbon Turachloride Chlorotheane Carbon Chlorotheane	4.7 6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1.3-DCA 1.2-DCB 1.2-DEB 1.2-DEB 1.2-DEB 1.3-DCB 1.3-DCB 1.3-DCB 1.3-DCB 1.3-DCB 1.3-DCB 1.3-DCB 1.3-DCB 1.4-DCB 1-Chlorobropane 1.4-DCB 1-Chlorobropane 2-Chlorobropane 2-Chlorobropane 3-Chlorobropane 4-Chlorobropane 8-DCB	6.6 5.4 17.4 6.1 4.2 4.5 7.1 5.0			
1,2-DCB 1,2-Directors-3-chloropropane 1,2-BDB 1,3-5-Trimethylbenzene 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,3-DCB 1,4-DCB 1-Chlorohexane 2,2-Dichloropropane 2-Chlorothexane 4-Chlorothexane 4-Chlorothexane 8-condocation Carbon Tutrachloride Chlorothane Carbon Tutrachloride Chlorothane Cist-3,2-DCB	3,4 17,4 6,1 4,2 4,5 7,1 5,0			ļ
1,2-Ditrone-3-chloropropane 1,2-BB 1,3-Frinchtylbenzene 1,3-DCB 1,3-Dichloropropane 1,4-DCB 1-Chlorobrane 2,2-Dichloropropane 2-Chlorotolrone 4-Chlorotolrone Actione Barzone Bromoblatome Remochloromehane Remochloromehane Remochloromehane Remochloromehane Remochloromehane Corbon Tutrachloride Chlorothane Corbon Tutrachloride Chlorothane Cist-3,2-DCB	17.4 6.1 4.2 4.5 7.1 5.0			├
1,2-EDB 1,3-PCB 1,3-PCB 1,3-PCB 1,3-PCB 1,3-PCB 1,4-PCB 1,4-PCB 1-Chloropropane 1,4-PCB 1-Chlorobrane 2,2-Dichloropropane 2-Chlorofolome 4-Chlorofolome 4-Chlorofolome 8-crone 8-crone 8-crone 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane Carbon Tutrachleride Chlorofolome C	6.1 4.2 4.5 7.1 5.0			T .
1,3,5-Trimuthylbenzone 1,3-DCB 1,3-Dichloropropane 1,4-DCB 1-Chlorobeane 2,2-Dichloropropane 2,2-Dichloropropane 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene Actione Borzone Borzone Borzone Romochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Tutrachloride Chlorochlane Cist-3,2-DCB	4.2 4.3 7.1 5.0			
1,3-DCB 1,3-Dichloropropane 1,4-DCB 1-Chloroheame 2,2-Dichloropropane 2-Chlorotohume 4-Chlorotohume 4-Chlorotohume Actione Brazone Brazone Bremochloromethane Bremochloromethane Bremochloromethane Bremochloromethane Carbon Tutachloride Chlorochlane Cist-3,2-DCB	4.5 7.1 5.0			Т
1,3-DCB 1,3-Dichloropropane 1,4-DCB 1-Chloroheame 2,2-Dichloropropane 2-Chlorotohume 4-Chlorotohume 4-Chlorotohume Actione Brazone Brazone Bremochloromethane Bremochloromethane Bremochloromethane Bremochloromethane Carbon Tutachloride Chlorochlane Cist-3,2-DCB	7.1 5.0			
1,3-Dichloropropane 1,4-DCB 1-Chlorobrane 2,2-Dichloropropane 2-Chlorofolusie 4-Chlorofolusie 4-Chlorofolusie 4-Chlorofolusie 8-crone 8-crone 8-crone 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 8-cronobrane 6-cronobrane Carbon Tutrachloride Chlorofolusie Chlorof	5.0			$\overline{}$
1,4-DCB 1-Chloroheane 2,2-Dichloropropane 2-Chlorotolusue 4-Chlorotolusue 4-Chlorotolusue A-Chlorotolusue Borzone Borzone Borzone Bromobalzone Rremochloromethane Bromodichloromethane Bromodichloromethane Carbon Tutrachloride Chlorocthane Cist-3,2-DCB	5.0			1
1-Chlosoheaane 2,2-Dichlosopropane 2,2-Dichlosopropane 2-Chlorotolusue 4-Chlorotolusue 4-Chlorotolusue Actione Bromodene Bromodenomethane Bromodenomethane Bromodenomethane Bromodenomethane Carbon Tutrachloride Chlorotthane				T
2,2-Dichterpropane 2-Chlerotolusus 4-Chlorotolusus 4-Chlorotolusus Acctore Renzens Recombenzens Recombenzens Remochteromethane Bremochteromethane Bremochtens Carben Tetrachteride Chlorotethane Cist-1,2-DCB	1.5	1		t
2-Chlorotolusue 4-Chlorotolusue A-ctione Bonzone Bonzone Bromobilisteme Remochloromethane Bromodichloromethane Bromodichloromethane Carbon Tutrachloride Chlorocethane Cist-1,2-DCB	3.8	i · · · · · · · · · · · · · · · · · · ·		\vdash
4-Chlorotolucee Actione Brozone Brozoneloromethane Brozondioromethane Brozondiotoloromethane Brozondiotoloromethane Carbon Tutrachleride Chlorothane Cit-1,2-DCB	1.8	 		\vdash
Actione Review Bromokovane Remochloromethane Bromodioloromethane Bromodioloromethane Bromodioloromethane Carbon Tetrachloride Chlorochlane Cis-1,2-DCB	1.8			-
Benzene Bromoknzene Bromokniouwethene Bromokniouwethene Bromodichloromethene Bromomethene Carbon Tutachloride Chlorosthane Cit-1,2-DCB	1.8			
Bromokrazene Rromochloromethanu Bromochloromethanu Bromomethanu Carton Tutrachleride Chlorosthanu Chlorosthanu	2.0			+-
Remochloromethane Bromodichloromethane Bromomethane Carbon Tutrachloride Chlorosthane Cis-1,2-DCB	1.0	 -		+-
Bromodichloromethane Bromomethane Carbon Tutrachloride Chlorothane Cis-1,2-DCB	1.4			-
Bremomethane Carbon Turachloride Chloroethane Cis-1,2-DCB	14			+
Carbon Tetrachloride Chlororthane Cis-1,2-DCB	3.5			-
Chlororthane Cis-1,2-DCB				-
Cis-1,2-DCB	5.8			-
	1.2			
Cis-1, 1-Dichloropropene	2.6			
	5. i			_
Dibromochleromethane	3.1			
Dibromomethane	0.0			
Dichlorodifluoromethane	2,0			ļ
Heuschlensbutadiene	0.8			
Isopropylbrazene	5.7			.
m&p-Xylene	1.8			
Methylene chloride	5.0			
Mahyi t-buyi ahir (MTBE)	5.9			
MEX (2-Butanone)	18.8			
MBK (methyl isobutyl ketone)	12.9			L
n-Butylbrozene	6.7			
n-Propylbenzene	6.3			
Narhthalcus	6.9			1
o-Xylene	4.3			T T
p-Isoprepyliolucue	5.3			$\overline{}$
Sec-Butylbenzene	3.6			1
Styrane	3.3			$\overline{}$
ICE	5.8			$\overline{}$
Text-Bulylbenzene	5.7	i		-
Totrachloroethone	2.3			1
Trans-1,2-DCE	0.9			t
Trans-1,3-Dichloropropose	3,1	 · · · ·		-
Trichlorofluoromethane	5.4			
11/monumeromenane	3.4			-

Comments:	

AFCEE ORGANIC ANALYSES DATA SHEET SA CALIBRATION VERIFICATION-GC/MS ANALYSIS

strument ID: Chico				Initial Ca	alibration ID:	C120224	
ID: 10ug/L Vol Std 02-29-12 (CCV)		CCV#1 ID:				CCV #2 ID:	
	l ic	ı,	CCV	7.41		V #2	
Analyte	RF	% D	RF I	%D	RF	%D	0
Chloromethane *	0.260363	4,10426					
1,1-DCA *	1.41215	0.504949					
Bromoform *	0.413521	7.88864					
Chlorobenzene *	2.73002	1.87429			-	·	
1,1,2,2-Tetrachloroethane *	1,02925	5,24961					
1,1-DCE#	0.712781	1.73224	學問題問				
Chloroform #	0.925469	1.60474					
1,2-Dichloropropane#	0.790816	1.07855					
Toluene #	3.36322	2.44064		·			
Ethylbenzene#	4.56683	0.945724			N. Harrisa		
Vinyl chloride #	0.232772	13.8712	\$1100-01				
			NAME OF THE		<u>JANUARY</u>		
	a firm of the						

AFCEE FORM O-5A Page ___ of ____

AFÇEE ORGANIC ANALYSES DATA SHEEF S CALIBRATION VERIFICATION

Assistical Method: METHOD \$250B		AAB 1: 130139AN-161191
Lab Nune. <u>APPL, loc.</u>		Contract #: 46012
Instrument ID: Neo		Johnst Cambration ID: N120229
ICV ID: 500gAg V() 8td 2-29-12 (CCV)	CCV H ID.	CCV (2 (D:

Amhte	KCY WD or Widnift	CCVII ND or % drift	SD or % drift	١.
J.1.2-Tetrachimochine	1.2	ALC CO IN COLO		_
	8.5			_
J.J-TCA J.2-TCA	14.0			_
	43			_
I-Di-theropropene	0.5			_
,1,3-Trichlar/beniene	4.9			_
2.2-Tricklyropopuse	5.6			_
1.4-Trichlyrobenese	4.0			-
2.4-Trimethy become			· · · -	₩
¿-DCA	7,1			
,1-DCB	0.6			—
2-Diremed chleapapases	2.0			
,2-EDB	3.3	<u> </u>		
3.3-Trimelly Resizese	6.2	<u> </u>		
3-DC8	1.5			
3-Dicaktorropene	13		ļ	
A-DCB	1.7		 	I
Chimbruse	13.3	L		ļ
2-Dickbropmpare	9.4			<u> </u>
Chlemtelame	8.3			I
Chlyotelasse	4.5	·		<u> </u>
Action	6.1			
kname	0.1			
Воековедине	3.4			
Remediamentarie	3.6			
Promodichloromethane	9.8			T
Broncoabase	8.8			
Subon Tetrachloride	4.1	· · · · · · · · · · · · · · · · · · ·		T
Microshae	4.8	· —		T
ris-1.2-DCE	4.8	<u> </u>		
2s-1,3-Dichlorepropere	11.4			— —
Diction of the second of the s	13			
	10.2			
Accescrathing	16.7			
Dickforodisha comethane				
leuchkrobstatiese	103			
stemps Renaue	10,3		 	+
Ap-Xykue		 	···	+
sedylete elleride	12.6	-	 	
(chyl)-taryl etter (MTBE)	3.3			+
(EK (2-Butzucoe)			-	+
(IBK (methyl isobutyl ketroe)	29			
- Buly frenzene	14.8			
Propylicazere	7.1			-
isph <u>ilakee</u>	1.9			+
-Xylene	4.2	ļ		-
-tsopropy kolsone	133			-
ee-Buty Donavie	9.8	L		1
Tyretië	6.3	1		
CE	3.1			
ert-BulyRouxee	9.0			
guschkroothese	13.6	1		
rans-1,2-DCB	0.0	T		
tada-1,3-Dickierograpeue	6.0	1		
	45	†···	·	1
Friding/horozethine	115	<u> </u>		F
		1	1	1

്യമത്തല:	 	

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

trument ID: Neo				Initial Ca	libration ID:	พ120229	
D: 50ug/kg Vol Std 2-29-12 (CCV)		CCV#1 ID:_				CCV #2 1D:	
	1		001	11.111	Loó	V #2	
Analyte	RF T	%D	RF	V#1 %D	RF	V #2 %D	Q
Chloromethane *	2,24277	7.6652	- 1/1	7072		752	<u> </u>
1,1-DCA *	2.13931	0.859522			<u> </u>		
Bromoform *	0.760029						
Chlorobenzene *	2.97318				<u> </u>		
1,1,2,2-Tetrachloroethane *	3.05848	9.02989					
1,1-DCE#	0.900934				1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Chloroform#	1.9056	6.78645	·		77		
1,2-Dichloropropane #	1,21463	7.44712			1.5		
Toluene #	4,02225	0.171048					
Ethylbenzene #	5.58668	10.2019			100		
Vinyl chtoride #	0.413804	15.9057			1 7 4 8		

AFCEE FORM O-5A Page ____ of ____

AFCEE ORGANIC ANALYSES DATA SKEET 5 CALIBRATION VERIFICATION

Analytical Method: METHOD 8260B		AAB#:_	120303AN-164483
Lob Warne: APPL, Inc.		Contract #:	•G012
Instrument ID: Noo		Initial Calibration ID: 1	N120003
[CV ID: 50ug/kg Vol Std 01-05-12 (CCV)	CCA %I ID	CCV #2 ID:	

Analyte	ICV %D or % drift	CCV#L %D or % drift	CCV#2 %D or % drift	0
1,1,1,2-Tetrachloroethane	3.2			
I,I,I-TCA	7.6			i –
1,1,2-TCA	0.7			
I, I-Dichloropropene	6.8			T
1,2,3-Trichlorobenzene	8.6			
1,2,3-Trichloropropane	0.6			
1,2,4-Trichlerobenzene	3.2			L
1,2,4-Trimethylbenzene	5.5			
1,2-DCA	1,4			J
1,2-DCB	2.2			
1,2-Ditromo-3-chloropropane	8.9			
1,2-ED8	7.L			
1,3,5-Trimethylbenzene	3.7			
1,3-DCB	2.0			
1,3-Dichloropropane	7.0			l
I,4-DCB	6.2			
1-Chlorohexane	1.0			├
2,2-Dichloropropane 2-Chlorotoluese	2.4			_
4-Chierotoluene	3.9			
Acetone	1.3 9.7			ļ.,
Acreme Benzene	0.7			
Bromobenzene	2.2			
Bromoch foromethane	0.0			
Bromedichloromethane	0.6			
Bromomethane	1.7			├─-
Carbon Tetrechloride	10			
Chloroethane	12			
Cis-1,2-DCE	2.4			_
Cis-1,3-Dichloropropene	1.9	· · · · · ·		
Ditromochloromethane	4.8			
Dibromomethane	5.0			
Dichlorodifluoromethane	12			
leaschlorobatatione	1111			
sopropylbanzane	8.6			
n&p-Xyl(me	1.4			
Methyfere chloride	4.5			
Methyl I-bulyl ether (MTBE)	5.3			
(EK (2-Butsuoge)	5.2			
IBK (meshys isobutyl ketone)	6.5			
-Bulytbenzene	7.7			
-Propylbenzene	6.7			
Vaphthalene	0.9			
-Xylene	1.0			
-Isopropyliolume	7.5			
ec-Butylbenzene	9.7			
іутєпа	0.4			
CE	4.0			
ert-Botylbenzene	7.7			
etrachleroethene	3.9			
rans-1,2-DCE	3.9			
rans-1,3-Dichloropropene	1.5			
richlorofluoromethane	19			
	1			

Communis:	
	

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

Instrument ID: Neo			<u> </u>	Initial Ca	alibration ID:	N120305	
V ID: 50ug/kg Vol Std 03-05-12 (CC)	v)	CCV #1 1D:				CCV #2 ID:	
	ICV		CCV	'#1	l ccv	/ #2	
Analyte	RF	% D	RF	% D	RF	% D	Q
Chtoromethane *	1.82081	11.8646					
1,1-DCA *	1.96925	1.76308					
Bromoform *	0.789957	1.29138					
Chlorobenzene *	3,10623	1.15915					
1,1,2,2-Tetrachloroethane *	3,35742	1.35243					
1,1-DCE#	0.731614	7.68638	hámpaddih.		Peroxual		
Chloroform #	1.66262	2,29121	#454		- Mattheway		
1,2-Dichloropropane #	1.1203	0.177192	抵集物制		Bay area a		
Toluene #	3.76178	6.81454	1000		Wat NA		
Ethylbenzene #	5.90671	3.15191	44.84.54.9		通常公司		
Vinyl chtoride #	0.425635	14.0547					
					124-53 (4)		
			为: 13 (A)		34244196		

AFCEE FORM O-5A Page ___ of ____

AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Michod: METHOD 8260B		AAB#: 120306AT-164603
Lob Name: APPL, Inc.		Contract #: 4G012
Instrument ID: Ther		Initial Calibration ID: Y120307
ICV ID: 500g/kg Vol SN 09-06-12 (CCV)	CCV #1 1D;	CCV #2 10:

Analyte	ICV %D or % drift	CCV#I	CCV#2 %D or % drift	
), i, i, 2-Tetrarblororthane	9.2			
I.I.I-TCA	2.0			
,I,2-TCA	7.2			_
,1-Dichloropropene	4.1			+
,2,3-Trichlorobenzene	7.5			_
2,3-Trichloropropane	7.5	·		+
,2,4-Trichlorobenzene	0.8			-
,2,4-Trimethylbenzene	II.			
,2-DCA	5.7			+
,2-DCB	4.7			1
2-Dibromo-3-chloropropane	9,8			_
1.2.EDB	16			-
1,3.5-Trimethylbenzene	8.8			┼─
I.J.DCB	2.5			-
1,3-Dichioropropane	13			
4-DCB	0.8			-
-Chloroticasic	8.6			+
t 2-Dichloropropane	7.4			-
L-Chlorotolume	6.7			┼──
I-Chlorotolucue	7.4			-
	2.1			-
Acciona	2.1			ļ
Storent				₩
Promobenzene	6.6			!
Bromochloromethane	8.0			_
Bromodichloromethane	6.8			<u> </u>
Bromomethane	11			
Carbon Tetrachkoride	6,3			
Alkroethane	18			L
Tis-1,2-DCE	1.8			
is-1,3-Dichloropropene	6.5			
Ditromochleromethane	10			
Dibromomethane	i ii			
Dichlorodiffucromethane	20		•••	
fexecblorobutatione	6.9			
sopropylbenzene	3.2			
n&p-Xylene	9.7			
vietkylene ektorióe	12			
vieskyl 1-bulyl ether (MTBE)	12			ī
SEK (2-Butanone)	7.8			
Bulyibenzene	0.6			
Propylbanzane	3.2			i —
(aphthalene	0.9			1
-Xyfaro	9.5		· · · · · · · · · · · · · · · · · · ·	
-Isopropylioluene	43	· · · · · · · · · · · · · · · · · · ·		T
co-Butylbonzore	1.8			
tyrene	0.3			T
CE	6.7			1
ort-Butylbeazene	3.2			
etrachloroethene	4.6			
rans-1,2-DCE	1.4			•
rans-1,1-Dichloropropens	11			\vdash
sichlorofluoromethane	18	 -		
SCHOOL AND	10	-		

Comments:		_
	· · · · · · · · · · · · · · · · · · ·	

AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

ment ID; Thor				Initial Co	alibration ID: _	F120307	
50ug/kg Vol Std 03-06-12 (CC)	v) (CCV#1 ID:			C		
	IC	v	CCV	7 #1	CCV	/ #2	
Analyte	RF	%D	RF	% D	RF	%D	0
Chloromethane *	0.289435	11.9087					~
1,1-DCA *	0.493533	3.14889					
Bromoform *	0.292088	11.3123					
Chlorobenzene *	1.15241	3.00236					
1,1,2,2-Tetrachloroethane *	0.846779	11.7093			1 1		
1,1-DCE#	0.191646	8.0112	H284 H 1				
Chloroform #	0.547054	3.72444			Refactions.		
1,2-Dichloropropane#	0.341398	4.74784	738 FQ		47 N. S. C. C.	·····	
Toluene #	0.777133	2.99248	-intelligitary				
Ethylbenzene #	1.67285	5.52048			V400 ± 4		
Vinyl chloride #	0.179673	16.3532	THE SALE		5945388		
	Maria de la compansión de						
			4454		Vijedo žesti		

AFCEE FORM O-5A Page ___ of ____

Analytical Method: EPA 8260B

AAB #: 120229AC-164500

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: ug/L

Contract #: *G012

Method Blank ID: 120229AC-BLK-1WC

Initial Calibration ID: C120224

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	<u></u> τ
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	<rl< td=""><td>1.0</td><td>Ū</td></rl<>	1.0	Ū
1,2,3-TRICHLOROBENZENE	< RL	0.3	Ū
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	υ
1,2,4-TRIMETHYLBENZENE	<rl< td=""><td>1.3</td><td>Ū</td></rl<>	1.3	Ū
1,2-DCA	<rl< td=""><td>0.6</td><td>Ū</td></rl<>	0.6	Ū
1,2-DCB	< RL	0.3	Ų
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	Ü
1,2-DICHLOROPROPANE	< RL	0.4	Ü
1,2-EDB	<rl< td=""><td>0.6</td><td>Ū</td></rl<>	0.6	Ū
1,3,5-TRIMETHYLBENZENE	< RL	0.5	Ū
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
1,4-DCB	< RL	0.3	ŭ
1-CHLOROHEXANE	< RL	0.5	Ŭ
2,2-DICHLOROPROPANE	< RL	3.5	Ŭ
2-CHLOROTOLUENE	< RL	0.4	Ū
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	υ
BROMOBENZENE	< RL	0.3	Ū
BROMOCHLOROMETHANE	< RL	0.4	U
BROMODICHLOROMETHANE	< RL	0.8	Ü
BROMOFORM	<rl< td=""><td>1.2</td><td>U</td></rl<>	1.2	U
BROMOMETHANE	<rl< td=""><td>1.1</td><td>Ū</td></rl<>	1.1	Ū
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	Ü
CHLOROETHANE	<rl< td=""><td>1.0</td><td>Ū</td></rl<>	1.0	Ū
CHLOROFORM	<rl< td=""><td>0.3</td><td>Ū</td></rl<>	0.3	Ū
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	Ū
CIS-1,3-DICHLOROPROPENE	< RL	1.0	Ū
DIBROMOCHLOROMETHANE	< RL	0,5	Ü
DIBROMOMETHANE	< RL	2.4	Ŭ
DICHLORODIFLUOROMETHANE	< RL	1.0	Ŭ
ETHYLBENZENE	< RL	0.6	Ŭ

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AC-164500

Lab Name: APPL, Inc

Concentration Units; ug/L

Contract #: *G012

Method Blank ID: 120229AC-BLK- 1WC

Initial Calibration ID: C120224

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1.1	U
ISOPROPYLBENZENE	< RL	0.5	U
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	U
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	Ü
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	Ū
STYRENE	< RL	0.4	บ
TCE	< RL	1.0	U
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	Ŭ
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	91.3	69-139	
SURROGATE: 4-BROMOFLUOROBE	98.2	75-125	
SURROGATE: DIBROMOFLUOROME	93.5	75-125	
SURROGATE: TOLUENE-D8 (S)	97.5	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120229AN-BLK-15N

Initial Calibration ID: N120229

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	Ų
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	Ü
1,2-DCB	< RL	0.002	υ
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	Ū
1,2-DICHLOROPROPANE	< RL	0.002	Ū
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	Ū
1,3-DICHLOROPROPANE	< RL	0.002	Ŭ
1,4-DCB	< RL	0.002	Ų
1-CHLOROHEXANE	< RL	0.003	Ū
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	Ū
4-CHLOROTOLUENE	< RL	0.003	Ü
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	Ū
BROMODICHLOROMETHANE	< RL	0.004	Ū
BROMOFORM	< RL	0.006	Ū
BROMOMETHANE	< RL	0.005	Ü
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	Ü
CIS-1,2-DCE	< RL	0.006	υ
CIS-1,3-DICHLOROPROPENE	<rl< td=""><td>0.005</td><td>Ŭ</td></rl<>	0.005	Ŭ
DIBROMOCHLOROMETHANE	< RL	0.003	Ŭ
DIBROMOMETHANE	< RL	0.010	Ŭ
DICHLORODIFLUOROMETHANE	< RL	0.005	Ŭ
ETHYLBENZENE	< RL	0.003	U

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AN-164497

Lab Name: APPL, Inc

Concentration Units: mg/kg

Contract #: *G012 44.5 1/12/12

Method Blank ID: 120229AM-BLK-15N

Initial Calibration ID: N120229

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	υ
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	U
N-BUTYLBENZENE	< RL	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	<rl< td=""><td>0.020</td><td>Ü</td></rl<>	0.020	Ü
O-XYLENE	< RL	0.005	U
P-JSOPROPYLTOLUENE	< RL	0.006	U
SEC-BUTYLBENZENE	< RL	0.007	ΰ
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	Ų

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	102	52-149	
SURROGATE: 4-BROMOFLUOROBE	102	65-135	
SURROGATE: DIBROMOFLUOROME	107	65-135	
SURROGATE: TOLUENE-D8 (S)	102	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units; mg/kg

Initial Calibration ID: N120305

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	Ţ
1,1,1-TCA	< RL	0.004	Ţ
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	τ
1,1,2-TCA	< RL	0.005	ζ
1,1-DCA	< RL	0.002	ι
1,1-DCE	<rl< td=""><td>0.006</td><td>Ţ</td></rl<>	0.006	Ţ
1,1-DICHLOROPROPENE	< RL	0.005	Ţ
1,2,3-TRICHLOROBENZENE	< RL	0.004	J
1,2,3-TRICHLOROPROPANE	< RL	0.020	Į
1,2,4-TRICHLOROBENZENE	<rl< td=""><td>0.004</td><td>τ</td></rl<>	0.004	τ
1,2,4-TRIMETHYLBENZENE	< RL	0.007	Ţ
1,2-DCA	< RL	0.003	ί
1,2-DCB	< RL	0.002	Ū
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	U
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	
1,3,5-TRIMETHYLBENZENE	< RL	0.003	L L
1,3-DCB	< RL	0.006	Ū
1,3-DICHLOROPROPANE	< RL	0.002	Ū
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	<rl< td=""><td>0.003</td><td>U</td></rl<>	0.003	U
BENZENE	< RL	0.002	U
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	Ü
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	Ū
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	U
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	U
CHLOROMETHANE	< RL	0.007	Ū
CIS-1,2-DCE	< RL	0.006	υ
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	< RL	0.003	Ū,
DIBROMOMETHANE	< RL	0.010	Ū,
DICHLORODIFLUOROMETHANE	<rl< td=""><td>0.005</td><td>Ū</td></rl<>	0.005	Ū
ETHYLBENZENE	< RL	0.003	U

Comments:

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

FUBIE WH

Concentration Units: mg/kg

Method Blank ID: 120305AM-BLK-1SN

Initial Calibration ID: N120305

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE		0.007	U
METHYLENE CHLORIDE	< RL	0.005	υ
N-BUTYLBENZENE	<rl< td=""><td>0.005</td><td>U</td></rl<>	0.005	U
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	Ű
P-ISOPROPYLTOLUENE	< RL	0.006	บ
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	υ
TETRACHLOROETHENE	< RL	0.007	U
TOLUENE	< RL	0.005	U
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	Ü

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	91.2	52-149	
SURROGATE: 4-BROMOFLUOROBE	103	65-135	
SURROGATE: DIBROMOFLUOROME	91.1	65-135	
SURROGATE: TOLUENE-D8 (S)	107	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 120306AT-164608

Lab Name: APPL, Inc

Contract #: *G012

Elkilsull

Concentration Units: mg/kg

Method Blank ID: 120306AZ-BLK- 1ST

Initial Calibration ID: T120307

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	U
1,2,3-TRICHLOROPROPANE	< RL	0.020	U
1,2,4-TRICHLOROBENZENE	< RL	0.004	U
1,2,4-TRIMETHYLBENZENE	< RL	0.007	U
1,2-DCA	< RL	0.003	U
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	υ
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	U
1,3-DCB	< RL	0.006	U
1,3-DICHLOROPROPANE	< RL	0.002	U
1,4-DCB	< RL	0.002	U
1-CHLOROHEXANE	< RL	0.003	U
2,2-DICHLOROPROPANE	< RL	0.020	บ
2-CHLOROTOLUENE	< RL	0.002	U
4-CHLOROTOLUENE	< RL	0.003	U
BENZENE	< RL	0.002	υ
BROMOBENZENE	< RL	0.002	บ
BROMOCHLOROMETHANE	< RL	0.002	U
BROMODICHLOROMETHANE	< RL	0.004	U
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	U
CARBON TETRACHLORIDE	< RL	0.010	U
CHLOROBENZENE	< RL	0.002	Ü
CHLOROETHANE	< RL	0.005	U
CHLOROFORM	< RL	0.002	u
CHLOROMETHANE	< RL	0.007	U
CIS-1,2-DCE	< RL	0.006	U
CIS-1,3-DICHLOROPROPENE	< RL	0.005	U
DIBROMOCHLOROMETHANE	<rl< td=""><td>0.003</td><td>Ü</td></rl<>	0.003	Ü
DIBROMOMETHANE	< RL	0.010	Ū
DICHLORODIFLUOROMETHANE	< RL	0.005	U
ETHYLBENZENE	< RL	0.003	U

Comments:

Analytical Method: EPA 8260B

AAB #: 120306AT-164608

Lab Name: APPL, Inc

Contract #: *G012

Alkils Mt

Concentration Units: mg/kg

Method Blank ID: 120306AZ-BLK-1ST

Initial Calibration ID: T120307

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RL	0.005	Ū
N-BUTYLBENZENE	< RL	0.005	
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	Ü
O-XYLENE	< RL	0.005	Ü
P-ISOPROPYLTOLUENE	< RL	0.006	Ü
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	Ü
TCE	< RL	0.010	Ū
TERT-BUTYLBENZENE	< RL	0.007	Ū
TETRACHLOROETHENE	< RL	0.007	Ū
TOLUENE	< RL	0.005	Ü
TRANS-1,2-DCE	< RL	0.003	บ
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	Ü
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	Ü

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	99.2	52-149	
SURROGATE: 4-BROMOFLUOROBE	90.1	65-135	
SURROGATE: DIBROMOFLUOROME	101	65-135	
SURROGATE: TOLUENE-D8 (S)	100	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AC-164500

Contract #: *G012

Lab Name: APPL, Inc LCS ID: 120229AC LCS~1WC

Initial Calibration ID: C120224

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	9.32	93.2	72-125	
1,1,1-TCA	10.00	9.98	99.8	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	8.82	88.2	74-125	
1,1,2-TCA	10.00	9.16	91.6	75-127	
1,1-DCA	10.00	9.80	98.0	75-125	
1,1-DCE	10.00	9.57	95.7	75-125	
1,1-DICHLOROPROPENE	10.00	9.69	96.9	75-125	
1,2,3-TRICHLOROBENZENE	10.00	9.76	97.6	75-137	
1,2,3-TRICHLOROPROPANE	10.00	8.30	83.0	75-125	
1,2,4-TRICHLOROBENZENE	10.00	10.13	101	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	9.77	97.7	75-125	
1,2-DCA	10.00	9.17	91.7	68-127	
1,2-DCB	10.00	9.77	97.7	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	8.06	80.6	59-125	
1,2-DICHLOROPROPANE	10.00	9.87	98.7	70-125	
1,2-EDB	10.00	9.04	90.4	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	9.99	99.9	72-125	
1,3-DCB	10.00	9.96	99.6	75-125	_
1,3-DICHLOROPROPANE	10.00	8.87	88.7	75-125	
1,4-DCB	10.00	9.67	96.7	75-125	
1-CHLOROHEXANE	10.00	9.81	98.1	75-125	
2,2-DICHLOROPROPANE	10.00	10.04	100	75-125	
2-CHLOROTOLUENE	10.00	9.74	97.4	73-125	
4-CHLOROTOLUENE	10.00	9.36	93.6	74-125	
BENZENE	10.00	9.82	98.2	75-125	
BROMOBENZENE	10.00	9.69	96.9	75-125	
BROMOCHLOROMETHANE	10.00	9.89	98.9	73-125	
BROMODICHLOROMETHANE	10.00	9.80	98.0	75-125	
BROMOFORM	10.00	8.60	86.0	75-125	
BROMOMETHANE	10.00	9.60	96.0	72-125	
CARBON TETRACHLORIDE	10.00	10.17	102	62-125	
CHLOROBENZENE	10.00	9.66	96.6	75-125	
CHLOROETHANE	10.00	10.43	104	65-125	
CHLOROFORM	10.00	9.61	96.1	74-125	-
CHLOROMETHANE	10.00	10.92	109	75-125	
CIS-1,2-DCE	10.00	9.91	99.1	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	9.53	95.3	74-125	
DIBROMOCHLOROMETHANE	10.00	8.97	89.7	73-125	
DIBROMOMETHANE	10.00	10.19	102	69-127	
DICHLORODIFLUOROMETHANE	10.00	11.08	111	72-125	

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AC-164500

Contract #: *G012

Lab Name: APPL, Inc LCS ID: 120229AC LCS-1w6

Initial Calibration ID: C120224

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	10.00	9.65	96.5	75-125	
HEXACHLOROBUTADIENE	10.00	9.32	93.2	75-125	
ISOPROPYLBENZENE	10.00	9.92	99.2	75-125	
M&P-XYLENE	20.00	18.99	94.9	75-125	
METHYLENE CHLORIDE	10.00	9.89	98.9	75-125	
N-BUTYLBENZENE	10.00	9.98	99.8	75-125	
N-PROPYLBENZENE	10.00	9.88	98.8	75-125	
NAPHTHALENE	10.00	8.86	88.6	75-125	
O-XYLENE	10.00	9.92	99.2	75-125	
P-ISOPROPYLTOLUENE	10.00	10.07	101	75-125	
SEC-BUTYLBENZENE	10.00	9.96	99.6	75-125	
STYRENE	10.00	9.92	99.2	75-125	
TCE	10.00	10.40	104	71-125	
TERT-BUTYLBENZENE	10.00	10.06	101	75-125	
TETRACHLOROETHENE	10.00	9.75	97.5	71-125	
TOLUENE	10.00	10.42	104	74-125	
TRANS-1,2-DCE	10.00	9.75	97.5	75-125	
TRANS-1,3-DICHLOROPROPENE	10.00	9.52	95.2	66-125	
TRICHLOROFLUOROMETHANE	10.00	11.10	111	67-125	
VINYL CHLORIDE	10.00	11.02	110	46-134	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	98.1	69-139	
SURROGATE: 4-BROMOFLUOROBENZE	96.2	75-125	
SURROGATE: DIBROMOFLUOROMETH	102	75-125	
SURROGATE: TOLUENE-D8 (S)	94.6	75-125	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B AAB #: 120229AN-164497

Contract #: *G012

Los ID: 120229Ay Los-15 (55) Initial Calibration ID: N120229

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0542	108	62-125	
1,1,1-TCA	0.0500	0.0467	93.4	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0545	109	64-135	
1,1,2-TCA	0.0500	0.0569	114	65-135	
1,1-DCA	0.0500	0.0522	104	62-135	
1,1-DCE	0.0500	0.0457	91.4	65-135	
1,1-DICHLOROPROPENE	0.0500	0.0470	94.0	65-135	
1,2,3-TRICHLOROBENZENE	0,0500	0.0488	97.6	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.052	104	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0432	86.4	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0495	99.0	65-135	
1,2-DCA	0.0500	0.0540	108	58-137	
1,2-DCB	0.0500	0.0514	103	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.052	104	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0535	107	60-135	
1,2-EDB	0.0500	0,0537	107	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0487	97.4	62-135	
1,3-DCB	0.0500	0.0507	101	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0547	109	65-135	
1,4-DCB	0,0500	0.0501	100	65-135	
1-CHLOROHEXANE	0.0500	0.0436	87.2	65-135	
2,2-DICHLOROPROPANE	0.050	0.047	94.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0495	99.0	63-135	
4-CHLOROTOLUENE	0.0500	0.0498	99.6	64-135	
BENZENE	0.0500	0.0492	98.4	65-135	
BROMOBENZENE	0.0500	0.0542	108	65-135	
BROMOCHLOROMETHANE	0.0500	0.0511	102	63-135	
BROMODICHLOROMETHANE	0.0500	0.0581	116	65-135	
BROMOFORM	0.0500	0.0563	113	65-135	
BROMOMETHANE	0.0500	0.0489	97.8	62-135	
CARBON TETRACHLORIDE	0.050	0.049	98.0	52-135	
CHLOROBENZENE	0.0500	0.0526	105	65-135	
CHLOROETHANE	0.0500	0.0492	98.4	55-135	
CHLOROFORM	0.0500	0.0541	108	64-135	
CHLOROMETHANE	0.0500	0.0445	89.0	65-135	
CIS-1,2-DCE	0.0500	0.0535	107	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0579	116	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0536	107	63-135	
DIBROMOMETHANE	0.050	0.055	110	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0398	79.6	65-135	

Comments:

Analytical Method: EPA 8260B

AAB #: 120229AN-164497

Contract #: *G012

Lab Name: APPL, Inc. 1835AVIL LCS ID: 120229AN LCS-15N(55)

Initial Calibration ID: N120229

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0487	97.4	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0460	92.0	65-135	
ISOPROPYLBENZENE	0.0500	0.0479	95.8	65-135	
M&P-XYLENE	0.1000	0.0981	98.1	65-135	
METHYLENE CHLORIDE	0.0500	0.0550	110	65-135	
N-BUTYLBENZENE	0.0500	0.0430	86.0	65-135	
N-PROPYLBENZENE	0.0500	0.0484	96.8	65-135	
NAPHTHALENE	0.0500	0.0478	95.6	65-135	
O-XYLENE	0.0500	0.0521	104	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0467	93,4	65-135	
SEC-BUTYLBENZENE	0.0500	0.0457	91.4	65-135	
STYRENE	0.0500	0,0512	102	65-135	
TCE	0.0500	0.0470	94.0	61-135	
TERT-BUTYLBENZENE	0.0500	0.0473	94.6	65-135	
TETRACHLOROETHENE	0.0500	0.0435	87.0	61-135	
TOLUENE	0.0500	0.0513	103	64-135	
TRANS-1,2-DCE	0.0500	0.0492	98.4	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0549	110	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0436	87.2	57-135	
VINYL CHLORIDE	0.0500	0.0438	87.6	36-144	

Surrogate	Recovery	Control Limits	Qualifler
SURROGATE: 1,2-DICHLOROETHANE-	105	52-149	
SURROGATE: 4-BROMOFLUOROBENZ	114	65-135	
SURROGATE: DIBROMOFLUOROMETH	102	65-135	
SURROGATE: TOLUENE-D8 (S)	109	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Contract #: *G012

Lab Name: APPL, Inc Hw3||2117 LCS ID: 120305AM LCS- 13N (SS)

Initial Calibration ID: N120305

Concentration Units; mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0507	101	62-125	
1,1,1-TCA	0.0500	0.0584	117	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0472	94.4	64-135	
1,1,2-TCA	0.0500	0.0521	104	65-135	
1,1-DCA	0.0500	0.0530	106	62-135	
1,1-DCE	0.0500	0.0562	112	65-135	
I,1-DICHLOROPROPENE	0.0500	0.0555	111	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0522	104	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.048	96.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0435	87.0	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0497	99.4	65-135	
1,2-DCA	0.0500	0.0492	98.4	58-137	
1,2-DCB	0.0500	0.0491	98.2	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.052	104	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0519	104	60-135	
1,2-EDB	0.0500	0.0487	97.4	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0541	108	62-135	
1,3-DCB	0.0500	0.0479	95.8	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0515	103	65-135	
1,4-DCB	0.0500	0.0462	92.4	65-135	
1-CHLOROHEXANE	0.0500	0.0538	108	65-135	
2,2-DICHLOROPROPANE	0.050	0.053	106	65-135	
2-CHLOROTOLUENE	0.0500	0.0536	107	63-135	
4-CHLOROTOLUENE	0.0500	0.0455	91.0	64-135	
BENZENE	0.0500	0.0517	103	65-135	
BROMOBENZENE	0.0500	0.0473	94.6	65-135	
BROMOCHLOROMETHANE	0.0500	0.0468	93.6	63-135	
BROMODICHLOROMETHANE	0.0500	0.0523	105	65-135	
BROMOFORM	0.0500	0.0497	99.4	65-135	
BROMOMETHANE	0.0500	0.0537	107	62-135	
CARBON TETRACHLORIDE	0.050	0.058	116	52-135	
CHLOROBENZENE	0.0500	0.0505	101	65-135	
CHLOROETHANE	0.0500	0.0585	117	55-135	
CHLOROFORM	0.0500	0.0520	104	64-135	\neg
CHLOROMETHANE	0.0500	0.0564	113	65-135	
CIS-1,2-DCE	0.0500	0.0540	108	65-135	\neg
CIS-1,3-DICHLOROPROPENE	0.0500	0.0510	102	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0522	104	63-135	
DIBROMOMETHANE	0.050	0.050	100	59-137	一
DICHLORODIFLUOROMETHANE	0.0500	0.0562	112	65-135	

Comments:

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Contract #: *G012

Lab Name: APPL, Inc LCS ID: 120305AN LCS -15N (SS)

Initial Calibration ID: N120305

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0534	107	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0543	109	65-135	
ISOPROPYLBENZENE	0.0500	0.0530	106	65-135	
M&P-XYLENE	0.1000	0.1073	107	65-135	
METHYLENE CHLORIDE	0.0500	0.0523	105	65-135	
N-BUTYLBENZENE	0.0500	0.0508	102	65-135	
N-PROPYLBENZENE	0.0500	0.0536	107	65-135	
NAPHTHALENE	0.0500	0.0467	93.4	65-135	
O-XYLENE	0.0500	0.0516	103.	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0494	98,8	65-135	
SEC-BUTYLBENZENE	0.0500	0.0535	107	65-135	
STYRENE	0.0500	0.0502	100	65-135	
TCE	0.0500	0.0535	107	61-135	
TERT-BUTYLBENZENE	0.0500	0.0519	104	65-135	
TETRACHLOROETHENE	0.0500	0.0546	109	61-135	
TOLUENE	0.0500	0.0533	107	64-135	
TRANS-1,2-DCE	0.0500	0.0539	108	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0505	101	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0577	115	57-135	
VINYL CHLORIDE	0.0500	0.0529	106	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	85.7	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	87.8	65-135	
SURROGATE: TOLUENE-D8 (S)	106	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 120306AT-164608

Contract #: *G012

Les ID: 120306A7 LCS - 15T

Initial Calibration ID: T120307

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0490	98.0	62-125	
1,1,1-TCA	0.0500	0.0448	89.6	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0494	98.8	64-135	
1,1,2-TCA	0.0500	0.0497	99.4	65-135	
I,I-DCA	0.0500	0.0463	92.6	62-135	
1,1-DCE	0.0500	0.0415	83.0	65-135	.=.
1,1-DICHLOROPROPENE	0.0500	0.0431	86.2	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0504	101	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.050	100	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0457	91.4	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0494	98.8	65-135	
1,2-DCA	0.0500	0.0486	97.2	58-137	
1,2-DCB	0.0500	0.0469	93.8	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.052	104	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0481	96.2	60-135	
1,2-EDB	0.0500	0.0513	103	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0480	96.0	62-135	
1,3-DCB	0.0500	0.0452	90.4	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0501	100	65-135	
1,4-DCB	0.0500	0.0455	91.0	65-135	_
1-CHLOROHEXANE	0.0500	0.0411	82.2	65-135	
2,2-DICHLOROPROPANE	0.050	0.043	86.0	65-135	
2-CHLOROTOLUENE	0.0500	0.0468	93.6	63-135	
4-CHLOROTOLUENE	0.0500	0.0473	94.6	64-135	
BENZENE	0.0500	0.0467	93.4	65-135	
BROMOBENZENE	0.0500	0.0470	94.0	65-135	
BROMOCHLOROMETHANE	0.0500	0.0498	99.6	63-135	
BROMODICHLOROMETHANE	0.0500	0.0497	99.4	65-135	
BROMOFORM	0.0500	0.0511	102	65-135	
BROMOMETHANE	0.0500	0.0418	83.6	62-135	
CARBON TETRACHLORIDE	0.050	0.041	82.0	52-135	
CHLOROBENZENE	0.0500	0.0460	92.0	65-135	
CHLOROETHANE	0.0500	0.0393	78.6	55-135	
CHLOROFORM	0.0500	0.0474	94.8	64-135	
CHLOROMETHANE	0.0500	0.0418	83.6	65-135	
CIS-1,2-DCE	0.0500	0.0469	93.8	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0494	98.8	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0497	99.4	63-135	
DIBROMOMETHANE	0.050	0.051	102	59-137	.
DICHLORODIFLUOROMETHANE	0.0500	0.0347	69.4	65-135	

Comments:

ARF: 67072, QC Sample ID: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 120306AT-164608

Contract #: *G012

Lab Name: APPL, Inc 340-400 LCS ID: 120306A/LCS-15T

Initial Calibration ID: T120307

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0463	92.6		
HEXACHLOROBUTADIENE	0.0500	0.0420			
ISOPROPYLBENZENE	0.0500	0.0449	89.8	65-135	
M&P-XYLENE	0.1000	0.0965	96.5	65-135	
METHYLENE CHLORIDE	0.0500	0.0488	97.6	65-135	
N-BUTYLBENZENE	0.0500	0.0448	89.6	65-135	_
N-PROPYLBENZENE	0.0500	0.0451	90.2	65-135	
NAPHTHALENE	0.0500	0.0477	95.4	65-135	
O-XYLENE	0.0500	0.0491	98.2	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0461	92.2	65-135	
SEC-BUTYLBENZENE	0.0500	0.0446	89.2	65-135	
STYRENE	0.0500	0.0444	88.8	65-135	
TCE	0.0500	0.0431	86.2	61-135	
TERT-BUTYLBENZENE	0.0500	0.0449	89.8	65-135	
TETRACHLOROETHENE	0.0500	0.0420	84.0	61-135	
TOLUENE	0.0500	0.0468	93.6	64-135	
TRANS-1,2-DCE	0.0500	0.0449	89.8	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0515	103	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0369	73.8	57-135	
VINYL CHLORIDE	0.0500	0.0387	77.4	36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	103	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	93.6	65-135	
SURROGATE: DIBROMOFLUOROMETH	103	65-135	
SURROGATE: TOLUENE-D8 (S)	104	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 67072, QC Sample ID: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8260B

Initial Calibration ID: T120307

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 163116117 AY 01 MS ID: 120307-558558 MS-157 MSD ID: 120307-558558 MSD-137

Analyte			Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
1,1,1,2-TETRACHLOROETHANE		0.0537	0.0639	119	0.0630	117	1.4	62-125	30	
1,1,1-TCA		0.0537	0.0900	168	0.0850	158	5.7	65-135	30	М
1,1,2,2-TETRACHLOROETHANE		0.0537	0.0550	102	0.0530	98.7	3.7	64-135	30	
1,1,2-TCA		0.0537		106		99.1	6.7	65-135	30	
1,1-DCA		0.0537	0.0737	137	0.0703	131	4.7	62-135	30	M
1,1-DCE		0.0537		173	0.0866	161	6.8	65-135	30	M
1,1-DICHLOROPROPENE		0.0537	0.0920	171	0.0889	166	3.4	65-135	30	M
1,2,3-TRICHLOROBENZENE		0.0537	0.0374	69.6	0.0368	68.5	1.6	65-147	30	
1,2,3-TRICHLOROPROPANE		0.054	0.053	98.1	0.052	96.3	1.9	65-135	30	
1,2,4-TRICHLOROBENZENE		0.0537	0.0515	95.9	0.0517	96.3	0.39	65-145	30	
1,2,4-TRIMETHYLBENZENE		0.0537	0.0735	137	0.0737	137	0.27	65-135	30	M
1,2-DCA		0.0537	0.0578	108	0.0541	101	6.6	58-137	30	
1,2-DCB		0.0537	0.0531	98.9	0.0524	97.6	1.3	65-135	30	
1,2-DIBROMO-3-CHLOROPROPAN		0.054	0.049	90.7	0.049	90.7	0.0	49-135	30	
1,2-DICHLOROPROPANE		0.0537	0.0650	121	0.0622	116	4.4	60-135	30	
1,2-EDB		0.0537	0.0567	106	0.0543	101	4.3	65-135	30	
1,3,5-TRIMETHYLBENZENE		0.0537	0.0781	145	0.0776	145	0.64	62-135	30	M
1,3-DCB		0.0537	0.0572	107	0.0570	106	0.35	65-135	30	
1,3-DICHLOROPROPANE		0.0537	0.0581	108	0.0565	105	2.8	65-135	30	
1,4-DCB		0.0537	0.0553	103	0.0544	101	1.6	65-135	30	
I-CHLOROHEXANE		0.0537	0.0892	166	0.0898	167	0.67	65-135	30	М
2,2-DICHLOROPROPANE		0.054	0.087	161	0.083	154	4.7	65-135	30	М
2-CHLOROTOLUENE		0.0537	0.0697	130	0.0701	131	0.57	63-135	30	
4-CHLOROTOLUENE		0.0537	0.0678	126	0.0681	127	0.44	64-135	30	\neg
BENZENE		0.0537	0.0728	136	0.0696	130	4.5	65-135	30	М
BROMOBENZENE		0.0537	0.0594	111	0.0574	107	3.4	65-135	30	
BROMOCHLOROMETHANE		0.0537	0.0591	110	0.0563	105	4.9	63-135	30	
BROMODICHLOROMETHANE		0.0537	0.0627	117	0.0591	110	5.9	65-135	30	
BROMOFORM		0.0537	0.0557	104	0.0542	101	2.7	65-135	30	\neg
BROMOMETHANE		0.0537	0.0604	112	0.0511	95.2	16.7	62-135	30	
CARBON TETRACHLORIDE		0.054	0.092	170	0.088	163	4.4	52-135	30	M
CHLOROBENZENE		0.0537	0.0639	119	0.0623	116	2.5	65-135	30	
CHLOROETHANE	0.0022	0.0537	0.0870	158	0.0657	118	27.9	55-135	30	М
CHLOROFORM		0.0537	0.0679	126	0.0643	120	5.4	64-135	30	\neg
CHLOROMETHANE		0.0537	0.0739	138	0.0583	109	23.6	65-135	30	М
CIS-1,2-DCE		0.0537	0.0675	126	0.0635	118	6.1	65-135	30	\neg
CIS-1,3-DICHLOROPROPENE		0.0537	0.0604	112	0.0572	107	5.4	64-135	30	

Comments:				
	 	 		_

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8260B

Initial Calibration ID: T120307

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 1 1 311112 AY DI AT AT MSD ID: 120307-558555 MSD - 1ST MSD ID: 120307-558555 MSD - 1ST

Analyte	Parent Sample Result	Spike Added	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
DIBROMOCHLOROMETHANE		0.0537	0.0575	107	0.0562	105	2.3	63-135	30	
DIBROMOMETHANE		0.054	0.057	106	0.054	100		59-137	30	
DICHLORODIFLUOROMETHANE		0.0537	0.1211	226	0.0965		_	65-135		M
ETHYLBENZENE		0.0537	0.0782	146	0.0778	145		65-135		M
HEXACHLOROBUTADIENE		_0.0537	0.0515	95.9	0.0508	94.6	1.4	65-135		$\overline{}$
ISOPROPYLBENZENE		0.0537	0.0833	155	0.0823	153		65-135		М
M&P-XYLENE		0.1074	0.1575	147	0.1559	145		65-135	30	M
METHYLENE CHLORIDE	<u></u>	0.0537	0.0692	129	0.0625	116		65-135	30	
N-BUTYLBENZENE		0.0537	0.0743	138	0.0757	141	1.9	65-135	30	М
N-PROPYLBENZENE		0.0537	0.0811	151	0.0813	151	0.25	65-135	30	М
NAPHTHALENE		0.0537	0.0339	63.1	0.0346	64.4	2.0	65-135	30	М
O-XYLENE		0.0537	0.0715	133	0.0716	133	0.14	65-135	30	
P-ISOPROPYLTOLUENE		0.0537	0.0792	147	0.0806	150	1.8	65-135	30	M
SEC-BUTYLBENZENE		0.0537	0.0816	152	0.0828	154		65-135	30	М
STYRENE		0.0537	0.0579	108	0.0571	106		65-135	30	
TCE		0.0537	0.0750	140	0.0709	132	5.6	61-135	30	M
TERT-BUTYLBENZENE		0.0537	0.0806	150	0.0832	155		65-135	30	М
TETRACHLOROETHENE		0.0537	0.0834	155	0.0821	153	1.6	61-135	30	М
TOLUENE		0.0537	0.0746	139	0.0716	133	4,1	64-135	30	М
TRANS-1,2-DCE		0.0537	0.0782	146	0.0717	134	8.7	65-135	30	М
TRANS-1,3-DICHLOROPROPENE		0.0537	0.0586	109	0.0546	102	7.1	56-135	30	
TRICHLOROFLUOROMETHANE		0.0537	0.0996	185	0.0730	136	30.8	57-135	30	М
VINYL CHLORIDE		0.0537	0.1006	187	0.0712	133	34.2	36-144	30	M

Analyte	 Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
SURROGATE: 1,2-DICHLOROETHA	0.065	0.069	106	0.066	102		52-149		
SURROGATE: 4-BROMOFLUOROB	 0.078	0.073	93.6	0.074	94.9		65-135		
SURROGATE: DIBROMOFLUOROM	 0.074	0.077	104	0.076	103		65-135		
SURROGATE: TOLLIENE-D8 (S)	0.083	0.089	107	0.080	107		45 125		

Comn	nents:				
	_		 	· ·	
			 .		

Analytical Method: EPA 8260B

AAB#: 120229AC-164500

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Extracted	Max. Holding Time Ext	Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
TB-1	27-Feb-12	28-Feb-12	29-Feb-12		 29-Feb-12	14	2	

Comments:

Analytical Method: EPA 8260B

AAB#: 120229AN-164497

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Extracted	Max. Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal,	Q
B4-NT1-BOT01 FD	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-BOT02	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-SW3	27-Feb-12	28-Feb-12	29-Feb-12			29-Feb-12	. 14	2	
B4-NT1-SW4	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-SW5	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-SW7	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	
B4-NT1-SW8	27-Feb-12	28-Feb-12	01-Mar-12			01-Mar-12	14	3	

Comments:

Analytical Method: EPA 8260B

AAB#: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received		Max, Holding Time Ext	Time Held Ext	Date Analyzed	Max, Holding Time A	Time Held Anal,	Q
B4-NT1-SW6	27-Feb-12	28-Feb-12	06-Mar-12			06-Mar-12	14	8	
B4-NT1-SW9	27-Feb-12	28-Feb-12	06-Mar-12			06-Mar-12	14	8	

Comments:

Analytical Method: EPA 8260B

AAB#: 120306AT-164608

Lab Name: APPL, Inc

Contract #: *G012

				Max.	Time		Max.	Time	
Field Sample ID	Date	Date	Date	Holding	Held	Date	Holding	Held	Q
	Collected	Received	Extracted	Time Ext	Ext	Analyzed	Time A	Anal.	İ
B4-NT1-BOT01	27-Feb-12	28-Feb-12	07-Mar-12			07-Mar-12	14	9	

Comments:

Analytical Method:	METHOD 8260

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: Chico ICAL ID: C120224

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
25ug/mL BFB Std 02-13-12A	24-Feb-12	9:12	24-Feb-12	9:24
0.3ug/L Vol Std 02-24-12	24-Feb-12	11:37	24-Feb-12	12:05
0,5ug/L Vol Std 02-24-12	24-Feb-12	12:13	24-Feb-12	12:42
1.0ug/L Vol Std 02-24-12	24-Feb-12	12:50	24-Feb-12	13:19
5.0ug/L Vol Std 02-24-12	24-Feb-12	13:27	24-Fcb-12	13:55
10ug/L Vol Std 02-24-12	24-Feb-12	14:04	24-Fcb-12	14:32
40ug/L Vol Std 02-24-12	24-Feb-12	14;41	24-Feb-12	15:09
100ug/L Vol Std 02-24-12	24-Feb-12	15:18	24-Feb-12	15:46
200ug/L Vol Std 02-24-12	24-Feb-12	15:55	24-Feb-12	16:23
120224A LCS-1WC (SS)	24-Feb-12	20:14	24-Feb-12	20:42
25ug/mL BFB Std 02-13-12A	29-Feb-12	12:50	29-Feb-12	13:01
10ug/L Vol Std 02-29-12	29-Feb-12	13:59	29-Feb-12	14:28
120229A LCS-1WC	29-Feb-12	14:36	29-Feb-12	15:05
120229A BLK-1WC	29-Feb-12	18:19	29-Feb-12	18:47
AY55845W01	29-Feb-12	18:56	29-Feb-12	19:24

Comments;				
		•		

AFCEE FORM O-10 Page ___ of ____

Analytical Method:	METHOD	8260B

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: Neo ICAL ID: N120229

Vol Std 02-29-12 @2ug/kg 29-Feb-12 13:26 29-Feb-12 13:5 Vol Std 02-29-12 @3ug/kg 29-Feb-12 13:26 29-Feb-12 13:5 Vol Std 02-29-12 @10ug/kg 29-Feb-12 14:04 29-Feb-12 14:3 Vol Std 02-29-12 @20ug/kg 29-Feb-12 14:42 29-Feb-12 15:1 Vol Std 02-29-12 @3ug/kg 29-Feb-12 15:20 29-Feb-12 15:5 Vol Std 02-29-12 @3ug/kg 29-Feb-12 15:58 29-Feb-12 16:3 Vol Std 02-29-12 @3ug/kg 29-Feb-12 15:58 29-Feb-12 16:3 Vol Std 02-29-12 @3uug/kg 29-Feb-12 16:37 29-Feb-12 16:3 Vol Std 02-29-12 @3uug/kg 29-Feb-12 16:38 29-Feb-12 17:0 Sug/M-Vol Std 2-29-12 29-Feb-12 18:31 29-Feb-12 19:0 Sug/M-Vol Std 2-29-12 29-Feb-12 19:46 29-Feb-12 10:0 Sug/M-Vol Std 2-29-12 29-Feb-12 19:46 29-Feb-12 20:5 AY55846S01 5.017g 29-Feb-12 20:24 29-Feb-12 20:5 AY55846S01 5.034g 29-Feb-12 22:18 29-Feb-12 22:5 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY5585S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:2 AY5585S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:2 AY5585S01 5.034g 01-Mar-12 2:33 AY5585S01 5.034g 01-Mar-12 2:33 AY5585S01 5.034g 01-Mar-12 3:31 AY5585S01 5.034g 01-Mar-12 3:31 AY55856S01 5.011g 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:50	Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Vol Std 02-29-12 @2ug/kg 29-Feb-12 12:48 29-Feb-12 13:28 Vol Std 02-29-12 @5ug/kg 29-Feb-12 13:26 29-Feb-12 13:35 Vol Std 02-29-12 @10ug/kg 29-Feb-12 14:04 29-Feb-12 14:35 Vol Std 02-29-12 @20ug/kg 29-Feb-12 14:42 29-Feb-12 15:10 Vol Std 02-29-12 @50ug/kg 29-Feb-12 15:20 29-Feb-12 15:55 Vol Std 02-29-12 @100ug/kg 29-Feb-12 15:58 29-Feb-12 15:55 Vol Std 02-29-12 @200ug/kg 29-Feb-12 15:58 29-Feb-12 17:06 Vol Std 02-29-12 @200ug/kg 29-Feb-12 16:37 29-Feb-12 17:06 25ug/mL BFB Std 2-13-12 29-Feb-12 18:31 29-Feb-12 19:06 25ug/mL BFB Std 2-13-12 29-Feb-12 19:46 29-Feb-12 20:56 AY55846S01 5.017g 29-Feb-12 20:24 29-Feb-12 20:56 AY55847S01 5.016g 29-Feb-12 22:18 29-Feb-12 22:56 AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:06 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:46 AY5585S0S01 5.038g 01-Mar-12 00:49 01-Mar-12 0:46 AY5585S0S01 5.033g 01-Mar-12 0:47 01-Mar-12 1:27 AY5585S01 5.033g 01-Mar-12 2:37 01-Mar-12 2:37 AY5585S01 5.053g 01-Mar-12 2:43 01-Mar-12 2:37 AY5585S01 5.034g 01-Mar-12 2:43		29-Feb-12	10:15	29-Feb-12	10:26
Vol Std 02-29-12 @5ug/kg 29-Feb-12 13:26 29-Feb-12 14:35 Vol Std 02-29-12 @10ug/kg 29-Feb-12 14:04 29-Feb-12 14:35 Vol Std 02-29-12 @20ug/kg 29-Feb-12 14:42 29-Feb-12 15:15 Vol Std 02-29-12 @50ug/kg 29-Feb-12 15:20 29-Feb-12 15:55 Vol Std 02-29-12 @10ug/kg 29-Feb-12 15:58 29-Feb-12 16:37 Vol Std 02-29-12 @200ug/kg 29-Feb-12 15:58 29-Feb-12 16:37 Vol Std 02-29-12 @200ug/kg 29-Feb-12 16:37 29-Feb-12 17:00 25ug/mL BFB Std 2-13-12 29-Feb-12 18:31 29-Feb-12 19:00 25ug/mL BFB Std 2-13-12 29-Feb-12 19:46 29-Feb-12 20:11 120229A LCS-1SN (SS) 29-Feb-12 20:24 29-Feb-12 20:5 AY55846S01 5.017g 29-Feb-12 22:18 29-Feb-12 22:5 AY55847S01 5.016g 29-Feb-12 22:56 29-Feb-12 23:2 AY55849S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:04 AY55850S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY5585S0S01 5.038g 01-Mar-12 0:04 0:14 AY5585S0S01 5.038g 01-Mar-12 1:27 01-Mar-12 1:2 AY5585S01 5.033g 01-Mar-12 2:35 01-Mar-12 2:35 AY5585S01 5.033g 01-Mar-12 2:43 01-Mar-12 3:15 AY5585S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:15 AY5585S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:55 AY5585S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:55 AY5585S01 5.034g 01-Mar-12 3:59 01-Mar-12 3:50 AY5585S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12		29-Feb-12	12:48	29-Feb-12	13:20
Vol Std 02-29-12 @10ug/kg 29-Feb-12 14:04 29-Feb-12 14:34 Vol Std 02-29-12 @20ug/kg 29-Feb-12 14:42 29-Feb-12 15:15 Vol Std 02-29-12 @50ug/kg 29-Feb-12 15:20 29-Feb-12 15:55 Vol Std 02-29-12 @100ug/kg 29-Feb-12 15:58 29-Feb-12 16:37 Vol Std 02-29-12 @200ug/kg 29-Feb-12 16:37 29-Feb-12 17:00 Vol Std 02-29-12 @200ug/kg 29-Feb-12 16:37 29-Feb-12 17:00 Vol Std 02-29-12 @200ug/kg 29-Feb-12 18:31 29-Feb-12 19:00 Vol Std 02-29-12 29-Feb-12 29-Feb-12 19:46 29-Feb-12 20:10 Vol Std 02-29-12 29-Feb-12 29-Feb-12 20:10 Vol Std 02-29-12 29-Feb-12 29-Feb-12 29-Feb-12 20:10 Vol Std 02-29-12 29-Feb-12 29-Feb-12 20:10 Vol Std 02-29-12 20:10 Vol Vol Std 02-29-12 20:10 Vol		29-Feb-12	13:26	29-Feb-12	13:58
Vol Std 02-29-12 @20ug/kg		29-Feb-12	14:04	29-Feb-12	14:35
Vol Std 02-29-12 @50ug/kg		29-Feb-12	14:42	29-Feb-12	15:14
Vol Std 02-29-12 @100ug/kg		29-Feb-12	15:20	29-Feb-12	15:52
Vol Std 02-29-12 @200ug/kg		29-Feb-12	15:58	29-Feb-12	16:30
25ug/mL BFB Std 2-13-12 29-Feb-12 18:31 29-Feb-12 19:00 50ug/k-Wol Std 2-29-12 29-Feb-12 19:46 29-Feb-12 20:1 120229A LCS-1SN (SS) 29-Feb-12 20:24 29-Feb-12 20:5 AY55846S01 5.017g 29-Feb-12 22:18 29-Feb-12 22:5 AY55848S01 5.016g 29-Feb-12 22:56 29-Feb-12 23:2 AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:04 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:44 AY55850S01 5.035g 01-Mar-12 00:49 01-Mar-12 1:25 AY55852S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:25 AY55852S01 5.035g 01-Mar-12 2:05 01-Mar-12 1:27 AY55853S01 5.035g 01-Mar-12 2:05 01-Mar-12 1:25 AY55853S01 5.053g 01-Mar-12 2:05 01-Mar-12 2:37 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:55 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 5:06		29-Feb-12	16:37	29-Feb-12	17:08
Sough	25ug/ml RER Std 2-13-12	29-Feb-12	18:31	29-Feb-12	19:02
AY55846S01 5.017g 29-Feb-12 22:18 29-Feb-12 22:5 AY55847S01 5.016g 29-Feb-12 22:56 29-Feb-12 23:2 AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 00:0 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:59 AY55852S01 5.022g 01-Mar-12 2:43 01-Mar-12 2:3 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:53 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06	50ug/L-Wol Std 2-29-12	29-Feb-12	19:46	29-Feb-12	20:18
AY55847S01 5.016g 29-Feb-12 22:56 29-Feb-12 23:2 AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:0 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:59 AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:3 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06	120229A LCS-1SN (SS)	29-Feb-12	20:24	29-Feb-12	20:56
AY55847S01 5.016g 29-Feb-12 22:56 29-Feb-12 23:2 AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:0 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:59 AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:37 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06	AY55846S01 5.017g	29-Feb-12	22:18	29-Feb-12	22:50
AY55848S01 5.034g 29-Feb-12 23:34 01-Mar-12 0:0:0 AY55849S01 5.035g 01-Mar-12 00:11 01-Mar-12 0:4 AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:59 AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:37 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:13 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:50 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06		29-Feb-12	22:56	29-Feb-12	23:28
AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:27 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:59 AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:37 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:13 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:55 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06		29-Feb-12	23:34	01-Mar-12	0:05
AY55850S01 5.038g 01-Mar-12 00:49 01-Mar-12 1:2 AY55851S01 5.033g 01-Mar-12 1:27 01-Mar-12 1:5 AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:3 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:1 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:5 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06	AY55849S01 5.035g	01-Mar-12	00:11	01-Mar-12	0:43
AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:3 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:1 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:5 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06		01-Mar-12	00:49	01-Mar-12	1:21
AY55852S01 5.022g 01-Mar-12 2:05 01-Mar-12 2:33 AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:53 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06	AY55851S01 5.033g	01-Mar-12	1:27	01-Mar-12	1:59
AY55853S01 5.053g 01-Mar-12 2:43 01-Mar-12 3:15 AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:55 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:06		01-Mar-12	2;05	01-Mar-12	2:37
AY55854S01 5.034g 01-Mar-12 3:21 01-Mar-12 3:52 AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:08		01-Mar-12	2:43	01-Mar-12	3:15
AY55856S01 5.011g 01-Mar-12 3:59 01-Mar-12 4:36 AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:08		01-Mar-12	3:21	01-Mar-12	3:53
AY55869S01 5.021g 01-Mar-12 4:36 01-Mar-12 5:00			3:59	01-Mar-12	4:30
		01-Mar-12	4:36	01-Mar-12	5:08
		01-Mar-12	5:14	01-Mar-12	5:46

Comments:		
	A 171	

AFCEE FORM O-10 Page ____ of ____

Analytical Method: METHOD 8260B	
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID #: Neo	ICAL ID: <u>N120305</u>

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
25ug/mL BFB Std 2-13-12	05-Mar-12	10:17	05-Mar-12	10:28
2ug/kg Vol Std 03-05-12	05-Mar-12	12:46	05-Mar-12	13:18
5ug/kg Vol Std 03-05-12	05-Mar-12	13:24	05-Mar-12	13:56
10ug/kg Vol Std 03-05-12	05-Mar-12	14:03	05-Mar-12	14:34
20ug/kg Vol Std 03-05-12	05-Mar-12	14:41	05-Mar-12	15:13
50ug/kg Vol Std 03-05-12	05-Mar-12	15:19	05-Mar-12	15:51
100ug/kg Vol Std 03-05-12	05-Mar-12	15:57	05-Mar-12	16:29
200ug/kg Vol Std 03-05-12	05-Mar-12	16:35	05-Mar-12	17:07
25ug/mL BFB Std 2-13-12	05-Mar-12	17:51	05-Mar-12	18:23
50ug/kg Vol Std 03-05-12	05-Mar-12	19:08	05-Mar-12	19:39
120305A LCS-1SN (ss)	05-Mar-12	20:24	05-Mar-12	20:56
120305A BLK-1SN	05-Mar-12	22:19	05-Mar-12	22:51
AY55846S01 5.015	06-Mar-12	00:13	06-Mar-12	0:45
AY55847S01 5.023	06-Mar-12	00:51	06-Mar-12	1:23
		i		

Comments:			
	AFCEE FORM O-10 Page	e of	

Analytical Method: METHOD 8260B	
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID #: Thor	ICAL ID: T120307

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
5ng- BFB STD 02-13-12	07-Mar-12	8:44	07-Mar-12	8:49
2.0ug/kg Vol Std 03-06-12	07-Mar-12	9:51	07-Mar-12	10:09
5.0ug/kg Vol Std 03-06-12	07-Mar-12	10:13	07-Mar-12	10:31
10ug/kg Vol Std 03-06-12	07-Mar-12	10:35	07-Mar-12	10:53
20ug/kg Vol Std 03-06-12	07-Mar-12	10:57	07-Mar-12	11:15
50ug/kg Vol Std 03-06-12	07-Mar-12	11:19	07-Mar-12	11:37
100ug/kg Vol Std 03-06-12	07-Mar-12	11;41	07-Mar-12	11:59
200ug/kg Vol Std 03-06-12	07-Mar-12	12:02	07-Mar-12	12:21
Soug/kg Vol Std 03-06-12 (SS)	07-Mar-12	13:08	07-Mar-12	13:26
120306A LCS-1ST	07-Mar-12	13:30	07-Mar-12	13:48
120306A BLK-1ST	07-Mar-12	14:14	07-Mar-12	14:32
AY55855801 5.053	07-Mar-12	14:58	07-Mar-12	15:16
AY55855801 5.010 MS-1ST	07-Mar-12	16:48	07-Mar-12	17:06
AY55855801 5.012 MSD-1ST	07-Mar-12	17:10	07-Mar-12	17:28

		l		
Comments:				
Comments:				
-				
			•	

AFCEE FORM O-10 Page ___ of ____

Directory: M:\CHICO\DATA\C120224\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0224C00T.D	1	25ug/mL BFB Std 02-13-12A	2uL	24 Feb 12 9:12
2	1	0224C04W.D	1	0.3ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 11:37
3	1	0224C05W.D	1	0.5ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 12:13
4	1	0224C06W.D	1	1.0ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 12:50
5	1	0224C07W.D	1	5.0ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 13:27
6	1	0224C08W.D	1	10ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 14:04
7	1	0224C09W.D	1	40ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 14:41
8	1	0224C10W.D	1	100ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 15:18
9	1	0224C11W.D	1	200ug/L Vol Std 02-24-12	Water 10mLw/ IS:01-31-12C	24 Feb 12 15:55
10	1	0224C18W.D	1	120224A LCS-1WC (SS)	Water 10mLw/ IS&S:01-31C/01-03E	24 Feb 12 20:14
11	1	0229C00T.D	1	25ug/mL BFB Std 02-13-12A	2uL	29 Feb 12 12:50
12	1	0229C02W.D	1	10ug/L Vol Std 02-29-12	Water 10mLw/ IS&S:01-31C/01-03E	29 Feb 12 13:59
13	1	0229C03W.D	1	120229A LCS-1WC	Water 10mLw/ IS&S:01-31C/01-03E	29 Feb 12 14:36
14	1	0229C09W.D	1	120229A BLK-1WC	Water 10mLw/ IS&S:01-31C/01-03E	29 Feb 12 18:19
15	1	0229C10W.D	1	AY55845W01	Water 10mLw/ iS&S:01-31C/01-03E	29 Feb 12 18:56

Page 1 03/12/12

Directory: M:\NEO\DATA\N120229\

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0229N00T.D	1	25ug/mL BFB Std 2-13-12	1uL	29 Feb 12 10:15
2	1	0229N04S.D	1	Vol Std 02-29-12 @2ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 12:48
3	1	0229N05S.D	1	Vol Std 02-29-12 @5ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 13:26
4	1	0229N06S.D	1	Vol Std 02-29-12 @10ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 14:04
5	1	0229N07S.D	1	Vol Std 02-29-12 @20ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 14:42
6	1	0229N08S.D	1	Vol Std 02-29-12 @50ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 15:20
7	1	0229N09S.D	1	Vol Std 02-29-12 @100ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 15:58
8	1	0229N10S.D	1	Vol Std 02-29-12 @200ug/kg	Soil 5mL w/ IS:10-20-11	29 Feb 12 16:37
9	1	0229N13S.D	1	25ug/mL BFB Std 2-13-12	1uL	29 Feb 12 18:31
10	1	0229N15S.D	1	50ug/kg Vol Std 2-29-12	Soil 5mL w/ ISS:10-20-11	29 Feb 12 19:46
11	1	0229N16S.D	1	120229A LCS-1SN (SS)	Soil 5mL w/ ISS:10-20-11	29 Feb 12 20:24
12	1	0229N21S.D	0.993246	AY55848S01 5.034g	Soil 5mL w/ ISS:10-20-11	29 Feb 12 23:34
13	1	0229N22S.D	0.993049	AY55849S01 5.035g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 00:11
14	1	0229N23S.D	0.992457	AY55850S01 5.038g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 00:49
15	1	0229N24S.D	0.993443	AY55851S01 5.033g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 1:27
16	1	0229N25S.D	0.995619	AY55852S01 5.022g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 2:05
17	1	0229N26S.D	0.989511	AY55853S01 5.053g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 2:43
18	1	0229N27S.D	0.993246	AY55854S01 5.034g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 3:21
19	1	0229N28S.D	0.997805	AY55856S01 5.011g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 3:59
20	1	0229N29S.D	0.995818	AY55869S01 5.021g	Soil 5mL w/ ISS:10-20-11	1 Mar 12 4:36
21	1	0229N30S.D		120229A BLK-1SN	Soil 5mL w/ ISS:10-20-11	1 Mar 12 5:14

Directory: M:\THOR\DATA\T120307\

Line	Vial	FileName Multipli	er SampleName	Misc Info	Injected
1	1	0307T01T.D 1	5ng- BFB STD 02-13-12	2ul	7 Mar 12 8:44
2	3	0307T03S.D 1	2.0ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 9:51
3	4	0307T04S.D 1	5.0ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 10:13
4	5	0307T05S.D 1	10ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 10:35
5	6	0307T06S.D 1	20ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 10:57
6	7	0307T07S.D 1	50ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 11:19
7	8	0307T08S.D 1	100ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	•
8	9	0307T09S.D 1	200ug/kg Vol Std 03-06-12	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 12:02
9	12	0307T12S.D 1	50ug/kg Vol Std 03-06-12 (SS)	5ml w/5ul of IS: 12-25-1	•
10	13	0307T13S.D 1	120306A LCS-1\$T	5ml w/5ul of IS: 12-25-1	•
11	15	0307T15S.D 1	120306A BLK-1ST	5ml w/5ul of IS: 12-25-1	1 G 7 Mar 12 14:14
12	17	0307T17S.D 0.99	AY55855S01 5.053	5ml w/5ul of IS: 12-25-1	•
13	22	0308T22S.D 0.99803	2 AY55855S01 5.010 MS-1ST	5ml w/5ul of IS: 12-25-1	•
14	23	0308T23S.D 0.9976	3 AY55855\$01 5.012 MSD-1ST	5ml w/5ul of IS: 12-25-1	•

255

		Directory:	M:\NEO\D	ATA\N120305\		
Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0305N00T.D	1	25ug/mL BFB Std 2-13-12	2uL	5 Mar 12 10:17
2	1	0305N04S.D	1	2ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 12:46
3	1	0305N05S.D	1	5ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 13:24
4	1	0305N06S.D	1	10ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 14:03
5	1	0305N07S.D	1	20ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 14:41
6	1	0305N08S.D	1	50ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 15:19
7	1	0305N09S.D	1	100ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 15:57
8	1	0305N10S.D	1	200ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 16:35
9	.1	0305N12S.D	1	25ug/mL BFB Std 2-13-12	Soil 5mL w/IS&S:10-20-11	5 Mar 12 17:51
10	1	0305N14S.D	1	50ug/kg Vol Std 03-05-12	Soil 5mL w/IS&S:10-20-11	5 Mar 12 19:08
11	1	0305N16S.D	1	120305A LCS-1SN (ss)	Soil 5mL w/IS&S:10-20-11	5 Mar 12 20:24
12	1	0305N19S.D	1	120305A BLK-1SN	Soil 5mL w/IS&S:10-20-11	5 Mar 12 22:19
13	1	0305N22S.D	0.997009	AY55846S01 5.015	Soil 5mL w/IS&S:10-20-11	6 Mar 12 00:13
14	1	0305N23S.D	0.995421	AY55847S01 5.023	Soil 5mL w/IS&S:10-20-11	6 Mar 12 00:51

AFCEE ORGANIC ANALYSES DATA SHEET II INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260				
Lab Name: APPI, Inc.	Contract #:	G012		
Instrument ID: Chico	Compound: BFB	Injection Date/Time;	24-Feb-12 09:12	
Initial Calibration ID: C120224				

75 30 - 60% of mass 95 44.4 PASS 95 100 - 100% of mass 95 100.0 PASS 96 5 - 9% of mass 95 6.5 PASS 173 0 - 2% of mass 174 0.0 PASS 174 50 - 100% of mass 95 93.4 PASS 175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	Mass	Ion Abundance Criteria	% Relative Abundance	Q
95 100 - 100% of mass 95 100.0 PASS 96 5 - 9% of mass 95 6.5 PASS 173 0 - 2% of mass 174 0.0 PASS 174 50 - 100% of mass 95 93.4 PASS 175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	50	15 - 40% of mass 95	17.4	PASS
96 5 - 9% of mass 95 6.5 PASS 173 0 - 2% of mass 174 0.0 PASS 174 50 - 100% of mass 95 93.4 PASS 175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	75	30 - 60% of mass 95	44.4	PASS
173 0 - 2% of mass 174 0.0 PASS 174 50 - 100% of mass 95 93.4 PASS 175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	95	100 - 100% of mass 95	100.0	PASS
174 50 - 100% of mass 95 93.4 PASS 175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	96	5 - 9% of mass 95	6.5	PASS
175 5 - 9% of mass 174 7.4 PASS 176 95 - 101% of mass 174 98.8 PASS	173	0 - 2% of mass 174	0.0	PASS
176 95 - 101% of mass 174 98.8 PASS	174	50 - 100% of mass 95	93.4	PASS
	175	5 - 9% of mass 174	7.4	PASS
177 5 - 9% of mass 176 6.6 PASS	176	95 - 101% of mass 174	98.8	PASS
	177	5 - 9% of mass 176	6,6	PASS

AFCEE FORM O-11 Page ___ of ____

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260				
Lab Name: APPL, Inc.	Contract #; *G012			
Instrument ID: Chico	Compound: BFB	Injection Date/Time;	29-Feb-12 12:50	
Initial Calibration ID: C120224				

50 15 - 40% of mass 95 17.3 75 30 - 60% of mass 95 42,2 95 100 - 100% of mass 95 100.0 96 5 - 9% of mass 95 6.5	PASS PASS
95 100 - 100% of mass 95 100.0 96 5 - 9% of mass 95 6.5	- · · · · · · · · · · · · · · · · · · ·
96 5 - 9% of mass 95 6.5	
	PASS
1/22 0 20/ -5 124	PASS
173 0 - 2% of mass 174 0.0	PASS
174 50 - 100% of mass 95 97.5	PASS
175 5 - 9% of mass 174 7.5	PASS
176 95 - 101% of mass 174 98.5	PASS
177 5 - 9% of mass 176 6.7	PASS

AFCEE FORM 0-11 Page ___ of ____

AFCIEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B		
Lab Name: APPL, Inc.	Contract #: *G012	
Instrument ID: Neo	Compound: BFB Injection Date/Time: 29-Feb-12 10:15	_
Initial Calibration (D; N120229		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	22.1	PASS
75	30 - 60% of mass 95	46,4	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.5	PASS
173	0 - 2% of mass 174	0.1	PASS
174	50 - 100% of mass 95	78.7	PASS
175	5 - 9% of mass 174	6.6	PASS
176	95 - 101% of mass 174	97.6	PASS
177	5 - 9% of mass 176	7.2	PASS
		[

AFCEE FORM O-11 Page ___ of ____

AFCEE ORGANIC ANALYSES DATA SHEET H INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B				
Lab Name: APPL, Inc.	Contract#: *G012			
Instrument ID: Neo	Compound: BFB	Injection Date/Time:_	29-Feb-12 18:31	
Initial Calibration ID: N120229				

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	24.6	PASS
75	30 - 60% of mass 95	49.2	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	7.3	PASS
173	0 - 2% of mass 174	0.4	PASS
174	50 - 100% of mass 95	71.4	PASS
175	5 - 9% of mass 174	7.1	PASS
176	95 - 101% of mass 174	97.4	PASS
177	5 - 9% of mass 176	6.3	PASS
	<u></u>		

AFCER FORM O-11 Page ___ of ____

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: MBTHOD 8260B		
Lab Name: APPL, Inc.	Contract#: *G012	
Instrument ID: Neo	Compound: BFB	Injection Date/Time: 5 Mar 12 10:17
Initial Calibration ID: N120305		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	22.4	PASS
75	30 - 60% of mass 95	47.7	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.9	PASS
173	0 - 2% of mass 174	0.4	PASS
174	50 - 100% of mass 95	74.1	PASS
175	5 - 9% of mass 174	7.1	PASS
176	95 - 101% of mass 174	98.1	PASS
177	5 - 9% of mass 176	7.2	PASS

AFCEE FORM O-11 Page ___ of ___

AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B			
Lab Name: APPL, Inc.	Contract#: *G	012	
Instrument ID: Neo	Compound: BFB	Injection Date/Time: 5 Mar 12 17:51	
initial Calibration ID: N120205			

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	24.2	PASS
75	30 - 60% of mass 95	48.9	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	5.9	PASS
173	0 - 2% of mass 174	0.4	PASS
174	50 - 100% of mass 95	71.9	PASS
175	5 - 9% of mass 174	6.9	PASS
176	95 - 101% of mass 174	96.5	PASS
177	5 - 9% of mass 176	6.8	PASS

AFCEE FORM O-11 Page ___ of ___

AFCEB ORGANIC ANALYSES DATA SHEET II INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method; METHOD 8260B		
Lab Name: APPL, Inc.	Contract#:	*G012
Instrument ID; Thor	Compound: BFB	Injection Date/Time: 7 Mar 12 8:44
Initial Calibration ID: T120307		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	17.2	PASS
75	30 - 60% of mass 95	49.5	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.2	PASS
173	0 - 2% of mass 174	0.9	PASS
174	50 - 100% of mass 95	99.4	PASS
175	5 - 9% of mass 174	6.8	PASS
176	95 - 101% of mass 174	95.7	PASS
177	5 - 9% of mass 176	6.7	PASS
		1 "	

AFCEE FORM O-11 Page ___ of ____

Lab Name: APPL Inc.	Contract: *G012	
Lab Code:		SDG No.: 67072
Lab File ID (Standard): 0224C08W.D		Date Analyzed: 02/24/12
Instrument ID: Chico		Time Analyzed: 14:04
GC Column:	ID:	Heated Purge: (Y/N)

					465 4 4 5		- D ((0)]
	Fluo	robenzene (I				ichlorobenze AREA #	
		AREA #	RT #	AREA #	RT #	261824	RT # 22.20
	12 HOUR STD	582452	12.81	462400	18.00	523648	22.70
	UPPER LIMIT	1164904	13.31	924800	18.50	130912	21.70
	LOWER LIMIT	291226	12.31	231200	17.50	130912	21.70
	SAMPLE						
	NO.						
01	120224A LCS-1WC (SS)	670470	12.81	557248	18.00	302528	22.20
02	· - · · · · · · · · · · · · · · · · · ·	571375	12.80	478912	17.98	259968	22.18
	120229A LCS-1WC	579961	12.80	514368	17.99	281984	22.19
04	120229A BLK-1WC	623171	12.80	509312	17.98	279360	22,18
05	AY55845W01	599948	12.80	506752	17.99	288320	22.18
06							
07							
80							
09							
10							
11							
12							
13							
14					·		
15							
16							
17							
18							
19	<u> </u>						
20							
21							
22							

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

^{*} Values outside of QC limits.

Lab Name: <u>APPL Inc</u> .	Contract: *G012	
Lab Code:		SDG No.: 67072
Lab File ID (Standard): 0229N08S.D		Date Analyzed: 02/29/12
Instrument ID: Neo		Time Analyzed: 15:20
GC Column:	ID:	Heated Purge: (Y/N)

	Elua	robenzene (S) Chloro	benzene-D5	(IS) 1 A-D	ichlorobenz	ene-D (IS)
		AREA #	RT #		RT #	AREA #	
	12 HOUR STD	323392	13.26	221376	18.44	92592	22.62
	UPPER LIMIT	646784	13.76	442752	18.94	185184	23.12
	LOWER LIMIT	161696	12.76	110688	17.94	46296	22.12
	SAMPLE	<u> </u>				<u>.</u>	
	NO.						
01	50ug/kg Vol Std 2-29-12	307392	13.26	236608	18.43	101016	22.62
	120229A LCS-1SN (SS)	348992	13.26	255104	18.43	111496	22.62
	AY55848S01 5.034g	273280	13.25	205632	18.43	84848	22.61
	AY55849S01 5.035g	288064	13.25	200256	18.42	81984	22.61
05	AY55850S01 5.038g	314496	13.25	230912	18.42	91016	22.61
06	AY55851S01 5.033g	334208	13.25	254016	18.42	106400	22.61
07	AY55852S01 5.022g	280960	13.26	186880	18.42	87088	22.61
08	AY55853S01 5.053g	270336	13.26	206016	18.43	87360	22.62
09	AY55854S01 5.034g	283584	13.26	199424	18.43	81200	22.62
10	AY55856S01 5.011g	284608	13.25	222976	18.42	96144	22.61
11	AY55869S01 5.021g	275776	13.25	208256	18.43	87192	22.61
12	120229A BLK-1SN	355968	13.25	265024	18.42	113824	22.61
13							
14							 i
15							ļi
16							
17							<u> </u>
18							<u> </u>
19							
20							
21							
22							

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

^{*} Values outside of QC limits.

Lab Name: APPL Inc.	Contract: *G012	
Lab Code:		SDG No.: 67072
Lab File ID (Standard): 0305N08S.D		Date Analyzed: 5 Mar 12 15:19
Instrument ID: Neo		Time Analyzed: 5 Mar 12 15:19
GC Column:	ID:	Heated Purge: (Y/N)

Fluorobenzene (IS) Chlorobenzene-D5 (IS)1,4-Dichlorobenzene-D (IS)								
	AREA #			RT #	AREA #	RT #		
12 HOUR STD	309248	13.29	209344	18.46	79952	22.65		
UPPER LIMIT	618496	13.79	418688	18.96	159904	23.15		
LOWER LIMIT	154624	12.79	104672	17.96	39976	22.15		
SAMPLE								
NO.								
01 50ug/kg Vol Std 03-0	5-12 297344	13.29	206720	18.47	81512	22.66		
02 120305A LCS-1SN (s	s) 321344	13.29	209408	18.46	87496	22.65		
03 120305A BLK-1SN	326784	13.29	216448	18.45	97616	22.65		
04 AY55846S01 5.015	306560	13.29	176000	18.46	76264	22.65		
05 AY55847S01 5.023	414464	13.32	296000	18.47	117304	22.65		
06								
07								
08								
09								
10								
11								
12								
13			 					
14			<u></u>					
15								
16 17								
18								
19			<u> </u>					
20								
21			-					
22								

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

^{*} Values outside of QC limits.

Lab Name: APPL Inc.		Contract: *G012
Lab Code:		SDG No.: 67072
Lab File ID (Standard): 0307T07S.D		Date Analyzed: 7 Mar 12 11:19
Instrument ID: Thor		Time Analyzed: 7 Mar 12 11:19
GC Column:	ID:	Heated Purge: (Y/N)

Fluo	robenzene (I	S) Chloro	henzene-D5	/ISY 4-Di	chlorohenze	ne-D (IS)
Fido	AREA #	RT #			AREA #	RT #
12 HOUR STD	429824	6.75	354560	9.89	205248	12.21
UPPER LIMIT	859648	7.25	709120	10.39	410496	12,71
LOWER LIMIT	214912	6.25	177280	9.39	102624	11.71
SAMPLE						
NO.						
01 50ug/kg Vol Std 03-06-12 (SS)	452288	6.75	358464	9.89	208960	12.21
02 120306A LCS-1ST	454080	6.75	369536	9.89	216640	12.21
03 120306A BLK-1ST	428224	6.75	345408	9.89	176256	12.21
04 AY55855S01 5.053	417280	6.75	338176	9.89	163392	12.22
05 AY55855S01 5.010 MS-1ST	442624	6.75	353280	9.89	199552	12.21
06 AY55855S01 5.012 MSD-1ST	451648	6.75	351744	9.89	200768	12.21
07						
08						<u></u>
09	<u></u>					
10						
11						
12						
13						
14			<u></u>			
15 16						
17						
18						
19	···· · · · · · · · · · · · · · · · · ·					
20						
21	·					
22						

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

^{*} Values outside of QC limits.

EPA METHOD 8260B Volatile Organic Compounds Chain of Custody and ARF

EPA METHOD 8260B Volatile Organic Compounds Calibration Data

Data File : M:\CHICO\DATA\C120224\0224C04W.D

Vial: 1 Operator: RS, ARS Inst : Chico Multiplr: 1.00 Acq On : 24 Feb 12 11:37 : 0.3ug/L Vol Std 02-24-12 : Water 10mLw/ IS:01-31-12C Sample Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response Conc Units Dev(Min	n)
1) Fluorobenzene (IS)	12,81	96	571112 25,00000 ppb 0	. 00
54) Chlorobenzene-D5 (IS)	17.99	117		.00
70) 1,4-Dichlorobenzene-D (IS)	22,19	152	253376 25.00000 ppb 0	.00
System Monitoring Compounds				
32) Dibromofluoromethane(S)	11.39	111		.00
Spiked Amount 22.609	40 40	<i></i>	Recovery = 2.893% 10164 0.66701 ppb -0	. 02
37) 1,2-DCA-D4(S)	12.19	65	10164 0.66701 ppb -0. Recovery = 3.087%	. 02
Spiked Amount 21.606 55) Toluene-D8(S)	15.47	98	42771 0.67564 ppb 0.	. 00
Spiked Amount 24.195	13.47	50	Recovery = 2.794%	
63) 4-Bromofluorobenzene(S)	20.06	95		.00
Spiked Amount 23.751	20.00		Recovery = 3.339%	
592.1011 12.104113 2011112			_	
Target Compounds			Qvalue	
Dichlorodifluoromethane	4.08	85		100
3) Freon 114	4.33	85	2218 0.22183 ppb #	59
4) Chloromethane	4.56	50	1944 0.31343 ppb #	84
5) Vinyl chloride	4.82	62	1472 0.31522 ppb	93
6) Bromomethane	5.73	94	1171 0.29631 ppb #	63
7) Chloroethane	5.91	64		100
Dichlorofluoromethane	5.99	67	10620 0.29040 ppb	96
Trichlorofluoromethane	6.52	103	1187 0.28705 ppb	96
10) Acetonitrile	7.66	41		100
11) Acrolein	7.15	56	18110 15.67507 ppb	98
12) Acetone	7.26	43	2259 0.71826 ppb	88
13) Freon-113	7.45	101	3195 0.21713 ppb #	50
14) 1,1-DCE	7.65	96	3892 0.23488 ppb #	86
15) t-Butanol	7.76	59	1480 13.57193 ppb #	71
17) Iodomethane	8.15	142	1997 0.08034 ppb #	69
18) Acrylonitrile	8.55	53	414 0.15210 ppb #	43
19) Methylene chloride	8.45	84	17746 0.97919 ppb #	74 87
20) Carbon disulfide	8.53	76	3878 0.27808 ppb # 11670 0.34409 ppb #	80
21) Methyl t-butyl ether (MtBE		73 96	11670 0.34409 ppb # 12706 0.61060 ppb #	72
22) Trans-1,2-DCE	9.07	45	19757 0.32215 ppb #	88
23) Diisopropyl Ether	9.74 9.76	63	10849 0.33800 ppb #	90
24) 1,1-DCA	9.40	43	2232 0.08744 ppb	92
25) Vinyl Acetate 26) Ethyl tert Butyl Ether		59	15128 0.32507 ppb	93
	10.43	43		69
28) Cis-1,2-DCE	10.78	96	964 0.45227 ppb # 10873 0.47994 ppb	77
29) 2,2-Dichloropropane	10.77	77	9855 0.38909 ppb #	78
30) Chloroform	11.06		6946 0.32327 ppb	88
31) Bromochloromethane	11,29	128	2928 0.35353 ppb #	74
33) 1,1,1-TCA	11.81	97	9006 0.32568 ppb #	74
34) Cyclohexane	11.97	56	6751 0.26679 ppb #	86
35) 1,1-Dichloropropene	12.08	75	7824 0.33059 ppb	94
36) 2,2,4-Trimethylpentane	12.15	57	10662 0.25729 ppb	89
38) Carbon Tetrachloride	12.27	117	6070 0.26640 ppb #	85
39) Tert Amyl Methyl Ether	12.31	73	12609 0.32751 ppb #	89
40) 1,2-DCA	12.34	62		85
41) Benzene	12.47	78	23323 0.31756 ppb	99
42) TCE	13.49	95		86
43) 2-Pentanone	13.17	43	82074 14.86608 ppb	95
		. -		

^{(#) =} qualifier out of range (m) = manual integration 0224C04W.D CALLW.M Tue Feb 28 17:34:34 2012

Data File : M:\CHICO\DATA\C120224\0224C04W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 11:37 Sample : 0.3ug/L Vol Std 02-24-12 Inst : Chico Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Ouant Time: Feb 27 10:00 2012 Ouant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012

Response via : Initial Calibration

DataAcq Meth : V8260

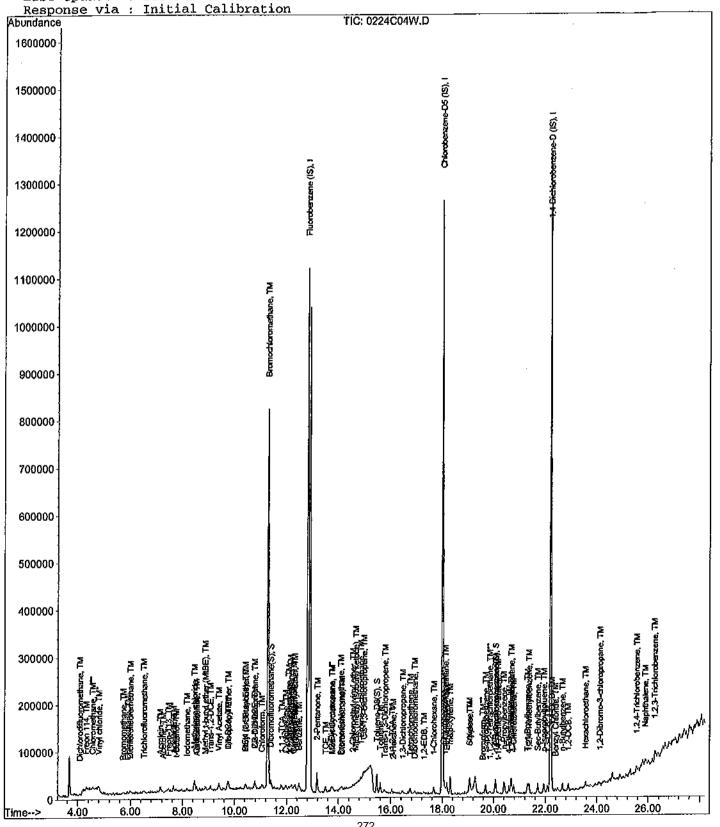
	Compound	R.T.	QIon	Response	Conc Unit Qu	alue	
44)	1,2-Dichloropropane	13.73	63	5769	0.32278 ppb	#	85
	Bromodichloromethane	14.08	83	6210	0.28918 ppb	#	90
	Methyl Cyclohexane	13.77	83	5782	0.25854 ppb		95
	Dibromomethane	14.13	93	2207	0.25161 ppb	#	76
	2-Chloroethyl vinyl ether	14.55	63	1413	0.25981 ppb	#	79
	1-Bromo-2-chloroethane	14.85	63	5149	0.30735 ppb	#	82
50)	Cis-1,3-Dichloropropene	14,96	75	8146	0.30504 ppb	#	81
	Toluene	15.59	91	25389	0.33852 ppb		89
52)	Trans-1,3-Dichloropropene	15.77	75	6119	0.31773 ppb		83
	1,1,2-TCA	16.04	83	3168	0.32845 ppb	#	64
	1,2-EDB	17.30	107	3286	0.28489 ppb	#	94
	Tetrachloroethene	16.74	164	4697	0.26648 ppb		84
	1-Chlorohexane	17.66	91	8665	0.33271 ppb	и	87
59)	1,1,1,2-Tetrachloroethane	18.12	131	4684	0.26877 ppb	#	63
	m&p~Xylene	18.31	106	19285	0.57274 ppb		91
	o~Xylene	19.06	106	10283	0.31021 ppb		95
	Styrene	19.08	104	14983	0.28715 ppb		90 98
	2-Hexanone	16.09	43	712	0.14310 ppb		86
	1,3-Dichloropropane	16.46	76	5678	0.28737 ppb	ш	14
	Dibromochloromethane	16.93	129	3849	0.26996 ppb	#	96
	Chlorobenzene	18.06	112	15410 26912	0.30628 ppb 0.31684 ppb		92
	Ethylbenzene	18.18	91	2650	0.31440 ppb	#	69
	Bromoform	19.58	173	2964	0.36849 ppb	#	66
	MIBK (methyl isobutyl keto	14.65	43 105	24102	0.31312 ppb	π	98
	Isopropylbenzene	19.69 19.85	83	3077	0.27949 ppb		81
	1,1,2,2-Tetrachloroethane	20.10	110	385	0.34922 ppb		99
	1,2,3-Trichloropropane	20.10	53	447	0.17454 ppb	#	21
	t-1,4-Dichloro-2-Butene	20.13	156	9319	-0.69410 ppb	#	67
	Bromobenzene	20.40	91	28788	0.31244 ppb	U	93
	n-Propylbenzene 4-Ethyltoluene	20.59	105	16719	0.30369 ppb		87
	2-Chlorotoluene	20.69	91	19225	0.30872 ppb		91
	1,3,5-Trimethylbenzene	20.67	105	20549	0.32250 ppb		96
	4-Chlorotoluene	20.77	91	18136	0.32364 ppb		86
	Tert-Butylbenzene	21.31	119	21543	0.32037 ppb	#	88
	1,2,4-Trimethylbenzene	21.37	105	22305	0,33783 ppb		82
	Sec-Butylbenzene	21.71	105	26452	0.30706 ppb		93
	p-Isopropyltoluene	21.94	119	22685	0.32302 ppb		99
	Benzyl Chloride	22.38	91	6098	0.32483 ppb		97
	1,3-DCB	22.08	146	12400	0.30774 ppb		96
	1,4-DCB	22.25	146	12364	0.31710 ppb		94
	Hexachloroethane	23.54	117	2558	0.19049 ppb	Ħ	37
	n-Buty1benzene	22,65	91	19232	0.31499 ppb		96
	1,2-DCB	22.89	146	10620	0.29492 ppb		88
	1,2-Dibromo-3-chloropropan	24.11	155	681	0.36124 ppb	Ħ	40
	1,2,4-Trichlorobenzene	25.55	180	3581	0.32085 ppb		79
	Hexachlorobutadiene	25.80	223	4885	-1.06732 ppb		80
95)	Naphthalene	25.90	128	11878	0.29413 ppb		96
96)	1,2,3-Trichlorobenzene	26.26	180	2811	0.29543 ppb		98

Quantitation Report

Data File : M:\CHICO\DATA\C120224\0224C04W.D Acq On : 24 Feb 12 11:37 Sample : 0.3ug/L Vol Std 02-24-12 Vial: 1 Operator: RS, ARS Inst : Chico Multiplr: 1.00

: Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES


Quant Time: Feb 27 10:00 2012

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Method

Last Update : Tue Feb 28 08:57:24 2012

Vial: 1

Data File : M:\CHICO\DATA\C120224\0224C05W.D Acq On : 24 Feb 12 12:13 Sample : 0.5ug/L Vol Std 02-24-12 Operator: RS, ARS Inst : Chico Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES Ouant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Last Update : Mon Feb 27 09:57:16 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
4) Elwarker one (TC)	12.81	96	572982	25.00000	 nnh	0.00
 fluorobenzene (IS) Chlorobenzene-D5 (IS) 	18.00	117	473856	25.00000		0.00
70) 1,4-Dichlorobenzene-D (IS)	22.20		255616	25.00000		0.00
(0) 1,4-bichiolobenzene b (1b)	22,20	-5-	200020			
System Monitoring Compounds						
32) Dibromofluoromethane(S)	11.39	111	19482	1.05045	ppb	0.00
Spiked Amount 22.609			Recove		.644%	
37) 1,2-DCA-D4(S)	12.20	65	17235	1.12735		0.00
Spiked Amount 21.606			Recove		.216%	
55) Toluene-D8(S)	15,46	98		1.04326		0.00
Spiked Amount 24.195			Recove		.311%	
63) 4-Bromofluorobenzene(S)	20.07	95	28277	1.11923	ppb	0.00
Spiked Amount 23.751			Recove	ry = 4	,711%	
					\Oue	alue
Target Compounds	4 00	05	7788	0.43998		91
2) Dichlorodifluoromethane	4.09	85 05	4306	0.43996		74
3) Freon 114	4.35	85	3459	0.55587		92
4) Chloromethane	4.56 4.82	50 62	2857	0.60981		79
5) Vinyl chloride	5.72	94	2091	0.52738		72
6) Bromomethane	5.90	64	1751	0.49732		83
7) Chloroethane	6.01	67	19927	0.54312		95
8) Dichlorofluoromethane	6.51	103	2369	0.57103		82
9) Trichlorofluoromethane	7.64	41	24352	27.37482		100
10) Acetonitrile 11) Acrolein	7.14	56	30393	26.22073		99
	7.29	43	2375	0.77540		56
12) Acetone 13) Freon-113	7.45	101	7035	0.47654		84
13) F1601-113 14) 1,1-DCE	7.67	96	10653	0.64081		93
15) t-Butanol	7.75	59	3009	27,50315		90
16) Methyl Acetate	8,19	43	5415	0.14137		90
17) Iodomethane	8.14	142	6640	0.25027		82
18) Acrylonitrile	8.55	53	1730	0.63350		84
19) Methylene chloride	8.46	84	20976	1.15363	dqq	99
20) Carbon disulfide	8.55	76	6277	0.44863	gpb	100
21) Methyl t-butyl ether (MtBE	8.89	73	17815	0.52356		89
22) Trans-1,2-DCE	9.08	96	13376	0.64070]		63
23) Diisopropyl Ether	9.73	45	34773	0.56514)		77
24) 1,1-DCA	9,76	63	15868	0.49275)		90
25) Vinyl Acetate	9.40	43	3102	0.36740)		100
26) Ethyl tert Butyl Ether	10.42	59	24641	0.52776)		90
27) MEK (2-Butanone)	10.41	43	1233	0.57659		100
28) Cis-1,2-DCE	10.78	96	14574	0.64121		83
29) 2,2-Dichloropropane	10.79	77	14503	0.57073		94
30) Chloroform	11.07	85	10920	0.50656 1		99
31) Bromochloromethane	11.28	128	3934	0.47345 1		23 99
33) 1,1,1-TCA	11.82	97	13894	0.50080 1		88
34) Cyclohexane	11.97	56	12946 12662	0.50995) 0.53326)		89
35) 1,1-Dichloropropene	12.08	75 52	18050	0.43416		96
36) 2,2,4-Trimethylpentane	$12.15 \\ 12.26$	57 117	11525	0.50415		84
38) Carbon Tetrachloride	12.20	73	22295	0.57720		90
39) Tert Amyl Methyl Ether	12.31	62	8967	0.50925		94
40) 1,2~DCA	12.47	78	37985	0.51550		97
41) Benzene	13.49	95	10154	0.53342		79
42) TCE					 	

^{(#) =} qualifier out of range (m) = manual integration 0224C05W.D CALLW.M Tue Feb 28 17:34:42 2012

Data File: M:\CHICO\DATA\C120224\0224C05W.D

Vial: 1 Acq On : 24 Feb 12 12:13 Operator: RS, ARS Inst : Chico : 0.5ug/L Vol Std 02-24-12 Sample : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc

Ouant Time: Feb 27 10:00 2012 Ouant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Last Update : Mon Feb 27 09:57:16 2012

Response via : Initial Calibration DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalu	ie
43)	2-Pentanone	13.17	43	149142	26.92595	ppb	95
	1,2-Dichloropropane	13.73	63	9506	0.53013	ppb #	84
45)		14.07	83	10580	0.49107		83
46)	Methyl Cyclohexane	13.79	83	9673	0.43112		90
47)	Dibromomethane	14.14	93	4124	0.46863		94
48)	2-Chloroethyl vinyl ether	14.54	63	2872	0.52636		87
49)	1-Bromo-2-chloroethane	14.85	63	8383	0.49876		98
50)	Cis-1,3-Dichloropropene	14.97	75	15935	0.59477		97
51)	Toluene	15.60	91	38873	0.51661		99
	Trans-1,3-Dichloropropene	15.76	75	9480	0.49065		71
53)		16,04	83	4912	0.50761		76
56)	1,2-EDB	17.29	107	5658	0.48590		91 07
	Tetrachloroethene	16.75	164	9507 12165	0.53426		97 78
	1-Chlorohexane	17.67	91	13165	0.50072		66
59)	1,1,1,2-Tetrachloroethane	18.11	131	8628	0.49039		70
	m&p-Xylene	18.33	106	33967 16951	0.99924 0.50653		98
	o-Xylene	19.06 19.08	106 104	27329	0.51881		89
	Styrene	16.09	43	2260	0.44992		42
	2-Hexanone 1,3-Dichloropropane	16.46	76	9694	0.48598		88
	Dibromochloromethane	16.93	129	6313	0.43859		78
	Chlorobenzene	18.07	112	25696	0.50589		90
	Ethylbenzene	18.17	91	45759	0.53363		97
	Bromoform	19.60	173	3394	0.39886		72
	MIBK (methyl isobutyl keto	14.66	43	4917	0.60594		95
	Isopropylbenzene	19.69	105	41555	0.53514		97
	1,1,2,2-Tetrachloroethane	19.86	83	5834	0.52526		71
74)	1,2,3-Trichloropropane	20.13	110	583	0.52419		72
	t-1,4-Dichloro-2-Butene	20.18	53	1203	0.46561	ppb #	40
	Bromobenzene	20.44	156	11516	-0.58478		84
77)	n-Propylbenzene	20.40	91	49631	0.53393		94
78)	4-Ethyltoluene	20.59	105	27968	0.50357		98
	2-Chlorotoluene	20.70	91	35891	0.57129		98
	1,3,5-Trimethylbenzene	20.67	105	33988	0.52873		93
81)	4-Chlorotoluene	20.77	91	30262	0.53530		91
82)		21.32	119	35483	0.52305		89
83)		21.37	105	34743	0.52160		94
	Sec-Butylbenzene	21.71	105	47477	0.54629		98
	p-Isopropyltoluene	21.94	119	37073	0.52328		96
86)	Benzyl Chloride	22.39	91	9285	0.49025		83 91
87)	1,3-DCB	22.09	146	20665	0.50836 0.50696	ppb	90
88)	1,4-DCB	22.24	146	19942 5330	0.39343	ppb #	79
	Hexachloroethane	23.56		31778	0.51592		94
-	n-Butylbenzene	22.65 22.89	91 146	19692	0.54205		91
91)	1,2-DCB 1,2-Dibromo-3-chloropropan	24.08	155	732	0.38489		30
34)	1,2,4-Trichlorobenzene	25.54	180	5662	0.50285		88
221	Hexachlorobutadiene	25.79	223	6756	-0.87402		63
	Naphthalene	25.90	128	23628	0.57996		100
	1,2,3-Trichlorobenzene	26.26	180	4986	0.51943		94
201	1,2,5 filoniologonacio	,					

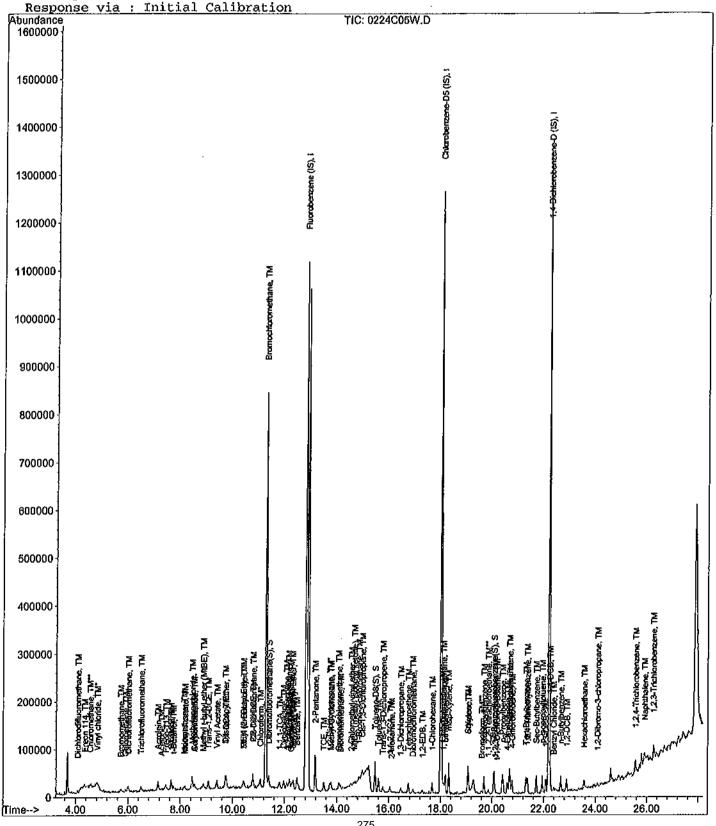
^{(#) =} qualifier out of range (m) = manual integration Tue Feb 28 17:34:44 2012 0224C05W.D CALLW.M

Quantitation Report

Data File: M:\CHICO\DATA\C120224\0224C05W.D

Vial: 1 : 24 Feb 12 12:13 Acq On Operator: RS, ARS : 0.5ug/L Vol Std 02-24-12 Sample Inst : Chico : Water 10mLw/ IS:01-31-12C Misc Multiplr: 1.00

Quant Time: Feb 27 10:00 2012


Quant Results File: CALLW.RES

Method

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Tue Feb 28 08:57:24 2012

Data File: M:\CHICO\DATA\C120224\0224C06W.D

Vial: 1 Acq On : 24 Feb 12 12:50 Sample : 1.0ug/L Vol Std 02-24-12 Operator: RS, ARS Inst : Chico : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc

Quant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012

Response via : Initial Calibration

DataAcq Meth: V8260

System Monitoring Compounds 32) Dibromofluoromethane(S) 11.40 111 36411 1.89552 ppb 0.00 370 1,4-Dichlorobenzene-D (IS) 22.20 152 252288 25.00000 ppb 0.00 32) Dibromofluoromethane(S) 11.40 111 36411 1.89552 ppb 0.00 371 1,2-DCA-D4(S) 12.20 65 31606 1.99604 ppb 0.00 371 1,2-DCA-D4(S) 15.47 98 31606 1.99604 ppb 0.00 375	Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev	v(Min)
Solitorobenzene-DS (IS) 18.00 117 459072 25.00000 ppb 0.00 700 1,4-Dichlorobenzene-D (IS) 22.20 152 252288 25.00000 ppb 0.00 0.00 252288 31.00000 ppb 0.00 0.00 252288 32.00000 ppb 0.00 0.00 252288 32.00000 ppb 0.00 0.00 252288 32.00000 ppb 0.00 252288 252888 25.00000 ppb 0.00 252288 25.00000 ppb 0.00 25288 25.00000 ppb 0.00 25288 25.000000 ppb 0.00 252888 25.000000 ppb 0.00 252888 25.000000 ppb 0.00 252888 25.000000000000000000000000000000000000	1) Fluorobenzene (IS)	12.81	96	593454	25,00000	dqq	0,00
System Monitoring Compounds Spiked Amount 22.609 37) 1,2-DCA-D4(s) 11.40 111 36411 1.89552 ppb 0.00 Spiked Amount 22.609 37) 1,2-DCA-D4(s) 8 15.47 98 31606 1.99604 ppb 0.00 Spiked Amount 21.606 55) Toluene-D8(s) 51.47 98 130154 2.10215 ppb 0.00 Spiked Amount 23.751 8 2.17200 ppb 0.00 Spiked Amount 23.751 8 23.751	54) Chlorobenzene-D5 (IS)	18.00	117	459072	25.00000		0.00
32 Dibromofluoromethane(S) 11.40 111 36411 1.89552 ppb 0.00	70) 1,4-Dichlorobenzene-D (IS)	22.20	152	252288	25.00000	ppb	0.00
32 Dibromofluoromethane(S) 11.40 111 36411 1.89552 ppb 0.00	System Monitoring Compounds						
37 1,2-DCA-D4(S)		11.40	111	36411	1.89552	ppb	0,00
Spiked Amount 21.606	Spiked Amount 22.609						
15.47		12.20	65				0.00
Spiked Amount					У =	9.238%	
Target Compounds		15.47	98				0.00
Target Compounds 2) Dichlorodifluoromethane 4.09 85 18500 1.00909 ppb 97 3) Freom 114 4.33 85 9810 0.94420 ppb 100 4) Chloromethane 4.56 50 6552 1.01659 ppb # 75 5) Vinyl chloride 4.82 62 4936 1.01721 ppb # 79 6) Bromomethane 5.72 94 3392 0.82600 ppb 75 7) Chloroethane 5.92 64 4063 1.11418 ppb 96 8) Dichlorofluoromethane 6.01 67 37681 0.99159 ppb 96 9) Trichlorofluoromethane 6.52 103 4248 0.98862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/l 10) Acetone 7.27 43 3608 1.35860 ppb 98 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.7198 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.56 53 2235 0.79019 ppb 96 21) Methylene chloride 8.46 84 30149 1.60093 ppb 92 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 92 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb 93 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.99315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 2197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.99528 ppb 93 31) 1,1-TCA 11.82 97 28729 0.99979 ppb 98 33) Carbon Tetrachloride 12.27 117 22174 0.986138 ppb 97 34) Cyclohexane 11.98 56 23175 0.88138 ppb 97 35) Tert Amyl Methyl Ether 12.32 73 39471 0.98652 ppb 97 36) Tert Amyl Methyl Ether 12.32 73 39471 0.98652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98652 ppb 97 30) Tert Amyl Methyl Ether 12.32 73 39471 0.98652 ppb 95 30) Tert Amyl Methyl Ether 12.36 62 18678 1.02416 ppb 95		00.00	٥.				0 00
Target Compounds 2) Dichlorodifluoromethane 4.09 85 18500 1.00909 ppb 97 3) Freon 114 4.33 85 9810 0.94420 ppb 100 4) Chloromethane 4.56 50 6552 1.01659 ppb # 75 5) Vinyl chloride 4.82 62 4936 1.01721 ppb # 79 6) Bromomethane 5.72 94 3392 0.82600 ppb 75 7) Chloroethane 5.92 64 4063 1.11418 ppb 96 8) Dichlorofluoromethane 6.01 67 37681 0.99159 ppb 96 9) Trichlorofluoromethane 6.52 103 4248 0.98862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/l 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb 467 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb 95 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb 97 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.0030 ppb 95 30) Chloroform 11.07 85 21552 0.96298 ppb 92 21) Bromochloromethane 11.29 128 8131 0.94479 ppb 54 31) 1,1-TCA 11.82 97 28729 0.99979 ppb 95 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 37) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 38) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 95 39 1 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 95 40 1,2-DCA 12.47 78 75522 1.01642 ppb 95	•	20.07	95				0.00
2) Dichlorodifluoromethane	ppined Amount 251751				•		_
3 Freon 114							
## Chloromethane							
5) Vinyl chloride		-					
6) Bromomethane 5.72 94 3392 0.82600 ppb 75 7) Chloroethane 5.92 64 4063 1.11418 ppb 96 8 Dichlorofluoromethane 6.01 67 37681 0.99159 ppb 96 99 Trichlorofluoromethane 6.52 103 4248 0.98862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/l 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 22) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 25) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb 95 33 1,1-TCA 11.82 97 28729 0.99979 ppb 95 36 2,2,4-Trimethylpentane 12.26 75 339471 0.98662 ppb 97 39 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 1 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 1 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 1 Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39 1 Tert Amyl Methyl Ether 12.34 78 77572 1.01642 ppb 95 41 Benzene 12.47 78 77572 1.01642 ppb 95 41 1.002000000000000000000000000000000000							
7) Chloroethane 5.92 64 4063 1.11418 ppb 96 8) Dichlorofluoromethane 6.51 103 4248 0.99862 ppb 90 9) Trichlorofluoromethane 6.52 103 4248 0.99862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/l 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb #83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb #67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb #92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb #79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.99291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 93 31) Bromochloromethane 11.29 128 8131 0.94479 ppb #54 33) 1,1-TCA 11.82 97 28729 0.99979 ppb #54 33) 1,1-TCA 11.82 97 28729 0.99979 ppb #54 33) 1,1-DCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96256 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 37) Tert Amyl Methyl Ether 12.32 73 39471 0.98652 ppb 97 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 99 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 95							
8) Dichlorofluoromethane 6.01 67 37681 0.99159 ppb 96 9) Trichlorofluoromethane 6.52 103 4248 0.98862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/1 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 97 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb #83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb #67 19) Methylene chloride 8.46 84 30149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb #92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb #79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 93 31) Bromochloromethane 11.29 128 8131 0.94479 ppb 95 33) 1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96258 ppb 93 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98628 ppb 97 39) Tert Amyl Methyl Ether 12.36 62 18678 1.02416 ppb 99 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95			_				
9) Trichlorofluoromethane 6.52 103 4248 0.98862 ppb 100 10) Acetonitrile 7.65 41 51519 55.91624 ug/l 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb #83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb #67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb #92 25) Vinyl Acetate 9,40 43 4794 0.86280 ppb #79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 43 2585 1.16713 ppb 92 29 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 29 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 93 31) L1-TCA 11.62 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.99313 ppb 99 40 1,2-DCA 12.26 62 18678 1.02416 ppb 99 41 1.02-DCA 12.27 77 77 77 77 77 1.02416 ppb 99 77 12.274 1.02416 ppb 99 77 12.274 1.02416 ppb 99 12.274 1.02-DCA 12.276 62 18678 1.02416 ppb 99 12.274 1.02-DCA 12.277 77 77 77 77 1.02416 ppb 99 12.274 1.02-DCA 12.277 77 77 77 1.02416 ppb 99 141 1.02-DCA 12.277 77 77 77 1.02416 ppb 99 141 1.02-DCA 12.277 77 77 77 77 77 1.02416 ppb 99 141 1.02-DCA 12.277 77 77 77 77 77 77 1.02416 ppb 99 141 1.02-DCA 12.277 77 77 77 77 77 77 1.02416 ppb 99 141 1.0							
10) Acetonitrile 7.65 41 51519 55.91624 ug/l 100 11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 93 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.62 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96629 ppb 98 36) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 99 40) 1,2-DCA 12.36 62 18678 1.00416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	•						
11) Acrolein 7.15 56 59695 49.72366 ppb 96 12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 93 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) C2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 37) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 97 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 97 40) 1,2-DCA 12.26 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
12) Acetone 7.27 43 3608 1.35860 ppb 98 13) Freon-113 7.45 101 14530 0.95028 ppb 97 14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 95 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 97 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
13 Freon-113					1 35060	ppp	
14) 1,1-DCE 7.66 96 15638 0.90822 ppb 87 15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 93 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 93 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 99 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb							
15) t-Butanol 7.75 59 5634 49.71998 ppb # 83 16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.999514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
16) Methyl Acetate 8.19 43 10438 0.79970 ppb 98 17) Iodomethane 8.16 142 15570 0.55787 ppb 95 18) Acrylonitrile 8.56 53 2235 0.79019 ppb # 67 19) Methylene chloride 8.46 84 30149 1.60093 ppb 92 20) Carbon disulfide 8.55 76 12774 0.88149 ppb 96 21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
17) Iodomethane							
18) Acrylonitrile							
19) Methylene chloride							
20) Carbon disulfide							
21) Methyl t-butyl ether (MtBE 8.90 73 35333 1.00257 ppb 93 22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
22) Trans-1,2-DCE 9.09 96 21824 1.00930 ppb 95 23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	21) Methyl t-butyl ether (MtBE						
23) Diisopropyl Ether 9.74 45 63419 0.99514 ppb 94 24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.9		9.09					95
24) 1,1-DCA 9.77 63 34596 1.03725 ppb # 92 25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
25) Vinyl Acetate 9.40 43 4794 0.86280 ppb # 79 26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
26) Ethyl tert Butyl Ether 10.42 59 47543 0.98315 ppb 91 27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	25) Vinvl Acetate	9.40	43	4794	0.86280	ppb #	79
27) MEK (2-Butanone) 10.43 43 2585 1.16713 ppb 93 28) Cis-1,2-DCE 10.79 96 22197 0.94291 ppb 90 29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	26) Ethyl tert Butyl Ether	10,42	59				91
28) Cis-1,2-DCE		10.43	43	2585	1.16713	ppb	
29) 2,2-Dichloropropane 10.79 77 26413 1.00356 ppb 93 30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	28) Cis-1,2-DCE				0.94291	dqq	
30) Chloroform 11.07 85 21552 0.96528 ppb 92 31) Bromochloromethane 11.29 128 8131 0.94479 ppb # 54 33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95		10.79	77	26413			
33) 1,1,1-TCA 11.82 97 28729 0.99979 ppb 95 34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95					0.96528	ppb	
34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
34) Cyclohexane 11.98 56 23175 0.88138 ppb 87 35) 1,1-Dichloropropene 12.08 75 23682 0.96296 ppb 98 36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	33) 1,1,1-TCA						
36) 2,2,4-Trimethylpentane 12.16 57 40534 0.94133 ppb 89 38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
38) Carbon Tetrachloride 12.27 117 22174 0.93652 ppb 97 39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95	35) 1,1-Dichloropropene						
39) Tert Amyl Methyl Ether 12.32 73 39471 0.98662 ppb # 91 40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
40) 1,2-DCA 12.36 62 18678 1.02416 ppb 99 41) Benzene 12.47 78 77572 1.01642 ppb 95							
41) Benzene 12.47 78 77572 1.01642 ppb 95							
40004 0 00005	·						
42) TCE 13.50 95 19084 0.96795 ppb 83	•						
							83

^{(#) =} qualifier out of range (m) = manual integration 0224C06W.D CALLW.M Tue Feb 28 17:34:50 2012

Data File: M:\CHICO\DATA\C120224\0224C06W.D

Vial: 1 Acq On : 24 Feb 12 12:50 Sample : 1.0ug/L Vol Std 02-24-12 Operator: RS, ARS Inst : Chico : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc

Ouant Time: Feb 27 10:00 2012 Ouant Results File: CALLW.RES

Quant Method: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Last Update : Mon Feb 27 09:57:16 2012

Response via : Initial Calibration DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit Q	value	
43)	2-Pentanone	13.17	43	282965	49.32394 ppb		99
	1,2-Dichloropropane	13.73	63	17327	0.93295 ppb		99
45)	Bromodichloromethane	14.08	83	20861	0.93487 ppb		87
	Methyl Cyclohexane	13.79	83	21371	0.91963 ppb		99
	Dibromomethane	14.15	93	8811	0.96669 ppb		83
48)	2-Chloroethyl vinyl ether	14.54	63	5566	0.98490 ppb	#	86
49)	1-Bromo-2-chloroethane	14.84	63	15641	0.89848 ppb		90
50)	Cis-1,3-Dichloropropene	14.97	75	26727	0.96317 ppb		94
	Toluene	15.61	91	74310	0.95349 ppb		92
52)	Trans-1,3-Dichloropropene	15.77	75	18733	0.93610 ppb		86
53)	1,1,2-TCA	16.05	83	10550	1.05263 ppb		73
	1,2-EDB	17.29	107	10897	0.96596 ppb		99
	Tetrachloroethene	16.76	164	17704	1,02695 ppb		88
	1-Chlorohexane	17.67	91	23778	0.93350 ppb		96
	1,1,1,2-Tetrachloroethane	18,12	131	17309	1.01548 ppb		94
	m&p-Xylene	18.33	106	64693	1.96442 ppb		92
	o-Xylene	19.06	106	32550	1.00398 ppb		88
	Styrene	19.08	104	50281	0.98526 ppb	ш	100
	2-Hexanone	16.07	43	6098	1.25310 ppb	#	54
	1,3-Dichloropropane	16.46	76	19724	1.02065 ppb		95
- •	Dibromochloromethane	16.93	129	12586	0.90256 ppb		83
-	Chlorobenzene	18.07	112	49420	1.00430 ppb		94 94
	Ethylbenzene	18.17	91	83386 6521	1.00375 ppb		82
	Bromoform	19.61	173 43	7784	0.79102 ppb 0.97191 ppb		90
	MIBK (methyl isobutyl keto	14.65	105	77439	1.01040 ppb		98
	Isopropylbenzene	19.70 19.86	83	11318	1.03246 ppb	#	74
	1,1,2,2-Tetrachloroethane	20.11	110	971	0.88457 ppb	17	99
	1,2,3-Trichloropropane t-1,4-Dichloro-2-Butene	20.18	53	2468	0.96782 ppb		96
	n-Propylbenzene	20.40	91	93794	1.02235 ppb		96
	4-Ethyltoluene	20.60	105	56721	1.03474 ppb		98
	2-Chlorotoluene	20.70	91	64809	1.04520 ppb		95
	1,3,5-Trimethylbenzene	20.68	105	66258	1.04434 ppb		96
	4-Chlorotoluene	20.77	91	57518	1.03084 ppb		96
	Tert-Butylbenzene	21.32	119	71103	1.06195 ppb		97
	1,2,4-Trimethylbenzene	21.37	105	64539	0.98172 ppb		99
	Sec-Butylbenzene	21.71	105	90629	1.05658 ppb		98
	p-Isopropyltoluene	21.95	119	73200	1.04683 ppb		99
86)		22.38	91	18238	0.97568 ppb		94
87)	1,3-DCB	22.09	146	41426	1.03252 ppb		94
88)	1,4-DCB	22.25	146	39746	1.02375 ppb		93
89)	Hexachloroethane	23.56	117	11075	0.82828 ppb	#	39
90)	n-Butylbenzene	22,66	91	60087	0.98839 ppb		95
91)		22.88	146	37387	1.04271 ppb		98
92)	1,2-Dibromo-3-chloropropan	24.10	155	2125	1.13209 ppb		94
93)	1,2,4-Trichlorobenzene	25.55	180	11253	1.01258 ppb		90
-	Hexachlorobutadiene	25.80	223	16915	0.22396 ppb		91
	Naphthalene	25.90	128	38229	0.95073 ppb		98
96)	1,2,3-Trichlorobenzene	26.26	180	9115	0.96210 ppb		92

^{(#) =} qualifier out of range (m) = manual integration 0224C06W.D CALLW.M Tue Feb 28 17:34:51 2012

Data File : M:\CHICO\DATA\C120224\0224C06W.D

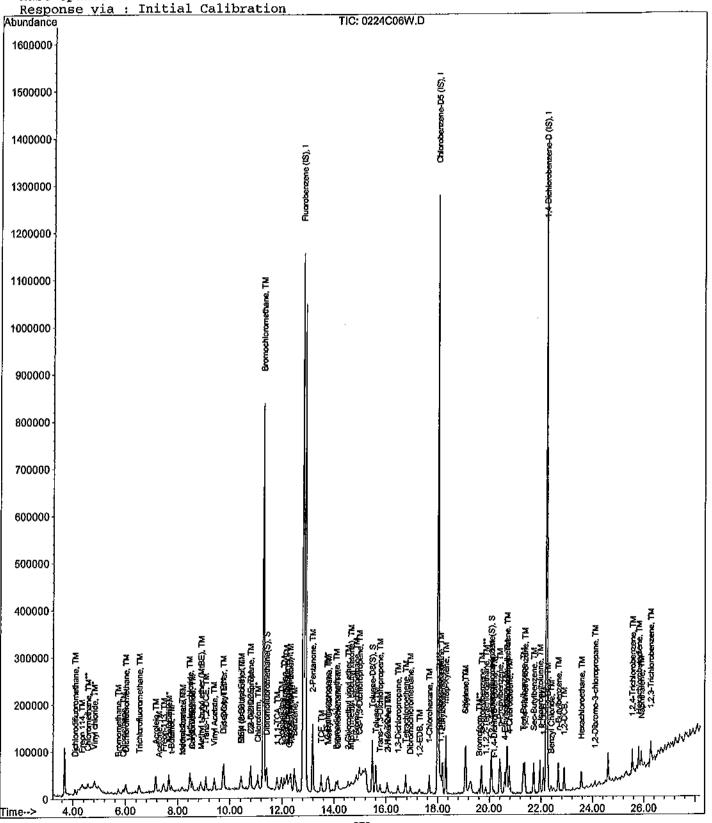
Vial: 1 : 24 Feb 12 12:50 : 1.0ug/L Vol Std 02-24-12

Sample : Water 10mLw/ IS:01-31-12C Misc

Operator: RS, ARS Inst : Chico Multiplr: 1.00

Quant Time: Feb 27 10:00 2012

Quant Results File: CALLW.RES


Method

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Acq On

Last Update : Tue Feb 28 08:57:24 2012

Data File : M:\CHICO\DATA\C120224\0224C07W.D

Vial: 1 Acq On : 24 Feb 12 13:27 Sample : 5.0ug/L Vol Std 02-24-12 Misc : Water 10mLw/ IS:01-31-12C Operator: RS, ARS Inst : Chico Multiplr: 1.00

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc U	nite	Dev(Min)
1) Fluorobenzene (IS)	12.82	96	564063	25.00	000 pp	b 0.00
54) Chlorobenzene-D5 (IS)	18.00	117	461184		000 pp	
70) 1,4-Dichlorobenzene-D (IS)	22.20	152	263040		000 pp	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
System Monitoring Compounds						
32) Dibromofluoromethane(S)	11.40	111	192344		497 pp	
Spiked Amount 22.609			Recove			
37) 1,2-DCA-D4(S)	12,20	65		10.74	441 pp 49.7	
Spiked Amount 21,606	16 49	98	Recove 638273	ry = 10.26		
55) Toluene-D8(S) Spiked Amount 24.195	15.47	90	Recove			
Spiked Amount 24.195 63) 4-Bromofluorobenzene(S)	20.07	95	252574			
Spiked Amount 23.751	20.07	,,,	Recove			
Spiked Amount 25:752						
Target Compounds						Qvalue
2) Dichlorodifluoromethane	4.08	85	79816		046 pp	
3) Freon 114	4.33	85	56843		615 pp	
4) Chloromethane	4.57	50	28707		619 pp	
Vinyl chloride	4.83	62	23920		629 pp	
·	5.73	94	19210		163 pp	
7) Chloroethane	5.91	64	19000		177 pp	
8) Dichlorofluoromethane	6.01	67	206075 21520		552 pp. 921 pp.	
9) Trichlorofluoromethane	6.51	103			359 ug	
10) Acetonitrile	7.64 7.15	41 56	91368 119445		731 pp	
11) Acrolein	7.13	43	11390		295 pp	
12) Acetone 13) Freon-113	7.45	101	84642		413 pp	
13) Freon-113 14) 1,1-DCE	7.66	96	87340		680 pp	
15) t-Butanol	7.77	59	11661		030 pp	
16) Methyl Acetate	8.18	43	43520		834 pp	
17) Iodomethane	8.15	142	131910		787 pp	
18) Acrylonitrile	8.55	53	14800		522 pp	
19) Methylene chloride	8.45	84	110091		050 pp	
20) Carbon disulfide	8.54	76	82560		402 pp	
21) Methyl t-butyl ether (MtBE	8.89	73	189742		447 pp	
22) Trans-1,2-DCE	9.08	96	109006		389 pp	
23) Diisopropyl Ether	9.74	45 63	335391 176890		702 pp: 983 pp:	
24) 1,1-DCA	9.77 9.40	43			300 pp	
25) Vinyl Acetate 26) Ethyl tert Butyl Ether		59	259478	5.64	535 pp	
27) MEK (2-Butanone)	10.43	43	17632 259478 11210	5.32	505 pp	
28) Cis-1,2-DCE	10.80	96	123488	5.51	900 pp	b 96
29) 2,2-Dichloropropane	10.79	77	140517		713 pp	b 100
30) Chloroform	11.08	85	121394	5,72	034 ppl	b 96
31) Bromochloromethane	11.30	128	47334		661 ppl	
33) 1,1,1-TCA	11,81	97	150077		491 pp	
34) Cyclohexane	11.98	56	139865		643 pp	
35) 1,1-Dichloropropene	12.08	75	127230		300 pp	
36) 2,2,4-Trimethylpentane	12.15	57	223720		623 ppl	
38) Carbon Tetrachloride	12.28	117	127339		842 ppl	
39) Tert Amyl Methyl Ether	12.32	73 62	208727 100008		923 ppl 943 ppl	
40) 1,2-DCA	12.35 12.48	78	403180		812 pp	•
41) Benzene 42) TCE	13.50	95	106833		096 pp	-
46/ TOB					EE'	

^{(#) =} qualifier out of range (m) = manual integration 0224C07W.D CALLW.M Tue Feb 28 17:34:58 2012

Quantitation Report (Not Reviewed)

Data File : M:\CHICO\DATA\C120224\0224C07W.D

Vial: 1 Acq On : 24 Feb 12 13:27 Operator: RS, ARS Sample : 5.0ug/L Vol Std 02-24-12 Inst : Chico Misc : Water 10mLw/ IS:01-31-12C Multiplr: 1.00

Ouant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES

Quant Method: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012 Response via : Initial Calibration

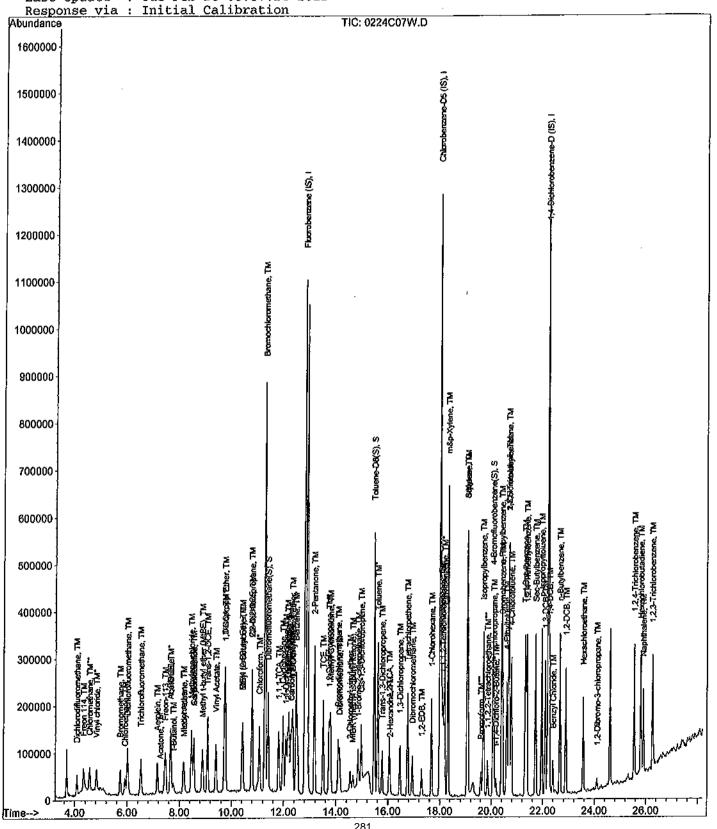
DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	e -
43)	2-Pentanone	13,18	43	588243	107.88007	nnb	99
	1,2-Dichloropropane	13.73	63	99710	5.64852	ppb	97
	Bromodichloromethane	14.08	83	120790	5.69514		97
	Methyl Cyclohexane	13.79	83	126128	5.71032		99
	Dibromomethane	14,14	93	51664	5.96360		99
48)	2-Chloroethyl vinyl ether	14.55	63	27090	5.04333		87
49)	1-Bromo-2-chloroethane	14.86	63	95170	5.75179	ppb	86
	Cis-1,3-Dichloropropene	14.97	75	143260	5.43172		98
	Toluene	15.60	91	413793	5.58615		95
	Trans-1,3-Dichloropropene	15.78	75	106933	5.62195		98
	1,1,2-TCA	16.05	83	53911	5.65926 p		98
	1,2-EDB	17.30	107	63170	5.57403		94
	Tetrachloroethene	16.75	164	96553	5.57506		94
	1-Chlorohexane	17.67	91	134225	5.24542		96
	1,1,1,2-Tetrachloroethane	18.13	131	97090	5.66999 j		94
	m&p-Xylene	18.32 19.07	106 106	349881 180222	10.57556 j 5.53335 j		99 96
	o-Xylene Styrene	19.09	104	282989	5.51979		92
	2-Hexanone	16.09	43	24691	5.05059		85
	1,3-Dichloropropane	16.46	76	111948	5.76641		96
	Dibromochloromethane	16.94	129	79381	5.66646		98
	Chlorobenzene	18.07	112	272523	5.51275		98
	Ethylbenzene	18.19	91	443644	5.31586		99
	Bromoform	19.60	173	44044	5.31825		98
71)	MIBK (methyl isobutyl keto	14.66	43	39149	4.68833		90
	Isopropylbenzene	19.70	105	428645	5.36419		99
73)	1,1,2,2-Tetrachloroethane	19.86	83	64301	5.62594 r		98
74)	1,2,3-Trichloropropane	20.11	110	6234	5.44694 y		84
75)	t-1,4-Dichloro-2-Butene	20.18	53	13490	5.07381 g		79
	Bromobenzene	20.44	156	123644	5.03170 r		91
	n-Propylbenzene	20.40	91	516600	5.40077 r		99
	4-Ethyltoluene	20.59	105	298122	5.21624 r		91
	2-Chlorotoluene	20.69	91	351555	5.43794 p	ago	92
	1,3,5-Trimethylbenzene	20.67	105 91	352983	5.33620 p		99
	4-Chlorotoluene	$20.78 \\ 21.31$	119	307115 371716	5.27915 g 5.32478 g	orde Orde	100 96
	Tert-Butylbenzene 1,2,4-Trimethylbenzene	21.31	105	367229	5.35767 p		95
	Sec-Butylbenzene	21.72	105	465715	5.20749 p		98
85)	p-Isopropyltoluene	21.95	119	378274	5.18855 g		97
	Benzyl Chloride	22.38	91	95453	4.89774 p		99
87)	1,3-DCB	22.09	146	224970	5.37806 p		97
-	1,4-DCB	22.26	146	214319	5.29462 r		95
	Hexachloroethane	23.56	117	69435	4.98065 p		100
90)	n-Butylbenzene	22.66	91	337652	5.32710 p	dqa	96
91)	1,2-DCB	22.89	146	201152	5.38075 p	dqq	97
92)	1,2-Dibromo-3-chloropropan	24.10	155	9648	4.92984 p		87
93)	1,2,4-Trichlorobenzene	25.55	180	62848	5.42412 p		99
	Hexachlorobutadiene	25.80	223	55145	4.07883 p		93
95)		25.90	128	230346	5.49441 p		98
96)	1,2,3-Trichlorobenzene	26.26	180	53416	5.40768 p	ago	99

^{(#) =} qualifier out of range (m) = manual integration 0224C07W.D CALLW.M Tue Feb 28 17:34:59 2012

Data File : M:\CHICO\DATA\C120224\0224C07W.D

Vial: 1 : 24 Feb 12 13:27 : 5.0ug/L Vol Std 02-24-12 : Water 10mLw/ IS:01-31-12C Operator: RS, ARS Acq On Inst Sample


: Chico Multiplr: 1.00 Misc

Quant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method

: METHOD 8260 Title

Last Update : Tue Feb 28 08:57:24 2012

(Not Reviewed) Quantitation Report

Data File : M:\CHICO\DATA\C120224\0224C08W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 14:04 Sample : 10ug/L Vol Std 02-24-12 Inst : Chico Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
	12.81	96	582452	25.00000 ppb	0.00
1) Fluorobenzene (IS) 54) Chlorobenzene-D5 (IS)			462400		0.00
70) 1,4-Dichlorobenzene-D (IS)	22.20	152	261824	25.00000 ppb	0.00
(0) 1,4 promotopombene 2 (15)	HD 120				
System Monitoring Compounds					
32) Dibromofluoromethane(S)	11.40	111	476434		0.00
Spiked Amount 22,609			Recove		
37) 1,2-DCA-D4(S)	12,20	65	383534	24.67918 ppb	0.00
Spiked Amount 21.606			Recove		
55) Toluene-D8(S)	15.47	98	1566105	25.11255 ppb erv = 103.793	0.00
Spiked Amount 24.195	20 07	ΛE	Recove		0.00
63) 4-Bromofluorobenzene(S)	20.07	95	592066 Recove		
Spiked Amount 23.751			Kecove	31y - 101.11.	, 0
Target Compounds					Qvalue
2) Dichlorodifluoromethane	4.09	85	196805	10.93762 ppb	100
3) Freon 114	4.34	85	107858	10.57730 ppb	100
4) Chloromethane	4.57		62653	9.90470 ppb	100
	4.81	62	41320	8,67608 ppb	100
6) Bromomethane	5.73	94	41704	10.34730 ppb	100
7) Chloroethane	5.92	64	37340	10.43300 ppb	100
8) Dichlorofluoromethane		67	391456	10.49591 ppb	100
9) Trichlorofluoromethane	6.52	103	46504	11.02710 ppb	100
10) Acetonitrile	7.65	41	107419	118.78965 ug/l	100
11) Acrolein	7.15	56	144348	122.50754 ppb	100
12) Acetone	7.28	43	19716	9 72987 mb	100
13) Freon-113	7.44	101	165787	11.04747 ppb	100
14) 1,1-DCE	7.67	96	167743	9.92612 ppb	100
15) t-Butanol	7.75	59	16585	149.12707 ppb	100
16) Methvl Acetate	8,18	43	79517	10.42085 ppb	100
17) Iodomethane	8.15	142	293347	10.58330 ppb	100
18) Acrylonitrile	8.56	53	27694	9,97622 ppb	100
19) Methylene chloride	8.46	84	194042	10,49837 ppb	100
20) Carbon disulfide	8.55	76	158784	11.16407 ppb	100
21) Methyl t-butyl ether (MtBE	8.89	73	352967	10.20463 ppb	100
22) Trans-1,2-DCE	9.09	96	208643	9.83141 ppb	100
	9.74	45	639199	10.21947 ppb	100
24) 1,1-DCA	9.78	63	343449	10.49173 ppb 9.94145 ppb	100 100
25) Vinyl Acetate	9.41		33144	10.13273 ppb	100
26) Ethyl tert Butyl Ether	10.42	59	480915	9.33308 ppb	100
27) MEK (2-Butanone)	10.41	43	20288 235574	10.19601 ppb	100
28) Cis-1,2-DCE	10.79	96 77	277381	10.73816 ppb	100
29) 2,2-Dichloropropane	10.78		223219	10.73616 ppb	100
30) Chloroform	11.07 11.29	85 128	86797	10.13546 ppb	100
31) Bromochloromethane	11.82	97	291363	10.33113 ppb	100
33) 1,1,1-TCA	11.97	56	272790	10.57055 ppb	100
34) Cyclohexane	12.08	75	249517	10.33751 ppb	100
35) 1,1-Dichloropropene 36) 2,2,4-Trimethylpentane	12.15	57	451994	10.69506 ppb	100
38) Carbon Tetrachloride	12.28	117	246529	10.60888 ppb	100
39) Tert Amyl Methyl Ether	12.32	73	384615	9.79550 ppb	100
40) 1,2-DCA	12.35	62	187322	10.46536 ppb	100
41) Benzene	12.47	78	760362	10.15118 ppb	100
41) Benzene 42) TCE	13.51	95	204924	10.59017 ppb	100
and ton					

^{(#) =} qualifier out of range (m) = manual integration 0224C08W.D CALLW.M Tue Feb 28 17:35:06 2012

Data File: M:\CHICO\DATA\C120224\0224C08W.D

Vial: 1 Acq On : 24 Feb 12 14:04 Sample : 10ug/L Vol Std 02-24-12 Operator: RS, ARS Inst : Chico Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Peb 27 09:57:16 2012
Response via : Initial Calibration

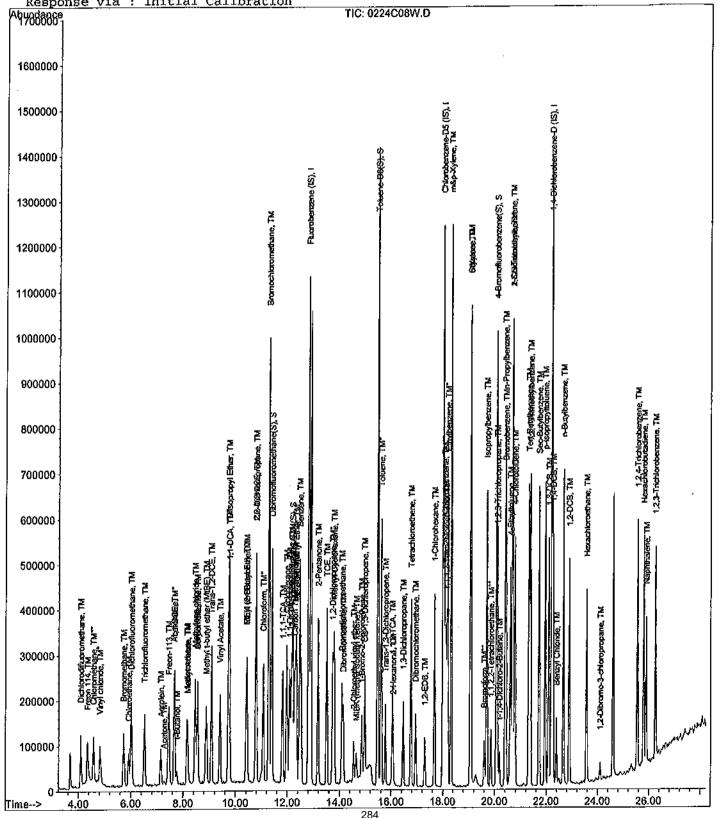
DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
43)	2-Pentanone	13.17	43	712657	126.57050	ppb	100
	1,2-Dichloropropane	13.73	63	189723	10.40839		100
45)	Bromodichloromethane	14.09	83	230800	10.53845		100
46)	Methyl Cyclohexane	13.78	83	244205	10.70709		100
47)	Dibromomethane	14,14	93	99045	11.07186		100
48)		14,54	63	56691	10.22092		100
	1-Bromo-2-chloroethane	14.85	63	181758	10.63809		100
	Cis-1,3-Dichloropropene	14.98	75	268921	9.87426		100
51)		15.60	91	782694	10.23267		100
	Trans-1,3-Dichloropropene	15.77	75	199753 98402	10.17035 10.00353		100 100
	1,1,2-TCA	16.04 17.29	83 107	119204	10.49073		100
56)	1,2-EDB Tetrachloroethene	16.76	164	180168	10.37571		100
	1-Chlorohexane	17.67	91	262039	10.21337		100
59)	1,1,1,2-Tetrachloroethane	18.12	131	178493	10.39646		100
	m&p-Xylene	18.32	106	669154	20.17276		100
	o-Xylene	19.06	106	339841	10.40669		100
62)	Styrene	19.08	104	545412	10.61046		100
	2-Hexanone	16.08	43	45905	9.36525	ppb	100
	1,3-Dichloropropane	16.46	76	205950	10.58053		100
	Dibromochloromethane	16.93	129	145581	10.36469		100
67)	Chlorobenzene	18.07	112	523203	10.55581		100
68)	Ethylbenzene	18.18	91	861844	10.29968		100
	Bromoform	19.60	173	83435	10.04816		100
	MIBK (methyl isobutyl keto	14.65	43	77906	9.37304		100
	Isopropylbenzene	19.70	105	829062	10.42332		100
	1,1,2,2-Tetrachloroethane	19.86	83	115741	10.17366 10.65656		100 100
	1,2,3-Trichloropropane	20.11	110	12140 27850	10.52349		100
	t-1,4-Dichloro-2-Butene	20.18	53 156	226404	10.24716		100
	Bromobenzene	20.44	91	991105	10.40958		100
	n-Propylbenzene 4-Ethyltoluene	20.60	105	595190	10.46240		100
	2-Chlorotoluene	20.70	91	658785	10.23757		100
	1,3,5-Trimethylbenzene	20.68	105	672314	10.21088		100
	4-Chlorotoluene	20.77	91	583258	10.07246		100
	Tert-Butylbenzene	21.32	119	711272	10.23619		10 0
	1,2,4-Trimethylbenzene	21.37	105	702062	10.29027		100
	Sec-Butylbenzene	21.71	105	904752	10.16366		100
85)	p-Isopropyltoluene	21.95	119	736097	10.14347		100
86)	Benzyl Chloride	22.39	91	187064	9.64293		100
87)		22.09	146	433900	10.42084		100
88)	1,4-DCB	22.25	146	415969	10.32399	ppp	100
89)	Hexachloroethane	23.56		148825	10.72496		100 100
	n-Butylbenzene	22.66	91	663333 386366	10.51394 10.38316		100
91)	1,2-DCB	22.88 24.10	146 155	17832	9.15393		100
94)	1,2-Dibromo-3-chloropropan 1,2,4-Trichlorobenzene	25.54	180	120760	10.47064		100
	Hexachlorobutadiene	25.80	223	113237	10.10308		100
	Naphthalene	25.90	128	424334	10.16858		100
	1,2,3-Trichlorobenzene	26,26	180	108036	10.98804		100
,	_,_,_						

^{(#) =} qualifier out of range (m) = manual integration 0224C08W.D CALLW.M Tue Feb 28 17:35:07 2012

Data File : M:\CHICO\DATA\C120224\0224C08W.D

Vial: 1 : 24 Feb 12 14:04 Operator: RS, ARS Acq On Inst : Chico Sample : 10ug/L Vol Std 02-24-12 : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc


Quant Time: Feb 27 10:00 2012

Quant Results File: CALLW.RES

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method

Title : METHOD 8260

Last Update : Tue Feb 28 08:57:24 2012 Response via : Initial Calibration

Data File : M:\CHICO\DATA\C120224\0224C09W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 14:41 Sample : 40ug/L Vol Std 02-24-12 Inst : Chico : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc

Quant Results File: CALLW.RES Ouant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc	Unit	s Do	ev(Min)
1) Fluorobenzene (IS)	12.81	96	607231	25.	00000	daa	0.00
54) Chlorobenzene-D5 (IS)	18.00		486400		00000		0.00
70) 1,4-Dichlorobenzene-D (IS)			276864		00000		0.00
707 1,4-Dichiolopensene b (107	22.20						
System Monitoring Compounds						_	• • •
32) Dibromofluoromethane(S)	11.40	111	1511718		91289		0.00
Spiked Amount 22,609			Recove		= 340		
37) 1,2-DCA-D4(S)	12.20	65	1105366		16198		0.00
Spiked Amount 21.606			Recove		= 331		8 0. 00
55) Toluene-D8(S)	15.47	98		75.	13961 = 310		-
Spiked Amount 24.195	00 00	٥.	Recove		= 311 58972		0.00
63) 4-Bromofluorobenzene(S)	20.07	95	1908446		3097 2 ≈ 309		
Spiked Amount 23,751			Recove	TA .	= JU:	7.044	0
Target Compounds						(Qvalue
2) Dichlorodifluoromethane	4.09	85	850495	45.3	33825		95
3) Freon 114	4.34	85	491304		21457		89
4) Chloromethane	4,57	50	237202		96866		95
5) Vinyl chloride	4.80	62	178112		87259		92
6) Bromomethane	5.72	94	177984		35811		95
7) Chloroethane	5.92	64	144487		72306		96
8) Dichlorofluoromethane	6.00	67	1492558		38615		98
9) Trichlorofluoromethane	6.52	103	174656	39,	72472	ppb	98
10) Acetonitrile	7.65	41	150705	159.	85689	ug/l	100
11) Acrolein	7.14	56	182764	148.	781 50	ppb	99
12) Acetone	7.28	43	77858	38.3	17679	ppb	# 80
13) Freon-113	7.45	101	660174	42.	19655	ppb	92
14) 1,1-DCE	7.67	96	662330		59376		98
15) t-Butanol	7.75	59	17616		93385		99
16) Methyl Acetate	8.18	43	304582		95351		100
17) Iodomethane	0.15	142	1190656		18331		97
18) Acrylonitrile	0.55	53	107346		09132		99
19) Methylene chloride	8.46	84	711734		93601		94
20) Carbon disulfide	8.55	76	614784		46146		99
21) Methyl t-butyl ether (MtBE	8.89	73	1333765		98696		97
22) Trans-1,2-DCE	9.08	96	801849		24188		90
23) Diisopropyl Ether	9.74	45	2385074		57634		97 96
24) 1,1-DCA	9.78	63	1243051		42337		96
25) Vinyl Acetate	9.41	43	133568	40.4	20020	ppp	99
	10.42	59	1846913 75408	3/1	32593 27 4 33		96
27) MEK (2-Butanone)	10.41	43			27242		95
28) Cis-1,2-DCE	10.79	96	873710 1048737		94267		98
29) 2,2-Dichloropropane	10.79		862914		77163		100
30) Chloroform	11.07	85 139			39343		98
31) Bromochloromethane	11.29	128	338090 1127682		35363		99
33) 1,1,1-TCA	11.82	9 7	1103153		00259		98
34) Cyclohexane	11.98 12.09	56 75	944591		53755		98
35) 1,1-Dichloropropene		57	1871023		46546		99
36) 2,2,4-Trimethylpentane	12.16 12.27	117	983204		58367		98
38) Carbon Tetrachloride	12.27	73	1486723		31923		94
39) Tert Amyl Methyl Ether	12.36	62					97
40) 1,2-DCA	12.47		688495 2911638	37	28549	ppb	99
41) Benzene	13.51	95	797526	39.	53312	ppb	97
42) TCE							

^{(#) =} qualifier out of range (m) = manual integration 0224C09W.D CALLW.M Tue Feb 28 17:35:14 2012

Quantitation Report (Not Reviewed)

Data File : M:\CHICO\DATA\C120224\0224C09W.D Vial: 1

Operator: RS, ARS Acq On : 24 Feb 12 14:41 : 40ug/L Vol Std 02-24-12 Sample Inst : Chico : Water 10mLw/ IS:01-31-12C Multiplr: 1.00 Misc

Quant Time: Feb 27 10:00 2012 Ouant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Feb 27 09:57:16 2012

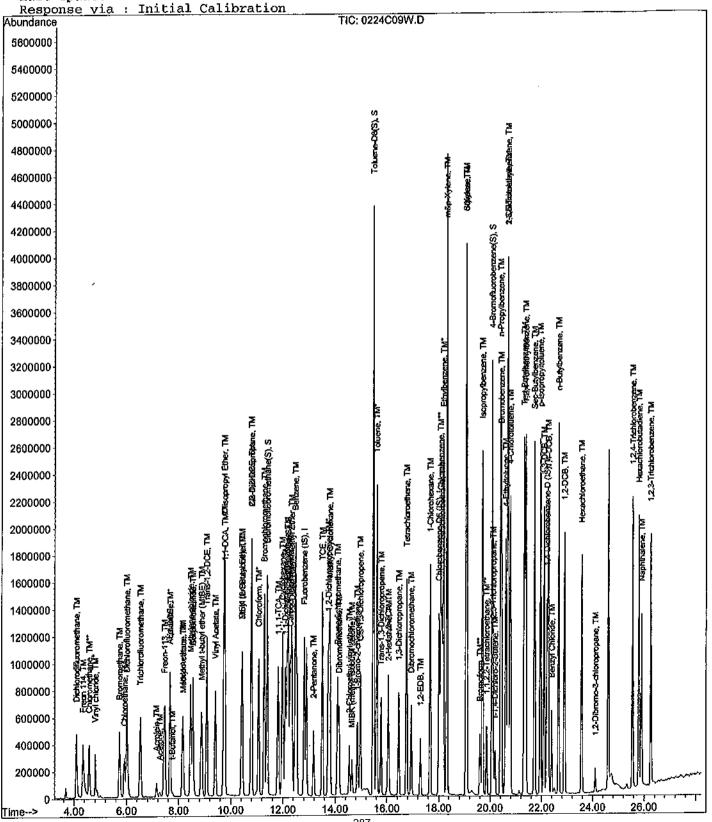
Response via : Initial Calibration

DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
43)	2-Pentanone	13.17	43	900761	153.45029	dqq	100
	1,2-Dichloropropane	13.73	63	723979	38.09742		99
45)	Bromodichloromethane	14.09	83	908198	39.77660	ppb	93
46)	Methyl Cyclohexane	13.79	83	1001305	42.11039		99
	Dibromomethane	14.14	93	372615	39.95347		96
	2-Chloroethyl vinyl ether	14.54	63	231817	40.08919		92
	1-Bromo-2-chloroethane	14.85	63	697466	39.15610		94
	Cis-1,3-Dichloropropene	14.97	75	1070633	37.70743		96
	Toluene	15.61	91	3040191	38.12448		100
	Trans-1,3-Dichloropropene	15.77	75	804871	39.30746		95
-	1,1,2-TCA	16.04	83	384857	37.52797		95 93
	1,2-EDB	17.29	107	480554	40.20513 39.12010		96
	Tetrachloroethene	16.76 17.67	164 91	714555 1076926	39.90372		96
	1-Chlorohexane 1,1,1,2-Tetrachloroethane	18.12	131	727081	40.25978		96
	m&p-Xylene	18.32	106	2639396	75.64289		96
	o-Xylene	19.06	106	1357493	39.51835		97
	Styrene	19.08	104	2173245	40.19226		96
	2-Hexanone	16.07	43	193947	37.61551		98
	1,3-Dichloropropane	16.46	76	798571	39.00170		98
	Dibromochloromethane	16.93	129	617691	41.80680		95
	Chlorobenzene	18.07	112	2061683	39.54282		97
•	Ethylbenzene	18,18	91	3403115	38.66305		99
69)	Bromoform	19,60	173	377635	43.23492	ppb	97
71)	MIBK (methyl isobutyl keto	14.64	43	310271	35.30153		94
	Isopropylbenzene	19.70	105	3269663	38.87451		99
	1,1,2,2-Tetrachloroethane	19.86	83	465095	38.66114		96
	1,2,3-Trichloropropane	20,12	110	44384	36.84408		96
	t-1,4-Dichloro-2-Butene	20.18	53	110187	39.37387		81
	Bromobenzene	20.44	156	902524	41.89844		96
	n-Propylbenzene	20.41	91	3932034	39.05475		99 96
	4-Ethyltoluene	20.60 20.70	105 91	2382103 2530843	39.59855 37.19300		99
	2-Chlorotoluene 1,3,5-Trimethylbenzene	20.70	105	2669741	38.34449		98
	4-Chlorotoluene	20.77	91	2366468	38.64725		99
	Tert-Butylbenzene	21.32	119	2828294	38.49195		98
	1,2,4-Trimethylbenzene	21.37	105	2760830	38.26783	daa	100
	Sec-Butylbenzene	21.71	105	3659324	38.87447		99
	p-Isopropyltoluene	21.95	119	2985821	38.90974		98
	Benzyl Chloride	22.39	91	807201	39.34987		96
	1,3-DCB	22,09	146	1736674	39.44342	ppb	99
88)	1,4-DCB	22.25	146	1672287	39.25008	ppb	99
89)	Hexachloroethane	23.56	117	662462	45.14645	ppb	98
	n-Butylbenzene	22.66	91	2630410	39.42761	ppb	96
91)	1,2-DCB	22.88	146	1542539	39.20214		95
	1,2-Dibromo-3-chloropropan	24.10	155	82108	39.85988		95
	1,2,4-Trichlorobenzene	25,54	180	478072	39.20003		98
	Hexachlorobutadiene	25.81	223	450073	42.35665		98
	Naphthalene	25.90	128	1700425	38.53478		98
96)	1,2,3-Trichlorobenzene	26.26	180	418296	40.23263	րիր	96

^{(#) =} qualifier out of range (m) = manual integration 0224C09W.D CALLW.M Tue Feb 28 17:35:15 2012

Data File: M:\CHICO\DATA\C120224\0224C09W.D


Vial: 1 Operator: RS, ARS : 24 Feb 12 14:41 Acq On : Chico : 40ug/L Vol Std 02-24-12 Inst Sample Misc : Water 10mLw/ IS:01-31-12C Multiplr: 1.00

Quant Results File: CALLW.RES Ouant Time: Feb 27 10:00 2012

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method

Title : METHOD 8260

Last Update : Tue Feb 28 08:57:24 2012

Data File: M:\CHICO\DATA\C120224\0224C10W.D

Vial: 1 Operator: RS, ARS Inst : Chico Multiplr: 1.00 Acq On : 24 Feb 12 15:18 : 100ug/L Vol Std 02-24-12 Sample Misc : Water 10mLw/ IS:01-31-12C

Quant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Mon Feb 27 09:57:16 2012

Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Unit	s De	v(Min)
1) Fluorobenzene (IS)	12.81	96	678831	25,00000	daa	0.00
54) Chlorobenzene-D5 (IS)			542272	25.00000		0.00
70) 1,4-Dichlorobenzene-D (IS)	22,21	152	298246	25.00000		0.00
,0, 1,1 21011201011111111111111111111111	,					
System Monitoring Compounds						
32) Dibromofluoromethane(S)	11.40	111	2144601	97.60388	ppb	0.00
Spiked Amount 22.609				ery = 43		
37) 1,2-DCA-D4(S)	12.20	65		89.85003		0.00
Spiked Amount 21.606	45 40		Recove	ery = 41	5.859%	, ,
55) Toluene-D8(S)	15.47	98		93.57476	.6.748% 6.748%	0.00
Spiked Amount 24.195	20.08	95	Recove	88,71252		0.00
63) 4-Bromofluorobenzene(S) Spiked Amount 23.751	20.00	90		ery = 37		
Spiked Amount 23.751			Recove	.ry - 5,	J, J100	•
Target Compounds					0	value
2) Dichlorodifluoromethane	4.09	85	2244319	107.02120		99
3) Freon 114	4.34	85	1249166	105,10927		94
4) Chloromethane	4.57			88,96745		97
5) Vinyl chloride	4.80	62	542976	97.82334		94
6) Bromomethane	5.72	94	506748	107.87975	dgg	93
7) Chloroethane	5.92	64	380992	91.33749	ppb	100
8) Dichlorofluoromethane		67	3929529	90.40159	ppb	97
9) Trichlorofluoromethane	6.52	103	374932	76.28200 180.98393	ppb	99
10) Acetonitrile	7.65	41	190741	180.98393	ug/1	100
11) Acrolein	7.15	56	276041	201.01299	ppb	100
12) Acetone	7.28	43	226567	100,13681	ppb	92
13) Freon-113	7.45	101	1787083	102.17756	ppb	89
14) 1,1-DCE	7,67	96	1792509	91.01121		94
15) t-Butanol	7.78	59	22801	175.91116		# 94
16) Methyl Acetate	8.10	43		99.83571		100
17) Iodomethane	8.15	142		98.97527		100
18) Acrylonitrile	8.56	53	303209	93.71751		94
19) Methylene chloride	8.46	84	1939864	90,05250		93
20) Carbon disulfide	8.55	76	1609728	97.11063		99
21) Methyl t-butyl ether (MtBE		73	3658362	90.75033		97
22) Trans-1,2-DCE	9.08	96	2179969	88.13749		90
23) Diisopropyl Ether	9.74	45	6475444	88.83012		100 95
24) 1,1-DCA	9.78	63	3434353	90.01780 99.89516	ppb	93 97
25) Vinyl Acetate	9.41		367035 5017820	99.09310	ppb	98
26) Ethyl tert Butyl Ether	10.42	59	215221	90.71342	ppb	95
27) MEK (2-Butanone)	10.41	96	2380207	84.95107 88.39267	nnh	96
28) Cis-1,2-DCE 29) 2,2-Dichloropropane	10.79	77	2787939	92.60506	E-E	94
	11.07	85	2362647	92.51014		99
30) Chloroform 31) Bromochloromethane	11.29	128	887980	90.20279		98
33) 1,1,1-TCA	11.82	97	3009893	91.57210		99
34) Cyclohexane	11.98	56	3008743	100.03521		95
35) 1,1-Dichloropropene	12.09	75	2564899	91.17688		99
36) 2,2,4-Trimethylpentane	12.15	57	5110082	103.74731		100
38) Carbon Tetrachloride	12.28	117	2653391	97.97182		96
39) Tert Amyl Methyl Ether	12.33	73	4091433	89.40756		93
40) 1,2-DCA	12.36	62	1819127	87.20212		96
41) Benzene	12.47	78	8047404	92,18294	ppb	98
42) TCE	13.51	95	2107561	93.45200	ppb	98

^{(#) =} qualifier out of range (m) = manual integration 0224C10W.D CALLW.M Tue Feb 28 17:35:22 2012

Data File : M:\CHICO\DATA\C120224\0224C10W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 15:18 Inst : Chico Multiplr: 1.00 : 100ug/L Vol Std 02-24-12 Sample Misc : Water 10mLw/ IS:01-31-12C

Ouant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

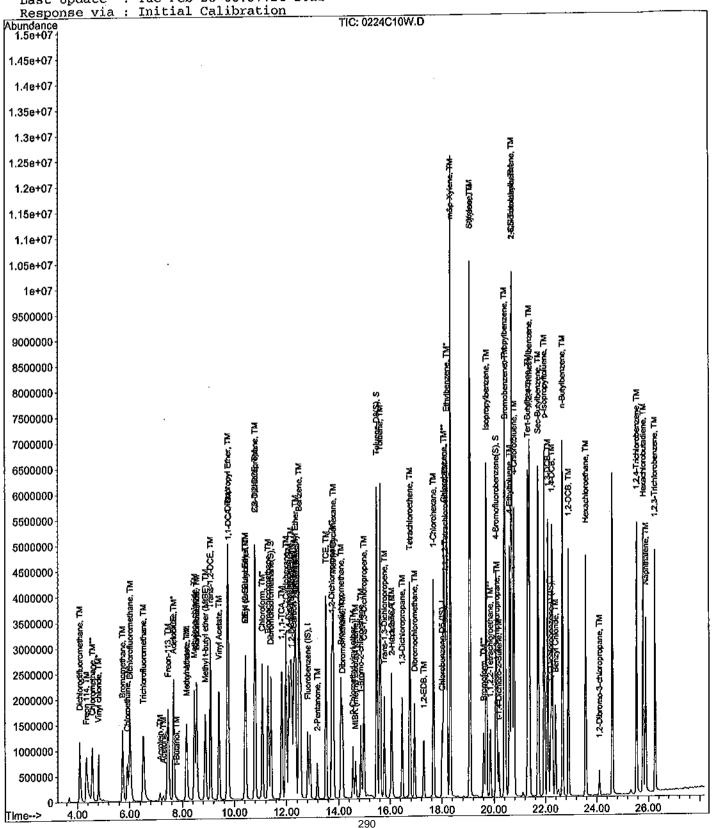
Last Update : Mon Feb 27 09:57:16 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Compound	R.T.	QIon	Response	Conc Unit	Qvalue	e •
43) 2-Pentanone	13.18	43	1299027	197.95596	daa	99
44) 1,2-Dichloropropane	13.73	63	1947088	91.65316		100
45) Bromodichloromethane	14.09	83	2493381	97.68504	ppb	93
46) Methyl Cyclohexane	13.79	83	2749788	103.44616		97
47) Dibromomethane	14.15	93	1027420	98.54497		95
48) 2-Chloroethyl vinyl ether	14.54	63	680462	105.26359		95
49) 1-Bromo-2-chloroethane	14.85	63	1901572	95.49517		93
50) Cis-1,3-Dichloropropene	14.98	75	2909413	91.66085		95
51) Toluene	15.61	91	8099740	90.85867		99
52) Trans-1,3-Dichloropropene	15.77	75	2199619	96,09227		97 97
53) 1,1,2-TCA	16.05	83	1028352	89.69946 97.59128		95
56) 1,2-EDB	17.30 16.76	107 164	1300455 1926587	97.59128		96
57) Tetrachloroethene 58) 1-Chlorohexane	17.68	91	2848407	94.66859		91
59) 1,1,1,2-Tetrachloroethane	18.12	131	1961330	97.41272		96
60) m&p-Xylene	18.33	106	6966119	179.07330		93
61) o-Xylene	19.07	106	3518226	91.86737		92
62) Styrene	19.09	104	5621709	93.25637		93
64) 2-Hexanone	16.07	43	569719	99.11080		94
65) 1,3-Dichloropropane	16.46	76	2140930	93.78834	ppb	99
66) Dibromochloromethane	16.94	129	1738438	105.53859	ppb	96
67) Chlorobenzene	18.08	112	5328091	91.66295	ppb	98
68) Ethylbenzene	18.18	91	8995863	91.67242		99
69) Bromoform	19.60	173	1047083	107.52760		97
71) MIBK (methyl isobutyl keto	14.64	43	906446	95.73840		95
72) Isopropylbenzene	19.70	105	8361746	92.28918		99
73) 1,1,2,2-Tetrachloroethane	19.86	83	1229866	94.90358		98
74) 1,2,3-Trichloropropane	20.12	110	120656	92.97839 101.97887		97 86
75) t-1,4-Dichloro-2-Butene	20.18	53 156	307426	102.52689		97
76) Bromobenzene	20.44 20.41	156 91	2340527 9967 9 52	91.90822		99
77) n-Propylbenzene	20.60	105	6145263	94.83117		98
78) 4-Ethyltoluene 79) 2-Chlorotoluene	20.70	91	6714874	91.60639		100
80) 1,3,5-Trimethylbenzene	20.68	105	6867311	91.56140		99
81) 4-Chlorotoluene	20.78	91	5920542	89.75760		97
82) Tert-Butylbenzene	21.32	119	7228725	91.32695		99
83) 1,2,4-Trimethylbenzene	21.37	105	7168671	92,24113		100
84) Sec-Butylbenzene	21.71	105	9265413	91.37350	ppb	98
85) p-Isopropyltoluene	21.95	119	7617841	92.15489		98
86) Benzyl Chloride	22.39	91	2275076	102.95546		95
87) 1,3-DCB	22.09	146	4408056	92.93840		98
88) 1,4-DCB	22,26	146	4295068	93.58186		98
89) Hexachloroethane	23.56	117	1760915	111.40198		99
90) n-Butylbenzene	22.66	91	6714748	93.43263		97 95
91) 1,2-DCB	22.89	146 155	3921448 220142	92.51496 99.20768		95 95
92) 1,2-Dibromo-3-chloropropan	24,10 25,55	180	1211914	92,24796		97
93) 1,2,4-Trichlorobenzene 94) Hexachlorobutadiene	25,80	223	1144128	102,11526		97
95) Naphthalene	25.90	128	4462599	93.88043		98
96) 1,2,3-Trichlorobenzene	26.26	180	1050011	93.75196		96
301 Tivin-IIICHITOTOMONIBEHC	20.20	~~~			F &	

^{(#) =} qualifier out of range (m) = manual integration 0224C10W.D CALLW.M Tue Feb 28 17:35:23 2012

Data File : M:\CHICO\DATA\C120224\0224C10W.D


Vial: 1 Operator: RS, ARS : 24 Feb 12 15:18 Acq On : Chico : 100ug/L Vol Std 02-24-12 Inst Sample Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method

: METHOD 8260 Title

Last Update : Tue Feb 28 08:57:24 2012

Quantitation Report (Not Reviewed)

Data File: M:\CHICO\DATA\C120224\0224C11W.D

Vial: 1 Acq On : 24 Feb 12 15:55 Operator: RS, ARS Inst : Chico : 200ug/L Vol Std 02-24-12 Sample : Water 10mLw/ IS:01-31-12C Misc Multiplr: 1.00

Quant Results File: CALLW.RES Quant Time: Feb 27 10:00 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)
Title : METHOD 8260

Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
	12.82	96	657415	25.00000 p	0.00
54) Chlorobenzene-D5 (TS)	18.01	117	521408		
54) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	22.21	152	302612	25.00000 p	
70, 1,1 210,1101000,111010 - (25)				_	-
System Monitoring Compounds					
32) Dibromofluoromethane(S)	11.40	111	2564673		
Spiked Amount 22.609			Recove	exy = 533.	
37) 1,2-DCA-D4(S)	12.20	65			
Spiked Amount 21.606	15 47	98	Recove 8211353		
55) Toluene-D8(S) Spiked Amount 24.195	15.47	90	Recove		
Spiked Amount 24.195 63) 4-Bromofluorobenzene(S)	20.08	95		112.20792 p	
Spiked Amount 23.751	20.00		Recove	exy = 472.	441%
bpined falloute 201752				-	
Target Compounds					Qvalue
Dichlorodifluoromethane	4.08	85	4378016		
3) Freon 114	4.34	85	2399583	208.48687 p	
4) Chloromethane	4.57	50	1290262	180.71663 p	
5) Vinyl chloride	4.80	62	1002560		
6) Bromomethane 7) Chloroethane	5.72	94		194.94817 p	
7) Chloroethane	5.91	64	692061	171.31668 p	
8) Dichlorofluoromethane	6.00		7575546		-
9) Trichlorofluoromethane	0.52	103	659008 213588	138,44660 p 209,26417 u	•
10) Acetonitrile	7.66	41 64	308095	231.66330 p	~
11) Acrolein	7.15 7.28				
12) Acetone	7.45	101		205.32353 p	
13) Freon-113	7.67	96	3434275	180.04899 p	-
14) 1,1-DCE 15) t-Butanol	7 70	59	27600	219.87236 p	
15) t-Butanol 16) Methyl Acetate 17) Iodomethane	8.18	43		200.05733 p	
17) Iodomethane	8.15	142	6268808	200.25175 p	
18) Acrylonitrile	8.56	53	613930	195.93840 p	
19) Methylene chloride	8.46	84		179.19047 p	pb 94
20) Carbon disulfide	8.55	76	3119104	194.29703 p	pb 99
21) Methyl t-butyl ether (MtBE	8.89	73	6385477 4205997	163.55994 p	
22) Trans-1,2-DCE	9.09	96	4205997	175.59065 p	
22) Trans-1,2-DCE 23) Diisopropyl Ether 24) 1,1-DCA	9.74		12265634	173.74118 p	
24) 1,1-DCA	9.78	63	6463661 714402	174.93797 p	
25) Vinyl Acetate	9.41	43	714402	201,41684 p	
26) Ethyl tert Butyl Ether	10.43	59			
2,, tipk (2 2000110110)	10.42		400832	163.36862 p	
28) Cis-1,2-DCE	10.80	96	4488199 5245615	172,10587 p 179,91605 p	-
29) 2,2-Dichloropropane	10.79	77 06	4511020	182,38425 p	
30) Chloroform	11.07 11.30	85 128	1683828	176.61866 p	
31) Bromochloromethane	11.82	97	5770426	181.27672 p	-
33) 1,1,1-TCA 34) Cyclohexane	11.98	56	5870208	201.53170 p	
35) 1,1-Dichloropropene	12.09	75	4882130	179.20323 p	
36) 2,2,4-Trimethylpentane	12.16		10216147	214.16976 p	
38) Carbon Tetrachloride	12,28	117	5142419	196.06020 p	
39) Tert Amyl Methyl Ether	12,33	73	7869391	177.56688 p	pb 94
40) 1,2-DCA	12,36	62	3471017	171.80779 p	
41) Benzene	12.48	78	15443722	182.67065 p	
42) TCE	13.51	95	4013135	183.74448 p	pb 99

^{(#) =} qualifier out of range (m) = manual integration 0224C11W.D CALLW.M Tue Feb 28 17:35:30 2012 0224C11W.D CALLW.M

Vial: 1 Data File : M:\CHICO\DATA\C120224\0224C11W.D Operator: RS, ARS Acq On : 24 Feb 12 15:55 Sample : 200ug/L Vol Std 02-24-12 Inst : Chico Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

Quant Results File: CALLW.RES Ouant Time: Feb 27 10:00 2012

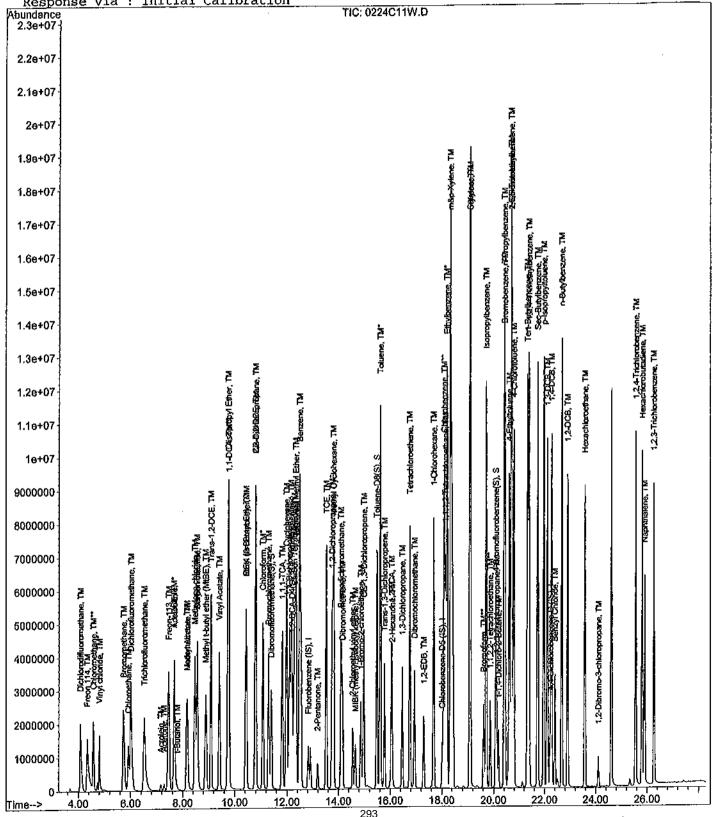
Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

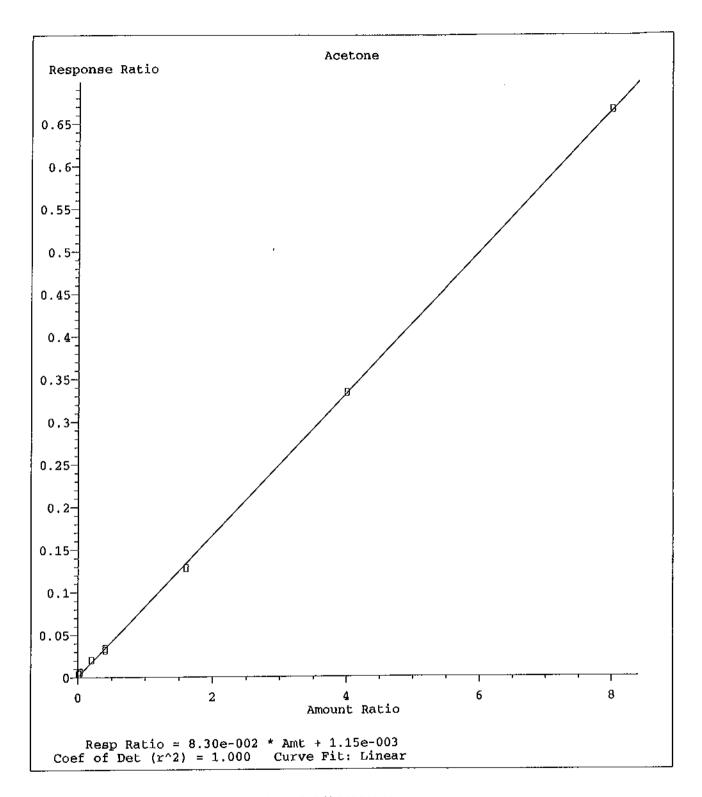
Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration
DataAcq Meth : V8260

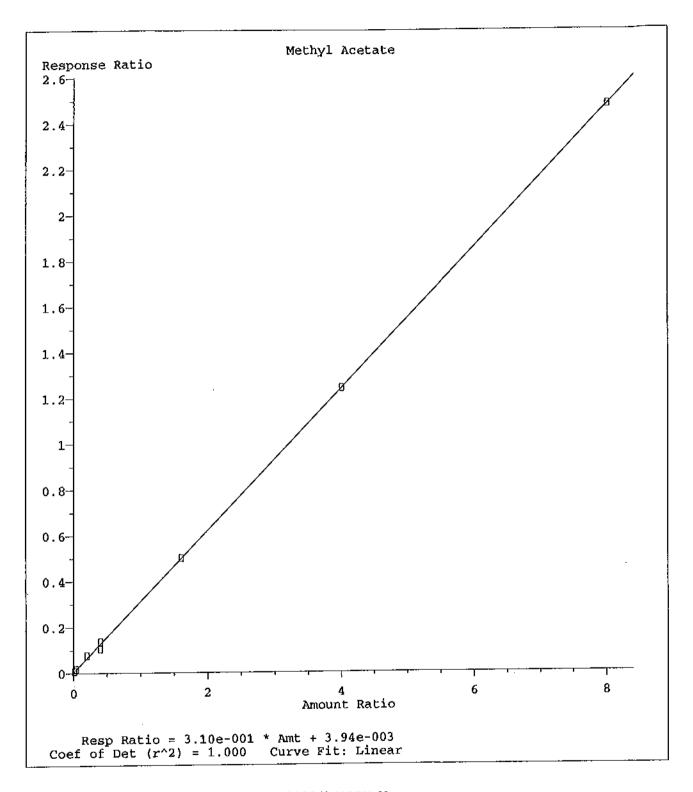
	Compound	R.T.	QIon	Response	Conc Unit	. Qv	alue	
42)		13.18	43	1411909	222.16681	daa		98
	2-Pentanone 1,2-Dichloropropane	13.74	63	3667738	178.27163			99
44)	Bromodichloromethane	14.09	83	4720968	190.98204			95
	Methyl Cyclohexane	13.79	83	5438628	211.26453			95
471	Dibromomethane	14.15	93	1965208	194.63326	ppb		94
481	2-Chloroethyl vinyl ether	14.55	63	1265519	202.14594	ppb		93
49)	1-Bromo-2-chloroethane	14.85	63	3592672	186.29804			92
50)	Cis-1,3-Dichloropropene	14.98	75	5517176	179.48056			96
	Toluene	15.61	91	15241386	176.53948			99
52)	Trans-1,3-Dichloropropene	15.77	75	4160858	187.69207			99
53)	1,1,2-TCA	16,05	83	1931689	173.98318			96
	1,2-EDB	17.30	107	2479731	193.53509		Ħ	94
57)	Tetrachloroethene	16.76	164	3679561	187.92136			97
	1-Chlorohexane	17.68	91	5446553	188.26305			91 97
59)	1,1,1,2-Tetrachloroethane	18.13	131	3692118	190.71290		44	39
60)	m&p-Xylene	18.33		17309120	462.75853		#	93
61)	o-Xylene	19.08	106	6591105	178.99268 183.51934			93
	Styrene	19.10		10637320	193.78350			93
	2-Hexanone	16.08	43	1071068 4061568	185.04595			99
65)	1,3-Dichloropropane	16.47	76 129	3326307	210.01674			96
	Dibromochloromethane	16.94		10056370	179.92973			98
	Chlorobenzene	18.08 18.19		16916220	179.28282			99
	Ethylbenzene	19.61	173	2132257	227.72876			98
69)	Bromoform	14.65	43	1677304	174.60010			92
	MIBK (methyl isobutyl keto	19.71		15916076	173.13239			98
72)	Isopropylbenzene 1,1,2,2-Tetrachloroethane	19.86	83	2438504	185.45424			99
72)	1,2,3-Trichloropropane	20.12	110	236224	179.40957			97
75)	t-1,4-Dichloro-2-Butene	20.19	53	629927	205.94359			87
76)	Bromobenzene	20.44	156	4569110	198.35281			97
771	n-Propylbenzene	20.41		18745650	170.34815			93
78)	4-Ethyltoluene	20.60		12072594	183.61143			98
791	2-Chlorotoluene	20.70		12285321	165.18207			100
80)	1,3,5-Trimethylbenzene	20.68	_	13099061	172.12913			99
81)	4-Chlorotoluene	20.78		11952358	178.58782			99 9 9
82)	Tert-Butylbenzene	21.32		13811958	171.98120			99
83)	1,2,4-Trimethylbenzene	21.38		13709813	173.86253 176.76897			97
84)	Sec-Butylbenzene	21.72		18187043	176.70491			97
85)	p-Isopropyltoluene	21.96		14820869 4501778	200.78259			94
	Benzyl Chloride	22,39	91		178.36155			99
87)	1,3~DCB	22.09	146 146	8353832	179.38902			99
88)	1,4-DCB	22.26 23.57	117	3443586	214.71081			95
	Hexachloroethane	22.67	91	13022830	178.59229			96
90)	n-Butylbenzene	22.89	146	7487276	174.09160			95
91)	1,2-DCB 1,2-Dibromo-3-chloropropan	24.11	155	452122	200.81054			91
	1,2,4-Trichlorobenzene	25.55	180	2340326	175.56980			97
93)	Hexachlorobutadiene	25.80	223	2239781	198.49623			96
94) 95)	Naphthalene	25.91	128	8594665	178.19875			99
96)	1,2,3-Trichlorobenzene	26.26	180	2024118	178.11924	ppb		96
201	-1-10							

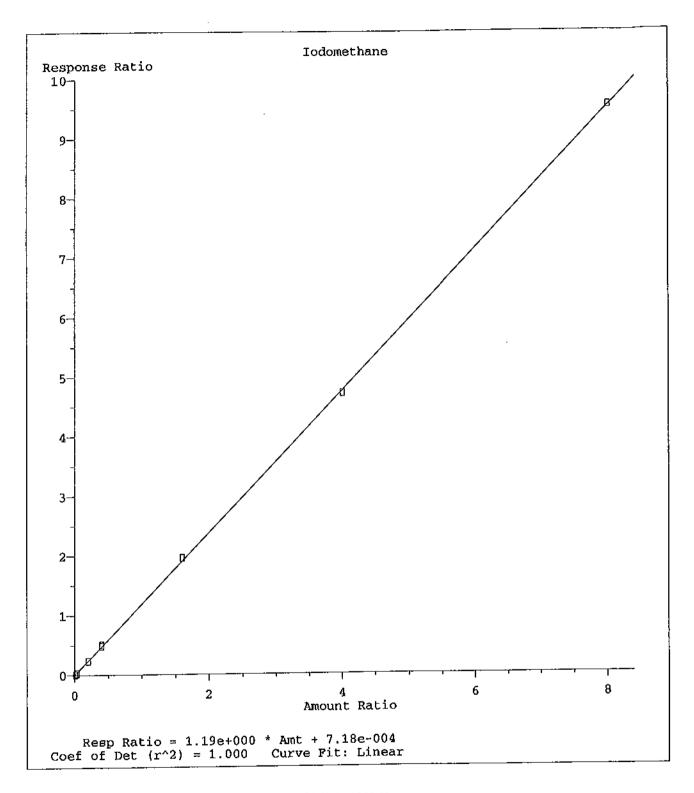
^{(#) =} qualifier out of range (m) = manual integration 0224C11W.D CALLW.M Tue Feb 28 17:35:31 2012

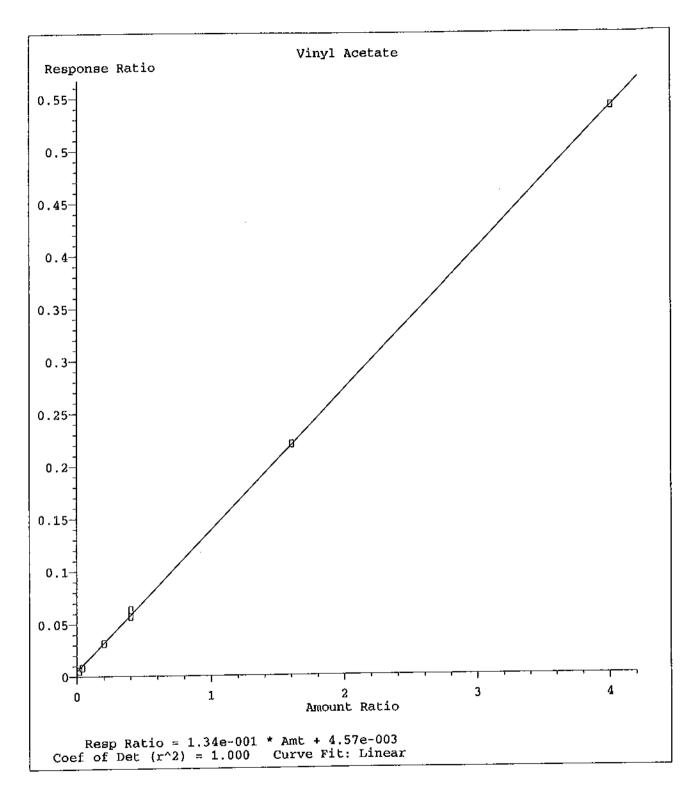
Data File : M:\CHICO\DATA\C120224\0224C11W.D

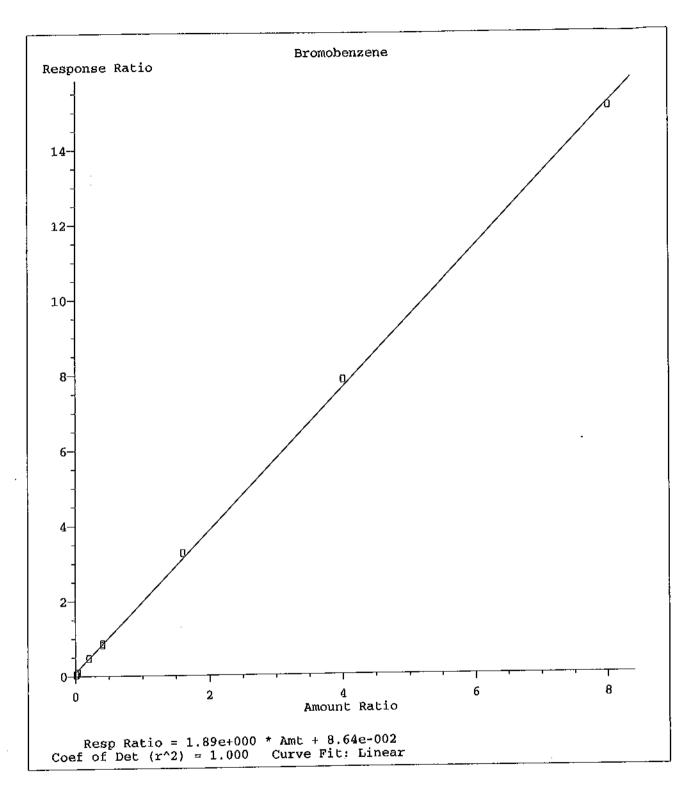

Vial: 1 Operator: RS, ARS : 24 Feb 12 15:55 Acq On : Chico Inst : 200ug/L Vol Std 02-24-12 Sample Multiplr: 1.00 : Water 10mLw/ IS:01-31-12C Misc

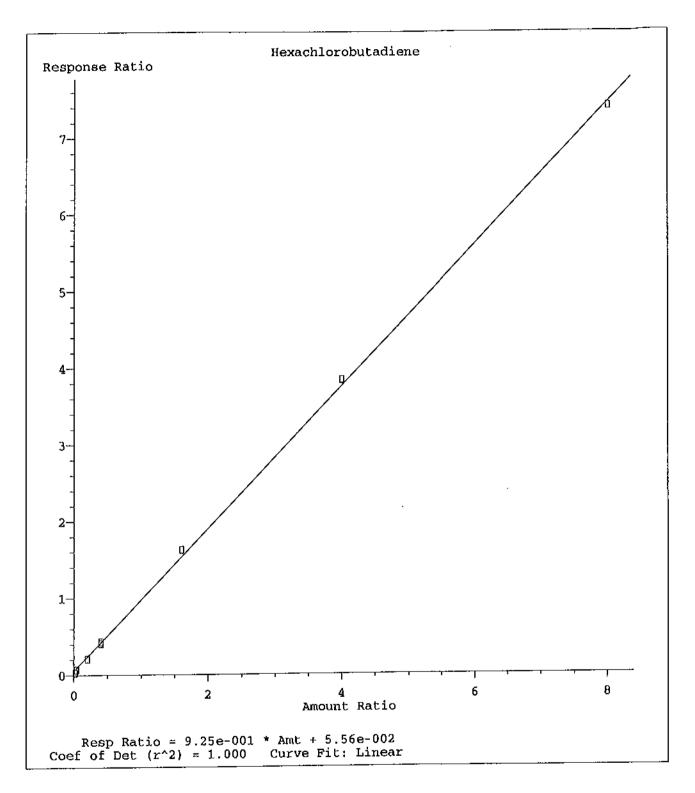

Quant Time: Feb 27 10:00 2012 Quant Results File: CALLW.RES


: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method


: METHOD 8260 Title


Last Update : Tue Feb 28 08:57:24 2012 Response via : Initial Calibration





Data File : M:\CHICO\DATA\C120224\0224C18W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 20:14 Inst : Chico Sample : 120224A LCS-1WC (SS) Multiplr: 1.00 : Water 10mLw/ IS&S:01-31C/01-03E Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:01 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
· · · · · · · · · · · · · · · · · · ·		-	670470	25 00000	nnh	0.00	
1) Fluorobenzene (IS) 54) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	12.81	117	870470 877773	25.00000	ppb	0.00	
54) Chlorobenzene-D5 (15)	20.00	152	302528	25.00000	daa	0.00	
70) 1,4-Dichioropenzene-D (15)	44.20	132	502520				
System Monitoring Compounds					_		
32) Dibromofluoromethane(S)	11.40	1 11	498067	22.95042	ppb	0.00	
Spiked Amount 22.609				ery = 101	.507ত	0.00	
37) 1,2-DCA-D4(S)	12,20	65	385353		.700%	0.00	
Spiked Amount 21,606	15 47	98	Recove	ery = 99 23.32360		0,00	
55) Toluene-D8(S) Spiked Amount 24.195	15.47	90	Recove	ery = 96	.3998		
Spiked Amount 24.195	20 07	95	685389	23.06850	dag	0.00	
Collect Amount 23 751	20.07	, ,,	Recove	ry = 97	,130%		
Spiked Amount 24.195 63) 4-Bromofluorobenzene(S) Spiked Amount 23.751 Target Compounds 2) Dichlorodifluoromethane 3) Freon 114 4) Chloromethane 5) Vinyl chloride 6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane 9) Trichlorofluoromethane 10) Acetonitrile 11) Acrolein 12) Acetone 13) Freon-113 14) 1,1-DCE 15) t-Butanol 16) Methyl Acetate 17) Iodomethane 18) Acrylonitrile 19) Methylene chloride 20) Carbon disulfide 21) Methyl t-butyl ether (MtBE 22) Trans-1,2-DCE	•	March	hun thack: (257)	058)(25)	(1)= /[<u>.</u> 44	15/6/6059	12_
Target Compounds		rigon	(670)	(C)(C)(OC)	Qva	lue Ans 4 cm	, –
2) Dichlorodifluoromethane	4.09	85	237058	11.44517	<u>aaa</u>	95 05	
3) Freon 114	4,35	85	144299	12.29324	ppo	95	
4) Chloromethane	4.58	50	P./ T.T.S	10 11271	րրը Իր	89	
5) Vinyl chloride	4.83	0.4	72440 72420	10.11271	ppb nnb	95	
6) Bromomethane	5.73	54 64	45044	10.93333	ppb	99	
7) Chloroethane	5.55 6.01	67	450854	10.50156	dad	98	
8) Dichioroffuoromethane	6.53	103	50984	10.50233	ppb	99	
10) Acetonitrile	7.66	41	125342	120.41342	ug/l	100	
11) Acrolein	7.15	56	156697	115.52967	ppb	97	
12) Acetone	7.28	43	22081	9.45363	bbp	91	
13) Freon-113	7.46	101	196231	11.35954	ppb	94	
14) 1,1-DCE	7.68	96	200332	10.29832	ppb	97	
15) t-Butanol	7,75	59	15814	123.32/4/ 9 70846	րոր Միր	100	
16) Methyl Acetate	0.19	1/12	277A36	11 82861	ppb	98	
17) Iodomethane	9.10	53	30674	9.59912	daa	99	
18) Acrylonitrile	8.47	84	224816	10.56657	ppb	90	
20) Carbon digulfide	8.56	76	183360	11.19957	ppb	100	
21) Methyl t-butyl ether (MtBB	8.90	73	393887	9.89272	ppb	95	
22) Trans-1,2-DCE	9.09	96	249506	10.21348	ppb	90	
15) t-Butanol 16) Methyl Acetate 17) Iodomethane 18) Acrylonitrile 19) Methylene chloride 20) Carbon disulfide 21) Methyl t-butyl ether (MtBE 22) Trans-1,2-DCE 23) Diisopropyl Ether 24) 1,1-DCA 25) Vinyl Acetate 26) Ethyl tert Butyl Ether	9.74	45	731878	10.16510	ppp	90 99	
24) 1,1-DCA	9.78	63	391176	10,38097	րը Մինո	94	
25) Vinyl Acetate	9.41	43 60	537050	9 83000	րըն	100	
26) Ethyl tert Butyl Ether	10.43	43	22696	9.83000 9.07018 9.99177	daa	96	
27) MEK (2-Butanone) 28) Cis-1,2-DCE	10.42	96	265741	9.99177	ppb	95	
29) 2,2-Dichloropropane	10.79	77	272979	9.18043	ppb	89	
30) Chloroform	11.07	85	258016	10.22868		98	
31) Bromochloromethane	11.29	128	100688	10.35564		98	
33) 1,1,1-TCA	11.82	97	329250	10.14192		98	
34) Cyclohexane	11.98	56	333767	11.23553		97 97	
35) 1,1-Dichloropropene	12.09	75	291980	10.50872 11.30234		97	
36) 2,2,4-Trimethylpentane	12.16	57 117	549841 274441	10.25962		99	
38) Carbon Tetrachloride	12.27 12.32	117 73	432842	9.57658		94	
39) Tert Amyl Methyl Ether	12.32		195759	9.50097		97	
40) 1,2-DCA 41) Benzene	12.48		889046	10.31101	ppb	99	
41) Benzene 42) TCE	13.51		247177	11.09683	ppb	98	

Data File : M:\CHICO\DATA\C120224\0224C18W.D

Vial: 1 Operator: RS, ARS Inst : Chico Acq On : 24 Feb 12 20:14 Sample : 120224A LCS-1WC (SS) Multiplr: 1.00 : Water 10mLw/ IS&S:01-31C/01-03E Misc

Quant Results File: CALLW.RES Quant Time: Feb 27 10:01 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

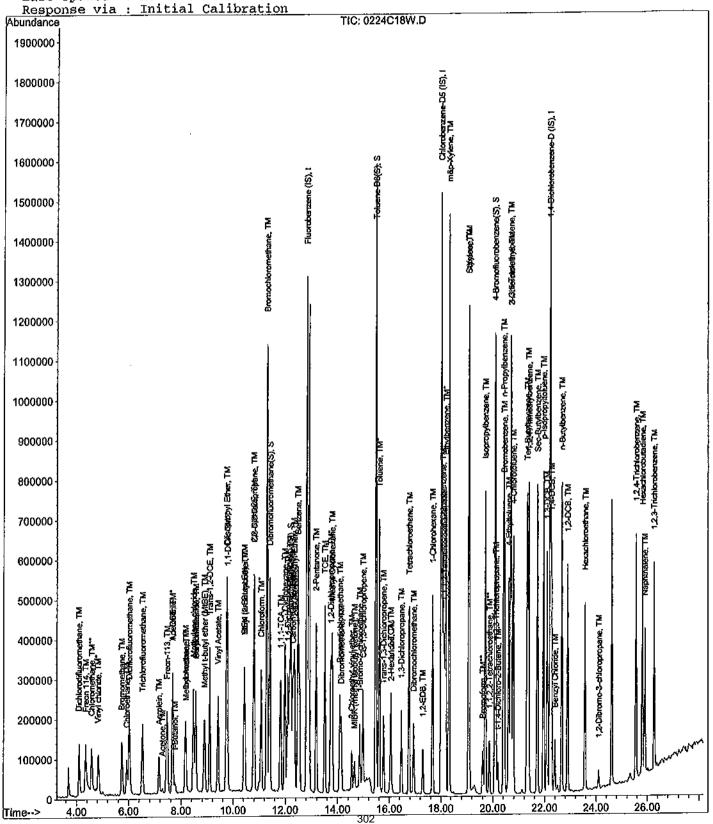
Title : METHOD 8260
Last Update : Mon Feb 27 09:57:16 2012
Response via : Initial Calibration
DataAcq Meth : V8260

·	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue	
421	7 Destance	13,17	43	808993	124.81808	ggb		98
431	2-Pentanone 1,2-Dichloropropane	13.73	63	216822	10.33350			96
451	Bromodichloromethane	14.09	83	255364	10.12935			97
46)		13.79	83	284158	10.82324			99
47)	Dibromomethane	14.14	93	106992	10.39011			98
48)	2-Chloroethyl vinyl ether	14.55	63	63904	10.00886			97
49)	1-Bromo-2-chloroethane	14.85	63	199600	10.14873			97
50)	Cis-1,3-Dichloropropene	14.97	75	294565	9.39598			100
	Toluene	15.60	91	904059	10.26773			98
52)	Trans-1,3-Dichloropropene	15.76	75	215998	9.55373			99 92
53)	1,1,2-TCA	16.05	83	109871	9.70316		#	99
56)	1,2-EDB	17.29	107	130227	9,51011		#	96
	Tetrachloroethene	16.76	164	216530	10.34731			96
58)	1-Chlorohexane	17.67	91	316646	10,24110 9,84854			99
	1,1,1,2-Tetrachloroethane	18.12	131	203769	19.54323			96
	m&p-Xylene	18.32	106	781246 397847	10.10933			100
	o-Xylene	19.06	106 104	636094	10.26834			96
	Styrene	19.08 16.07	43	50123	8.48528			95
	2-Hexanone	16.46	76	227430	9.69533			96
65)	1,3-Dichloropropane	16.93	129	167838	9.91542			97
66)	Dibromochloromethane	18.07	112	594917	9.95972			99
	Chlorobenzene	18.18	91	1011572	10.03139			97
68)	Ethylbenzene	19,60	173	90831	9.07698	ppb		96
711	Bromoform MIBK (methyl isobutyl keto	14.65	43	86654	9.02281	ppb		99
72)	Isopropylbenzene	19.69		974944	10.60822	ppb		98
72)	1,1,2,2-Tetrachloroethane	19.86	83	119532	9.09323	ppb		97
7/1)	1,2,3-Trichloropropane	20.12	110	12026	9.13615	ppb		98
75)	t-1,4-Dichloro-2-Butene	20.18	53	26694	8.72956			86
76)	Bromobenzene	20.44	156	266059	10.44187			94
771	n-Propylbenzene	20.40	91	1166172	10.60035			98
78)	4-Ethyltoluene	20.60	105	685741	10.43229			97
79)	2-Chlorotoluene	20.70	91	755526	10.16123			100 100
80)	1,3,5-Trimethylbenzene	20.68		769535	10.11494			98
81)	4-Chlorotoluene	20.78		680721	10.17391			99
82)	Tert-Butylbenzene	21.32	119	819316	10.20464 10.28056			98
83)	1,2,4-Trimethylbenzene	21.37		810442	10.28050			100
84)	Sec-Butylbenzene	21.71	105	1066994	10.40449			99
85)	p-Isopropyltoluene	21.95	119	872419 165104	7.36580			94
86)	Benzyl Chloride	22.39		506453	10.52680			97
87)	1,3-DCB	22.09		478973	10.28825			94
88)	1,4-DCB	22.26 23.56		170559	10.63747			96
89)	Hexachloroethane	22.66		766813	10.51883			99
	n-Butylbenzene	22.88		441250	10.26264			97
91)	1,2-DCB 1,2-Dibromo-3-chloropropan	24.10		19800	8.79664			87
_ :		25.54		138432	10.38797	ppb		94
93)	Hexachlorobutadiene	25.80		128336	9.87923	ppb		97
94) 0E)	Naphthalene	25.89		472836	9.80634			98
96)		26.26		115430	10.16048	ppb		97
30)	1/2/3 111011101000110110							

^{(#) =} qualifier out of range (m) = manual intagration 0224C18W.D CALLW.M Mon Feb 27 12:23:37 2012

Data File: M:\CHICO\DATA\C120224\0224C18W.D

Vial: 1 Operator: RS, ARS Acq On : 24 Feb 12 20:14 : Chico Inst : 120224A LCS-1WC (SS) Sample : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00 Misc


Quant Time: Feb 27 10:01 2012

Ouant Results File: CALLW.RES

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator) Method

: METHOD 8260 Title

Last Update : Mon Feb 27 10:38:53 2012

Data File : M:\CHICO\DATA\C120224\0229C02W.D

Vial: 1 Acq On : 29 Feb 12 13:59 Operator: RS, ARS Sample : 10ug/L Vol Std 02-29-12 Inst : Chico Misc : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 8:41 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 10:38:53 2012
Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
13					
1) Fluorobenzene (IS) 54) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	12.80	96	571375	25.00000 pp	b -0.02
70) 1 4-Dighlorobongon D (IS)	17.98	117	478912	25.00000 pp	b -0.02
(15) 1,4"DICHIOLODGHZGHG"D (15)	22,18	152	259968	25.00000 pp	b -0.02
System Monitoring Compounds					
32) Dibromofluoromethane(S)	11,39	111	425560	23.01071 ppl	h 0.01
Spiked Amount 22,609	11,00		Recove	ery = 101.7	b -0.01
37) 1,2-DCA-D4(S)	12.19	65	326564	21.42072 ppl	-0.01
Spiked Amount 21,606				= 99.1	
55) Toluene-D8(S)	15.46	98	1497353	23.18228 ppl	-0.02
Spiked Amount 24.195			Recove	erv = 95.8	12%
63) 4-Bromofluorobenzene(S)	20.05	95	604710	23.68221 ppl	-0.02
Spiked Amount 23.751			Recove	ery = 99.73	L1%
Markot Compounds					
Target Compounds 2) Dichlorodifluoromethane	4 00	0.5	400000		Qvalue
3) From 114	4.08	85	180009 113811	10.19811 ppl	96 94
4) Chloromotheno	4.34	85	113811	11.37747 ppl	94
5) Vinyl chloride	4.57	50	59506 53200 38168	9.58957 ppk 11.38712 ppk 9.65357 ppk 10.12258 ppk	97
6) Bromomethane	4.83	62	53200	11.38712 ppt	91
7) Chloroethane	5.73	94 64	36E40	9.6535/ pp.	89
3) Freon 114 4) Chloromethane 5) Vinyl chloride 6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane	5.94	67	33340	10,12258 ppr	96
9) Trichlorofluoromethane	6 51	103	382525 43624	10.45528 pph 10.54473 pph	100
10) Acetonitrile	7 64	41	107556	10.54473 pp. 121.24701 ug/	98
11) Acrolein	7.04	56	134528		1 100
8) Dichlorofluoromethane 9) Trichlorofluoromethane 10) Acetonitrile 11) Acrolein 12) Acetone 13) Freon-113 14) 1,1-DCE 15) t-Butanol 16) Methyl Acetate 17) Iodomethane 18) Acrylonitrile 19) Methylene chloride 20) Carbon disulfide	7 26	43	19503	9.81532 ppb	100
13) Freon-113	7.45	101	170115	11.55564 ppb	# 8 3 96
14) 1,1-DCE	7.65	96	162906	9 82678 ppb	96
15) t-Butanol	7.75	59	11075	9.82678 ppb 101.51347 ppb	96
16) Methyl Acetate	8.16	43	67136	8.88204 ppb 10.09705 ppb 9.66801 ppb	97
17) Iodomethane	8.14	142	274538	10.09705 ppb	98
18) Acrylonitrile	8.55	53	26328	9.66801 ppb	94
19) Methylene chloride	8.44	84	172226	9,49869 ppb	94
20) Carbon disulfide	8.53	76	138304	9.91264 ppb	97
21) Methyl t-butyl ether (MtBE	8.87	73	319313	9.41063 ppb	99
22) Trans-1,2-DCE	9.07	96	209988	10.08661 ppb	96
23) Diisopropyl Ether	9.72	45	599332	9.76784 ppb	99
24) 1,1-DCA	9.76	63	322748	10.05049 ppb	97
22) Trans-1,2-DCE 23) Diisopropyl Ether 24) 1,1-DCA 25) Vinyl Acetate 26) Ethyl tert Butyl Ether 27) MEK (2-Butanone) 28) Cis-1,2-DCE	9.39	43	30976	9.66801 ppb 9.49869 ppb 9.91264 ppb 9.41063 ppb 10.08661 ppb 9.76784 ppb 10.05049 ppb 9.44105 ppb 9.44025 ppb 8.12218 ppb	99
20) Ethyl tert Butyl Ether	10.41	59	439528	9.44025 ppb	96
27) MER (2*Bucanone)	10.41	43	17320	8.12218 ppb	99
29) 2,2-Dichloropropane				Siland Pho	24
30) Chloroform	10.78 11.06	77	262924	10.37581 ppb	94
31) Bromochloromethane	11.28	85 128	211516	9.83953 ppb	98
33) 1,1,1-TCA	11.20	128 97	81681 283733	9.85776 ppb	94
34) Cyclohexane	11.97	56	265907	10.25563 ppb	98
35) 1,1-Dichloropropene	12.07	75	235899	10.50360 ppb 9.96279 ppb	92 99
36) 2,2,4-Trimethylpentane	12,14	57	451264	10.88479 ppb	
38) Carbon Tetrachloride	12.26	117	241210	10.58122 ppb	92 96
39) Tert Amyl Methyl Ether	12.31	73	359922	9.34432 ppb	94
40) 1,2~DCA	12.34	62	163988	9.33935 ppb	94 98
41) Benzene	12.46	78	720062	9.79953 ppb	99
42) TCE	13.49	95	200808	10.57864 ppb	95

^{(#) =} qualifier out of range (m) = manual integmation 0229C02W.D CALLW.M Thu Mar 01 09:08:24 2012

(Not Reviewed) Quantitation Report

Data File: M:\CHICO\DATA\C120224\0229C02W.D

Vial: 1 Acq On : 29 Feb 12 13:59 Sample : 10ug/L Vol Std 02-29-12 Operator: RS, ARS Inst : Chico Misc : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

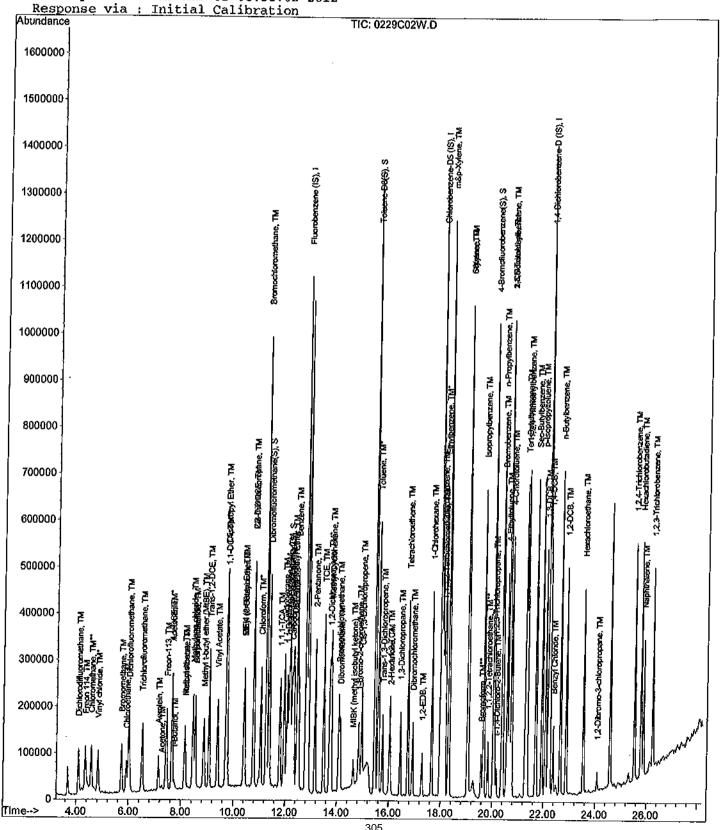
Ouant Results File: CALLW.RES Ouant Time: Mar 1 8:41 2012

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 10:38:53 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Compound	R.T.	QIon	Response	Conc Unit	Qvalu	e -
43) 2-Pentanone	13.16	43	637069	115.33930	ppb	97
44) 1,2-Dichloropropane	13.72	63	180741	10.10785	ppb	97
45) Bromodichloromethane	14.07	83	217846	10.13980	ppb	94
46) Methyl Cyclohexane	13.77	83	254301	11.36590	ppb	96
47) Dibromomethane	14.12	93	87760	10.00054		98
49) 1-Bromo-2-chloroethane	14.84	63	163466	9.75296		91
50) Cis-1,3-Dichloropropene	14.95	75	253564	9.49088		97
51) Toluene	15.59	91	768664	10.24406	ppb	99
52) Trans-1,3-Dichloropropene	15.76	75	186670	9.68849		99
53) 1,1,2-TCA	16.03	83	90273	9.35505	ppb	93
56) 1,2-EDB	17.28	107	110327	9.37473		99
57) Tetrachloroethene	16.74	164	184043	10.23343		98
58) 1-Chlorohexane	17.65	91	270394	10.17566		97
59) 1,1,1,2-Tetrachloroethane	18.11	131	178339	10.02935		97
60) m&p-Xylene	18.30	106	674407	19.63014		99
61) o-Xylene	19.05	106	352747	10.42947		90
62) Styrene	19.07	104	550200	10.33456		99
64) 2-Hexanone	16.06	43	44170	8.70060		89
65) 1,3-Dichloropropane	16,44	76	187210	9.28618		96
66) Dibromochloromethane	16.92	129	140925	9.68727		97
67) Chlorobenzene	18.05	112	522975	10.18743	~ ~ _	98
68) Ethylbenzene	18.17	91	874844	10.09457		99
69) Bromoform	19.59	173	79216	9.21114		92
71) MIBK (methyl isobutyl keto	14.63	43	71849	8.70602		86
72) Isopropylbenzene	19.68	105	834618	10.56809		100
73) 1,1,2,2-Tetrachloroethane	19.84	83	107029	9.47504		92
74) 1,2,3-Trichloropropane	20.10	110	10316	9,12009		87
75) t-1,4-Dichloro-2-Butene	20.17	53	23444	8.92187		83
76) Bromobenzene	20.42	156	221869	10.09821		97 99
77) n-Propylbenzene	20.38	91	1004697	10.62768		94
78) 4-Ethyltoluene	20.59	105	613119	10.85451		98
79) 2-Chlorotoluene	20.68	91	650138	10.17532		100
80) 1,3,5-Trimethylbenzene	20.66	105	681298	10.42120		98
81) 4-Chlorotoluene	20.76	91	585139 728994	10.17709 10.56613		97
82) Tert-Butylbenzene	21.30	119	709292	10.47046		99
83) 1,2,4-Trimethylbenzene	21.36	105		10.56068		100
84) Sec-Butylbenzene	21.70 21.93	105 119	933430 758883	10.53213		99
85) p-Isopropyltoluene	22.37	91	186798	9,69796		90
86) Benzyl Chloride		146	431982	10.44885		97
87) 1,3-DCB	22.07 22.24	146	419940	10.49696		96
88) 1,4-DCB	23.55	117	155312	11.27234		97
89) Hexachloroethane	22.65	91	668583	10.67281		98
90) n-Butylbenzene	22.87	146	389261	10.53564		99
91) 1,2-DCB 92) 1,2-Dibromo-3-chloropropan	24.09	155	15970	8.25662		84
93) 1,2,4-Trichlorobenzene	25.54	180	119072	10.39799		97
94) Hexachlorobutadiene	25.79	223	112198	10.07851		96
95) Naphthalene	25.89	128	385646	9.30745		9°
96) 1,2,3-Trichlorobenzene	26.24	180	97936	10.03191	~ ~ .	97
30) 1,2,3-111CHIOTODEHZEHE	20,24	100	2.250	_0.00291	F-E-~	

Data File : M:\CHICO\DATA\C120224\0229C02W.D


Vial: 1 : 29 Feb 12 13:59 : 10ug/L Vol Std 02-29-12 Acq On Operator: RS, ARS Sample Inst : Chico : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 8:41 2012 Quant Results File: CALLW.RES

Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Thu Mar 01 08:58:02 2012

Quantitation Report (Not Reviewed)

Vial: 1

Data File : M:\NEO\DATA\N120229\0229N04S.D

Acq On : 29 Feb 12 12:48
Sample : Vol Std 02-29-12 @2ug/kg
Misc : Soil 5mL w/ IS:10-20-11 Operator: SV, DG, RS Inst : Neo Multiplr: 1.00

Ouant Time: Mar 12 13:39 2012 Ouant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev (Min)
1) Fluorobenzene (IS)	13,25	96	291904	50,00000 p	nh	0.00
51) Chlorobenzene-D5 (IS)						0.00
67) 1,4-Dichlorobenzene-D (IS)		152	96848			0.00
., ., .,				P .		
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.85	111	15647	4.98882 p		0.00
Spiked Amount 41.312			Recove		077%	
34) 1,2-DCA-D4(S)	12.64	65	18004	4.70238 p		0.00
Spiked Amount 41.649			Recove	ry = 11.	290%	
52) Toluene-D8(S)	15.90	98	61146	6,33211 p		0.00
Spiked Amount 35.274	00 50	0.5			951%	
60) 4-Bromofluorobenzene(S)	20.50	95	24578			0.00
Spiked Amount 35.584			Recove.	ry = 16.3	201%	
Target Compounds					Qva2	مال
2) Dichlorodifluoromethane	4.53	85	22548	2.15089 pj		84
3) Chloromethane	5.04	50	34944	2.46424 p		100
4) Vinyl chloride	5.27	62	5680	1.97720 p		82
5) Bromomethane	6.25	94	7683	6.03595 p		77
6) Chloroethane	6.40	64	11766	2.12288 p		86
7) Dichlorofluoromethane	6.48	67	34303	2.11147 p		85
· ·	7.02	101	17461	2.08717 pj		80
9) Acrolein	7.65	56	40922	51.91709 p		99
10) Acetone	7.78	43	12534	0.83684 p		89
11) Freon-113	7.96	101	12529	1.87934 p		76
12) 1,1-DCE	8.18	96	10932	1.92080 pr	pb #	57
13) t-Butanol	8,27	59	8101	71.28376 pp	b	99
14) Methyl Acetate	8,66	43	28695	-2.58371 pp		89
15) Iodomethane	8.65	142	1881	4.75691 pr		84
16) Acrylonitrile	9.04	53	4381	2.10854 pr		91
17) Methylene chloride	8.94	86	11703	3.02731 pr		69
18) Carbon disulfide	9.06	76	50499	2.04912 pr		99
	9.36	73	26181	1.98920 pr		92
20) Trans-1,2-DCE	9.56	96	11990	1.94019 pr		77
21) Diisopropyl Ether	10.21	45	50073	1,94458 pg		93
22) 1,1-DCA 23) Vinyl Acetate	10.24 10.19	63 43	23217 40194	1,84295 pg 1,99043 pg		91 97
24) Ethyl tert Butyl Ether	10.19	59	37708	2.03295 pr		84
25) MEK (2-Butanone)	10.86	43	14620	2.56154 pr		93
26) Cis-1,2-DCE	11.26	96	12983	2.05208 pr		92
27) 2,2-Dichloropropane	11.24	77	20676	2.15026 pr		83
28) Chloroform	11.53	83	20298	1.94835 pr		85
29) Bromochloromethane	11.77	128	4825	2,32228 pr		73
31) 1,1,1-TCA	12.27	97	20051	2.09833 pr		93
32) Cyclohexane	12.44	56	26100	1.95243 pg		90
33) 1,1-Dichloropropene	12.54	75	19153	2.04604 pr		85
35) Carbon Tetrachloride	12.72	117	11896	1.66555 pg		88
36) Tert Amyl Methyl Ether	12.76	73	27839	1.99043 pg		87
37) 1,2-DCA	12.79	62	14391	2.00860 pg		79
38) Benzene	12.93	78	49744	2.02929 pr		88
39) TCE	13.94	95	13111	2.11808 pp		72
40) 2-Pentanone	13.60	43	263173	51.84765 pr		99
41) 1,2-Dichloropropane	14.16	63	13073	1.98087 pr		93
42) Bromodichloromethane	14.52	83	13638	1.83736 pg	ob #	64

^{(#) =} qualifier out of range (m) = manual int30gration 0229N04S.D NALLS.M Mon Mar 12 13:40:06 2012

Ouantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120229\0229N04S.D Vial: 1

Acq On : 29 Feb 12 12:48
Sample : Vol Std 02-29-12 @2ug/kg
Misc : Soil 5mL w/ IS:10-20-11 Operator: SV,DG,RS Inst : Neo Multiplr: 1.00

Quant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Response via : Initial Calibration

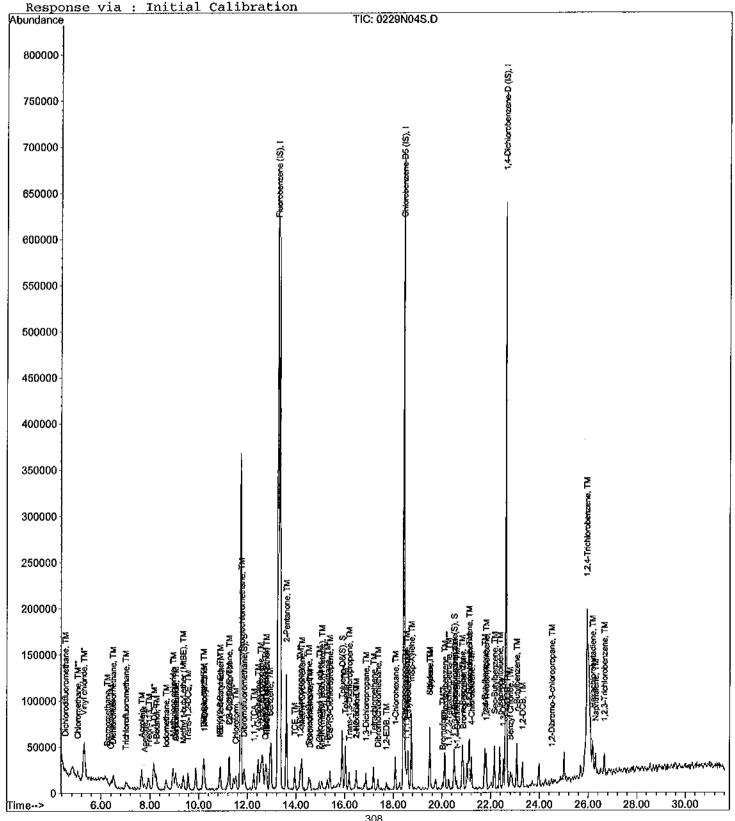
DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	:
43)	Dibromomethane	14.57	93	6875	2.05065	ppb	93
	Methyl Cyclohexane	14.25	83	21517	2,00612		55
	2-Chloroethyl vinyl ether	14.97	63	5449	1.79653		100
-	1-Bromo-2-chloroethane	15.29	63	14588	1.96625		82
	Cis-1,3-Dichloropropene	15.39	75	18334	2.02122		85
	Toluene	16.04	91	51453	2.19490		77
	Trans-1,3-Dichloropropene	16.19	75	15580	2.02087		77
	1,1,2-TCA	16.47 17.72	83	6306 821 0	1.82129 1.91731		81 80
	1,2-EDB Tetrachloroethene	17.18	107 129	8035	1.88128		86
	1-Chlorohexane	18.09	91	17711	1,85923		92
	1,1,1,2-Tetrachloroethane	18.55	131	9002	2.03564		66
	m&p-Xylene	18.75	106	37970	4.18933		98
	o-Xylene	19.49	106	16960	2.04911		54
	Styrene	19.49	78	17525	2,07021		65
	2-Hexanone	16.48	43	9821	2.08599		94
	1,3-Dichloropropane	16.88	76	13393	1.80020		90
	Dibromochloromethane	17.37	129	9592	1.89401	ppb	81
64)	Chlorobenzene	18.50	112	24517	1.85025	ppb #	77
	Ethylbenzene	18.60	91	53330	2,00147		89
	Bromoform	20.04	173	5472	1.80431		92
	MIBK (methyl isobutyl keto	15.06	43	14419	2.09804		81
69)	Isopropylbenzene	20.12	105	46693	1.95523		99
	1,1,2,2-Tetrachloroethane	20.27	83	10281	1.89215		97
	1,2,3-Trichloropropane	20.54	110	2389	1.90094		91
	t-1,4-Dichloro-2-Butene	20.60 20.87	53 156	3452 9847	1.89013 2.00466		93 99
	Bromobenzene n-Propylbenzene	20.87	91	59731	1.88160		90
	2-Chlorotoluene	21.12	91	40206	2.01291		77
	1,3,5-Trimethylbenzene	21.10	105	34339	1.84722		88
	4-Chlorotoluene	21.21	91	33483	1.99839		94
	Tert-Butylbenzene	21.76	119	37197	2.02378		87
	1,2,4-Trimethylbenzene	21.82	105	34576	1.87258		82
	Sec-Butylbenzene	22.15	105	51983	1.93603	ppb	98
	p-Isopropyltoluene	22.37	119	40652	2.01121		93
82)	Benzyl Chloride	22.80	91	19397	2.06131		85
83)	1,3-DCB	22.51	146	17026	1.89351		92
:	1,4-DCB	22.68	146	18659	2.13280		90
85)	n-Butylbenzene	23.07	91	48390	2.13317		94
86)	1,2-DCB	23.30	146	16073	2.01890		91
	1,2-Dibromo-3-chloropropan	24.51	155	1434	1.90783		71 94
	1,2,4-Trichlorobenzene	25.94 26.19	$\frac{180}{225}$	12637 3139	2.36202 1.93715		93
•	Hexachlorobutadiene Naphthalene	26.30	128	23424	2,35929		93 92
	1,2,3-Trichlorobenzene	26.67	180	10031	2.23939		96
211	T'T' T' T' T'T' TOTONGHYCHE	20.07	100	T003T	2,20,000	P	20

Data File: M:\NEO\DATA\N120229\0229N04S.D

Vial: 1 : 29 Feb 12 12:48 Operator: SV,DG,RS Inst

: Vol Std 02-29-12 @2ug/kg : Neo Sample Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00


Quant Results File: NALLS.RES Quant Time: Mar 12 13:39 2012

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On

Last Update : Mon Mar 12 13:19:57 2012

(Not Reviewed) Quantitation Report

Vial: 1

Data File : M:\NEO\DATA\N120229\0229N05S.D

Acq On : 29 Feb 12 13:26 Operator: SV, DG, RS : Vol Std 02-29-12 @5ug/kg Inst : Neo Samp1e Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00

Ouant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012

Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards		QIon	Response	Conc Units	Dev	(Min)
1) Fluorobenzene (IS)	13.26	96	265984	50.00000	daa	0,00
51) Chlorobenzene-D5 (IS)	18.43	117	192768	50.00000		0.00
67) 1,4-Dichlorobenzene-D (IS)	22.63	152	87304	50.00000		0.00
System Monitoring Compounds	11 00	111	25522	7 17722	nnh	0.02
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.86	111	25572 Recove	7.17233 erv = 17	.361%	0.02
Spiked Amount 41.312 34) 1,2-DCA-D4(S)	12.65	65	30168	7.22025		0.00
Spiked Amount 41.649	12.03	03			,336%	0.00
52) Toluene-D8(S)	15.91	98		8,57390		0.00
Spiked Amount 35.274					.307%	
60) 4-Bromofluorobenzene(S)	20.50	95		7.86390		0.00
Spiked Amount 35.584			Recove		.100%	
<u>-</u>						
Target Compounds		0.5	E 4 E 4 B	5 51000		lue
2) Dichlorodifluoromethane	4.53	85	54547			90
3) Chloromethane	5.04	50	73411	5.68141		96
4) Vinyl chloride	5.28	62	14719	5.62296		99
5) Bromomethane	6.22	94	14171	7.78111		92
6) Chloroethane	6.42	64	25802	5.10899		93
7) Dichlorofluoromethane	6.50	67	77441	5.23129		93
8) Trichlorofluoromethane	7.02	101	36845	4.83338		94
9) Acrolein	7.66	56	77828	108.36121		97
10) Acetone	7.78	43	25292	8.01045		68
11) Freon-113	7.93	101	33224	5.46923		9 4 72
12) 1,1-DCE	8.17	96 50	28835	5.56016		100
13) t-Butanol	8.26	59 43	15849	153.05177 3.89085		84
14) Methyl Acetate	8.67 8.66	$\frac{43}{142}$	60176 12341	7.25167		91
15) Iodomethane 16) Acrylonitrile	9.05	53	10663	5.63214		82
17) Methylene chloride	8.96	86	20583	5.84323		80
18) Carbon disulfide	9.06	76	125122	5.57189		99
19) Methyl t-butyl ether (MtBE		73	60671	5.05893		97
20) Trans-1,2-DCE	9.57	96	30552	5.42561		89
21) Diisopropyl Ether	10.20	45	116887	4.98164		100
22) 1,1-DCA	10.25	63	61697	5.37471		95
23) Vinyl Acetate	10.21	43	95950	5.21454		99
24) Ethyl tert Butyl Ether	10,88	59	87125	5,15490		93
25) MEK (2-Butanone)	10.88	43	29657	5.70249		97
26) Cis-1,2-DCE	11.25	96	29078	5.04392		77
27) 2,2-Dichloropropane	11,25	77	44722	5.10424		81
28) Chloroform	11.53	83	49581	5,22293		79
29) Bromochloromethane	11.76	128	10642	5.62115	ppb	81
31) 1,1,1-TCA	12.27	97	49431	5.67703	ppb	99
32) Cyclohexane	12.43	56	67751	5.56205		96
33) 1,1-Dichloropropene	12.54	75	42872	5.02616		94
35) Carbon Tetrachloride	12.74	117	32817	5.04244		84
36) Tert Amyl Methyl Ether	12.76	73	63665	4.99550		96
37) 1,2-DCA	12.81	62	34367	5.26416		92
38) Benzene	12.92	78	115340	5.16377		97
39) TCE	13.95	95	29467	5.22429		86
40) 2-Pentanone	13.60	43	503049	108.76335		99
41) 1,2-Dichloropropane	14.16	63	30241	5.02877		98
42) Bromodichloromethane	14.53	83	35195	5,20366	aqq	97

^{(#) =} qualifier out of range (m) = manual integration 0229N05S.D NALLS.M Mon Mar 12 13:40:13 2012

Quantitation Report (Not Reviewed)

Vial: 1

Data File: M:\NEO\DATA\N120229\0229N05S.D

Acq On : 29 Feb 12 13:26 Sample : Vol Std 02-29-12 @5ug/kg Misc : Soil 5mL w/ IS:10-20-11 Operator: SV, DG, RS Inst : Neo Multiplr: 1.00

Ouant Time: Mar 12 13:39 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

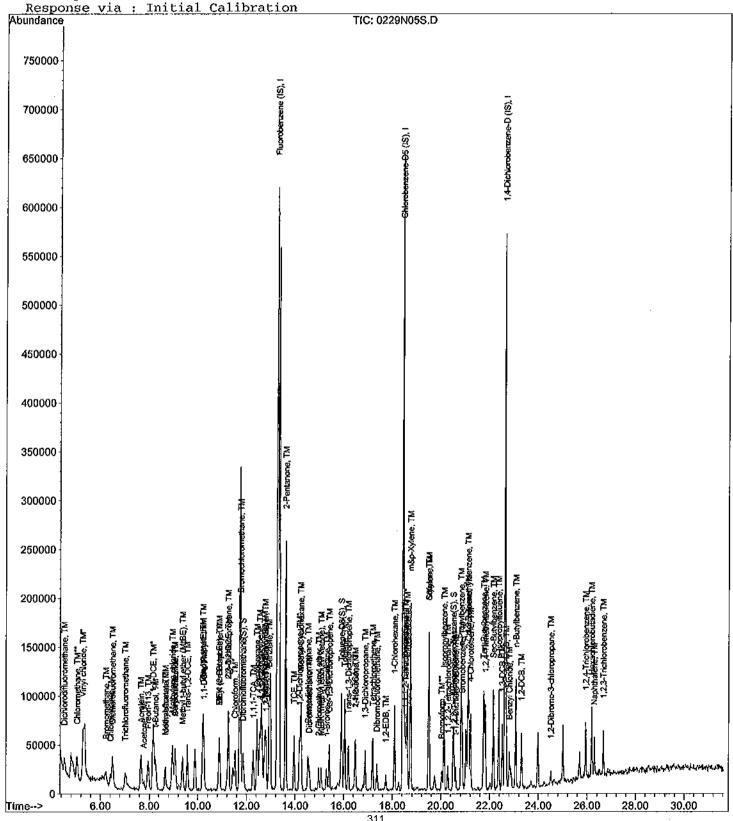
Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	. Qvalu	1e
43)	Dibromomethane	14.58	93	16637	5.44602	ppb	81
	Methyl Cyclohexane	14.22	83	52655	5.38765	ppb	99
45)	2-Chloroethyl vinyl ether	14.96	63	14503	5.24759		81
	1-Bromo-2-chloroethane	15.30	63	35020	5.18017		100
47)	Cis-1,3-Dichloropropene	15.39	75	41334	5.00089		84
	Toluene	16.03	91	110478	5.17206		98
	Trans-1,3-Dichloropropene	16,19	75	36319	5.16999		89
		16.48	83	16884	5.35161		85
	1,2-EDB	17.73	107	19361	5.02283		90
	Tetrachloroethene	17.20	129	19369	5.03784 4.97884		92 96
	1-Chlorohexane	18.08	91	42694	5,15655		82
_ :	1,1,1,2-Tetrachloroethane	18.54 18.74	131 106	20527 84804	10.39421		97
	m&p-Xylene	19.50	106	38593	5.17986		95
	o-Xylene	19.50	78	40969	5.37629		99
	Styrene 2-Hexanone	16.48	43	22582	5.32832	ppb	85
	1,3-Dichloropropane	16.88	76	34505	5.15224		96
_ :	Dibromochloromethane	17.36	129	23432	5.13988		95
	Chlorobenzene	18.49	112	62944	5.27701		91
	Ethylbenzene	18.60	91	129349	5.39277		98
	Bromoform	20.03	173	13683	5,01208		91
	MIBK (methyl isobutyl keto	15.07	43	31907	5.15015		91
	Isopropylbenzene	20.12	105	109607	5.09144	ppb	97
	1,1,2,2-Tetrachloroethane	20.29	83	24922	5.08814		88
71)	1,2,3-Trichloropropane	20.55	110	6397	5,64657		64
72)	t-1,4-Dichloro-2-Butene	20.60	53	8354	5.07425		91
73)	Bromobenzene	20.88	156	22880	5.16713		89
	n-Propylbenzene	20.83	91	148811	5.20019		97
	2-Chlorotoluene	21,13	91	92095	5.11478		97
	1,3,5-Trimethylbenzene	21.10	105	84468	5.04058		96
	4-Chlorotoluene	21.21	91	75043	4.96846	ppb	98
	Tert-Butylbenzene	21.76	119	86754	5.23602		90
	1,2,4-Trimethylbenzene	21.82	105	87163	5.23667		90 91
	Sec-Butylbenzene	22.15 22.37	105 119	122767 95184	5.07211 5.22393		90
	p-Isopropyltoluene	22.81	91	46830	5.52063		96
	Benzyl Chloride 1,3-DCB	22.52	146	40304	4.97233		97
84)	1,4-DCB	22.68	146	37717	4.78251		89
	n-Butylbenzene	23.07	91	103218	5.04756		96
	1,2-DCB	23.30	146	37830	5.27120		90
	1,2-Dibromo-3-chloropropan	24.51	155	4089	6,03483		98
	1,2,4-Trichlorobenzene	25.94	180	23793	4.93339		97
	Hexachlorobutadiene	26.18	225	8786	6.01478		81
	Naphthalene	26.29	128	44576	4.98055		98
	1,2,3-Trichlorobenzene	26.66	180	20492	5.07488	ppb	93

Data File: M:\NEO\DATA\N120229\0229N05S.D

Vial: 1 : 29 Feb 12 13:26 Operator: SV,DG,RS

: Vol Std 02-29-12 @5ug/kg : Neo Inst Sample Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00


Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On

Last Update : Mon Mar 12 13:19:57 2012

Quantitation Report (Not Reviewed)

Vial: 1

Data File: M:\NEO\DATA\N120229\0229N06S.D

Acq On : 29 Feb 12 14:04 Operator: SV,DG,RS : Vol Std 02-29-12 @10ug/kg Inst : Neo Sample

: Soi1 5mL w/ IS:10-20-11 Misc Multiplr: 1.00

Quant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B
Last Update : Mon Mar 12 13:19:57 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Unit	s De	v(Min)
1) Fluorobenzene (IS)	13,26	96	300480	50.00000	ppb	0.00
51) Chlorobenzene-D5 (IS)			206848	50.00000	ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	85352	50.00000	ppb	0,00
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.86	111	50469			0.02
Spiked Amount 41.312	40.01		Recove		6.286%	
34) 1,2-DCA-D4(S)	12.64	65	53351	10.34101		-0.01
Spiked Amount 41.649 52) Toluene-D8(S)	15.90	98		ery = 26 12.29323	4.829% nnh	0.00
Spiked Amount 35.274	13.50	,,		ery = 3		
60) 4-Bromofluorobenzene(S)	20.50	95	61100	11.76356		0.00
Spiked Amount 35.584			Recove	ery = 3	3. 0 60%	
Target Compounds						value
Dichlorodifluoromethane	4.54	85	104130			97
3) Chloromethane	5.04	50	138731	9.50404		97
4) Vinyl chloride	5.28	62	29984	10.13949		96
5) Bromomethane	6.20 6.40	94 64	24958 55980	9.70919 9.81194		89 95
6) Chloroethane7) Dichlorofluoromethane	6.50	67	156145	9.33696		94
		101	85975	9,98354		97
9) Acrolein	7.03	56	111860			99
10) Acetone	7.78	43	34208	10.59051		88
11) Freon-113	7.94	101	66621	9.70790		89
12) 1,1-DCE	8.17	96	56906			90
13) t-Butanol	8.33	59	14195	121.34219		# 94
14) Methyl Acetate	8.67 8.65	43 142	105316 28483	10.13594 10.27347		94 97
15) Iodomethane 16) Acrylonitrile	9.06	53	10416	0 02002		81
17) Methylene chloride	8.95	86	41475	10.42247		94
18) Carbon disulfide	9.07	76	249305	9.82742		99
19) Methyl t-butyl ether (MtBE		73	120773	8.91431		95
20) Trans-1,2-DCE	9.56	96	58971	9.27017		99
21) Diisopropyl Ether	10.21	45	245127	9.24778		99
22) 1,1-DCA	10.26	63	123935	9,55707		99
23) Vinyl Acetate 24) Ethyl tert Butyl Ether	10.21 10.89	43 59	188951 179219	9.08993 9.38646	ppp	# 97 # 89
25) MEK (2-Butanone)	10.87	43	54972	9.35662		97
26) Cis-1,2-DCE	11.26	96				90
27) 2,2-Dichloropropane		77	86879	8.77737	ppb	93
28) Chloroform	11.54	83	99164	9.24683	ppb	96
29) Bromochloromethane		128	20641	9.65101	ppb	92
31) 1,1,1-TCA	12.27	97	92109	9.36405	ppb	94
32) Cyclohexane	12.43	56	129238	9.39181		95
33) 1,1-Dichloropropene	12.54	75 117	90467 66443	9.38842		94
35) Carbon Tetrachloride 36) Tert Amyl Methyl Ether	12.73 12.76	117 73	134992	9.03714 9.37619		98 95
37) 1,2-DCA	12.81	62	68230	9.25129		99
38) Benzene	12.92	78	238697	9,45963		98
39) TCE	13.95	95	58461	9.17482	ppb	94
40) 2-Pentanone	13,60	43	721186	138.02556	ppb	100
41) 1,2-Dichloropropane	14.17	63	62597	9.21424		98
42) Bromodichloromethane	14.53	83	73062	9.56224	dqq	95

^{(#) =} qualifier out of range (m) = manual integration 0229N06S.D NALLS.M Mon Mar 12 13:40:21 2012

Data File : M:\NEO\DATA\N120229\0229N06S.D Vial: 1

Acq On : 29 Feb 12 14:04 Sample : Vol Std 02-29-12 @10ug/kg Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00 Misc

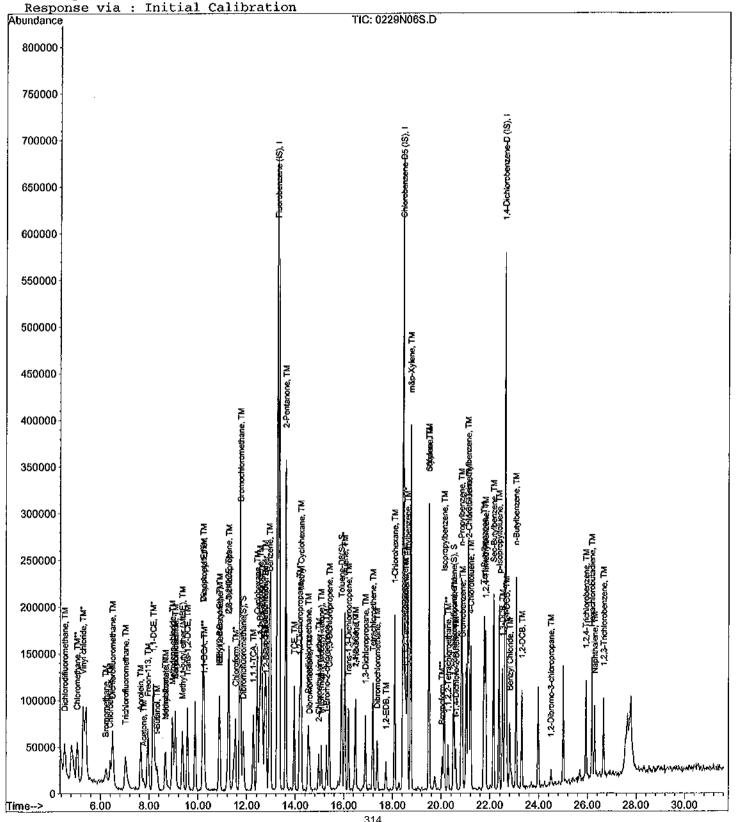
Quant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue	
431	Dibromomethane	14.58	93	32520	9.42311	ppb		95
,	Methyl Cyclohexane	14.23	83	107770	9.76107	ppb		94
	2-Chloroethyl vinyl ether	14.96	63	26923	8.62314	ppb		92
	1-Bromo-2-chloroethane	15.29	63	71792	9.40035			90
	Cis-1,3-Dichloropropene	15.39	75	83156	8.90581			94
	Toluene	16.03	91	229976	9.53039			99
	Trans-1,3-Dichloropropene	16.18	75	72868	9.18190			92
	1,1,2-TCA	16.47	83	32082	9.00141		#	79 86
	1,2-EDB	17.73	107	39008	9.43100		#	96
		17.19	129	40831	9.89717 9.65980			93
	1-Chlorohexane	18.08 18.54	91 131	88884 38758	9.07358			82
	1,1,1,2-Tetrachloroethane	18.74	106	175517	20.04832			95
	m&p-Xylene	19.49	106	81119	10.14648			93
	o-Xylene Styrene	19.51	78	79272	9.69462			91
-	2-Hexanone	16.49	43	42920	9.43781			92
	1,3-Dichloropropane	16.88	76	69409	9.65858			98
	Dibromochloromethane	17.36	129	46077	9.41915			96
	Chlorobenzene	18.50	112	126190	9.85921			99
	Ethylbenzene	18.60	91	252858	9.82446	ppb		94
	Bromoform	20.03	173	28461	9.71561			93
	MIBK (methyl isobutyl keto	15.06	43	62549	10.32702			94
	Isopropylbenzene	20.12	105	223420	10.61560			100
70)	1,1,2,2-Tetrachloroethane	20.28	83	50099	10.46227			87
	1,2,3-Trichloropropane	20.53	110	11111	10.03187		u	95
-	t-1,4-Dichloro-2-Butene	20.60	53	16447	10.21843		Ħ	78
	Bromobenzene	20.88	156	45609	10.53572			83 100
	n-Propylbenzene	20.83	91	286769	10.25030 10.77726			91
	2-Chlorotoluene	21.13 21.09	91 105	189713 174822	10.77728			94
	1,3,5-Trimethylbenzene	21.09	91	152411	10.32163			99
	4-Chlorotoluene Tert-Butylbenzene	21.75	119	172703	10.66184			97
	1,2,4-Trimethylbenzene	21.81	105	170675	10.48850			97
	Sec-Butylbenzene	22.15	105	257162	10.86762			97
	p-Isopropyltoluene	22.37	119	185276	10.40094			96
	Benzyl Chloride	22.81	91	82249	9,91781	ppb		94
	1,3-DCB	22,51	146	83439	10.52934	ppb		97
	1,4-DCB	22.68	146	79798	10.34978			91
	n-Butylbenzene	23.06	91	211333	10.57094			97
	1,2-DCB	23.31	146	69889	9.96099			97
	1,2-Dibromo-3-chloropropan	24.51	155	5843	8.82072		#	72
	1,2,4-Trichlorobenzene	25.94	180	49168	10.42795			97
	Hexachlorobutadiene	26.18	225	14752	10.32998		π	95
	Naphthalene	26.29	128	89836	10.26709 10.80188		#	88 86
91)	1,2,3-Trichlorobenzene	26.65	180	42642	10.00100	րբո	π	30

Vial: 1

Data File: M:\NEO\DATA\N120229\0229N06S.D


Acq On : 29 Feb 12 14:04 Operator: SV,DG,RS Sample : Vol Std 02-29-12 @10ug/kg Inst : Neo Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Vial: 1

Data File : M:\NEO\DATA\N120229\0229N07S.D

Acq On : 29 Feb 12 14:42 Sample : Vol Std 02-29-12 @20ug/kg Operator: SV, DG, RS Inst : Neo Multiplr: 1.00 : Soil 5mL w/ IS:10-20-11 Misc

Ouant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Internal Standards		QIon	Response	Conc Units	Dev	(Min)
		96	306816	50.00000	ppb	0.00
1) Fluorobenzene (IS) 51) Chlorobenzene-D5 (IS)	18.44	117	211200	50.00000		0.00
67) 1,4-Dichlorobenzene-D (IS)	22.63	152	93712	50.00000	ppb	0.00
System Monitoring Compounds			406262	00 02011	1.	0 00
30) Dibromofluoromethane(S) Spiked Amount 41.312	11,86	111	106363 Recove	20.03211 ery = 48		0.02
34) 1,2-DCA-D4(S)	12.65	6 5	113624	19.72197	ppb .353%	0.00
Spiked Amount 41.649 52) Toluene-D8(S)	15,90	98	Recove 363488	21.57891		0.00
Spiked Amount 35.274			Recove			
60) 4-Bromofluorobenzene(S)	20.50	95	118705	20.62012		0.00
Spiked Amount 35.584			Recove	ery = 57	.948%	
Target Compounds		0.5	000500	00 02000	_	alue
2) Dichlorodifluoromethane	4,52	85	229528 299619	20.83090 20.10212		98 94
3) Chloromethane4) Vinyl chloride	5.04 5.27	50 62	62032	20.10212		96
5) Bromomethane	6.19	94	75158	20.19029		90
6) Chloroethane	6.38	64	123407	21.18357		99
7) Dichlorofluoromethane		67	344690	20,18569		100
8) Trichlorofluoromethane	7.01	101	184666	21.00085	ppb	91
9) Acrolein	7.65	56	168130	202.93675		98
10) Acetone	7.79	43	62314	22.86818		96
11) Freon-113	7.94	101	149205	21.29292		93
12) 1,1-DCE	8.16	96	124779	20.85864		82
13) t-Butanol	8.25	59	9227	77.24574		95 96
14) Methyl Acetate	8.66	$\begin{array}{c} 43 \\ 142 \end{array}$	227547 79232	29.52755 20.47939		98
15) Iodomethane 16) Acrylonitrile	8.65 9.04	53	42748	19.57434		57
17) Methylene chloride	8.95	86	82645	20.33940		90
18) Carbon disulfide	9.06	76	512207	19.77387		93
19) Methyl t-butyl ether (MtBE		73	276793	20.00831		96
20) Trans-1,2-DCE	9.56	96	132708	20.43072	ppb	96
21) Diisopropyl Ether	10.20	45	532349	19.66892		100
22) 1,1-DCA	10.24	63	273695	20.66976		98
23) Vinyl Acetate	10.20	43	409504	19.29331		96
24) Ethyl tert Butyl Ether	10.89	59	370671	19.01270		97 100
25) MEK (2-Butanone)	10.88 11.25	43	116539	19.42614 20.49200		96
26) Cis-1,2-DCE	11.25 11.24	96 77	136271 214387	21.21220		90
27) 2,2-Dichloropropane 28) Chloroform	11.53	83	218245	19.93062		99
29) Bromochloromethane	11.33		44444			89
31) 1,1,1-TCA	12.26	97	204694	20.38000	daa	97
32) Cyclohexane	12.44	56	299361	21.30550		95
33) 1,1-Dichloropropene	12.53	75	208595	21,20040	ppb	89
35) Carbon Tetrachloride	12.73	117	161165	21.46791		93
36) Tert Amyl Methyl Ether	12.76	73	292146	19.87266		96
37) 1,2-DCA	12.80	62	149044	19.79152		96
38) Benzene	12.92	78	510561	19.81584		98
39) TCE	13.95	95	133295	20.48722		95 98
40) 2-Pentanone	13.60	43 63	1028355 138068	192.74932 19.90382		96
41) 1,2-Dichloropropane 42) Bromodichloromethane	14.17 14.53	83	155495	19,93067		96
42) Dromodrontoromechane			100400	15,55007		

^{(#) =} qualifier out of range (m) = manual integration 0229N07S.D NALLS.M Mon Mar 12 13:40:29 2012

Data File: M:\NEO\DATA\N120229\0229N07S.D

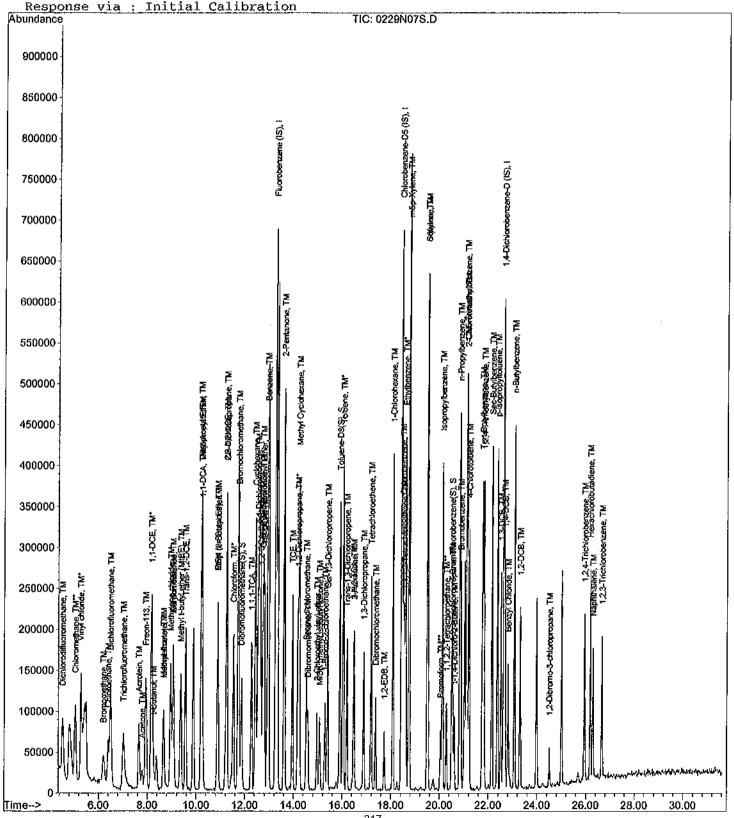
Vial: 1 Operator: SV,DG,RS Acq On : 29 Feb 12 14:42 Sample : Vol Std 02-29-12 @20ug/kg Misc : Soil 5mL w/ IS:10-20-11 Inst : Neo Multiplr: 1.00

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
43)	Dibromomethane	14.58	93	67231	19.07879	daa	95
44)	Methyl Cyclohexane	14.22	83	239151	21,21335		93
	2-Chloroethyl vinyl ether	14.97	63	64941	20,37034	ppb	93
	1-Bromo-2-chloroethane	15.29	63	151865	19.47437		92
	Cis-1,3-Dichloropropene	15.40	75	183483	19.24479	ppb	94
	Toluene	16.03	91	487008	19.76523		96
49)	Trans-1,3-Dichloropropene	16.19	75	158996	19.62094		97
	1,1,2-TCA 1,2-EDB	16.47 17.73	83 107	72002 86505	19.78478		92
	Tetrachloroethene	17.73	129	93070	20.48344 22.09471		85 94
	1-Chlorohexane	18.09	91	203314	21.64060		92
	1,1,1,2-Tetrachloroethane	18.55	131	86094	19.74001		100
	m&p-Xylene	18.74	106	356972	39.93469		93
-	o-Xylene	19,49	106	160559	19.66912		94
59)	Styrene	19.51	78	166314	19.92035		95
	2-Hexanone	16.49	43	92107	19.83634	ppb	93
62)	1,3-Dichloropropane	16.88	76	148207	20.19870	ppb	92
	Dibromochloromethane	17.37	129	98335	19.68761		99
-	Chlorobenzene	18.50	112	267397	20.46120		95
-	Ethylbenzene	18.60	91	529075	20.13292		97
	Bromoform	20.04	173	59572	19.91680		99
	MIBK (methyl isobutyl keto Isopropylbenzene	15.07 20.12	43 105	12 4 123 453867	18.66489 j		95
	1,1,2,2-Tetrachloroethane	20.12	83	103137	19.64127 1 19.61687 1	րրե Արև	96 94
	1,2,3-Trichloropropane	20.54	110	23000	18.91365		80
	t-1,4-Dichloro-2-Butene	20.60	53	34599	19.57851		99
	Bromobenzene	20.88	156	88457	18.61077		95
74)	n-Propylbenzene	20.83	91	610269	19.86755	dad	97
	2-Chlorotoluene	21.13	91	374415	19.37239	ppb	95
76)	1,3,5-Trimethylbenzene	21.10	105	348324	19.36469 j		99
-	4-Chlorotoluene	21.21	91	314879	19.42200 1		9.5
	Tert-Butylbenzene	21.76	119	334526	18.80965		93
79}	1,2,4-Trimethylbenzene	21.82	105	357136	19.98920 r		99
	Sec-Butylbenzene	22.15	105	512205	19.71469 r		99
	p-Isopropyltoluene Benzyl Chloride	22.37 22.81	119 91	3883 7 1 177130	19.85724 p	ago	95
	1,3-DCB	22.52	146	175778	19.45340 g 20.20297 g		92 95
	1,4-DCB	22.69	146	163041	19.25991 g		93
	n-Butylbenzene	23.07	91	428245	19.50999 p		96
	1,2-DCB	23.31	146	142353	18.47902 r		94
	1,2-Dibromo-3-chloropropan	24.51	155	14640	20.12926 p	dac	91
	1,2,4-Trichlorobenzene	25.94	180	98793	19.08364 g	opb	97
	Hexachlorobutadiene	26.18	225	30352	19.35 7 73 ĝ	pb	91
	Naphthalene	26.29	128	188587	19.63031 g		96
91)	1,2,3-Trichlorobenzene	26.66	180	83775	19.32834 g	ppb	90

Vial: 1


Data File: M:\NEO\DATA\N120229\0229N07S.D

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Vial: 1

Data File: M:\NEO\DATA\N120229\0229N08S.D

Acq On : 29 Feb 12 15:20 Sample : Vol Std 02-29-12 @50ug/kg Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00 Misc

Ouant Results File: NALLS.RES Ouant Time: Mar 12 13:39 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.26	96	323392	50.00000	0.00 dqq
51) Chlorobenzene-D5 (IS)	18.44		221376	50.00000	ppb 0.00
67) 1,4-Dichlorobenzene-D (IS)			925 92	50.00000	ppb 0.00
System Monitoring Compounds	11 00	444	099160	46 02047	
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.86	111	277162 Recove		.906%
34) 1,2-DCA-D4(S) Spiked Amount 41.649	12.66	65	297607 Recove	46.48255 erv = 111	
52) Toluene-D8(S)	15.91	98	919317	47.40594	ppb 0.00
Spiked Amount 35.274 60) 4-Bromofluorobenzene(S)	20.50	95	Recove 324018	ery = 134 50.56458	392% ppb 0.00
Spiked Amount 35.584	20.50	93	Recove		
Target Compounds					Qvalue
Dichlorodifluoromethane	4.54	85	479143	41.25591	
Chloromethane	5.05	50	607821	38.68983	
Vinyl chloride	5,29	62	129144	40.57765	
5) Bromomethane	6.22	94	163824	37.12694	
6) Chloroethane	6.41	64	251565	40.96928	
7) Dichlorofluoromethane	6.50	67	821727	45.65531	
8) Trichlorofluoromethane	7.03	101	391067 197015	42.19391	
9) Acrolein	7.65 7.7 7	56 43	106588	225.61269 40,26858	
10) Acetone 11) Freon-113	7.96	101	328057	44.41707	
12) 1,1-DCE	8.17	96	286804	45.48607	
13) t-Butanol	8.30	59	27536	218.70746	
14) Methyl Acetate	8.66	43	323560	42.14717	
15) Iodomethane	8.67	142	200103	42.99102	~ ~
16) Acrylonitrile	9.05	53	103359	44.90228	
17) Methylene chloride	8,95	86	191538	44,72242	
18) Carbon disulfide	9.07	76	1205296	44,14572	
19) Methyl t-butyl ether (MtBE	9.37	73	675190	46.30522	
20) Trans-1,2-DCE	9.57	96	320910	46.87254	
21) Diisopropyl Ether	10.21	45	1321837	46.33516	
22) 1,1-DCA	10.25	63	631565	45,25174	
23) Vinyl Acetate	10.21	43	1064651	47.58879	
24) Ethyl tert Butyl Ether	10.88	59	932149	45.36169	ppb 98
25) MEK (2-Butanone)	10.88	43	244710 311613	38.70041	
26) Cis-1,2-DCE	11.26			44.45752	
27) 2,2-Dichloropropane 28) Chloroform	11.26 11.54	77 83	477603 535423	44.83355 46.38978	
28) Chloroform 29) Bromochloromethane	11.76		97283		ppb 97
31) 1,1,1-TCA	12.28	97	472809	44.66152	
32) Cyclohexane	12.44	56	646457	43.65007	
33) 1,1-Dichloropropene	12.54	75	467595	45.08776	
35) Carbon Tetrachloride	12,73	117	393848	49.77331	
36) Tert Amyl Methyl Ether	12.77	73	731207	47.18947	ppb 98
37) 1,2-DCA	12.81	62	355261	44.75699	ppb 99
38) Benzene	12.94	78	1210933	44.58960	ppb 97
39) TCE	13.95	95	303175	44,20905	ppb 98
40) 2-Pentanone	13.60	43	1306473	232.32661	
41) 1,2-Dichloropropane	14.18	63	337347	46.13909	
42) Bromodichloromethane	14.53	83	376162	45.74347	ppb 100

Vial: 1

Data File: M:\NEO\DATA\N120229\0229N08S.D

Acq On : 29 Feb 12 15:20 Sample : Vol Std 02-29-12 @50ug/kg Operator: SV, DG, RS Inst : Neo : Soil 5mL w/ IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qva1	ue
43)	Dibromomethane	14.59	93	171107	46.06784	daa	94
	Methyl Cyclohexane	14.24	83	542210	45.63030		99
	2-Chloroethyl vinyl ether	14.96	63	166005	49.40254		98
	1-Bromo-2-chloroethane	15.30	63	380466	46.28820	ppb	99
47)	Cis-1,3-Dichloropropene	15.41	75	461972	45.97077		98
	Toluene	16.05	91	1139974	43.89442		97
	Trans-1,3-Dichloropropene	16.19	75	396414	46.41210		93
	1,1,2-TCA	16.47	83	179560	46.81069	ppb	94
	1,2-EDB	17.73	107	208948	47.20231		
	Tetrachloroethene	17.19	129	218010	49.37627		96
	1-Chlorohexane	18.08	91	470250	47.75229		95
	1,1,1,2-Tetrachloroethane	18.56	131	222656	48.70486		93
-	m&p-Xylene	18.75	106	866384	92.46767		99
	o-Xylene Styrene	19.49 19.51	106 78	418425 415470	48.90254		91 95
	2-Hexanone	16.48	43	231930	47.47568 47.65288		96
	1,3-Dichloropropane	16.88	76	366153	47.60809		97
	Dibromochloromethane	17.37	129	247383	47.25178		94
	Chlorobenzene	18.50	112	634989	46,35580		98
	Ethylbenzene	18.60	91	1293159	46.94668		99
	Bromoform	20.04	173	147120	46.92589		99
68)	MIBK (methyl isobutyl keto	15.06	43	327110	49.78388		
69)	Isopropylbenzene	20,12	105	1111062	48.66324		97
70)	1,1,2,2-Tetrachloroethane	20.28	83	259591	49.97200		98
	1,2,3-Trichloropropane	20.53	110	63492	52.84309		97
	t-1,4-Dichloro-2-Butene	20.60	53	86714	49.66232		79
	Bromobenzene	20.88	156	232838	49.58013		96
	n-Propylbenzene	20.83	91	1486640	48.98358		97
	2-Chlorotoluene	21.13	91	906138	47.45106	ppp	99
	1,3,5-Trimethylbenzene	21.10	105	842813	47.42203	ppb	93
	4-Chlorotoluene	$21.21 \\ 21.76$	91	767587	47.91811		99 99
	Tert-Butylbenzene 1,2,4-Trimethylbenzene	21.70	119 105	850665 860294	48.40956 48.73381		96
	Sec-Butylbenzene	22.15	105	1240734	48.333332		98
	p-Isopropyltoluene	22.37	119	947428	49.02752		96
	Benzyl Chloride	22.81	91	398709	44.31811		96
83)		22.52	146	408019	47.46274		100
	1,4-DCB	22.68	146	405061	48.42835		95
	n-Butylbenzene	23.07	91	1049254	48.38015		96
86)	1,2-DCB	23,31	146	359197	47,19182		95
	1,2-Dibromo-3-chloropropan	24.51	155	34892	48.55504	ppb	89
	1,2,4-Trichlorobenzene	25.95	180	230368	45.03798		92
	Hexachlorobutadiene	26.19	225	76152	49.15529		94
	Naphthalene	26.29	128	445511	46.93486		98
91)	1,2,3-Trichlorobenzene	26.66	180	201757	47.11188	ppb	98

Data File: M:\NEO\DATA\N120229\0229N08S.D

Vial: 1 : 29 Feb 12 15:20 Operator: SV, DG, RS : Vol Std 02-29-12 @50ug/kg : Neo Inst : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:39 2012

Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Acq On Sample

Misc

Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration Abundance TIC: 0229N08S.D 2300000 2200000-2100000 2000000 1900000 1800000 1700000 1600000 1500000 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000-400000 300000 200000 100000 24.00 26.00 10.00 16.00 20,00 22.00 28.00 Time-->

Data File : M:\NEO\DATA\N120229\0229N09S.D

Vial: 1 Acq On : 29 Feb 12 15:58 Operator: SV,DG,RS Sample : Vol Std 02-29-12 @100ug/kg : Neo : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00 Misc

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Internal Standards	R.T.	QIon	Response	Conc (Jnits	. De	v(Min)
1) Fluorobenzene (IS)	13.26	96	311872	50.00			0.00
51) Chlorobenzene-D5 (IS)	18.44		212800	50. 0 0			0.00
67) 1,4-Dichlorobenzene-D (IS)	22.63	152	96312	50.00	0000	ppb	0.00
System Monitoring Compounds 30) Dibromofluoromethane(S)	11.86	111	621452	104.52	1020	nnh	0.02
Spiked Amount 41.312	11,60	111	Recove			.009%	0.02
34) 1,2-DCA-D4(S)	12.65	65	649883	$\bar{1}03.10$			0.00
Spiked Amount 41.649 52) Toluene-D8(S)	15,90	98	Recove 1933948	ery = 99.82		1,553%	0.00
Spiked Amount 35.274	15,50	70	Recove			.996%	0.00
60) 4-Bromofluorobenzene(S)	20.50	95	648119	103.10			0.00
Spiked Amount 35.584			Recove	ery =	289	.760%	
Target Compounds							zalue
2) Dichlorodifluoromethane	4.53	85	1079973	96.42	438	ppb	95
3) Chloromethane	5.04	50	1313692	86.70			95
4) Vinyl chloride 5) Bromomethane	$5.28 \\ 6.21$	62 94	286656 419763	93,39 91,46			99 92
6) Chloroethane	6.42	64	569728	96.21			99
7) Dichlorofluoromethane	6.50	67	1710817	98.56			99
8) Trichlorofluoromethane	7.02	101	878675	98.30			97
9) Acrolein	7.65	56	249344	296.08			100
10) Acetone	7.79	43	231550	97.06			100
11) Freon-113	7.94	101	730222	102.51			94
12) 1,1-DCE	8.17	96	5 93 353	97.57	965	ppb	98
13) t-Butanol	8.34	59	35328	290.96			96
14) Methyl Acetate	8.66	43	697057	100.18			100
15) Iodomethane	8.66	142	444813	93.41			96
16) Acrylonitrile	9.04 8.95	53	222839	100.38			96
17) Methylene chloride 18) Carbon disulfide	9.07	86 76	396251 2564210	95.93 97.38			94 99
19) Methyl t-butyl ether (MtBE	9.37	73	1436366	102.14			97
20) Trans-1,2-DCE	9.57	96	658814	99.78			89
21) Diisopropyl Ether	10.21	45	2796815	101.65			98
22) 1,1-DCA	10.25	63	1337461	99.36			98
23) Vinyl Acetate	10.21	43	2257905	104.65			98
24) Ethyl tert Butyl Ether	10.88	59	1962542	99.03			100
25) MEK (2-Butanone)	10.88	43	550176	90.22			97
26) Cis-1,2-DCE	11.26	96	682550	100.97			96
27) 2,2-Dichloropropane	11.26	77	1037396	100.97	957	ppb	96
28) Chloroform	11,54	83	1124344	101.01			97
29) Bromochloromethane				89.46 99.53	005	ppo and	94 97
31) 1,1,1-TCA 32) Cyclohexane	12.28 12.43	97 56	1016240 1440876	100.88			97
33) 1,1-Dichloropropene	12,53	75	1040881	104.07			97
35) Carbon Tetrachloride	12.73	117	835290	109.46			95
36) Tert Amyl Methyl Ether	12.77	73	1478435	98.93			99
37) 1,2-DCA	12.81	62	761766	99.51	482j	dqq	100
38) Benzene	12.94	78	2607082	99.54			98
39) TCE	13.95	95	673278	101.80	407 j	ppb	95
40) 2-Pentanone	13.61	43	1645545	303.43			96
41) 1,2-Dichloropropane	14.18	63	709701	100.65			98
42) Bromodichloromethane	14.52	83	815309	102.80	858]	agg	99

^{(#) =} qualifier out of range (m) = manual integration 0229N09S.D NALLS.M Mon Mar 12 13:40:44 2012

Data File : M:\NEO\DATA\N120229\0229N09S.D

Vial: 1 Acq On : 29 Feb 12 15:58 Sample : Vol Std 02-29-12 @100ug/kg Operator: SV,DG,RS Inst : Neo Multiplr: 1.00 : Soil 5mL w/ IS:10-20-11 Misc

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

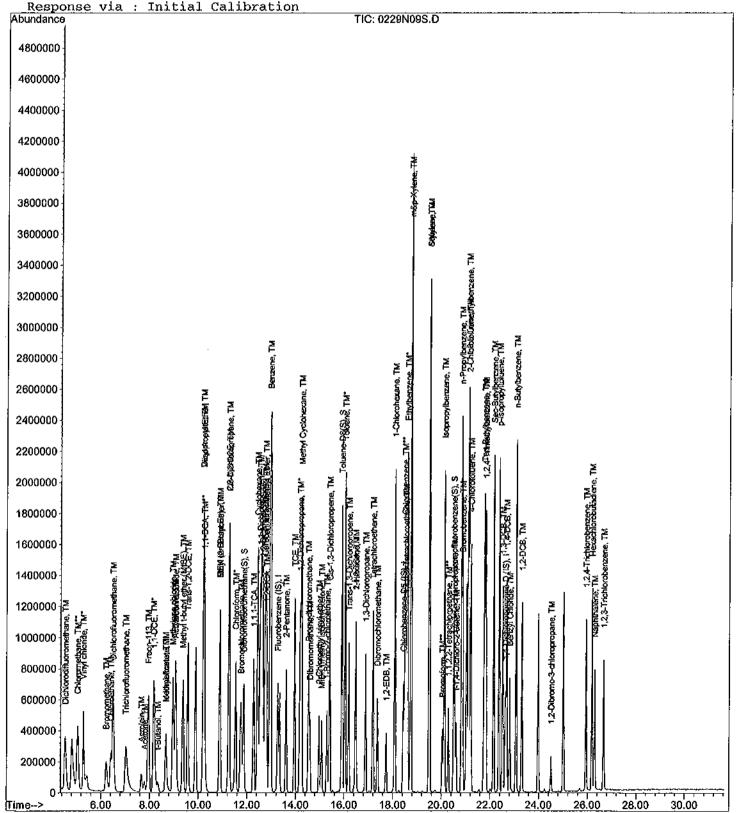
Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	e
43)	Dibromomethane	14.59	93	355123	99,14293	dqq	97
44)	Methyl Cyclohexane	14.24	83	1126194	98.27701	ppb	9 7
	2-Chloroethyl vinyl ether	14.96	63	321419	99.18649		94
	1-Bromo-2-chloroethane	15.29	63	787059	99.29208		99
	Cis-1,3-Dichloropropene	15.41	75	1004212	103.62020		94
	Toluene Trans-1,3-Dichloropropene	16.04 16.19	91 75	2437652 824328	97.32827 100.07721		97 96
	1,1,2-TCA	16.48	83	378690	102,36988		91
	1,2-EDB	17,73	107	453247	106.51699		94
	Tetrachloroethene	17.19	129	437176	103.00472	dad	98
	1-Chlorohexane	18.08	91	1007427	106.42358		99
56)	1,1,1,2-Tetrachloroethane	18.55	131	460187	104.72037		97
	m&p-Xylene	18,74	106	1802319	200.11059		98
	o-Xylene	19.50	106	835141	101.53890		96
	Styrene	19.51	78	845183	100.47112		98
	2-Hexanone	16.49	43 76	475150 77 4 5 9 7	101.55981 104.77384		92 99
	1,3-Dichloropropane Dibromochloromethane	16.88 17.36	129	530919	105.49588		94
	Chlorobenzene	18.50	112	1347556	102.33957		100
	Ethylbenzene	18.60	91	2622242	99.03407		99
	Bromoform	20.04	173	324659	107.72765		100
68)	MIBK (methyl isobutyl keto	15.06	43	659047	96.42827	ppb	100
	Isopropylbenzene	20.12	105	2347280	98.83726	ppb	98
	1,1,2,2-Tetrachloroethane	20.29	83	534373	98.89507		99
	1,2,3-Trichloropropane	20.54	110	121673	97.35460		98
	t-1,4-Dichloro-2-Butene	20.60	53	178015	98.01385	ppb	91
	Bromobenzene n-Propylbenzene	20.88	156 91	460938 3136093	94.36031 99.34059		98 98
	2-Chlorotoluene	21.13	91	1910052	96,15898		99
	1,3,5-Trimethylbenzene	21.10	105	1795248	97.11055		97
	4-Chlorotoluene	21.21	91	1577374	94.66726		100
	Tert-Butylbenzene	21.76	119	1710720	93.59325	ppb	10 0
	1,2,4-Trimethylbenzene	21.82	105	1743805	94.96739		99
	Sec-Butylbenzene	22.15	105	2580898	96.65668		100
	p-Isopropyltoluene	22.37	119	1996793	99.33902		98
	Benzyl Chloride	22.81	91	857940	91.68013		97
83)	1,3-DCB 1,4-DCB	22.52 22.68	$\frac{146}{146}$	878780 854566	98,27558 98,22 4 06		98 95
85)	n-Butylbenzene	23.07	91	2134317	94.61033		95
86)	1,2-DCB	23.31	146	780483	98.58039		99
	1,2-Dibromo-3-chloropropan	24,51	155	76180	101.91602		98
	1,2,4-Trichlorobenzene	25.95	180	493585	92.77091	ppb	90
	Hexachlorobutadiene	26.19	225	171008	106.12030		9 2
	Naphthalene	26.29	128	941621	95,36880		97
91)	1,2,3-Trichlorobenzene	26.67	180	419102	94.08375	ppb	97

Data File: M:\NEO\DATA\N120229\0229N09S.D

Vial: 1 : 29 Feb 12 15:58 Operator: SV, DG, RS

Sample : Vol Std 02-29-12 @100ug/kg Inst : Neo Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00


Ouant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On

Last Update : Mon Mar 12 13:19:57 2012

Data File: M:\NEO\DATA\N120229\0229N10S.D Vial: 1

Acq On : 29 Feb 12 16:37 Sample : Vol Std 02-29-12 @200ug/kg Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Internal Standards	к.т.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS)	13.26	96	320896	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18,44	117	212928	50.00000 ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.63	152	212928 83464	50.00000 ppb	0.00
Creation Manifestine Comment					
System Monitoring Compounds	11.86	111	1020410	200 2224	0 01
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.80	111	1238419 Recove		0.01
34) 1,2-DCA-D4(S)	12,65	65	1311184	200.53205 ppb	0.00
Spiked Amount 41.649	12.05	0.5	Recove		
52) Toluene-D8(S)	15,91	98	4012442	203.44417 ppb	0.00
Spiked Amount 35.274			Recove	xy = 576.749%	
60) 4-Bromofluorobenzene(S)	20.50	95	1280100	201.62253 ppb	0.00
Spiked Amount 35.584			Recove	xy = 566.618%	
Warrent Compounds			·	^	
Target Compounds 2) Dichlorodifluoromethane	4.53	85	2241544	194.50613 ppb	value 99
3) Chloromethane	5 04	50	2763965	177.30405 ppb	99
4) Vinyl chloride	5.28	62	597760	189.27991 ppb	98
5) Bromomethane	6.19	94	990651	204.18684 ppb	97
6) Chloroethane	6.38	64	1191385	195.53534 ppb	94
7) Dichlorofluoromethane	6.48	67	3533287	197.83705 ppb	100
	7.02	101	1898297	206.40860 ppb	93
9) Acrolein	7.65	56	296465	342,13904 ppb	97
10) Acetone	7.79	43	483617	202.2 4 183 ppb	98
11) Freon-113	7,93	101	1509764	206.00350 ppb	96
12) 1,1-DCE	8.16	96	1252647	200.21052 ppb	96
13) t-Butanol	8.16	59	16824		# 84
	8.66	43	1453634	200.11554 ppb	98
15) Iodomethane 16) Acrylonitrile	8.65 9.04	142 53	1015202	201.89740 ppb	97
17) Methylene chloride	8.95	86	4556 7 1 793527	199.49705 ppb 186.72267 ppb	96 100
18) Carbon disulfide	9.05	76	5400921	199.35525 ppb	99
19) Methyl t-butyl ether (MtBE		73	2819666	194.87971 ppb	98
20) Trans-1,2-DCE	9.57	96	1356661	199.69702 ppb	94
21) Diisopropyl Ether	10.20	45	5514789	194.81689 ppb	97
22) 1,1-DCA	10.25	63	2719547	196.37163 ppb	98
23) Vinyl Acetate	10.20	43	4064660	183.09926 ppb	100
24) Ethyl tert Butyl Ether	10.88	59	3863422	189.47024 ppb	99
25) MEK (2-Butanone)	10.87	43		172.20206 ppb	96
26) Cis-1,2-DCE	11.26	96	1340933	192,79765 ppb	98
27) 2,2-Dichloropropane 28) Chloroform	11.25 11.53	77 83	2089766 2242485	197.69638 ppb 195.80320 ppb	97 99
29) Bromochloromethane	11.76	128	396771		99 97
31) 1,1,1-TCA	12.26	97	2040511	173.71334 ppb 194.24583 ppb	95
32) Cyclohexane	12,43	56	2973261	202.32209 ppb	99
33) 1,1-Dichloropropene	12.53	75	2046509	198.86915 ppb	96
35) Carbon Tetrachloride	12.73	117	1708056	217.53790 ppb	96
36) Tert Amyl Methyl Ether	12.77	73	3013045	195,96356 ppb	100
37) 1,2-DCA	12.80	62	1497421	190.11754 ppb	100
38) Benzene	12,92	78	5346323	198.39633 ppb	98
39) TCE	13.95	95	1332424	195.80566 ppb	96
40) 2-Pentanone	13.61	43	1880495	337.00448 ppb	97
41) 1,2-Dichloropropane	14.17	63	1429178	196.98967 ppb #	
42) Bromodichloromethane	14.53	0.3	1585358	194.28825 ppb	97

^{(#) =} qualifier out of range (m) = manual integration 0229N10S.D NALLS.M Mon Mar 12 13:40:52 2012

Data File: M:\NEO\DATA\N120229\0229N10S.D Vial: 1

Acq On : 29 Feb 12 16:37 Operator: SV, DG, RS Sample : Vol Std 02-29-12 @200ug/kg Inst : Neo : Soil 5mL w/ IS:10-20-11 Multiplr: 1,00 Misc

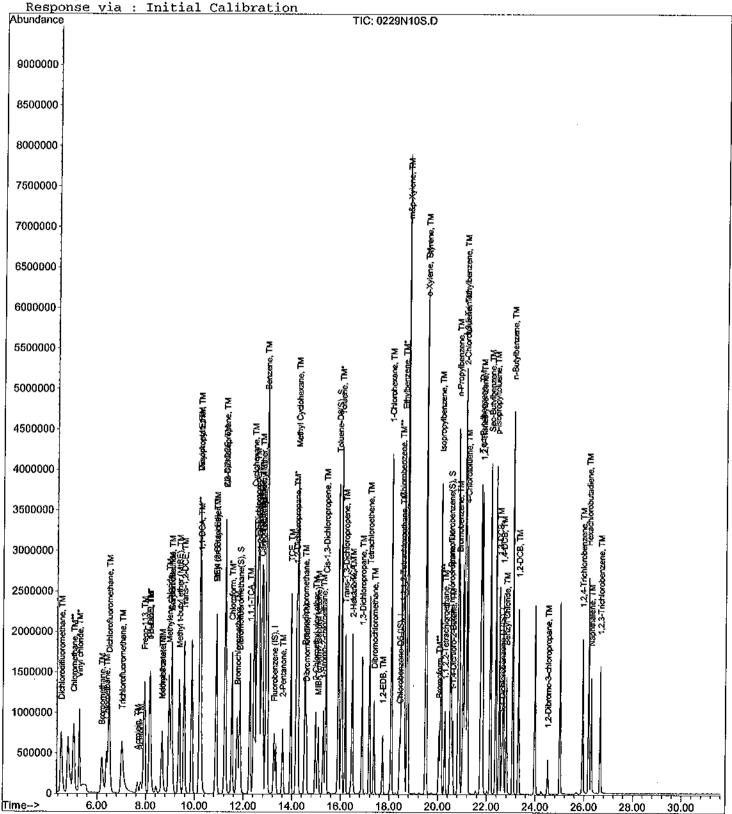
Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

	Compound	R.T.	QIon	Response	Conc Unit	Qval	ue
43)	Dibromomethane	14.59	93	696288	188,92261	dqq	97
	Methyl Cyclohexane	14.23	83	2453887	208.11595	ppb	98
	2-Chloroethyl vinyl ether	14.96	63	674174	202.19252		100
	1-Bromo-2-chloroethane	15.29	63	1592329	195.23254		97
-	Cis-1,3-Dichloropropene	15.39	75	1969799	197.53907		97
	Toluene	16.03	91	5011507	194.46781		99
	Trans-1,3-Dichloropropene	16.19	75	1647828	194,42812		95 90
53)	1,1,2-TCA 1,2-EDB	16.48 17.73	83 107	738628 873794	194.05562 205.22575		96
	Tetrachloroethene	17.19	129	909123	214.07319		99
	1-Chlorohexane	18.08	91	2071393	218.68835		97
56)		18,55	131	892474	202,96972		91
	m&p-Xylene	18.75	106	3615245	401.15757		98
58)		19.49	106	1583369	192.39494		98
59)	Styrene	19.51	78	1583930	188.17646		100
	2-Hexanone	16.50	43	932756	199.24987		96
	1,3-Dichloropropane	16.88	76	1501251	202.94073		97
	Dibromochloromethane	17.37	129	1031132	204.76718		99
	Chlorobenzene	18.50	112	2660851	201.95572		97
	Ethylbenzene Bromoform	18,60 20,04	91 173	5344935 628993	201,74051		100
	MIBK (methyl isobutyl keto	15.07	43	1271943	208.58565 214.75182		97 98
69)	· · · · · · · · · · · · · · · · · · ·	20.13	105	4556198	221.38061		98
	1,1,2,2-Tetrachloroethane	20.29	83	999243	213.39412		99
71)		20.54	110	238415	220.12889		93
72)	t-1,4-Dichloro-2-Butene	20.60	53	348289	221.28492		96
	Bromobenzene	20.88	156	894733	211.35937		95
	n-Propylbenzene	20.83	91	6202019	226.70030		99
	2-Chlorotoluene	21.13	91	3633852	211.10237		96
	1,3,5-Trimethylbenzene	21.10	105	3597229	224.53872		93
	4-Chlorotoluene	21.21	91	3210428	222.33573		97
	Tert-Butylbenzene 1,2,4-Trimethylbenzene	21,76 21.82	119 105	3597439 3563627	227.11208 223.94946		99 9 9
80)		22.16	105	5232713	226.13571		99
	p-Isopropyltoluene	22.37	119	3766617	216.23176		97
82)	Benzyl Chloride	22.81	91	1679447	207.09318		98
83)		22.52	146	1636298	211.15874		100
84)		22.69	146	1569027	208.10566		96
85)	n-Butylbenzene	23.07	91	4389512	224.53140	ppb	97
86)	1,2-DCB	23.31	146	1452346	211.67929		97
87)		24.51	155	143568	221.63602		98
-	1,2,4-Trichlorobenzene	25.93	180	908311	196.99973		98
•	Hexachlorobutadiene	26.18	225	307328	220.07229		98
-	Naphthalene	26.29 26.66	128 180	1687967 748495	197.27649		98 96
91)	1,2,3-Trichlorobenzene	20.00	TOO	740495	193.89429	թեր	96

Data File : M:\NEO\DATA\N120229\0229N10S.D

Vial: 1 : 29 Feb 12 16:37 Acq On Operator: SV,DG,RS Sample : Vol Std 02-29-12 @200ug/kg Inst : Neo


Misc : Soil 5mL w/ IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:39 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

Data File: M:\NEO\DATA\N120229\0229N15S.D

Vial: 1 Operator: SV,DG,RS Acq On : 29 Feb 12 19:46 Sample : 50ug/kg Vol Std 2-29-12 Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:23 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012

Response via : Initial Calibration

DataAcq Meth: V8260

51) Chlorobenzene-D5 (IS) 18.43 117 236608 50.00000 ppb 0.00 67) 1,4-Dichlorobenzene-D (IS) 22.62 152 101016 50.00000 ppb 0.00 System Monitoring Compounds 30) Dibromofluoromethane(S) 11.86 111 265010 46.49110 ppb 0.01 Spiked Amount 41.312 Recovery = 112.537% 34) 1,2-DCA-D4(S) 12.66 65 269026 44.28897 ppb 0.00 Spiked Amount 41.649 Recovery = 106.340% 52) Toluene-D8(S) 15.90 98 752812 37.09229 ppb 0.00 Spiked Amount 35.274 Recovery = 105.153% 60) 4-Bromofluorobenzene(S) 20.49 95 256187 37.91378 ppb 0.00 Spiked Amount 35.584 Recovery = 106.549% Target Compounds Qvalue 2) Dichlorodifluoromethane 4.54 85 459691 41.64125 ppb 97 3) Chloromethane 5.06 50 689410 46.16740 ppb 98	Internal Standards	к.т.	QIon	Response	Conc Units	Dev(Min)
System Monitoring Compounds 11.86 111 265010 46.49110 ppb 0.00	1) Fluorobenzene (IS)			307392	50.00000 g	opb 0.00
System Monitoring Compounds 30 Dibromofluoromethane(S) 11.86 11				_	50.00000 r	0.00 dqc
300 Dibromofluoromethane (S) 11.86 111 265010 46.49110 ppb 0.01	67) 1,4-Dichlorobenzene-D (IS)	22.62	152	101016	50.00000 r	0.00 dqc
Spiked Amount 41.312 Recovery = 112.5378 34) 1,2-DCA-D4[S) 12.66 529026 44.28879 ppb 0.00 Recovery = 106.3408 Spiked Amount 35.274 Recovery = 105.1538 Toloroner-D8[S] Spiked Amount 35.274 Recovery = 105.1538 Recovery = 105.1538 Recovery = 106.5498 Recovery = 106.549		14 00		0.5504.0		
331 1,2-DCA-D4(S)		11,86	111		-	
Spiked Amount 35.274 Spiked Amount 35.274 Spiked Amount 35.274 Spiked Amount 35.584 Spiked Amount 35.	34) 1,2-DCA-D4(S)	12.66	65	269026	44.28897 p	00.00
Spiked Amount 35.274 35.274 37.91378 ppb 0.00 Spiked Amount 35.584 20.49 95 256187 37.91378 ppb 0.00 Spiked Amount 35.584 35.584 20.49 256187 37.91378 ppb 0.00 Spiked Amount 35.584 35.584 256187 37.91378 ppb 0.00 Spiked Amount 35.584 35.58	-	15 00	0.0			
Spiked Amount 35.584 Spiked Amount 36.5498 Spi		15.90	90		_	
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 5) 06 50 689410 46.16740 ppb 98 4) Vinyl chloride 5.06 50 689410 46.16740 ppb 98 5) Bromomethane 6) 29 4 195856 45.58000 ppb 89 6) Chloroethane 6) 6.41 64 277907 47.61506 ppb 92 7) Dichlorofluoromethane 6.51 67 805617 47.09004 ppb 98 8) Trichlorofluoromethane 7.04 101 420711 47.76185 ppb 96 9) Acrolein 7.67 56 218908 263.73185 ppb 95 10) Acetone 7.78 43 130566 53.35864 ppb 95 11) Freon-113 7.95 101 319316 45.48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) L-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 97 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 96 23) Vinyl Acetate 10.20 43 117327 55.17638 ppb 95 24) Ethyl tert Butyl Ether 10.20 45 1489262 54.92127 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.59 63 439264 52.42280 ppb 98 33) 1,1-Dichloropropane 11.25 77 458803 45.31052 ppb 98 33) 1,1-Dichloropropane 11.26 77 458803 45.31052 ppb 98 33) 1,1-Dichloropropane 11.27 77 458803 45.31052 ppb 98 33) 1,1-Dichloropropane 11.28 77 458803 45.31052 ppb 98 33) 1,1-Dichloropropane 11.29 77 460286 45.74170 ppb 98 33) 1,1-Dichloropropane 11.25 77 458803 45.31052 ppb 98 33) 1,1-Dichloropropane 11.26 77 460286 45.74170 ppb 98 33) 1,1-Dichloropropane 11.27 77 3816510 55.43741 ppb 98 33) 1,1-Dichloropropane 12.54 75 471458 47.82649 ppb 99 34) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 98 35) Carbon Tetrachloride 12.74 177 3816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) TCE 40 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 2-Pentanone 140 1,2-Dichloropropane		20.49	95			
2) Dichlorodifluoromethane 4.54 85 459691 41.64125 ppb 97 31 Chloromethane 5.06 50 689410 46.16740 ppb 98 40 Vinyl chloride 5.30 62 127200 42.04715 ppb 99 99 50 Bromomethane 6.22 94 195856 45.58000 ppb 89 60 Chloroethane 6.41 64 277907 47.61506 ppb 92 70 Dichlorofluoromethane 7.04 101 420771 47.76185 ppb 96 96 96 96 96 96 97 97		20.45	,,			
31 Chloromethane	Target Compounds					Qvalue
Vinyl chloride				459691	41.6412 5 p	pb 97
5) Bromomethane 6.22 94 195856 45.58000 ppb 92 6) Chloroethane 6.41 64 277907 47.61506 ppb 92 7) Dichlorofluoromethane 6.51 67 805617 47.09004 ppb 98 8) Trichlorofluoromethane 7.04 101 420771 47.76185 ppb 96 9) Acrolein 7.67 56 218908 263.73185 ppb 95 10) Acetone 7.78 43 130566 53.35864 ppb 89 11) Freon-113 7.95 101 319316 45.48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) L-Butanol 8.30 59 30416 254.15669 ppb 99 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98					4 6.16740 p	pb 98
6) Chloroethane 7) Dichlorofluoromethane 8) Trichlorofluoromethane 8) Trichlorofluoromethane 7,04 101 420771 47,76185 ppb 96 9) Acrolein 7,67 56 218908 263,73185 ppb 95 10) Acetone 7,78 43 130566 53,35864 ppb 89 11) Freon-113 7,95 101 319316 45,48393 ppb 94 12) 1,1-DCE 8,18 96 276940 46,20784 ppb 99 13) t-Butanol 8,30 59 30416 254,15669 ppb 96 14) Methyl Acetate 8,67 43 370843 52,06725 ppb 98 15) Iodomethane 8,67 43 370843 52,06725 ppb 98 15) Iodomethane 8,67 142 216747 48,38302 ppb 95 16) Acrylonitrile 9,04 53 114952 52,53798 ppb 94 17) Methylene chloride 8,96 86 216345 53,14396 ppb 87 18) Carbon disulfide 9,07 76 1171293 45,13331 ppb 100 19) Methyl t-butyl ether (MtBE 9,37 73 780348 56,30267 ppb 97 20) Trans-1,2-DCE 9,57 96 325495 50,01685 ppb 95 21) Diisopropyl Ether 10,20 45 1489262 54,92127 ppb 99 22) 1,1-DCA 10,26 63 657608 49,57024 ppb 100 23) Vinyl Acetate 10,20 43 1173327 55,17638 ppb 99 24) Ethyl tert Butyl Ether 10,89 59 1053287 53,92465 ppb 99 25) MEK (2-Butanone) 10,87 43 290703 48,36710 ppb 96 26) Cis-1,2-DCE 11,25 96 349264 52,42280 ppb 98 27) 2,2-Dichloropropane 11,54 83 585766 53,39322 ppb 96 28) Chloroform 11,54 83 585766 53,39322 ppb 98 29) Bromochloromethane 11,76 128 10,550 43 414937 74,82649 ppb 94 35) Carbon Tetrachloride 12,73 117 360139 47,88227 ppb 98 36) Tert Amyl Methyl Ether 12,73 78 128858 49,9227 ppb 98 37) 1,2-DCA 12,80 62 404583 53,62381 ppb 99 38) Benzene 12,93 78 128858 49,9227 ppb 98 39) TCE 13,95 95 315777 48,44345 ppb 99 30) TCE 13,95 95 315777 48,44345 ppb 99 31) TCE 13,95 95 315777 48,44345 ppb 99 32 (2-Pentanone) 13,59 43 1449737 271,22172 ppb 100						
8) Trichlorofluoromethane 7.04 101 420771 47.76185 ppb 96 98 7.04 101 420771 47.76185 ppb 96 98 7.04 101 420771 47.76185 ppb 96 98 7.05 101 Accolein 7.67 56 218908 263.73185 ppb 95 101 Accolein 7.67 56 218908 263.73185 ppb 95 101 Freon-113 7.95 101 319316 45.48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) t-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Accylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 45 1489262 54.92127 ppb 99 22) 1,2-DCA 10.89 59 1053287 53.92465 ppb 98 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 98 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29 Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1-DCA 12.46 97 460286 45.74170 ppb 98 33) 1,1-Dichloropropane 12.54 75 47118 47.82649 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 98 37 1,2-DCA 12.80 62 404583 53.62381 ppb 99 36) TCE 13.95 95 315777 48.44345 ppb 99 37 DCE 13.95 95 315777 48.44345 ppb 99 37 DCE 13.95 94 3449737 271.22172 ppb 100 41,2-Dichloropropane 13.59 43 1449737 271.22172 ppb 100 100 11,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
8) Trichlorofluoromethane 7.04 101 420771 47.76185 ppb 96 9) Acrolein 7.67 56 218908 263.73185 ppb 95 10) Acedone 7.78 43 130566 53.35864 ppb 89 11) Freon-113 7.95 101 319316 45.48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) t-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 92 28) Cyclohexane 12.43 56 626075 44.47422 ppb 98 31) 1,1,1-TCA 12.80 62 404583 53.62381 ppb 98 33) 1,2-DCA 12.80 62 404583 53.62381 ppb 98 34) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 98 35) Carbon Tetrachloride 12.77 73 816510 55.43741 ppb 98 36) Tett Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 98 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.434345 ppb 99 30) TCE 13.95 95 315777 48.434345 ppb 99 31 (1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
9) Acrolein 7.67 56 218908 263.73185 ppb 95 10) Acetone 7.78 43 130566 53.35864 ppb 89 11) Freon-113 7.95 101 319316 45.48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) t-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 24) Ethyl tert Butyl Ether 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Bromochloromethane 11.76 128 105506 48.22166 ppb 98 21) 1,1-TCA 12.26 97 460286 45.74170 ppb 94 23) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 98 34) Cyclohexane 12.73 117 360139 47.88227 ppb 99 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 99 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.434345 ppb 99 30) TCE 13.95 95 315777 48.434345 ppb 99 30) TCE 13.95 95 315777 48.434345 ppb 90 31) TC-Polchloropropane 13.59 43 1449737 271.22172 ppb 100 40) 2-Pentanone 14.17 63 373367 53.72356 ppb 100						
10) Acetone 7.78 43 130566 53.35864 ppb 89 11) Freon-113 7.95 101 319316 45,48393 ppb 94 12) 1,1-DCE 8.18 96 276940 46.20784 ppb 99 13) t-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1-DCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 99 30) TCE 13.95 95 315777 48.44345 ppb 99						
11) Freon-113	•					
12) 1,1-DCE	•					
13) t-Butanol 8.30 59 30416 254.15669 ppb 96 14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb						
14) Methyl Acetate 8.67 43 370843 52.06725 ppb 98 15) Iodomethane 8.67 142 216747 48.38302 ppb 95 16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264<						
15) Iodomethane						
16) Acrylonitrile 9.04 53 114952 52.53798 ppb 94 17) Methylene chloride 8.96 86 216345 53.14396 ppb 87 18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 98 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 32) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 96 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38 Benzene 12.93 78 1288858 49.92227 ppb 98 39 TCE 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
17) Methylene chloride	•					
18) Carbon disulfide 9.07 76 1171293 45.13331 ppb 100 19) Methyl t-butyl ether (MtBE 9.37 73 780348 56.30267 ppb 97 20) Trans-1,2-DCE 9.57 96 325495 50.01685 ppb 95 21) Diisopropyl Ether 10.20 45 1489262 54.92127 ppb 99 22) 1,1-DCA 10.26 63 657608 49.57024 ppb 100 23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 98 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 99 30) TCE 13.95 95 315777 48.44345 ppb 99 310 1,2-Dichloropropane 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100				216345		
20) Trans-1,2-DCE	18) Carbon disulfide	9.07	76	1171293		
21) Diisopropyl Ether			73	780348	56.30267 p	pb 97
22) 1,1-DCA						
23) Vinyl Acetate 10.20 43 1173327 55.17638 ppb 99 24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
24) Ethyl tert Butyl Ether 10.89 59 1053287 53.92465 ppb 99 25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 <td></td> <td></td> <td></td> <td></td> <td>49.57024 p</td> <td>pb 100</td>					49.57024 p	pb 100
25) MEK (2-Butanone) 10.87 43 290703 48.36710 ppb 96 26) Cis-1,2-DCE 11.25 96 349264 52.42280 ppb 98 27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
26) Cis-1,2-DCE						
27) 2,2-Dichloropropane 11.25 77 458803 45.31052 ppb 97 28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 5						
28) Chloroform 11.54 83 585766 53.39322 ppb 96 29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
29) Bromochloromethane 11.76 128 105506 48.22166 ppb 82 31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
31) 1,1,1-TCA 12.26 97 460286 45.74170 ppb 94 32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100					48 22166 m	pb 50 pb 82
32) Cyclohexane 12.43 56 626075 44.47422 ppb 98 33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100					45.74170 p	pb 04
33) 1,1-Dichloropropene 12.54 75 471458 47.82649 ppb 94 35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
35) Carbon Tetrachloride 12.73 117 360139 47.88227 ppb 90 36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
36) Tert Amyl Methyl Ether 12.77 73 816510 55.43741 ppb 98 37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
37) 1,2-DCA 12.80 62 404583 53.62381 ppb 99 38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						-
38) Benzene 12.93 78 1288858 49.92927 ppb 98 39) TCE 13.95 95 315777 48.44345 ppb 92 40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100			62		53.62381 p	pb 99
40) 2-Pentanone 13.59 43 1449737 271.22172 ppb 100 41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100		12.93		1288858	49.92927 p	pb 98
41) 1,2-Dichloropropane 14.17 63 373367 53.72356 ppb 100						
					271.22172 p	pb 100
42) Bromodichloromethane 14.53 83 429252 54.91655 ppb 100						
	42) Bromodichloromethane	14.53	83	429252	54.91655 pj	pb 100

^{(#) =} qualifier out of range (m) = manual integration 0229N15S.D NALLS.M Mon Mar 12 13:41:00 2012

Data File: M:\NEO\DATA\N120229\0229N15S.D Vial: 1

Acq On : 29 Feb 12 19:46 Operator: SV,DG,RS : 50ug/kg Vol Std 2-29-12 Sample Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:23 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

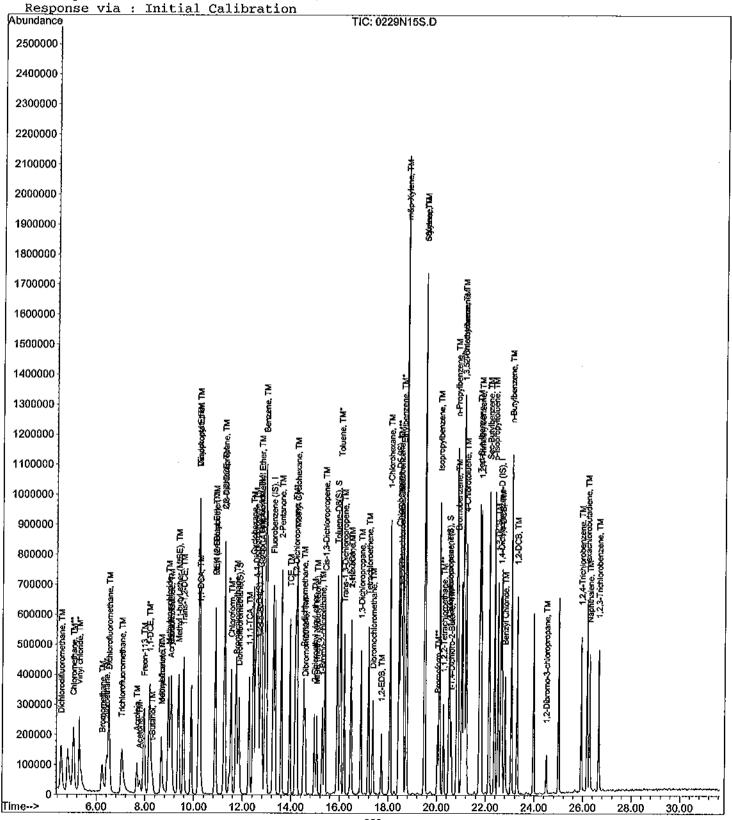
DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	•
431	Dibromomethane	14.59	93	194589	55.11693	nnb	97
	Methyl Cyclohexane	14.23	83	486322	43.05727		100
	2-Chloroethyl vinyl ether	14.96	63	178612	55.92107		96
	1-Bromo-2-chloroethane	15.29	63	424354	54.31496	ppb	97
47)	Cis-1,3-Dichloropropene	15,39	75	531884	55.68263		98
	Toluene	16.03	91	1236406	50.08552		99
	Trans-1,3-Dichloropropene	16.18	75	430376	53.01112		97
	1,1,2-TCA	16.47	83	207760	56.98153	ppb	91
	1,2-EDB	17.72	107	244447	51.66671	ppb #	90
-	Tetrachloroethene	17.18	129	203979	43.22435		94
	1-Chlorohexane 1,1,1,2-Tetrachloroethane	18.08 18.53	91 131	456120	43.33568		94
	m&p-Xylene	18.74	106	241452 918407	49.41626 91.70981		92 96
	o~Xylene	19.49	106	437938	47.88809	ppb	97
	Styrene	19.50	78	438348	46.86533	ppb	95
	2-Hexanone	16.48	43	257878	49.57328		99
	1,3-Dichloropropane	16.88	76	420354	51.13690		98
	Dibromochloromethane	17.36	129	275640	49.25969		96
64)	Chlorobenzene	18.49	112	703479	48.04964	daa	98
65)	Ethylbenzene	18.60	91	1321853	44.89905		99
	Bromoform	20.03	173	179829	53.66630	ppb	95
	MIBK (methyl isobutyl keto	15,05	43	368744	51.44027		97
	Isopropylbenzene	20.12	105	1117732	44.87286	ppb	98
	1,1,2,2-Tetrachloroethane	20.28	83	308955	54.51495	ppb	98
	1,2,3-Trichloropropane	20.53	110	68740	52.43992	ppb	97
	t-1,4-Dichloro-2-Butene	20.59	53	93106	48.87635		100
	Bromobenzene	20.87	156	259685	50.68552		98
	n-Propylbenzene 2-Chlorotoluene	20.83 21.12	91	1538050	46.45136		98
	1,3,5-Trimethylbenzene	21.12	91 105	955289 908938	45.85320		95
	4-Chlorotoluene	21.20	91	834069	46.87772 47.72625		93 100
	Tert-Butylbenzene	21.75	119	872174	45.49451	ppb	97
	1,2,4-Trimethylbenzene	21.81	105	924096	47.98261	ppb	98
	Sec-Butylbenzene	22.15	105	1262840	45.09201		97
	p-Isopropyltoluene	22.36	119	913925	43.34985		98
	Benzyl Chloride	22.79	91	455864	46.44552		98
83)	1,3-DCB	22.51	14 6	461743	49.23297	ppb	98
	1,4-DCB	22.67	146	448535	49.15400	ppb	94
	n-Butylbenzene	23.06	91	1007918	42.59858	ppb	100
	1,2~DCB	23,30	146	412499	49.67527		97
	1,2-Dibromo-3-chloropropan	24.50	155	38401	48.98175		83
	1,2,4-Trichlorobenzene	25.93	180	254978	45.69228	ppb	99
	Hexachlorobutadiene	26.18	225	79344	46.94468	ppb !-	96
	Naphthalene	26.28	128	527744	50.96168	ppb	99
aT)	1,2,3-Trichlorobenzene	26.65	180	232445	49.75140	aqq	98

Data File : M:\NEO\DATA\N120229\0229N15S.D

Vial: 1 Acq On : 29 Feb 12 19:46 Operator: SV,DG,RS Sample : 50ug/kg Vol Std 2-29-12 Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:23 2012


Quant Results File: NALLS.RES

Method

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Data File: M:\NEO\DATA\N120229\0229N16S.D

Vial: 1 Acq On : 29 Feb 12 20:24 Operator: SV,DG,RS : 120229A LCS-1SN (SS) Sample Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:22 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS)	13.26	96	348992	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.43	117	348992 255104	50.00000 ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	111496	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	269823	41.92394 ppb	0.00
Spiked Amount 41.312				= 101.482	3,30
34) 1,2-DCA-D4(S)	12.65	65		44.15068 ppb	0,00
Spiked Amount 41.649			Recove		
52) Toluene-D8(S)	15,90	98		38.17601 ppb	0.00
Spiked Amount 35,274	20 40	0.5		ery = 108.226	0 00
60) 4-Bromofluorobenzene(S) Spiked Amount 35.584	20.49	95	296466	40.55048 ppb ery = 113.9578	0.00
Spiked Amount 33.364			Recove	:ty = 113.95/8	
Target Compounds					value
2) Dichlorodifluoromethane	4.54	85	499418	39.84731 ppb	94
3) Chloromethane4) Vinyl chloride	5,05 5,29	50	753955		99
5) Bromomethane	6.23	62 9 4	150464 240201	43.80857 ppb 48.88920 ppb	100 90
6) Chloroethane	6,41	64	325801	49.16708 ppb	97
	6,51	67	922355	47.48710 ppb	97
		101	436531	43.64430 ppb	94
9) Acrolein	7.04	56	232768	247.00248 ppb	97
10) Acecone	1.10	43	134032	47.76011 ppb	87
11) Freon-113	7,94	101	338973	42.52844 ppb	96
12) 1,1-DCE	8.18	96	310792	45.67482 ppb	99
13) t-Butanol 14) Methyl Acetate	8.30 8.66	59 43	30808		# 89
15) Iodomethane	8.66	$\begin{array}{c} 43 \\ 142 \end{array}$	384432 252617	47.02747 ppb 49.55265 ppb	97 97
16) Acrylonitrile	9.05	53	129854	52.27442 ppb	95
17) Methylene chloride	8.96	86	254159	54.99075 ppb	93
18) Carbon disulfide	9.07	76	254159 1340837 930651	45.50768 ppb	100
19) Methyl t-butyl ether (MtBE		73	930651	or. in the second	96
20) Trans-1,2-DCE	9.57	96	363743	49.23157 ppb	93
21) Diisopropyl Ether	10.21	45	1791842	58,20312 ppb	99
22) 1,1-DCA	10.25 10.21	63	785764	52.17028 ppb	99
23) Vinyl Acetate 24) Ethyl tert Butyl Ether	10.21	43 59	1390318 1295841	57.58712 ppb 58.43451 ppb	98 96
25) MEK (2-Butanone)	10.87	43	318875	46.73025 ppb	96
26) Cis-1,2-DCE	11.26		404674	53.49939 ppb	94
27) 2,2-Dichloropropane	11.25	77	404674 540238	46.99320 ppb	99
28) Chloroform	11.53	83	673909	54.10536 ppb	95
29) Bromochloromethane				51.14338 ppb	89
31) 1,1,1-TCA	12.27	97	533764	46.72086 ppb	97
32) Cyclohexane 33) 1,1-Dichloropropene	$12.44 \\ 12.53$	56	670844	41.97403 ppb	97 06
35) Carbon Tetrachloride	12.72	75 117	526151 420991	47.01246 ppb 49.30086 ppb	96 99
36) Tert Amyl Methyl Ether	12.76	73	999922	59.79772 ppb	96
37) 1,2-DCA	12.80	62	462907	54.04069 ppb	97
38) Benzene	12.92	78	1442661	49.22566 ppb	97
39) TCE	13.95	95	347716	46.98468 ppb	95
40) 2-Pentanone	13.59	43	1541256	253.97274 ppb	96
41) 1,2-Dichloropropane	14.16	63	422245	53.51438 ppb	98
42) Bromodichloromethane	14.52	83	515833	58.12690 ppb #	93

^{(#) =} qualifier out of range (m) = manual integration 0229N16S.D NALLS.M Mon Mar 12 13:41:07 2012

Data File: M:\NEO\DATA\N120229\0229N16S.D Vial: 1

Acq On : 29 Feb 12 20:24 Sample : 120229A LCS-1SN (SS) Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 12 13:22 2012 Quant Results File: NALLS.RES

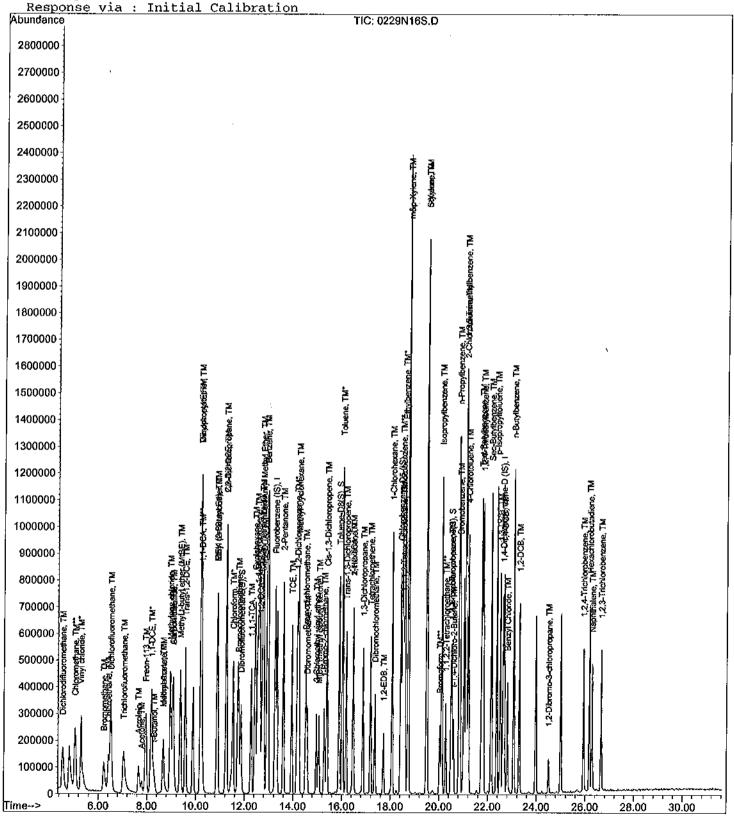
Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

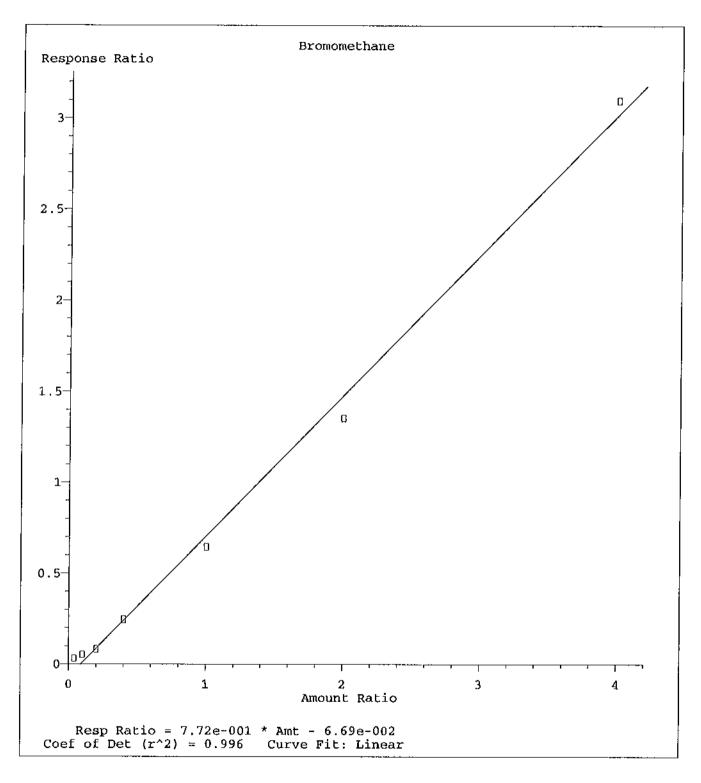
Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

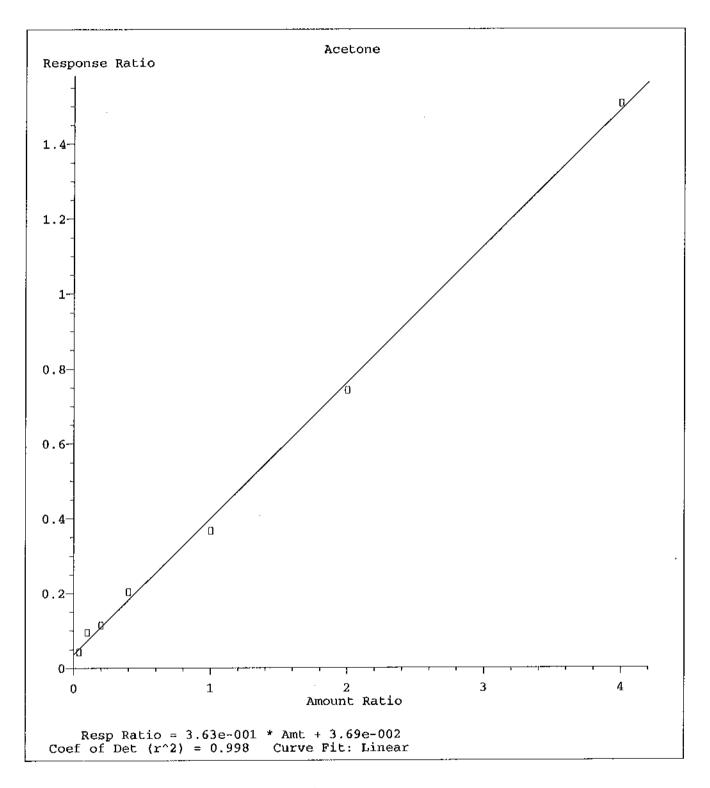
DataAcq Meth : V8260

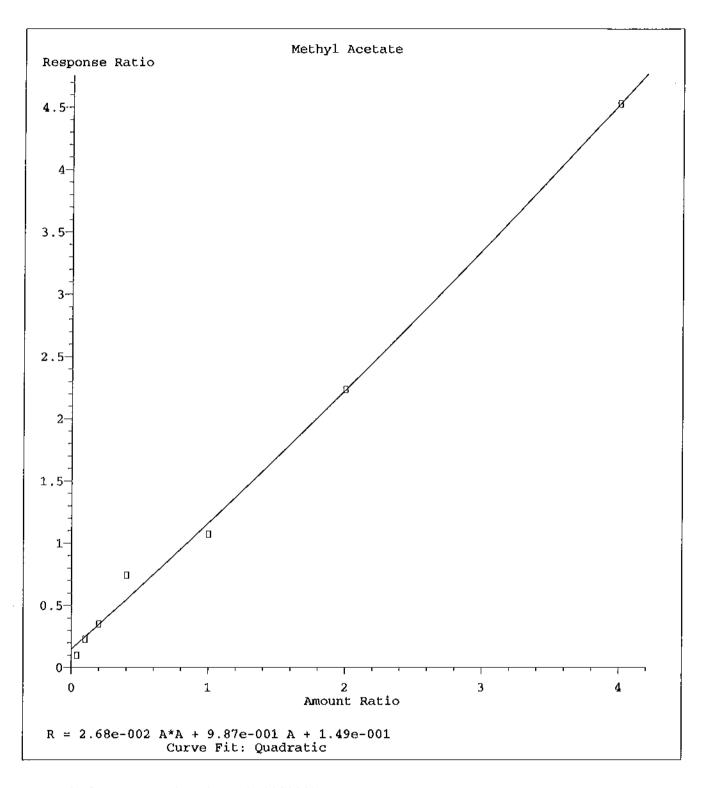
	Compound	Α.Т.	QIon	Response	Conc Unit	Qvalue	
43)	Dibromomethane	14.58	93	222196	55.43449	ppb	98
	Methyl Cyclohexane	14,23	83	536450	41,83395		95
	2-Chloroethyl vinyl ether	14.95	63	197716	54,52350	ppb	100
	1-Bromo-2-chloroethane	15.28	63	470738	53.06981		95
47)	Cis-1,3-Dichloropropene	15.39	75	627514	57.86332		97
•	Toluene	16.03	91	1438049	51.30999		99
	Trans-1,3-Dichloropropene	16.18	75	505598	54,85313	ppb	94
50)		16.46	83	235643	56.92510		94
	1,2-EDB	17.72	107	274138	53.74122		92
	Tetrachloroethene	17.18	129	221420	43.51831		98
	1-Chlorohexane 1,1,1,2-Tetrachloroethane	18.08 18.54	91 131	494992 285558	43.61911 54.20577		94 95
	m&p-Xylene	18.74	106	1059565	98.13420		99
	o-Xylene	19.49	106	513606	52.09033		100
	Styrene	19.50	78	516357	51.20294		93
	2-Hexanone	16,48	43	278706	49.69261		92
	1,3-Dichloropropane	16.88	76	484520	54.66925		98
	Dibromochloromethane	17.36	129	323433	53.61001		98
64)	Chlorobenzene	18.50	112	830848	52.63477		96
65)	Ethylbenzene	18.59	91	1545697	48.69569		98
	Bromoform	20.03	173	203549	56.34081		97
	MIBK (methyl isobutyl keto	15.06	43	389036	49.16985	ppb	99
	Isopropylbenzene	20.11	105	1316676	47.89121		98
	1,1,2,2-Tetrachloroethane	20.28	83	340818	54.48460		99
	1,2,3-Trichloropropane	20.52	110	75886	52.44994		98
	t-1,4-Dichloro-2-Butene	20.59	53	107904	51.32034		97
	Bromobenzene	20.87	156	306271	54.15940		98
	n-Propylbenzene 2-Chlorotoluene	20.82	91	1769391	48.41531		99
	1,3,5-Trimethylbenzene	21.12 21.09	91 105	1137814 1041488	49.48084 48.66507		99 96
	4-Chlorotoluene	21.20	91	960900	49.81549		98
-	Tert-Butylbenzene	21.75	119	1001249	47.31826		99
	1,2,4-Trimethylbenzene	21.81	105	1052711	49.52299		98
	Sec-Butylbenzene	22.14	105	1412680	45.70102		98
	p-Isopropyltoluene	22.36	119	1087533	46.73587		97
	Benzyl Chloride	22.80	91	494074	45.60699		96
	1,3-DCB	22.51	146	524956	50.71185	ppb	97
	1,4-DCB	22.67	146	504262	50.06678	ppb	96
85)	n-Butylbenzene	23.06	91	1124127	43.04435		99
	1,2-DCB	23.30	146	471498	51.44321		98
	1,2-Dibromo-3-chloropropan	24.50	155	44638	51.58546		95
	1,2,4-Trichlorobenzene	25.94	180	266111	43.20498		93
	Hexachlorobutadiene	26.18	225	85872	46.03146		98
	Naphthalene	26,28	128	546100	47.77750		99
311	1,2,3-Trichlorobenzene	26.65	180	251499	48.76995	րքո	93

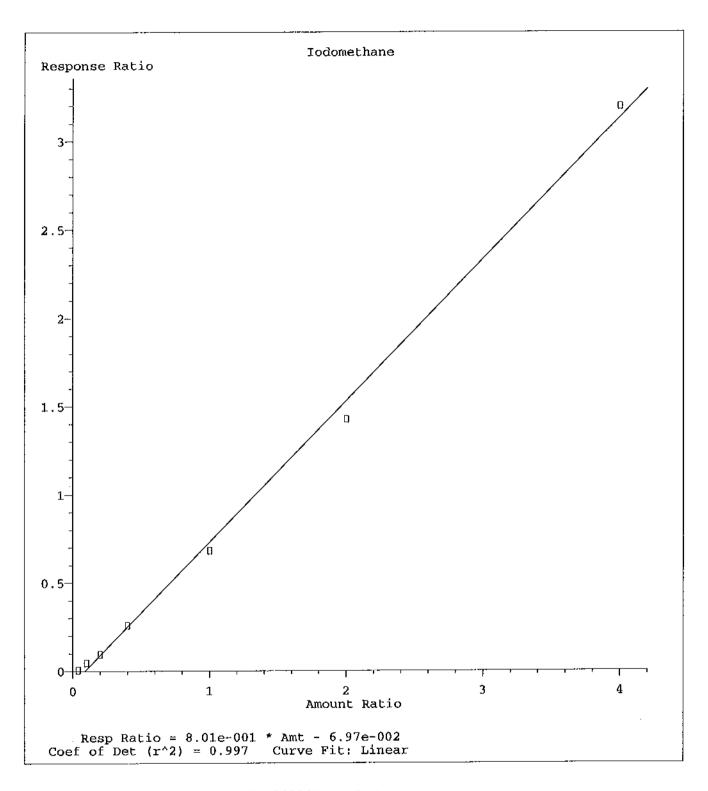
Data File: M:\NEO\DATA\N120229\0229N16S.D

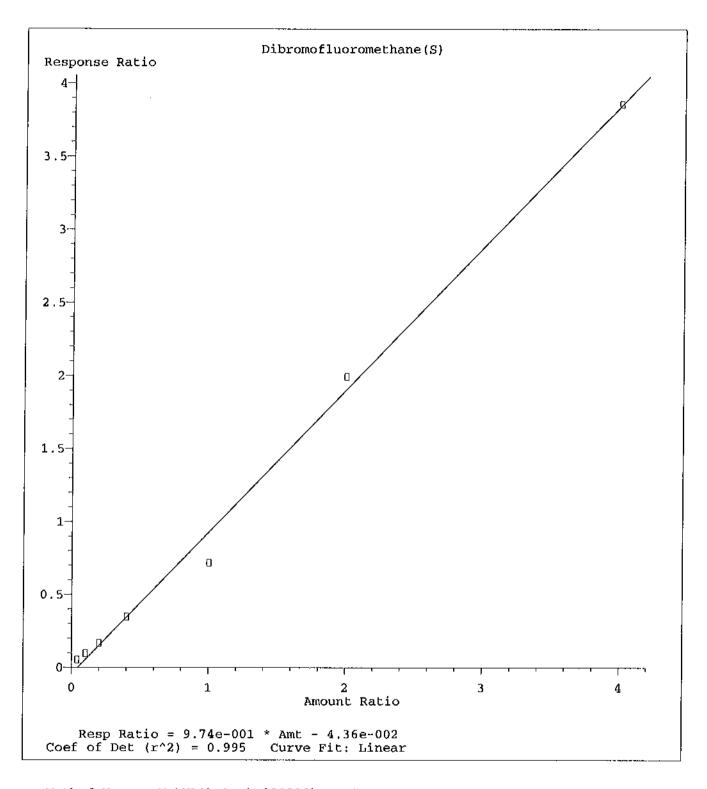

Vial: 1 Acq On : 29 Feb 12 20:24 Operator: SV,DG,RS Sample : 120229A LCS-1SN (SS) Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

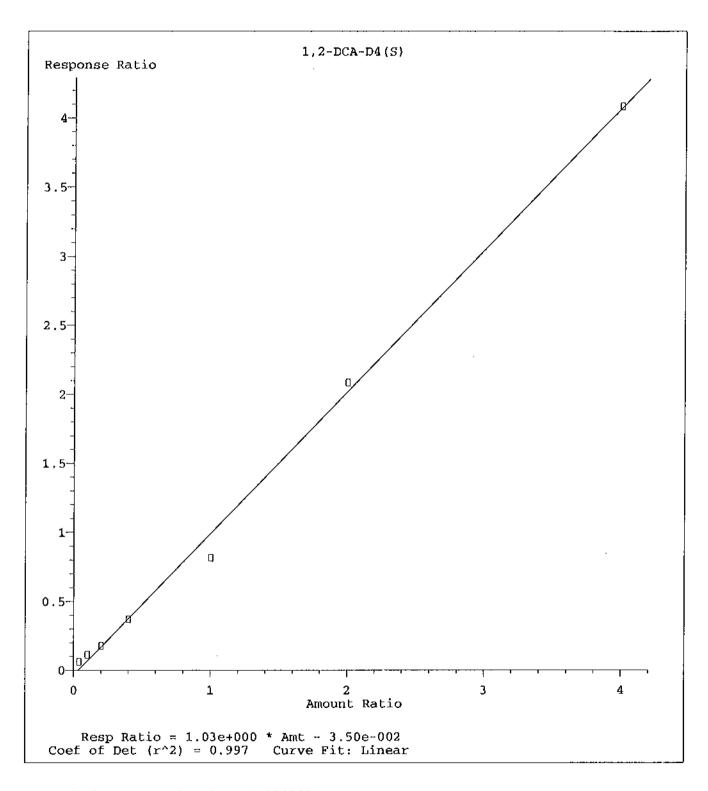

Quant Time: Mar 12 13:22 2012 Quant Results File: NALLS.RES

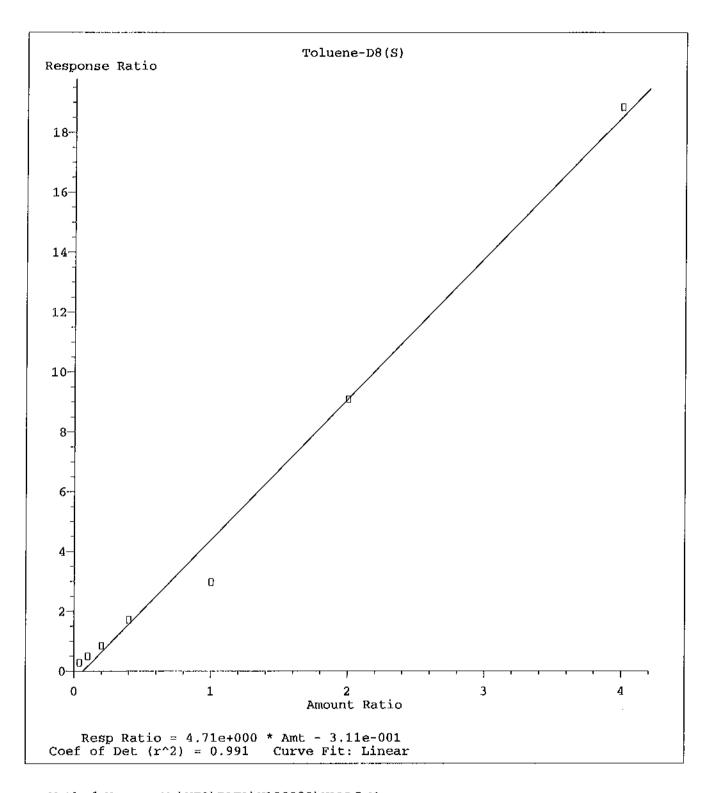

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

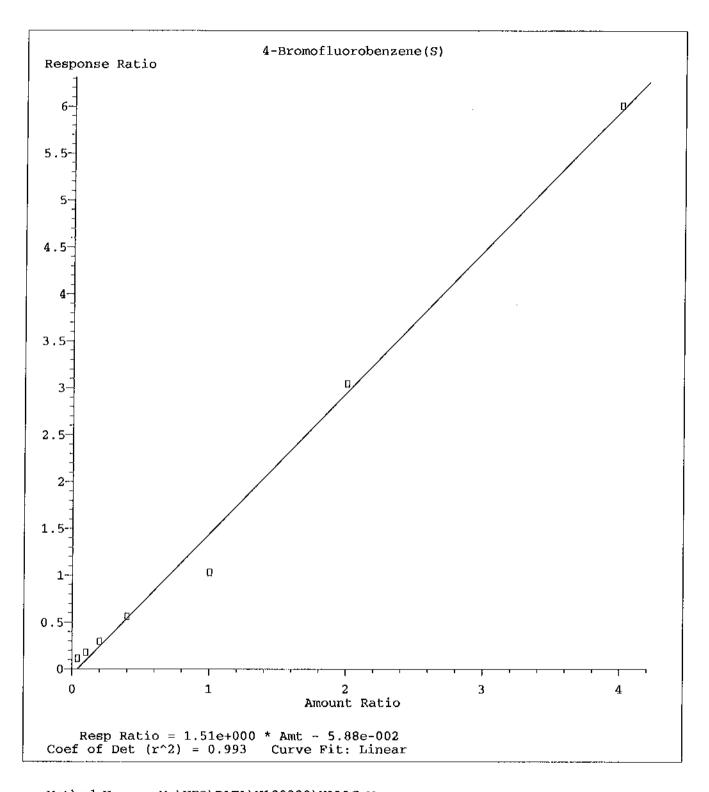

Title : METHOD 8260B


Last Update : Mon Mar 12 13:19:57 2012









(Not Reviewed) Quantitation Report

Data File : M:\NEO\DATA\N120229\0229N16S.D

Vial: 1 Operator: SV, DG, RS Acq On : 29 Feb 12 20:24 Inst : Neo Multiplr: 1.00 : 120229A LCS-1SN (SS) Sample Misc : Soil 5mL w/ ISS:10-20-11

Quant Results File: NALLS.RES Quant Time: Mar 12 13:22 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	я.т.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.26	96	348992	50.00 <u>000</u> pp	<u>b</u> 0.00
51) Chlorobenzene (IS)	18.43	117	255104	50.00000 pp	ъ 0.00
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	111496	50.00000 pp	ა 0.00
0// 1/4 BIGHTOTOSOMHONO = (10)					
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11,85	111	269823		
Spiked Amount 41.312			Recove		
34) 1,2-DCA-D4(S)	12.65	65	304442	44.15068 pp	
Spiked Amount 41.649			Recove	xy = 106.0	
52) Toluene-D8(S)	15.90	98		38.17601 pp	
Spiked Amount 35.274			Recove	ry = 108.2	
60) 4-Bromofluorobenzene(S)	20.49	95	296466	40.55048 pp	ъ 0.00
Spiked Amount 35.584	•	.11	Recove	TV = 113.9	318 29 8H 73507 3982V
_		H	lgorithm (but	(4114002)(1.7956	578 T(1)= 39.84 735073982
Target Compounds			•	(343776)(1	" QVUIUC 1989 3/12/12
Dichlorodifluoromethane	4.54	85	499418	44.47135 pp	5 99
3) Chloromethane	5.05	50	150464	44.47133 pp	ь 100
4) Vinyl chloride	5.49	62	130404	40.00001 pp	b 90
5) Bromomethane	0.43	94	240201	40.00720 pp	b 97
6) Chloroethane	6.41	64 67	022355	47 48710 pp	ь 97
3) Chloromethane 4) Vinyl chloride 5) Bromomethane 6) Chloroethane 7) Dichlorofluoromethane	7.04	301	126531	43 64430 pp	b 94
8) Trichlorofluoromethane	7.66	56	232768	43.80857 pp 48.88920 pp 49.16708 pp 47.48710 pp 43.64430 pp 247.00248 pp	b 97
9) Acrolein	7.00	43	134032	47.76011 pp	b 87
10) Acetone	7.70	101	338973	42.52844 pp	b 96
11) Freon-113	0 10	96	310792	47.76011 pp 42.52844 pp 45.67482 pp 226.74821 pp	b 99
12) 1,1-DCE	8 30	59	30808	226.74621 pp	b # 89
7) Dichlorofluoromethane 8) Trichlorofluoromethane 9) Acrolein 10) Acetone 11) Freon-113 12) 1,1-DCE 13) t-Butanol 14) Methyl Acetate 15) Iodomethane 16) Acrylonitrile 17) Methylene chloride 18) Carbon disulfide 19) Methyl t-butyl ether (MtBE 20) Trans-1,2-DCE 21) Diisopropyl Ether 22) 1,1-DCA 23) Vinyl Acetate 24) Ethyl tert Butyl Ether 25) MEK (2-Butanone) 26) Cis-1,2-DCE 27) 2,2-Dichloropropane 28) Chloroform 29) Bromochloromethane 31) 1,1,1-TCA	8 66	43	384432	47.02747 pp	b 97
14) Methyl Acetate	8 66	142	252617	49.55265 pp	b 97
15) locomechane	9.05	53	129854	52.27442 pp	b 95
17) Mothylone abloride	8.96	86	254159	54.99075 pp	b 93 _.
10) daybon digulfide	9.07	76	1340837	45.50768 pp	b 100
10) Morbyl t-butyl ether (MtBE	9.36	73	930651	59,14317 pp	b 96
20) Trans-1 2-DCE	9.57	96	363743	49,23157 pp	b 93
21) Diigopropyl Ether	10.21	45	1791842	58,20312 pp	b 99
21) 1130p10p1 20.01	10.25	63	785764	52,17028 pp	b 99
23) Vinvl Acetate	10.21	43	1390318	57.58712 pp	b 98
24) Rthyl tert Butyl Bther	10.89	59	1295841	58.43451 pp	b 96
25) MEK (2-Butanone)	10.87	43	318875	46.73025 pp	b 96
26) Cis-1,2-DCE	11.26	96	404674	53.49939 pp	b 94
27) 2,2-Dichloropropane	11.25	77	540238	46.99320 ppl	D 99
28) Chloroform	11.53	83	673909	54,10536 pp	95
29) Bromochloromethane	11.76	128	127042	51,14338 pp	07
	12.27	97	533764	46.72086 ppl	b 97 b 97
32) Cyclohexane	12.44	56	670844	41,97403 ppl 47,01246 ppl	
33) 1,1-Dichloropropene	12.53	75	526151		
35) Carbon Tetrachloride	12.72	117	420991 999922	49.30086 ppl 59.79772 ppl	
36) Tert Amyl Methyl Ether	12.76	73	462907	54.04069 ppl	·
37) 1,2-DCA	12.80	62 78	1442661	49.22566 ppl	
38) Benzene	12.92	95	347716	46.98468 ppl	
39) TCE	13.95	43	1541256	253.97274 ppl	
40) 2-Pentanone	13.59 14.16	63	422245	53.51438 ppl	=
41) 1,2-Dichloropropane	14.52	83	515833	58.12690 ppl	
42) Bromodichloromethane	T4.75				

^{(#) =} qualifier out of range (m) = manual integration 0229N16S.D NALLS.M Mon Mar 12 13:41:07 2012

(Not Reviewed) Quantitation Report

Data File : M:\NEO\DATA\N120229\0229N16S.D Acq On : 29 Feb 12 20:24 Sample : 120229A LCS-1SN (SS) Vial: 1 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 12 13:22 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcg Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
43) Dibromomethane	14.58	93	222196	55.43449	daa	98
	Methyl Cyclohexane	14,23	83	536450	41.83395		95
	2-Chloroethyl vinyl ether	14.95	63	197716	54.52350		100
	1-Bromo-2-chloroethane	15.28	63	470738	53.06981	ppb	95
	Cis-1,3-Dichloropropene	15.39	75	627514	57.86332	ppb	97
48)		16.03	91	1438049	51.30999		99
49)	Trans-1,3-Dichloropropene	16,18	75	505598	54.85313		94
50)	1,1,2-TCA	16.46	83	235643	56,92510		94
	1,2-EDB	17.72	107	274138	53.74122		92
	Tetrachloroethene	17.18	129	221420	43.51831		98
	1-Chlorohexane	18.08	91	494992	43.61911		94
	1,1,1,2-Tetrachloroethane	18.54	131	285558	54.20577		95
	m&p-Xylene	18.74	106	1059565	98.13420		99
	o-Xylene	19.49	106	513606	52.09033		100
	Styrene	19.50	78	516357	51.20294		93
	2-Hexanone	16.48	43	278706	49.69261		92
	1,3-Dichloropropane	16.88	76	484520	54.66925		98
	Dibromochloromethane	17.36	129	323433	53.61001		98
	Chlorobenzene	18.50	112	830848	52.63477		96
	Ethylbenzene	18.59	91	1545697	48.69569		98
	Bromoform	20.03	173	203549	56.34081		97
	MIBK (methyl isobutyl keto	15.06	43	389036 1316676	49.16985 47.89121	ppp	99 98
69)	Isopropylbenzene	20.11 20.28	105 83	340818	54.48460		99
	1,1,2,2-Tetrachloroethane		110	75886	52.44994	ppo .	98
	1,2,3-Trichloropropane	20.52 20.59	53	107904	51.32034		97
	t-1,4-Dichloro-2-Butene	20.87	156	306271	54.15940		98
	Bromobenzene n-Propylbenzene	20.82	91	1769391	48.41531		99
	2-Chlorotoluene	21.12	91	1137814	49.48084		99
	1,3,5-Trimethylbenzene	21.09	105	1041488	48.66507	ppb ppb	96
	4-Chlorotoluene	21.20	91	960900	49.81549		98
	Tert-Butylbenzene	21.75	119	1001249	47.31826		99
	1,2,4-Trimethylbenzene	21.81	105	1052711	49.52299		98
	Sec-Butylbenzene	22.14	105	1412680	45.70102	daa	98
	p-Tsopropyltoluene	22.36	119	1087533	46.73587		97
	Benzyl Chloride	22.80	91	494074	45.60699	daa	96
83)	1,3-DCB	22.51	146	524956	50.71185	ďgg	97
	1,4-DCB	22.67	146	504262	50.06678	dgo	96
	n-Butylbenzene	23.06	91	1124127	43.04435	dgo	99
86)	1,2-DCB	23.30	146	471498	51.44321	gpb	98
87)	1,2-Dibromo-3-chloropropan	24.50	155	44638	51.58546 p	gpb	95
88)	1,2,4-Trichlorobenzene	25,94	180	266111	43.20498	dqq	93
89)	Hexachlorobutadiene	26.18	225	85872	46.03146 }	dqq	98
	Naphthalene	26.28	128	546100	47.77750 g	dqq	99
91)	1,2,3-Trichlorobenzene	26.65	180	251499	48.76995 p	dqq	93

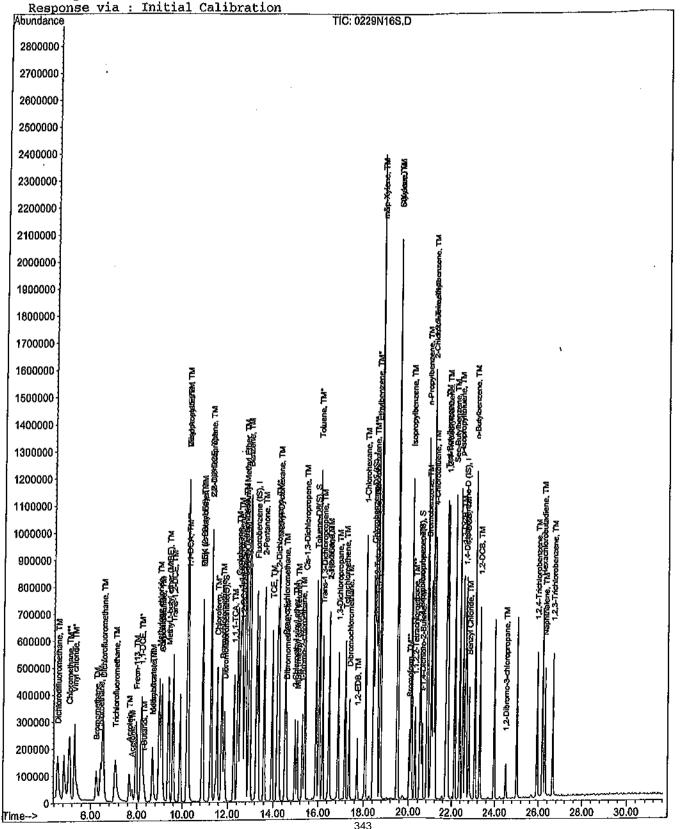
^{(#) =} qualifier out of range (m) = manual integration Mon Mar 12 13:41:08 2012 0229N16S.D NALLS.M

Data File : M:\NEO\DATA\N120229\0229N16S.D

Vial: 1 Acq On : 29 Feb 12 20:24 Operator: SV, DG, RS : 120229A LCS-1SN (SS) Inst : Neo Multiplr: 1.00

Sample Misc : Soil 5mL w/ ISS:10-20-11

Quant Results File: NALLS.RES


Quant Time: Mar 12 13:22 2012

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Method

Last Update : Mon Mar 12 13:19:57 2012

Data File: M:\NEO\DATA\N120229\0229N15S.D

Vial: 1 Operator: SV,DG,RS
Inst : Neo
Multiplr: 1.00 Acq On : 29 Feb 12 19:46 Sample : 50ug/kg Vol Std 2-29-12 Misc : Soil 5mL w/ ISS:10-20-11

Quant Time: Mar 12 13:23 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

: METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13,26	96	307392	50.00000 pp	b 0.00
51) Chlorobenzene-D5 (IS)	18,43	117		50.00000 pp	b 0.00
67) 1,4-Dichlorobenzene-D (IS)	22,62	152	101016	50.00000 pp	b 0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.86	111	265010	46.49110 pp	b 0.01
Spiked Amount 41.312			Recove	ery = 112.5	
34) 1,2-DCA-D4(S)	12.66	65	269026	44.28897 pp	b 0.00
Spiked Amount 41.649			Recove		
52) Toluene-D8(S)	15.90	98	752812	37.09229 pp	
Spiked Amount 35.274			Recove		
60) 4-Bromofluorobenzene(S)	20.49	95	256187	37.91378 pp	
Spiked Amount 35.584			Recove	ry = 106.5	49%
Target Compounds					Qva lue
Dichlorodifluoromethane	4.54	85	459691	41,64125 ppl	
Chloromethane	5.06	50	689410	46.16740 ppl	
4) Vinyl chloride	5.30	62	127200	42.04715 ppl	
5) Bromomethane	6,22	94	195856	45.58000 ppl	
6) Chloroethane	6.41	64	277907	47.61506 ppl	
7) Dichlorofluoromethane	6.51	67	805617	47.09004 ppl	
8) Trichlorofluoromethane	7.04	101	420771	47.76185 ppl	
9) Acrolein	7.67	56	218908	263.73185 ppl	
10) Acetone	7.78	43	130566	53.35864 ppl	
11) Freon-113	7.95	101	319316	45.48393 ppk	
12) 1,1-DCE	8.18	96	276940	46.20784 ppl	
13) t-Butanol	8.30	59	30416	254.15669 pph	
14) Methyl Acetate	8.67	43	370843	52.06725 ppk	
15) Iodomethane	8.67	142	216747	48.38302 pph	
16) Acrylonitrile	9.04	53	114952	52.53798 ppk 53.14396 ppk	
17) Methylene chloride	8.96	86 76	216345 1171293	45.13331 ppk	
18) Carbon disulfide	9.07 9.37	73	780348	56.30267 ppb	
19) Methyl t-butyl ether (MtBE	9.57	96	325495	50.01685 pph	
20) Trans-1,2-DCE	10.20	45	1489262	54.92127 ppb	
21) Diisopropyl Ether 22) 1,1-DCA	10.26	63	657608	49.57024 ppb	
23) Vinyl Acetate	10.20	43	1173327	55.17638 ppb	
24) Ethyl tert Butyl Ether	10.89	59	1053287	53.92465 ppb	
25) MEK (2-Butanone)	10.87	43	290703	48.36710 ppb	
26) Cis-1,2-DCE	11.25	96	349264	52,42280 ppb	
27) 2,2-Dichloropropane	11.25	77	458803	45.31052 ppb	97
28) Chloroform	11.54	83	585766	53.39322 ppb	96
29) Bromochloromethane	11.76	128	105506	48.22166 ppb	82
31) 1,1,1-TCA	12.26	97	460286	45.74170 ppb	94
32) Cyclohexane	12.43	56	626075	44.47422 ppb	
33) 1,1-Dichloropropene	12.54	75	471458	47.82649 ppb	
35) Carbon Tetrachloride	12,73	117	360139	47.88227 ppb	
36) Tert Amyl Methyl Ether	12.77	73	816510	55.43741 ppb	
37) 1,2-DCA	12.80	62	404583	53,62381 ppb	
38) Benzene	12.93	78	1288858	49.92927 ppb	98
39) TCE	13.95		315777	48.44345 ppb	
40) 2-Pentanone		43	1449737	271.22172 ppb	
41) 1,2-Dichloropropane		63	373367 429252	53.72356 ppb 54.91655 ppb	
42) Bromodichloromethane				24.31032 bbp	

^{(#) =} qualifier out of range (m) = manual integAdtion Mon Mar 12 13:41:00 2012 0229N15S.D NALLS.M

Data File: M:\NEO\DATA\N120229\0229N15S.D Vial: 1 Acq On : 29 Feb 12 19:46

Operator: SV,DG,RS : Neo : 50ug/kg Vol Std 2-29-12 Sample Inst Multiplr: 1.00 Misc : Soil 5mL w/ ISS:10-20-11

Quant Results File: NALLS.RES Ouant Time: Mar 12 13:23 2012

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
431	Dibromomethane	14.59	93	194589	55.11693	ppb	97
	Methyl Cyclohexane	14.23	83	486322	43.05727		100
	2-Chloroethyl vinyl ether	14.96	63	178612	55,92107		96
	1-Bromo-2-chloroethane	15.29	63	424354	54.31496		97
	Cis-1,3-Dichloropropene	15.39	75	531884	55.68263		98
	Toluene	16,03	91	1236406	50.08552		99
49)	Trans-1,3-Dichloropropene	16.18	75	430376	53.01112		97
	1,1,2-TCA	16.47	83	207760	56,98153		91
	1,2-EDB	17.72	107	244447	51.66671		90
	Tetrachloroethene	17.18	129	203979	43.22435		94
	1-Chlorohexane	18.08	91	456120	43.33568		94 92
	1,1,1,2-Tetrachloroethane	18.53	131	241452	49.41626		96
	m&p-Xylene	18.74	106	918407	91.70981 47.88809		97
-	o-Xylene	19.49	106	437938	46.86533		95
	Styrene	19.50	78 43	438348 257878	49.57328		99
	2-Hexanone	16.48	76	420354	51.13690		98
	1,3-Dichloropropane	16.88 17.36	129	275640	49,25969		96
	Dibromochloromethane	18.49	112	703479	48.04964		98
	Chlorobenzene	18.60	91	1321853	44.89905		99
	Ethylbenzene	20.03	173	179829	53.66630		95
	Bromoform MIBK (methyl isobutyl keto	15.05	43	368744	51.44027		97
	Isopropylbenzene	20.12	105	1117732	44,87286		98
	1,1,2,2-Tetrachloroethane	20.28	83	308955	54.51495		98
71)	1,2,3-Trichloropropane	20.53	110	68740	52.43992		97
721	t-1,4-Dichloro-2-Butene	20.59	53	93106	48.87635		100
	Bromobenzene	20.87	156	259685	50.68552	ppb	98
	n-Propylbenzene	20.83	91	1538050	46.45136	ppb	98
	2-Chlorotoluene	21.12	91	955289	45.85320		95
76)	1,3,5-Trimethylbenzene	21.09	105	908938	46.87772		93
77)	4-Chlorotoluene	21.20	91	834069	47.72625		100
78)		21.75	119	872174	45,49451		97
	1,2,4-Trimethylbenzene	21.81	105	924096	47.98261		98
80)	Sec-Butylbenzene	22.15	105	1262840	45.09201		97
81)	p-Isopropyltoluene	22.36	119	913925	43.34985		98
82)	Benzyl Chloride	22.79	91	455864	46.44552		98
83)	1,3-DCB	22.51	146	461743	49.23297		98
84)	1,4-DCB	22.67	146	448535	49.15400		94
	n-Butylbenzene	23.06	91	1007918	42.59858 ; 49.67527 ;	ppn ppn	100 97
86)	1,2-DCB	23.30	146	412499 38401	48.98175		83
87)	1,2-Dibromo-3-chloropropan	24.50 25.93	155 180	254978	45.69228		99
88)	1,2,4-Trichlorobenzene	26.18	225	79344	46.94468		96
	Hexachlorobutadiene	26.28	128	527744	50.96168		99
90)	Naphthalene	26.65	180	232445	49.75140		98
AT)	1,2,3-Trichlorobenzene	ÇU, U2	100	222442	-2112140 }	~~~	-

^{(#) =} qualifier out of range (m) = manual integ245tion 0229N15S.D NALLS.M Mon Mar 12 13:41:01 2012

Data File : M:\NEO\DATA\N120229\0229N15S.D

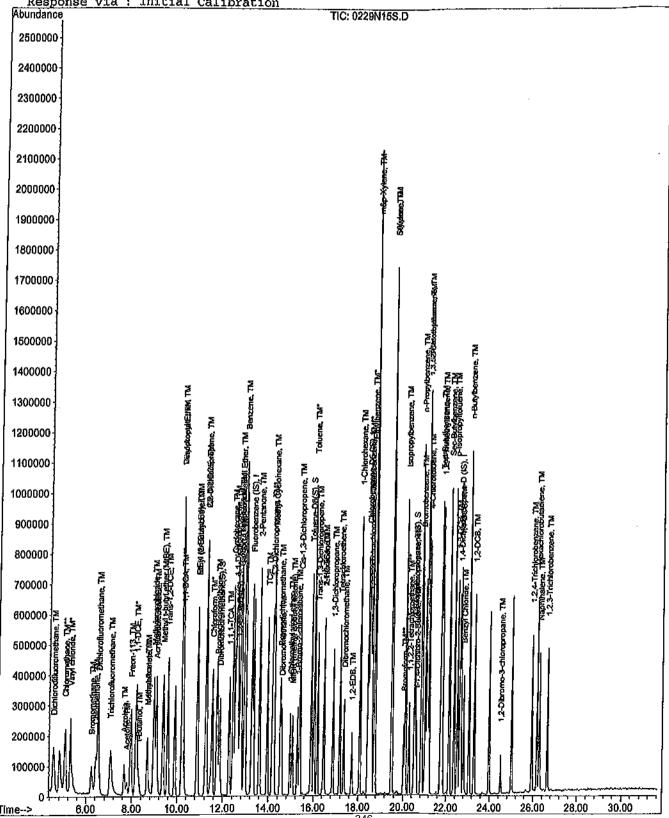
: 29 Feb 12 19:46 Acq On

: 50ug/kg Vol Std 2-29-12 Sample : Soil 5mL w/ ISS:10-20-11 Misc

Vial: 1 Operator: SV,DG,RS

: Neo Inst Multiplr: 1.00

Quant Time: Mar 12 13:23 2012


Quant Results File: NALLS.RES

Method Title

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Response via : Initial Calibration

Data File: M:\NEO\DATA\N120305\0305N04S.D

Vial: 1

Acq On : 5 Mar 12 12:46 Sample : 2ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
1) Fluorobenzene (IS)	13.28	96	314752	50.00000 pj	 ob	-0.01
51) Chlorobenzene-D5 (IS)	18.45			50.00000 p		-0.01
67) 1,4-Dichlorobenzene-D (IS)			82688	50.00000 pr		0.00
System Monitoring Compounds	11 00	444	45404	0 40000		A 00
30) Dibromofluoromethane(S)	11.86	111	15121	2.47923 pr)018	-0.02
Spiked Amount 41.312 34) 1,2-DCA-D4(S)	12.66	65	Recover			-0.01
Spiked Amount 41.649	12.00	0.5	Recover		7238	0.01
52) Toluene-D8(S)	15.92	98	51599	2.82237 pr		- 0. 01
Spiked Amount 35.274			Recover	y = 8.0	900	
<pre>60) 4-Bromofluorobenzene(S)</pre>	20.53	95	21033	2.64446 pp		0.00
Spiked Amount 35.584			Recover	y = 7.6	130%	
Margot Compounds					0	alue
Target Compounds 2) Dichlorodifluoromethane	4.53	85	8153	1.71399 pp		98
3) Chloromethane	5.04	50	31728	0.24540 pr		99
4) Vinyl chloride	5.28	62	3709	1.57883 pr		100
5) Bromomethane	6.21	94	9982	4.73839 pr		43
6) Chloroethane	6.42	64	8190	1.94704 pr		
7) Dichlorofluoromethane	6.50	67	25453	1.86845 pr		83
8) Trichlorofluoromethane	7.05	101	8150	1.64299 pr		64
9) Acrolein	7.67	56	43692	54.70002 pr		97
10) Acetone	7.79	43	16913	-2.23211 pp		79
11) Freon-113	7.96	101	5901	2.99706 pg		84
12) 1,1-DCE	8.19	96	7630	1.78404 pg		63
14) Methyl Acetate	8.67	43	35416	-4.81575 pr		98
15) Iodomethane	8.66	142	4485	2.27269 pr		94
16) Acrylonitrile	9.05	53	4963	2.33741 pr		42
17) Methylene chloride	8.96	86	11356	2.13232 pg		77
18) Carbon disulfide	9.08	76	43013	2.23013 pr	b	96
19) Methyl t-butyl ether (MtBE	9.38	73	33281	2.15677 pg		90
20) Trans-1,2-DCE	9.56	96	11884	2.13887 pg		85
21) Diisopropyl Ether	10.21	45	56681	1.99358 pr		89
22) 1,1-DCA	10.27	63	24633	2.02212 pp		93
23) Vinyl Acetate	10.21	43	46830	2.07941 pr		98
24) Ethyl tert Butyl Ether	10.90	59	45851	2.19055 pg		89
25) MEK (2-Butanone)	10.89	43	17671	-0.19559 pr		95
26) Cis-1,2-DCE	11.27	96	13241	2.11916 pr		77
27) 2,2-Dichloropropane	11.27	77	16914	2.02865 pr		88
28) Chloroform	11.55	83	22533	2.10359 pp		92
29) Bromochloromethane	11.78 12.29		4188	1.92218 pp	1 U	80
31) 1,1,1-TCA	12.29	97 56	13478 14420	1.74745 pp 1.62765 pp		85 88
32) Cyclohexane	12.56	75	13511	1.82677 pp		
33) 1,1-Dichloropropene 35) Carbon Tetrachloride	12.73	117	8370	1.42527 pp		86 90
36) Tert Amyl Methyl Ether	12.78	73	37161	2.25497 pp		86
37) 1,2-DCA	12.81	62	16540	2.06726 pp		99
38) Benzene	12.95	78	49409	2.09733 pr		89
39) TCE	13.97	95	10475	1.93877 pr		69
40) 2-Pentanone	13.62	43	317981	56.14887 pr		98
41) 1,2-Dichloropropane	14.19	63	14632	2.07845 pp		92
42) Bromodichloromethane	14.54	83	16508	2.02210 pp		96
43) Dibromomethane	14.61	93	8308	2.22274 pp		80
44) Methyl Cyclohexane	14.26	83	9456	2.81790 pp		99
45) 2-Chloroethyl vinyl ether	14.99	63	7119 347	2.06483 pp		98
			341			

^{(#) =} qualifier out of range (m) = manual integration 0305N04S.D NALLS.M Fri Mar 09 10:08:15 2012

Vial: 1

Data File : M:\NEO\DATA\N120305\0305N04S.D

Acq On : 5 Mar 12 12:46
Sample : 2ug/kg Vol Std 03-05-12
Misc : Soil 5mL w/IS:10-20-11 Operator: SV, DG, RS Inst : Neo Multip1r: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

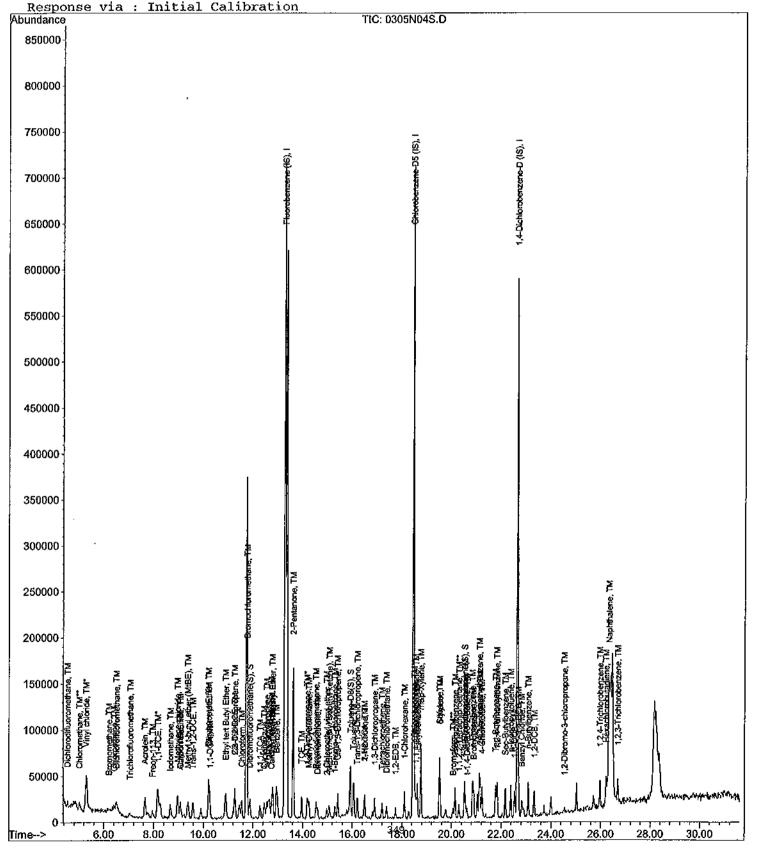
Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Compound	R.T.	QIon	Response	Conc Unit	Q v a1u	.e
46) 1-Bromo-2-chloroethane	15.30	63	16738	2.06581 pp	 h	91
47) Cis-1,3-Dichloropropene	15.41		23558	2.31551 pp	b	90
48) Toluene	16.05		49057	2.21279 pp	5	96
49) Trans-1,3-Dichloropropene	16.20		19039	2.23732 pp	- 5	85
50) 1,1,2-TCA	16.49	83	8087	2.09845 pp		83
53) 1,2-EDB	17.74		9598	2.02069 pp	- 5 #	64
54) Tetrachloroethene	17.19		5917	1.70107 pp	- :: 5 #	83
55) 1-Chlorohexane	18.11	91	12168	1.70454 pp	3	82
56) 1,1,1,2-Tetrachloroethane	18.57	131	10418	2.15350 pp	0	80
57) m&p-Xylene	18.77	106	32414	3.96995 ppl		88
58) o-Xylene	19.51	106	16229	1.98212 ppl		86
59) Styrene	19.52	78	18265	2.09728 ppl		96
61) 2-Hexanone	16.50	43	11078	2.19006 ppl	5	94
62) 1,3-Dichloropropane	16.91	76	16592	2.00325 ppl	0	90
63) Dibromochloromethane	17.39	129	11536	2.06557 ppl)	90
64) Chlorobenzene	18.51	1 12	27602	2.07617 ppl)	87
65) Ethylbenzene	18.63	91	46468	1.91825 ppl)	91
66) Bromoform	20.08	173	7250	2.14145 ppl)	98
68) MIBK (methyl isobutyl keto	15.08	43	17791	2.61179 ppl) #	77
69) Isopropylbenzene	20.14	105	37540	1.96747 ppl)	100
70) 1,1,2,2-Tetrachloroethane	20.30	83	13253	2.35463 ppl)	97
71) 1,2,3-Trichloropropane	20.56	110	3319	2.41057 ppl)	78
72) t-1,4-Dichloro-2-Butene	20.62	53	3623	2.08596 ppl)	88
73) Bromobenzene	20.90	156	1 1538	2.36985 ppl)	92
74) n-Propylbenzene	20.85	91	50712	1.99343 ppl)	99
75) 2-Chlorotoluene	21.16	91	39630	2.27878 ppl)	94
76) 1,3,5-Trimethylbenzene	21.12	105	32685	2.07282 ppl		94
77) 4-Chlorotoluene	21.23	91	34033	2.21974 ppl	•	90
78) Tert-Butylbenzene	21.78	119	282 27	1.91575 ppk) #	96
79) 1,2,4-Trimethylbenzene	21.84	105	34381	2.13626 ppl)	96
80) Sec-Butylbenzene	22.17	105	38592	1.88289 ppk)	94
81) p-Isopropyltoluene	22.40	119	31604	2.00202 ppk		84
82) Benzyl Chloride	22.82	91	23183	2.54157 ppk		90
83) 1,3-DCB	22.55	146	17279	2.08101 ppk)	97
84) 1,4-DCB	22.70	146	20796	2.47670 ppk		91
85) n-Butylbenzene	23.10	91	33744	2.02331 ppk) ·	95
86) 1,2-DCB	23.33	146	17470	2.29653 ppk)	90
87) 1,2-Dibromo-3-chloropropan		155	1390	2.11117 ppk	+	67
88) 1,2,4-Trichlorobenzene	25.97	180	12089	2.43139 pph		91
89) Hexachlorobutadiene	26.23	225	5829	1.95980 pph		79
90) Naphthalene	26.33	128	25328	2.49636 ppk		100
91) 1,2,3-Trichlorobenzene	26.70	180	13183	1.96691 ppk	, #	70

Quantitation Report

Data File: M:\NEO\DATA\N120305\0305N04S.D

Vial: 1 Operator: SV,DG,RS : 5 Mar 12 12:46 Acq On


Sample : 2ug/kg Vol Std 03-05-12 Inst : Neo : Soil 5mL w/IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Last Update : Tue Mar 06 09:31:20 2012

Data File: M:\NEO\DATA\N120305\0305N05S.D

Vial: 1 Acq On : 5 Mar 12 13:24 Operator: SV,DG,RS Sample : 5ug/kg Vol Std 03-05-12

Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration

Internal Chandauda	D 00	ΔΤ	D	C		(34° 3
				Conc Units	nev	(M1n)
 Fluorobenzene (IS) 	13.28 18.46	96	293888	50.00000 pp		0.00
51) Chlorobenzene-D5 (IS)	18.46	117	193344	50.00000 pp	b	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	78008	50.00000 pp	b	0.00
System Monitoring Compounds	44.00					
30) Dibromofluoromethane(S)	11.88	111	31903			0.00
Spiked Amount 41.312 34) 1,2-DCA-D4(S)	10 67	65	Recover			0 00
Spiked Amount 41.649	12.67	65	35610	5.76490 pp $y = 13.8$	ልጋው መ	0.00
52) Toluene-D8(S)	15.92	98	96 4 92	xy = 13.8 5.77411 pp	44 2/0 h	-0.02
Spiked Amount 35.274	13.72	70	Recover	y = 16.3	698 -	-0.02
60) 4-Bromofluorobenzene(S)	20.52	95		6.40193 pp	h	0.00
Spiked Amount 35.584		3.5	Recover			0.00
**						
Target Compounds					Qva	alue
Dichlorodifluoromethane	4.55	85	34231	6.56582 pp		92
Chloromethane	5.05	50	72298	4.94646 pp	b	97
4) Vinyl chloride	5.29	62	14082	6.41990 pp	b	90
5) Bromomethane	6.22	94	17943	7.36394 pp	b #	66
6) Chloroethane	6.57	64	254	0.04309 pp	b	84
7) Dichlorofluoromethane		67	66707	5.24446 pp	b	97
8) Trichlorofluoromethane	7.04	101	31865	6.11884 pp	b	93
9) Acrolein	7.66	56	81945	109.87394 pp		97
10) Acetone	7.79	43	21664	1.47582 pp		90
11) Freon-113	7.97	101	22009	6.94218 pp		85
12) 1,1-DCE	8.17	96	21675	5.42783 pp		76
14) Methyl Acetate	8.66	43	69762	2.09497 pp		97
15) Iodomethane	8.68	142	14851	5.56726 pp		77
16) Acrylonitrile	9.05	53	9566	4.82511 pp		89
17) Methylene chloride	8.97	86	23520	5.73894 pp		82
18) Carbon disulfide	9.09	76	111556	6.19456 pp		98
19) Methyl t-butyl ether (MtBE		73	83123	5.76919 pp		93
20) Trans-1,2-DCE	9.57	96	29654	5.71598 pp		73
21) Diisopropyl Ether	10.22	45	151138	5.69320 pp		95
22) 1,1-DCA	10.26 10.23	63	63120	5.54937 pp)		97
23) Vinyl Acetate		43	115649	5.49978 pp		98
24) Ethyl tert Butyl Ether 25) MEK (2-Butanone)	10.90 10.89	59 43	107941 32766	5.52303 ppl 3.48387 ppl		95 07
26) Cis-1,2-DCE	11.28	96	30041	5.14926 ppl		97 84
27) 2,2-Dichloropropane	11.26	77	44858	5.76219 pp		90
28) Chloroform	11.56	83	55069	5.50599 ppl		91
29) Bromochloromethane	11.78		12426	6.10809 ppl	, ,	88
31) 1,1,1-TCA	12.30	97	40777	5.66214 ppl	<u>, </u>	90
32) Cyclohexane	12.46	56	46369	5.60546 ppl		95
33) 1,1-Dichloropropene	12.55	75	38871	5.62871 ppl	<u>, </u>	92
35) Carbon Tetrachloride	12.75	117	29039	5.29591 ppl		84
36) Tert Amyl Methyl Ether	12.79	73	82392	5.35458 ppl		94
37) 1,2-DCA	12.82	62	42422	5.67855 ppl		100
38) Benzene	12.96	78	125878	5.72265 ppl		91
39) TCE	13.97	95	27348	5.42106 ppl	5	90
40) 2-Pentanone	13.62	43		111.82024 ppl)	98
41) 1,2-Dichloropropane	14.19	63	36039	5.48272 ppl		100
42) Bromodichloromethane	14.55	83	43370	5.68964 ppl		98
43) Dibromomethane	14.60	93	19729	5.65307 ppl)	90
44) Methyl Cyclohexane	14.25	83	33205	6.49799 ppł	>	99
45) 2-Chloroethyl vinyl ether	14.98	63	17100 350	5.31187 ppl		97

⁽#) = qualifier out of range (m) = manual integration 0305N05S.D NALLS.M Fri Mar 09 10:08:17 2012

Data File: M:\NEO\DATA\N120305\0305N05S.D

Vial: 1 Acq On : 5 Mar 12 13:24
Sample : 5ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

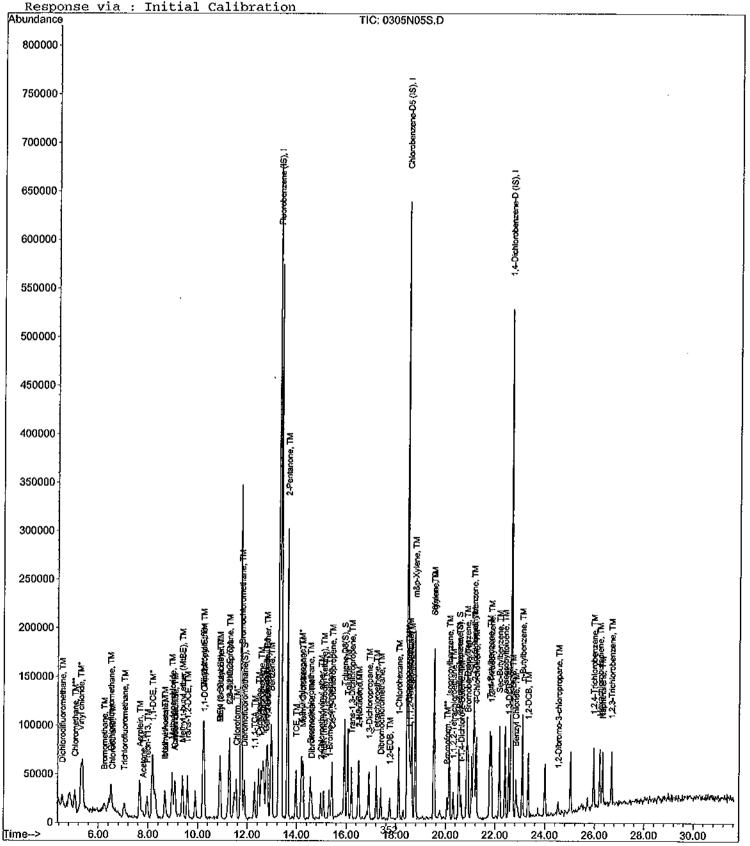
Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
46) 1-Bromo-2-chloroethane	15.32	63	41561	5.49364 pp	b 9	7
47) Cis-1,3-Dichloropropene	15.42	75	51700	5.44234 pp		7
48) Toluene	16.06	91	110479	5.33709 pp		9
49) Trans-1,3-Dichloropropene	16.21	75	43100	5.42435 pp		4
50) 1,1,2-TCA	16.50	83	19364	5.38138 pp		1
53) 1,2-EDB	17.75	107	23944	5.51490 pp		9
54) Tetrachloroethene	17.21	129	17967	5.65091 pp		5
55) 1-Chlorohexane	18.11	91	35152	5.38716 pp	b 9	1
56) 1,1,1,2-Tetrachloroethane	18.57	131	23518	5.31841 pp	b 9	2
57) m&p-Xylene	18.76	106	84018	11.25759 pp	b 9	9
58) o-Xylene	19.52	106	42659	5.69994 pp	b 9	6
59) Styrene	19.53	78	43238	5.43155 pp	b 9	4
61) 2-Hexanone	16.50	43	25204	5.45110 pp	b # 8	4
62) 1,3-Dichloropropane	16.91	76	42055	5.55488 pp		3
63) Dibromochloromethane	17.39	129	26978	5.28463 pp	b 9	3
64) Chlorobenzene	18.52	112	65347	5.37735 pp		5
65) Ethylbenzene	18.62	91	124890	5.64025 pp		5
66) Bromoform	20.06	173	16879	5.45428 pp	b 8-	4
68) MIBK (methyl isobutyl keto	15.09	43	39617	6,16486 pp		6
69) Isopropylbenzene	20.15	105	101350	5.63041 pp	b 9-	4
70) 1,1,2,2-Tetrachloroethane	20.31	83	29575	5.56976 pp		6
71) 1,2,3-Trichloropropane	20.55	110	6893	5.75787 pp		8
72) t-1,4-Dichloro-2-Butene	20.63	53	8933	5.45177 pp		
73) Bromobenzene	20.90	156	25551	5.56290 pp		
74) n-Propylbenzene	20.86	91	1 33722	5.57182 pp		
75) 2-Chlorotoluene	21.16	91	91633	5.58513 pp		
76) 1,3,5-Trimethylbenzene	21.12	105	83785	5.63225 pp		_
77) 4-Chlorotoluene	21.24	91	83434	5.76831 pp		8
78) Tert-Butylbenzene	21.77	119	79775	5.73909 pp		
79) 1,2,4-Trimethylbenzene	21.84	105	84181	5.54439 pp		
80) Sec-Butylbenzene	22.17	105	108546	5.61364 pp		
81) p-Isopropyltoluene	22.39	119	85262	5.72514 pp		-
82) Benzyl Chloride	22.83	91	49919	5.80098 pp		
83) 1,3-DCB	22.54	146	44969	5.74080 ppl		
84) 1,4-DCB	22.71	146	44978	5.67802 ppl		_
85) n-Butylbenzene	23.09	91	93212	5.92436 ppl		_
86) 1,2-DCB	23.33	146	39916	5.56198 ppl		
87) 1,2-Dibromo-3-chloropropan	24.54	155	3393	5.46256 ppl		
88) 1,2,4-Trichlorobenzene	25.97	180	28107	5.99215 pp		_
89) Hexachlorobutadiene	26.21	225	15396	5.48692 pp		_
90) Naphthalene	26.32	128	51708	5.40217 pp		
91) 1,2,3-Trichlorobenzene	26.69	180	25256	5.40786 pp	o 84	4

Quantitation Report

Data File: M:\NEO\DATA\N120305\0305N05S.D

Vial: 1 : 5 Mar 12 13:24 Operator: SV,DG,RS


Acq On Sample : 5ug/kg Vol Std 03-05-12 Inst : Neo : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Vial: 1

Data File : M:\NEO\DATA\N120305\0305N06S.D

Acq On : 5 Mar 12 14:03 Sample : 10ug/kg Vol Std 03-05-12 Misc : Soil 5mL w/IS:10-20-11 Operator: SV,DG,RS Inst : Neo Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.28	96	316288	50.00000 pg	ob 0.00
51) Chlorobenzene-D5 (IS)			206976	50.00000 pp	
67) 1,4-Dichlorobenzene-D (IS)		152	85936	50.00000 pp	
0., -,					
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.87	111	59896	9.77281 pp	ob 0.00
Spiked Amount 41.312			Recove	ery = 23.6	557%
34) 1,2-DCA-D4(S)	12.67	65		10.33658 pr	0.00 de
Spiked Amount 41.649			Recove	ery = 24.8	
52) Toluene-D8(S)	15.93	98		9.91644 pp	
Spiked Amount 35.274			Recove		
60) 4-Bromofluorobenzene(S)	20.52	95		10.66461 pp	
Spiked Amount 35.584			Recove	ery = 29.9	72%
					0 1
Target Compounds	4 52	0.5	72000	10 (0700	Qvalue
2) Dichlorodifluoromethane	4.53	85	72988	12.68798 pp	
3) Chloromethane	5.04	50	125676	9.84628 pp	
4) Vinyl chloride	5.28	62	27296	11.56278 pp	
5) Bromomethane	6.22	94	28075	9.84364 pp	
6) Chloroethane	6.41	64	50283	12.01003 pp	
7) Dichlorofluoromethane	6.50	67	144096	10.52642 pp	
8) Trichlorofluoromethane	7.04	101	65781	11.51773 pp	
9) Acrolein	7.67	56	116601	145.26924 pp	
10) Acetone	7.79	43	36117	8.98697 pp	
11) Freon-113	7.97	101	49628	12.70577 pp	
12) 1,1-DCE	8.18	96	45732	10.64109 pp	
14) Methyl Acetate	8.67	43	123103	10.49900 pp	
15) Iodomethane	8.67	142	22346	7.39398 pp	
16) Acrylonitrile	9.07 8.97	53	20485	9.60090 pp	
17) Methylene chloride		86	38461	9.15020 pp	
18) Carbon disulfide 19) Methyl t-butyl ether (MtBE	9.08 9.39	76 73	196 4 86 144 7 34	10.13791 pp 9.33391 pp	
20) Trans-1,2-DCE	9.59	96	55139	9.87564 pp	
21) Diisopropyl Ether	10.22	45	263062	9.20747 pp	
21) Diisopropyi Ether 22) 1,1-DCA	10.22	63	121454	9.92173 pp	
23) Vinyl Acetate	10.27	43	207045	9.14886 pp	
24) Ethyl tert Butyl Ether	10.22	59	190174	9.04152 pp	
25) MEK (2-Butanone)	10.89	43	C7026	8.24920 pp	
26) Cis-1,2-DCE	11.28	96	61779	9.83944 pp	
27) 2,2-Dichloropropane	11.27	77	81699	9.75132 pp	
28) Chloroform	11.55	83	104379	9.69706 pp	
29) Bromochloromethane	11.79	128	22823	10.42427 pp	
31) 1,1,1-TCA	12.30	97	81709	10.54228 pp	
32) Cyclohexane	12.45	56	100055	11.23884 pp	
33) 1,1-Dichloropropene	12.56	75	79450	10.68996 pp	
35) Carbon Tetrachloride	12.75	117	58344	9.88676 pp	
36) Tert Amyl Methyl Ether	12.79	73	157735	9.52505 pp	
37) 1,2-DCA	12.83	62	78860	9.80850 pp	
38) Benzene	12.95	78	232715	9.83039 pp	
39) TCE	13.97	95	53725	9.89542 pp	
40) 2-Pentanone	13.62	43	877789	154.24665 pp	
41) 1,2-Dichloropropane	14.19	63	64521	9.12060 pp	
42) Bromodichloromethane	14.55	83	74975	9.13925 pp	b 85
43) Dibromomethane	14.60	93	36511	9.72080 pp	b 79
44) Methyl Cyclohexane	14.26	83	72984	11.72320 pp	b 98
45) 2-Chloroethyl vinyl ether	14.99	63	35402	10.21830 pp	
			353		

^{(#) =} qualifier out of range (m) = manual integration 0305N06S.D NALLS.M Fri Mar 09 10:08:20 2012

Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N06S.D

Vial: 1 Acq On : 5 Mar 12 14:03 Operator: SV,DG,RS Sample : 10ug/kg Vol Std 03-05-12 Misc : Soil 5mL w/IS:10-20-11 Inst : Neo Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

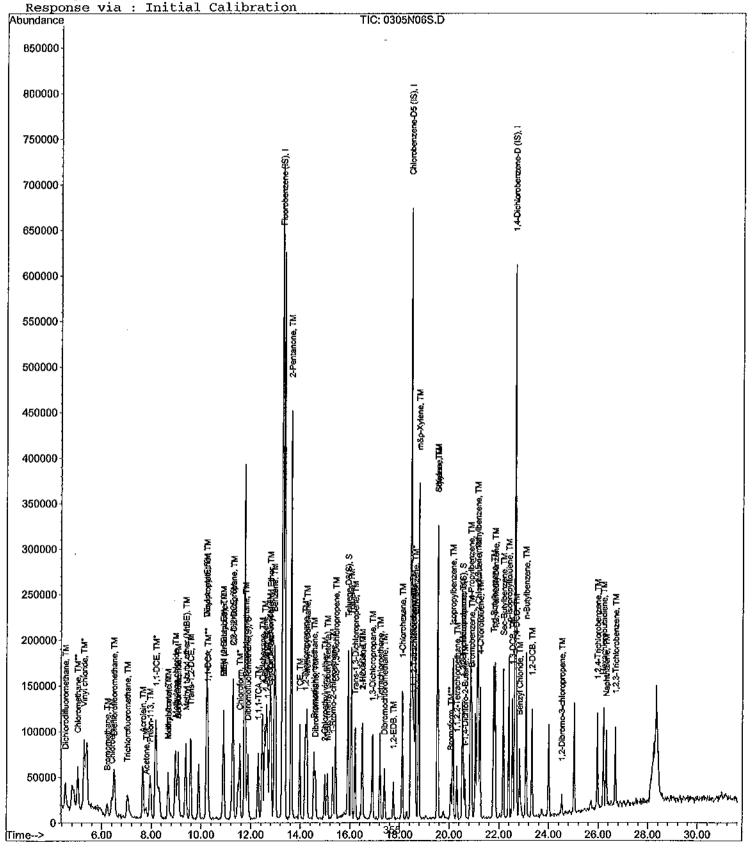
Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
46) 1-Bromo-2-chloroethane	15.31	63	81491	10.00882 pr	b b	92
47) Cis-1,3-Dichloropropene	15.43	75	99037	9.68706 pg	b b	97
48) Toluene	16.06	91	214151	9.61268 pr	b 1	00
49) Trans-1,3-Dichloropropene	16.21	75	85932	10.04903 pp	b b	94
50) 1,1,2-TCA	16.49	83	35774	9.23773 pg		88
53) 1,2-EDB	17,75	107	45402	9.76846 pg		90
54) Tetrachloroethene	17.21	129	34501	10.13643 pr		87
55) 1-Chlorohexane	18.10	91	71585	10.24808 pr		91
56) 1,1,1,2-Tetrachloroethane	18.57	131	45751	9.66479 pp	b	95
57) m&p-Xylene	18.77	106	158106	19.78937 pp	b :	97
58) o-Xylene	19.52	106	760 7 2	9.49501 pp		83
59) Styrene	19.53	78	81164	9.52429 pp	b d	84
61) 2-Hexanone	16.51	43	51632	10.43144 pr	b # :	94
62) 1,3-Dichloropropane	16.90	76	77932	9.61576 pp	b !	99
63) Dibromochloromethane	17.39	129	48635	8.89948 pp	b	92
64) Chlorobenzene	18.53	112	125748	9.66617 pp		98
65) Ethylbenzene	18.63	91	232773	9.82006 pp		99
66) Bromoform	20.05	173	29685	8.96063 pp	b !	92
68) MİBK (methyl isobutyl keto	15.09	43	69584	9.82913 pp	b !	97
69) Isopropylbenzene	20.14	105	194064	9.78645 pp		99
70) 1,1,2,2-Tetrachloroethane	20.31	83	52324	8.94492 pp	b !	98
71) 1,2,3-Trichloropropane	20.55	110	12280	9.54319 pp		91
72) t-1,4-Dichloro-2-Butene	20.63	53	16976	9.40459 pp	b s	96
73) Bromobenzene	20.90	156	46541	9.19800 pp		88
74) n-Propylbenzene	20.86	91	258946	9.79416 pp	b 9	99
75) 2-Chlorotoluene	21.16	91	160990	8.90727 pp	b 9	90
76) 1,3,5-Trimethylbenzene	21.12	105	149920	9.14828 pp		98
77) 4-Chlorotoluene	21.24	91	150025	9.41528 pp		99
78) Tert-Butylbenzene	21.78	119	150374	9.82004 pp		88
79) 1,2,4-Trimethylbenzene	21.84	105	152936	9.14352 pp		99
80) Sec-Butylbenzene	22.18	105	204768	9.61295 pp		94
81) p-Isopropyltoluene	22.39	119	159998	9.75234 pp		96
82) Benzyl Chloride	22.83	91	90416	9.53773 pp		93
83) 1,3-DCB	22.54	146	81859	9.48614 pp		97
84) 1,4-DCB	22.70	146	83531	9.57213 pp		95
85) n-Butylbenzene	23.09	91	169912	9.80296 pp		99
86) 1,2-DCB	23.33	146	70467	8.91317 pp	b {	88
87) 1,2-Dibromo-3-chloropropan	24.54	155	5452	7.96768 pp	b 9	91
88) 1,2,4-Trichlorobenzene	25.98	180	47797	9.24982 pp	b 9	94
89) Hexachlorobutadiene	26.21	225	30027	9.71396 pp	b 10	
90) Naphthalene	26.32	128	96657	9.16659 pp		98
91) 1,2,3-Trichlorobenzene	26.69	180	40274	8.44172 pp	b 9	99

Quantitation Report

Data File: M:\NEO\DATA\N120305\0305N06S.D

Vial: 1 Operator: SV,DG,RS : 5 Mar 12 14:03


Acq On : 10ug/kg Vol Std 03-05-12 : Soil 5mL w/IS:10-20-11 Sample Inst : Neo Misc Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Last Update : Tue Mar 06 09:31:20 2012

Data File: M:\NEO\DATA\N120305\0305N07S.D

Vial: 1 Acq On : 5 Mar 12 14:41 Operator: SV,DG,RS

Sample : 20ug/kg Vol Std 03-05-12 Inst : Neo : Soil 5mL w/IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards		QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.28	96	317376	50.00000 p	pb -0.	01
	18.46		199168		-	
67) 1,4-Dichlorobenzene-D (IS)		152	83864	50.00000 p		
· · · · · · · · · · · · · · · · · · ·				-		
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.87	111	118774	19.31308 p		00
Spiked Amount 41.312			Recove		750%	
34) 1,2-DCA-D4(S)	12.67	65	136303	20.43305 p		00
Spiked Amount 41.649			Recove	xy = 49.	061%	
52) Toluene-D8(S)	15.93	98	355754	20.66593 p		JU
Spiked Amount 35.274	00 50	۸.	Recove		587%	^^
60) 4-Bromofluorobenzene (S)	20.53	95		21,12129 p		JU
Spiked Amount 35.584			Recove	ery = 59.	356%	
Target Compounds					Qvalue	
2) Dichlorodifluoromethane	4,52	85	151229	25.85140 p		95
3) Chloromethane	5.04	50	245891	22.06548 p		98
4) Vinyl chloride	5.28	62	48840	20.61805 p		97
5) Bromomethane	6.20	94	61281	19.17915 p		98
6) Chloroethane	6.40	64	90525	21.56538 p		96
7) Dichlorofluoromethane	6.49	67	274883	20.01176 p		95
8) Trichlorofluoromethane	7.03	101	131787	22.75781 p		98
9) Acrolein	7.66	56	158233	196.46133 p		95
10) Acetone	7.78	43	62197	24.16371 p		98
11) Freon-113	7.95	101	91970	22.04311 p		92
12) 1,1-DCE	8.18	96	93832	21.75834 p		84
14) Methyl Acetate	8.67	43	228050	28.72764 p		94
15) Iodomethane	8.65	142	68610	20.60803 p		92
16) Acrylonitrile	9.06	53	44281	20.68246 p		79
17) Methylene chloride	8.95	86	79787	19.80105 p		88
18) Carbon disulfide	9.07	76	388344	19.96835 p		97
19) Methyl t-butyl ether (MtBE		73	294007	18.89555 p		97
20) Trans-1,2-DCE	9.58	96	110626	19.74569 p		92
21) Diisopropyl Ether	10.22	45	572911	19.98379 p		99
22) 1,1-DCA	10.26	63	242498	19.74206 p		97
23) Vinyl Acetate	10.22	43	419801	18.48648 p		99
24) Ethyl tert Butyl Ether	10.91	59	412418	19.54053 p	ob de	96
25) MEK (2-Butanone)	10.89	43	116629	20.50128 p		82
26) Cis-1,2-DCE	11.28	96	125471	19.91506 p		94
<pre>27) 2,2-Dichloropropane</pre>	11.27	77	169204	20.12640 p		95
28) Chloroform	11.55	83	206499	19.11850 p		99
29) Bromochloromethane	11.78	128	45925	20.90406 p	ob de	80
31) 1,1,1-TCA	12.29	97	153491	19.73587 p		96
32) Cyclohexane	12.45	56	201187	22.52119 p		94
33) 1,1-Dichloropropene	12.56	75	153485	20.58053 p		90
35) Carbon Tetrachloride	12.76	117	113099	19.09964 p		95
36) Tert Amyl Methyl Ether	12.80	73	318732	19.18110 p		96
37) 1,2-DCA	12.82	62	150908	18.70538 p		99
38) Benzene	12.94	78	457237	19.24848 p		95
39) TCE	13.97	95	111395	20.44712 p		97
40) 2-Pentanone	13.62	43	1073322	187.95950 pp		00
41) 1,2-Dichloropropane	14.19	63	140936	19.85423 p		99
42) Bromodichloromethane	14.55	83	156882	19.05794 p		98
43) Dibromomethane	14.61	93	72025	19.11042 pp		89
44) Methyl Cyclohexane	14.25	83	151134	22.61348 pp		B6
44) Methyl Cyclohexane 45) 2-Chloroethyl vinyl ether	14.99	0.3	356	20.25809 pj	, o	98

Quantitation Report (Not Reviewed)

Multiplr: 1.00

Data File: M:\NEO\DATA\N120305\0305N07S.D

Vial: 1 Acq On : 5 Mar 12 14:41 Operator: SV,DG,RS Sample : 20ug/kg Vol Std 03-05-12 Misc : Soil 5mL w/IS:10-20-11 Inst : Neo

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

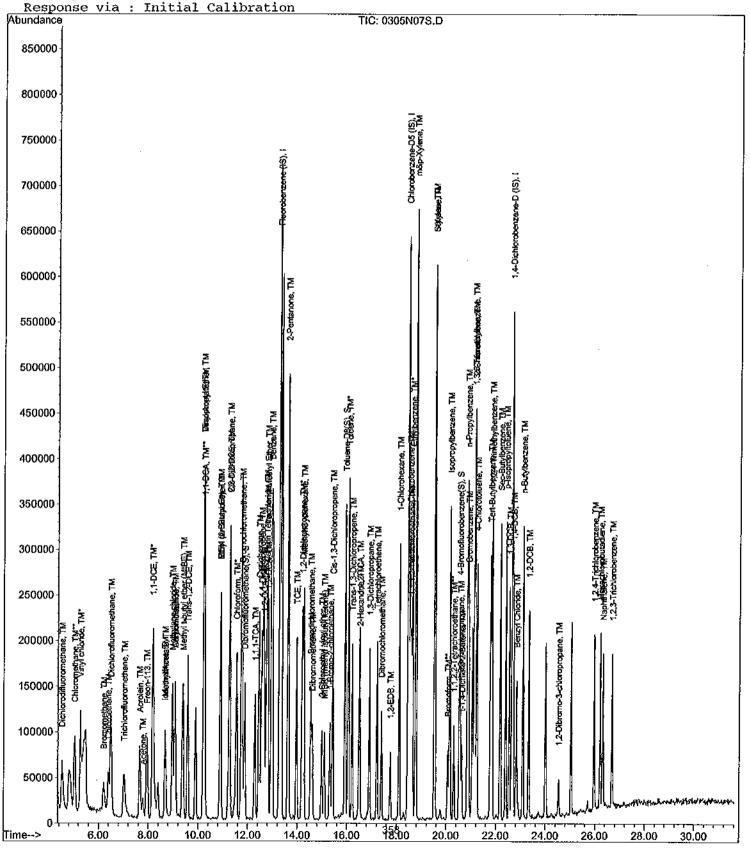
Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue	
46)	1-Bromo-2-chloroethane	15.31	63	157575	19.28720	pph		96
	Cis-1,3-Dichloropropene	15.42	75	195824	19.08838			98
	Toluene	16.06	91	436067	19.50680			95
	Trans-1,3-Dichloropropene	16.21	75	168010	19.58002			94
50)	1,1,2-TCA	16.51	83	77790	20.01844			98
	1,2-EDB	17.76	107	87494	19.56275		#	84
	Tetrachloroethene	17.21	129	71015	21.68222			96
	1-Chlorohexane	18.11	91	145737	21.68158			91
	1,1,1,2-Tetrachloroethane	18.57	131	88807	19.49574			85
	m&p-Xylene	18.77	106	303495	39.47622			97
	o-Xylene	19.53	106	147443	19.12472	ppb		93
	Styrene	19.54	78	157879	19.25280	ppb		100
	2-Hexanone	16.53	43	98882	20.76074	ppb		96
62)	1,3-Dichloropropane	16.91	76	158499	20.32333	ppb		99
63)	Dibromochloromethane	17.39	129	104679	19.90561			89
64)	Chlorobenzene	18.52	112	247871	19.80066	ppb		93
65)	Ethylbenzene	18.63	91	453056	19.86250	ppb		94
66)	Bromoform	20.07	173	61585	19.31865	ppb		93
68)	MIBK (methyl isobutyl keto	15.09	43	138394	20.03191			93
69)	Isopropylbenzene	20.15	105	372387	19.24306	ppb		96
	1,1,2,2-Tetrachloroethane	20.30	83	104149	18.24443			97
	1,2,3-Trichloropropane	20.58	110	21342	17.28861			91
72)	t-1,4-Dichloro-2-Butene	20.63	53	32355	18.36731	ppb		81
73)	Bromobenzene	20.91	156	90383	18.30391			90
74)	n-Propylbenzene	20.86	91	495441	19.20214			99
	2-Chlorotoluene	21.16	91	332583	18.85582	ppb		100
	1,3,5-Trimethylbenzene	21.13	105	307705	19.24040	ppb		97
77)	4-Chlorotoluene	21.24	91	291972	18.77631			99
	Tert-Butylbenzene	21.79	119	287375	19.23043			98
	1,2,4-Trimethylbenzene	21.85	105	314429	19.26309			99
	Sec-Butylbenzene	22.17	105	407703	19.61272			100
	p-Isopropyltoluene	22.40	119	307109	19.18167			99
	Benzyl Chloride	22.83	91	172768	18.67508			97
	1,3-DCB	22.55	146	159522	18.94277			94
	1,4-DCB	22.71	146	158611	18.62490			92
	n-Butylbenzene	23.09	91	307405	18.17372			97
	1,2-DCB	23.34	146	139615	18.09580			100
	1,2-Dibromo-3-chloropropan	24.54	155	12 0 17	17.99583		#	69
	1,2,4-Trichlorobenzene	25.97	180	90595	17.96537			97
	Hexachlorobutadiene	26.21	225	58841	19.50582	ppb		82
	Naphthalene	26.32	128	192848	18.74084	ppb		99
91)	1,2,3-Trichlorobenzene	26.69	180	79167	18.39496	ppb		95

Quantitation Report

Data File: M:\NEO\DATA\N120305\0305N07S.D

Vial: 1 Acq On : 5 Mar 12 14:41 Operator: SV,DG,RS


Sample : 20ug/kg Vol Std 03-05-12 Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Data File: M:\NEO\DATA\N120305\0305N08S.D

Vial: 1 Acq On : 5 Mar 12 15:19 Operator: SV,DG,RS Sample : 50ug/kg Vol Std 03-05-12 Inst : Neo : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Tluorobenzene (IS)				0.7		G 77 15	D (16))
System Monitoring Compounds 30 Dibromofluoromethane(S) 11.88	Inte	ernal Standards	R.T.	QIon 	Response	Conc Units	Dev(Min)
System Monitoring Compounds 30 Dibromofluoromethane(S) 11.88	1)	Fluorobenzene (IS)	13.29	96	309248	50.00000 pg	ob 0.00
System Monitoring Compounds 30 Dibromofluoromethane (S) 11.88 11 259757 43.34755 ppb 0.00 Spiked Amount 41.312 12.68 65 288832 44.43654 ppb 0.00 Spiked Amount 41.649 Recovery = 104.929% 30.00 Spiked Amount 35.274 Recovery = 106.695% 30.00 Recovery = 106.695% 30.00 Recovery = 123.220% 30.00 Recovery = 125.364% 30.00 Recovery = 125.320% 30.00		Chlorobenzene-D5 (IS)	18.46	117	209344	50.00000 pj	ob 0.00
System Monitoring Compounds 30 Dibromofluoromethane(S)	67)	1,4-Dichlorobenzene-D (IS)	22.65		79952	50.00000 pj	ob 0.00
\$\frac{30}{30}\$ Dibromofluoromethane(s)		•					
Spiked Amount 41.312 Recovery = 104.929% 34) 1,2-DCA-D4(S)							
12.68 65 288832 44.43654 ppb 0.00			11.88	111			•
Spiked Amount 41.649 Spiked Amount 35.274 15.94 98 786463 43.46529 ppb 0.00			10 60	65			
S2) Toluene-D8(S)			12.00	65		"	
Spiked Amount 35.274 20.53 95 285672 44.60902 ppb 0.00		-	15 94	9.8			
### Target Compounds 2) Dichlorodifluoromethane			20.51	,,			
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) 50 450 476574 46.87555 ppb 100 3) Chloromethane 5) 04 50 476574 46.87555 ppb 100 4) Vinyl chloride 5) 29 62 99368 43.05125 ppb 100 5) Bromomethane 6) 22 94 136472 41.39130 ppb 100 6) Chloroethane 6) 42 64 193180 47.25658 ppb 100 7) Dichlorofluoromethane 6) 51 67 672430 50.24023 ppb 100 8) Trichlorofluoromethane 7) 70 10 224334 39.57926 ppb 100 8) Trichlorofluoromethane 7) 7, 04 101 224334 39.57926 ppb 100 10) Acetone 7, 7, 79 43 106704 51.82748 ppb 100 11) Freon-113 7, 96 101 155511 37.01702 ppb 100 12) 1,1-DCB 8, 19 96 182313 43.38699 ppb 100 12) 1,1-DCB 13) 10 10 12 15511 37.01702 ppb 100 15) Iodomethane 8, 67 43 337579 49.37658 ppb 100 16) Acrylonitrile 9, 06 53 109150 52.32096 ppb 100 17) Methylene chloride 8, 97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9, 09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9, 38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9, 59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10, 23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10, 27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10, 23 45 1360694 48.71003 ppb 100 24) Ethyl tert Butyl Ether 10, 23 45 1360694 48.71003 ppb 100 25) MEK (2-Butanone) 10, 89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11, 12, 29 97 357344 47.15492 ppb 100 27) 2,2-Dichloropropane 11, 27 77 375527 49.6634 ppb 100 28) Chloroform 11, 56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11, 78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 32 12,29 97 357344 47.15492 ppb 100 33) 1,1-Dichloropropene 11, 26 77 375527 44.42090 ppb 100 31) 1,1-Dichloropropene 12, 56 75 322797 44.42090 ppb 100 33) 1,1-Dichloropropene 12, 56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12, 79 73 797254 49.23928 ppb 100 37) 1,2-DCA 37 1,2-DCB 37 1,2-DCB 37 1,2-DCB 38 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB 39 13,7-DCB 39 12,7-DCB 39 12,7-DCB 39 12,7-DCB			20.53	95			
Dichlorodifluoromethane							
Dichlorodifluoromethane	_						0 1
Chloromethane			4 =2	0 =	105204	24 17252	
Vinyl chloride							
5) Bromomethane 6.22 94 136472 41.39130 ppb 100 6) Chlorocthane 6.42 64 193180 47.25658 ppb 100 7) Dichlorofluoromethane 6.51 67 672430 50.24023 ppb 100 8) Trichlorofluoromethane 7.04 101 224334 39.57926 ppb 100 9) Acrolein 7.67 56 195424 249.01476 ppb 100 10) Acetone 7.79 43 106704 51.82748 ppb 100 11) Freon-113 7.96 101 155511 37.01702 ppb 100 12) 1,1-DCB 81.9 96 182313 43.38699 ppb 100 14) Methyl Acetate 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.19492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
6) Chloroethane 6) Chloroethane 7) Dichlorofluoromethane 8) Trichlorofluoromethane 7) O4 101 224334 39.57926 ppb 100 9) Acrolein 7.67 56 195424 249.01476 ppb 100 10) Acetone 7.79 43 106704 51.82748 ppb 100 11) Freon-113 7.96 101 155511 37.01702 ppb 100 12) 1,1-DCB 8.19 96 182313 43.38699 ppb 100 14) Methyl Acetate 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50334 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 30836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.56 83 522687 49.66434 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
7) Dichlorofluoromethane 6.51 67 672430 50.24023 ppb 100 8) Trichlorofluoromethane 7.04 101 224334 39.57926 ppb 100 100 Acrolein 7.67 56 195424 249.01476 ppb 100 10) Acetone 7.79 43 106704 51.82748 ppb 100 11) Freon-113 7.96 101 155511 37.01702 ppb 100 12) 1,1-DCB 8.19 96 182313 43.38699 ppb 100 12) 1,1-DCB 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.95950 ppb 100 31) 1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 17 379524 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
8) Trichlorofluoromethane 7.04 101 224334 39.57926 ppb 100 9) Acrolein 7.67 56 195424 249.01476 ppb 100 10) Acetone 7.79 43 106704 51.82748 ppb 100 11) Freon-113 7.96 101 1.55511 37.01702 ppb 100 12) 1,1-DCE 8.19 96 182313 43.38699 ppb 100 14) Methyl Acetate 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100 37) 1,2-DCA							
9) Acrolein 7.67 56 195424 249.01476 ppb 100 10) Acetone 7.79 43 106704 51.82748 ppb 100 11) Freon-113 7.96 101 155511 37.01702 ppb 100 12) 1,1-DCE 8.19 96 182313 43.38699 ppb 100 14) Methyl Acetate 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100					224334		
11) Freon-113				56	195424	249.01476 pr	b 100
12) 1,1-DCB	10)	Acetone					
14) Methyl Acetate 8.67 43 337579 49.37658 ppb 100 15) Iodomethane 8.67 142 163137 48.87872 ppb 100 16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 21) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
15) Iodomethane							
16) Acrylonitrile 9.06 53 109150 52.32096 ppb 100 17) Methylene chloride 8.97 86 192247 50.18463 ppb 100 18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 34) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
17) Methylene chloride							
18) Carbon disulfide 9.09 76 806879 42.57956 ppb 100 19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
19) Methyl t-butyl ether (MtBE 9.38 73 750556 49.50534 ppb 100 20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA							
20) Trans-1,2-DCE 9.59 96 251409 46.05356 ppb 100 21) Diisopropyl Ether 10.23 45 1360694 48.71003 ppb 100 22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 35) Carbon Tetrachloride 12.76 117 26711							
21) Diisopropyl Ether							
22) 1,1-DCA 10.27 63 583591 48.75960 ppb 100 23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
23) Vinyl Acetate 10.23 43 1115589 50.41761 ppb 100 24) Ethyl tert Butyl Ether 10.91 59 986714 47.97967 ppb 100 25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.83 62 390694 49.70020 ppb 100			10.27	63	583591		
25) MEK (2-Butanone) 10.89 43 254035 50.68085 ppb 100 26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
26) Cis-1,2-DCE 11.28 96 308836 50.30756 ppb 100 27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
27) 2,2-Dichloropropane 11.27 77 375527 45.84202 ppb 100 28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
28) Chloroform 11.56 83 522687 49.66434 ppb 100 29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
29) Bromochloromethane 11.78 128 102742 47.99509 ppb 100 31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
31) 1,1,1-TCA 12.29 97 357344 47.15492 ppb 100 32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
32) Cyclohexane 12.46 56 336646 38.67516 ppb 100 33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
33) 1,1-Dichloropropene 12.56 75 322797 44.42090 ppb 100 35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
35) Carbon Tetrachloride 12.76 117 267118 46.29528 ppb 100 36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
36) Tert Amyl Methyl Ether 12.79 73 797254 49.23928 ppb 100 37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100							
37) 1,2-DCA 12.83 62 390694 49.70020 ppb 100	-		12.79	73			
	37)		12.83	62	390694	49.70020 pg	b 100
	38)	Benzene	12.95	78	1120106		
39) TCE 13.98 95 258943 48.77956 ppb 100	-						
40) 2-Pentanone 13.62 43 1374111 246.95809 ppb 100							
41) 1,2-Dichloropropane 14.20 63 351929 50.88073 ppb 100							
42) Bromodichloromethane 14.55 83 402089 50.12937 ppb 100 43) Dibromomethane 14.61 93 176388 48.03116 ppb 100							
43) Dibromomethane 14.61 93 176388 48.03116 ppb 100 44) Methyl Cyclohexane 14.26 83 259230 38.67782 ppb 100							
44) methyl cyclonexale 14.20 63 259230 36.67762 ppb 100 45) 2-Chloroethyl vinyl ether 14.99 63 164534 48.57158 ppb 100							
359					359		

^{(#) =} qualifier out of range (m) = manual integration 0305N08S.D NALLS.M Fri Mar 09 10:08:25 2012

Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N08S.D

Vial: 1 Operator: SV,DG,RS

Acq On : 5 Mar 12 15:19
Sample : 50ug/kg Vol Std 03-05-12
Misc : Soil 5mL w/IS:10-20-11 Inst : Neo Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Response via: Initial Calibration

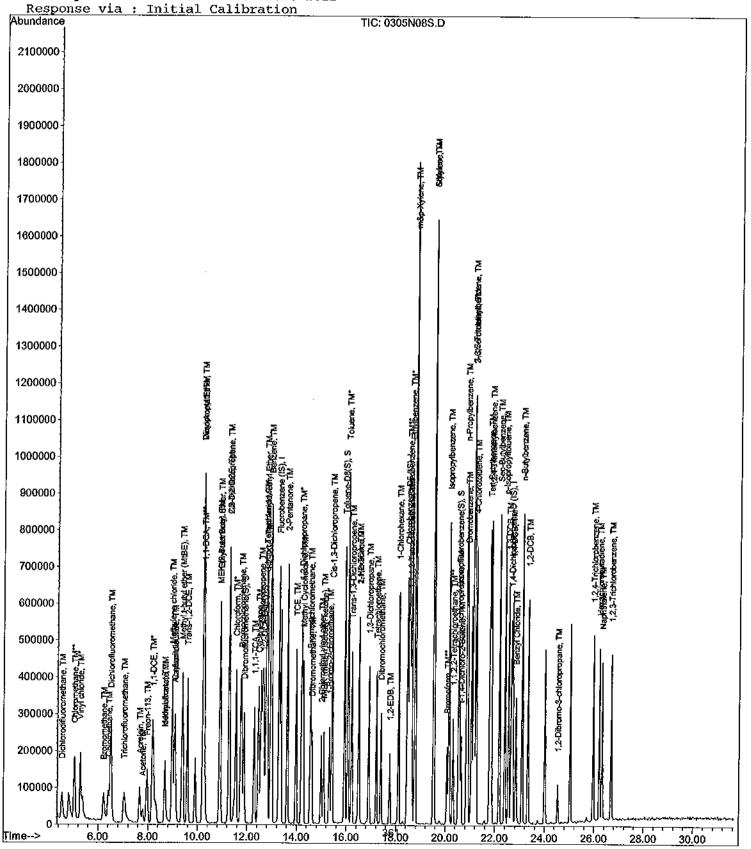
	Compound	К.Т.	QIon	Response	Conc Unit	Qvalue	
46)	1-Bromo-2-chloroethane	15.32	63	396229	49,77317	daa	100
	Cis-1,3-Dichloropropene	15.42	75	475462	47.56485		100
48)		16.06	91	1091879	50.12732		100
49)	Trans-1,3-Dichloropropene	16.21	75	384962	46.04295	ppb	100
	1,1,2-TCA	16.50	83	194758	51.43622	ppb	100
	1,2-EDB	17.76	107	222670	47.36662	ppb	100
54)	Tetrachloroethene	17.21	129	154379	44.84365		100
55)	1-Chlorohexane	18.11	91	304373	43.08104	ppb	100
	1,1,1,2-Tetrachloroethane	18.57	131	231485	48.34754	ppb	100
	m&p-Xylene	18.77	106	756129	93.57051	ppb	10 0
58)	o-Xylene	19.52	106	400174	49.38314	ppb	100
59)		19.54	78	423293	49.10997		100
61)	2-Hexanone	16.51	43	233683	46.67794		100
62)	1,3-Dichloropropane	16.91	76	376695	45.95336		100
	Dibromochloromethane	17.39	129	267685	48.42828	ppb	100
64)	Chlorobenzene	18.52	112	653626	49.67550	ppb	100
	Ethylbenzene	18.63	91	1131319	47.18742	ppb	100
	Bromoform	20.07	173	163485	48.79090		100
. 68)	MIBK (methyl isobutyl keto	15.09	43	331063	50.26458	ppb	100
	Isopropylbenzene	20.16	105	933992	50.62547	ppb	100
	1,1,2,2-Tetrachloroethane	20.31	83	277739	51.03384	ppb	100
71)	1,2,3-Trichloropropane	20.57	110	62195	53.62017		100
72)	t-1,4-Dichloro-2-Butene	20.63	53	95246	56.71488		10 0
- 73)	Bromobenzene	20.91	156	238459	50.65439	ppb	100
74)	n-Propylbenzene	20.86	91	1232187	50.09341	ppb	100
75)	2-Chlorotoluene	21.16	91	868223	51.63246	ppb	100
76)	1,3,5-Trimethy1benzene	21.13	105	778941	51.08934	ppb	100
77)	4-Chlorotoluene	21.24	91	766432	51.69981	ppb	100
	Tert-Butylbenzene	21.79	119	726458	50.99139		100
79)	1,2,4-Trimethylbenzene	21.85	105	806715	51.84057		100
	Sec-Butylbenzene	22.17	105	996762	50.29580	ppb	100
81)	p-Isopropyltoluene	22.40	1 1 9	742872	48.66919	ppb	100
82)	Benzyl Chloride	22.83	91	404453	45.85783	ppb	100
83)	1,3-DCB	22.54	146	430029	53.56323	ppb	100
84)	1,4-DCB	22.71	146	387554	47.73524		100
85)	n-Butylbenzene	23.09	91	803141	49.80476		100
	1,2-DCB	23.34	146	392147	53.31395	ppb	100
87)	1,2-Dibromo-3-chloropropan	24.53	155	36765	57.75062		100
	1,2,4-Trichlorobenzene	25.96	180	235436	48.97237		100
89)	Hexachlorobutadiene	26.22	225	142065	49.39891		100
	Naphthalene	26.33	128	50 0 67 <i>7</i>	51.03614	* -	100
91)	1,2,3-Trichlorobenzene	26.69	180	211058	53.90387	ppb	100

Quantitation Report

Vial: 1

Data File: M:\NEO\DATA\N120305\0305N08S.D

Acq On : 5 Mar 12 15:19


Operator: SV, DG, RS : 50ug/kg Vol Std 03-05-12 : Soil 5mL w/IS:10-20-11 Sample Inst : Neo Misc Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Quantitation Report (Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N09S.D Acq On : 5 Mar 12 15:57 Sample : 100ug/kg Vol Std 03-05-12 Vial: 1 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update: Tue Mar 06 09:31:20 2012 Response via: Initial Calibration DataAcq Meth: V8260

Thermal Standards	Internal Standards	to m	Ω Τ α μα	D = = = = = = =	a	77		. ,	
Sil Chlorobenzene-D Sil 18.46 117 214592 50.00000 ppb 0.00	incernal Scandards	R.T.	OTON	esponse	Cone	Units	; 1)ev (Min)
System Monitoring Compounds 30 Dibromofiluoromethane (S) 50 Spiked Amount 41.312 34 1.2 - DCA-D4 (S) 12.67 65 681851 100.81289 ppb 0.00	1) Fluorobenzene (IS)	13.28		321792	50.	00000	dqq		0.00
System Monitoring Compounds 30 DibromofLucromethane (S) 50 Spiked Amount 41.312 34 1.2-DCA-D4(S) 12.67 65 681851 100.81289 ppb 0.00 Compounds 52 Toluene-D8(S) 15.93 98 1715000 92.46458 ppb 0.00 Spiked Amount 35.274 35.84 715000 92.46458 ppb 0.00 Spiked Amount 35.274 35.84 715000 92.46458 ppb 0.00 Spiked Amount 35.584 7150000 92.46458 ppb 0.00 Spiked Amount 35.584 715000 92.46458 ppb 0.00 Spiked Amount 35.584 7150000 92.46458 ppb 0.00 715000000000000000000000000000000000000	51) Chlorobenzene-D5 (IS)	18.46	117						
30) Dibromofluoromethane(s)	67) 1,4-Dichlorobenzene-D (IS)	22.65	152	92080	50.	00000	ppb		0.00
30) Dibromofluoromethane(s)	System Monitoring Compounds								
Spiked Amount 41.312 34.1,2-DCA-DH(S) 12.67 65 681851 100.81289 ppb 0.00		11 88	111	603696	06	01602	nnh		0 00
34 1,2-DCA-D4(S)		11.00	111					9.	0.00
Spiked Amount		12.67	65		100.	81289	daa	, ,	0.00
Spiked Amount 35.274 50 4-Promofluorobenzene(S) 20.53 95 715.000 92.46458 ppb 0.00 Recovery 262.1318 669 4-Promofluorobenzene(S) 20.53 95 664595 102.07162 ppb 0.00 Recovery 286.8518 Target Compounds 2 2 2 2 2 2 2 2 2								ક	3,00
60) 4-Bromofluorobenzene(S) 20.53 95 664595 102.07162 ppb 0.00 Spiked Amount 35.584		15.93	98	1715000					0.00
Target Compounds		00 50			ery :	= 262	.131	8	
Target Compounds		20.53	95					^	0.00
2	Spiked Amount 33.384			Recove	ery :	= 286	.851	.*5	
2	Target Compounds							Ova	lue
3		4.53	85	632485	105.6	61450		8.0	
4) Vinyl chloride 5	Chloromethane	5.05							
5	 Vinyl chloride 	5.28	62	235648					
6) Chloroethane 6) Chloroethane 6) Chloroethane 6) Chloromethane 6) Chloromethane 6) Chloromethane 6) Chloromethane 6) Chloromethane 6) Chloromethane 7) Dichlorofluoromethane 7) Chloromethane 7	•	6.22	94	369505	104.8	65598	ppb		
8) Trichlorofluoromethane 9) Acrolein 7, 66 56 237350 290.6850 ppb 93 10) Acetone 7, 79 43 206600 106.94059 ppb 96 11) Freon-113 7, 96 101 472647 104.89449 ppb 97 12) 1,1-DCB 8, 19 96 448402 102.55129 ppb 97 14) Methyl Acetate 8, 69 43 665571 103.43728 ppb 92 15) Iodomethane 8, 68 142 364721 103.89282 ppb #89 16) Acrylonitrile 9, 06 53 209899 96.69276 ppb 97 18) Carbon disulfide 9, 08 9, 68 36 395366 99.99286 ppb 97 18) Carbon disulfide 9, 08 19) Methyl t-butyl ether (MtBE 9, 08 19) Methyl t-butyl ether (MtBE 9, 08 19) Trans-1,2-DCE 9, 58 96 101 11,1-DCA 10,22 11,1-DCA 10,27 101 101 101 107734 ppb 97 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 101 107734 ppb 97 102 101 101 101 107734 ppb 97 103 103 103 103 103 103 103 103 103 103		_							
9) Accolein 7.66 56 237350 290.64850 ppb 93 10) Acetone 7.79 43 206600 106.94059 ppb 96 11) Freon-113 7.96 101 472647 104.89449 ppb 97 12) 1,1-DCE 8.19 96 448402 102.55129 ppb 91 14) Methyl Acetate 8.69 43 665571 103.43728 ppb 92 15) Iodomethane 8.68 142 364721 103.89282 ppb # 89 16) Acrylonitrile 9.06 53 209899 96.69276 ppb 95 17) Methylene chloride 8.96 86 395366 99.99286 ppb 97 18) Carbon disulfide 9.08 76 1825025 92.55357 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 1604071 101.67734 ppb 97 20) Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 21) Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 22) 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 23) Vinyl Acetate 10.23 43 2433268 105.68166 ppb 99 24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 99 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 34) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 17.23251 102.228105 ppb 98 31) 1,2-DCA 12.96 63 83831 103.65202 ppb 98 33) 1,2-DCA 12.96 63 83640 290.72283 ppb 98 34) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 40) 2-Pentanone 14.20 63 744850 103.49008 ppb 99 34) Dibromomethane 14.55 83 883681 105.87592 ppb 98 34) Dibromomethane 14.55 83 883681 105.87592 ppb 98 34) Dibromomethane 14.55 83 883681 105.87592 ppb 98 34) Dibromomethane 14.61 93 382453 100.08380 ppb 98 34) Dibromomethane 14.61 93 382453 100.08380 ppb 98 34) Dibromomethane 14.61 93 382453 100.08380 ppb 98 34) Dibromomethane 14.61 93 365041 ppb 94 35) 2-Chlorocthyl vinyl ether 14.99 63 365049 103.56644 ppb									
10) Acetone 7.79 43 206600 106.94059 ppb 96 11) Freon-113 7.96 101 472647 104.89449 ppb 97 12) 1,1-DCB 8.19 96 448402 102.55129 ppb 91 14) Methyl Acetate 8.69 43 665571 103.43728 ppb 92 15) Iodomethane 8.68 142 364721 103.89282 ppb # 89 16) Acrylonitrile 9.06 53 209899 96.69276 ppb 95 17) Methylene chloride 8.96 86 395366 99.99286 ppb 97 18) Carbon disulfide 9.08 76 1825025 92.55357 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 1604071 101.67734 ppb 97 20) Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 21) Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 22) 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 23) Vinyl Acetate 10.23 43 2433268 105.68166 ppb 99 24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 887927 100.64786 ppb 96 28) Chloroform 11.56 83 117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 29) Bromochloromethane 12.75 117 643713 102.01289 ppb 98 21) 1,1-TCA 12.30 97 815087 103.36564 ppb 95 31) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.21548 ppb 99 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 98 38) Benzene 12.96 78 2371578 98.46716 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.66 93 382453 100.08380 ppb 98 41) 1,2-Dichloromethane 14.55 83 883681 105.87592 ppb 98 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 744850 103.45644 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56444 ppb				-					
11) Freon-113									
12) 1,1-DCE	· · · · · · · · · · · · · · · · · · ·								
14) Methyl Acetate									
15) Iodomethane									
16) Acrylonitrile 9.06 53 209899 96.62276 ppb 95 170 Methylene chloride 8.96 86 395366 99.99286 ppb 97 18) Carbon disulfide 9.08 76 1825025 92.55357 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 1604071 101.67734 ppb 97 20) Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 21) Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 22) 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 23) Vinyl Acetate 10.23 43 2433268 105.68166 ppb 99 24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25 McK (2-Butanone) 10.90 43 545220 108.70667 ppb 99 26 Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 96 39 TCE 13.97 95 573480 103.82061 ppb 96 39 TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 14.26 63 744850 103.49008 ppb 98 41 1,2-Dichloropropane 14.26 63 744850 103.49008 ppb 98 41 1,2-Dichloropropane 14.26 63 744850 103.49008 ppb 98 42) Bromodichloromethane 14.61 93 382453 100.08380 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.61 93 382659 104.46441 ppb 92 45) 2-Chlorocethyl vinyl ether 14.99 63 365049 103.56414 ppb 94								ш	
17) Methylene chloride				204721				#	
18) Carbon disulfide 19 Methyl t-butyl ether (MtBE 9.39 73 1604071 101.67734 ppb 97 1020 Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 11 Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 1021 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 100 100 100 100 100 100 100 100 10			86						
19) Methyl t-butyl ether (MtBE 9.39 73 1604071 101.67734 ppb 97 20) Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 21) Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 22) 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 23) Vinyl Acetate 10.23 43 2433268 105.68166 ppb 99 24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 14.20 63 744850 103.49008 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 44) Methyl Cyclohexane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.66 83 746869 104.46441 ppb 94 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94									
20) Trans-1,2-DCE 9.58 96 564381 99.35424 ppb 92 21) Diisopropyl Ether 10.22 45 3004059 103.34703 ppb 100 22) 1,1-DCA 10.27 63 1240544 99.60826 ppb 100 23) Vinyl Acetate 10.23 43 2433268 105.68166 ppb 99 24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 14.20 63 744850 103.49008 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.61 93 382453 100.08380 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94									
21) Diisopropyl Ether	20) Trans-1,2-DCE	9.58	96						
22) 1,1-DCA		10.22	45	3004059					
24) Ethyl tert Butyl Ether 10.90 59 2208905 103.22256 ppb 98 25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 99 42) Bromodichloromethane 14.56 83 746869 104.46441 ppb 94 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94				1240544	99.6	0826 j	opb		100
25) MEK (2-Butanone) 10.90 43 545220 108.70667 ppb # 91 26) Cis-1,2-DCE 11.29 96 648506 101.51986 ppb 96 27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 14.20 63 744850 103.49008 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.55 83 883681 105.87592 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					105.6	8166 լ	dqç		
26) Cis-1,2-DCE					103.2	2256 j	dqq		
27) 2,2-Dichloropropane 11.28 77 857927 100.64786 ppb 96 28) Chloroform 11.56 83 1117173 102.01289 ppb 98 29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43								Ħ	
28) Chloroform 29) Bromochloromethane 29) Bromochloromethane 211.78 220 9645 31) 1,1,1-TCA 32.30 37) 815087 32) Cyclohexane 32.47 36 938831 31,1-Dichloropropene 32.56 35) Carbon Tetrachloride 32.75 36) Tert Amyl Methyl Ether 37) 1,2-DCA 38) Benzene 39) TCE 39) TCE 39) TCE 39, TCE 30, Tert Amyl Methyl Ether 31.63 31.63 32.75 33.75 34.75 35.75 36.75 37.75 38.7	27) 2 2-Dighloropropage	11.29			101.5	1986 p	opb		
29) Bromochloromethane 11.78 128 209645 94.11632 ppb 89 31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					100.6	4/86 P	agg		
31) 1,1,1-TCA 12.30 97 815087 103.36564 ppb 95 32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					9/1 1	1632 4	opb add		
32) Cyclohexane 12.47 56 938831 103.65202 ppb 98 33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94				815087	103.3	.1032 <u> </u> .6564 <i>r</i>	opb Spb		
33) 1,1-Dichloropropene 12.56 75 765985 101.30008 ppb 95 35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					103.6	5202 r	npb		
35) Carbon Tetrachloride 12.75 117 643713 107.21548 ppb 99 36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					101.3	0008	nph		
36) Tert Amyl Methyl Ether 12.79 73 1723251 102.28105 ppb 97 37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94									
37) 1,2-DCA 12.82 62 829922 101.45895 ppb 99 38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					102.2	8105 k	dag		
38) Benzene 12.96 78 2371578 98.46716 ppb 96 39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94		12.82			101.4	5895 r	da		
39) TCE 13.97 95 573480 103.82061 ppb 96 40) 2-Pentanone 13.63 43 1683240 290.72283 ppb 98 41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94			78	2371578	98.4	6716 g	gb		96
41) 1,2-Dichloropropane 14.20 63 744850 103.49008 ppb 99 42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94									96
42) Bromodichloromethane 14.55 83 883681 105.87592 ppb 98 43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94									
43) Dibromomethane 14.61 93 382453 100.08380 ppb 98 44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					103.4	9008 g	pb		
44) Methyl Cyclohexane 14.26 83 746869 104.46441 ppb 92 45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94					105.8	7592 r	pb		
45) 2-Chloroethyl vinyl ether 14.99 63 365049 103.56414 ppb 94	•				100.0	8380 p	da		
					104.4	0441 T	ago		_
	, - ontologia vanji colici			362		 ожта Г	 .Þn	-	74

^(#) = qualifier out of range (m) = manual integration 0305N09S.D NALLS.M Fri Mar 09 10:08:27 2012

Quantitation Report (Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N09S.D

Vial: 1 : 5 Mar 12 15:57 : 100ug/kg Vol Std 03-05-12 : Soil 5mL w/IS:10-20-11 Acq On Operator: SV,DG,RS Sample Inst : Neo Misc Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

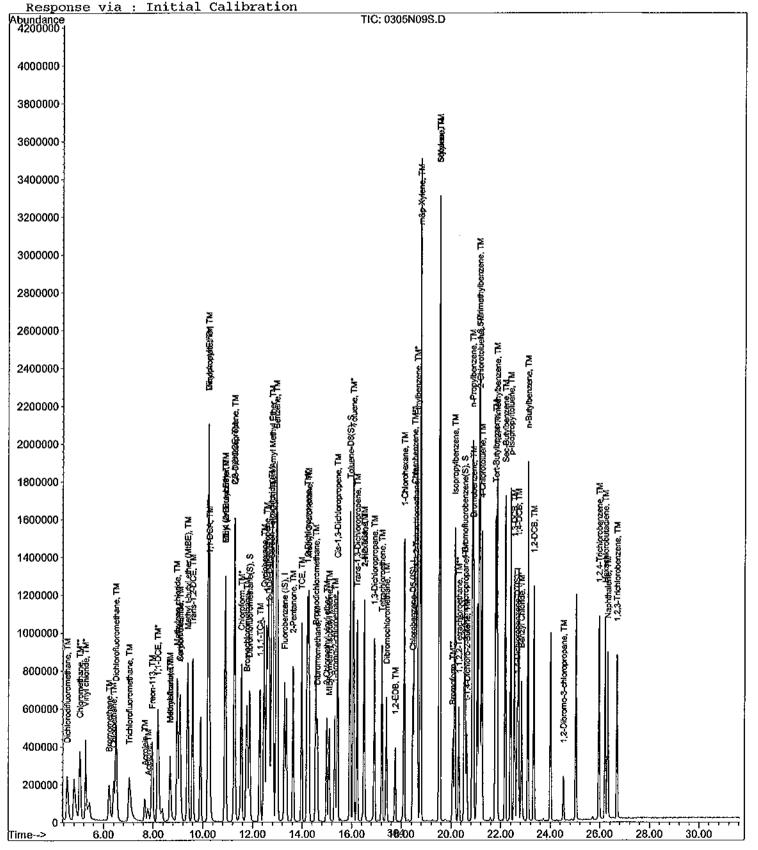
Title : METHOD 82608 Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue	
46)	1-Bromo-2-chloroethane	15.32	63	832261	100.47088	daa	<u>c</u>	98
47)	Cis-1,3-Dichloropropene	15.43	75	1037415	99.73658	daa		98
	Toluene	16.06	91	2223553	98.10229	daa	9	98
49)	Trans-1,3-Dichloropropene	16.22	75	883515	101.55255		9	96
50)	1,1,2-TCA	16.50	83	401337	101.86256		9	95
53)	1,2-EDB	17.75	107	466606	96.82958		# 8	36
54)	Tetrachloroethene	17.22	129	336309	95.30116	ppb	9	94
55)	1-Chlorohexane	18.12	91	709803	98.0 0 875	ppb	9	92
56)	1,1,1,2-Tetrachloroethane	18.58	131	479288	97.65512	ppb	9	98
	m&p~Xylene	18.77	106	1554818	187.70232		9	99
	o-Xylene	19.52	106	804358	96.83364	ppb	9	96
	Styrene	19.53	78	863122	97.68948		9	94
	2-Hexanone	16.51	43	458564	89.35761		9	91
	1,3-Dichloropropane	16.90	76	833642	99.20966		9	95
	Dibromochloromethane	17.40	129	579745	102.31964		9	97
	Chlorobenzene	18.53	112	1284632	95.24422		9	97
	Ethylbenzene	18.64	91	2396630	97.51898		9	94
	Bromoform	20.06	173	342663	99.76428		9	99
68)	MIBK (methyl isobutyl keto	15.08	43	663656	87.49000	ppb	-	92
	Isopropylbenzene	20.15	105	1913492	90.05682	ppb		8
	1,1,2,2-Tetrachloroethane	20.31	83	576788	92.02411			8
	1,2,3-Trichloropropane	20.58	110	130539	98.02741		_	39
	t-1,4-Dichloro-2-Butene	20.63	53	177743	91.89816		_	95
	Bromobenzene	20.90	156	489986	90.37558		_	96
	n-Propylbenzene	20.86	91	2628587	92.78768			9
	2-Chlorotoluene	21.17	91	1794902	92.68219			8
	1,3,5-Trimethylbenzene	21.13	105	1662390	94.67224			95
-	4-Chlorotoluene	21.25	91	1488501	87.18233		_	9
	Tert-Butylbenzene	21.80	119	1508479	91.93685		_)5
	1,2,4-Trimethylbenzene	21.85	105	1659391	92.58963		10	
	Sec-Butylbenzene	22.18	105	2137117	93.63378			8
	p-Isopropyltoluene	22.40	119	1658200	94.32809		_	6
	Benzyl Chloride 1,3-DCB	22.83	91	896384	88.24773			7
	1,3-DCB 1,4-DCB	22.54 22.71	$\frac{146}{146}$	832725	90.06056		_	4
84)	n-Butylbenzene	23.10	91	817240 1711209	87.40183		_	8
	1,2-DCB	23.33	146	779751	92.13956 92.04749		_	8
	1,2-Dibromo-3-chloropropan	24.53	155	70880	96.67402			8
	1,2,4-Trichlorobenzene	25.97	180	491315				1
	Hexachlorobutadiene	26.22	225	319809	88.73650 96.55728			19 17
	Naphthalene	26.32	128	1036853	91.77014		10	
911	1,2,3-Trichlorobenzene	26.70	180	442546	99.26419		10	_
211	T'D'S ITTOUTOTOBERFEIF	20.70	100	442740	77.20413	րիո	10	5

Quantitation Report

Data File: M:\NEO\DATA\N120305\0305N09S.D


Vial: 1 5 Mar 12 15:57 Operator: SV,DG,RS Acq On : 100ug/kg Vol Std Sample 03-05-12 Inst : Neo : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc

7 14:18 2012 Quant Results File: NALLS.RES Quant Time: Mar

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N10S.D

Vial: 1 : 5 Mar 12 16:35 Operator: SV,DG,RS Acq On

: 200ug/kg Vol Std 03-05-12 Inst : Neo Sample : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:18 2012 Ouant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards		QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.29	96	311360	50.00000 pg	ob 0.00
51) Chlorobenzene-D5 (IS)			174144		
67) 1,4-Dichlorobenzene-D (IS)			73280	50.00000 pg	
· · · · · · · · · · · · · · · · · · ·					
System Monitoring Compounds					
<pre>30) Dibromofluoromethane(S)</pre>	11.88	111	1040045		
Spiked Amount 41.312			Recove		
34) 1,2-DCA-D4(S)	12.68	65	1171226		
Spiked Amount 41.649	15 04		Recove		
52) Toluene-D8(S)	15.94	98	3089451	205.25683 pr	
Spiked Amount 35.274	20.53	95	Recove	ry = 581.8 200.13153 pg	
60) 4-Bromofluorobenzene(S) Spiked Amount 35.584	20.55	95		ry = 562.4	
Spiked Adodite 33.304			Recove	Ty - 302,4	1200
Target Compounds					Qvalue
	4.52	85	1162880	200.39380 pg	
Chloromethane	5.04	50	1934939	198.18143 pr	
4) Vinyl chloride	5.28	62	417024	179.45035 pg	b 99
5) Bromomethane	6.20	94	688665	199.82761 pr	
6) Chloroethane	6.39	64	810231	196.92866 pr	b 93
7) Dichlorofluoromethane	6.50	67	2531706	187.87192 pr	b 99
8) Trichlorofluoromethane	7.03	101	1141580	199.07487 pr	b 95
9) Acrolein	7.66	56	246575	312.06159 pg	
10) Acetone	7.80		349055	195.83754 pg	b 93
11) Freon-113	7.95	101	880492	200.40038 pp	
12) 1,1-DCE	8.18	96	826796	195.42692 pp	
14) Methyl Acetate	8.68	43	1174143	197.68029 pp	
15) Iodomethane	8.67		676921	198.38650 pp	
16) Acrylonitrile	9.06	53	360730	171.74270 pp	
17) Methylene chloride	8.97	86	689361	180.85354 pp	
18) Carbon disulfide	9.08	76	3268996	171.33701 pp	
19) Methyl t-butyl ether (MtBE	9.39	73	2694907	176.54556 pp	
20) Trans-1,2-DCE	9.59	96	987042	179.58171 pp	
21) Diisopropyl Ether	10.22	45	5270479	187.39244 pp	
22) 1,1-DCA	10.27	63	2237810	185.70295 pp	b 99
23) Vinyl Acetate	10.23	43	4259392	191.19200 pp	
24) Ethyl tert Butyl Ether	10.91	59	3839343	185,42441 pp	
25) MEK (2-Butanone)	$10.90 \\ 11.28$	43 96	934403	195.57372 pp	
26) Cis-1,2-DCE 27) 2,2-Dichloropropane	11.27	90 77	1124327 1531543	181.90392 pp 185.69314 pp	
28) Chloroform	11.56	83	1924203	181.59250 pp	
29) Bromochloromethane	11.79	128	357175	165.71961 pp	
31) 1,1,1-TCA	12.29	97	1489452	195.21408 pp	
32) Cyclohexane	12.46	56	1761740	201.02246 pp	b 100
33) 1,1-Dichloropropene	12.56	75	1406847	192.28651 pp	
35) Carbon Tetrachloride	12.76	117	1160811	199.82010 pp	
36) Tert Amyl Methyl Ether	12.79	73	2877120	176.48876 pp	
37) 1,2-DCA	12.83	62	1434060	181.18942 pp	
38) Benzene	12.95	78	4235821	181.76239 pp	
39) TCE	13.98	95	984179	184.14157 pp	b 90
40) 2-Pentanone	13.64	43	1634881	291.83116 pp	
41) 1,2-Dichloropropane	14.20	63	1263186	181.38845 pp	
42) Bromodichloromethane	14.55	83	1490557	184.57067 pp	
43) Dibromomethane	14.61		642582	173.79076 pp	
44) Methyl Cyclohexane	14.26	83	1394516	200.20521 pp	b 96
45) 2-Chloroethyl vinyl ether	14.99	63	588943	172.68074 pp	b 93

^{(#) =} qualifier out of range (m) = manual integration 0305N10S.D NALLS.M Fri Mar 09 10:08:29 2012

Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N10S.D

Vial: 1 Acq On : 5 Mar 12 16:35 Operator: SV,DG,RS

: 200ug/kg Vol Std 03-05-12 Sample Inst : Neo : Soil 5mL w/IS:10-20-11 $\overline{\mathtt{Misc}}$ Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

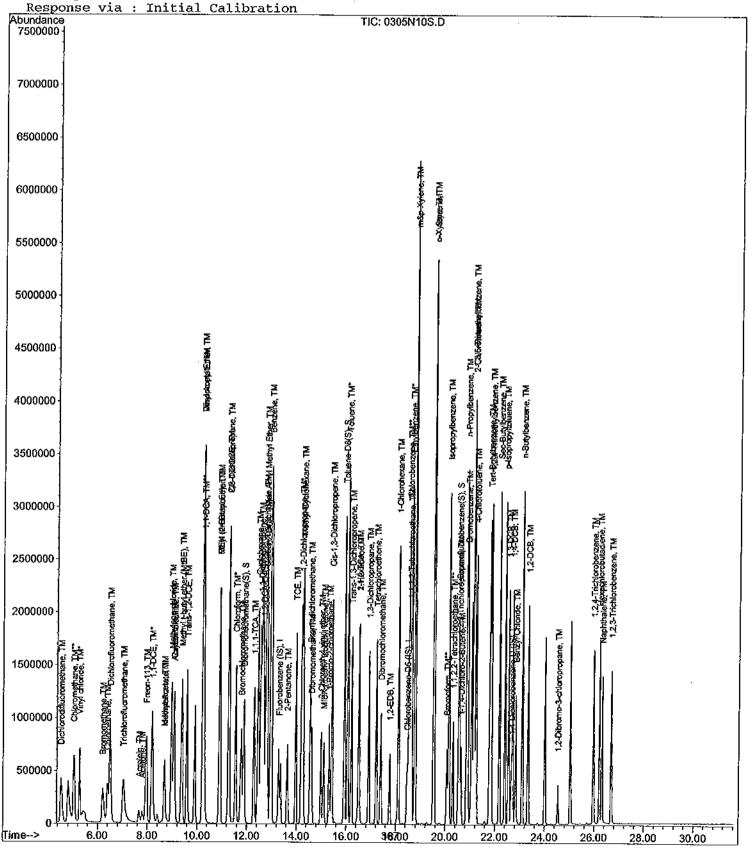
Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

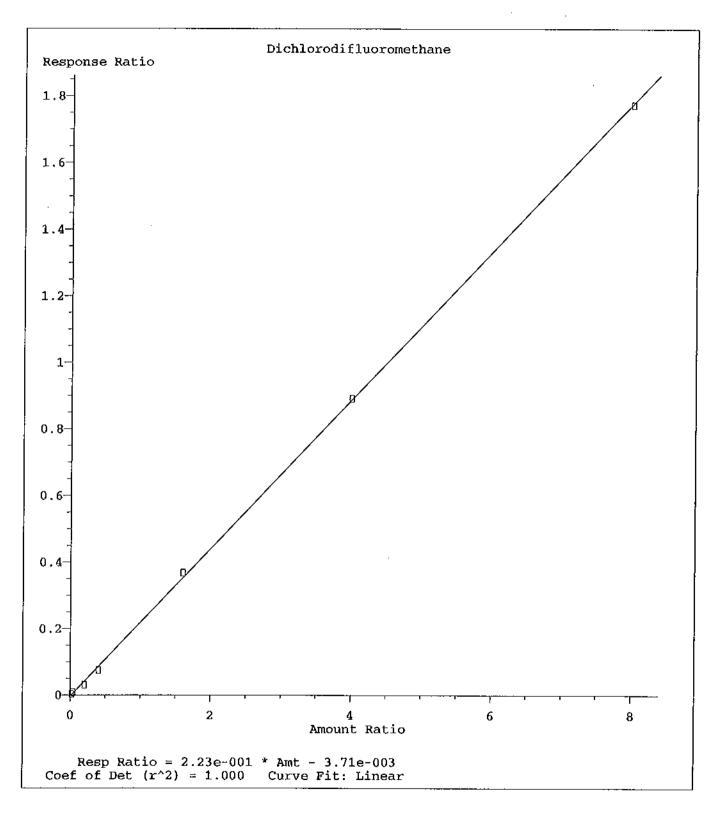
	Compound	R.T.	QIon	Response	Conc Unit (value	
46)	1-Bromo-2-chloroethane	15.32	63	1447443	180.59036 pph	98	8
47)	Cis-1,3-Dichloropropene	15,42	75	1775326	176.39753 pph		_
48)		16.06	91	3973925	181.20232 pph		9
49)	Trans-1,3-Dichloropropene	16.21	75	1475146	175.23641 pph		7
50)	1,1,2-TCA	16.51	83	688075	180.49018 pph		8
53)	1,2-EDB	17.76	107	79 467 1	203.21235 pph	# 93	1
54)	Tetrachloroethene	17.22	129	613784	214.32867 ppb	96	6
55)		18.12	91	1316133	223.94008 ppb	92	2
56)	1,1,1,2-Tetrachloroethane	18.58	131	776501	194.96000 pph	96	5
	m&p-Xylene	18.77	106	2772634	412.46551 pph		7
	o-Xylene	19.52	106	13579 0 7	201.44287 pph	100	0
	Styrene	19.54	78	1420928	198.17675 ppb		9
	2-Hexanone	16,52	43	754 973	181.28756 ppb		2
	1,3-Dichloropropane	16.91	76	1361743	199.69838 ppb		3
	Dibromochloromethane	17.40	129	950232	206.66010 ppb)
	Chlorobenzene	18.53	112	2153729	196.76868 ppb		3
	Ethylbenzene	18.63	91	4063566	203.75134 ppb		7
	Bromoform	20.07	173	559116	200.59256 ppb		1
	MIBK (methyl isobutyl keto	15.10	43	1089430	180.46566 ppb		-
	Isopropylbenzene	20.15	105	3504693	207.26205 ppb		7
	1,1,2,2-Tetrachloroethane	20.32	83	958814	192.22047 ppb		5
	1,2,3-Trichloropropane	20.57	110	211914	200.35218 ppb		
	t-1,4-Dichloro-2-Butene	20.63	53	293860	190.91262 ppb		5
-	Bromobenzene	20.91	156	820363	190.13117 ppb		
	n-Propylbenzene	20.86	91	4597630	203.93033 ppb		-
	2-Chlorotoluene	21.16	91	2930149	190.11882 ppb		
	1,3,5-Trimethylbenzene	21.13	105	2771899	198.35675 ppb		
	4-Chlorotoluene	21.24	91	2582460	190.06090 ppb		
	Tert-Butylbenzene	21.79	119	2641816	202.31719 ppb		
	1,2,4-Trimethylbenzene	21.85	105	2803437	196.55508 ppb		
	Sec-Butylbenzene	22.18	105	3820453	210.32891 ppb		
	p-Isopropyltoluene	22.40	119	2806324	200.59579 ppb		
82)	Benzyl Chloride	22.83	91	1425738	176.37174 ppb		
,	1,3-DCB	22.55	146	1388853	188.74227 ppb		-
-	1,4-DCB	22.72	146	1352626	181.77263 ppb		
85)	n-Butylbenzene	23.10	91	2947153	199.40021 ppb	98	
	1,2-DCB	23.34	146	1289645	191.29606 ppb	99	
	1,2-Dibromo-3-chloropropan	24.54	155	120618	206.71789 ppb	91	
	1,2,4-Trichlorobenzene	25.97	180	789448	179.16189 ppb	97	
	Hexachlorobutadiene	26.22	225	539027	204.49594 ppb	89	
	Naphthalene	26.32	128	1581186	175.85188 ppb	98	
コエト	1,2,3-Trichlorobenzene	26.69	180	703405	199.62049 ppb	97	

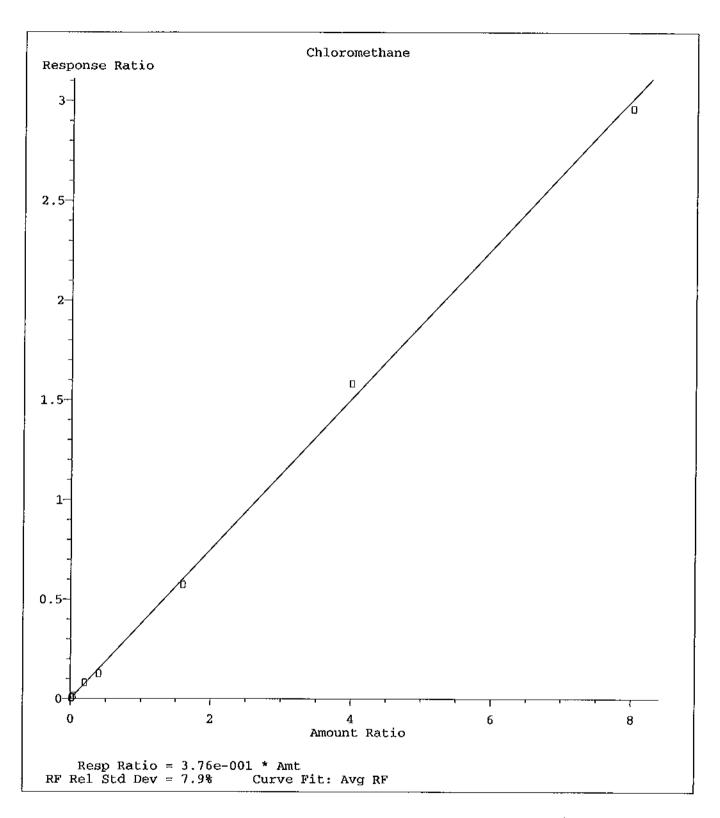
Quantitation Report

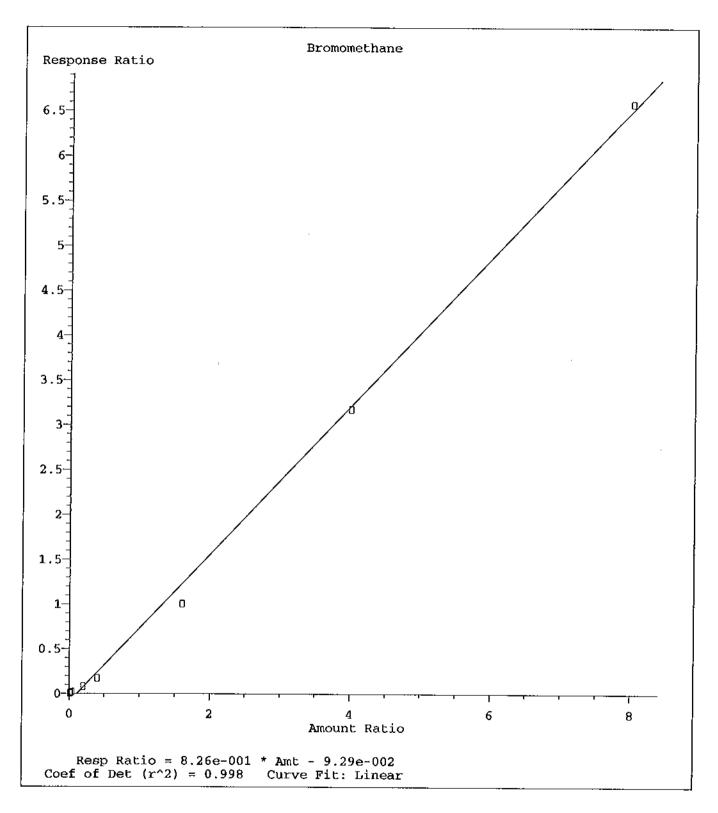
Data File : M:\NEO\DATA\N120305\0305N10S.D

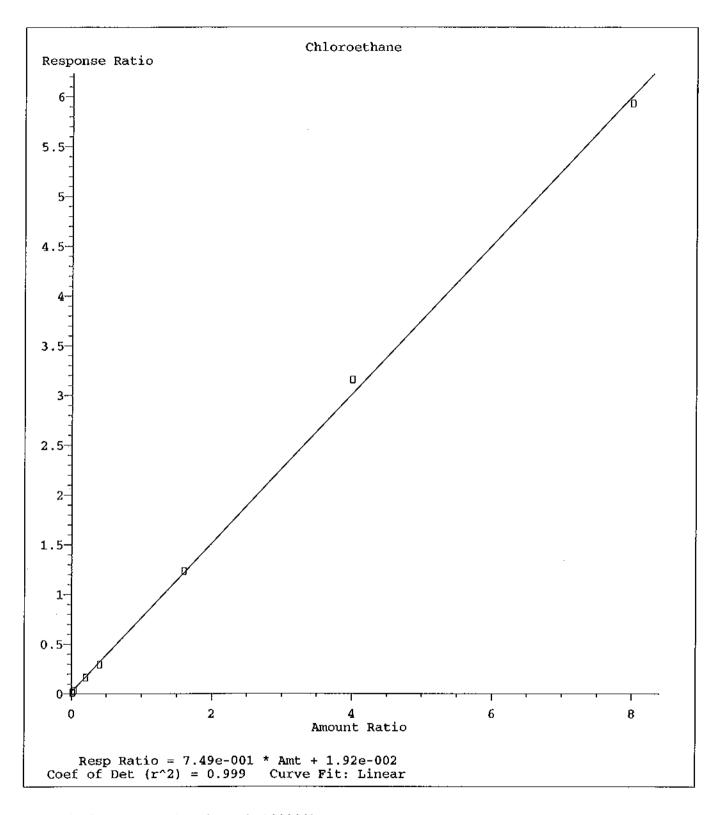
Vial: 1 Acq On 5 Mar 12 16:35

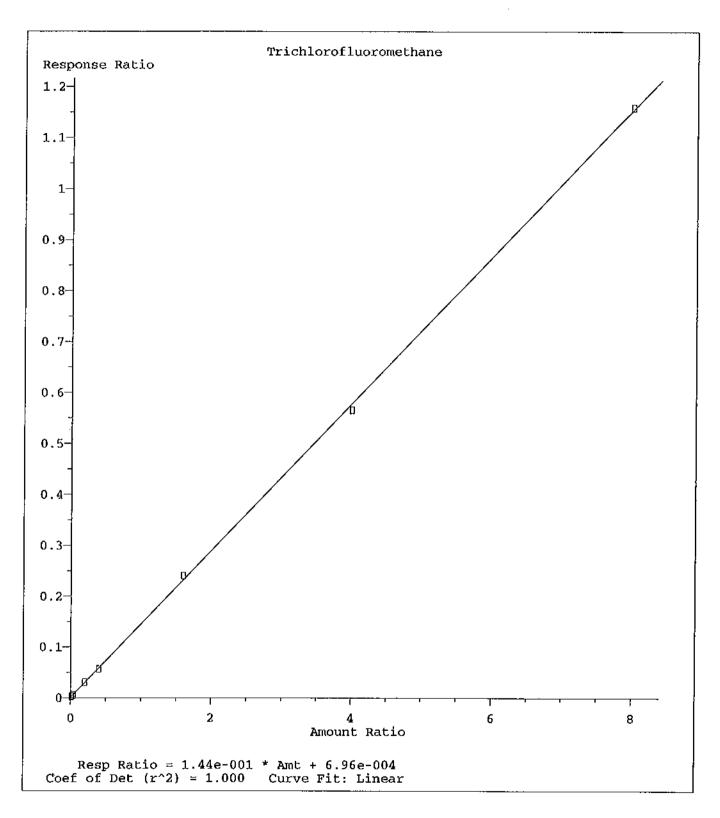

Operator: SV,DG,RS Sample : 200ug/kg Vol Std 03-05-12 Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

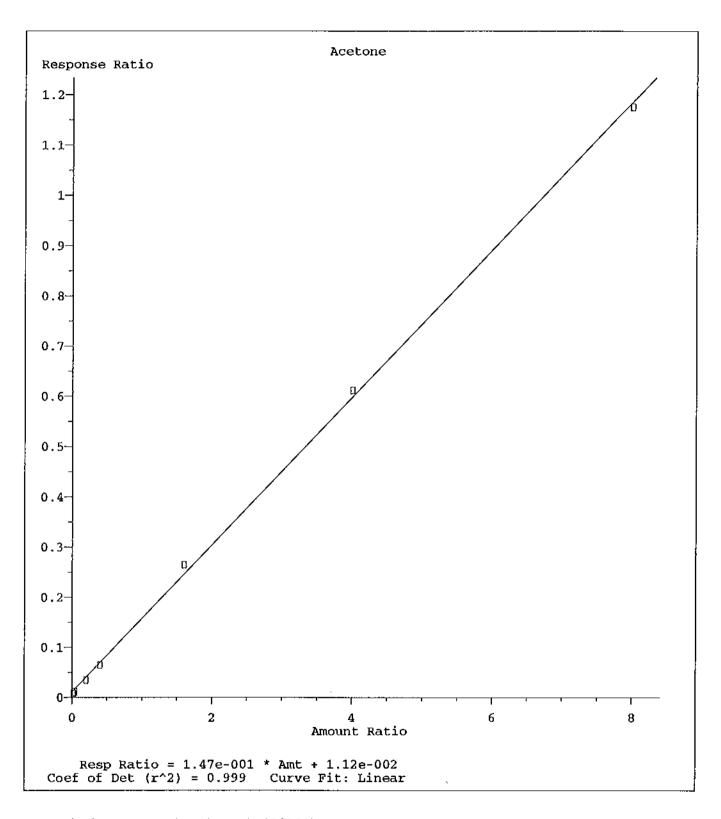

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

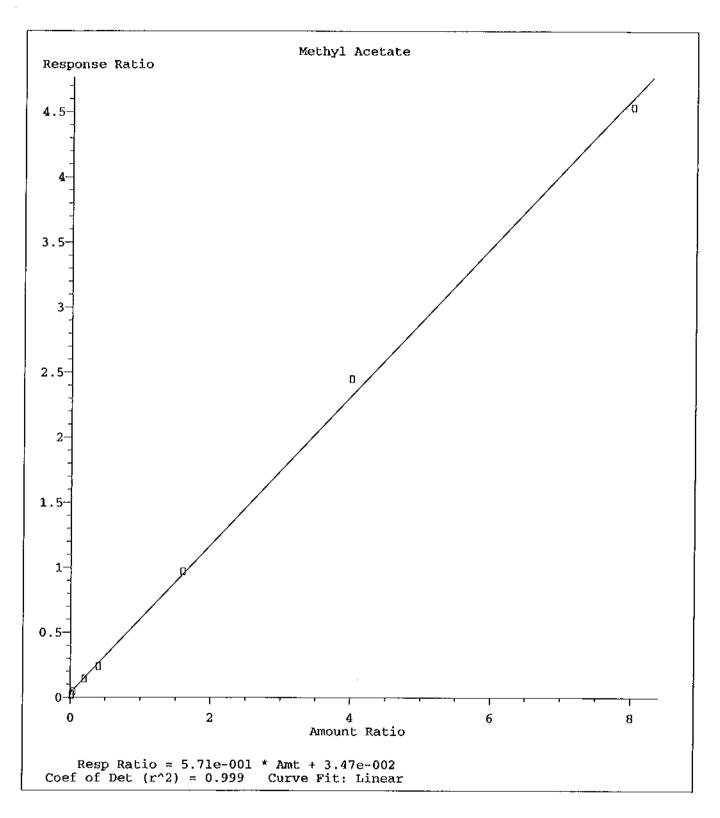

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

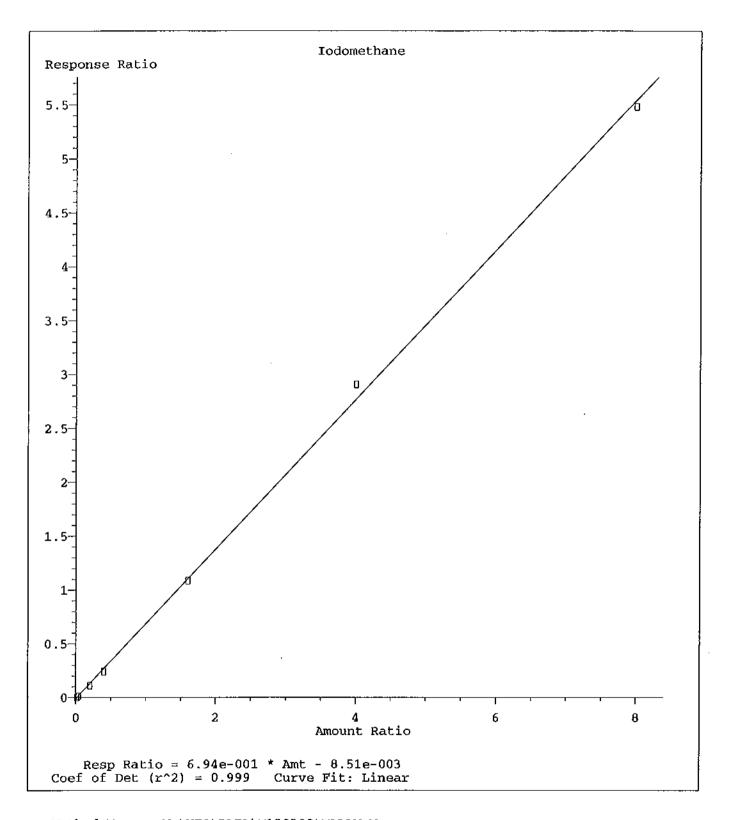

Title : METHOD 8260B

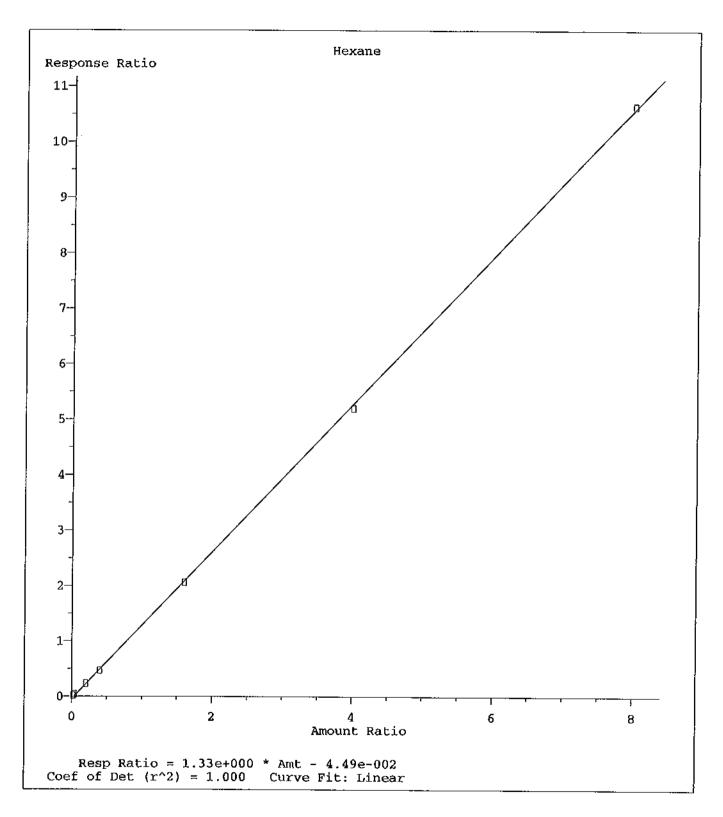

Last Update : Tue Mar 06 09:31:20 2012

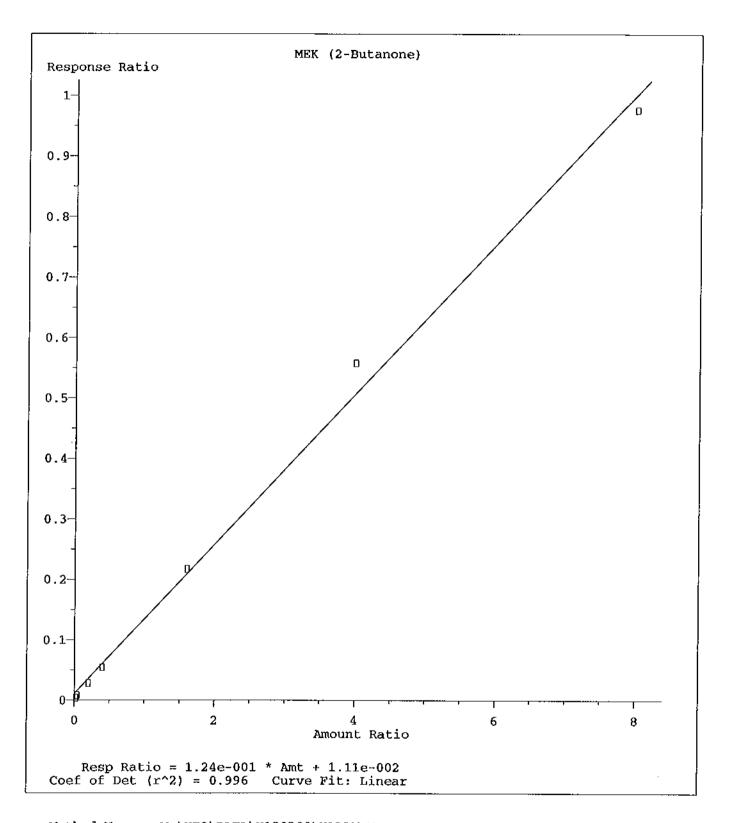


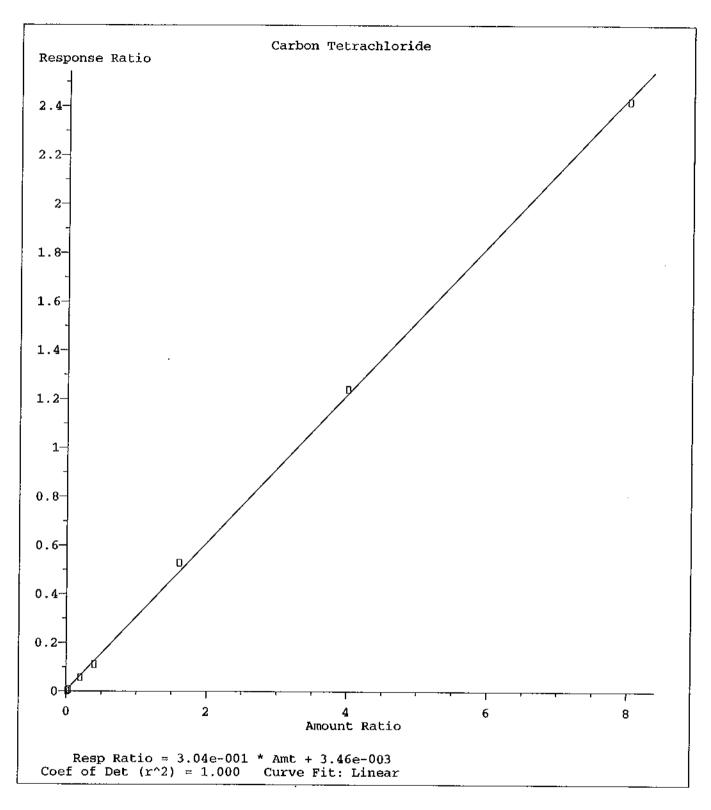


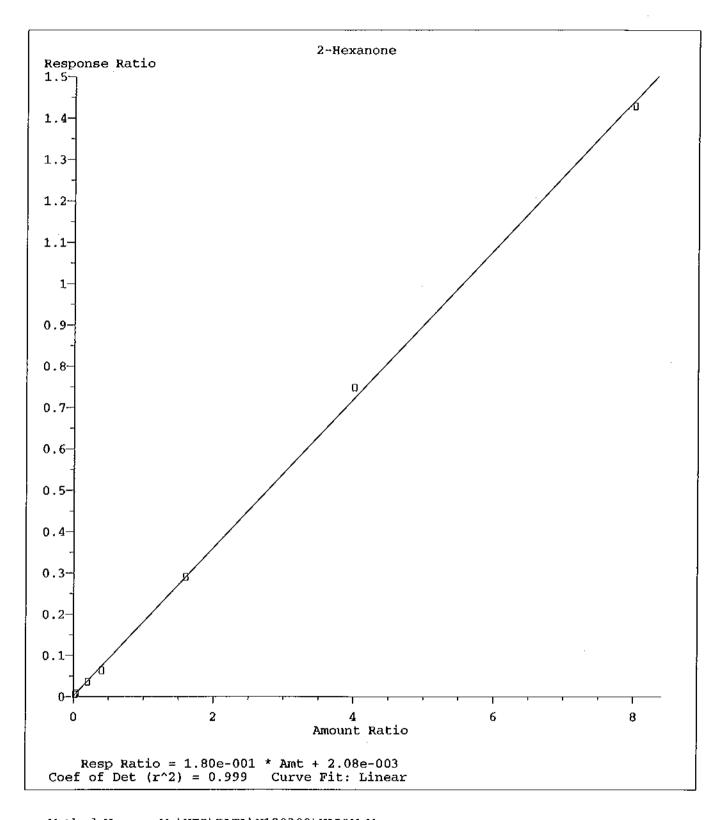


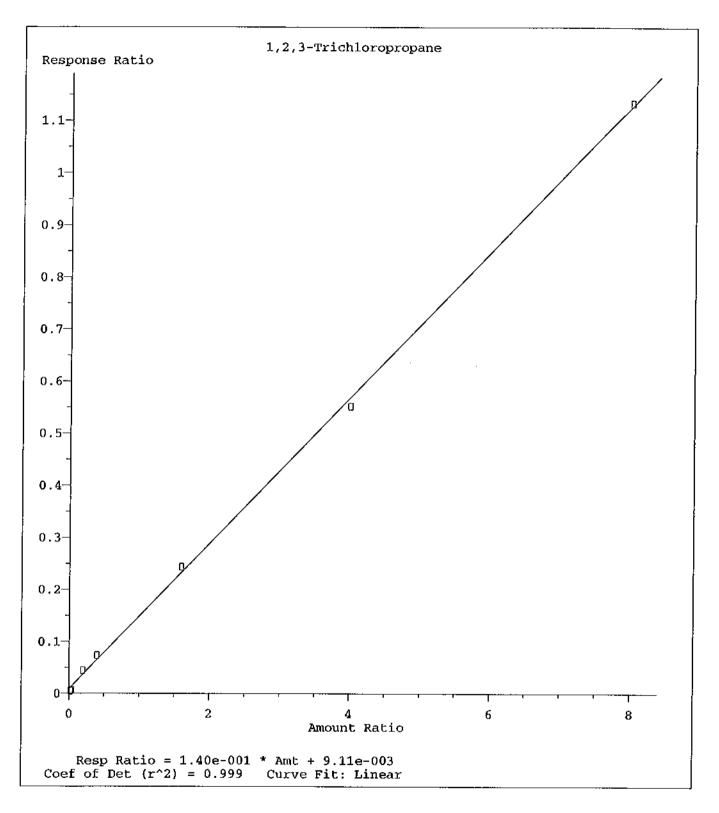




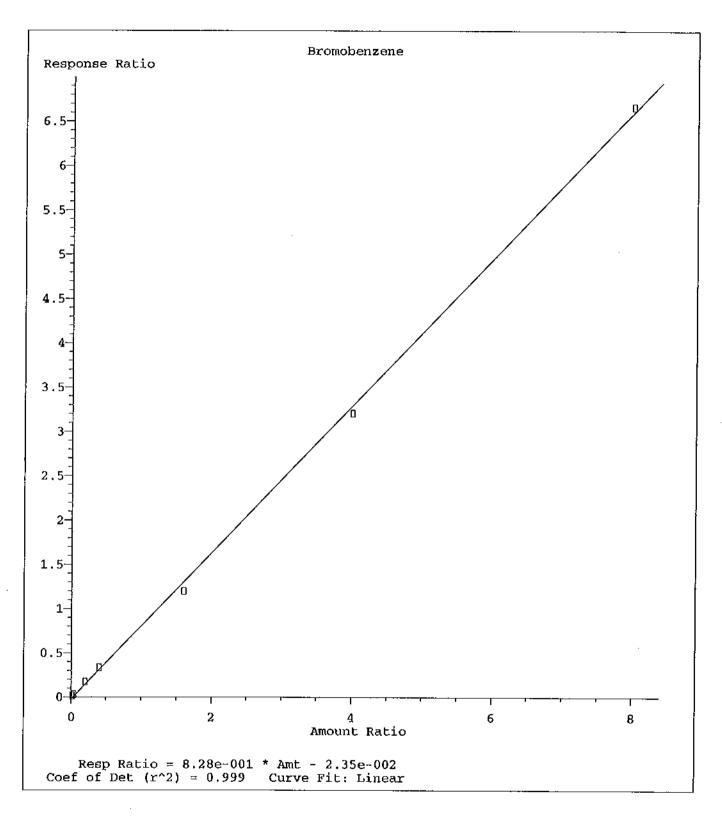








Method Name: M:\NEO\DATA\N120309\NALLW.M


Calibration Table Last Updated: Mon Mar 12 08:53:45 2012

Method Name: M:\NEO\DATA\N120309\NALLW.M

Calibration Table Last Updated: Mon Mar 12 08:53:45 2012

Data File: M:\NEO\DATA\N120305\0305N16S.D Vial: 1 Acq On : 5 Mar 12 20:24 Operator: SV,DG,RS

: 120305A LCS-1SN (ss) Sample Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	к.т.	QIon	Response	Conc Units Do	ev(Min)
1) Fluorobenzene (IS)	13.29	96	321344	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.46		209408	50.00000 ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.65		87496	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.88	111	224234	36.01102 ppb	0.00
Spiked Amount 41.312	11.00	444	Recove		
34) 1,2-DCA-D4(S)	12.67	65	245270	36.31417 ppb	0.00
Spiked Amount 41.649				ery = 87.1929	
52) Toluene-D8(S)	15.93	98	675554	37.32430 ppb	0.00
Spiked Amount 35.274			Recove	exy = 105.8118	
60) 4-Bromofluorobenzene(S)	20.53	95		35.79651 ppb	0.00
Spiked Amount 35.584			Recove	xy = 100.6009	5.0 H3/10/18
Margot Compounds			_[6	16012 x 60 - 52). U 3110
Target Compounds 2) Dichlorodifluoromethane	4.54	O.E.	225455	331344 x 0.34 56.24657 ppb	įvarue
3) Chloromethane	5.05	85 50	335455	56 20014 mmh	87 07
4) Vinyl chloride	5.29	62	126012	56.38814 ppb 52.91497 ppb 53.74456 ppb	97 100
	6.21	94	186170	52.91497 ppp	90
6) Chloroethane	6.42	64	248444	58.49311 ppb	93
7) Dichlorofluoromethane	6.51	67	248444 766843	55.13758 ppb	98
	7.05	101	340253	57.66144 ppb	100
9) Acrolein	7.67	56	175240	214.89046 ppb	94
10) Acetone	7.79	43	103272	47.43526 ppb	. 89
11) Freon-113	7.97	101	243228	54.86887 ppb	97
12) 1,1-DCE	8.19	96	245234	56.16417 ppb	92
14) Methyl Acetate	8.68	43	324525	44.85377 ppb	99
15) Iodomethane	8.69	142	203038	58.35031 ppb	# 93
16) Acrylonitrile	9.06	53	97677	45.05894 ppb	81
17) Methylene chloride	8.97	86	2 08087	52.30935 ppb	98
18) Carbon disulfide	9.08	76	983525	49.94762 ppb	96
19) Methyl t-butyl ether (MtBE	9.39	73	742651	47.14009 ppb	97
20) Trans-1,2-DCE	9.59	96	305791	53.90683 ppb	93
21) Diisopropyl Ether 22) 1,1-DCA	10.22 10.27	45	1474089	50.78299 ppb	99
23) Vinyl Acetate	10.27	63 43	658936	52.98238 ppb	99
24) Ethyl tert Butyl Ether		43 59	1115657 1066830	48.52275 ppb 49.92267 ppb	9 7
25) MEK (2-Butanone)	10.90	43	257024	49.24362 ppb	95 100
26) Cis-1,2-DCE	11.28	96	344420	53.99212 ppb	97
27) 2,2-Dichloropropane	11.27	77		53.34357 ppb	100
28) Chloroform	11.56	83	568244	51.96064 ppb	97
29) Bromochloromethane	11.79	128	104068	46.78457 ppb	92
31) 1,1,1-TCA	12.30	97	459913	58.40539 ppb	93
32) Cyclohexane	12.46	56	515446	56.98736 ppb	97
33) 1,1-Dichloropropene	12.56	75	418844	55.46856 ppb	93
35) Carbon Tetrachloride	12.76	117	346583	57.80661 ppb	98
36) Tert Amyl Methyl Ether	12.79	73	816710	48.54221 ppb	96
37) 1,2-DCA	12.83	62	401913	49.20284 ppb	99
38) Benzene	12.96	78	1242802	51.67268 ppb	97
39) TCE 40) 2-Pentanone	13.98	95 43	294836	53.45039 ppb	92
41) 1,2-Dichloropropane	13.63	43 63	1296770	224.28545 ppb	100
42) Bromodichloromethane	14.20 14.55	63 83	373089	51.90957 ppb	1 0 0
43) Dibromomethane	14.55	93	435736 191968	52.27935 ppb 50.30598 ppb	97 97
44) Methyl Cyclohexane		83	389031	55.19992 ppb	97 92
					98
45) 2-Chloroethyl vinyl ether			383		

^{(#) =} qualifier out of range (m) = manual integration 0305N16S.D NALLS.M Fri Mar 09 10:08:34 2012

Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 Operator: SV,DG,RS Inst : Neo Acq On : 5 Mar 12 20:24 Sample : 120305A LCS-1SN (ss) : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

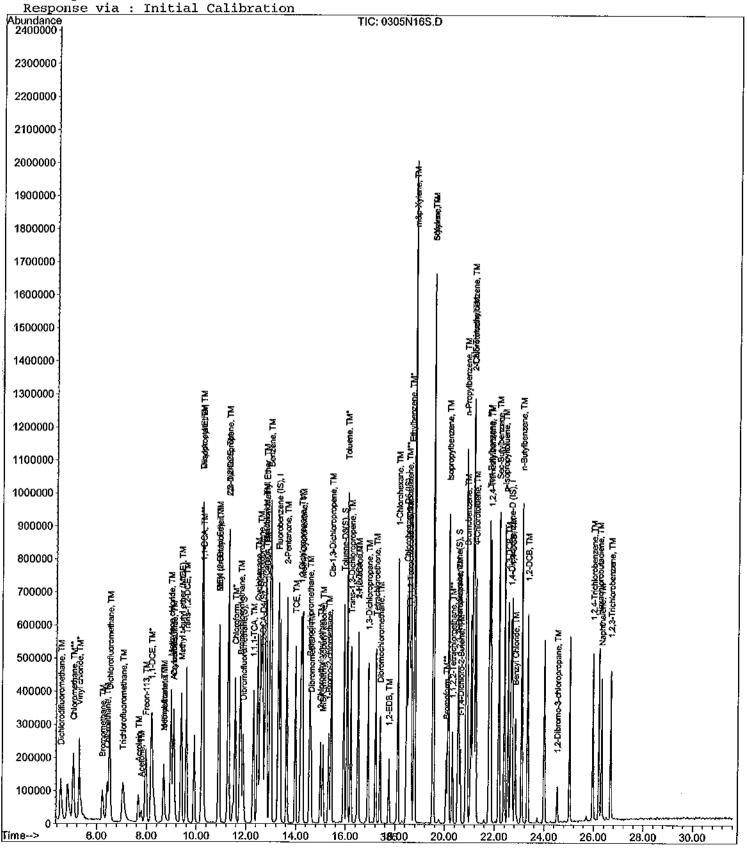
Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)
Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalu	e
46)	1-Bromo-2-chloroethane	15.32	63	411148	49.70315	nnh	100
	Cis-1,3-Dichloropropene	15.43	75	530236	51.04770	ppb	97
	Toluene	16.06	91	1205585	53.26409	ppb	99
49)	Trans-1,3-Dichloropropene	16.21	75	438758	50.50182	ppb	96
	1,1,2-TCA	16.50	83	205180	52.14894	nnh	92
53)	1,2-EDB	17.76	107	229023	48.70315	ppb #	92
54)	Tetrachloroethene	17.22	129	187966	54.58323	ppb "	93
55)	1-Chlorohexane	18.11	91	380392	53.82433	ppb	96
56)	1,1,1,2-Tetrachloroethane	18.58	131	242905	50.71719	ppb	96
57)	m&p-Xylene	18.77	106	867143	107.27563	dad	98
58)	o-Xylene	19.52	106	418565	51.63688	daa	93
	Styrene	19.53	78	432895	50.20864	daa	93
	2-Hexanone	16.51	43	212617	42.45705		87
62)	1,3-Dichloropropane	16.91	76	422181	51.48649	daa	99
	Dibromochloromethane	17.40	129	288454	52.16976	daa	95
	Chlorobenzene	18.53	112	665282	50.54590		95
	Ethylbenzene	18.64	91	1281539	53.43677		96
	Bromoform	20.06	173	166539	49.68715		98
68)	MIBK (methyl isobutyl keto	15.08	43	321677	44.62852	daa	98
	Isopropylbenzene	20.15	105	1069912	52.99259	daa	98
	1,1,2,2-Tetrachloroethane	20.31	83	281012	47.18320		97
71)	1,2,3-Trichloropropane	20.56	110	61600	48.49258		97
	t-1,4-Dichloro-2-Butene	20.63	53	85409	46.47239		99
73)	Bromobenzene	20.90	156	243621	47.28890	daa	91
	n-Propylbenzene	20.86	91	1444105	53.64680	daa	98
	2-Chlorotoluene	21.15	91	986065	53.58438	daa	99
	1,3,5-Trimethylbenzene	21.13	105	902568	54.09371	dag	99
	4-Chlorotoluene	21.23	91	737425	45.45423	ppb	97
	Tert-Butylbenzene	21.78	119	808680	51.86856	ppb	98
	1, 2, 4-Trimethylbenzene	21.84	105	847006	49.73673	ppb	98
	Sec-Butylbenzene	22.18	105	1160049	53.48817	ppb	97
	p-Isopropyltoluene	22.39	119	825975	49.44794		100
	Benzyl Chloride	22.83	91	376690	39.02749		96
	1,3-DCB	22.54	146	420416	47.85082	ppb	96
84)		22.71	146	410437	46.19495		98
	n-Butylbenzene	23.09	91	897160	50.83819		98
86)		23.33	146	395545	49.13930	ppb	100
	1,2-Dibromo-3-chloropropan	24.53	155	35921	51.55985		75
	1,2,4-Trichlorobenzene	25.97	180	228769	43.48270		98
	Hexachlorobutadiene	26.21	225	170824	54.27756 j	ppb	91
	Naphthalene	26.31	128	501145	46.67934		100
91)	1,2,3-Trichlorobenzene	26.69	180	224049	52.2 4692)	ppb	96

⁻⁻⁻⁻⁻⁻³⁸⁴⁻⁻⁻⁻⁻⁻(#) = qualifier out of range (m) = manual integration 0305N16S.D NALLS.M Fri Mar 09 10:08:34 2012

Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 5 Mar 12 20:24 Operator: SV,DG,RS


Sample : 120305A LCS-1SN (ss) Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Quantitation Report (Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N14S.D

Vial: 1 Acq On Operator: SV,DG,RS

: 5 Mar 12 19:08 : 50ug/kg Vol Std 03-05-12 Sample Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 9:20 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title

Title : METHOD 8260B Last Update : Tue Mar 06 09:19:39 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.29	96	297344	50.00000 ppk	0.00
	18.47			50.00000 ppk	
67) 1,4-Dichlorobenzene-D (IS)		152	81512	50.00000 ppk	
System Monitoring Compounds					
<pre>30) Dibromofluoromethane(S)</pre>	11.88	111	211479	36.70390 ppk	0.00
Spiked Amount 41.312			Recove		
34) 1,2-DCA-D4(S)	12.68	65	233251	37.32211 ppk	
Spiked Amount 41.649	45.04		Recove	xy = 89.61	
52) Toluene-D8(S)	15.94	98	641414	35.89887 pph	
Spiked Amount 35.274 60) 4-Bromofluorobenzene(S)	20 52	0.6	Recove	xy = 101.77	118
Spiked Amount 35.584	20.53	95		38.14667 ppb	
POC.CC STROMA DONIEGO			Recove	xy = 107.20	148
Target Compounds					Qvalue
2) Dichlorodifluoromethane	4.54	85	309898	56.15593 pph	87
3) Chloromethane 4) Vinyl chloride	5.04	50	541407	55.93229 pph	94
4) Vinyl chloride	5.29	62	126560	57.02737 ppb	
5) Bromomethane	6.23	94	157075	49.17286 ppb	97
6) Chloroethane	6.42	64	220988	56.22756 ppb	
7) Dichlorofluoromethane	6.51	67	690320	53.64172 ppb	
	7.04	101	323841	59.30296 ppb	
9) Acrolein	7.67	56	173280	229.63779 ppb	
10) Acetone	7.79	43	99077	49.63087 ppb	100
11) Freon-113	7.97	101	213826	52.21340 ppb	
12) 1,1-DCE	8.19	96	217541	53.84319 ppb	
14) Methyl Acetate	8.68	43	303132	45.38328 ppb	
15) Iodomethane	8.68	142	173539	53.97285 ppb	
16) Acrylonitrile	9.06	53	95988	47.85382 ppb	100
17) Methylene chloride	8.98	86	192407	52.27106 ppb	94
18) Carbon disulfide	9.09	76	905872	49.71727 ppb	
19) Methyl t-butyl ether (MtBE	9.39	73	690420	47.36200 ppb	
20) Trans-1,2-DCE 21) Diisopropyl Ether	$9.59 \\ 10.22$	96	272807	51.97394 ppb	91
22) 1,1-DCA	10.22	45 63	1304007	48.54959 ppb	
23) Vinyl Acetate	10.23	43	585546 1038862	50.88154 ppb	
24) Ethyl tert Butyl Ether	10.23	59	950630	48.82965 ppb 48.07565 ppb	98
25) MEK (2-Butanone)	10.89	43	229638	47.41261 ppb	
26) Cis-1,2-DCE	11.28				# 60 97
27) 2,2-Dichloropropane	11.28	77	302224 403175	51.18750 ppb	95
28) Chloroform	11.56	83	494371	48.85440 ppb	
29) Bromochloromethane	11.79	128	102888	49.98748 ppb	
31) 1,1,1-TCA	12.30	97	391858	53.77953 ppb	
32) Cyclohexane	12.46	56	449523	53.71039 ppb	99
33) 1,1-Dichloropropene	12.56	75	373010	53.38584 ppb	
35) Carbon Tetrachloride	12.76	117	305489	57.42247 ppb	
36) Tert Amyl Methyl Ether	12.79	73	765918	49.19772 ppb	98
37) 1,2-DCA	12.83	62	372713	49.31099 ppb	98
38) Benzene	12.96	78	1116456	50.16626 ppb	96
39) TCE	13.98	95	265435	52.00434 ppb	94
40) 2-Pentanone	13.63	43	1280399	239.32853 ppb	99
41) 1,2-Dichloropropane	14.21	63	333114	50.08860 ppb	99
42) Bromodichloromethane 43) Dibromomethane	14.55	83	383448	49.71921 ppb	99
43) Methyl Cyclohexane	$14.62 \\ 14.26$	93 83	167734	47.50320 ppb	96
45) 2-Chloroethyl vinyl ether		63	359552 162674	55.13670 ppb 49.94505 ppb	89 95
			386	add cocherer	90
(#) = qualifier out of range (m)		. 1			

^{(#) =} qualifier out of range (m) = manual integration 0305N14S.D NALLS.M Fri Mar 09 10:08:32 2012

Quantitation Report (Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N14S.D

Vial: 1 Acq On : 5 Mar 12 19:08 Sample : 50ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 9:20 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:19:39 2012 Response via : Initial Calibration

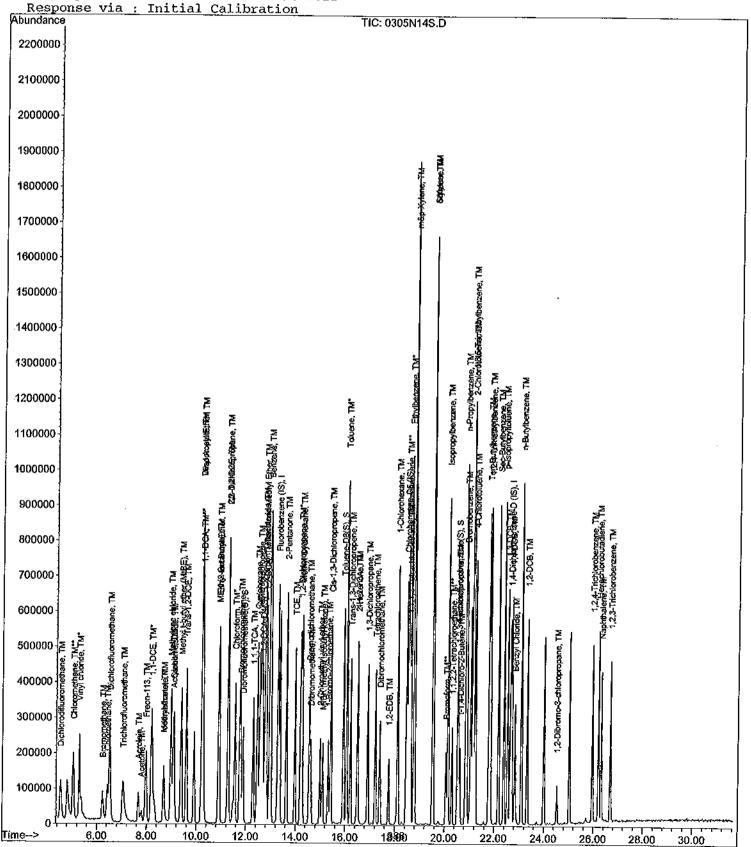
DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	?
46)	1-Bromo-2-chloroethane	15.32	63	375229	49.02224 p	 anh	97
	Cis-1,3-Dichloropropene	15.43	75	471465	49.05321 p		96
	Toluene	16.07	91	1118543	53.40727 p		96
49)	Trans-1,3-Dichloropropene	16.22	75	396003	49.25966 g		97
	1,1,2-TCA	16.50	83	183305	50.34957 g	opb	98
	1,2-EDB	17.76	107	215600	46.44484	# dac	91
54)	Tetrachloroethene	17.22	129	163331	48.04623 p		98
55)	1-Chlorohexane	18.11	91	352290	50.49616 p		96
56)	1,1,1,2-Tetrachloroethane	18.59	131	228867	48.40750 p	dge	87
	m&p-Xylene	18.77	106	809260	101.41663 p	dac	99
		19.52	106	404123	50.50350 p		94
59)	Styrene	19.54	78	427062	50.17618 p	dqc	96
	2-Hexanone	1 6.52	43	217171	43.93033 p	dqc	94
62)	1,3-Dichloropropane	16.91	76	376540	46.51752 p	gb	95
63)	Dibromochloromethane	17.39	129	259926	47.62146 p		99
	Chlorobenzene	18.53	112	642119	49.42042 p		98
	Ethylbenzene	18.63	91	1221035	51.57596 p	pb	96
	Bromoform	20.07	17 3	163300	49.35431 p	pb	94
	MIBK (methyl isobutyl keto	15.09	43	313917	46.74918 p	pb	96
69)	Isopropylbenzene	20.15	105	1021182	54.29213 p	pb	99
	1,1,2,2-Tetrachloroethane	20.31	83	2736 70	49.32378 p	pb	95
	1,2,3-Trichloropropane	20.56	110	58806	49.70088 p	pb	81
	t-1,4-Dichloro-2-Butene	20.63	53	84570	49.39402 p		91
	Bromobenzene	20.90	156	245181	51.08554 p		91
	n-Propylbenzene	20.86	91	1337504	53.33433 p		100
	2-Chlorotoluene	21.16	91	890930	51.96882 p		95
	1,3,5-Trimethylbenzene	21.13	10 5	805914	51.84683 p		100
	4-Chlorotoluene	21.24	91	7445 04	49.25951 p		96
78)		21.78	119	782210	53.85394 p	pb	97
	1,2,4-Trimethylbenzene	21.84	105	836613	52.73294 p	pb	97
	Sec-Butylbenzene	22.18	105	1108668	54.87184 p	dq	99
	p-Isopropyltoluene	22.39	119	836445	53.75085 p	dq	97
	Benzyl Chloride	22.83	91	401113	44.60874 p	pb	96
-	1,3-DCB	22.54	146	417245	50.97626 p	pb	95
84)	1,4-DCB	22.71	146	388005	46.87616 p	рb	98
	n-Butylbenzene	23.09	91	885526	53.86271 p	pb	100
86)		23.33	146	383200	51.10 0 51 p	pb	96
87)	1,2-Dibromo-3-chloropropan	24.54	155	35327	54.42978 p		83
	1,2,4-Trichlorobenzene	25.97	180	237319	48.41930 p	pb	97
	Hexachlorobutadiene	26.21	225	162398	55.38839 p		90
		26.32	128	495426	49.53438 p		97
9T)	1,2,3-Trichlorobenzene	26.68	180	216798	54.32051 p	pb	98

Vial: 1

Data File: M:\NEO\DATA\N120305\0305N14S.D

Acq On 5 Mar 12 19:08


Operator: SV,DG,RS Sample : 50ug/kg Vol Std 03-05-12 : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 9:20 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title METHOD 8260B

Last Update Tue Mar 06 09:31:20 2012

Data File: M:\THOR\DATA\T120307\0307T03S.D

Vial: 3 Acq On : 7 Mar 12 9:51 Sample : 2.0ug/kg Vol Std 03-06-12 Operator: DG,RS,HW,ARS,SV

: Thor

Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:04:54 2012 Response via : Initial Calibration

70) 1,4-Dichlorobenzene-D (IS) 12.21 152 172096 50.00000 ppb System Monitoring Compounds	0.00 0.00 0.00
System Monitoring Compounds	0.00
System Monitoring Compounds	0.00 0.00
	0.00
(0.00
31) Dibromofluoromethane(S) 5.97 111 5814 2.29198 ppb Spiked Amount 74.267 Recovery = 3.086%	
36) 1,2-DCA-D4(S) 6.35 65 7431 2.55692 ppb	
Spiked Amount 65.341 Recovery = 3.913% 56) Toluene-D8(S) 8.45 98 20005 2.43510 ppb	Λ $\Lambda\Lambda$
Spiked Amount 83,313 Recovery = 2,923%	0.00
64) 4-Bromofluorobenzene(S) 11.06 95 10795 5.06210 ppb	0.00
Spiked Amount 77.736 Recovery = 6.512 %	
Target Compounds Qval	
2) Dichlorodifluoromethane 1.30 85 3432 2.23808 ppb	96
3) Freon 114 1.42 85 2470 1.65856 ppb 4) Chloromethane 1.46 50 5901 2.18965 ppb	89
5) Vinyl chloride 1.57 62 4165 2.36401 ppb	93 92
5) Vinyl chloride 1.57 62 4165 2.36401 ppb 6) Bromomethane 1.88 96 4248 2.13950 ppb 7) Chloroethane 1.98 49 582 2.34796 ppb #	99
6) Bromomethane 1.88 96 4248 2.13950 ppb 7) Chloroethane 1.98 49 582 2.34796 ppb #	88
8) Dichlorofluoromethane 2.20 67 8943 2.08825 ppb	95
8) Dichlorofluoromethane 2.20 67 8943 2.08825 ppb 9) Trichlorofluoromethane 2.26 101 5767 2.06431 ppb 10) Acrolein 2.72 56 7230 55.38354 ppb	96
10) Acrolein 2.72 56 7230 55.38354 ppb	100
11) Acetone 2.92 43 5951 0.86479 ppb	98
11) Acetone 2.92 43 5951 0.86479 ppb 12) Freon-113 2.87 101 3517 2.03828 ppb 13) 1,1-DCE 2.84 96 3560 2.08331 ppb	78
13) 1,1-DCE 2.84 96 3560 2.08331 ppb	97
14) t~Butanol 3.77 59 12294 58.01813 ppb 15) Methyl Acetate 3.38 43 9136 -0.38089 ppb	98 96
16) Iodomethane 3.00 142 4700 1.62187 ppb	99
17) Acrylonitrile 3 85 53 1913 2 48020 mmh	77
18) Methylene chloride 3.48 84 8620 2.03139 ppb	89
19) Carbon disulfide 3.07 76 15003 2.40870 ppb	99
20) Methyl t-butyl ether (MtBE 3.96 73 12902 2.04214 ppb	97
211 Trans-1.2-DCE	87
22) Diisopropyl Ether 4.75 45 14888 2.07949 ppb 23) 1,1-DCA 4.53 63 7861 2.00306 ppb	95
23) 1,1-DCA 4.53 63 7861 2.00306 ppb 24) Vinyl Acetate 4.75 87 3779 1.90980 ppb # 25) Ethyl tert Butyl Ether 5.25 59 12395 2.05102 ppb	96 72
25) Ethyl tert Butyl Ether 5.25 59 12395 2.05102 ppb	95
26) MEK (2-Butanone) 5.43 43 2688 1.82352 ppb	86
27) C1S-1,2-DCE 5.35 96 6037 2.17622 ppb	94
28) 2,2-Dichloropropane 5.34 77 5854 2.16903 ppb	99
29) Chloroform 5.78 83 9402 2.17339 ppb	84
30) Bromochloromethane 5.65 128 2880 1.99950 ppb	79
32) 1,1,1-TCA 5.98 97 5226 1,84067 ppb	90
33) Cyclohexane 6.05 41 3279 2.25842 ppb	74
34) 1,1-Dichloropropene 6.19 75 4701 1.95247 ppb 35) 2,2,4-Trimethylpentane 6.56 57 9539 5.68802 ppb	91
35) 2,2,4-Trimethylpentane 6.56 57 9539 5.68802 ppb 37) Carbon Tetrachloride 6.18 117 5183 2.11962 ppb	89 88
38) Tert Amyl Methyl Ether 6.62 73 11195 1.93800 ppb #	91
39) 1,2-DCA 6.44 62 7306 2.10702 ppb	99
40) Benzene 6.42 78 19662 2.12711 ppb	97
41) TCE 7.16 95 6089 2.49052 ppb	87
42) 2-Pentanone 7.39 43 76599 52.33401 ppb	98

^{(#) =} qualifier out of range (m) = manual integration 0307T03S.D TALLS.M Thu Mar 08 10:00:03 2012

Quantitation Report (Not Reviewed)

Data File : M:\THOR\DATA\T120307\0307T03S.D Vial: 3

Acq On : 7 Mar 12 9:51 Operator: DG,RS,HW,ARS,SV

: 2.0ug/kg Vol Std 03-06-12 Sample Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

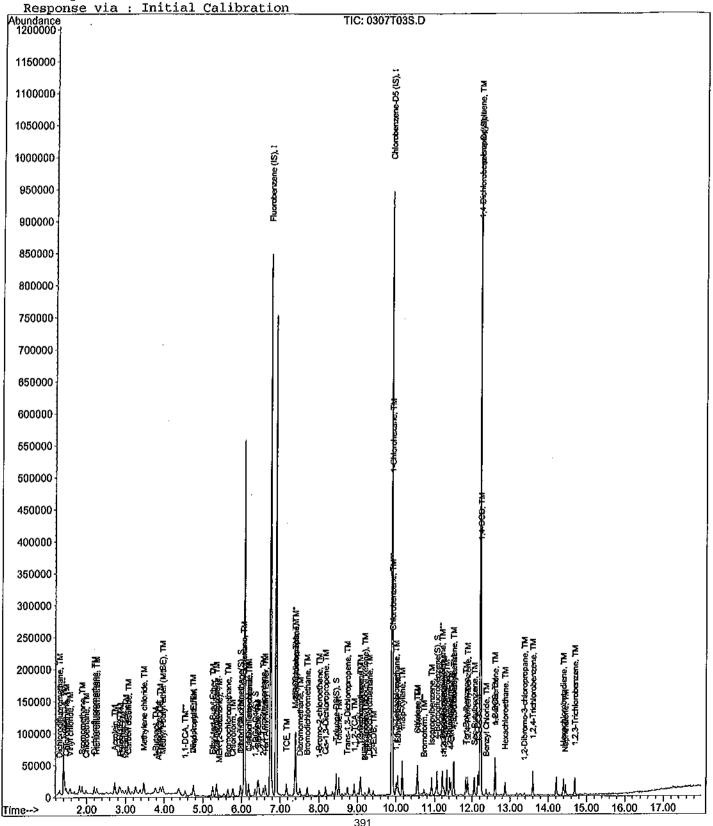
Title : METHOD 8260B Last Update : Wed Mar 07 14:04:54 2012 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit (Qvalu	e
43	1,2-Dichloropropane	7.39	63	5663	2.11836 ppl		- 96
	Bromodichloromethane	7.69		6789	2.04255 ppl		94
	Methyl Cyclohexane	7.38	83	4720	1.76847 ppl		96
	Dibromomethane	7.51	93	3276	2.02154 ppl		86
48	MIBK (methyl isobutyl ket	9.20	43	2473	2.16666 ppl) #	84
	1-Bromo-2-chloroethane	8.01	63	4074	2.07170 ppl)	92
	Cis-1,3-Dichloropropene	8.17	75	7189	2.00733 ppk)	97
	Toluene	8.51	91	12840	2.07464 ppk)	89
52)	Trans-1,3-Dichloropropene	8.74	75	6036	1.95234 ppk		93
	1,1,2-TCA	8.92	83	4453	2.24563 ppb		84
	2-Hexanone	9,20	43	2473	2.16666 pph		87
-	1,2-EDB	9.41	107	4131	1.88530 pph	, #	76
	Tetrachloroethene	9.07	164	4347	2.19437 pph)	85
	1-Chlorohexane	9.91	91	5311	2.15060 ppb		75
	1,1,1,2-Tetrachloroethane	10.00	131	4781	1.92549 pph		90
	m&p-Xylene o-Xylene	10.16	106	14572	3.66081 pph		98
		10.55 10.56	106 104	7291 11900	1.82331 ppb		90
651	Styrene 1,3-Dichloropropane Dibromochloromethane	9.08	76	7683	4.28494 ppb		98
661	Dibromochloromethane	9.31	129	4947	2.05953 ppb 1.95872 ppb		97 99
	Chlorobenzene	9.92	112	16148	2.20102 ppb		99
	Ethylbenzene	10.04	91	20071	1.93070 ppb		99
	Bromoform	10.73	173	3298	1.91666 ppb		91
71)		10.93	105	15521	1.90580 ppb		100
	1,1,2,2-Tetrachloroethane	11.20	83	5913	2.26635 ppb		87
	1,2,3-Trichloropropane	11.24	110	1714	2.25822 ppb		74
	t-1,4-Dichloro-2-Butene	11.27	53	1099	2.01152 ppb		83
	Bromobenzene	11.21	156	6735	2,15343 ppb		98
76)	n-Propylbenzene	11.33	91	20895	1.95507 ppb		99
77)	4-Ethyltoluene	11.45	105	12070	1.89535 ppb		96
	2-Chloroto1uene	11.41	91	16077	2.03612 ppb		94
79)	1,3,5-Trimethylbenzene	11,51	105	13746	1.75088 ppb		99
	4-Chlorotoluene	11.51	91	16323	1.93621 ppb		99
	Tert-Butylbenzene	11.83	119	11201	1.77937 ppb		99
	1,2,4-Trimethylbenzene	11.88	105	14377	1.78577 ppb		98
	Sec-Butylbenzene	12,05	105	16927	1.82368 ppb		99
84)	p-Isopropyltoluene	12.20	119	13940	1.74206 ppb		95
	Benzyl Chloride	12.37	91	5737	1.84678 ppb		91
86)	1,3-DCB	12.15	146	12795	2.10819 ppb		94
87)	1,4-DCB	12.24	146	14970	2.36643 ppb		96
89)	n-Butylbenzene 1,2-DCB	12.61 12.60	91 14 6	13967 12744	1.83333 ppb		95
•	Hexachloroethane	12.87	117	3488	2.19306 ppb 2.26728 ppb		92
91)			157	904	1.90351 ppb		82 88
•	1,2,4-Trichlorobenzene	13.60	180	10432	2.24212 ppb		99
	Hexachlorobutadiene	14.40	225	5082	2.28215 ppb		94
	Naphthalene	14.45	128	11916	5.65625 ppb		98
-	1,2,3-Trichlorobenzene	14.69	180	8360	2.17831 ppb		89
/	-,-,-				= . = . C = = PP =		0,5

^{(#) =} qualifier out of range (m) = manual integration 0307T03S.D TALLS.M Thu Mar 08 10:00:04 2012

Data File: M:\THOR\DATA\T120307\0307T03S.D

Vial: 3


Acq On : 7 Mar 12 9:51 Sample : 2.0ug/kg Vol Std 03-06-12 Operator: DG,RS,HW,ARS,SV

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Vial: 4

Data File: M:\THOR\DATA\T120307\0307T04S.D

Operator: DG, RS, HW, ARS, SV Acq On : 7 Mar 12 10:13

: 5.0ug/kg Vol Std 03-06-12 Inst : Thor Sample : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Results File: TALLS.RES Ouant Time: Mar 7 14:06 2012

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc (hits	Dev(Min)
1) Fluorobenzene (IS)	6.75	96	415744	50.00	0000 ppk	0.00
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS)	9,89	117	334784	50.00	1000 ppk	0.00
70) 1,4-Dichlorobenzene-D (IS)	12.22	152	173120	50.00	199 pph	0.00
System Monitoring Compounds						
31) Dibromofluoromethane(S)	5.97	111	13032	5.06	785 ppk	0.00
Spiked Amount 74.267			Recover		6.82	
36) 1,2-DCA-D4(S)	6.35	65	15259		932 ppk	
Spiked Amount 65.341			Recover	cy =	7,92	68
56) Toluene-D8(S)	8.45	98			881 ppk 5.94	
Spiked Amount 83.313	11 06	95	Recover		5.94 022 ppk	
64) 4-Bromofluorobenzene(S) Spiked Amount 77.736	11.06	90	Recove		8.64	
Spiked Amount 77.736			Recover	- 3	0.0.	
Target Compounds						Qvalue
Dichlorodifluoromethane	1.30	85			488 pph	
3) Freon 114	1.42	85	6254		255 pph	
4) Chloromethane	1.46	50	13303		940 pph	
5) Vinyl chloride6) Bromomethane	1.56	62	9250 978 7	7.17	907 ppb 244 ppb	
6) Bromomethane	1.87	96 49	1420		108 ppt	
7) Chloroethane8) Dichlorofluoromethane	2.30		20364		072 pph	
9) Trichlorofluoromethane	2.19 2.25	101	13117	4.63	165 ppb	
10) Acrolein	2.72	56	13531	102.24	658 ppb	
11) Acetone	2.92	43	8644	5.49	960 ppb	
12) Freon-113	2.87	101	7660	4.37	921 ppk	91
13) 1,1-DCE	2.83	96	8397	4.84	735 ppk	97
14) t-Butanol	3.78	59	8397 21004 16838	97.77	978 ppb	97
15) Methyl Acetate	3.38	43	16838	3.47	971 ppr	96 98
16) Iodomethane	2.99	142 53	13112 3748	4.40	361 ppt	
9) Trichlorofluoromethane 10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate 16) Iodomethane 17) Acrylonitrile	3.47	84	16246	4.80	632 pph	
18) Methylene chloride 19) Carbon disulfide	3.07	76	31156	4.93	426 pph	
20) Methyl t-butyl ether (MtBE		73	31917		342 pph	
20) Methyl t-butyl ether (MtBE 21) Trans-1,2-DCE	3.89	96	10556	4.67	253 ppb	89
22) Diisopropyl Ether	4.75	45	34268	4.72	156 ppb	
		63	20155	5.06	612 pph	97
24) Vinyl Acetate	4.75	87	9716		368 pph	
25) Ethyl tert Butyl Ether 26) MEK (2-Butanone)	5,25	59	28279	4.01 5 31	507 ppt	
26) MEK (2-Butanone)	5.42 5.35	43 96	5546 14140	5.01	R14 nnh	99
27) Cis-1,2-DCE 28) 2,2-Dichloropropane	5.34	77	13388	4.89	333 ppb	96
29) Chloroform	5.78		21821	4,97	588 ppb	99
30) Bromochloromethane	5.64	128	7223	4.94	678 ppb	93
32) 1,1,1-TCA	5,98	97	14133		042 pph	
33) Cyclohexane	6.05	41	6745		271 pph	
34) 1,1-Dichloropropene	6.19	75	11579		397 ppb	
35) 2,2,4-Trimethylpentane	6.56	57	22813		843 ppb	
37) Carbon Tetrachloride	6.18	117	11768		740 ppb	
38) Tert Amyl Methyl Ether	6.62 6.44	73 62	25869 17663		759 ppb 493 ppb	
39) 1,2-DCA	6,44	0⊿ 78	45158		919 ppb	
40) Benzene 41) TCE	7.16	95	11982		449 pph	
42) 2-Pentanone	7.39	43	140227		809 ppb	
,						

^{(#) =} qualifier out of range (m) = manual integration 0307T04S.D TALLS.M Thu Mar 08 10:00:11 2012

Quantitation Report (Not Reviewed)

Data File: M:\THOR\DATA\T120307\0307T04S.D Vial:

Acq On : 7 Mar 12 10:13 Operator: DG, RS, HW, ARS, SV

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit Q	valu	e
43)	1,2-Dichloropropane	7.39	63	13018	4,80367 ppb		. 99
-	Bromodichloromethane	7.69	83	16427	4.87529 ppb		98
-	Methyl Cyclohexane	7.37	83	11799	4.36091 ppb		96
	Dibromomethane	7.51	93	7693	4.68286 ppb		98
48)	MIBK (methyl isobutyl ket	9.20	43	5266	4.55118 ppb		80
49)	1-Bromo-2-chloroethane	8,00	63	9611	4.82115 ppb		98
50)	Cis-1,3-Dichloropropene	8.17	75	16717	4.60452 ppb		97
51)	Toluene	8.51	91	29576	4.71404 ppb		95
52)	Trans-1,3-Dichloropropene	8.74	75	14376	4.58692 ppb		99
53)	1,1,2-TCA	8.92	83	9513	4.73237 ppb		98
54)	2-Hexanone	9.20	43	5266	4.55118 ppb	#	84
	1,2-EDB	9.41	107	10894	4.86913 ppb		94
58)	Tetrachloroethene	9.07	164	9768	4.82910 ppb		94
59)	1-Chlorohexane	9.92	91	11790	4.67560 ppb		98
	1,1,1,2-Tetrachloroethane	10.00	131	12061	4.75714 ppb		95
•	m&p-Xylene	10.16	106	35061	8.62625 ppb		99
	o-Xylene	10.55	106	17634	4.31880 ppb		92
	Styrene	10.56	104	29558	6.22629 ppb		99
	1,3-Dichloropropane	9.08	76	18489	4.85389 ppb		100
	Dibromochloromethane	9.31	129	12435	4.82186 ppb		99
-	Chlorobenzene	9.92	112	35696	4.76502 ppb		99
	Ethylbenzene	10.04	91	48325	4.55258 ppb		96
	Bromoform	10.73	173	8431	4.79859 ppb		93
71)	Isopropylbenzene	10.92	105	38759	4.73102 ppb		99
	1,1,2,2-Tetrachloroethane	11.20	83	12519	4.76993 ppb	#	89
	1,2,3-Trichloropropane	11.24	110	3803	4.98086 ppb	u	90
	t-1,4-Dichloro-2-Butene	11.26	53	2599	4.72886 ppb	#	77
•	Bromobenzene	11.21	156	15875	5.04580 ppb		97
	n-Propylbenzene	11.33	91	48817	4,54061 ppb		100
	4-Ethyltoluene	11.45 11.41	105 91	29114 36662	4.54472 ppb		100 96
	2-Chlorotoluene		105	34161	4.61570 ppb		100
	1,3,5-Trimethylbenzene	11.51 11.51	91	39727	4.32549 ppb 4.68448 ppb		96
	4-Chlorotoluene Tert-Butylbenzene	11.83	119	29364	4.63711 ppb		99
	1,2,4-Trimethylbenzene	11.88	105	34690	4,28335 ppb		95
	Sec-Butylbenzene	12.05	105	42135	4.51268 ppb		99
	p-Isopropyltoluene	12.20	119	35511	4.41149 ppb		98
	Benzyl Chloride	12.37	91	14366	4.59715 ppb		98
86)	-	12.15	146	31346	5.13423 ppb		98
87)		12.24	146	32165	5.05451 ppb		98
	n-Butylbenzene	12.60	91	34787	4.53919 ppb		95
89)	1,2-DCB	12.60	146	29071	4.97312 ppb		99
	Hexachloroethane	12,87	117	7745	5.00465 ppb		95
	1,2-Dibromo-3-chloropropan	13.37	157	2200	4.60504 ppb		99
	1,2,4-Trichlorobenzene	13.60	180	23578	5.03757 ppb		95
-	Hexachlorobutadiene	14.40	225	11262	5.02747 ppb		93
	Naphthalene	14.45	128	29443	7,65690 ppb		99
	1,2,3-Trichlorobenzene	14.69	180	17776	4.60437 ppb		95
•		•					

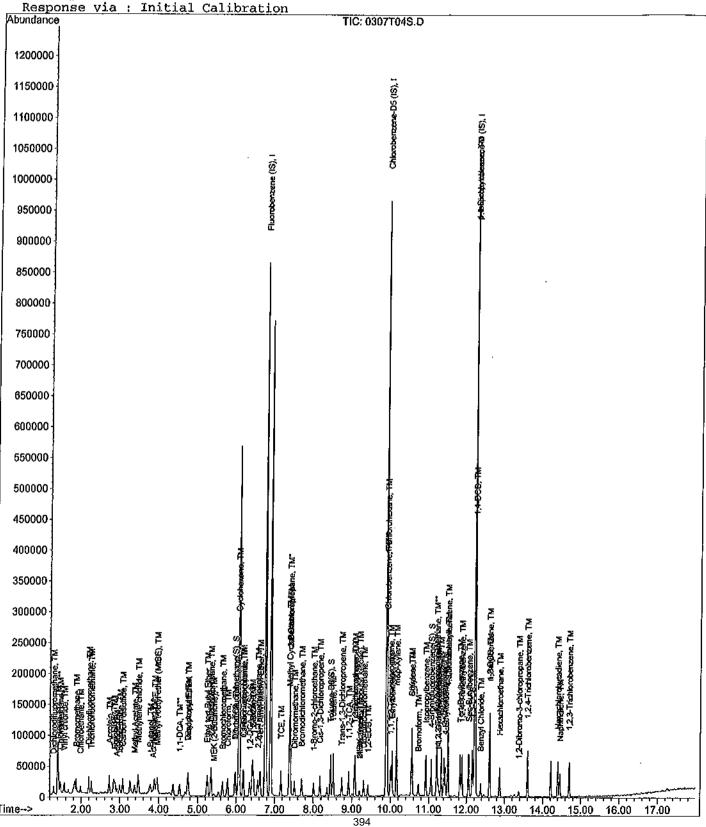
^{(#) =} qualifier out of range (m) = manual integration 0307T04S.D TALLS.M Thu Mar 08 10:00:12 2012

Data File : M:\THOR\DATA\T120307\0307T04S.D

Vial: 4 : 7 Mar 12 10:13 Operator: DG,RS,HW,ARS,SV

Sample : 5.0ug/kg Vol Std 03-06-12 Inst : Thor

: 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc


Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On

Last Update : Wed Mar 07 14:10:30 2012

Data File: M:\THOR\DATA\T120307\0307T05S.D

Vial: 5 Acq On : 7 Mar 12 10:35 Sample : 10ug/kg Vol Std 03-06-12 Operator: DG,RS,HW,ARS,SV

Misc

Ouant Time: Mar 7 14:06 2012 Ouant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS)	6.75	96		50.00000 ppb	0.00
55) Chlorobenzene-D5 (IS)	9.89	117	339648	50.00000 ppb	0.00
55) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	12.22	152	189184	50,00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	5.97	111	25587		0.00
Spiked Amount 74.267			Recove	ery = 12.839%	
36) 1,2-DCA-D4(S)	6.35	65		9.45132 ppb	0.00
Spiked Amount 65.341			Recove	ery = 14.464%	
56) Toluene-D8(S)	8.45	98		9,41301 ppb	0.00
Spiked Amount 83.313			Recove	ry = 11.298%	
64) 4-Bromofluorobenzene(S)	11.06	95		10.60276 ppb	0.00
Spiked Amount 77.736			Recove	xy = 13.640%	
Hayaat Compounds				Ox	/alue
Target Compounds 2) Dichlorodifluoromethane	1.30	85	20918		97
2) Prop 114	1.42	85	17832		94
3) Freon 1144) Chloromethane5) Vinyl chloride6) Bromomethane7) Chloroethane	1 46	50	17832 28809	10.10496 ppb	95
5) Vinul chloride	1 57	62	18968	10.17683 ppb	96
6) Promomethane	1 87	96	23323	11.10375 ppb	96
7) Chloroethane	1 97	49	23323 2882	10,99051 ppb	92
8) Dichlorofluoromethane	2.20	67	45103	9.95549 ppb	98
9) Trichlorofluoromethane	2.25	101	29441	9.96171 ppb	98
10) Acrolein	2.72		29441 20040	145.10988 ppb	99
11) Acetone	2.92	43	11645	9.96328 ppb	94
10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol	2.87	101	18858	10.33102 ppb	97
13) 1,1-DCE	2.83	96	17997	10.33102 ppb 9.95544 ppb	90
14) t-Butanol	3.79	59	38082	169.88192 ppb	87
15) Methyl Acetate	3.38	43	34015	11.49941 ppb	99
15) Methyl Acetate 16) Iodomethane	2.99	142	28678	11.49941 ppb 9.35455 ppb	100
17) Acrylonitrile	3.85	53		9.63188 ppb	93
18) Methylene chloride	3.47	84	30260	9.51919 ppb	100
18) Methylene chloride 19) Carbon disulfide	3.07	76	61729	9.51919 ppb 9.36807 ppb	99
OAL Makharl & harrel athor /MEDD	2 06	73	62398	9.33591 ppb	93
20) Methyl t-butyl ether (MtBs 21) Trans-1,2-DCE 22) Diisopropyl Ether 23) 1,1-DCA 24) Vinyl Acetate 25) Ethyl tert Butyl Ether	3.89	96	22882	9.70571 ppb 8.95938 ppb	97
22) Diisopropyl Ether	4.75	45	67858	8.95938 ppb	96
23) 1,1-DCA	4,53	63	40374	9.72467 ppb	99
24) Vinyl Acetate	4.75	87	18085	8.63947 ppb 9.07760 ppb	96
24) Vinyl Acetate 25) Ethyl tert Butyl Ether 26) MEK (2-Butanone) 27) Cis-1.2-DCE	5.25	-	58035	9.07760 ppb	96
26) MEK (2-Butanone)	5.42	43	10824	11,29036 ppb 9,40577 ppb 9,69297 ppb	86
27) Cis-1,2-DCE 28) 2,2-Dichloropropane 29) Chloroform	5.35	96	27603	9.40577 ppb	91
28) 2,2-Dichloropropane	5.34	77	27675	9.69297 ppb	95
29) Chloroform		83	42393	9.26338 ppb	98
30) Bromochloromethane	5.65	128	14651	9.61508 ppb	96
32) 1,1,1-TCA	5.98	97	29009	9.65822 ppb	98
33) Cyclohexane	6.05	41	14512	9.44818 ppb	93
34) 1,1-Dichloropropene	6.18	75	24658	9.68074 ppb	96
35) 2,2,4-Trimethylpentane	6.56	57	62926	12.23826 ppb	99
37) Carbon Tetrachloride	6.18	117	25494	9.85534 ppb	94
38) Tert Amyl Methyl Ether	6.62	73	53475	8.75059 ppb	96
39) 1,2-DCA	6.44	62	35191	9.59351 ppb	99
40) Benzene	6.42	78	89977	9.20135 ppb	98
41) TCE	7.16	95	24129	9,32912 ppb	97
42) 2-Pentanone	7.39	43	219917	142.02884 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0307T05S,D TALLS.M Thu Mar 08 10:00:19 2012

Quantitation Report (Not Reviewed)

Data File : M:\THOR\DATA\T120307\0307T05S.D

Operator: DG,RS,HW,ARS,SV

Acq On : 7 Mar 12 10:35 Sample : 10ug/kg Vol Std 03-06-12 : Thor Inst

: 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

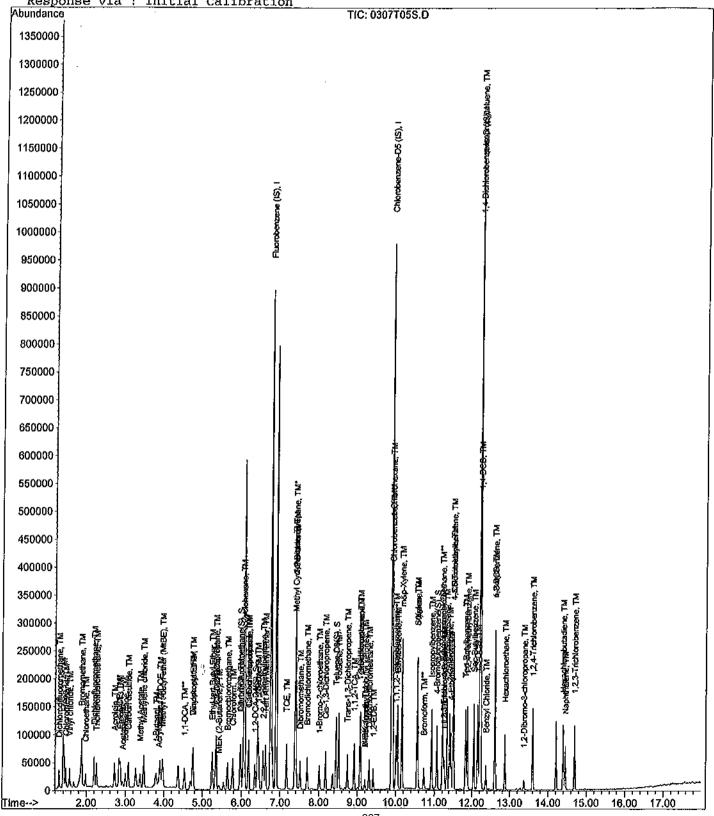
Last Update : Wed Mar 07 14:05:47 2012

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qval	ue
43) 1,2-Dichloropropane	7.39	63	26402	9.33568 pp		100
44	Bromodichloromethane	7.70	83	32792	9.32590 pp		100 97
	Methyl Cyclohexane	7.37	83	27892	9.87851 pp	b	98
	Dibromomethane	7.51	93	16776	9.78552 pp		94
-	MIBK (methyl isobutyl ket	9.20	43	11468	9.49754 pp		95
	1-Bromo-2-chloroethane	8.01	63	19160	9.20996 pp	h	93
	Cis-1,3-Dichloropropene	8.17	75	35461	9.35960 pp	h	98
	Toluene	8.51	91	57496	8.78157 pp		99
	Trans-1,3-Dichloropropene	8.74	75	30072	9.19445 pp		99
	1,1,2-TCA	8.92	83	18428	8.78456 pp	h	94
:	2-Hexanone	9.20	43	11468	9.49754 pp		94
	1,2-EDB	9.41	107	21787	9.59837 pp		97
	Tetrachloroethene	9.07	164	20809	10.14021 pp		95
	1-Chlorohexane	9.92	91	23919	9.34980 pp		97
60)	1,1,1,2-Tetrachloroethane	10.00	131	24656	9.58563 pp		96
	m&p~Xylene	10.16	106	75080	18.20780 ppl	Ď	98
	o-Xylene	10.55	106	37476	9.04692 ppl	h	96
63)	Styrene	10.56	104	64246	9.99230 ppl	o .	99
65)	1,3-Dichloropropane	9.08	76	37140	9.61067 ppl		96
	Dibromochloromethane	9.31	129	25431	9.72004 ppl		97
	Chlorobenzene	9,92	112	73699	9.69711 ppl		98
68)	Ethylbenzene	10.04	91	98058	9.10551 ppl	5	99
69)	Bromoform	10.73	173	15721	8.81964 ppl	5	91
71)	Isopropylbenzene	10.92	105	83281	9.30231 ppl		100
72)	1,1,2,2-Tetrachloroethane	11.20	83	27588	9.61889 ppl		98
73)	1,2,3-Trichloropropane	11.24	110	8154	9.77264 ppl)	88
74)	t-1,4-Dichloro-2-Butene	11.26	53	5885	9.79850 ppl	o #	87
75)	Bromobenzene	11.21	156	32105	9.33796 ppl		94
	n-Propylbenzene	11.33	91	108612	9.24451 ppk		99
77)	4-Ethyltoluene	11,45	105	61476	8.78161 ppk)	98
	2-Chlorotolu e ne	11.41	91	81618	9.40308 pph		99
79)	1,3,5-Trimethylbenzene	11.51	105	79502	9.21182 ppk)	96
	4-Chlorotoluene	11.51	91	88112	9.50767 ppb)	96
81)	Tert-Butylbenzene	11.83	119	64284	9.28962 ppb)	100
	1,2,4-Trimethylbenzene	11.88	105	79881	9.02581 pph		97
	Sec-Butylbenzene	12.05	105	94190	9.23121 pph		99
	p-Isopropyltoluene	12.20	119	79797	9.07135 ppb		98
	Benzyl Chloride	12.37	91	29767	8.71668 pph)	95
	1,3-DCB	12.15	146	64125	9.61132 ppb		99
	1,4-DCB	12.24	146	64200	9.23196 ppb	1	97
-	n-Butylbenzene	12.61	91	75587	9.02550 ppb	1	98
	1,2-DCB	12.60	146	59601	9.33008 ppb		99
	Hexachloroethane	12.87	117	16313	9.64603 ppb		95
	1,2~Dibromo-3-chloropropan	13.37	157	5045	9.66350 ppb		95
	1,2,4-Trichlorobenzene	13.60	180	46125	9.01806 ppb		98
	Hexach1orobutadiene	14.40	225	23026	9.40622 ppb		97
	Naphthalene	14.45	128	60226	10.59885 ppb		99
95)	1,2,3-Trichlorobenzene	14.69	180	36547	8.66266 ppb		93

Data File : M:\THOR\DATA\T120307\0307T05S.D

Vial: 5


Acq On : 7 Mar 12 10:35 Operator: DG,RS,HW,ARS,SV

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration

Data File: M:\THOR\DATA\T120307\0307T06S.D

Vial: 6 Acq On : 7 Mar 12 10:57 Sample : 20ug/kg Vol Std 03-06-12 Operator: DG, RS, HW, ARS, SV

; Thor Inst Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	6.75	96	441920	50.00000 pg	ob 0.00
55) Chlorobenzene-D5 (IS)	9.89	117	355904	50.00000 pr	
70) 1,4-Dichlorobenzene-D (IS)	12,22	152	203520		b 0.00
System Monitoring Compounds	- 0-	144	40010	10 22340 000	h 0.00
31) Dibromofluoromethane(S) Spiked Amount 74.267	5.97	1 11	49812 Recove	18.22340 pp erv = 24.5	
Spiked Amount 74.267 36) 1,2-DCA-D4(S)	6.35	65	57156	18.25116 pp	
Spiked Amount 65.341	0.55	0,5		ery = 27.9	
56) Toluene-D8(S)	8.45	98	159692	17.90738 pp	b 0.00
Spiked Amount 83.313			Recove	ery = 21.4	948
64) 4-Bromofluorobenzene(S)	11.06	95		19,41226 pp	
Spiked Amount 77.736			Recove	exy = 24.9	72%
~ 1.					Qvalue
Target Compounds	1.29	85	45178	27.34093 pp	
2) Dichlorodifluoromethane3) Freon 114	1.41	85	35900	22.37107 pp	
4) Chloromethane	1.46	50	57443	19.78088 pp	
5) Vinyl chloride	1.56	62	36120	19.02569 pp	
6) Bromomethane	1.86	96	41010	19.16801 pp	b 92
7) Chloroethane	1.97	49	4542	17.00486 pp	
Dichlorofluoromethane	2.19	67	86121	18.66243 pp	
Trichlorofluoromethane	2.24		63712	21.16433 pp	
10) Acrolein	2.72	56	24856	176.69834 pp	
11) Acetone	2.93	43	18673	21.33714 pp	
,	2.86	101	40026	21.52740 pp	
13) 1,1-DCE	2.83	96	36516	19.83105 pp	
14) t-Butanol 15) Methyl Acetate 16) Iodomethane	3.79	59 43	39585 59649	173.36444 pp 23.47509 pp	
15) Metnyl Acetate	2.99	142	55961	17,92096 pp	
17) Acrylonitrile	3.85	53	14732	17.72587 pp	
18) Methylene chloride	3.47	84	53788	17.50482 pp	
19) Carbon disulfide	3.06	76	125750	18.73574 pp	
20) Methyl t-butyl ether (MtBE	3.96	73	124414	18.27499 pp	
21) Trans-1,2-DCE	3.88	96	44944		
22) Diisopropyl Ether	4.75	45	137289		
23) 1,1-DCA	4.53	63	77254 38949	18.26820 pp	
24) Vinyl Acetate	4.75		38949 116100	18.26699 pp 17.68846 pp	
25) Ethyl tert Butyl Ether	E 12	59 43	115188 18324	19.79070 pp	
26) MEK (2-Butanone) 27) Cis-1,2-DCE	5.35	96	51859	17.34859 pp	
28) 2,2-Dichloropropane	5.34	77	54148	18.61889 pp	
29) Chloroform	5.78		84380	18.10159 pp	b 98
30) Bromochloromethane	5.64	128	28711	18.49847 pp	b 90
32) 1,1,1-TCA	5.98	97	60682	19.83472 pp	
33) Cyclohexane	6.04	41	32028	20.47164 pp	b 98
34) 1,1-Dichloropropene	6.18	75	49922	19.24176 pp	
35) 2,2,4-Trimethylpentane	6.56	57	139399	21.40372 pp	
37) Carbon Tetrachloride	6.18	117	49392	18.74528 pp	
38) Tert Amyl Methyl Ether	6.62	73 62	111369 67178	17.89174 pp 17.97938 pp	
39) 1,2-DCA	6.42	78	179948	18.06629 pp	
40) Benzene 41) TCE	7,16	95	47615	18.07371 pp	
42) 2-Pentanone	7,39	43	283067	179.47706 pp	
ab, a contaniono					

^{(#) =} qualifier out of range (m) = manual integration 0307T06S.D TALLS.M Thu Mar 08 10:00:28 2012

Vial: 6

Data File: M:\THOR\DATA\T120307\0307T06S.D

Acq On : 7 Mar 12 10:57 Sample : 20ug/kg Vol Std 03-06-12 Operator: DG, RS, HW, ARS, SV

: Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

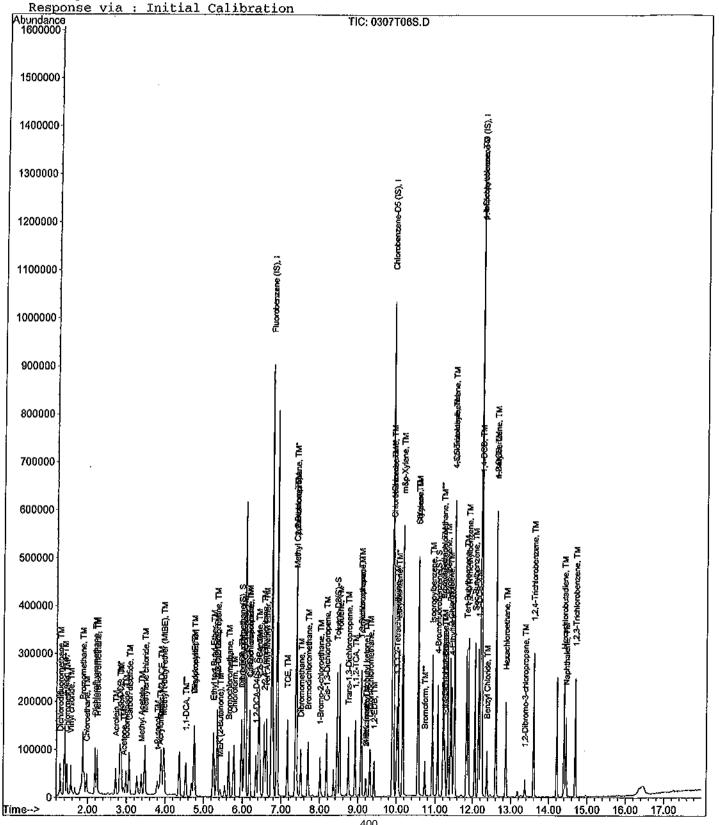
Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit Qval	ue
43) 1,2-Dichloropropane	7.39	63	51992	18.04877 ppb	98
44) Bromodichloromethane	7.69	83	64897	18.11964 ppb	100
45) Methyl Cyclohexane	7.37	83	59726	20.76717 ppb	99
46) Dibromomethane	7.51	93	31971	18.30853 ppb	95
48) MIBK (methyl isobutyl ket	9.20	43	21924	17.82564 ppb	100
49) 1-Bromo-2-chloroethane	8.00	63	38576	18.20461 ppb	99
50) Cis-1,3-Dichloropropene	8.17	75	68646	17.78786 ppb	99
51) Toluene	8.51	91	116808	17.51495 ppb	99
52) Trans-1,3-Dichloropropene	8.74	75	57582	17.28432 ppb	98
53) 1,1,2-TCA	8.92	83	39096	18,29684 ppb	97
54) 2-Hexanone	9.20	43	21924	17.82564 ppb	99
57) 1,2-EDB	9.41	107	43875	18.44647 ppb	100
58) Tetrachloroethene	9.07	164	41000	19.06672 ppb	92
59) 1-Chlorohexane	9.92	91	49646	18.51994 ppb	99
60) 1,1,1,2-Tetrachloroethane	10.00	131	48558	18.01586 ppb	100
61) m&p-Xylene	10.16	106	156406	36.19786 ppb	97
62) o-Xylene	10.55	106	77804	17.92444 ppb	97
63) Styrene	10.56	104	137172	17.32024 ppb	98
65) 1,3-Dichloropropane	9.08	76	72443	17.88976 ppb	99
66) Dibromochloromethane	9.31	129	48935	17.84927 ppb	100
67) Chlorobenzene	9.92	112	140257	17.61170 ppb	98
68) Ethylbenzene	10.04	91	202457	17.94114 ppb	. 100
69) Bromoform 71) Isopropylbenzene	10.73 10.92	173 105	33641	18.01091 ppb	98
72) 1,1,2,2-Tetrachloroethane	10.92 11.21	83	177323 54460	18.41142 ppb	99
73) 1,2,3-Trichloropropane	11.21 11.24	110	15923	17.65061 ppb 17.73958 ppb	99
74) t-1,4-Dichloro-2-Butene	11.24	53	10931	16.91805 ppb	93 98
75) Bromobenzene	11.21	156	66382	17.94762 ppb	99
76) n-Propylbenzene	11.33	91	232110	18.36443 ppb	99
77) 4-Ethyltoluene	11.45	105	140024	18.59295 ppb	100
78) 2-Chlorotoluene	11.41	91	171003	18.31323 ppb	95
79) 1,3,5-Trimethy1benzene	11,51	105	173158	18.65036 ppb	99
80) 4-Chlorotoluene	11.51	91	180785	18.13337 ppb	98
81) Tert-Butylbenzene	11.83	119	140040	18.81155 ppb	98
82) 1,2,4-Trimethylbenzene	11.88	105	171575	18.02079 ppb	99
83) Sec-Butylbenzene	12.05	105	210267	19.15590 ppb	99
84) p-Isopropyltoluene	12.20	119	177484	18.75521 ppb	97
85) Benzyl Chloride	12,37	91	64525	17.56391 ppb	98
86) 1,3-DCB	12.15	146	130711	18.21147 ppb	99
87) 1,4-DCB	12.24	146	133713	17.87350 ppb	99
88) n-Butylbenzene	12.61	91	168536	18.70656 ppb	98
89) 1,2-DCB	12.60	146	123453	17.96431 ppb	97
90) Hexachloroethane	12.87	117	33011	18.14475 ppb	97
91) 1,2-Dibromo-3-chloropropan	13.37	157	10242	18.23623 ppb	88
92) 1,2,4-Trichlorobenzene	13.60	180	96169	17.47790 ppb	98
93) Hexachlorobutadiene	14.40	225	48701	18,49319 ppb	98
94) Naphthalene	14.45	128	133807	17.32739 ppb	99
95) 1,2,3-Trichlorobenzene	14.69	180	81467	17.94975 ppb	98

Data File: M:\THOR\DATA\T120307\0307T06S.D

Vial: 6 : 7 Mar 12 10:57 Operator: DG, RS, HW, ARS, SV

Sample 20ug/kg Vol Std 03-06-12 : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00


Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B Title

Acq On

Last Update : Wed Mar 07 14:10:30 2012

Data File: M:\THOR\DATA\T120307\0307T07S.D

Vial: 7 Acq On : 7 Mar 12 11:19 Operator: DG,RS,HW,ARS,SV

: 50ug/kg Vol Std 03-06-12 Sample : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B Title

Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS)		96	429824	50.00000 ppb	0.00
55) Chlorobenzene-D5 (IS)	9.89	117	354560	50.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	12,21	152	205248	50.00000 ppb	0.00
System Monitoring Compounds	F 0.5		400050	10 07055	
31) Dibromofluoromethane(S) Spiked Amount 74.267	5.96	111	128353 Recove		0.00
36) 1,2-DCA-D4(S) Spiked Amount 65.341	6.35	65	139263	45.72119 ppb	0.00
56) Toluene-D8(S)	8,45	98	Recove 406601	ery = 69.973% 45.76784 ppb	0.00
Spiked Amount 83,313			Recove		
64) 4-Bromofluorobenzene(S) Spiked Amount 77.736	11.06	95	177041 Recove	45.88332 ppb ery = 59.024%	0.00
Target Compounds				-	value
2) Dichlorodifluoromethane	1.29	85	82422		100
			67669	43.35458 ppb	100
3) Freon 114 4) Chloromethane 5) Vinyl chloride 6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane 9) Trichlorofluoromethane	1.46	50	137690	48.74879 ppb	
5) Vinyl chloride	1.56	62			100
6) Bromomethane	1.86	96	85832 90568	43.52263 ppb	100
7) Chloroethane	1.97	49	12024	46.28367 ppb	
8) Dichloroffuoromethane	2.19	67	225559 130761	50.25418 ppb	100
10) Acrolein	2.25	101 56	34472	44.65957 ppb 251.95368 ppb	100 100
11) Acetone	2 92	43	34677	49.68993 ppb	100
10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate	2.86	101	79389	43.89981 ppb	100
13) 1,1-DCE	2.83	9.6	84880	47.39372 ppb	100
14) t-Butanol	3.78	59	55578	250.25645 ppb	100
15) Methyl Acetate	3.37	43	109215		100
10) lodomethane	2.99	144	184717	60.81850 ppb	100
17) Acrylonitrile	3.84	53	40900	50.59669 ppb	100
18) Methylene chloride 19) Carbon disulfide	3.47	84	153276	53.59885 ppb	100
20) Methyl t-butyl ether (MtBE	3.06	76 73	301567 356650	46.19549 ppb 53.86208 ppb	100 100
21) Trans-1,2-DCE	3.88	96	117617	50.35681 ppb	100
	4.75	45	411388		100
23) 1,1-DCA	4.53	63	214917	52.25148 ppb	100
	4.75	87		56.26360 ppb	100
25) Ethyl tert Butyl Ether	5.25	59	348157	54.96813 ppb	100
		43	41983 154049	48.72037 ppb	100
27) Cis-1,2-DCE	5.35	96			100
28) 2,2-Dichloropropane 29) Chloroform	5.34 5.78	77 83	136814 242655	48.36764 ppb	100
30) Bromochloromethane	5.78	128	80779	53.52041 ppb 53.51049 ppb	100 100
32) 1,1,1-TCA	5.98	97	148009	49.74017 ppb	100
33) Cyclohexane	6.05	41	67080	44.08277 ppb	100
34) 1,1-Dichloropropene	6.18	75	122782	48.65647 ppb	100
35) 2,2,4-Trimethylpentane	6.56	57	310756	43.32463 ppb	100
37) Carbon Tetrachloride	6.18	117	121531	47.42152 ppb	100
38) Tert Amyl Methyl Ether	6.62	73	342830	56.62656 ppb	100
39) 1,2-DCA	6.44	62	196451	54.05737 ppb	100
40) Benzene	6.42	78	509755	52.61826 ppb	100
41) TCE 42) 2-Pentanone	7.16	95 43	125562	49.00210 ppb	100
44) Z-remandre	7.39	43	395888	258.07446 ppb	100

^{(#) =} qualifier out of range (m) = manual integration 0307T07S.D TALLS.M Thu Mar 08 10:00:36 2012

Data File: M:\THOR\DATA\T120307\0307T07S,D

Acq On : 7 Mar 12 11:19 Sample : 50ug/kg Vol Std 03-06-12 Operator: DG, RS, HW, ARS, SV

Inst : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

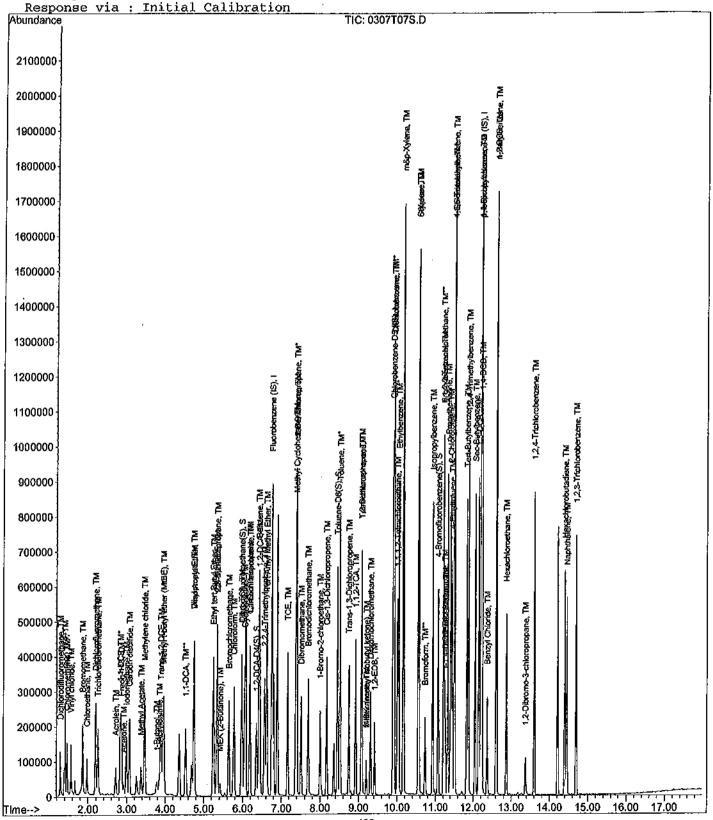
Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

1,2-Dichloropropane 7.39 63 151888 54.21101 ppb 100
44) Bromodichloromethane 7.69 83 191037 54.83974 ppb 100 45) Methyl Cyclohexane 7.37 83 127059 45.42264 ppb 100 46) Dibromomethane 7.51 93 92605 54.52363 ppb 100 48) MIBK (methyl isobutyl ket 9.20 43 58913 49.24809 ppb 100 49) 1-Bromo-2-chloroethane 8.00 63 111848 54.26820 ppb 100 50) Cis-1,3-Dichloropropene 8.17 75 204970 54.60743 ppb 100 51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 10.06 131
45) Methyl Cyclohexane 7.37 83 127059 45.42264 ppb 100 46) Dibromomethane 7.51 93 92605 54.52363 ppb 100 48) MIBK (methyl isobutyl ket 9.20 43 58913 49.24809 ppb 100 49) 1-Bromo-2-chloroethane 8.00 63 111848 54.26820 ppb 100 50) Cis-1,3-Dichloropropene 8.17 75 204970 54.60743 ppb 100 51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9:41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 10.00 131 146558 54.58166 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.16 106
49) 1-Bromo-2-chloroethane 8.00 63 111848 54.26820 ppb 100 50) Cis-1,3-Dichloropropene 8.17 75 204970 54.60743 ppb 100 51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106
49) 1-Bromo-2-chloroethane 8.00 63 111848 54.26820 ppb 100 50) Cis-1,3-Dichloropropene 8.17 75 204970 54.60743 ppb 100 51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106
50) Cis-1,3-Dichloropropene 8.17 75 204970 54.60743 ppb 100 51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9:41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100<
51) Toluene 8.51 91 346752 53.45747 ppb 100 52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 60) 1,1,2-Tetrachloroethane 10.16 106 471771 109.59830 ppb 100 61) m&p-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.55 106 241884 55.93634 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 67) Chlorobenzene 9.92 112 412663
52) Trans-1,3-Dichloropropene 8.74 75 178213 54.99941 ppb 100 53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663
53) 1,1,2-TCA 8.92 83 110185 53.01749 ppb 100 54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963
54) 2-Hexanone 9.20 43 58913 49.24809 ppb 100 57) 1,2-EDB 9.41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 <td< td=""></td<>
57) 1,2-EDB 9:41 107 127809 53.93872 ppb 100 58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 65) 1,3-Dichloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.92 105
58) Tetrachloroethene 9.07 164 99485 46.44006 ppb 100 59) 1-Chlorohexane 9.92 91 120171 44.99852 ppb 100 60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xy1ene 10.16 106 471771 109.59830 ppb 100 62) o-Xy1ene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb
60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
60) 1,1,1,2-Tetrachloroethane 10.00 131 146558 54.58166 ppb 100 61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
61) m&p-Xylene 10.16 106 471771 109.59830 ppb 100 62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
62) o-Xylene 10.55 106 241884 55.93634 ppb 100 63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
63) Styrene 10.56 104 441604 49.43318 ppb 100 65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
65) 1,3-Dichloropropane 9.08 76 214537 53.18063 ppb 100 66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
66) Dibromochloromethane 9.31 129 144830 53.02767 ppb 100 67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
67) Chlorobenzene 9.92 112 412663 52.01342 ppb 100 68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
68) Ethylbenzene 10.04 91 592963 52.74581 ppb 100 69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
69) Bromoform 10.73 173 99835 53.65284 ppb 100 71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
71) Isopropylbenzene 10.92 105 507417 52.24147 ppb 100
73) 1,2,3-Trichloropropane 11.24 110 46860 51.76651 ppb 100 74) t-1,4-Dichloro-2-Butene 11.26 53 33575 51.52698 ppb 100
75) Bromobenzene 11.21 156 201121 53.91904 ppb 100
76) n-Propylbenzene 11.33 91 670046 52.56737 ppb 100
77) 4-Ethyltoluene 11.45 105 413634 54.46157 ppb 100
78) 2-Chlorotoluene 11.41 91 506972 53.83608 ppb 100
79) 1,3,5-Trimethylbenzene 11.51 105 523530 55.91320 ppb 100
80) 4-Chlorotoluene 11.51 91 550737 54.77579 ppb 100
81) Tert-Butylbenzene 11.83 119 390974 52.07731 ppb 100
82) 1,2,4-Trimethylbenzene 11.88 105 541411 56.38649 ppb 100
83) Sec-Butylbenzene 12.05 105 575982 52.03175 ppb 100
84) p-Isopropyltoluene 12.20 119 512750 53.72750 ppb 100
85) Benzyl Chloride 12.37 91 191653 51.72936 ppb 100
86) 1,3-DCB 12.15 146 379265 52.39669 ppb 100
87) 1,4-DCB 12.24 146 389942 51.68496 ppb 100
88) n-Butylbenzene 12.61 91 471581 51.90219 ppb 100
89) 1,2-DCB 12.60 146 365931 52.80029 ppb 100
90) Hexachloroethane 12.87 117 88747 48.36978 ppb 100
91) 1,2-Dibromo-3-chloropropan 13,37 157 29333 51,76870 ppb 100
92) 1,2,4-Trichlorobenzene 13.60 180 287441 51.80015 ppb 100
93) Hexachlorobutadiene 14.40 225 126572 47.65843 ppb 100
94) Naphthalene 14.45 128 434535 46.28898 ppb 100
95) 1,2,3-Trichlorobenzene 14.69 180 246632 53.88331 ppb 100

^{(#) =} qualifier out of range (m) = manual integggation 0307T07S.D TALLS.M Thu Mar 08 10:00:37 2012

Data File: M:\THOR\DATA\T120307\0307T07S.D

Vial: 7 Operator: DG,RS,HW,ARS,SV


Sample : 50ug/kg Vol Std 03-06-12 Inst : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Quantitation Report (Not Reviewed)

Data File : M:\THOR\DATA\T120307\0307T08S.D

Vial: 8 Acq On : 7 Mar 12 11:41 Operator: DG, RS, HW, ARS, SV

Sample : 100ug/kg Vol Std 03-06-12 : Thor Inst Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS) 70) 1 4-Dighlorobenzene-D (IS)	6.75	96	440768	50.00000 ppb	0.00
55) Chlorobenzene-D5 (IS)	9.89	117	35 4 752 211904	50.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	12.21	152	211904	50.00000 ppb	0.00
System Monitoring Compounds					
	5,97	111	271110	99.44305 ppb	0.00
Spiked Amount 74.267			Recove	ery = 133.899%	
36) 1,2-DCA-D4(S)	6.35	65		94.87134 ppb	0.00
Spiked Amount 65.341 56) Toluene-D8(S)	8.45	98	Recove	ery = 145.194% 100.15435 ppb	0.00
Spiked Amount 83,313	0.40	90	890252 Recove		0.00
64) 4-Bromofluorobenzene(S)	11.06	95	382987	96.67030 ppb	0.00
Spiked Amount 77.736				= 124.356%	- • • •
The court of the c				•	
Target Compounds 2) Dichlorodifluoromethane	1,30	85	199500		alue 98
31 From 11/	1 // 2	85	166820		96 95
4) Chloromethane	1 46	50	275452	95,10164 ppb	99
5) Vinyl chloride 6) Bromomethane 7) Chloroethane	1,57	62	171008	90.31145 ppb 97.52969 ppb 90.62930 ppb 102.59755 ppb	98
6) Bromomethane	1.87	96	208121	97.52969 ppb	96
7) Chloroethane	1.97	49	24144	90.62930 ppb	93
8) Dichlorof1uoromethane		67	472220	102.59755 ppb	99
9) Trichlorofluoromethane10) Acrolein	2.25	101 56	301340 42168	100.36302 ppp	100
11) Actore	2.74	43	65882	300.55076 ppb 100.45371 ppb	98 98
9) Trichlorofluoromethane 10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate 16) Iodomethane 17) Acrylonitrile 18) Methylene chloride	2.87	101	188128	101 44633 nnh	99
13) 1,1-DCE	2.83	96	182533	99,38880 ppb	93
14) t-Butanol	3.80	59	61957		95
15) Methyl Acetate	3.38	43	219978	100.54697 ppb	97
16) Iodomethane	2.99	142	351784	112.94982 ppb	98
17) Acrylonitrile 18) Methylene chloride 19) Carbon disulfide	3.85	53 84	79872 291 1 98	96.35494 ppb 100.32211 ppb	98
19) Carbon disulfide	3.47	76	651596	97.33630 ppb	100 99
20) Methyl t-butyl ether (MtBE	3.96	73	703182	103.55934 ppb	98
21) Trans-1,2-DCE 22) Diisopropyl Ether 23) 1,1-DCA	3.89	96	241731	100.92555 ppb	98
22) Diisopropyl Ether	4.75	45	810043	105.27390 ppb	99
22) Diisopropyi Ether 23) 1,1-DCA 24) Vinyl Acetate	4.54	63	431662	102.34161 ppb	99
24) Vinyl Acetate	4.75	87	229625	107.97505 ppb	99
24) Vinyl Acetate 25) Ethyl tert Butyl Ether 26) MEK (2-Butanone) 27) Cie-1 2-DCF	5.45	59 43	689683 96607	106.18567 ppb 99.57796 ppb	100 96
27) Cig-1.2-DCE	5.35	96			99
27) Cis-1,2-DCE 28) 2,2-Dichloropropane	5.34	77	291645	100.54477 ppb	99
29) Chloroform	5.78	83	469285	100.93632 ppb	99
Bromochloromethane	5.65	128	158928	102.66477 ppb	99
32) 1,1,1-TCA	5.98	97	319728	104.78050 ppb	98
33) Cyclohexane	6.05 6.19	41	153924	98.64221 ppb	95
34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane	6.56	75 57	269635 711593	104.19880 ppb 91.27394 ppb	99 99
37) Carbon Tetrachloride	6.18	117	266320	101.33811 ppb	97
38) Tert Amyl Methyl Ether	6.62	73	684940	110.32514 ppb	98
39) 1,2-DCA	6.44	62	370980	99.54782 ppb	100
40) Benzene	6.42	78	1036470	104.33075 ppb	98
41) TCE	7.16	95		97.26284 ppb	99
42) 2-Pentanone	7.39	43		310,49255 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0307T08S.D TALLS.M Thu Mar 08 10:00:44 2012

Quantitation Report (Not Reviewed)

Data File: M:\THOR\DATA\T120307\0307T08S.D Vial: 8

Acq On : 7 Mar 12 11:41 Sample : 100ug/kg Vol Std 03-06-12 Operator: DG,RS,HW,ARS,SV

: Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B Title

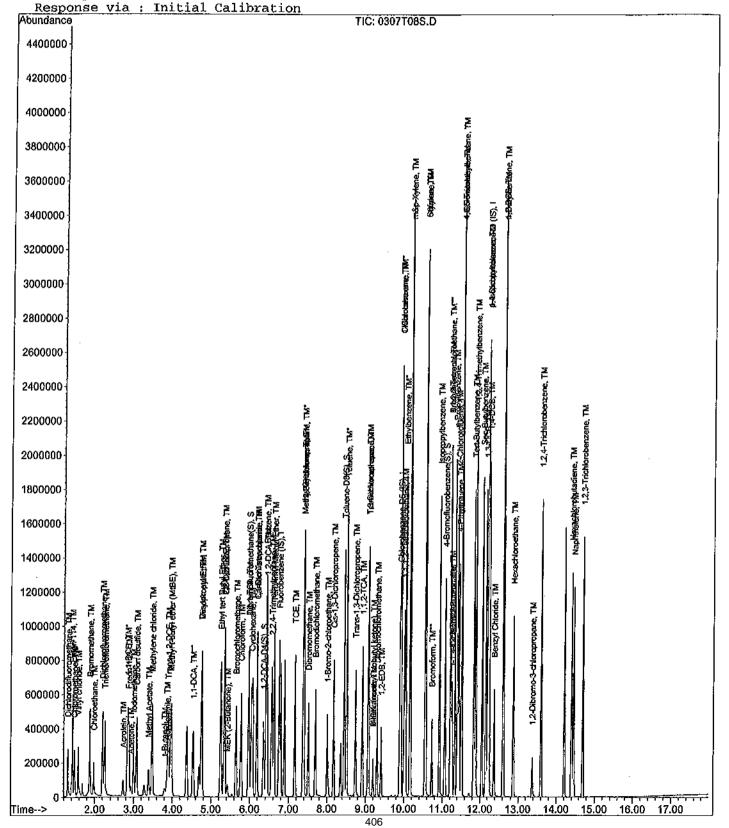
Last Update : Wed Mar 07 14:05:47 2012

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit Qval	lue
43)	1,2-Dichloropropane	7,39	63	295419	102.82130 ppb	 99
	Bromodichloromethane	7.69	83	368691	103.20982 ppb	100
45)	Methyl Cyclohexane	7.37	83	303664	105.86218 ppb	100
46)	Dibromomethane	7,51	93	179888	103.28402 ppb	97
	MIBK (methyl isobutyl ket	9.20	43	130182	106.12306 ppb	98
49)	1-Bromo-2-chloroethane	8.01	63	223040	105.53112 ppb	100
-	Cis-1,3-Dichloropropene	8.17	75	410982	106.77383 ppb	99
	Toluene	8.51	91	721920	108.53232 ppb	100
	Trans-1,3-Dichloropropene	8,74	75	364151	109.59247 ppb	99
	1,1,2-TCA	8.92	83	221093	103.74143 ppb	95
	2-Hexanone	9.20	43	130182	106.12306 ppb	99
	1,2-EDB	9.41	107	252615	106.55240 ppb	99
	Tetrachloroethene	9.07	164	215322	100.45891 ppb	96
	1-Chlorohexane	9.92	91	283048	105.93111 ppb	96
	1,1,1,2-Tetrachloroethane	10.00	131	283485	105.51938 ppb	99
	m&p-Xylene	10.16	106	977942	227.06520 ppb	98
	o-Xylene	10,55	106 104	488094	112,81198 ppb	93 99
	Styrene 1,3-Dichloropropane	10.56 9.08	76	910636 420204	98.77298 ppb 104.10614 ppb	98
-	Dibromochloromethane	9.31	129	288993	105.75386 ppb	100
	Chlorobenzene	9.92	112	812549	103.75366 ppb 102.36096 ppb	100
-	Ethylbenzene	10.04	91	1251104	111.22917 ppb	99
-	Bromoform	10.73	173	202937	109.00240 ppb	100
	Isopropylbenzene	10.92	105	1090664	108.76299 ppb	100
	1,1,2,2-Tetrachloroethane	11.20	83	329136	102.45320 ppb	98
	1,2,3-Trichloropropane	11.24	110	92925	99.43034 ppb	98
	t-1,4-Dichloro-2-Butene	11.26	53	73761	109.64410 ppb	98
	Bromobenzene	11,21	156	387311	100,57367 ppb	98
	n-Propylbenzene	11,33	91	1441004	109.50063 ppb	100
77)	4-Ethyltoluene	11.45	105	872228	111.23558 ppb	99
78)	2-Chlorotoluene	11.41	91	1035353	106.49218 ppb	99
79)	1,3,5-Trimethylbenzene	11.51	105	1102471	114.04591 ppb	99
	4-Chlorotoluene	11.51	91	1110870	107.01567 ppb	100
81)	Tert-Butylbenzene	11.83	119	851559	109.86395 ppb	99
82)	• •	11.88	105	1144737	115.47646 ppb	99
	Sec-Butylbenzene	12.05	105	1255054	109.81500 ppb	99
-	p-Isopropyltoluene	12.20	119	1115405	113.20441 ppb	99
	Benzyl Chloride	12.37	91	434605	113.62031 ppb	99
86)	1,3-DCB	12,15	146	747964	100.08790 ppb	100
87)	1,4-DCB	12.24	146	760805	97.67362 ppb	99
88)	n-Butylbenzene	12.61	91	1042254	111.10734 ppb	100
89)	1,2-DCB	12.60	146	717094	100.21966 ppb	99
	Hexachloroethane	12.87	117	184338	97.31395 ppb	99
91) 92)	1,2-Dibromo-3-chloropropan	13.37 13.60	157 180	64786 579406	110.78973 ppb 101.13584 ppb	98
	1,2,4-Trichlorobenzene Hexachlorobutadiene	14.40	225	267540	97.57322 ppb	98 100
	Naphthalene	14.45	128	988284	96.81908 ppb	100
-	1,2,3-Trichlorobenzene	14.69	180	496941	105.15972 ppb	97
,,,	1,2,3 IIICHIOLODENZENE	14.09	100	47034I	103.13372 1000	91

Data File: M:\THOR\DATA\T120307\0307T08S.D

Vial: 8


Acq On : 7 Mar 12 11:41 Operator: DG,RS,HW,ARS,SV

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Data File : M:\THOR\DATA\T120307\0307T09S.D

Vial: 9 Acq On : 7 Mar 12 12:02 Operator: DG,RS,HW,ARS,SV

Sample : 200ug/kg Vol Std 03-06-12 Inst : Thor Misc : 5ml w/Sul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B Title

Last Update : Wed Mar 07 14:05:47 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Con	C Unit	s De	v(Min)
1) Fluorobenzene (IS)	6.75	96	448704	50	.00000	ppb	0.00
 Fluorobenzene (IS) Chlorobenzene-D5 (IS) 	9.89	117	367936	50		ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	12.22	152	229312	50	. 00000	ppb	0.00
·							
System Monitoring Compounds	F 07	111	562025	202	15000	mmh	0 00
·	5.97	111	563835 Recove		.15666	րըը 3.550%	0.00
Spiked Amount 74.267 36) 1,2-DCA-D4(S)	6.35	65	613588		96979		0.00
Spiked Amount 65.341	0.33	03	Recove			5.329%	
56) Toluene-D8(S)	8.45	98	1915958		82386		0.00
Spiked Amount 83,313			Recove			9.449%	
64) 4-Bromofluorobenzene(S)	11.06	95	842738		64903	ppb	0.00
Spiked Amount 77.736			Recove	ry	= 26	0.688%	
						_	
Target Compounds	1.30	85	483209	200	00830		value 97
2) Dichlorodifluoromethane	1.42	85	385336	236	49151	ppb	93
3) Freon 114 4) Chloromethane	1.46	50	593106		15207		99
5) Vinyl chloride	1.57	62	377984		08750		97
6) Bromomethane	1.87	96	453253		64680		97
7) Chloroethane	1.96	49	49605		90896		95
8) Dichlorofluoromethane	2.19	67	991454		59983		99
9) Trichlorofluoromethane	2.24	101	666518		06146		100
10) Acrolein	2.72	56	50456		26268		92
11) Acetone	2.93	43	127436		73114		97
12) Freon-113	2.86	101	416493		61790		99
13) 1,1-DCE	2.83	96	396366		00328		96 96
14) t-Butanol 15) Methyl Acetate 16) Todomethane	3,81 3,39	59 43	77460 434106		11085 69366		100
16) Todomethane	2.99	142	709593		80455		99
17) Acrylonitrile	3.85	53	164750		23377		94
18) Methylene chloride	3.47	84	585216		21732		99
19) Carbon disulfide	3.07	76	1414662		58655		100
20) Methyl t-butyl ether (MtBE	3.96	73	1412988	204.	41375	ppb	98
21) Trans-1,2-DCE	3.89	96	500054		08589		99
22) Diisopropyl Ether	4.75	45	1693482		19385		97
23) 1,1-DCA	4.53	63	885316		18490		99
24) Vinyl Acetate	4.75	87 50	473707 1 4 51851		80848 57787		99 99
25) Ethyl tert Butyl Ether	5.42	59 4 3	176137		48121		95
26) MEK (2-Butanone) 27) Cis-1,2-DCE	5.35	96	624180		65236		98
28) 2,2-Dichloropropane	5.34	77	628240	212.	75542	daa	99
29) Chloroform	5.78	83	953174	201.	38777	dqq	98
30) Bromochloromethane	5.65	128	323881	205.	52120	ppb	97
32) 1,1,1-TCA	5.98	97	681790		48281		99
33) Cyclohexane	6.05	41	355120		55362		90
34) 1,1-Dichloropropene	6.19	75	595187		93839		99
35) 2,2,4-Trimethylpentane	6.56	57	1678820		68300		98
37) Carbon Tetrachloride	6.18	117	591842		22027		99 07
38) Tert Amyl Methyl Ether	6.62 6.44	73 62	1443591 763727		41060 31194		97 99
39) 1,2~DCA	$6.44 \\ 6.42$	78	2130843		69641		99
40) Benzene 41) TCE	7.16	95	534223		71457		98
42) 2-Pentanone	7.40	43			85261		99

^{(#) =} qualifier out of range (m) = manual integration Thu Mar 08 10:00:52 2012 0307T09S.D TALLS.M

Data File : M:\THOR\DATA\T120307\0307T09S.D

Vial: 9 Operator: DG,RS,HW,ARS,SV

Acq On : 7 Mar 12 12:02 Sample : 200ug/kg Vol Std 03-06-12 : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:05:47 2012

Response via : Initial Calibration

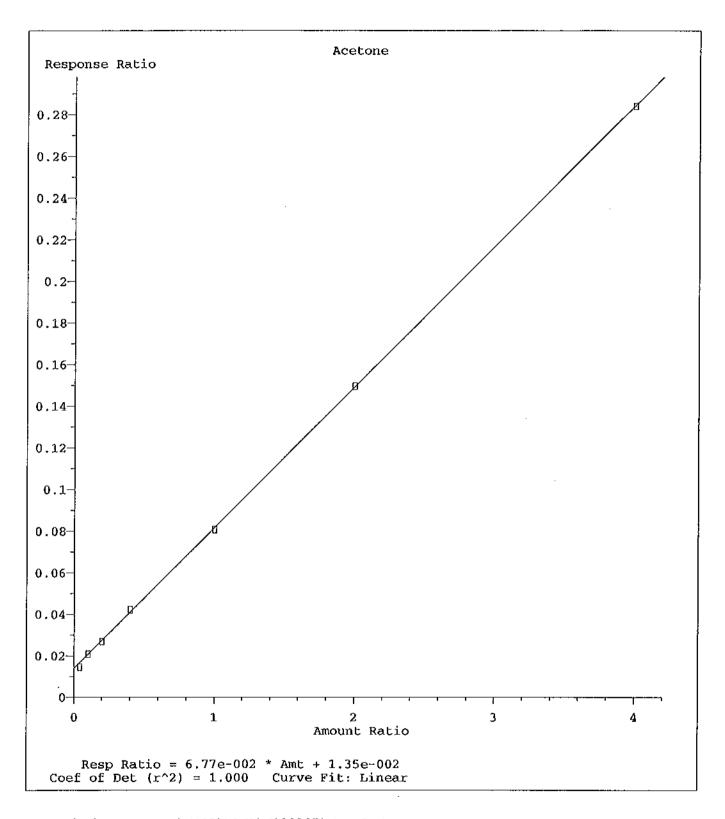
	Compound	R.T.	QIon	Response	Conc Unit Qva	lue
43	1,2-Dichloropropane	7.39	63	603486	206.32981 ppb	100
-	Bromodichloromethane	7.70	83	753644	207.24061 ppb	98
45)	Methyl Cyclohexane	7.37	83	730208	250.06001 ppb	98
	Dibromomethane	7,51	93	367150	207.07353 ppb	97
48)	MIBK (methyl isobutyl ket	9.20	43	279532	223.84144 ppb	100
49)	1-Bromo-2-chloroethane	8.01	63	442368	205.60402 ppb	99
50)	Cis-1,3-Dichloropropene	8.17	75	854360	218.03844 ppb	100
51)	Toluene	8.51	91	1505280	222.29895 ppb	99
52)	Trans-1,3-Dichloropropene	8.74	75	762350	225.37396 ppb	99
53)	1,1,2~TCA	8.92	83	451118	207.93018 ppb	96
	2-Hexanone	9.20	43	279532	223.84144 ppb	100
	1,2-EDB	9.41	107	519847	211.41326 ppb	9 9
	Tetrachloroethene	9.07	164	460724	207.24949 ppb	97
	1-Chlorohexane	9.92	91	648108	233.86400 ppb	92
-	1,1,1,2-Tetrachloroethane	10.00	131	601667	215.92896 ppb	99
	m&p-Xylene	10.16	106	2100403	470.21088 ppb	100
	o-Xylene	10.55	106	1056181	235,36544 ppb	98
	Styrene	10,56	104	1951572	200,97007 ppb	100
•	1,3-Dichloropropane	9.08	76	870107	207.84587 ppb	98
	Dibromochloromethane	9.31	129	608633	214.74199 ppb	98
	Chlorobenzene	9.92	112	1699824	206.46256 ppb	99
	Ethylbenzene	10.04	91	2681592	229.86378 ppb	100
	Bromoform	10.73	173	438852	227.27176 ppb	100
	Isopropylbenzene	10.92	105	2425641	223.52653 ppb	99
	1,1,2,2-Tetrachloroethane	11.21	83	700483	201.49307 ppb	99
-	1,2,3-Trichloropropane	11.24	110	198395	196.16858 ppb	96
	t-1,4-Dichloro-2-Butene	$11.26 \\ 11.21$	53 156	159538 832502	219.14672 ppb 199.76626 ppb	93
	Bromobenzene n-Propylbenzene	11.33	91	3205095	225.06331 ppb	99 99
	4-Ethyltoluene	11.45	105	1924470	226.79696 ppb	99
	2-Chlorotoluene	11.41	91	2232962	212.23791 ppb	99
	1,3,5-Trimethylbenzene	11.51	105	2399843	229.40758 ppb	100
	4-Chlorotoluene	11.51	91	2408151	214.37801 ppb	100
•	Tert-Butylbenzene	11.83	119	1968056	234.63364 ppb	99
82)	-	11.88	105	2498082	232.86639 ppb	100
	Sec-Butylbenzene	12.05	105	2883960	233.18514 ppb	99
	p-Isopropyltoluene	12.20	119	2548716	239.03670 ppb	٠ وَوَ
	Benzyl Chloride	12.37	91	1023670	247.30539 ppb	99
86)		12,15	146	1615039	199.70837 ppb	100
	1,4-DCB	12.24	146	1649711	195.71502 ppb	99
	n-Butylbenzene	12.61	91	2412952	237.70057 ppb	99
89)	1,2-DCB	12.60	146	1578679	203.88396 ppb	99
90)	Hexachloroethane	12.87	117	431726	210.61088 ppb	98
91)	1,2-Dibromo-3-chloropropan	13.37	157	139901	221.08106 ppb	98
92)	1,2,4-Trichlorobenzene	13.60	180	1299895	209.67312 ppb	99
93)	Hexachlorobutadiene	14.40	225	628598	211.84941 ppb	99
94)	Naphthalene	14.45	128	2292619	202.65255 ppb	100
95)	1,2,3-Trichlorobenzene	14.69	180	1121920	219.39102 ppb	97

Data File: M:\THOR\DATA\T120307\0307T09S.D

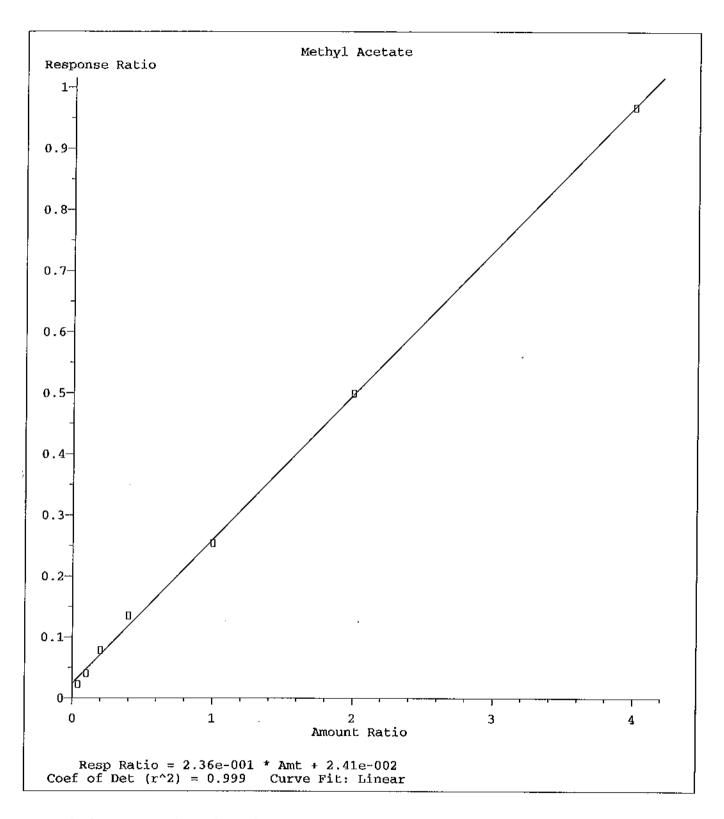
Vial: 9 : 7 Mar 12 12:02 Operator: DG, RS, HW, ARS, SV

: 200ug/kg Vol Std 03-06-12 Sample Inst : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

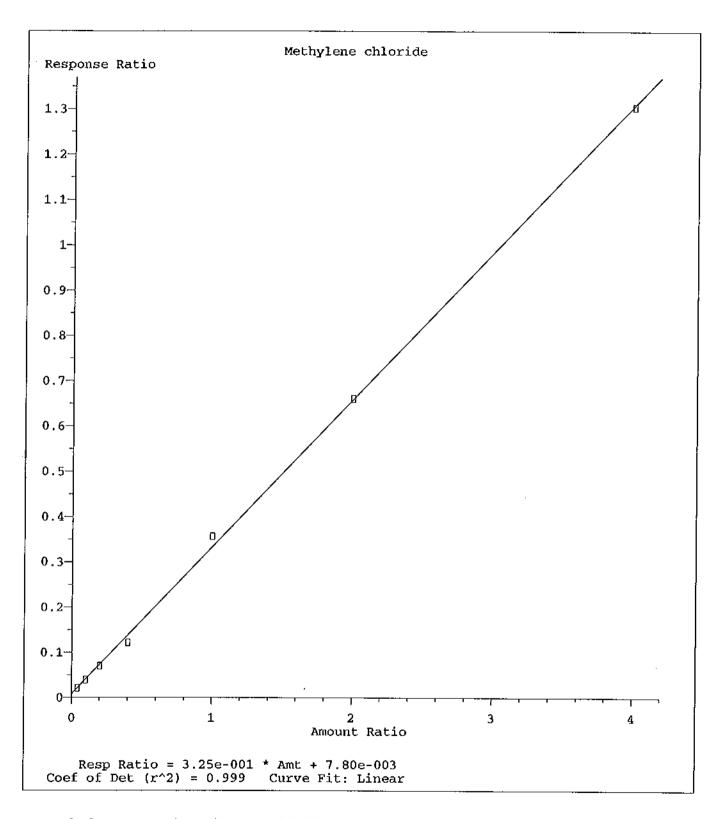
Quant Time: Mar 7 14:06 2012 Quant Results File: TALLS.RES

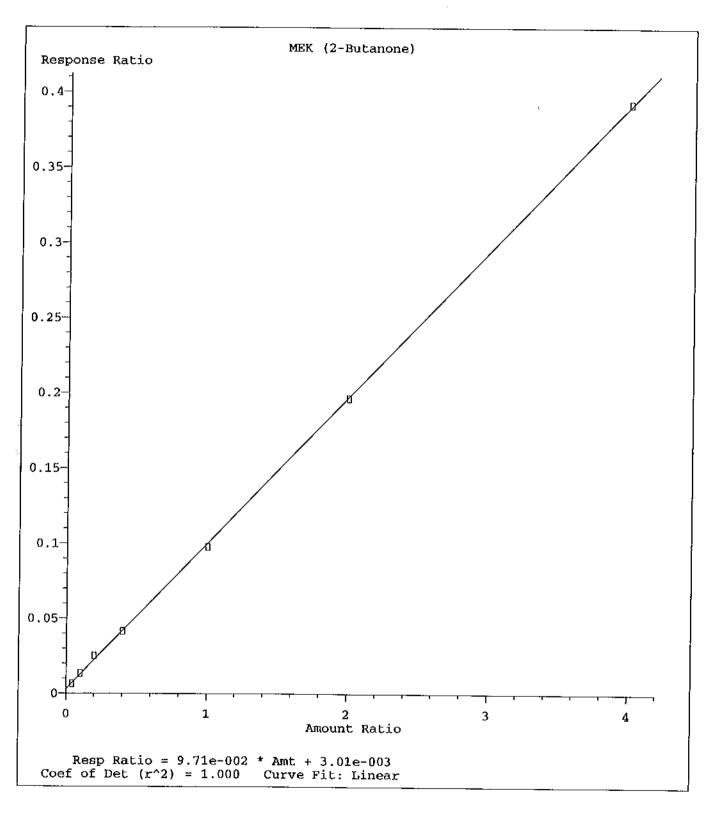

: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator) Method

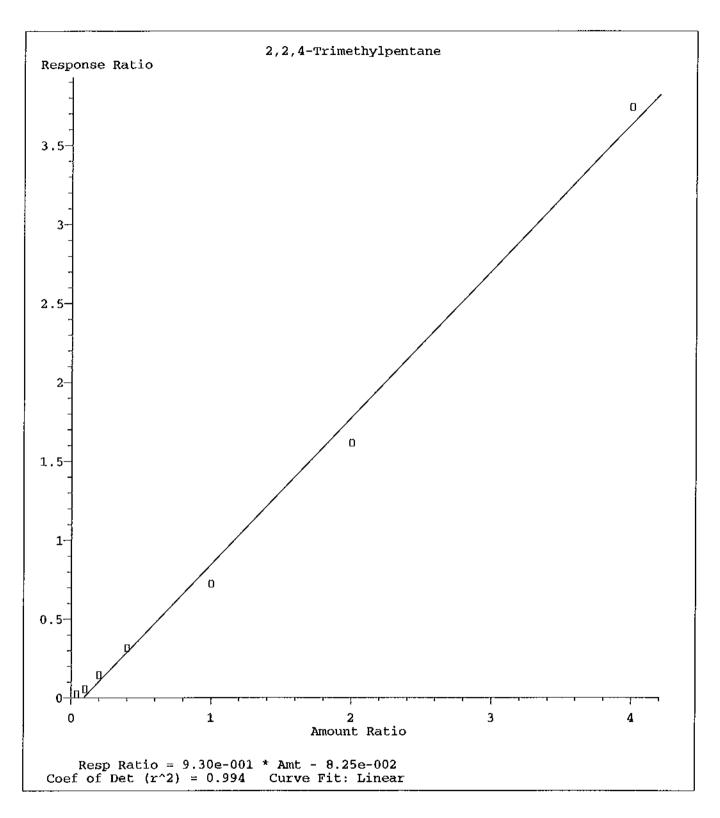
Title : METHOD 8260B


Acq On

Last Update : Wed Mar 07 14:10:30 2012



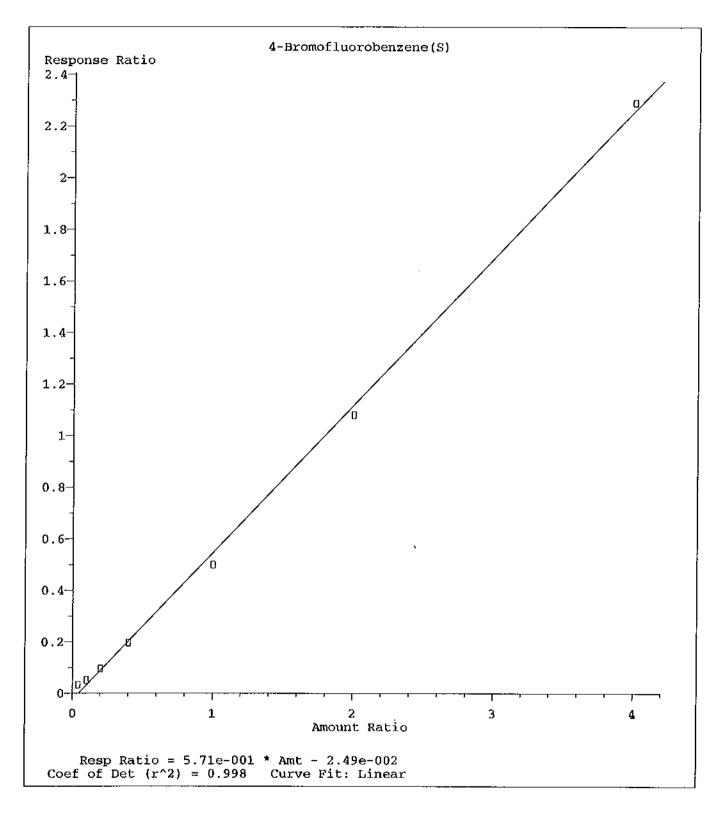

Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012


Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012

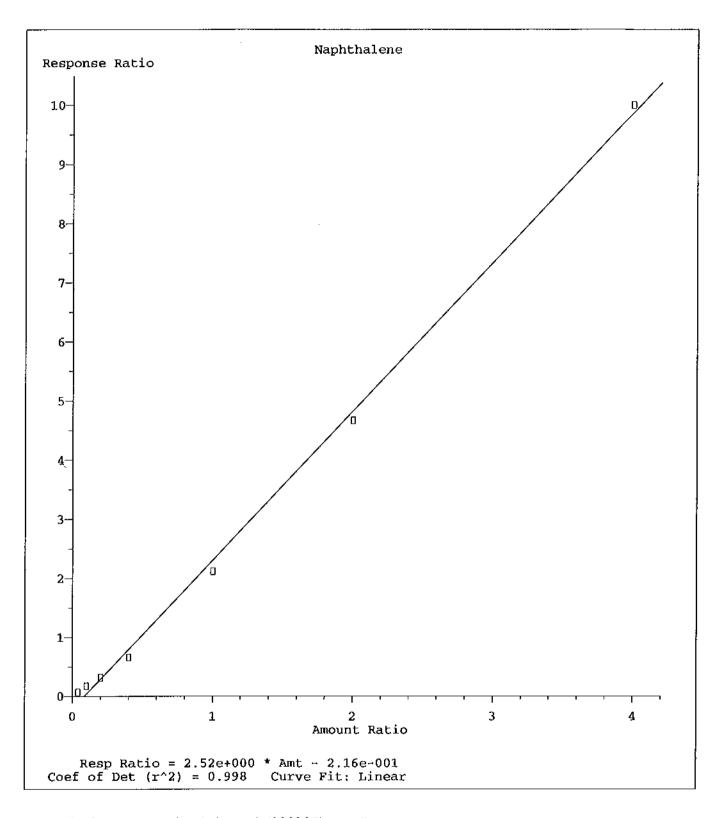
Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012



Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012



Method Name: M:\THOR\DATA\T120307\TALLS.M


Calibration Table Last Updated: Wed Mar 07 14:10:30 2012

Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012

Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012

Method Name: M:\THOR\DATA\T120307\TALLS.M Calibration Table Last Updated: Wed Mar 07 14:10:30 2012

Operator: DG,RS,HW,ARS,SV

Quant Time: Mar 7 14:10 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration DataAcq Meth : 8260_BETA

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS)	6.75	96	452288	50.00000 pp	b 0.00	
55) Chlorobenzene-D5 (IS)	9.89	117	358464 208960	50.00000 pp	ь 0.00	
70) 1,4-Dichlorobenzene-D (IS)	12.21	152	208960	50.00000 pp	b 0.00	
System Monitoring Compounds						
	5.97	111	215811			
Spiked Amount 74.267 36) 1,2-DCA-D4(S)	6 20	65	Recove			
Spiked Amount 65.341	6,35	65	215744			
56) Toluene-D8(S)	8.45	98	Recove	87.90434 ppl	b 0.00	
Spiked Amount 83.313	0.15		Recove	= 105.51	10%	
64) 4-Bromofluorobenzene(S)	11.06	95	295484	74.32680 ppl	0.00	
Spiked Amount 77.736				ry = 95.63	148 523	WW.
				81264x50	148 41.833 Wevalue 98 93	3/1/18
Target Compounds				457888x 6.0	Wvalue	SHOW
2) Dichlorodifluoromethane	1.29	85	78963	39.98804 ppl	98	
3) Freon 114	1.41	85	62562 130908	38.09180 ppl	93	
3) Freon 114 4) Chloromethane 5) Vinyl chloride 6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane	1.46	50		44.04567 ppr	100	
6) Promomethane	1.00	62	$\frac{81264}{97108}$	41.82342 ppt		
7) Chloroethane	1.00	96 49	11238	44.34768 ppl 41.10962 ppl		
8) Dichlorofluoromethane	2 19	67	230763	48.86004 ppk	96 5 100	
9) Trichlorofluoromethane	2 25	101	126592	41 00930 ppl	. 00	
8) Dichlorofluoromethane 9) Trichlorofluoromethane 10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate 16) Iodomethane 17) Acrylonitrile 18) Methylene chloride 19) Carbon disulfide 20) Methyl t-butyl ether (MtBE	2.72	56	35288		100	
11) Acetone	2.92	43	37374	51.05256 pph	100	
12) Freon-113	2.86	101				
13) 1,1-DCE	2.83	96	76812 86679	45.99440 ppk	92	
14) t-Butanol	3.78	59	57068	244.20279 pph		
15) Methyl Acetate	3.38	43	122 720 173001	52.33818 pph		
16) Iodomethane	2.99	142	173001	54.13188 ppb		
17) Acrylonitrile	3.85	53	43851	51.55300 ppb	99	
18) Methylene chloride	3.47	84	1682 44 313795	55.96260 ppb	98	
19) Carbon disulfide	3.07	76	313795	45.68119 pph	100	
20) Methyl t-butyl ether (MtBE	3.96	73	389115	55.84631 ppb		
22) Diigonropyl Ether	J.03	96 45	121154 427365	49.29484 ppb 54.12608 ppb		
23) 1 1-DCA	4.73	63	223219	51.57445 ppb	100 98	
24) Vinvl Acetate	4.75	87	118573	54 33567 nnh	98	
25) Ethyl tert Butyl Ether	5.25	59	369796	54.33567 ppb 55.48475 ppb	97	
26) MEK (2-Butanone)	5.42	43	118573 369796 48750	53.92390 ppb	91	
20) Methyl t-Butyl ether (MtBE 21) Trans-1,2-DCE 22) Diisopropyl Ether 23) 1,1-DCA 24) Vinyl Acetate 25) Ethyl tert Butyl Ether 26) MEK (2-Butanone) 27) Cis-1,2-DCE 28) 2,2-Dichloropropane 29) Chloroform	5.35	96	155793	50.92332 ppb	99	
28) 2,2-Dichloropropane	5.34	77	137864	46.31811 ppD	99	
25) CHIOLOLOLA	5.78	83	247426	51.86222 ppb	100	
30) Bromochloromethane	5.64	128	85757	53.98655 ppb		
32) 1,1,1-TCA	5.98	97	153421	48.99814 ppb	96	
33) Cyclohexane	6.05	41	66528	41.54855 ppb		
34) 1,1-Dichloropropene	6.19	75	127356	47.96240 ppb	99	
35) 2,2,4-Trimethylpentane	6.56	57	288135	38.70300 ppb	99	
37) Carbon Tetrachloride	6.18	117	126365	46.85876 ppb		
38) Tert Amyl Methyl Ether 39) 1,2-DCA	6.62 6.44	73 62	364476 202145	57.21184 ppb		
40) Benzene	6.42	78	521213	52.86147 ppb 51.12882 ppb		
41) TCE	7.16	95	125765	46.64358 ppb		
42) 2-Pentanone	7.39	43	416081	257.76632 ppb		
43) 1,2-Dichloropropane	7.39	63	154410	52.37392 ppb	99	
44) Bromodichloromethane	7.69	83	195705	53.38944 ppb	99	

^{(#) =} qualifier out of range (m) = manual integration 0307T12S.D TALLS.M Thu Mar 08 07:33:24 2012

Operator: DG,RS,HW,ARS,SV

Data File : M:\THOR\DATA\T120307\0307T12S.D Vial: 12
Acq On : 7 Mar 12 13:08 Operator: DG,RS
Sample : 50ug/kg Vol Std 03-06-12 (SS) Inst : Thor
Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:10 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B

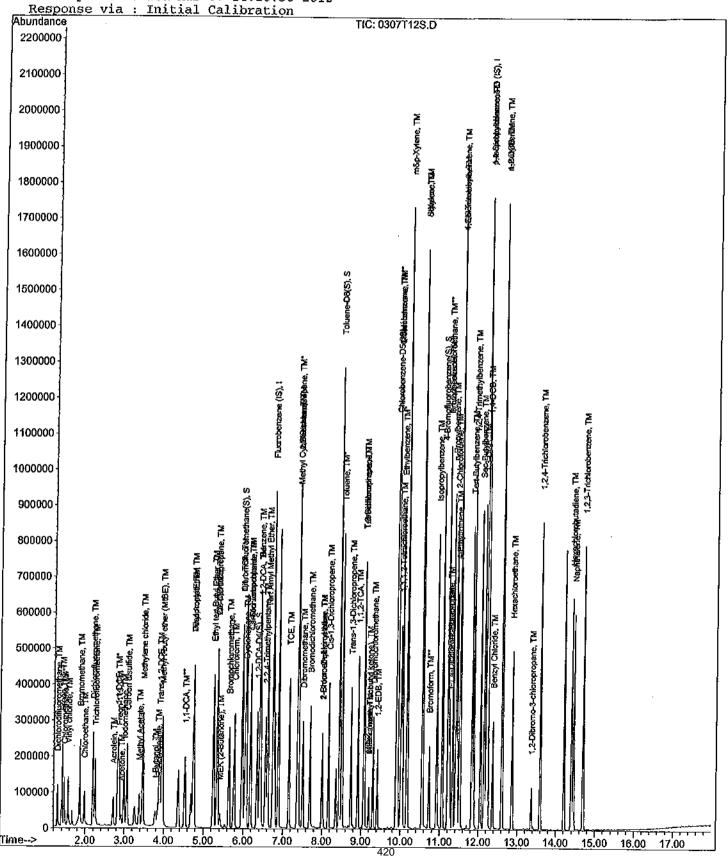
Last Update : Wed Mar 07 14:10:30 2012

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit Qva	lue
45) Methyl Cyclohexane	7.37	83	124146	42.17696 ppb	99
46) Dibromomethane	7.51	93	98883	55.32833 ppb	97
47) 2-Chloroethyl vinyl ether	8.01	106	6408	75.56310 ppb	92
48) MIBK (methyl isobutyl ket	9.20	43	67523	53.64207 ppb	94
49) 1-Bromo-2-chloroethane	8.01	63	122152	56.32398 ppb	99
50) Cis-1,3-Dichloropropene	8.17	75	210359	53.25963 ppb	98
51) Toluene	8.51	91	351488	51.49624 ppb	100
52) Trans-1,3-Dichloropropene	8.74	75	189522	55.58452 ppb	99
53) 1,1,2-TCA	8.92	83	117205	53.59427 ppb	98
54) 2-Hexanone	9.20	43	67523	53.64207 ppb	95
57) 1,2-EDB	9.41	107	139230	58.11875 ppb	100
58) Tetrachloroethene	9.07	164	103348	47.71791 ppb	94
59) 1-Chlorohexane	9.92	91	123360	45.68957 ppb	98
60) 1,1,1,2-Tetrachloroethane	10.00	131	148246	54.60903 ppb	98
61) m&p-Xylene	10.16	106	477204	109.65309 ppb	98
62) o-Xylene	10.55	106	239287	54.73312 ppb	97
63) Styrene	10.56	104	450677	49.87175 ppb	99
65) 1,3-Dichloropropane	9.08	76	229747	56.33072 ppb	97
66) Dibromochloromethane	9.31	129	152410	55.19525 ppb	100
67) Chlorobenzene	9.92	112	413098	51.50118 ppb	99
68) Ethylbenzene	10.04	91	599656	52.76024 ppb	100
69) Bromoform	10.73	173	104703	55.65616 ppb	. 97
71) Isopropylbenzene	10.92	105	510114	51.58619 ppb	99
72) 1,1,2,2-Tetrachloroethane	11.20	83	176943	55.85467 ppb	100
73) 1,2,3-Trichloropropane	11.24	110	49536	53.75060 ppb	95
74) t-1,4-Dichloro-2-Butene	11.26	53	37956	57.21566 ppb	98
75) Bromobenzene	11.21	156	202398	53.29748 ppb	99
76) n-Propylbenzene	11.33	91	669358	51.58054 ppb	99
77) 4-Ethyltoluene	11.45	105	411825	53.26015 ppb	100
78) 2-Chlorotoluene	11.41	91 105	511474 518626	53.34931 ppb	100 100
79) 1,3,5-Trimethylbenzene 80) 4-Chlorotoluene	11.51 11.51	91	549689	54.40550 ppb 53.70036 ppb	99
81) Tert-Butylbenzene	11.83	119	394335	51.59193 ppb	98
82) 1,2,4-Trimethylbenzene	11.88	105	542059	55.45112 ppb	99
83) Sec-Butylbenzene	12.05	105	573700	50.90496 ppb	97
84) p-Isopropyltoluene	12.20	119	506494	52.12920 ppb	100
85) Benzyl Chloride	12.37	91	209846	55.63370 ppb	99
86) 1,3-DCB	12.15	146	377628	51.24377 ppb	99
87) 1,4-DCB	12.24	146	387022	50.38666 ppb	98
88) n-Butylbenzene	12.61	91	465191	50.28940 ppb	98
89) 1,2-DCB	12.60	146	369322	52.34293 ppb	99
90) Hexachloroethane	12.87	117	86171	46.13148 ppb	98
91) 1,2-Dibromo-3-chloropropan	13.37	157	31649	54.88508 ppb	96
92) 1,2,4-Trichlorobenzene	13.60	180	284719	50.39814 ppb	98
93) Hexachlorobutadiene	14.40	225	125860	46.54849 ppb	99
94) Naphthalene	14.45	128	476682	49.54474 ppb	99
95) 1,2,3-Trichlorobenzene	14.69	180	250502	53.75660 ppb	96
÷ , ,				~ =	

Data File : M:\THOR\DATA\T120307\0307T12S.D

M:\THOR\DATA\T120307\0307T12S.D Vial: 12 7 Mar 12 13:08 Vial: 12 Operator: DG,RS,HW,ARS,SV


Sample : 50ug/kg Vol Std 03-06-12 (SS) Inst : Thor Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Quant Time: Mar 7 14:10 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update: Wed Mar 07 14:10:30 2012

EPA METHOD 8260B Volatile Organic Compounds Raw Data

(QT Reviewed) Quantitation Report

Data File : M:\CHICO\DATA\C120224\0229C09W.D

Vial: 1 Acq On : 29 Feb 12 18:19 Operator: RS, ARS Sample : 120229A BLK-1WC Inst : Chico Misc : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 9:04 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 10:38:53 2012
Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units I	ev(Min)
1) Fluorobenzene (IS)	12.80	96	623171	25,00000 ppb	-0.01
54) Chlorobenzene-D5 (IS)	17.98	117	509312	25.00000 ppb	-0.01
70) 1,4-Dichlorobenzene-D (IS)	22.18	152	279360	25.00000 ppb	-0.01
System Monitoring Compounds					
32) Dibromofluoromethane(S)	11,39	111	426389	21.13883 ppb	-0.01
Spiked Amount 22.609			Recove	ry = 93.497	8
37) 1,2-DCA-D4(S)	12.19	65	327915	19.72155 ppb	-0.01
Spiked Amount 21.606			Recove	ry = 91.281	8
55) Toluene-D8(S)	15.46	98	1620706	23.59435 ppb	-0.01
Spiked Amount 24,195			Recove	xy = 97.515	8
63) 4-Bromofluorobenzene(S)	20,05	95	633337	23.32286 ppb	-0.01
Spiked Amount 23.751			Recove	ry = 98.199	8
Target Compounds					Qvalue

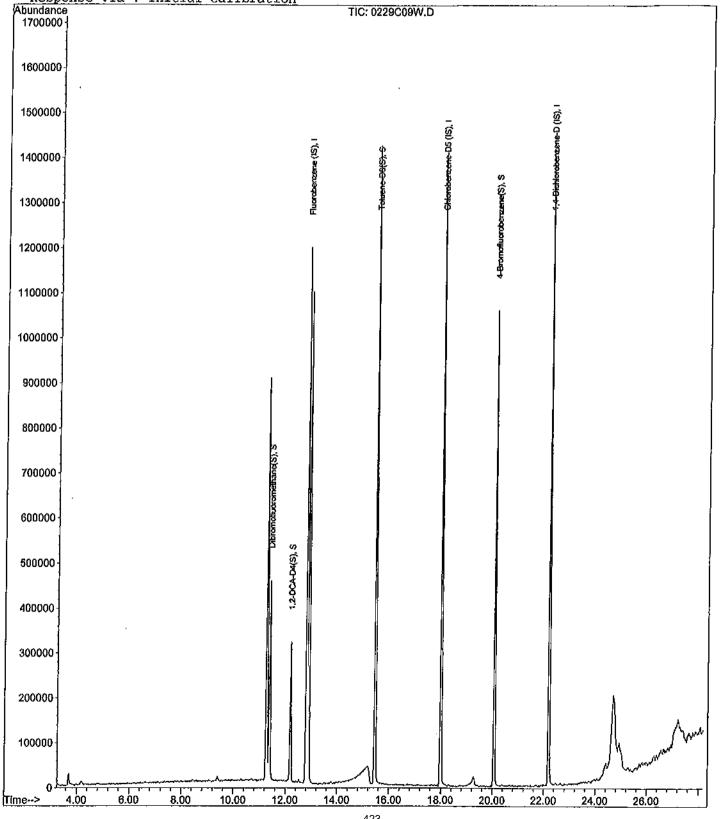
Data File : M:\CHICO\DATA\C120224\0229C09W.D

: 29 Feb 12 18:19

Acq On Operator: RS, ARS Sample : 120229A BLK-1WC Inst : Chico Misc : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 9:04 2012

Quant Results File: CALLW.RES


Vial: 1

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Method

Last Update : Thu Mar 01 08:58:02 2012 Response via : Initial Calibration

(QT Reviewed) Quantitation Report

Data File: M:\NEO\DATA\N120229\0229N30S.D

: Soil 5mL w/ ISS:10-20-11

Vial: 1 Acq On : 1 Mar 12 5:14 Sample : 120229A BLK-1SN Operator: SV,DG,RS Inst : Neo Multiplr: 1.00

Quant Time: Mar 1 13:02 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Thu Mar 01 11:56:34 2012

Response via : Initial Calibration

DataAcq Meth: V8260

Misc

Internal Standards			Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)			355968		0.00
51) Chlorobenzene-D5 (IS)	18.42	117	265024	50.00000 pph	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	113824	50.00000 ppk	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.84	111	297204	44.06130 pph	~0.02
Spiked Amount 41.312			Recove	xy = 106.65	55%
34) 1,2-DCA-D4(S)	12.64	65	304430	42.57737 ppb	-0.02
Spiked Amount 41.649			Recove	= 102.22	9%
52) Toluene-D8(S)	15.89	98	863295	36.07774 ppb	0.00
Spiked Amount 35.274			Recove	xy = 102.27	88
60) 4-Bromofluorobenzene(S)	20,48	95	290207	36,23200 ppb	0.00
Spiked Amount 35.584			Recove	ery = 101.82	2%
Target Compounds					Qvalue

Data File: M:\NEO\DATA\N120229\0229N30S.D

Vial: 1 5:14 Acq On : 1 Mar 12 Operator: SV,DG,RS

: 120229A BLK-1SN Sample Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 1 13:02 2012

Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Thu Mar 01 11:56:34 2012

Response via : Initial Calibration TIC: 0229N30S.D Abundance 1000000 950000 Fluorobenzene (IS), I 900000 850000 000008 750000 700000 650000 600000 550000 500000 450000 Dibromofluoromethane(S), S 400000 1,2-DCA-D4(S), S 350000 300000 250000 200000 150000 100000 50000 6.00 8,00 10.00 12.00 14.00 Time--> 16.00 18.00 20.00 28.00 30,00 Quantitation Report (QT Reviewed)

Multiplr: 1.00

Data File : M:\NEO\DATA\N120305\0305N19S.D Acq On : 5 Mar 12 22:19 Sample : 120305A BLK-1SN Vial: 1 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/IS&S:10-20-11

Ouant Time: Mar 6 10:06 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

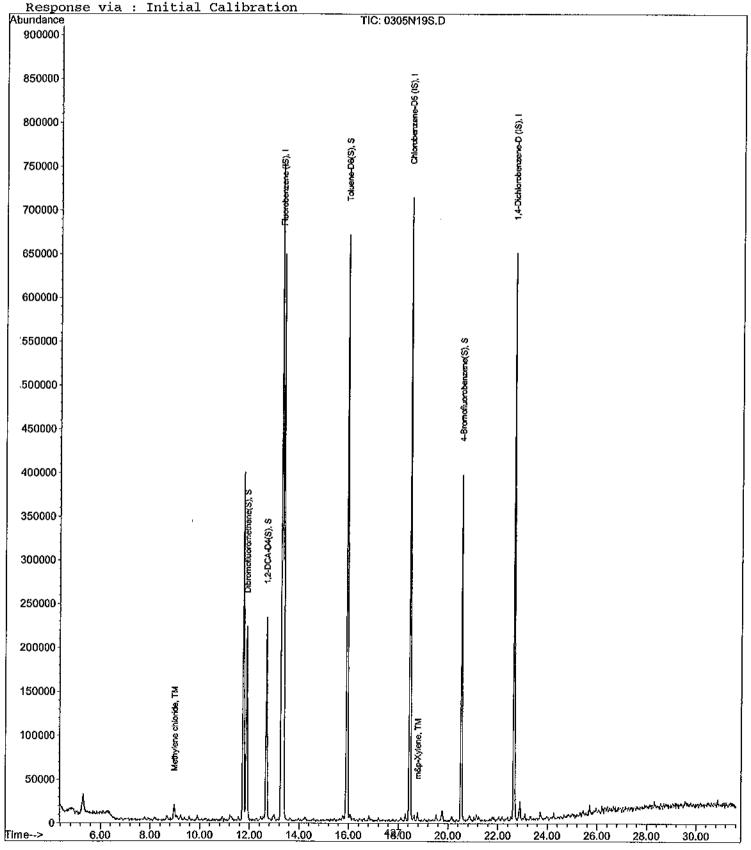
Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

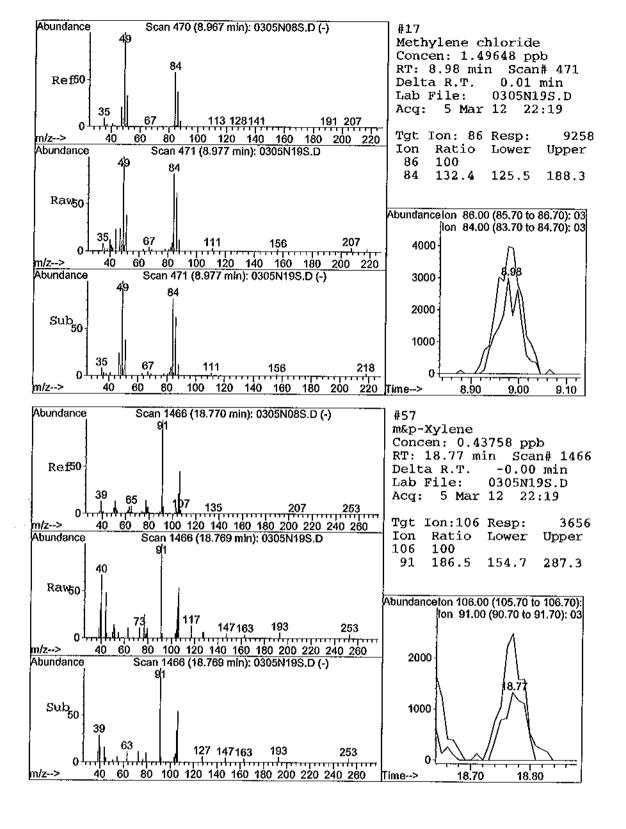
Misc

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)	
1) Fluorobenzene (IS)	13.29	96	326784	50.00000 ppb	0.00	
51) Chlorobenzene-D5 (IS)	18.45	117	216448	50.00000 ppb	-0.01	
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	97616	50.00000 ppb	0.00	
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.88	111	238379	37.64536 ppb	0.00	
Spiked Amount 41.312			Recove			
34) 1,2-DCA-D4(S)	12.68	65	260844	37.97711 ppb	0.00	
Spiked Amount 41.649			Recove	rv = 91.185%		
52) Toluene-D8(S)	15.93	98	707482	37.81696 ppb	0.00	
Spiked Amount 35.274			Recove			
60) 4-Bromofluorobenzene(S)	20.52	95		36,78762 ppb	0.00	
Spiked Amount 35.584			Recove			
Target Compounds				Ova	alue	• 1
<pre>17) Methylene chloride</pre>	8.98	86	9258	1.49648 ppb /		LPL
57) m&p-Xylene	18.77	106	3656	0.43758 ppb /	79	LRL . Was
				KE-	, -	rllpk with

Data File : M:\NEO\DATA\N120305\0305N19S.D

Vial: 1 5 Mar 12 22:19


Acq On Operator: SV,DG,RS : 120305A BLK-1SN Sample : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00


Quant Time: Mar 6 10:06 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Data File: M:\THOR\DATA\T120307\0307T15S.D

Vial: 15 Operator: DG,RS,HW,ARS,SV Acq On : 7 Mar 12 14:14

Sample : 120306A BLK-1ST : Thor Inst Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00

Ouant Time: Mar 7 15:50 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

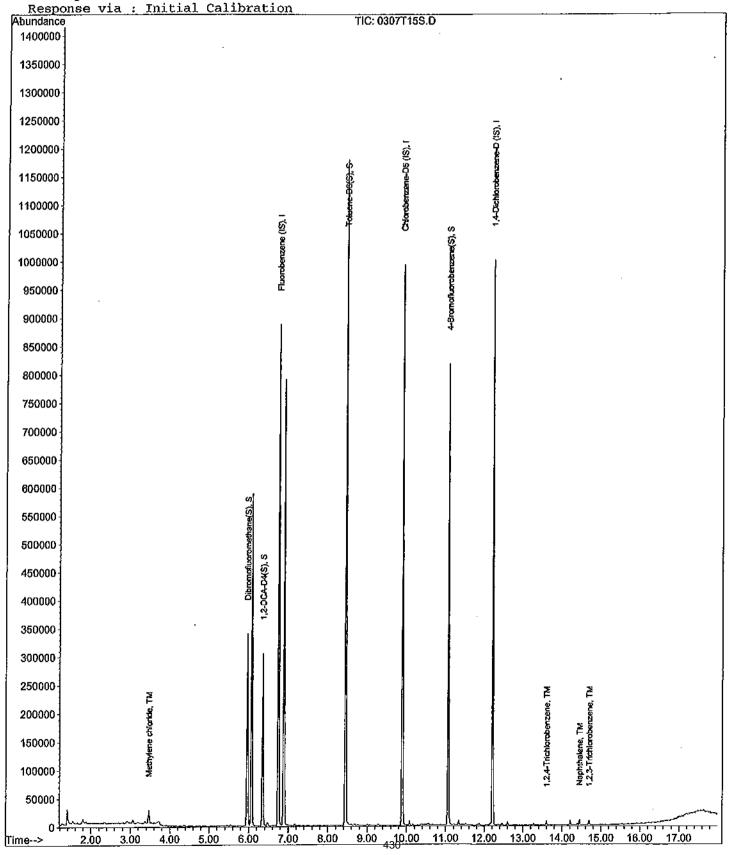
Title : METHOD 8260B Last Update : Wed Feb 08 09:48:07 2012 Response via : Initial Calibration

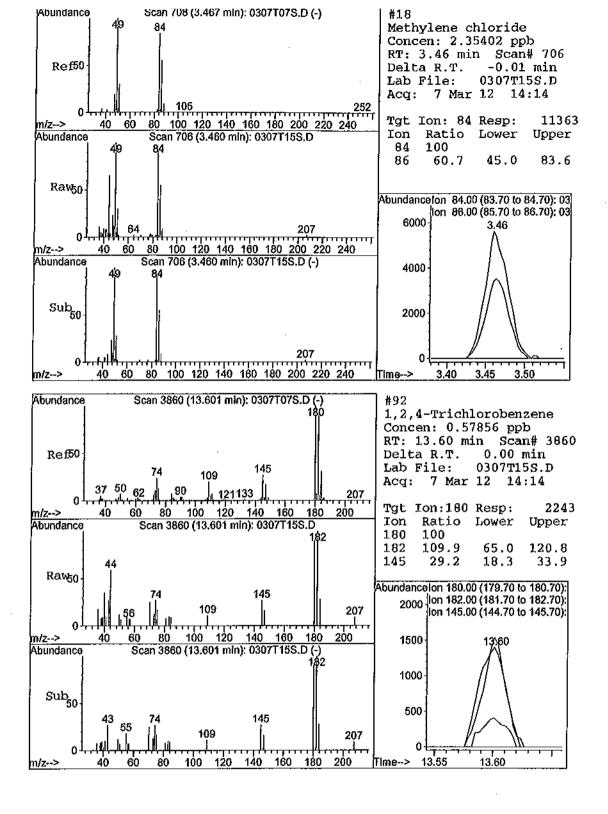
DataAcq Meth : 8260_BETA

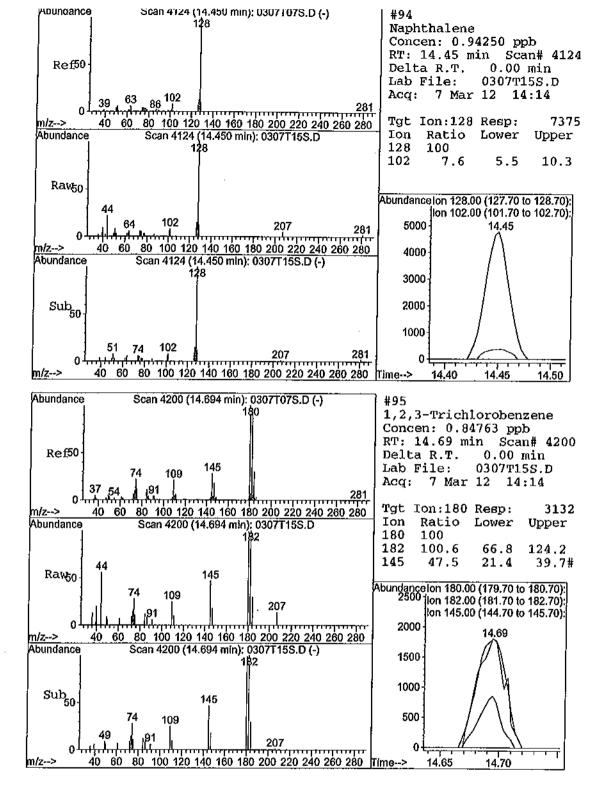
Internal Standards	R.T.	QIon	Response	Conc Units	Dev (Min)
1) Fluorobenzene (IS)	6.75	96	428224	50.00000 ppb	
55) Chlorobenzene-D5 (IS)	9.89	117	345408	50.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	12,21	152	176256	50.00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	5.96	111	202774	75.01931 ppb	0.00
Spiked Amount 74.267			Recove	ry = 101.01	3%
36) 1,2-DCA-D4(S)	6.35	65	204557	64.81021 ppb	0.00
Spiked Amount 65.341			Recove	ry = 99.18	8%
56) Toluene-D8(S)	8,45	98	719825	83.33041 ppb	0.00
Spiked Amount 83.313			Recove	ry = 100.02	0%
<pre>64) 4-Bromofluorobenzene(S)</pre>	11.06	95	248480	70,06510 ppb	0.00
Spiked Amount 77.736			Recove	ry = 90.13	2%
Target Compounds					Qvalue
18) Methylene chloride	3.46	84	11363	2.35402 ppb	~ 95 ⟨{ ⟨ \
92) 1,2,4-Trichlorobenzene	13.60	180	2243	0.57856 ppb	85 < PL
94) Naphthalene	14.45	128	7375		
95) 1,2,3-Trichlorobenzene	14.69	180	3132	0.84763 ppb	# 88 ZPL

Data File: M:\THOR\DATA\T120307\0307T15S.D

Vial: 15 : 7 Mar 12 14:14 Operator: DG,RS,HW,ARS,SV Acq On


: Thor : 120306A BLK-1ST Inst Sample Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00


Quant Time: Mar 7 15:50 2012 Quant Results File: TALLS.RES


Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Quantitation Report (Not Reviewed)

Data File : M:\CHICO\DATA\C120224\0229C03W.D

Vial: 1 Acq On : 29 Feb 12 14:36 Operator: RS, ARS : 120229A LCS-1WC Sample Inst : Chico Misc : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 8:41 2012 Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 10:38:53 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	12.80	96	579961	25.00000 ppb	0.00
 Fluorobenzene (IS) Chlorobenzene-D5 (IS) 	17.99	117	514368	25.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	22.19	152	281984	25.00000 ppb	0.00
System Monitoring Compounds 32) Dibromofluoromethane(S)	11.39	111	433204	23.07682 ppb	0.00
Spiked Amount 22.609	11.37	111	Recove	·	0.00
37) 1,2-DCA-D4(S)	12.18	65	327829	21.18534 ppb	-0.02
Spiked Amount 21,606			Recove	= 98.052%	
55) Toluene-D8(S)	15.45	98	1588372	22.89634 ppb	-0.02
Spiked Amount 24.195 63) 4-Bromofluorobenzene(S)	20.06	95		ery = 94.630%	0.00
Spiked Amount 23.751	20.00	90	628508 Recove	22.91752 ppb ery = 96.494%	0.00
Target Compounds				Qv	alue
Dichlorodifluoromethane	4.09	85	198527	11.08071 ppb	100
3) Freon 114	4.34	85	119116	11.73151 ppb	96
4) Chloromethane	4,57	50	68781	10.92017 ppb	100
5) Vinyl chloride6) Bromomethane	4.82 5.72	62 94	52280	11.02454 ppb	95
7) Chloroethane	5.72	64	38531 37184	9.60110 ppb 10.43403 ppb	91 97
8) Dichlorofluoromethane	6.00	67	386613	10.41058 ppb	94
9) Trichlorofluoromethane	6.52	103	46616	11.10114 ppb	96
10) Acetonitrile	7.64	41	119655	132.88920 ug/l	100
l1) Acrolein	7.14	56	138856	118.35267 ppb	100
12) Acetone	7,26	43	19621	9.72432 ppb	88
13) Freon-113	7.45	101	165962		97
14) 1,1-DCE	7.66	96 59	160978 15467		96
15) t-Butanol 16) Methyl Acetate	9 17	43	68825	139.67171 ppb # 8.97691 ppb	91 99
17) Iodomethane	8.14	142	292595	10.60150 ppb	100
18) Acrylonitrile	8,54	53	25818	9.34037 ppb	83
19) Methylene chloride	8.45	84	182023	9.89040 ppb	90
20) Carbon disulfide	8.54	76	139712	9.86531 ppb	98
21) Methyl t-butyl ether (MtBE		73	322722	9.37029 ppb	95
22) Trans-1,2-DCE	9.07	96 45	206067	9.75173 ppb	95
23) Diisopropyl Ether 24) 1,1-DCA	9.76	45 63	601870 319421	9.66399 ppb 9.79963 ppb	98 97
25) Vinyl Acetate	9.40	43	34488	10.41778 ppb	91
26) Ethyl tert Butyl Ether	10.41	59	445576	9.42847 ppb	100
27) MEK (2-Butanone)	10.41	43	19279	9.42847 ppb 8.90700 ppb 9.90558 ppb	93
28) Cis-1,2-DCE	10.78	96	227885	9.90558 ppb	93
29) 2,2-Dichloropropane	10.77	77	258151	10.03664 ppb	96
30) Chloroform	11.06	85	209738	9.61237 ppb	100
31) Bromochloromethane	11.28 11.80	128 97	83198 280332	9.89219 ppb	94
33) 1,1,1-TCA 34) Cyclohexane	11.80	56	271508	9.98269 ppb 10.56607 ppb	98 98
35) 1,1-Dichloropropene	12.07	75	232984	9.69401 ppb	99
36) 2,2,4-Trimethylpentane	12.14	57	474401	11.27347 ppb	99
38) Carbon Tetrachloride	12.25	117	235336	10.17071 ppb	98
39) Tert Amyl Methyl Ether	12,31	73	359078	9.18439 ppb	93
40) 1,2-DCA	12.34	62	163363	9.16602 ppb	100
41) Benzene	12.46	78 05	732548	9.82186 ppb	99
42) TCE	13.49	95	200476	10.40480 ppb	96

^{(#) =} qualifier out of range (m) = manual integration 0229C03W.D CALLW.M Thu Mar 01 09:08:32 2012

Quantitation Report (Not Reviewed)

Data File: M:\CHICO\DATA\C120224\0229C03W.D

Vial: 1 Acq On : 29 Feb 12 14:36 Sample : 120229A LCS-1WC Operator: RS, ARS Inst : Chico : Water 10mLw/ IS&S:01-31C/01-03E Multiplr: 1.00

Quant Time: Mar 1 8:41 2012 Ouant Results File: CALLW.RES

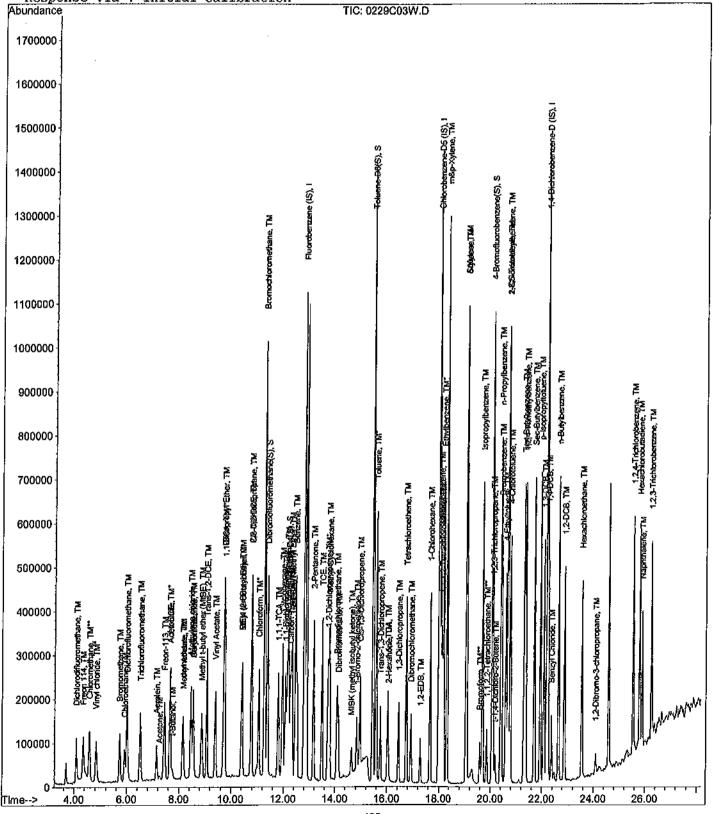
Quant Method : M:\CHICO\DATA\C120224\CALLW,M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Feb 27 10:38:53 2012
Response via : Initial Calibration
DataAcq Meth : V8260

	Compound		QIon	Response	Conc Unit	Qvalue	
43)	2~Pentanone	13.16	43	666556	118.89126	ppb	95
44)	1,2-Dichloropropane	13.72	63	179076	9.86648	ppb	97
45)	Bromodichloromethane	14.07	83	213800	9.80415	ppb	95
46)	Methyl Cyclohexane	13.77	83	257733	11.34875	ppb	96
47)	Dibromomethane	14.13	93	90786	10.19221	ppb	95
49)	1-Bromo-2-chloroethane	14.84	63	166438	9.78327	ppb	98
50)	Cis-1,3-Dichloropropene	14.96	75	258509	9.53272		99
	Toluene	15.59	91	793370	10.41679		98
52)	Trans-1,3-Dichloropropene	15.75	75	186188	9.52041		96
53)	1,1,2-TCA	16.03	83	89698	9.15785		98
56)	1,2-EDB	17.28	107	114269	9.04039		95
57)	Tetrachloroethene	16.74	164	188324	9.74966		97
	1-Chlorohexane	17.66	91	279970	9.80977		95
	1,1,1,2-Tetrachloroethane	18.11	131	177934	9.31681		95
	m&p-Xylene	18.31	106	700663	18.98858		96
	o-Xylene	19.05	106	360491	9.92374		91
	Styrene	19.07	104	567228	9.91999		94
	2-Hexanone	16.06	43	45447	8.33506		92
	1,3-Dichloropropane	16,45	76	192147	8.87408		97
	Dibromochloromethane	16.92	129	140161	8.97062		92
	Chlorobenzene	18.06	112	532417	9.65645		92
	Ethylbenzene	18.16	91	898461	9,65247		98
	Bromoform	19.58	173	79424	8.59872		98
	MIBK (methyl isobutyl keto	14.63	43	77016	8.60350		91
_	Isopropylbenzene	19.68	105	850153	9.92433		99
	1,1,2,2-Tetrachloroethane	19.85	83	108026	8,81664		96 99
	1,2,3-Trichloropropane	20.10	110	10182	8.29882 8.27196		95 86
	t-1,4-Dichloro-2-Butene	20.17 20.43	53 156	23577 231942	9.68972		89
	Bromobenzene	20.39	91	1013089	9.87976		99
	n-Propylbenzene 4-Ethyltoluene	20.58	105	600114	9.79478		98
	2-Chlorotoluene	20.58	91	675156	9.74187		98
	1,3,5-Trimethylbenzene	20.66	105	708155	9.98629	ppo nnh	97
	4-Chlorotoluene	20.76	91	583505	9.35631		98
	Tert-Butylbenzene	21.31	119	753100	10.06329		97
	1,2,4-Trimethylbenzene	21.36	105	717798	9,76874		98
	Sec-Butylbenzene	21.69	105	954776	9.95880		98
	p-Isopropyltoluene	21,94	119	786837	10.06749		99
	Benzyl Chloride	22,37	91	187701	8.98401		95
•	1,3-DCB	22.07	146	446784	9.96313	daa	99
	1,4-DCB	22.25	146	419786	9.67386		96
	Hexachloroethane	23.55	117	159426	10.66753		97
	n-Butylbenzene	22.64	91	678308	9.98265	ppb	96
	1,2-DCB	22.87	146	391358	9.76540	ppb	92
	1,2-Dibromo-3-chloropropan		155	16904	8.05716		95
	1,2,4~Trichlorobenzene	25,53	180	125768	10.12524	ppb	98
	Hexachlorobutadiene	25.79	223	113800	9.32118		96
	Naphthalene	25.88	128	398243	8.86106	ppb	97
	1,2,3-Trichlorobenzene	26.25	180	103368	9.76164	ppb	97

Data File: M:\CHICO\DATA\C120224\0229C03W.D

Vial: 1


Acq On : 29 Feb 12 14:36 Operator: RS, ARS : 120229A LCS-1WC : Chico Sample Inst : Water 10mLw/ IS&S:01-31C/01-03E Misc Multiplr: 1.00

Quant Time: Mar 1 8:41 2012 Quant Results File: CALLW.RES

Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Thu Mar 01 08:58:02 2012 Response via : Initial Calibration

Data File : M:\NEO\DATA\N120229\0229N16S.D Acq On : 29 Feb 12 20:24 Sample : 120229A LCS-1SN (SS) Vial: 1 Operator: SV,DG,RS
Inst : Neo
Multiplr: 1.00 : Soil 5mL w/ ISS:10-20-11 Misc

Quant Time: Mar 12 13:22 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.26	96	348992	50.00000 pr	
51) Chlorobenzene-D5 (IS)	18.43			50.00000 pg	
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	111496	50.00000 pg	ob 0.00
System Monitoring Compounds				44 00004	
30) Dibromofluoromethane(S)	11.85	111	269823	4 4 4	
Spiked Amount 41,312	10 65		Recove		
34) 1,2-DCA-D4(S)	12.65	65	304442	44.15068 pp ery = 106.0	
Spiked Amount 41.649	15 00	98	Recove 837690	-	
52) Toluene-D8(S) Spiked Amount 35,274	15.90	90	Recove		
Spiked Amount 35.274 60) 4-Bromofluorobenzene(S)	20.49	95		40.55048 pp	
Spiked Amount 35.584	20.49	93	Recove		
Target Compounds					Qvalue
2) Dichlorodifluoromethane	4.54	85	499418		b 94
3) Chloromethane	5.05	50	753955	44.47135 pp	b 99
4) Vinyl chloride	5.29	62	150464	43.80857 pp	b 100
5) Bromomethane	6.23	94	240201	48.88920 pp	
6) Chloroethane	6.41	64	325801	49.16708 pp	
7) Dichlorofluoromethane	6.51	67	922355		
8) Trichlorofluoromethane	7.04	101	436531	43.64430 pp	
9) Acrolein	7.66	56	232768		
10) Acetone	7.78	43	134032	47.76011 pp	
11) Freon-113	7.94	101	338973		
12) 1,1-DCE	8.18	96	310792	45.67482 pp	
13) t-Butanol	8.30	59	30808	226.74621 pp	
14) Methyl Acetate	8.66	43	384432	47.02747 pp	
15) Iodomethane	8.66	142	252617	49.55265 pp	
16) Acrylonitrile	9.05	53	129854	52.27442 pp	
17) Methylene chloride	8.96	86	129854 254159	54.99075 pp	
18) Carbon disulfide	9.07	76	1240021	40.50100 pp	
19) Methyl t-butyl ether (MtBE	9.36	73	930651	59.14317 ppi	
20) Trans-1,2-DCE	9.57	96	363743	49.23157 ppi	b 93
21) Diisopropyl Ether	10.21	45	1791842	58.20312 pp	
22) 1,1-DCA	10.25	63	785764	52.17028 ppl 57.58712 ppl	
23) Vinyl Acetate	10.21	43 59	1390318 1295841	58.43451 ppl	
24) Ethyl tert Butyl Ether	10.89	43	318875	46.73025 pp	
25) MEK (2-Butanone)	11 26	9.5	310013	53.49939 ppl	
26) Cis-1,2-DCE	11.20	77	318875 404674 540238	46.99320 ppl	
27) 2,2-Dichloropropane	11.53	83	673909	54.10536 ppl	95
28) Chloroform	11 76	128	127042	51.14338 pp)	89
29) Bromochloromethane	12.27	97	533764	46.72086 ppl	Š 97
31) 1,1,1-TCA	12.44	56		41.97403 ppl	
32) Cyclohexane	12.53	75	526151	47.01246 ppl	
33) 1,1-Dichloropropene 35) Carbon Tetrachloride	12.72	117	420991	49.30086 ppl	
36) Tert Amyl Methyl Ether	12.76	73	999922	59.79772 ppk	
	12.80	62	462907	54.04069 ppk	
37) 1,2-DCA	12.92	78	1442661	49.22566 ppl	
38) Benzene	13.95	95	347716	46.98468 ppk	
39) TCE 40) 2-Pentanone	13,59	43	1541256	253.97274 pph	
41) 1,2-Dichloropropane	14.16		422245	53.51438 pph	
42) Bromodichloromethane	14.52	83	515833	58.12690 pph	
			-		

^{(#) =} qualifier out of range (m) = manual integration 0229N16S.D NALLS.M Mon Mar 12 13:41:07 2012

(Not Reviewed)

Data File : M:\NEO\DATA\N120229\0229N16S.D

Vial: 1 : 29 Feb 12 20:24 Acq On Operator: SV,DG,RS : 120229A LCS-1SN (SS) Sample Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 12 13:22 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

: METHOD 8260B Title

Last Update : Mon Mar 12 13:19:57 2012 Response via : Initial Calibration

DataAcq Meth: V8260

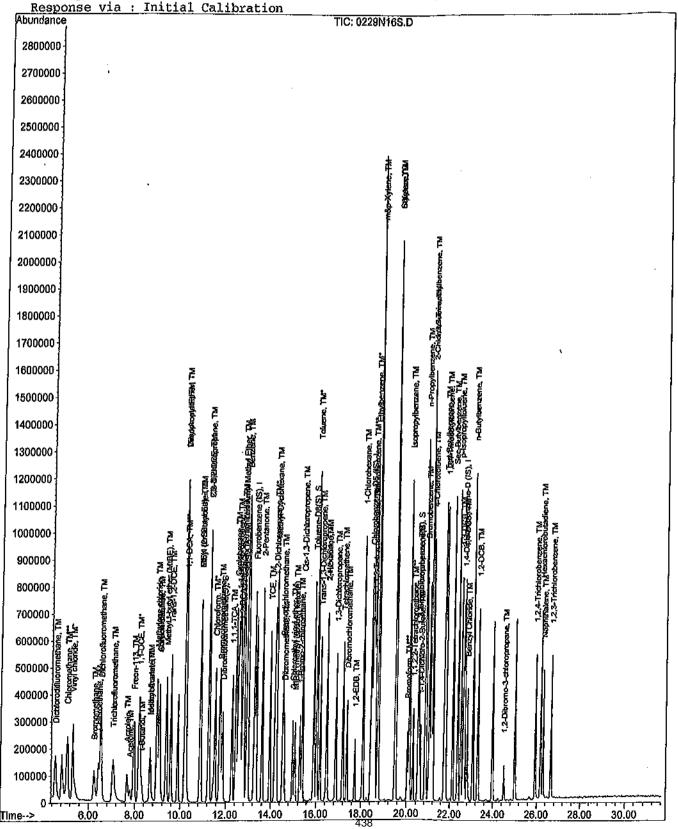
	Compound	R.T.	QIon	Response	Conc Unit Qv	alue
43) Dibromomethane	14.58	93	222196	55.43449 ppb	98
44) Methyl Cyclohexane	14.23	83	536450	41.83395 ppb	95
45) 2-Chloroethyl vinyl ether	14.95	63	197716	54,52350 ppb	100
	1-Bromo-2-chloroethane	15.28	63	470738	53.06981 ppb	95
	Cis-1,3-Dichloropropene	15.39	75	627514	57.86332 ppb	97
) Toluene	16.03	91	1438049	51.30999 ppb	99
	Trans-1,3-Dichloropropene	16.18	75	505598	54.85313 ppb	94
) 1,1,2-TCA	16.46 17.72	83	235643	56.92510 ppb	94 # 92
) 1,2-EDB) Tetrachloroethene	17.18	107 129	274138 221420	53.74122 ppb 43.51831 ppb	# 92 98
	1-Chlorohexane	18.08	91	494992	43.51831 ppb 43.61911 ppb	94
	1,1,1,2-Tetrachloroethane	18.54	131	285558	54.20577 ppb	95
	m&p-Xylene	18,74	106	1059565	98.13420 ppb	99
	o-Xylene	19.49	106	513606	52.09033 ppb	100
	Styrene	19.50	78	516357	51.20294 ppb	93
61)	2-Нежаполе	16.48	43	278706	49.69261 ppb	92
	1,3-Dichloropropane	16.88	76	484520	54.66925 ppb	98
63)	Dibromochloromethane	17.36	129	323433	53.61001 ppb	98
	Chlorobenzene	18.50	112	830848	52.63477 ppb	96
	Ethylbenzene	18.59	91	1545697	48.69569 ppb	98
	Bromoform	20.03	173	203549	56.34081 ppb	97
	MIBK (methyl isobutyl keto	15.06	43	389036	49.16985 ppb	99
	Isopropylbenzene	20.11 20.28	105	1316676	47.89121 ppb	98
	1,1,2,2-Tetrachloroethane	20.20	83 110	340818 75886	54.48460 ppb 52.44994 ppb	. 99 98
	1,2,3-Trichloropropane t-1,4-Dichloro-2-Butene	20.52	53	107904	51.32034 ppb	96 97
	Bromobenzene	20.87	156	306271	54.15940 ppb	98
	n-Propylbenzene	20.82	91	1769391	48.41531 ppb	99
	2-Chlorotoluene	21.12	91	1137814	49.48084 ppb	99
	1,3,5-Trimethylbenzene	21.09	105	1041488	48.66507 ppb	96
	4-Chlorotoluene	21.20	91	960900	49.81549 ppb	98
78)	Tert-Butylbenzene	21.75	119	1001249	47.31826 ppb	99
	1,2,4-Trimethylbenzene	21.81	105	1052711	49.52299 ppb	98
	Sec-Butylbenzene	22.14	105	1412680	45.70102 ppb	98
	p-Isopropyltoluene	22.36	119	1087533	46.73587 ppb	97
82)		22.80	91	494074	45.60699 ppb	96
83)	1,3-DCB	22.51	146	524956	50.71185 ppb	97
84)	1,4-DCB	22.67 23.06	146 91	504262 1124127	50.06678 ppb 43.04435 ppb	96
	n-Butylbenzene 1,2-DCB	23.30	146	471498	51.44321 ppb	99 98
87)	1,2-Dibromo-3-chloropropan	24.50	155	44638	51.58546 ppb	95
	1,2,4-Trichlorobenzene	25,94	180	266111	43.20498 ppb	93
	Hexachlorobutadiene	26.18	225	85872	46.03146 ppb	98
	Naphthalene	26,28	128	546100	47.77750 ppb	99
	1,2,3-Trichlorobenzene	26.65	180	251499	48.76995 ppb	93
•	* ,					

^{(#) =} qualifier out of range (m) = manual integration 0229N16S.D NALLS.M Mon Mar 12 13:41:08 2012

Data File : M:\NEO\DATA\N120229\0229N16S.D Acq On

Vial: 1 : 29 Feb 12 20:24 Operator: SV,DG,RS : 120229A LCS-1SN (SS) Inst : Neo Multiplr: 1.00

Sample Misc : Soil 5mL w/ ISS:10-20-11


Quant Results File: NALLS.RES

Quant Time: Mar 12 13:22 2012

: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Mon Mar 12 13:19:57 2012

Data File : M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 Acq On : 5 Mar 12 20:24 Operator: SV,DG,RS Sample : 120305A LCS-1SN (ss) Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	13.29	96	<u>321344</u>	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.46		209408		0.00
67) 1,4-Dichlorobenzene-D (IS)		152	87496	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.88	111	224234	36.01102 ppb	0.00
Spiked Amount 41.312	11,00		Recove		0.00
34) 1,2-DCA-D4(S)	12.67	65	245270	36.31417 ppb	0.00
Spiked Amount 41.649			Recove		0,00
52) Toluene-D8(S)	15.93	98	675554	37.32430 ppb	0.00
Spiked Amount 35.274			Recove	= 105.811%	
60) 4-Bromofluorobenzene(S)	20.53	95	230123	35.79651 ppb	0.00
Spiked Amount 35.584			Recove	erv = 100.600%	High a
_			17	26012 x 60 - 53.0	,2110113
Target Compounds		_		₹ <u>₹11₹UU X 11.</u> %4 Qva	ılue
2) Dichlorodifluoromethane	4.54	85	335455	56.2465/ ppp	87
3) Chloromethane	5.05	50	589631	56.38814 ppb	97
4) Vinyl chloride	5.29	62	126912	52.91497 ppb	100
5) Bromomethane	6.21	94	186170 248444	53.74456 ppb	90
6) Chloroethane	6.42	64	248444		93
7) Dichlorofluoromethane	6.51	67	766843		98
8) Trichlorofluoromethane	7.05	101	340253		100
9) Acrolein	7.67	56	175240		94
10) Acetone	7.79	43	103272	47.43526 ppb	89
11) Freon-113	7.97 8.19	101	243228	54.86887 ppb	97
12) 1,1-DCE		96	245234	56.16417 ppb	92
14) Methyl Acetate	8.68 8.69	43	324525	44.85377 ppb	99
15) Iodomethane 16) Acrylonitrile	9.06	142 53	203038	58.35031 ppb #	93
17) Methylene chloride	8.97	86	97677 208087	45.05894 ppb 52.30935 ppb	81
18) Carbon disulfide	9.08	76	983525	49.94762 ppb	98 96
19) Methyl t-butyl ether (MtBE		73	742651	47.14009 ppb	96 97
20) Trans-1,2-DCE	9.59	96	305791	53.90683 ppb	93
21) Diisopropyl Ether	10.22	45	1474089	50.78299 ppb	99
22) 1,1-DCA	10.27	63	658936	52.98238 ppb	99
23) Vinvl Acetate	10.22	43	1115657	48.52275 ppb	97
24) Ethyl tert Butyl Ether	10.91	59	1066830	49.92267 ppb	95
25) MEK (2-Butanone)	10.90	43	257024	49.24362 ppb	100
26) Cis-1,2-DCE	10.90 11.28 11.27		344420	53.99212 ppb	97
27) 2,2-Dichloropropane 28) Chloroform	11.27	77	454070 568244	53.34357 ppb	100
28) Chloroform	11.56	83	568244	51.96064 ppb	97
29) Bromochloromethane	11.79	128	104068	46.78457 ppb	92
31) 1,1,1-TCA	12.30	97	459913	58.40539 ppb	93
32) Cyclohexane	12.46	56	515446	56.98736 ppb	97
33) 1,1-Dichloropropene	12.56	75	418844	55.46856 ppb	93
35) Carbon Tetrachloride	12.76	117	346583	57.80661 ppb	98
36) Tert Amyl Methyl Ether	12.79	73	816710	48.54221 ppb	96
37) 1,2-DCA	12.83	62	401913	49.20284 ppb	99
38) Benzene	12.96	78	1242802	51.67268 ppb	97
39) TCE	13.98	95 43	294836	53.45039 ppb	92
40) 2-Pentanone	13.63	43	1296770	224.28545 ppb	100
41) 1,2-Dichloropropane 42) Bromodichloromethane	14.20 14.55	63	373089	51.90957 ppb	100
43) Dibromomethane		83 93	435736	52.27935 ppb	97
44) Methyl Cyclohexane	14.61 14.27	93 83	191968 389031	50.30598 ppb	97
45) 2-Chloroethyl vinyl ether	14.98	63	167288	55.19992 ppb 47.52565 ppb	92 90
20, 2 differently vinys cones			439	-1.25262 bbn	98

Data File : M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 Acq On : 5 Mar 12 20:24 Sample : 120305A LCS-1SN (ss) Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

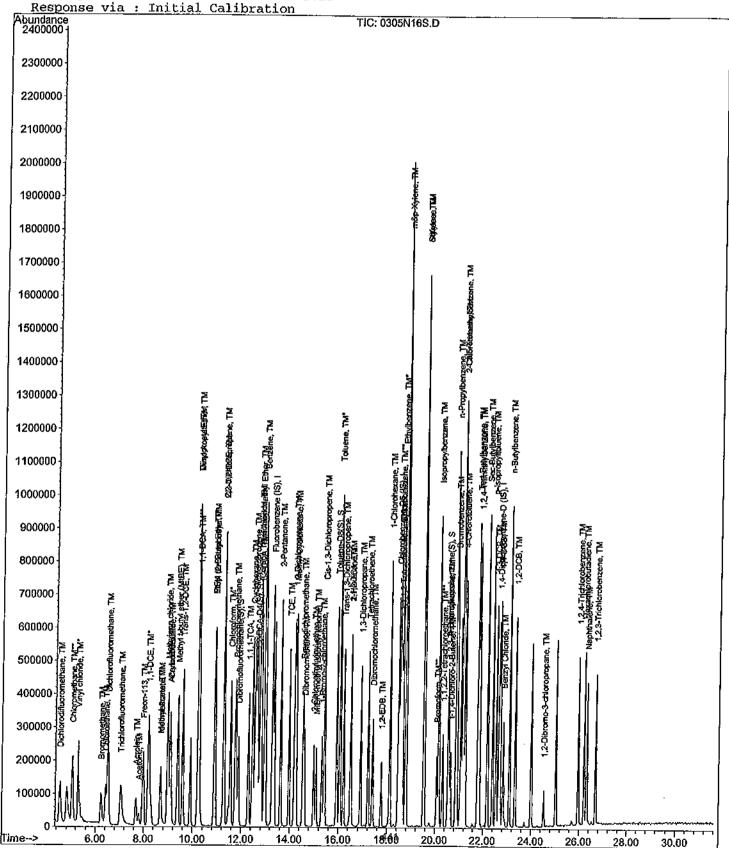
DataAcq Meth : V8260

C	Compound	R.T.	QIon	Response	Conc Unit	Qva:	lue
46) 1	Bromo-2-chloroethane	15.32	63	411148	49.70315	nnh	100
	is-1,3-Dichloropropene	15.43	75	530236	51.04770	ppb	97
	'oluene	16.06	91	1205585	53.26409	ppb	99
49) T	rans-1,3-Dichloropropene	16.21	75	438758	50.50182	ppb	96
50) 1	,1,2-TCA	16.50	83	205180	52.14894	ppb	92
	,2-EDB	17.76	107	229023	48.70315	nnh s	ŧ 92
54) T	etrachloroethene	17,22	129	187966	54.58323	nnh	93
55) 1	-Chlorohexane	18.11	91	380392	53.82433	ppb	96
56) 1	,1,1,2-Tetrachloroethane	18.58	131	242905	50.71719	ppb	96
	&p-Xylene	18.77	106	867143	107.27563	ppb	98
58) o	-Xylene	19.52	106	418565	51.63688	daa	93
59) S	tyrene	19.53	78	432895	50.20864	daa	93
	-Hexanone	16.51	43	212617	42.45705		87
62) 1	,3-Dichloropropane	16.91	76	422181	51.48649		99
63) D:	ibromochloromethane	17.40	129	288454	52.16976	daa	95
64) Cl	hlorobenzene	18.53	112	665282	50.54590	daa	95
65) E	thylbenzene	18.64	91	1281539	53.43677		96
	romoform	20.06	173	166539	49.68715	daa	98
68) MI	IBK (methyl isobutyl keto	15.08	43	321677	44.62852		98
69) Is	sopropylbenzene	20.15	105	1069912	52.99259		98
70) 1,	,1,2,2-Tetrachloroethane	20.31	83	281012	47.18320	daa	97
71) 1,	,2,3-Trichloropropane	20.56	110	61600	48.49258	daa	97
72) t-	-1,4-Dichloro-2-Butene	20.63	53	85409	46.47239	ppb	99
73) Br	romobenzene	20.90	156	243621	47.28890	daa	91
74) n-	-Propylbenzene	20.86	91	1444105	53.64680	daa	98
	-Chlorotoluene	21.15	91	986065	53.58438	daa	99
76) 1,	,3,5-Trimethylbenzene	21.13	105	902568	54.09371		99
77) 4-	-Chlorotoluene	21.23	91	737425	45.45423	daa	97
	ert-Butylbenzene	21.78	119	808680	51.86856	dqq	98
79) 1,	2,4-Trimethylbenzene	21.84	105	847006	49.73673	ppb	98
	ec-Butylbenzene	22.18	105	1160049	53.48817	dqq	97
	-Isopropyltoluene	22.39	119	825975	49.44794	ppb	100
	en zyl Chloride	22.83	91	376690	39.02749	ppb	96
	3-DCB	22.54	146	420416	47.85082	ppb	96
	4-DCB	22.71	146	410437	46.19495	ppb	98
85) n-	Butylbenzene	23.09	91	897160	50.83819	ppb	98
	2-DCB	23.33	146	395545	49.13930	ppb	100
	2-Dibromo-3-chloropropan	24.53	155	35921	51.55985	dqq	75
	2,4-Trichlorobenzene	25.97	180	228769	43.48270	ppb	98
	exachlorobutadiene	26.21	225	170824	54.27756	ppb	91
	phthalene	26.31	128	501145	46.67934	dqq	100
91) 1,	2,3-Trichlorobenzene	26.69	180	224049	52.24692	ppb	96

Data File : M:\NEO\DATA\N120305\0305N16S.D

Acq On : 5 Mar 12 20:24 Sample : 120305A LCS-1SN (ss) Misc : Soil 5mL w/IS&S:10-20-11 Vial: 1
Operator: SV,DG,RS
Inst : Neo
Multiplr: 1.00

Quant Time: Mar 6 9:32 2012


Quant Results File: NALLS.RES

Method

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update: Tue Mar 06 09:31:20 2012

Data File: M:\THOR\DATA\T120307\0307T13S.D Vial: 13

Acq On : 7 Mar 12 13:30 Sample : 120306A LCS-1ST Operator: DG,RS,HW,ARS,SV

Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 13:53 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 12:38:41 2012 Response via : Initial Calibration

DataAcq Meth : 8260_BETA

1 Fluorobenzene (IS)	Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
Spice Spic	1) Fluorobenzene (IS)	6.75		454080	50.00000 ppb	0.00
System Monitoring Compounds 31) Dibromofluoromethane (S) Spiked Amount 74.267 6.35 65 111 212930 75.81296 ppb 0.00 Recovery = 102.0828 15789 67.06089 ppb 0.00 Recovery = 102.0828 15789 67.06089 ppb 0.00 Recovery = 102.6338 0.00 Recovery = 103.6198 0.00 0.00 Recovery = 103.6198 0.00 0.00 Recovery = 103.6198 0.00 0.0				369536	50.00000 ppb	
31) Dibromofiluoromethane(s) 5.96 111 212930 75.81296 ppb 0.00	70) 1,4-Dichlorobenzene-D (IS)	12.21	152	216640	50.00000 ppb	0.00
Spiked Amount	System Monitoring Compounds					
Spiked Amount 74.267 6.35 65 215789 67.06089 ppb 0.00 Spiked Amount 65.341 8.44 98 797795 86.16210 ppb 0.00 Spiked Amount 77.736 77.736 797795 86.16210 ppb 0.00 Spiked Amount 77.736 77.736 797795 86.16210 ppb 0.00 Recovery = 102.082% 797795 86.16210 ppb 0.00 Recovery = 103.419% 797795 797795 7977976 79779776 7977976 7977976 7977976 79779776 79779776 79779776 79779776 79779776 79779776 797797776 797797776 797797776 797797776 797797776 7977977776 7977977776 7977977776 79779777776 797797777777777		5.96	111	212930	75.81296 ppb	0.00
Spiked Amount 65.341 8.44 98 797795 86.16210 ppb 0.00					ery = 102.082%	
Spiked Amount 83,313 64) 4-Bromofluorobenzene Spiked Amount 83,313 77,31316 Ppb 86,16210 Ppb 98 30,331 73,31316 Ppb 0.00 Spiked Amount 77,736 77,736 73,30331 73,31316 Ppb 0.00 Spiked Amount 77,736 77,736 73,30331 73,31316 Ppb 0.00 Spiked Amount 77,736 77,736 73,30331 73,31316 Ppb 0.00 Spiked Amount 77,736 77,736 73,31316 Ppb 0.00 Ppb 73,31316 Ppb 0.00 Ppb 73,31316 Ppb 0.00 Ppb 73,31316 Ppb 0.00 Ppb		6.35	6 5			0.00
Spiked Amount Spiked Amount 77.736 Spi				Recove	ery = 102.633%	
Spiked Amount 77.736 Target Compounds 11.06 95 300331 73.31316 ppb 0.00		8.44	98			0.00
Target Compounds		11 00	0.5		= 103.419%	
Target Compounds 2) Dichlorodifluoromethane 1		11.06	95			0.00
2	-			1.0007	52, - 51.5100	
3) Freon 114 4) Chloromethane 1.45 50 124610 41.76117 ppb 99 5) Vinyl chloride 1.56 62 75544 38.72612 ppb 96 6) Bromomethane 1.86 96 91905 41.80592 ppb 98 7) Chloroethane 1.97 49 10796 33.3689 ppb 99 8) Dichlorofluoromethane 2.19 67 213194 44.96196 ppb 99 9) Trichlorofluoromethane 2.24 101 114194 36.91798 ppb 98 10) Acrolein 2.71 56 33544 232.07447 ppb 99 11) Acetone 2.91 43 35324 47.56124 ppb 97 12) Freon-113 2.86 101 70352 36.82452 ppb 96 13) 1,1-DCE 2.82 96 78598 41.54179 ppb 91 14) t-Butanol 3.78 59 55431 236.26172 ppb 100 15) Methyl Acetate 3.37 43 114035 48.66286 ppb 99 16) Iodomethane 2.98 142 165131 51.46545 ppb 99 17) Acrylonitrile 3.94 53 43398 50.81908 ppb 92 18) Methylene chloride 3.46 84 147651 48.76814 ppb 97 19) Carbon disulfide 3.06 76 287018 41.6119 ppb 90 20) Methyl t-butyl ether (MtBE 3.95 73 346296 49.50473 ppb 99 21) Trans-1,2-DCE 3.88 96 110794 44.90169 ppb 95 22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 22,2-Dichloropropane 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 22,2-Dichloropropane 5.42 43 44541 48.93436 ppb 93 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromomochloromethane 5.64 128 79434 49.8869 ppb 97 33) Cyclohexane 6.04 41 59605 37.07809 ppb 99 34) 1,1-DCA 6.48 62 186583 48.8967 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 36) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Bernomochloromethane 6.61 73 337999 52.84636 ppb 99 34) 1,2-Dichloropropane 7.39 43 392035 241,9111 ppb 100 44) 1,2-Dichloropropane 7.39 43 392035 241,9111 ppb 100 44) 1,2-Dichloropropane 7.39 43 392035 241,9111 ppb 100		1 20	95	71260		_
A Chloromethane					34.63633 ppp	
Simple chloride					41 76117 ppb	
6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane 8) Dichlorofluoromethane 8) Dichlorofluoromethane 9) Trichlorofluoromethane 9) Trichlorofluoromethane 9) Trichlorofluoromethane 1, 97 49 10796 9) Trichlorofluoromethane 1, 97 49 10796 9) Prichlorofluoromethane 2, 19 67 213194 44, 96196 ppb 99 11) Acetone 2, 91 43 35324 47, 56124 ppb 97 12) Freon-113 2, 86 101 70352 36, 82452 ppb 96 13) 1, 1-DCE 2, 82 96 78598 41, 54179 ppb 91 14) t-Butanol 3, 78 59 55431 236, 26172 ppb 100 15) Methyl Acetate 3, 37 43 114035 48, 06286 ppb 99 17) Acrylonitrile 3, 84 53 43398 50, 81908 ppb 92 18) Methylene chloride 3, 46 84 147651 48, 76814 ppb 97 19) Carbon disulfide 3, 06 76 287018 41, 61819 ppb 100 20) Methyl t-butyl ether (MtBE 3, 95 73 346296 49, 50473 ppb 99 21) Trans-1, 2-DCE 3, 88 96 10, 10794 44, 90169 ppb 95 22) Diisopropyl Ether 4, 74 45 395432 49, 88410 ppb 97 23) 1, 1-DCA 4, 53 63 200995 46, 25635 ppb 98 24) Vinyl Acetate 4, 75 87 109117 49, 80516 ppb 100 25) Ethyl tert Butyl Ether 5, 24 59 342215 51, 14382 ppb 97 26) MEK (2-Butanone) 5, 42 43 44541 48, 93366 ppb 92 27) Cis-1, 2-DCE 5, 35 96 143961 46, 87014 ppb 100 28) 2, 2-Dichloropropane 5, 34 77 127859 42, 78721 ppb 99 29) Chloroform 5, 77 83 226912 47, 37464 ppb 100 28) 2, 2-Dichloropropene 5, 34 77 127859 42, 78721 ppb 99 31) 1, 1-DCA 40, 41, 42, 43, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45					39 72612 ppb	
7) Chloroethane					41 80592 ppb	
8) Dichlorofluoromethane 2.19 67 213194 44.96196 ppb 99 1 Trichlorofluoromethane 2.24 101 114194 36.91798 ppb 98 10) Acrolein 2.71 56 33544 232.07447 ppb 99 11) Acetone 2.91 43 35324 47.56124 ppb 97 12) Freon-113 2.86 101 70352 36.82452 ppb 96 13) 1,1-DCE 2.82 96 78598 41.54179 ppb 91 14) t-Butanol 3.78 59 55431 236.26172 ppb 100 15) Methyl Acetate 3.37 43 114035 48.06286 ppb 99 16) Todomethane 2.98 142 165131 51.46545 ppb 99 17) Acrylonitrile 3.84 53 43398 50.81908 ppb 92 18) Methylene chloride 3.46 84 147651 48.76814 ppb 97 19) Carbon disulfide 3.06 76 287018 41.61819 ppb 100 20) Methyl t-butyl ether (MtBE 3.95 73 346296 49.50473 ppb 99 21) Trans-1,2-DCE 3.88 96 110794 44.90169 ppb 95 22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 97 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 98 35) 22,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 98 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 39 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 99 39 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 43 392035 241.91111 ppb 100 4	7) Chloroethane	1.97			39 33689 nnh	
9) Trichlorofluoromethane	8) Dichlorofluoromethane	2.19				
10) Acrolein					36.91798 ppb	
11) Acetone			56			
12 Freon-113					47.56124 ppb	
13) 1,1-DCE		2.86	101	70352	36.82452 ppb	
15) Methyl Acetate 16) Iodomethane 17) Acrylonitrile 17) Acrylonitrile 18) Methylene chloride 18) Methylene chloride 19) Carbon disulfide 19) Carbon disulfide 19) Carbon disulfide 19) Methyl t-butyl ether (MtBE 19) Trans-1,2-DCE 10) Diisopropyl Ether 11,1-DCA 12,1 Trans-1,2-DCE 13,1 Methyl Acetate 14,74				78598	41 .541 7 9 ppb	91
16) Todomethane 2.98 142 165131 51.46545 ppb 99 17) Acrylonitrile 3.84 53 43398 50.81908 ppb 92 18) Methylene chloride 3.46 84 147651 48.76814 ppb 97 19) Carbon disulfide 3.06 76 287018 41.61819 ppb 100 20) Methyl t-butyl ether (MtBE 3.95 73 346296 49.50473 ppb 99 21) Trans-1,2-DCE 3.88 96 110794 44.90169 ppb 95 22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859	14) t-Butanol	3.78			236.26172 ppb	100
18) Methylene chloride	15) Methyl Acetate	3.37				
18) Methylene chloride	16) Iodomethane	2.98				
19) Carbon disulfide 20) Methyl t-butyl ether (MtBE 3.95 73 346296 49.50473 ppb 99 21) Trans-1,2-DCE 3.88 96 110794 44.90169 ppb 95 22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 43 142358 48.09548 ppb 98				43398	50.81908 ppb	
20) Methyl t-butyl ether (MtBE 3.95 73 346296 49.50473 ppb 99 21) Trans-1,2-DCE 3.88 96 110794 44.90169 ppb 95 22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.9111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98			_	14/651		
21) Trans-1,2-DCE			-		41.61819 ppp	
22) Diisopropyl Ether 4.74 45 395432 49.88410 ppb 97 23) 1,1-DCA 4.53 63 200995 46.25635 ppb 98 24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058	21) Trans-1.2-DCE				49.304/3 ppp 44.90160 ppb	
23) 1,1-DCA					49 88410 ppb	
24) Vinyl Acetate 4.75 87 109117 49.80516 ppb 100 25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337	23) 1.1-DCA				46.25635 ppb	
25) Ethyl tert Butyl Ether 5.24 59 342215 51.14382 ppb 97 26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98				109117	49.80516 ppb	
26) MEK (2-Butanone) 5.42 43 44541 48.93436 ppb 92 27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98	25) Ethyl tert Butyl Ether	5.24		342215	51.14382 ppb	
27) Cis-1,2-DCE 5.35 96 143961 46.87014 ppb 100 28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb </td <td>26) MEK (2-Butanone)</td> <td>5.42</td> <td>43</td> <td>44541</td> <td>48.93436 ppb</td> <td></td>	26) MEK (2-Butanone)	5.42	43	44541	48.93436 ppb	
28) 2,2-Dichloropropane 5.34 77 127859 42.78721 ppb 99 29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98	27) Cis-1,2~DCE	5.35	96	143961	46.87014 ppb	
29) Chloroform 5.77 83 226912 47.37464 ppb 100 30) Bromochloromethane 5.64 128 79434 49.80869 ppb 97 32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb<	28) 2,2-Dichloropropane			127859	42.78721 ppb	99
32) 1,1,1-TCA 5.97 97 140827 44.79849 ppb 98 33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98	29) Chloroform				47.37464 ppb	100
33) Cyclohexane 6.04 41 59605 37.07805 ppb 97 34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					49.80869 ppb	97
34) 1,1-Dichloropropene 6.18 75 114909 43.10406 ppb 99 35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98						
35) 2,2,4-Trimethylpentane 6.56 57 257058 34.88657 ppb 99 37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					37.07805 ppb	
37) Carbon Tetrachloride 6.18 117 111614 41.22545 ppb 99 38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98						
38) Tert Amyl Methyl Ether 6.61 73 337999 52.84636 ppb 99 39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					34.88657 ppb	
39) 1,2-DCA 6.44 62 186583 48.59941 ppb 100 40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					41.22545 ppb	
40) Benzene 6.41 78 478238 46.72802 ppb 98 41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					52.84636 ppp	
41) TCE 7.16 95 116705 43.11260 ppb 99 42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					46.39941 ppb	
42) 2-Pentanone 7.39 43 392035 241.91111 ppb 100 43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					40.14004 ppp 13 11260 ssh	
43) 1,2-Dichloropropane 7.39 63 142358 48.09548 ppb 98					241 91111 nnh	
					48.09548 pph	

^{(#) =} qualifier out of range (m) = manual integration 0307T13S.D TALLS.M Thu Mar 08 07:33:27 2012

Vial: 13

Data File : M:\THOR\DATA\T120307\0307T13S.D Acq On : 7 Mar 12 13:30 Operator: DG,RS,HW,ARS,SV

: 120306A LCS-1ST Sample Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 13:53 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 12:38:41 2012

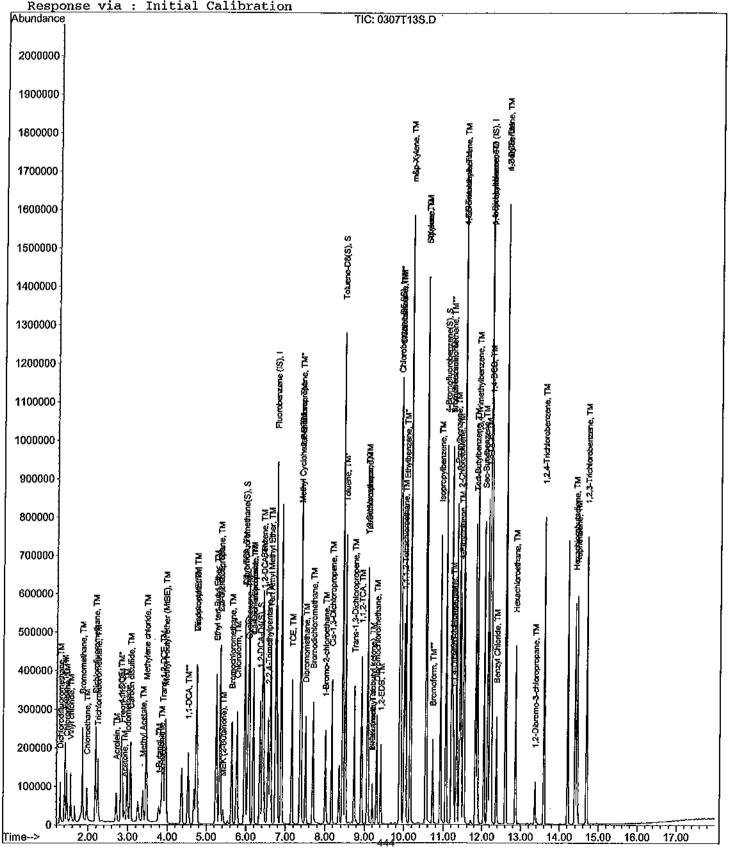
Response via : Initial Calibration

DataAcq Meth: 8260_BETA

Compound	R.T.	QIon	Response	Conc Unit Q	value
45) Methyl Cyclohexane	7.37	83	112224	37.97615 ppb	99
46) Dibromomethane	7.51	93	91165	50.80854 ppb	
48) MIBK (methyl isobutyl ket	9.20	43	61721	48.83931 ppb	
49) 1-Bromo-2-chloroethane	8.00	63	114776	52.71407 ppb	
50) Cis-1,3-Dichloropropene	8.17	75	196062	49.44395 ppb	98
51) Toluene	8.51	91	320448	46.76331 ppb	
52) Trans-1,3-Dichloropropene	8.74	75	176378	51.52539 ppb	
53) 1,1,2-TCA	8.92	83	109086	49.68485 ppb	
54) 2-Hexanone	9.20	43	61721	48.83931 ppb	
57) 1,2-EDB	9.41	107	126720	51.31181 ppb	
58) Tetrachloroethene	9.07 9.92	164	93848	42.03327 ppb	
59) 1-Chlorohexane 60) 1,1,1,2-Tetrachloroethane	10.00	91 131	114275	41.05658 ppb	
61) m&p-Xylene	10.00	106	137128 432765	49.00003 ppb	97
62) o-Xylene	10.16	106	221413	96.46232 ppb 49.12731 ppb	97
63) Styrene	10.56	104	410022	44.35758 ppb	98 100
65) 1,3-Dichloropropane	9.08	76	210678	50.10758 ppb	98
66) Dibromochloromethane	9.31	129	141395	49.67193 ppb	98
67) Chlorobenzene	9.92	112	380684	46.03811 ppb	100
68) Ethylbenzene	10.04	91	542611	46.31077 ppb	99
69) Bromoform	10.73	173	99103	51.10104 ppb	99
71) Isopropylbenzene	10.92	105	460554	44.92326 ppb	99
72) 1,1,2,2-Tetrachloroethane	11.20	83	162169	49.37629 ppb	100
73) 1,2,3-Trichloropropane	11.24	110	47989	50.22600 ppb	96
74) t-1,4-Dichloro-2-Butene	11.26	53	35940	52.25611 ppb	98
75) Bromobenzene	11.21	156	185118	47.01903 ppb	98
76) n-Propylbenzene	11.33	91	607200	45.13191 ppb	100
77) 4-Ethyltoluene	11.45	105	372652	46.48552 ppb	98
78) 2-Chlorotoluene	11.41	91	465598	46.84259 ppb	98
79) 1,3,5-Trimethylbenzene	11.51	105	474129	47.97440 ppb	100
80) 4-Chlorotoluene	11.51	91	502359	47.33679 ppb	99
81) Tert-Butylbenzene	11.83	119	356093	44.93703 ppb	99
82) 1,2,4-Trimethylbenzene	11.88	105	500642	49.39870 ppb	9 9
83) Sec-Butylbenzene	12.05	105	520860	44.57802 ppb	99
84) p-Isopropyltoluene	12.20	119	464123	46.07490 ppb	100
85) Benzyl Chloride	12.37	91	193480	49.47637 ppb	98
86) 1,3-DCB	12.15	146	345490	45.22066 ppb	98
87) 1,4-DCB	12.24	146	362706	45.54694 ppb	99
88) n-Butylbenzene	12.61	91	429556	44.79087 ppb	98
89) 1,2~DCB	12.60 12.87	146	342955 79474	46.88290 ppb	98
90) Hexachloroethane 91) 1,2-Dibromo-3-chloropropan	13.37	117 157	31373	41.03796 ppb	99
92) 1,2,4-Trichlorobenzene	13.60	180	267661	52.47771 ppb 45.69911 ppb	99
93) Hexachlorobutadiene	14.40	225	117690	41.98382 ppb	100 99
94) Naphthalene	14.45	128	474372	47.72861 ppb	99
95) 1,2,3-Trichlorobenzene	14.69	180	243530	50.40778 ppb	96
ze, zinie zrzenienomonie	10.00	100	243330	colsollo bbn	30

Data File : M:\THOR\DATA\T120307\0307T13S.D

Vial: 13 : 7 Mar 12 13:30 Acq On Operator: DG, RS, HW, ARS, SV


Sample : 120306A LCS-1ST Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 7 13:53 2012 Quant Results File: TALLS.RES

: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Vial: 22

Operator: DG,RS,HW,ARS,SV

Data File : M:\THOR\DATA\T120307\0308T22S.D Acq On : 7 Mar 12 16:48 Sample : AY55855S01 5.010 MS-1ST Sample Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 8 7:26 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration DataAcq Meth : 8260_BETA

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
	6.75		442624		0.00
	9.89		353280	50.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	12.21	152	199552	50.00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	5.97	111	210893	77.03111 ppb	0.00
Spiked Amount 74.267			Recove		
36) 1,2-DCA-D4(S)	6.35	65		69.41315 ppb	0.00
Spiked Amount 65.341			Recove	ery = 106.232%	
56) Toluene-D8(S)	8.45	98		88.62871 ppb	0.00
Spiked Amount 83.313			Recove		
64) 4-Bromofluorobenzene(S)	11.06	95		73.36956 ppb	0.00
Spiked Amount 77.736			Recove	ery = 94.383%	
Target Compounds				Qv	alue
Dichlorodifluoromethane	1.30	85	217896		97
3) Freon 114	1.42	85	167326	103.89715 ppb	92
4) Chloromethane	1.46	50	199986	68.62084 ppb	98
5) Vinyl chloride	1.57	62	178112	93.48327 ppb	99
6) Bromomethane	1.87	96	120402	56.07496 ppb	96
7) Chloroethane8) Dichlorofluoromethane	1.98	49	21656	80.78896 ppb	93
		67	351778	75.95837 ppb	100
9) Trichlorofluoromethane		101	279452	92.49931 ppb	97
10) Acrolein	2.72	56	279452 32888 38603 175272	232.96283 ppb 54.32791 ppb	97
11) Acetone	2.93 2.87	43 101	1752 7 2	93.93118 ppb	99 99
12) Freon-113 13) 1,1-DCE	2.84	96	159167	86.13179 ppb	99 97
14) t-Butanol	3.79	59	56844	248.06297 ppb	98
15) Methyl Acetate	3.38	43	116057	50.30591 ppb	98
16) Iodomethane	3.00	142	259510	82.80907 ppb	100
17) Acrylonitrile	3.85	53	38952	46.70071 ppb	96
18) Methylene chloride	3.47	84	189092	64.32079 ppb	99
19) Carbon disulfide	3.07	76	508482	75.48946 ppb	99
20) Methyl t-butyl ether (MtBE	3.96	73	366382	53.62533 ppb	100
21) Trans-1,2-DCE	3.89	96	175015	72.62036 ppb	98
22) Diisopropyl Ether	4.75	45	449862	58.10404 ppb	98
23) 1,1-DCA	4.54	63	290745	68.50701 ppb	100
24) Vinyl Acetate	4.75	87	124898	58.36790 ppb	95
25) Ethyl tert Butyl Ether	5.25 5.42	59	369185	56.49042 ppb	98
	5.42	43	369185 45660 188065	51.44008 ppb	94
	5.35		100000	on toos oo pp.	98
28) 2,2-Dichloropropane	5.34	77	235573	80.71324 ppb	96
29) Chloroform	5.78		295255		100
30) Bromochloromethane	5.65	128	85555	54.92635 ppb	98
32) 1,1,1-TCA	5.98	97	256680	83.59998 ppb	98
33) Cyclohexane	6.05	41	140961	89.77797 ppb	92
34) 1,1-Dichloropropene	6.19	75 57	222435	85.42873 ppb	98
35) 2,2,4-Trimethylpentane	6.56 6.18	57 117	564899 226175	72.93884 ppb 85.53187 ppb	100
37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether	6.62	73	358667	57.41531 ppb	100
39) 1,2-DCA	6.44	62	201418	53.71479 ppb	98 100
40) Benzene	6.42	78	676260	67.65246 ppb	99
41) TCE	7.16	95	184278	69.69873 ppb	99
42) 2-Pentanone	7.39	43	407140	257.22395 ppb	99
43) 1,2-Dichloropropane	7.39	63	174457	60.34585 ppb	100
44) Bromodichloromethane	7.70	83	209370	58.24884 ppb	98
,					

^{(#) =} qualifier out of range (m) = manual integration 0308T22S.D TALLS.M Thu Mar 08 07:27:15 2012

Data File: M:\THOR\DATA\T120307\0308T22S.D Vial: 22

Acq On : 7 Mar 12 16:48 Sample : AY55855S01 5.010 MS-1ST Operator: DG,RS,HW,ARS,SV

Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 8 7:26 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B
Last Update : Wed Mar 07 14:10:30 2012
Response via : Initial Calibration
DataAcq Meth : 8260_BETA

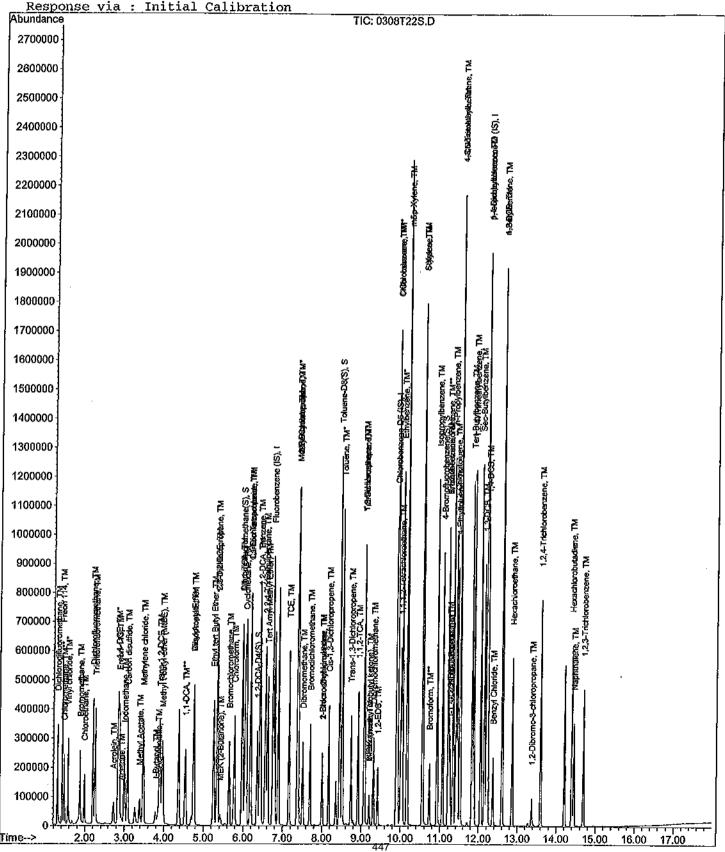
Compound	R.T.	QIon	Response	Conc Unit Qu	alue/
45) Methyl Cyclohexane	7.37	83	271894	94.20230 ppb	100
46) Dibromomethane	7.51	93	92269	52.65033 ppb	97
47) 2-Chloroethyl vinyl ether	8.01	106	35 12	42.23390 ppb	# 89
48) MIBK (methyl isobutyl ket	9.20	43	63700	51.60748 ppb	98
49) 1-Bromo-2-chloroethane	8.01	63	116264	54.67105 ppb	100
50) Cis-1,3-Dichloropropene	8.17	75	217462	56.14871 ppb	100
51) Toluene	8.51	91	464000	69.32699 ppb	100
52) Trans-1,3-Dichloropropene	8.74	75	182126	54.47353 ppb	99
53) 1,1,2-TCA	8.92	83	113316	52.84244 ppb	98
54) 2-Hexanone	9.20	43	63700	51.60748 ppb	98
57) 1,2-EDB	9.41	107	124689	52.70809 ppb	99
58) Tetrachloroethene	9.07	164	165636	77.44615 ppb	95
59) 1-Chlorohexane	9.92	91	220845	82.83160 ppb	96
60) 1,1,1,2-Tetrachloroethane	10.00	131	159047	59.32977 ppb	99
61) m&p-Xylene	10.16	106	628722	146.29894 ppb	98
62) o-Xy1ene	10.55	106	286643	66.39542 ppb	97
63) Styrene	10.56	104	482365	53.80284 ppb	98
65) 1,3-Dichloropropane	9.08	76	217389	53.97576 ppb	98
66) Dibromochloromethane	$9.31 \\ 9.92$	129 112	145710	53.43715 ppb	98
67) Chlorobenzene			470477	59.39751 ppb	98
68) Ethylbenzene 69) Bromoform	10.04 10.73	91	815610	72.66962 ppb	100
71) Isopropylbenzene	10.73	$\frac{173}{105}$	96093 731971	51.72632 ppb	99
72) 1,1,2,2-Tetrachloroethane	11.20	83	154809	77.35820 ppb 51.07033 ppb	100 100
73) 1,2,3-Trichloropropane	11.24	110	43679	49.53149 ppb	95
74) t-1,4-Dichloro-2-Butene	11.26	53	32665	51.45925 ppb	99
75) Bromobenzene	11.21	156	200513	55.18097 ppb	98
76) n-Propylbenzene	11.33	91	935329	75.32483 ppb	100
77) 4-Ethyltoluene	11.45	105	545581	73.73866 ppb	99
78) 2-Chlorotoluene	11.41	91	594008	64.75061 ppb	98
79) 1,3,5-Trimethylbenzene	11.51	105	661645	72.53705 ppb	100
80) 4-Chlorotoluene	11.51	91	617101	63.00322 ppb	100
81) Tert-Butylbenzene	11.83	119	547621	74.87604 ppb	99
82) 1,2,4-Trimethylbenzene	11.88	105	639076	68.32232 ppb	99
83) Sec-Butylbenzene	12.05	105	817968	75.85040 ppb	99
84) p-Isopropyltoluene	12.20	119	683910	73.56175 ppb	100
85) Benzyl Chloride	12.37	91	159651	44.23390 ppb	99
86) 1,3-DCB	12.15	146	374561	53.11849 ppb	99
87) 1,4-DCB	12.24	146	377375	51.34514 ppb	99
88) n-Butylbenzene	12.61	91	610667	68.99156 ppb	99
89) 1,2-DCB	12.60	146	333094	49.33623 ppb	98
90) Hexachloroethane	12.87	117	97674	54.64640 ppb	98
91) 1,2-Dibromo-3-chloropropan	13.37	157	25204	45.67832 ppb	98
92) 1,2,4-Trichlorobenzene	13.60	180	258394	47.79988 ppb	100
93) Hexachlorobutadiene	14.40	225	123766	47.83718 ppb	99
94) Naphthalene	14.45	128	273910	31.45475 ppb	100
95) 1,2,3-Trichlorobenzene	14.69	180	155118	34.78797 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0308T22S.D TALLS.M Thu Mar 08 07:27:16 2012

Data File : M:\THOR\DATA\T120307\0308T22S.D

Acq On : 7 Mar 12 16:48

Vial: 22 Operator: DG,RS,HW,ARS,SV Inst : Thor


Quant Time: Mar 8 7:26 2012 Qua

Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012

Data File : M:\THOR\DATA\T120307\0308T23S.D Vial: 23

Acq On : 7 Mar 12 17:10 Sample : AY55855S01 5.012 MSD-1ST Operator: DG,RS,HW,ARS,SV

Inst : Thor : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Misc

Quant Time: Mar 8 7:26 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration DataAcq Meth : 8260_BETA

Internal Standards	R.T.	QIon	Response	Conc Units Do	ev(Min)
1) Fluorobenzene (IS)	6.75	96	451648	50.00000 ppb	0.00
55) Chlorobenzene-D5 (IS)	9.89	117	351744	50.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)			200768	50.00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	5. 96	111	212111	75.92802 ppb	0.00
Spiked Amount 74.267	6 25		Recove		
36) 1,2-DCA-D4(S) Spiked Amount 65.341	6.35	65	211914	66.21128 ppb	0.00
56) Toluene-D8(S)	8.44	98	Recove		
Spiked Amount 83.313	0.44	30	Recove	88.74830 ppb ery = 106.5238	0.00
64) 4-Bromofluorobenzene(S)	11.06	95		74.16589 ppb	0.00
Spiked Amount 77.736	11.00	93	Recove		
25-11-11 1-11-04110			1100040	.ry - 55.40%	•
Target Compounds				C	va1ue
Dichlorodifluoromethane	1.41	85	177190	89.64854 ppb	97
3) Freon 114	1.41	85	166295	101.15738 ppb	97
4) Chloromethane	1.45	50	161163	54.17513 ppb	97
5) Vinyl chloride	1.56	62	128616	66.13234 ppb	99
6) Bromomethane	1.86	96	104031	47.46530 ppb	95
7) Chloroethane	1.97	49	16696	61.01890 ppb	95
8) Dichlorofluoromethane	2.19	67	344822	72.94241 ppb	98
9) Trichlorofluoromethane	2.24	101	209016	67.77804 ppb	98
10) Acrolein	2.71	56	31232	216.73405 ppb	97
11) Acetone	2.91	43	44555	62.73446 ppb	99
12) Freon-113 13) 1,1-DCE	2.86 2.82	101	176495	92.66332 ppb	97
14) t-Butanol	3.78	96 50	151696	80.41975 ppb	99
15) Methyl Acetate	3.70	59 43	61688 114314	263.72797 ppb 48.36643 ppb	94 100
16) Iodomethane	2.98	142	241041	75.35168 ppb	97
17) Acrylonitrile	3.84	53	36578	42.96273 ppb	96
18) Methylene chloride	3.46	84	174600	58.06991 ppb	99
19) Carbon disulfide	3.06	76	455703	66.27822 ppb	99
20) Methyl t-butyl ether (MtBE	3.95	73	359046	51.48303 ppb	99
21) Trans-1,2-DCE	3.88	96	163904	66.62709 ppb	98
22) Diisopropyl Ether	4.74	45	438406	55.47300 ppb	99
23) 1,1-DCA	4.53	63	282824	65.28557 ppb	98
24) Vinyl Acetate	4.75	87	124505	57.00114 ppb	100
25) Ethyl tert Butyl Ether	5.25	59	359492	53.88876 ppb	95
	5.42		52026	57.60052 ppb	100
27) Cis-1,2-DCE	5.35	96		59.02617 ppb	98
28) 2,2-Dichloropropane	5.34	77	220220	10.10000 Ppn	96
29) Chloroform 30) Bromochloromethane	5.78 5.64	83 128	285067 83206	59.69669 ppb 52.33210 ppb	99
32) 1,1,1-TCA	5.98	97	247559	78.98980 ppb	98 100
33) Cyclohexane	6.04	41	142395	88.84720 ppb	97
34) 1,1-Dichloropropene	6.18	75	219454	82.57004 ppb	99
35) 2,2,4-Trimethylpentane	6.56	57	563836	71.41787 ppb	99
37) Carbon Tetrachloride	6.18	117	220725	81.77359 ppb	99
38) Tert Amyl Methyl Ether	6.62	73	350163	54.91421 ppb	98
39) 1,2-DCA	6.44	62	192302	50.24092 ppb	99
40) Benzene	6.41	78	660002	64.68348 ppb	100
41) TCE	7.16	95	177859	65.90304 ppb	98
42) 2-Pentanone	7.39	43	430647	266.54298 ppb	98
43) 1,2-Dichloropropane	7.39	63	170424	57.75212 ppb	100
44) Bromodichloromethane	7.69	83	201473	54.91208 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0308T23S.D TALLS.M Thu Mar 08 07:27:18 2012

Data File : M:\THOR\DATA\T120307\0308T23S.D Vial: 23

Operator: DG,RS,HW,ARS,SV

Acq On : 7 Mar 12 17:10 Operator: DG,RS
Sample : AY55855S01 5.012 MSD-1ST Inst : Thor
Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 1.00 Inst : Thor

Quant Time: Mar 8 7:26 2012 Quant Results File: TALLS.RES

Quant Method: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

: METHOD 8260B

Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration

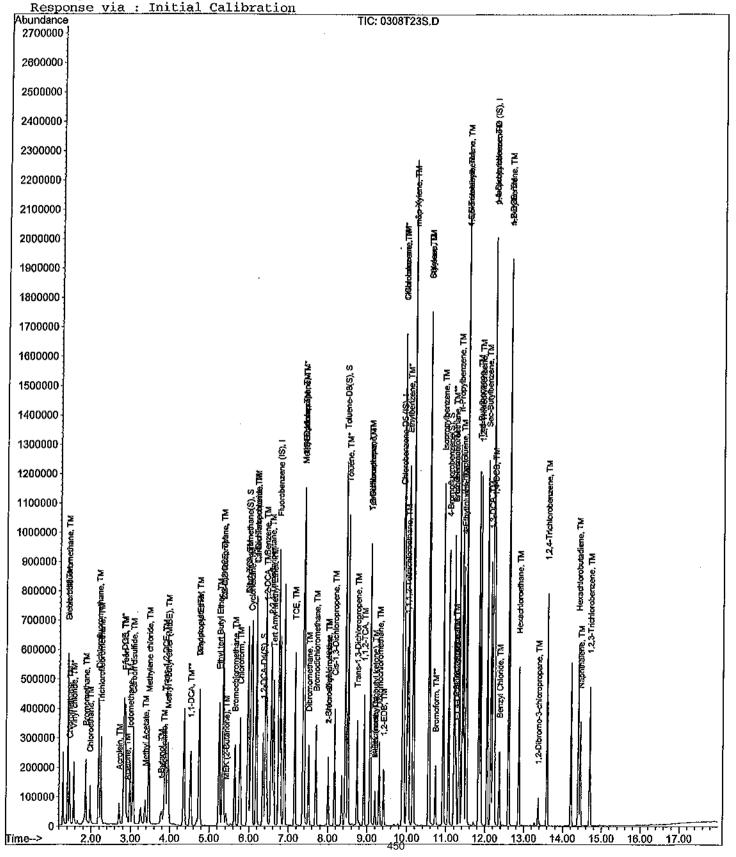
DataAcq Meth : 8260_BETA

Compound	R.T.	QIon	Response	Conc Unit ()value
45) Methyl Cyclohexane	7.37	83	278076	94.38513 ppk	100
46) Dibromomethane	7.51	93	89183	49.85463 ppk	
47) 2-Chloroethyl vinyl ether	8.00	106	3259		
48) MIBK (methyl isobutyl ket	9.20	43	69434	55.10913 pph	
49) 1-Bromo-2-chloroethane	8.00	63	109088	50.25361 pph	100
50) Cis-1,3-Dichloropropene	8.17	75	209902	53.09470 ppk	
51) Toluene	8.51	91	454208	66.48403 ppb	
52) Trans-1,3-Dichloropropene	8.74	75	173095	50.71965 ppk	
53) 1,1,2-TCA	8.92	83	108154	49.40972 pph	
54) 2-Hexanone	9.20	43	69434	55.10913 pph	
57) 1,2-EDB	9.41	107	118963	50.48900 ppb	
58) Tetrachloroethene	9.07	164	162420	76.24656 ppb	98
59) 1-Chlorohexane	9.92	91	221649	83,46606 ppb	
60) 1,1,1,2-Tetrachloroethane	10.00	131	156221	58.50894 ppb	
61) m&p-Xylene	10.16	106	620123	144.87586 ppb	
62) o-Xylene	10.55	106	286073	66.52875 ppb	
63) Styrene	10.56	104	473654	53.08304 ppb	
65) 1,3-Dichloropropane	9.08 9.31	76	210728	52.53142 ppb	
66) Dibromochloromethane		129	141862	52.23429 ppb	
67) Chlorobenzene	9.92	112	456590	57.87512 ppb	
68) Ethylbenzene	10.04	91 173	807511 93143	72,23613 ppb 50,33914 ppb	
69) Bromoform	10.73 10.92	105	728116	76.45713 ppb	
71) Isopropylbenzene 72) 1,1,2,2-Tetrachloroethane	11.20	83	150350	49.28115 ppb	
73) 1,2,3-Trichloropropane	11.24	110	42691	48.10053 ppb	
74) t-1,4-Dichloro~2-Butene	11.24	53	32181	50.37154 ppb	
75) Bromobenzene	11.21	156	195164	53.36437 ppb	
76) n-Propylbenzene	11.33	91	943599	75.50333 ppb	
77) 4-Ethyltoluene	11.45	105	550670	73.94901 ppb	
78) 2-Chlorotoluene	11.41	91	601039	65.09672 ppb	
79) 1,3,5-Trimethylbenzene	11.51	105	661744	72.08249 ppb	
80) 4-Chlorotoluene	11.51	91	623375	63.23547 ppb	
81) Tert-Butylbenzene	11.83	119	568701	77.25946 ppb	
82) 1,2,4-Trimethylbenzene	11.88	105	644479	68.45793 ppb	
83) Sec-Butylbenzene	12.05	105	834752	76.91020 ppb	
84) p-Isopropyltoluene	12.20	119	700577	74.87104 ppb	
85) Benzyl Chloride	12.37	91	177636	48.90119 ppb	97
86) 1,3-DCB	12.15	146	375840	52.95794 ppb	100
87) 1,4-DCB	12.24	146	373822	50.53543 ppb	99
88) n-Butylbenzene	12.61	91	626305	70.30436 ppb	100
89) 1,2-DCB	12,60	146	330750	48.67477 ppb	99
90) Hexachloroethane	12.87	117	90015	50.03828 ppb	98
91) 1,2-Dibromo-3-chloropropan	13.37	157	25267	45.49873 ppb	98
92) 1,2,4-Trichlorobenzene	13.60	180	261399	48.04556 ppb	100
93) Hexachlorobutadiene	14.40	225	122915	47.20348 ppb	98
94) Naphthalene	14.45	128	282468	32.12262 ppb	99
95) 1,2,3-Trichlorobenzene	14.69	180	153383	34.17819 ppb	96

Data File: M:\THOR\DATA\T120307\0308T23S.D

: 7 Mar 12 17:10

Vial: 23 Operator: DG,RS,HW,ARS,SV


Quant Time: Mar 8 7:26 2012 Quant Results File: TALLS.RES

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Acq On

Last Update : Wed Mar 07 14:10:30 2012

Quantitation Report (QT Reviewed)

Data File : M:\CHICO\DATA\C120224\0229C10W.D

Acq On : 29 Feb 12 18:56

Vial: 1 Operator: RS, ARS

Inst : Chico

Sample : AY55845W01 Misc : Water 10mLw/ IS&S:01-31C/01-03E

Multiplr: 1.00

Quant Time: Mar 1 11:55 2012

Quant Results File: CALLW.RES

Quant Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Mon Feb 27 10:38:53 2012

Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	Qlon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS) 54) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	12.80 17.99 22.18	96 117 152	599948 506752 288320	25.00000 ppb 25.00000 ppb 25.00000 ppb	
System Monitoring Compounds 32) Dibromofluoromethane(S) Spiked Amount 22.609 37) 1,2-DCA-D4(S) Spiked Amount 21.606 55) Toluene-D8(S) Spiked Amount 24.195 63) 4-Bromofluorobenzene(S) Spiked Amount 23.751	11.39 12.19 15.46 20.06	111 65 98 95		23.59480 ppb ry = 97.519 23.55978 ppb	-0.01 -0.01 -0.01

Target Compounds

Qvalue

Data File : M:\CHICO\DATA\C120224\0229C10W.D

Acq On : 29 Feb 12 18:56 Operator: RS, ARS Sample : AY55845W01 Inst : Chico : Water 10mLw/ IS&S:01-31C/01-03E Misc Multiplr: 1.00

Quant Time: Mar 1 11:55 2012

Quant Results File: CALLW.RES

Vial: 1

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

Title : METHOD 8260

Method

Last Update : Mon Feb 27 10:38:53 2012

Response via : Initial Calibration Abundance TIC: 0229C10W.D 1700000 1600000 1500000 1400000 1300000 1200000 1100000 1000000 900000 000008 700000 600000 500000 400000 300000 200000 100000 4.00 6.00 8.00 10.00 12,00 14.00 Time--> 16.00 18.00 20.00 22.00 24.00 26,00

(QT Reviewed)

Data File: M:\NEO\DATA\N120305\0305N22S.D

Vial: 1 Acq On : 6 Mar 12 00:13 Operator: SV,DG,RS Sample : AY55846S01 5.015 Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

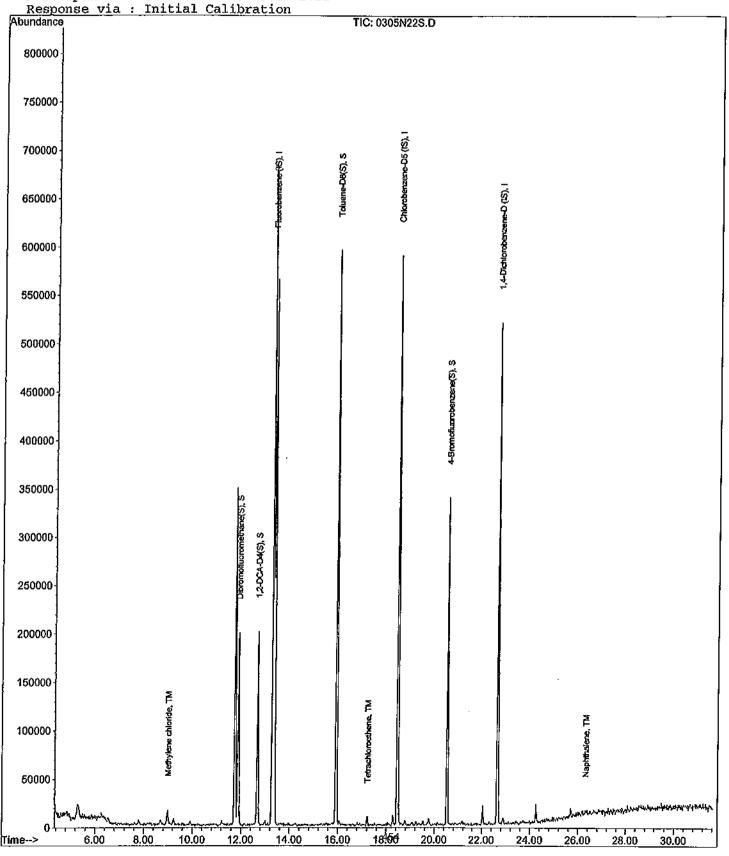
Quant Time: Mar 6 11:23 2012 Quant Results File: NALLS.RES

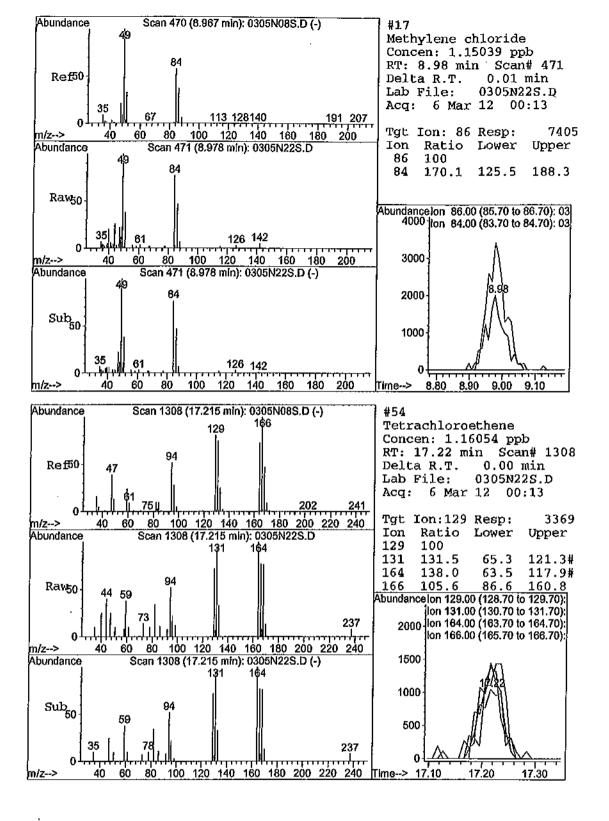
Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

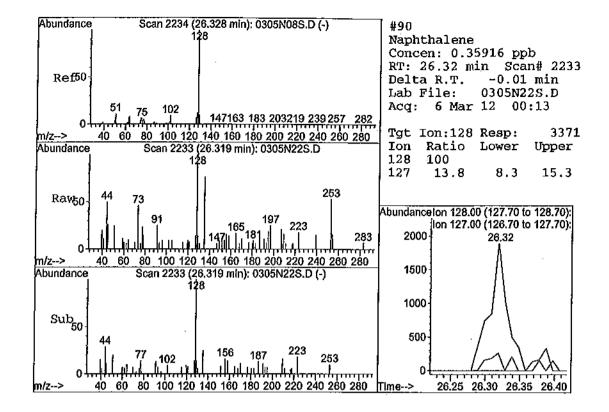
Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T. (QIon	Response	Conc Units D	ev(Min)	
1) Fluorobenzene (IS)	13.29	96	306560	50.00000 ppb	0.00	
51) Chlorobenzene-D5 (IS)	18.46	117	176000	50,00000 ppb	0.00	
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	76264	50.00000 ppb	0.00	
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.89	111	217506		0.01	
Spiked Amount 41.312			Recove:	ry = 88.631	.8	
34) 1,2-DCA-D4(S)	12.68	65		34.99112 ppb		
Spiked Amount 41.649			Recove:	ry = 84.015	8	
52) Toluene-D8(S)	15.93	98		41.61950 ppb		
Spiked Amount 35.274			Recove:	ry = 117.987	8	
60) 4-Bromofluorobenzene(S)	20.53	95	209084	38.75041 ppb	0.00	
Spiked Amount 35.584			Recove	ry = 108.898	8	
Target Compounds					Qvalue	z h l
17) Methylene chloride	8.98	86	7405	1.15039 ppb		< pr
54) Tetrachloroethene	17.22	129	3369	1.16054 ppb		2 PU
90) Naphthalene	26.32	128	3371	0.35916 ppb	√ 95	LPL

Data File: M:\NEO\DATA\N120305\0305N22S.D


Vial: 1 Acq On : 6 Mar 12 00:13 Operator: SV,DG,RS Sample : AY55846S01 5.015 Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00


Quant Time: Mar 6 11:23 2012 Quant Results File: NALLS.RES


: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:39:29 2012

(QT Kevlewed)

Vial: 1

Data File: M:\NEO\DATA\N120305\0305N23S.D

Acq On : 6 Mar 12 00:51 Sample : AY55847S01 5.023 Operator: SV,DG,RS Inst : Neo Multiplr: 1.00 Misc : Soil 5mL w/IS&S:10-20-11

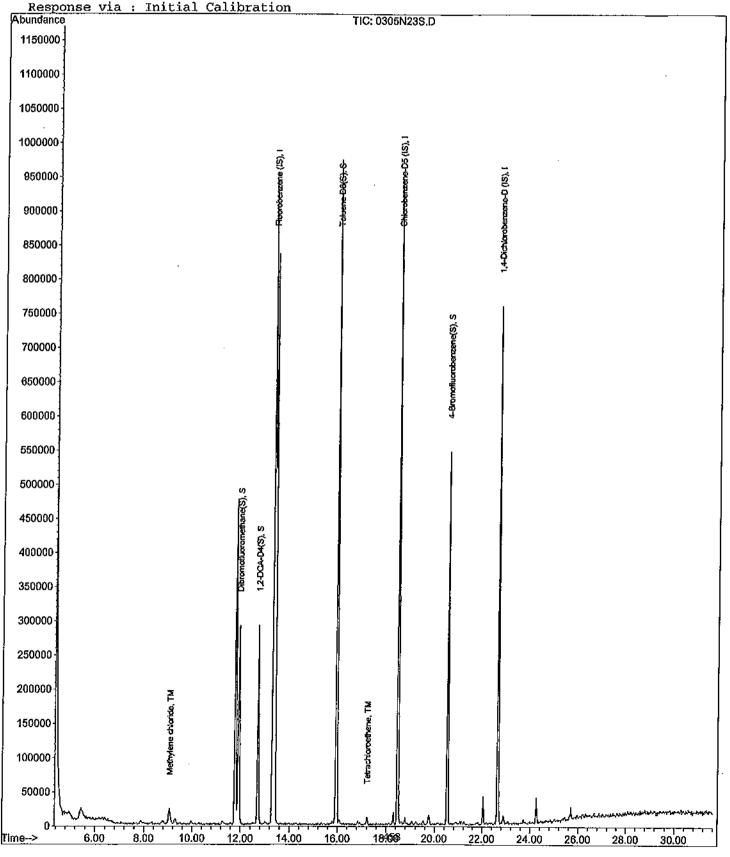
Quant Time: Mar 6 11:27 2012 Quant Results File: NALLS.RES

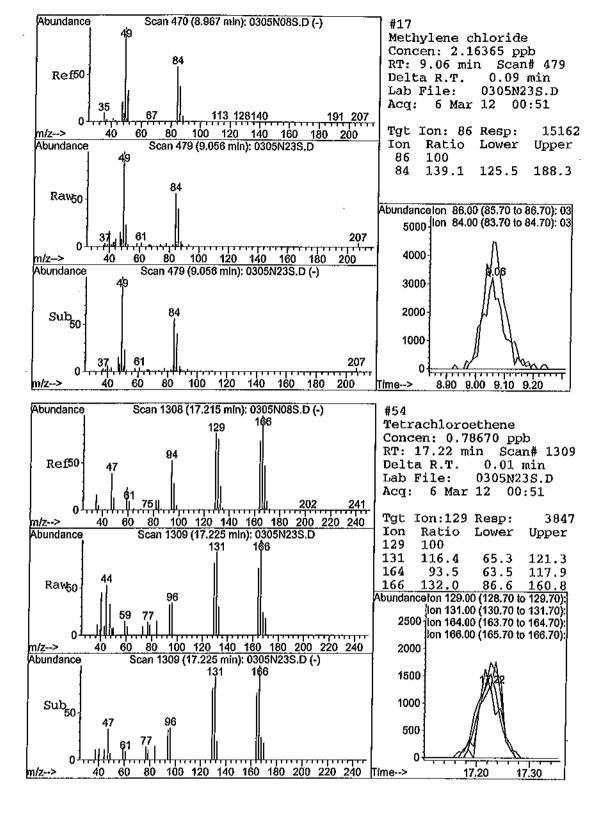
Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.32	96	414464	50.00000 pp	b 0.03
51) Chlorobenzene-D5 (IS)	18.47	117	296000	50.00000 pp	b 0.00
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	117304	50.00000 pp	b 0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.93	111	345492	43.01851 pp	b 0.05
Spiked Amount 41.312			Recove	ry = 104.1	33%
34) 1,2-DCA-D4(S)	12.71	65	366370	42.05668 pp	b 0.03
Spiked Amount 41.649			Recove	ry = 100.9	81%
52) Toluene-D8(S)	15.95	98	1005928	39.31878 pp	b 0.01
Spiked Amount 35.274			Recove	ry = 111.4	66%
60) 4-Bromofluorobenzene(S)	20.53	95	327453	36.03992 pp	b 0.00
Spiked Amount 35.584			Recove		
Target Compounds					Qvalue ,
17) Methylene chloride	9.06	86	15162	2.16365 pp	b / 86 4 PV
54) Tetrachloroethene	17.22	129	3847	0.78670 pp	b 1 86 4 PL b 89 CPL


Data File: M:\NEO\DATA\N120305\0305N23S.D


Vial: 1 Acq On : 6 Mar 12 00:51 Operator: SV,DG,RS : AY55847S01 5.023 Sample Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 11:27 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Data File : M:\NEO\DATA\N120229\0229N21S.D

Vial: 1 Acq On : 29 Feb 12 23:34 Sample : AY55848S01 5.034g Operator: SV, DG, RS Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:23 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards		QIon	-		(Min)
1) Fluorobenzene (IS)	13.25	96	273280	50.00000 ppb	-0.01
51) Chlorobenzene-D5 (IS)	18.43	1 17	205632	dgg 00000.02	-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	84848	50.00000 ppb	-0.01
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	241924	46.64854 ppb	-0.01
Spiked Amount 39.047			Recove		
34) 1,2-DCA-D4(S)	12.65	65	255657	46.48800 ppb	-0.01
Spiked Amount 36.407			Recove	xy = 127.691%	
52) Toluene-D8(S)	15.90	98	728785	39.12915 ppb	-0.01
Spiked Amount 40.407			Recove	ry = 96.837%	
60) 4-Bromofluorobenzene(S)	20.49	95	234790	37.78925 ppb	~0.01
Spiked Amount 38.527			Recove	ry = 98.084%	•

Target Compounds

Data File: M:\NEO\DATA\N120229\0229N21S.D

Vial: 1 : 29 Feb 12 23:34 Operator: SV, DG, RS Sample : AY55848S01 5.034g Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:23 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:39:29 2012

Response via : Initial Calibration Abundance TIC: 0229N21S.D 800000 750000 700000 1,4-Dichlorobenzane-D (IS), I 650000 600000 550000 500000 450000 400000 Dibromofluoromethane(S), S 350000 1,2-DCA-D4(S), S 300000 250000 200000 150000 100000 50000 24.00 12.00 20.00 8.00 10.00 14.00 16.00 48100 22.00 6.00 26.00 28.00 30.00

Data File: M:\NEO\DATA\N120229\0229N22S.D

Vial: 1 Acq On : 1 Mar 12 00:11 Sample : AY55849S01 5.035g Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99 Misc

Quant Time: Mar 6 13:26 2012 Quant Results File: NALLS.RES

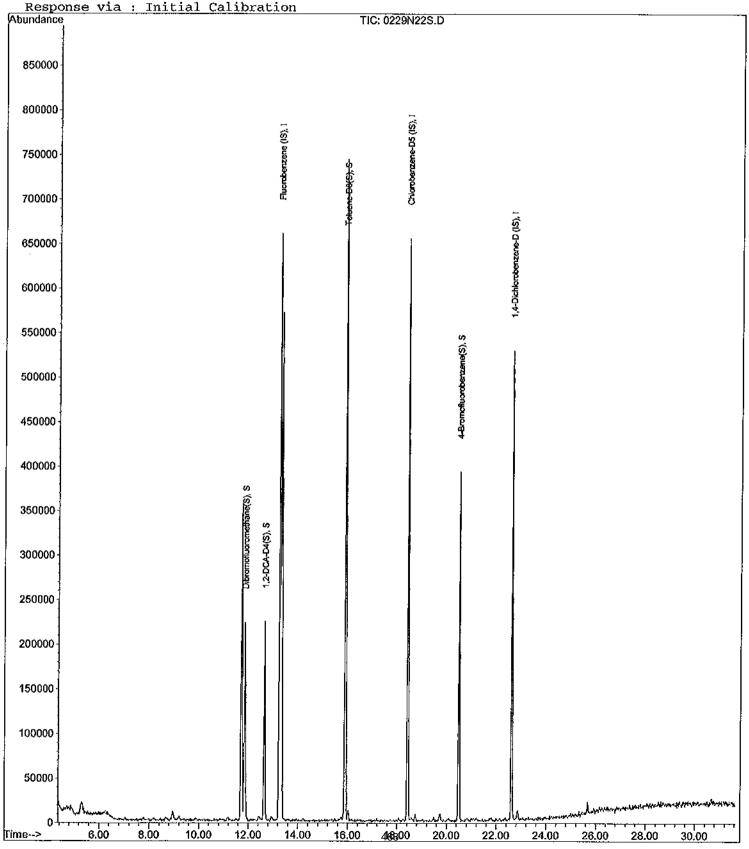
Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	13.25	96	288064	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.42	117	200256	50.00000 ppb	-0.02
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	81984	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	248699	45.52232 ppb	0.00
Spiked Amount 39.047			Recove	xy = 116.582%	
34) 1,2-DCA-D4(S)	12.65	65	260951	45.04472 ppb	0.00
Spiked Amount 36.407			Recove	xy = 123.727%	
52) Toluene-D8(S)	15.89	98	756109	41.59401 ppb	-0.02
Spiked Amount 40.407			Recove	xy = 102.937%	
60) 4-Bromofluorobenzene(S)	20.48	95	236563	39.10448 ppb	-0.02
Spiked Amount 38.527			Recove	ry = 101.497%	
Margat Compounds				Ou	aluo

Target Compounds


Data File: M:\NEO\DATA\N120229\0229N22S.D

Vial: 1 Acq On : 1 Mar 12 00:11 Operator: SV,DG,RS Sample : AY55849S01 5.035g Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:26 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Data File: M:\NEO\DATA\N120229\0229N23S,D

Vial: 1 Acq On : 1 Mar 12 00:49 Sample : AY55850S01 5.038g Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:29 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

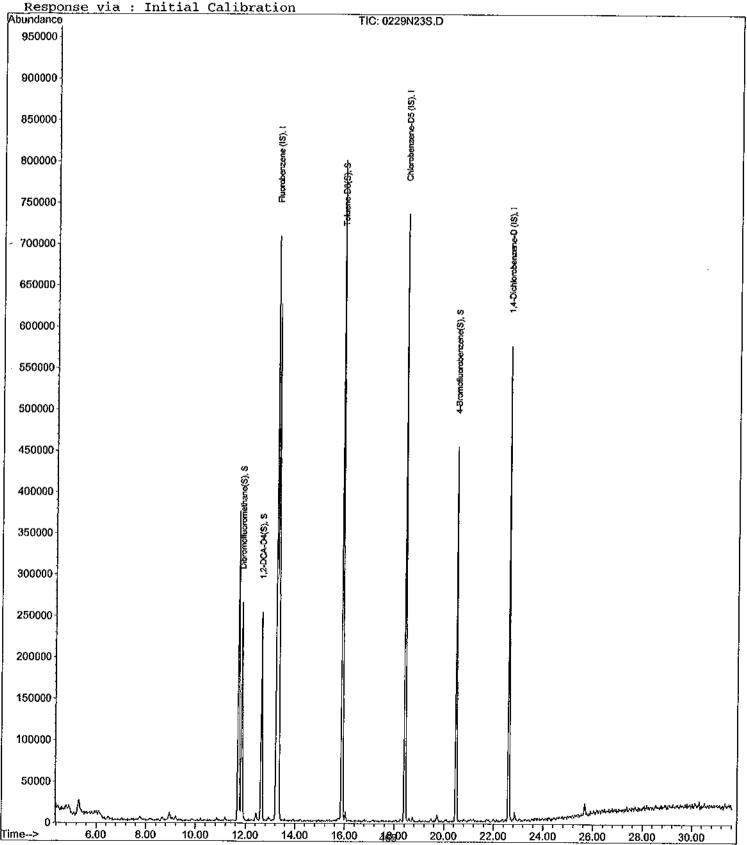
DataAcq Meth: V8260

Misc

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) Fluorobenzene (IS)	13.25	96	314496	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.42	117	230912	50.00000 ppb	-0.02
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	91016	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	280441	46.98028 ppb	-0.02
Spiked Amount 39.047			Recove	ry = 120.316	
34) 1,2-DCA-D4(S)	12.63	6 5	291107	46.00668 ppb	-0.02
Spiked Amount 36.407			Recove	ry = 126.370	8
52) Toluene-D8(S)	15.89	98	851518	40.65653 ppb	-0.02
Spiked Amount 40.407			Recove	ry = 100.618	8
60) 4-Bromofluorobenzene(S)	20.49	95	265998	38.12711 ppb	-0.02
Spiked Amount 38.527			Recove	ry = 98.961	8

Target Compounds

Data File : M:\NEO\DATA\N120229\0229N23S.D


Vial: 1 Acq On : 1 Mar 12 00:49 Operator: SV,DG,RS

Sample : AY55850S01 5.038g Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 0.99

Quant Time: Mar 6 13:29 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Data File: M:\NEO\DATA\N120229\0229N24S.D

Vial: 1 Acq On : 1 Mar 12 1:27 Sample : AY55851S01 5.033g Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

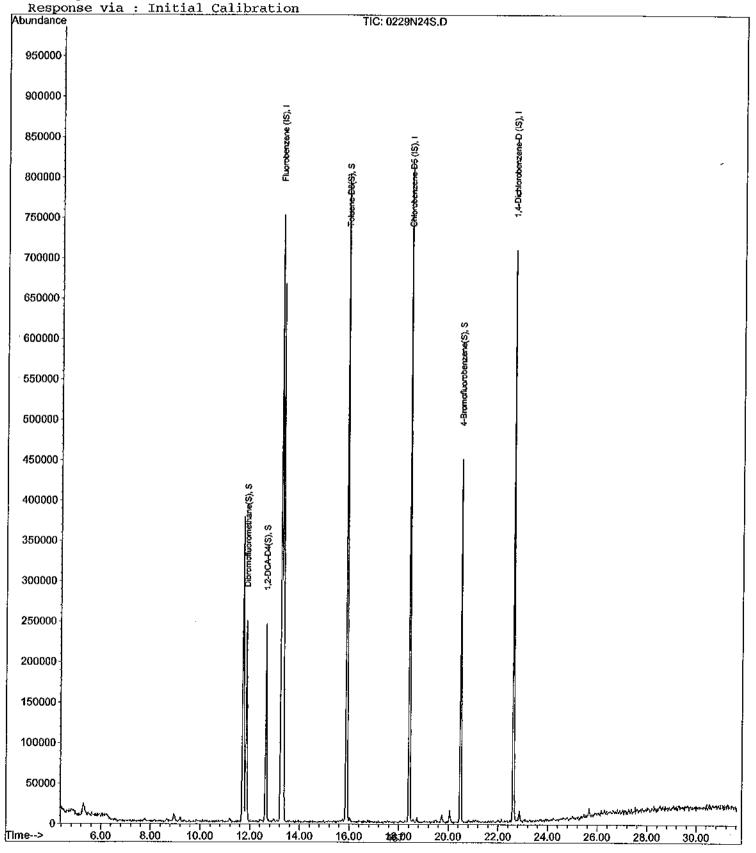
Title : METHOD 8260B

Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

DataAcq Meth: V8260

QIon	Response	Conc Units De	v(Min)
96	334208	50,00000 ppb	0.00
117	254016		-0.02
152	106400	50.00000 ppb	0.00
111	263872	41.72945 ppb	0.00
	Recove		
65	280114	41.74578 ppb	-0.01
	Recover	ry = 114.666%	
98	807669	35.24945 ppb	-0.02
	Recover	ry = 87.235%	
95	275814	35.92545 ppb	-0.02
	Recover	ry = 93.246%	
_	96 117 152 111 65 98	96 334208 117 254016 152 106400 111 263872 Recove: 65 280114 Recove: 98 807669 Recove: 95 275814	96 334208 50.00000 ppb 117 254016 50.00000 ppb 152 106400 50.00000 ppb 111 263872 41.72945 ppb Recovery = 106.868% 65 280114 41.74578 ppb Recovery = 114.666% 98 807669 35.24945 ppb Recovery = 87.235% 95 275814 35.92545 ppb

Target Compounds


Data File : M:\NEO\DATA\N120229\0229N24S.D

Vial: 1 Acq On : 1 Mar 12 1:27 Operator: SV,DG,RS Sample : AY55851S01 5.033g Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:32 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Data File: M:\NEO\DATA\N120229\0229N25S.D

: Soil 5mL w/ ISS:10-20-11

Vial: 1 Acq On : 1 Mar 12 2:05 Sample : AY55852S01 5.022g Operator: SV,DG,RS Inst : Neo

Multiplr: 1.00 Quant Time: Mar 6 13:34 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

: METHOD 8260B

Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

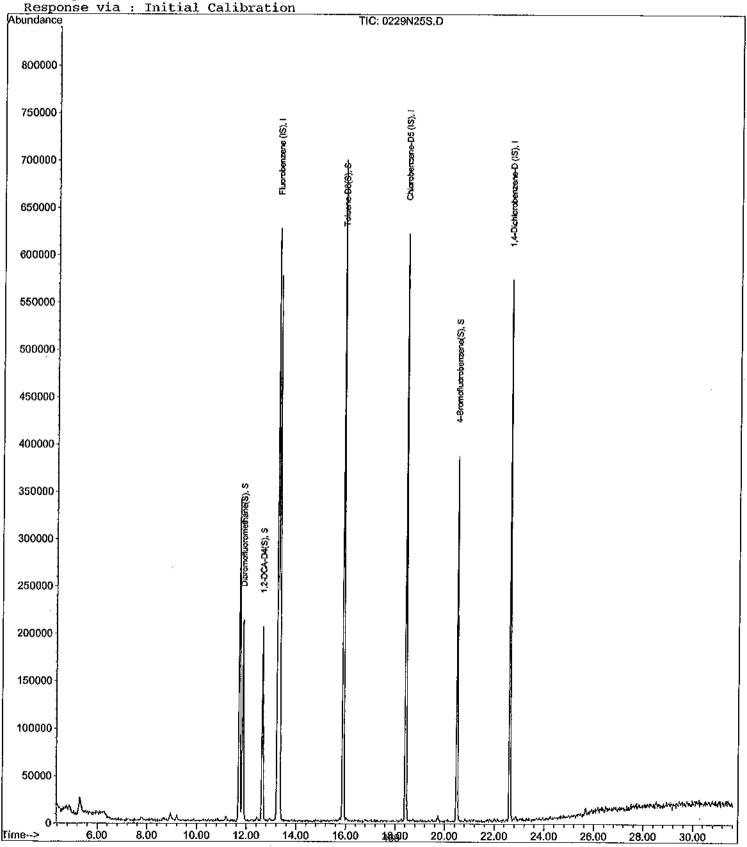
DataAcq Meth: V8260

Misc

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Min)
1) Fluorobenzene (IS)	13.26	96	280960	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.42	117	186880	50.00000 ppb	-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	87088	50.00000 ppb	-0.01
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.86	111	235248	44.18377 ppb	0.00
Spiked Amount 39,047			Recove		
34) 1,2-DCA-D4(S)	12.65	65	239227	42.39451 ppb	-0.01
Spiked Amount 36.407			Recove	= 116.4489	&
52) Toluene-D8(S)	15.90	98	721504	42.49949 ppb	-0.01
Spiked Amount 40.407			Recove	xy = 105.177	₹
60) 4-Bromofluorobenzene(S)	20.49	95	235530	41.73537 ppb	-0.01
Spiked Amount 38.527			Recove	xy = 108.3269	हे
Target Compounds				,	\\

Target Compounds

Data File : M:\NEO\DATA\N120229\0229N25S.D


Vial: 1 : 1 Mar 12 Acq On 2:05 Operator: SV,DG,RS

: AY55852S01 5.022g Sample Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 13:34 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Data File: M:\NEO\DATA\N120229\0229N26S.D Vial: 1

Acq On : 1 Mar 12 2:43 Sample : AY55853SO1 5.053g Operator: SV, DG, RS Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

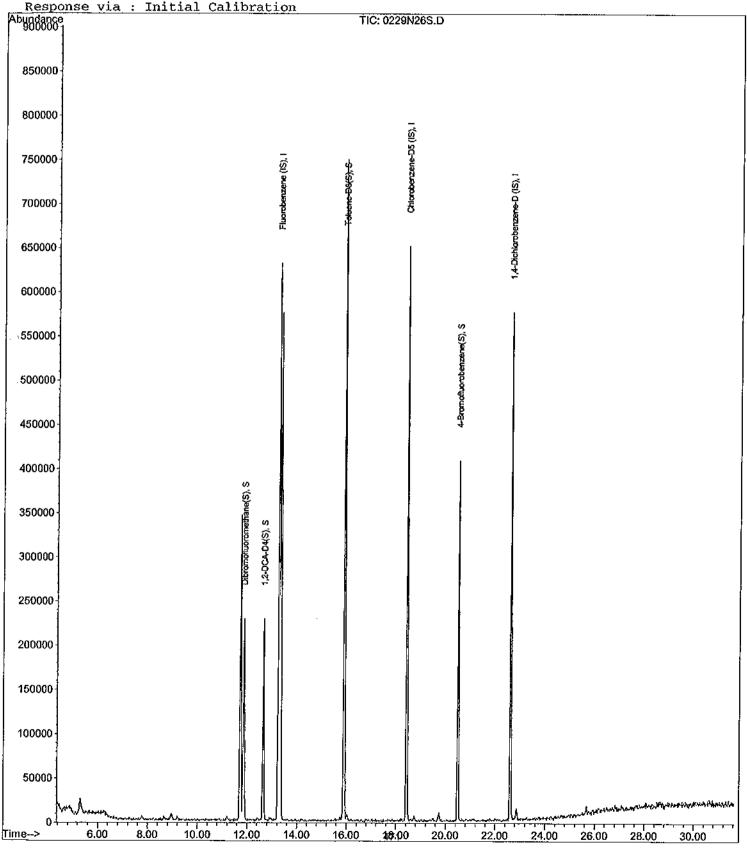
Quant Time: Mar 6 13:36 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS)	13.26	96	270336	dag 00000.05	0.00
51) Chlorobenzene-D5 (IS)	18.43	117	206016	50.00000 ppb	-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	87360	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	249301	48.54640 ppb	-0.01
Spiked Amount 39.047			Recove		
34) 1,2-DCA-D4(S)	12.65	65	26882 0	49.35559 ppb	0.00
Spiked Amount 36.407				= 135.568	
52) Toluene-D8(S)	15.90	98	776953	41.54730 ppb	-0.01
Spiked Amount 40,407			Recove		
60) 4-Bromofluorobenzene(S)	20.49	95	253486	40.73965 ppb	-0.01
Spiked Amount 38.527			Recove		
Target Compounds				0	valua

Target Compounds


Data File: M:\NEO\DATA\N120229\0229N26S.D

Vial: 1 Acq On : 1 Mar 12 2:43 Operator: SV, DG, RS : AY55853S01 5.053g Sample Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:36 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

(QT Reviewed) Quantitation Report

Data File: M:\NEO\DATA\N120229\0229N27S.D Vial: 1

Acq On : 1 Mar 12 3:21 Sample : AY55854S01 5.034g Operator: SV,DG,RS Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 0.99

Quant Time: Mar 6 13:37 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

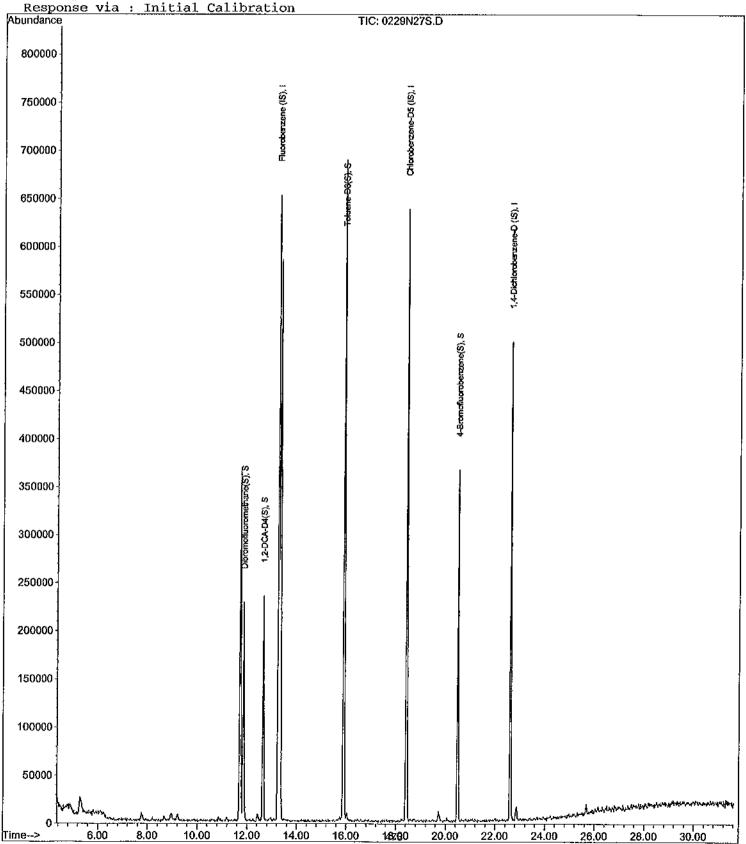
Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012

Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	13.26	96	283584	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.43	117	199424	50.00000 ppb	-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.62	152	81200	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	111	240853	44.80137 ppb	0.00
Spiked Amount 39.047			Recove	ry = 114.735%	
34) 1,2-DCA-D4(S)	12.65	65	261324	45.80576 ppb	0.00
Spiked Amount 36.407			Recove	xy = 125.818%	
52) Toluene-D8(S)	15.90	98	713422	39,48347 ppb	-0.01
Spiked Amount 40.407			Recove	rv = 97.713%	
60) 4-Bromofluorobenzene(S)	20.49	95	211926	35.15564 ppb	-0.01
Spiked Amount 38.527			Recove	ry = 91.250%	
Target Compounds				Ov	alue

Target Compounds


Data File: M:\NEO\DATA\N120229\0229N27S.D

Vial: 1 Acq On : 1 Mar 12 3:21 Operator: SV,DG,RS : AY55854S01 5.034g Sample Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 0.99

Quant Time: Mar 6 13:37 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

: METHOD 8260B Title

Data File: M:\THOR\DATA\T120307\0307T17S.D

Vial: 17 Operator: DG,RS,HW,ARS,SV Inst : Thor Acq On : 7 Mar 12 14:58

: AY55855S01 5.053 Sample Misc : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 0.99

Quant Time: Mar 7 15:56 2012 Quant Results File: TALLS.RES

Quant Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Wed Feb 08 09:48:07 2012 Response via : Initial Calibration

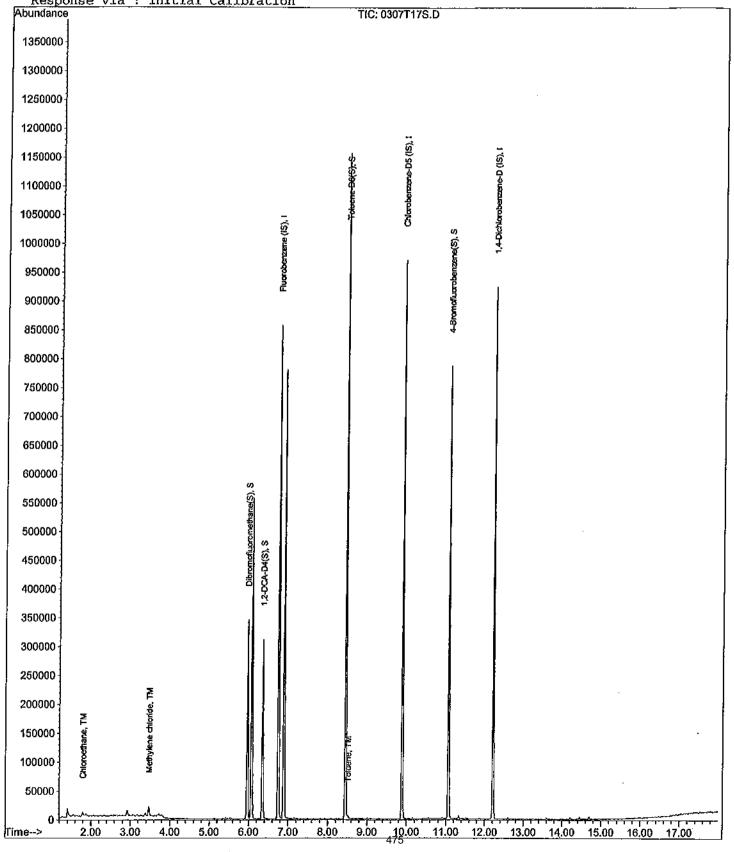
DataAcq Meth : 8260_BETA

Internal Standards				Conc Units	Dev(Min)
1) Fluorobenzene (IS)				50.00000 ppl	
55) Chlorobenzene-D5 (IS)	9.89	117	338176	50,00000 ppl	0.00
70) 1,4-Dichlorobenzene-D (IS)	12.22	152	163392	50.00000 pph	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	5.97	111	202772	76.98609 pph	0.00
Spiked Amount 74.267			Recove	ry ≈ 103.66	51%
36) 1,2-DCA-D4(S)	6.35	65	209427	68,09343 pph	0.00
Spiked Amount 65.341			Recove	ry = 104.21	.2%
56) Toluene-D8(S)	8.45	98	720310	85.16980 pph	0.00
Spiked Amount 83.313			Recove	ry = 102.22	9%
64) 4-Bromofluorobenzene(S)	11.06	95	240221	69.18483 pph	0.00
Spiked Amount 77.736			Recove	ry = 89.00	10%
Target Compounds					Qvalue .a.
7) Chloroethane	1.80	49	529	2.06126 ppb	Qvalue 200 # 84 200
18) Methylene chloride	3.47	84	8314	1.23861 ppb	96 < PLL
51) Toluene	8.51	91	1501	0.24668 ppb	

Data File: M:\THOR\DATA\T120307\0307T17S.D

Vial: 17 : 7 Mar 12 14:58 Operator: DG,RS,HW,ARS,SV

: AY55855S01 5.053 Sample : Thor Inst : 5ml w/5ul of IS: 12-25-11 | GF=5 | 150:1 Multiplr: 0.99 Misc


Quant Time: Mar 7 15:56 2012 Quant Results File: TALLS.RES

: M:\THOR\DATA\T120307\TALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On

Last Update : Wed Mar 07 14:10:30 2012 Response via : Initial Calibration

Data File: M:\NEO\DATA\N120229\0229N28S.D

Vial: 1 Acq On : 1 Mar 12 3:59 Sample : AY55856S01 5.011g Operator: SV,DG,RS Inst : Neo Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 13:39 2012 Quant Results File: NALLS.RES

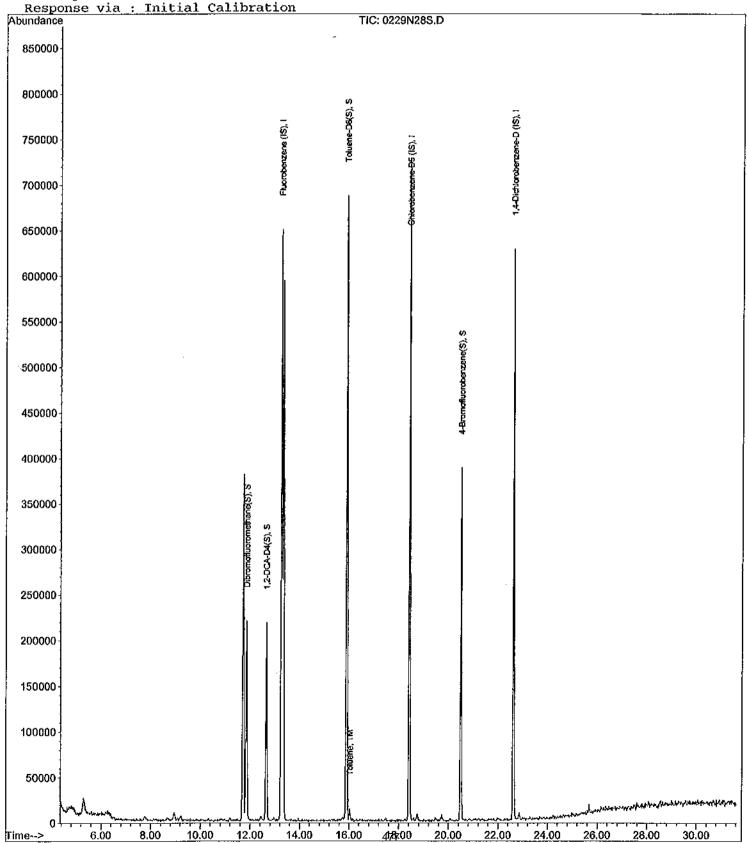
Quant Method: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

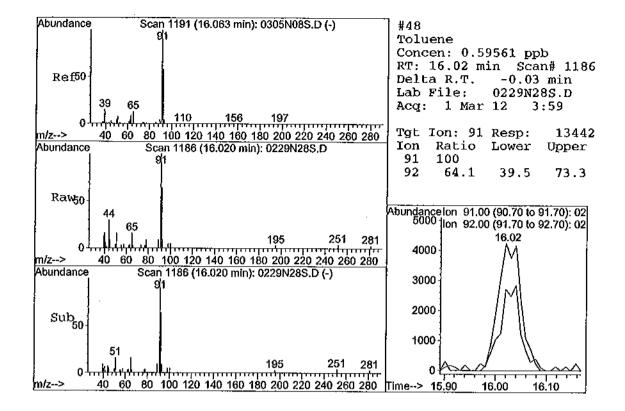
Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Min)
1) Fluorobenzene (IS)	13.25	96	284608	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.42	117	222976	50.00000 ppb	-0.02
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	96144	50.00000 ppb	0.00
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.86	111	240912	44.65498 ppb	0.00
Spiked Amount 39.047			Recove	xy = 114.362	₹
34) 1,2-DCA-D4(S)	12.64	65	253602	44.32287 ppb	-0.01
Spiked Amount 36.407			Recove	ry = 121.744	8
52) Toluene-D8(S)	15.89	98	722614	35.90051 ppb	-0.02
Spiked Amount 40.407			Recove	ry = 88.848	ક
60) 4-Bromofluorobenzene(S)	20.49	95	233684	34.66733 ppb	-0.02
Spiked Amount 38.527			Recove	ry = 89.981	ß
Target Compounds					Qyalue
48) Toluene	16.02	91	13442	0.59561 ppb	/ 89

Data File : M:\NEO\DATA\N120229\0229N28S.D


Vial: 1 1 Mar 12 3:59 Operator: SV,DG,RS


Sample : AY55856S01 5.011g Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 13:39 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

(QT Reviewed) Quantitation Report

Data File: M:\NEO\DATA\N120229\0229N29S.D Vial: 1

Acq On : 1 Mar 12 4:36 Operator: SV, DG, RS Sample : AY55869S01 5.021g Inst : Neo : Soil 5mL w/ ISS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 13:41 2012 Quant Results File: NALLS.RES

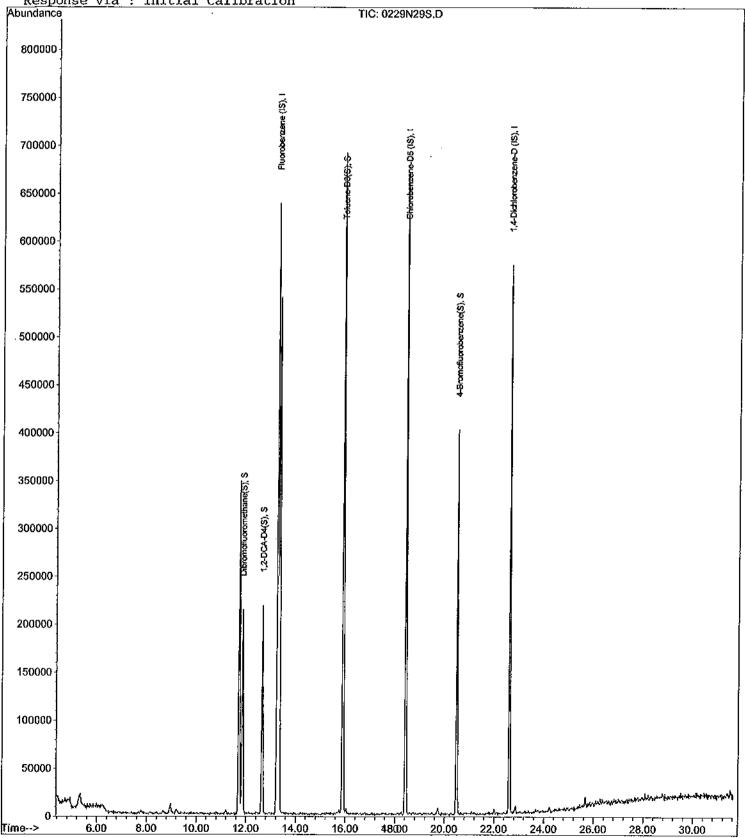
Quant Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Thu Mar 01 11:14:17 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T. Ç	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	13.25	96	275776	50.00000 ppb	-0.01
51) Chlorobenzene-D5 (IS)	18.43	117	208256	50.00000 ppb	-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.61	152	87192	50.00000 ppb	-0.01
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.85	1 11	235493		-0.01
Spiked Amount 39.047			Recove	ry = 115.342%	
34) 1,2-DCA-D4(S)	12.65	65	253286	45.65690 ppb	-0.01
Spiked Amount 36.407			Recove	ry = 125.408%	
52) Toluene-D8(S)	15.90	98	732473	38.84235 ppb	~0.01
Spiked Amount 40.407			Recove	ry = 96.127%	
60) 4-Bromofluorobenzene(S)	20.49	95	244062	38.79252 ppb	-0.01
Spiked Amount 38.527			Recove	ry = 100.690%	

Target Compounds Qvalue

Data File : M:\NEO\DATA\N120229\0229N29S.D

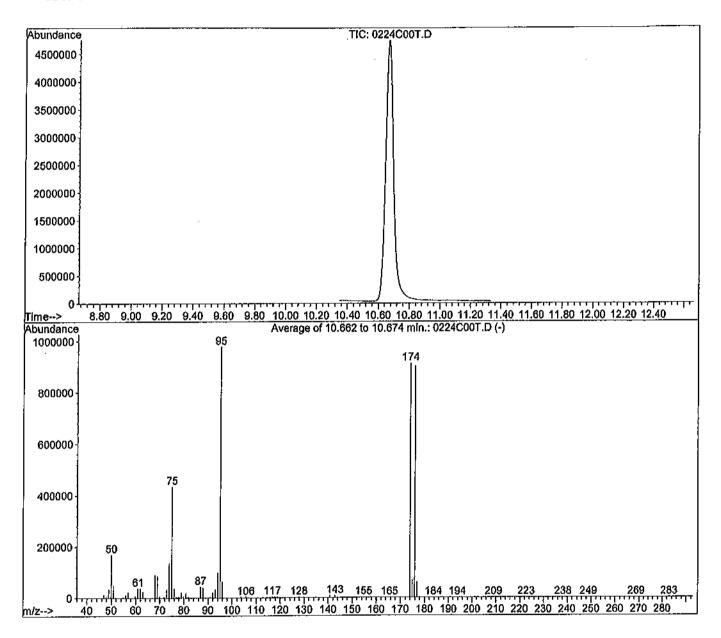

Vial: 1 Acq On : 1 Mar 12 4:36 Operator: SV,DG,RS Sample : AY55869S01 5.021g : Neo Inst Misc : Soil 5mL w/ ISS:10-20-11 Multiplr: 1.00

Quant Time: Mar 6 13:41 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:39:29 2012 Response via: Initial Calibration


Data File: M:\CHICO\DATA\C120224\0224C00T.D

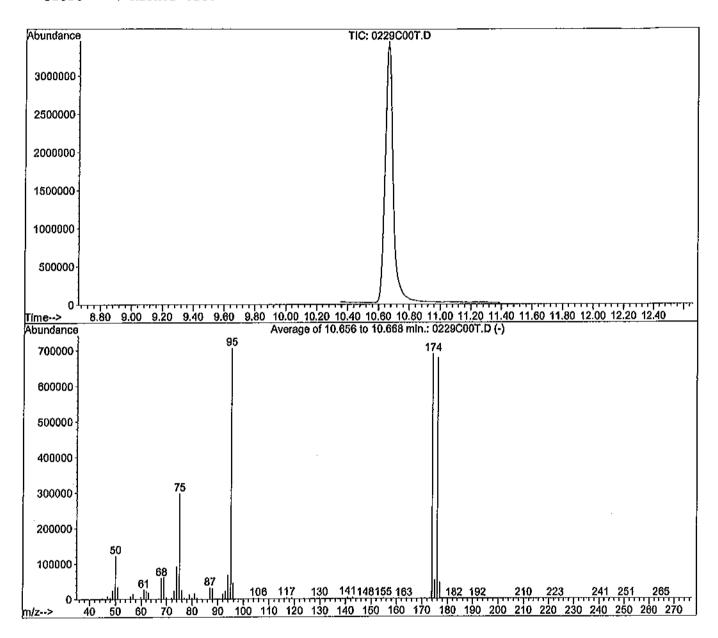
Vial: 1 Operator: RS, ARS : 24 Feb 12 9:12 Acq On : Chico Sample : 25ug/mL BFB Std 02-13-12A Inst ; 2uL Multiplr: 1.00 Misc

Method

: M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Spectrum Information: Average of 10.662 to 10.674 min.


Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 55 95	40 60 100 9 2 100 9 101	17.4 44.4 100.0 6.5 0.0 93.4 7.4 98.8 6.6	169859 434319 978411 63344 0 914069 67363 903317 59503	PASS PASS PASS PASS PASS PASS PASS PASS

Data File: M:\CHICO\DATA\C120224\0229C00T.D

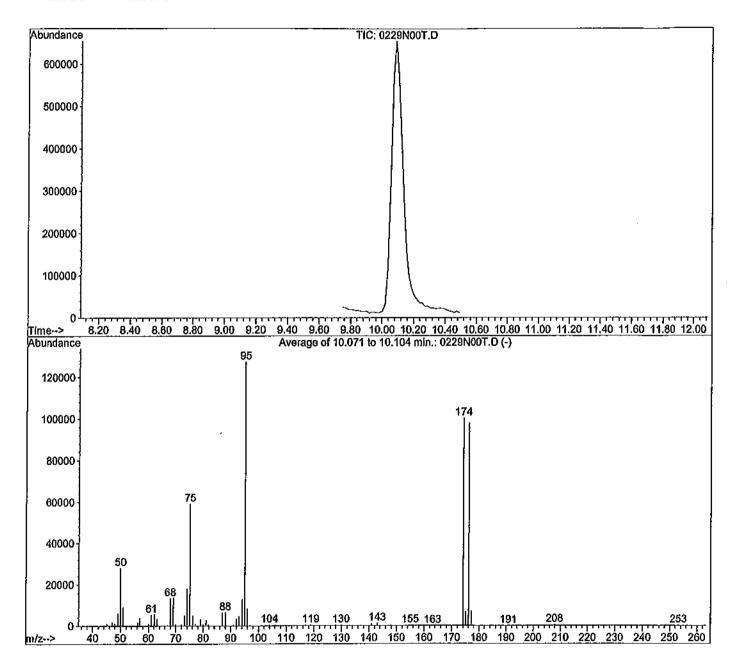
Vial: 1 : 29 Feb 12 12:50 Operator: RS, ARS Acq On : Chico Sample : 25ug/mL BFB Std 02-13-12A Inst Misc Multiplr: 1.00

Method : M:\CHICO\DATA\C120224\CALLW.M (RTE Integrator)

: METHOD 8260 Title

Spectrum Information: Average of 10.656 to 10.668 min.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101	17.3 42.2 100.0 6.5 0.0 97.5 7.5 98.5 6.7	122087 298432 707392 45635 0 689813 51499 679275 45372	PASS PASS PASS PASS PASS PASS PASS PASS


Data File: M:\NEO\DATA\N120229\0229N00T.D

Vial: 1 : 29 Feb 12 10:15 Acq On Operator: SV,DG,RS

Sample : 25ug/mL BFB Std 2-13-12 Inst : Neo Misc : 1uL Multiplr: 1.00

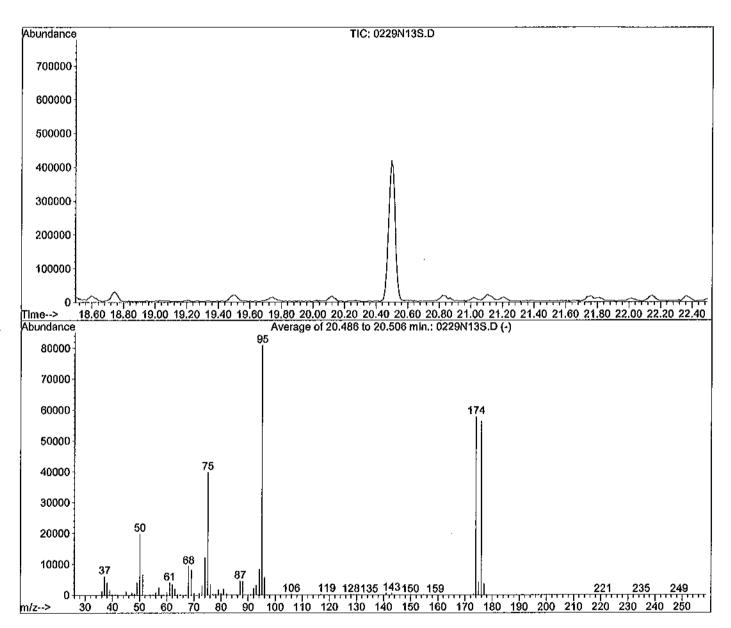
: M:\NEO\DATA\N120229\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

22; Background Corrected with Scan 10 AutoFind: Scans 20, 21.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101	22.1 46.4 100.0 6.5 0.1 78.7 6.6 97.6	28115 59151 127493 8337 89 100285 6600 97909 7030	PASS PASS PASS PASS PASS PASS PASS PASS

Vial: 1


Data File: M:\NEO\DATA\N120229\0229N13S.D

Acq On : 29 Feb 12 18:31 Operator: SV,DG,RS

Sample : 25ug/mL BFB Std 2-13-12 Inst : Neo Misc : 1uL Multiplr: 1.00

Method : M:\NEO\DATA\N120229\NALLS.M (RTE Integrator)

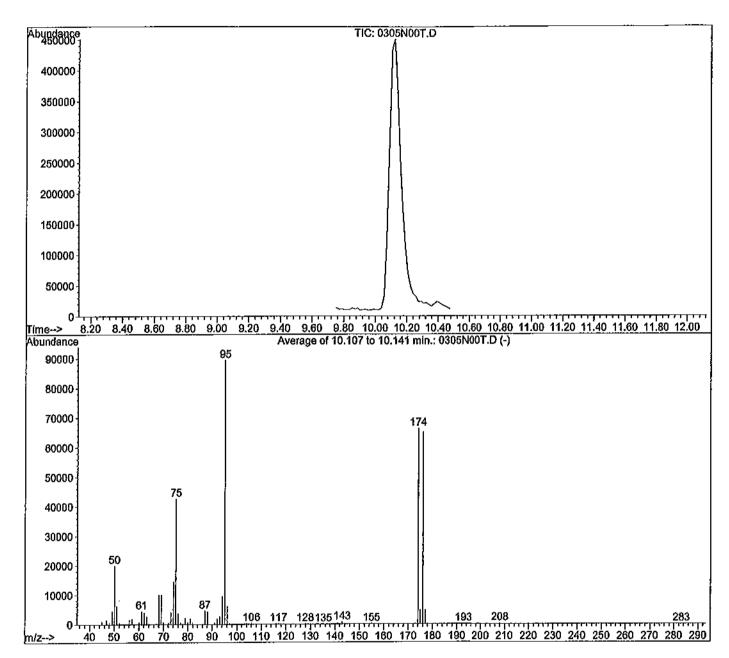
Title : METHOD 8260B

Spectrum Information: Average of 20.486 to 20.506 min.

	get Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail	
9	95 5 174	15 30 100 5 0.00 50 50	40 60 100 9 2 100 9	24.6 49.2 100.0 7.3 0.4 71.4 7.1 97.4	19884 39888 80992 5941 251 57829 4081 56317	PASS PASS PASS PASS PASS PASS PASS PASS	
17	7 176	5	9	6.3	3565	PASS	

Vial: 1

Data File : M:\NEO\DATA\N120305\0305N00T.D


Acq On

: 5 Mar 12 10:17 : 25ug/mL BFB Std 2-13-12 Operator: SV,DG,RS

: Neo Sample Inst Misc ; 2uL Multiplr: 1.00

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

: METHOD 8260B Title

22, 24; Background Corrected with Scan 14 23, AutoFind: Scans

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1 50	95	15	40	22.4	20048	PASS
75	95	30	60	47.7	42704	PASS
95	95	100	100	100.0	89456	PASS
96	95	5	9	6.9	6137	PASS
173	174	0.00	2	0.4	275	PASS
174	95	50	100	74.1	66323	PASS
175	174	5	9	7.1	4686	PASS
176	174	95	101	98.1	65061	PASS
177	176	5	9	7.2	4660	PASS

Data File : M:\NEO\DATA\N120305\0305N12S.D

: 5 Mar 12 17:51 Acq On

: 25ug/mL BFB Std 2-13-12

Sample : Soil 5mL w/IS&S:10-20-11 Misc

Vial: 1

Operator: SV,DG,RS

: Neo Inst Multiplr: 1.00

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

AutoFind: Scans 1644, 1645, 1646; Background Corrected with Scan 1635

Target	Rel. to	Lower	Upper	Rel.	Raw	Result	
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail	
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9	24.2 48.9 100.0 5.9 0.4 71.9 6.9 96.5 6.8	18855 38101 77843 4604 205 55965 3848 54021 3654	PASS PASS PASS PASS PASS PASS PASS PASS	

Data File : M:\THOR\DATA\T120307\0307T01T.D

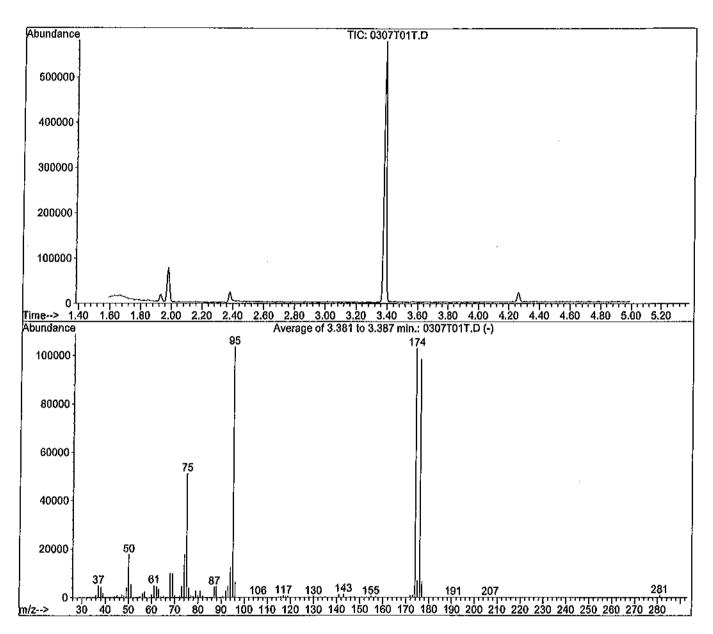
Acq On : 7 Mar 12 8:44

7 Mar 12 8:44

Sample : 5ng Misc : 2ul

: 5ng- BFB STD 02-13-12

Vial: 1


Operator: DG, RS, HW, ARS, SV

Inst : Thor

Multiplr: 1.00

Method : M:\THOR\DATA\T120307\TALLS.M (RTE Integrator)

Title : METHOD 8260B

Spectrum Information: Average of 3.381 to 3.387 min.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101	17.2 49.5 100.0 6.2 0.9 99.4 6.8 95.7 6.7	17802 51240 103605 6398 942 103005 6971 98541 6620	PASS PASS PASS PASS PASS PASS PASS PASS

EPA METHOD 8330B Explosives

EPA METHOD 8330B Explosives

Summary Forms

AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Base/Command: CSSA

Prime Contractor: Parsons

Field Sample ID	Lab Sample ID
B4-NT1-SW9	AY55846
B4-NT1-SW6	AY55847
B4-NT1-SW3	AY55848
B4-NTI-BOT03	AY55849
B4-NT1-SW8	AY55850
B4-NT1-BOT02	AY55851
B4-NT1-SW4	AY55852
B4-NT1-SW7	AY55853
B4-NT1-BOT01 FD	AY55854
B4-NTI-BOT01	AY55855
B4-NT1-SW5	AY55856
B4-NTI-SW6 FD	AY55869

Comments:	ARF: 6/0/2		
completeness, package and in	for other than the conditions de-	tailed above. Rele	nditions of the contract, both technically and for ase of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	ahmolle_	Name: _	Diane Anderson
Date:	3-13-12	Title: _	Project Manager

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8330

Preparatory Method:

8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: 120130

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075			Ų
1,3-DNB	0.075	0.25	0.075	j		υ
2,4,6-TNT	0.075	0.25	0.075	1		Ü
2,4-DNT	0.08	0.50	0.08	1		<u>U</u>
2,6-DNT	0.075	0.26	0.075	1		<u>U</u>
HMX	0.08	2.2	0.08	1		Ŭ
M-NITROTOLUENE	0.08	0.60	0.08	1		Ü
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENE	0.075	0.26	0.075	1		U
O-NITROTOLUENE	0.075	0.25	0.075	1		Ų
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		υ

SurrogateRecoveryControl LimitsQualifierSURROGATE: 1,2-DINITROBENZENE (S10565-135

ARF: 67072	Comments:		

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8330

Preparatory Method:

8330

Lab Sample ID: AY55847

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Matrix: Soil

Field Sample ID: B4-NT1-SW6 % Solids: 83.2

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		U
1,3-DNB	0.075	0.25	0.075	1		U
2,4,6-TNT	0.075	0.25	0.075	1		U
2,4-DNT	0.08	0.50	0.08	1		U
2,6-DNT	0.075	0.26	0.075	i		<u>U</u>
нмх	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	<u>1</u>		υ
NITROBENZENE	0.075	0.26	0.075	1		Ų
O-NITROTOLUENE	0.075	0.25	0.075	1		<u>u</u>
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		U

Control Limits Qualifier Recovery Surrogate SURROGATE: 1,2-DINITROBENZENE (S 105

Comments:	 	 	
ARF: 67072	 		

Analytical Method: EPA 8330

Preparatory Method:

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

8330

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		ιι
1,3-DNB	0.075	0.25	0.075	1		L
2,4,6-TNT	0.075	0.25	0.075	1		ι
2,4-DNT	0.08	0.50	0.08	1		L
2,6-DNT	0.075	0.26	0.075	1		L
HMX	0.08	2.2	0.08	1		<u> </u>
M-NITROTOLUENE	0.08	0.60	0.08	1]		L
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		L.
NITROBENZENE	0.075	0.26	0.075	1		L L
O-NITROTOLUENE	0.075	0.25	0.075	1		U
P-NITROTOLUENE	0.08	0.50	0.08	1		L
RDX	0.08	1.0	0.08	[1]		τ
Sprrogate		Rec	covery Con	trol Limits	Qualifie	r

65-135 SURROGATE: 1,2-DINITROBENZENE (S 104

Comments:		 	
ARF; 67072	 	 	

Analytical Method: EPA 8330

Preparatory Method:

8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		<u>U</u>
1,3-DNB	0.075	0.25	0.075	1		U
2,4,6-TNT	0,075	0.25	0.075	j		Ŭ
2,4-DNT	0.08	0.50	0.08	i		U
2,6-DNT	0.075	0.26	0.075	1		υ
HMX	0.08	2.2	0.08	1		<u>U</u>
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENE	0.075	0.26	0.075	l;		Ŭ
O-NITROTOLUENE	0.075	0.25	0.075	1		U
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		U,

SurrogateRecoveryControl LimitsQualifierSURROGATE: 1,2-DINITROBENZENE (S10665-135

Comment	S	
---------	---	--

Analytical Method: EPA 8330

Preparatory Method:

8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

HINGEN, COLD

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: 120130

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		U
I,3-DNB	0.075	0.25	0.075	1		บ
2,4,6-TNT	0.075	0.25	0.075	1		บ
2,4-DNT	0.08	0.50	0.08	1		u
2,6-DNT	0.075	0.26	0.075	1		บ
НМХ	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		_ <u>U</u>
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENÉ	0.075	0.26	0.075	1		U
O-NITROTOLUENE	0.075	0.25	0.075	. 1		Ų
P-NITROTOLUENE	0.08	0.50	0.08	1		<u>U</u>
RDX	0.08	1.0	0.08	1	0 1151	

Surrogate Recovery Control Limits Qualifier
SURROGATE: 1,2-DINITROBENZENE (S 104 65-135

Co	mn	ทคเ	nte	
\sim	тіп.		110	•

Analytical Method: EPA 8330

Preparatory Method:

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

8330

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	-		<u>U</u>
1,3-DNB	0.075	0.25	0.075			<u> </u>
2,4,6-TNT	0.075	0.25	0.075			<u> </u>
2,4-DNT	0.08	0.50	0.08	1		ប
2,6-DNT	0.075	0.26	0.075	1		U
нмх	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	Ò.65	0.075	1.		Ų
NITROBENZENE	0.075	0.26	0.075	<u>l</u>		Ū
O-NITROTOLUENE	0.075	0.25	0.075	1		<u>.U</u>
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		U

SurrogateRecoveryControl LimitsQualifierSURROGATE: 1,2-DINITROBENZENE (S)10565-135

Comments:
CONTRIBUTIO.

Analytical Method: BPA 8330

Preparatory Method;

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

8330

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		บั
1,3-DNB	0.075	0.25	0.075	1		U
2,4,6-TNT	0.075	0.25	0.075	1		U
2,4-DNT	0.08	0.50	0.08	1		U
2,6-DNT	0.075	0.26	0.075	1		U
нмх	0.08	2.2	0.08	1		<u>u</u>
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENE	0.075	0.26	0.075	1		บบ
O-NITROTOLUENE	0.075	0.25	0.075	1		U
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		<u>.U</u>

Surrogate Recovery Control Limits Qualifier
SURROGATE: 1,2-DINITROBENZENE (S 106 65-135

Comments:	<u> </u>
ARF: 67072	

Analytical Method: EPA 8330

Preparatory Method:

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

104

8330

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

65-135

Concentration Units: mg/kg

SURROGATE: 1,2-DINITROBENZENE (S

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.07	51		<u>U</u>
1,3-DNB	0.075	0.25	0.07	5 1		Ų
2,4,6-TNT	0.075	0.25	0.07	51		<u> </u>
2,4-DNT	0.08	0.50	0.0	8 1		<u> </u>
2,6-DNT	0.075	0.26	0.07	5 1		<u> </u>
HMX	0.08	2.2	0.0	81		0
M-NITROTOLUENE	0.08	0.60	0.0	81		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.07	5 1		<u> </u>
NITROBENZENE	0.075	0.26	0.07	5 1		U
O-NITROTOLUENE	0.075	0.25	0.07	5 1		<u> </u>
P-NITROTOLUENE	0.08	0.50	0.0	81		<u> </u>
RDX	0.08	1.0		<u> </u>	<u>L</u>	<u> </u>
Surrogate			covery Co	ntrol Limit	Qualific	er

Comments:
ARF: 67072

Analytical Method: EPA 8330

Preparatory Method:

8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		<u>U</u>
1,3-DNB	0.075	0.25	0.07	<u>1</u>		<u>U</u>
2,4,6-TNT	0.075	0.25	0.07	<u>1</u>	<u></u>	<u>u</u>
2,4-DNT	0.08	0.50	0.08	3 1		U
2,6-DNT	0.075	0.26	0.07	1		
HMX	0.08	2.2	0.08	3 1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		<u>L</u>
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.07:	1		<u> </u>
NITROBENZENE	0.075	0.26	0.07	1		U
O-NITROTOLUENE	0.075	0.25	0.07	1		LL
P-NITROTOLUENE	0.08	0.50	0.08	3 1		U
RDX	0.08	1.0	0.08	3 1		
Surrogate		Re	covery Co	ntroi Limits	Qualifie	r_

65-135 102 SURROGATE: 1,2-DINITROBENZENE (S

Comn	nents
COLLE	INTEREST

Analytical Method: EPA 8330

Preparatory Method:

.

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

8330

Matrix: Soil

% Solids: 92,9

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		U
1,3-DNB	0.075	0.25	0.075	1		U
2,4,6-TNT	0.075	0.25	0.075	1		U
2,4-DNT	0.08	0.50	0.08	l		U
2,6-DNT	0.075	0.26	0.075	1		U
HMX	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENE	0.075	0.26	0.075	1		U
O-NITROTOLUENE	0.075	0.25	0.075	i		U
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	ĺ		<u>u</u>

 Surrogate
 Recovery
 Control Limits
 Qualifier

 SURROGATE: 1,2-DINITROBENZENE (S
 104
 65-135

Comments:	
ARF: 67072	

Analytical Method: EPA 8330

Preparatory Method:

8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		Ü
I,3-DNB	0.075	0.25	0.075	1	<u> </u>	<u>U</u>
2,4,6-TNT	0.075	0.25	0.075	1		ឬ
2,4-DNT	0.08	0.50	0.08	1		<u>_U</u>
2,6-DNT	0.075	0.26	0.075	l.		U
НМХ	0.08	2.2	0.08	<u>l</u>		U
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		U
NITROBENZENE	0.075	0.26	0.075	1		Ŭ
O-NITROTOLUENE	0.075	0.25	0.075	1		<u>. U</u>
P-NITROTOLUENE	0.08	0.50	0.08	1		<u>U</u>
RDX	0.08	1.0	0.08	1	··· a .ua	<u> </u>

Surrogate Recovery Control Limits Qualifier
SURROGATE: 1,2-DINITROBENZENE (S 103 65-135

Comments:			
ARF: 67072	 <u> </u>		
	 <u></u>	•	

Analytical Method: BPA 8330

Preparatory Method:

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

8330

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: 120130

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 03-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Consirm	Qualifle <u>r</u>
1,3,5-TNB	0.075	0.25	0.075	1		u
1,3-DNB	0.075	0.25	0.075	1		<u>U</u>
2,4,6-TNT	0.075	0.25	0.075	1		<u></u>
2,4-DNT	0.08	0.50	0.08	1		<u>_</u>
2,6-DNT	0.075	0.26	0.075	1		
HMX	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		L
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	1		<u> </u>
NITROBENZENE	0.075	0.26	0.075	1		<u>L</u>
O-NITROTOLUENE	0.075	0.25	0.075	1		<u>_</u>
P-NITROTOLUENE	0.08	0.50	0.08	1		
RDX	0.08	1.0	0.08	1		ι ι
Surrogate		Rec	covery Con	trol Limits	Qualifier	_

65-135 SURROGATE: 1,2-DINITROBENZENE (S 101

Comments:	
ARF: 67072	

WALD_ICAL_0130.xis

Initial Calibration **F**отт 6

SDG No: 67072 Initial Cal. Date: 01/30/12

Lab Name: APPL, Inc.

Instrument: Waldorf

99

32 2.6

₹ Z %RSD 3.8 4.1 4.4 9.5 4.4 9 9 ê. 1. ΣĬ Initials: 128 14 14 O <u>\$</u> ₹ 0130_0000010.D 450 767 767 745 745 745 745 745 746 747 777 128 128 128 158 138 칪흥 ဖ ស ជ្ជ និ 4 0130_0000006.D ₹ 2 0130_000005.D 78.4 754 483 802 352 758 615 0130_00000AD 478 478 815 356 358 358 358 358 358 120 120 120 Matríx: 2-AMINO-4,6-DINITROTOLUENE 4-AMINO-2,6-DINITROTOLUENE 2-4-DINITROTOLUENE #2 Case No: TETRYL #2 2,4,6-TRINITROTOLUENE #2 1,3,5-TRINITROBENZENE #2 1,3-DINITROBENZENE #2 3.5-DINITROANILINE #2 NITROBENZENE #2 NITROGLYCERIN Signal #2 HMX #2 RDX #2

MT-

Ž Σ Ø

Ξ

Ž Ž Ψ 뛅 ₽₽ ₽

유

Σ Ž 2.6-DINITROTOLUENE #2
2-NITROTOLUENE #2
4-NITROTOLUENE #2
3-NITROTOLUENE #2

MT MT

9

Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: <u> </u>
Case No:	Date Analyzed: 30-Jan-2012, 17:57:25
Matrix:	Instrument: Waldorf
	Initial Cal. Date: 01/30/12
	Data File: 0130 0000014.D

	· · · - ·	Compound	MEAN	CCRF	%D	9	%Drift
1	TML	NITROGLYCERIN	128	138	8.0	TML	7.4
2	ТМ	PETN	111	111	0.51	TM	
	Signal	#2					
1	ΤΜ	HMX	731	737	0.79	TM	
2	ТM	RDX	470	460	2.2	TM	
3	TM	1,3,5-TRINITROBENZENE	788	758	3.8	TM	
4	S	1,2-DINITROBENZENE	350	352	0.50	S	
5	TM	1,3-DINITROBENZENE	753	764	1.4	TM	
6	TM	3,5-DINITROANILINE	641	658	2.6	TM	
7	TM	NITROBENZENE	349	348	0.14	TM	
8.	ТМ	TETRYL	254	221	13	TM	
9	TM	2,4,6-TRINITROTOLUENE	326	318	2.5	TM	
10	TM	2-AMINO-4,6-DINITROTOLUEN	304	317	4.5	ŢΜ	
11	TM	4-AMINO-2,6-DINITROTOLUEN	239	261	9.1	ТМ	
12	TM	2,4-DINITROTOLUENE	314	333	6,1	ТМ	
13	TM	2,6-DINITROTOLUENE	177	176	0.39	ТМ	
14	TM	2-NITROTOLUENE	125	129	3.9	TM	
15	TM	4-NITROTOLUENE	122	126	3.2	TM	
16	TM	3-NITROTOLUENE	147	157	6.7	TM	
17							
18							
19							
20							
21							
22			_				<u></u> .
23							
24							
25							
26							
27							
28							
29							
30							
31							

Form 7 Continuing Calibration

∟ab Name: <u>APPL, Inc.</u>	SDG No: 67072
Case No:	Date Analyzed: 02-Mar-2012, 15:05:36
Matrix:	Instrument: Waldorf
	Initial Cal. Date: 01/30/12
	Data File: 0302 0000004.D

		Compound	MEAN	CCRF	%D		%Drift
1	TML	NITROGLYCERIN	128	127	0.32	TML	0.87
2	TM	PETN	111	115	3.7	ТМ	
	Signal	#2					
1	ТМ	HMX	731	716	2.0	ΤM	
2	TM	RDX	470	452	3.7	TΜ	
	TM	1,3,5-TRINITROBENZENE	788	759	3.6	TM	
	S	1,2-DINITROBENZENE	350	346	1.1	s	
	TM	1,3-DINITROBENZENE	753	743	1.4	ТМ	
	TM	3,5-DINITROANILINE	641	607	5.3	TM	
	TM	NITROBENZENE	349	335	3.8	TM	
	ΤM	TETRYL	254	241	5.3	TM	
	TM	2,4,6-TRINITROTOLUENE	326	331	1.7	TM	
	TM	2-AMINO-4,6-DINITROTOLUEN	304	321	5.8	TM	
	TΜ	4-AMINO-2,6-DINITROTOLUEN	239	251	5.0	ТМ	
	TM	2,4-DINITROTOLUENE	314	320	2.0	TM	
13	TM	2,6-DINITROTOLUENE	177	179	1.3	ТМ	•
14	TM	2-NITROTOLUENE	125	126	0.86	ТМ	
	TM	4-NITROTOLUENE	122	125	2.2	TM	
	TM	3-NITROTOLUENE	147	150	1.9	TM	
17							
18							
19							
20							
21							
22							
23							
24							
25		•					
26							
27							
28							
29						•	
30							
31		· · · · · · · · · · · · · · · · · · ·					

Form 7 Continuing Calibration

ab Name:	APPL, Inc.	SDG No:	67077
Case No:		Date Analyzed:	02-Mar-2012, 23:37:51
Matrix:		Instrument:	Waldorf
•		Initial Cal. Date:	01/30/12
		Data File:	0302 0000019.D

		Compound	MEAN	CCRF	%D	(%Drif
1	TML	NITROGLYCERIN	128	127	0.55	TML	1.1
2	TM	PETN	111	114	2.8	ТМ	
	Signal	l #2					
1	TM	HMX	731	710	2.8	ΤM	
2	TM	RDX	470	447	4.8	TM	
3	TM	1,3,5-TRINITROBENZENE	788	758	3.8	TM	
4	S	1,2-DINITROBENZENE	350	346	1.2	S	
5	TM	1,3-DINITROBENZENE	753	743	1.3	TM	
6	TM	3,5-DINITROANILINE	641	605	5.7	TM	
7	TM	NITROBENZENE	349	329	5.7	TM	
8	TM	TETRYL	254	229	10	ΤM	
9	TM	2,4,6-TRINITROTOLUENE	326	329	0.92	T₩	
10	TM	2-AMINO-4,6-DINITROTOLUEN	304	320	5.2	TM	·
11	TM	4-AMINO-2,6-DINITROTOLUEN	239	250	4.3	TM	
12	TM	2,4-DINITROTOLUENE	314	320	1.9	TM	
13	TM	2,6-DINITROTOLUENE	177	179	1.2	TM	
14	TM	2-NITROTOLUENE	125	122	1.9	TM	
15	TM	4-NITROTOLUENE	122	123	0.38	· TM	
16	TM	3-NITROTOLUENE	147	146	0.48	TM	
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							

Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 67072
Case No:	Date Analyzed: 03-Mar-2012, 06:19:48
Matrix:	Instrument: Waldorf
	Initial Cal. Date: 01/30/12
	Data File: 0302 0000030.D

	<u> </u>	Compound	MEAN	CCRF	%D		%Drift
1	TML	NITROGLYCERIN	128	128	0.27	TML	0.82
2	ТМ	PETN	111	113	2.3	TM,	
	Signa	l #2					
1	ТМ	HMX	731	702	4.0	TM	
2	TM	RDX	470	446	5.1	TM	
3	TM	1,3,5-TRINITROBENZENE	788	757	4.0	ТМ	
4	S	1,2-DINITROBENZENE	350	347	0.76	s	
5,	TM	1,3-DINITROBENZENE	753	744	1.2	ТМ	
	TM .	3,5-DINITROANILINE	641	602	6.1	TM	
7	TM	NITROBENZENE	349	323	7.3	TM	
8	TM	TETRYL	254	227	11	ТМ	
	TM	2,4,6-TRINITROTOLUENE	326	328	0.82	TM	
	ŤΜ	2-AMINO-4,6-DINITROTOLUEN	304	318	4.8	TM	
	ΤM	4-AMINO-2,6-DINITROTOLUEN	239	249	3.8	TM	
	TM	2,4-DINITROTOLUENE	314	321	2.2	TM	
	TM	2,6-DINITROTOLUENE	177	179	1.5	TM	
14	TM	2-NITROTOLUENE	125	120	3.6	TM	
15	TM	4-NITROTOLUENE	122	121	0.89	ТM	
16	TM	3-NITROTOLUENE	147	143	2.3	TM	
17			i				
18						T	
19							
20							
21							j
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							

AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120301 A-BLK IA

Initial Calibration ID: 120130

Analyte	Method Blank	RL	Q
1,3,5-TNB	< RL	0.25	Ü
1,3-DNB	< RL	0.25	U
2,4,6-TNT	< RL	0.25	U
2,4-DNT	< RL	0.50	Ų
2,6-DNT	< RL	0.26	U
HMX	< RL	2.2	U
M-NITROTOLUENE	< RL	0.60	U
METHYL-2,4,6-TRINITROPHENYLNITRAMINE	< RL	0.65	Ų
NITROBENZENE	< RL	0.26	U
O-NITROTOLUENE	< RL	0.25	U
P-NITROTOLUENE	< RL	0.50	U
RDX	< RL	1.0	U

Surrogate	Recovery	Control Limits	Qualifler
SURROGATE: 1,2-DINITROBENZENE	104	65-13 <u>5</u>	

Comments:

ARF: 67072, Sample: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: BPA 8330

AAB #: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120130

LCS ID: 120301 LCS 14
(17372-17
Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,3,5-TNB	1.970	2.014	102	65-152	
I,3-DNB	1.970	1.982	101	65-135	
2,4,6-TNT	1.970	2.104	107	65-138	
2,4-DNT	1.97	2.08	106	65-135	Ĺ
2,6-DNT	1.970	2.075	105	<u>65-139</u>	
HMX	1.97	2.14	109	64-147	
M-NITROTOLUENE	1.97	2.16	110	50-144	
METHYL-2,4,6-TRINITROPHENYLNIT	1.970	2.352	119	34-152	
NITROBENZENE	1.970	1.970	100	25-144	
O-NITROTOLUENE	1.970	2.124	108	65-139	
P-NITROTOLUENE	1.97	2.14	109	32-160	
RDX	1.97	1.92	97.5	65-142	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DINITROBENZENE (S	102	65-135	

Comments:

ARF: 67072, QC Sample ID: AY55855

AFCEE ORGANIC ANALYSES DATA SHEET 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 8330

Initial Calibration ID: 120130

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units; mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 NY 02-MS ID: 120301-55855S MS-1 N 12-12-12

					<u> </u>				3-12-11	
Analyte	Parent Sample Result	Spike		% R	Duplicate Spiked Sample Result	% R	%RPD	Control Limits % R	Control Limits % RPD	Q
1,3,5-TNB		2.153	2.229	104	2.218	103	0.49	65-152	50	
I,3-DNB		2.153	2.186	102	2.180	101	0.27	65-135	50	
2,4,6-TNT		2.153	2.314	107	2.308	107	0.26	65-138	50	
2,4-DNT	·	2.15	2.30	107	2.29	107	0.44	65-135	50	
2,6-DNT		2.153	2.285	106	2.284	106	0.04	65-139	50	
НМХ		2.15	2,22	103	2.23	104	0.45	64-147	50	
M-NITROTOLUENE		2.15	2.37	110	2.39	111	0.84	50-144	50	
METHYL-2,4,6-TRINITROPHENYL		2.153	2.577	120	2.565	119	0.47	34-152	50	
NITROBENZENE		2.153	2.170	101,	2.182	101	0.55	25-144	50	
O-NITROTOLUENE		2.153	2.331	108	2.348	109	0.73	65-139	50	
P-NITROTOLUENE		2.15	2.35	109	2.36	110	0.42	32-160	50	
RDX		2.15	1.73	80.5	1.72	80.0	0.58	65-142	50	

Analyte	 Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	%RPD		Control Limits % RPD	Q
SURROGATE: 1,2-DINITROBENZEN	 2.00	2.06	103	2.05	102		65-135	50	

Comments:		
	 · · · · · · · · · · · · · · · · · · ·	

AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8330

AAB#: 120301A-164467

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Extracted	Max. Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
B4-NT1-BOT01	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	_
B4-NT1-BOT01 FD	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NTI-BOT02	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	Ĺ
B4-NT1-SW3	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NT1-SW4	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NT1-SW5	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NTI-SW6	27-Feb-12	28-Feb-12	01-Mar-12	14	3	02-Mar-12	40	i	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	<u> </u>
B4-NT1-SW7	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	<u> </u>
B4-NT1-SW8	27-Feb-12	28-Feb-12	01-Mar-12	14	3	03-Mar-12	40	2	
B4-NT1-SW9	27-Feb-12	28-Feb-12	01-Mar-12	14	3	02-Mar-12	40	I	L

Comments:

Injection Log

Directory: H:\WALDORF\CHEM32\I\DATA\120130

	Direc					
Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	0	0130_0000004.D	•	8830B_CB 0.005 PPM 01/30/12		01/30/2012 11:43
2	0	0130_0000005.D		8830B_CB 0.01 PPM 01/30/12		01/30/2012 12:20
3	0	0130_0000006.D		8830B_CB 0.02 PPM 01/30/12		01/30/2012 12:57
4	0	0130_0000007.D		8830B_CB 0.05 PPM 01/30/12		01/30/2012 13:35
5	0	0130_0000008.D		8830B_CB 0.1 PPM 01/30/12		01/30/2012 14:12
6	0	0130_0000009.D		8830B_CB 0.2 PPM 01/30/12		01/30/2012 14:50
7	0	0130_0000010.D		8830B_CB 0.5 PPM 01/30/12		01/30/2012 15:27
8	0	0130_0000011.D		8830B_CB 1.0 PPM 01/30/12		01/30/2012 16:05
9	0	0130_0000012.D		8830B_MX-A 2.0 PPM 01/30/12		01/30/2012 16:42
10	0	0130_0000013.D		8830B_MX-B 2.0 PPM 01/30/12		01/30/2012 17:19
11	0	0130_0000014.D		8830B_SS 1.0 PPM 01/30/12		01/30/2012 17:57
12	0	0302_0000004.D		8330_CCV 1.0 PPM 03/01/12		03/02/2012 15:05
13	0	0302_0000013.D	7.88955	120301SLCS1A 7.890 DF 03/01/12	soil	03/02/2012 20:12
14	0	0302_0000014.D	7.99201	AY55855\$02_MS-1 7.992 DF 03/01/12	soil	03/02/2012 20:40
15	0	0302_0000015.D	7.99201	AY55855802_MSD-1 7.992 DF 03/01/12	soil	03/02/2012 21:17
16	0	0302_0000016.D	7.97607	120301\$BLK1A 7.976 DF 03/01/12	soil	03/02/2012 21:55
17	0	0302_0000017.D	8	AY55846S02 8.000 DF 03/01/12	soil	03/02/2012 22:22
18	0	0302_0000018.D	7.97607	AY55847802 7.976 DF 03/01/12	soil	03/02/2012 23:00
19	0	0302_0000019.D		8330_CCV 1.0 PPM 03/01/12		03/02/2012 23:37
20	0	0302_0000020.D	7.97607	AY55848S02 7.976 DF 03/01/12	soil	03/03/2012 00:05
21	0	0302_0000021.D	7.95229	AY55849S02 7.952 DF 03/01/12	soil	03/03/2012 00:42
22	0	0302_0000022.D	7.92079	AY55850S02 7.929 DF 03/01/12	soil	03/03/2012 01:20
23	0	0302_0000023.D	7.90514	AY55851S02 7.905 DF 03/01/12	soil	03/03/2012 01:57
24	0	0302_0000024.D	7.98403	AY55852802 7.984 DF 03/01/12	soil	03/03/2012 02:35
25	0	0302_0000025.D	8	AY55853802 8.000 DF 03/01/12	şoil	03/03/2012 03:12
26	0	0302_0000026.D	7.9602	AY55854802 7.960 DF 03/01/12	soil	03/03/2012 03:49
27	0	0302_0000027.D	7.97607	AY55855802 7.976 DF 03/01/12	soil	03/03/2012 04:27
28	0	0302_0000028.D	8	AY55856802 8.000 DF 03/01/12	soil	03/03/2012 05:04
29	0	0302_0000029.D	8	AY55869S02 8.000 DF 03/01/12	soil	03/03/2012 05:42
30	0	0302_0000030.D		8330_CCV 1.0 PPM 03/01/12		03/03/2012 06:19

EPA METHOD 8330B Explosives

Calibration Data

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000004.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 11:43:00

Operator : mp

Sample : 8830B_CB 0.005 PPM 01/30/12

Misc

ALS Vial: 4096 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:10 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1 	RT#2	Resp#1	Resp#2	dqq	dqq 	_
	Syst	em Monitoring	Compounds						
	ន	1,2-DINIT		3.748	0	71209	N.D.	5.981	#
ន	pike	ed Amount 62.	500		Recovery	=	0.00%	9.57%	•
	Targ	et Compounds						•	
1)	TM	нмх	0.000	0.949	0	149898	N.D.	6.203	#
2)	TM	RDX	0.000	1,801	0	95658	N.D.	5.999	#
3)	TM	1,3,5-TRI	0.000	2,913	0	162972	N.D.	5.952	
5)	TM	1,3-DINIT	0.000	3.885	0	153184	N.D.	5.906	
6)	TM	3,5-DINIT	0.000	4.144	0	159607	N.D.	8.138	#
7)	TM	NITROBENZENE	0.000	5.273	0	71653	Ŋ.D.	5.956	#
8)	TM	NITROGLYC	6.100	0.000	40040	0	8.476	N.D.	#
9)	TM	TETRYL	6.650	6.643	115206	51363	NoCal	5,877	#
10)	TM	2,4,6-TRI	7.108	7.104	82684	66880	NoCal	5.989	#
11)	TM	2-AMINO-4	7.504	7.500	108410	60749	NoCal	6.239	#
12)	TM	4-AMINO-2	7.790	7.790	102045	47503	NoCal	6.038	#
13)	TM	2,4-DINIT	8.964	8.977	52864	65596	NoCal	6.204	¥
14)	TM	2,6-DINIT	9.301	9.309	54314	38163	NoCal	6.253	
15)	TM	2-NITROTO	0.000	12.704	0	23922	N.D.	5.650	
16)	TM	4-NITROTO	0.000	13.311	0	23981	N.D.	5.750	
17)	TM	3-NITROTO	0.000	14.175	0	27687	N.D.	5.574	
18)	TM	PETN	0.000	0.000	Ô	0	N.D.	N.D.	-

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(OI Reviewed) Vuantitation Keport

Data Path: H:\WALDORF\CHEM32\1\DATA\120130\
Data File: 0130_0000004.D
Signal(s): Signal #1: DADIB.ch Signal #2:: Acg On : 30-Jan-2012, 11:43:00

Signal #2: DAD1A.ch

: MS30B_CB 0.005 PPM 01/30/12 Operator

Sample Misc

Sample Multiplier: 1 : 4096 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Cuant Time: Jan 31 07:52:10 2012
Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M
Quant Title : 8330B - Soil - Waldorf
Quant Title : Fri Jan 06 08:13:57 2012
Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBAX Extend-C18 Signal #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron

Kesponse 3e+07	2e+07-	1e+07		Time 1.00 2.00 Response	3000000	2000000	000000000000000000000000000000000000000	4 Z# XGE	Time 1.00 2.00 3
				3,00			51813	< WIRT-8,6,1	3.00
				4.00			847,8 888.8 < 847,4 &	≸ЯНИЯ:€;¦ ⊲ятию.е,е	4
				5.00 6.			\$12,3	ZN38ORTIN	-
			822 <i>J</i> 81201	7.00				(S# JYRT3)	٧.
10 0 10				F			664.7	(NIST-8,4,5 (4-ONIMA-S (5-ONIMA-8	l i
TIC: 0130_0000004.D				8.00 9.00 TIC: 0130_000004.D				(871NIG-8,2 871NIG-8,2	Ď
Q				10.00 D					10.00
				11.00					11,00
				12.00 1			907.20	ОТОЯПИ-2	12.00
				13.00			70 <i>6.6</i> 3	отоятіи-н	ŀ
				14.00 15.00		•	841.41	ютояти-є	14.00 15.00
				16.00					16.00
				17.00				i	17,00

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000005.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 12:20:27

Operator cm:

: 8830B_CB 0.01 PPM 01/30/12 Sample

Misc ALS Vial

1 1 : 4097 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:12 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	dqq	
4)	S	em Monitorin 1,2-DINIT d Amount 6		3.750	0 Recovery	140918 =	N.D. 0.00%	11.837 18.94%	#
	Targ	et Compounds	· 						
1)	TM	HMX	0.000	0.949	0	301606	N.D.	12,481	Ħ
2)	TM	RDX	0.000	1.801	0	193163	N.D.	12.115	
3)	TM	1,3,5-TRI	. 0.000	2.914	0	320678	N.D.	11,711	
5)	TM	1,3-DINIT	. 0.000	3.886	0	303142	N.D.	11,687	#
6)	TM	3,5-DINIT		4.145	0	245821	N.D.	12.534	#
7)	TM	NITROBENZEN		5,275	0	139226	N.D.	11.573	#
8)	TM	NITROGLYC	-	0.000	31348	0	6.636	N.D.	#
9)	TM	TETRYL	6.649	6.648	182753	103086	NoCal	11.796	#
10)	TM	2,4,6-TRI		7.108	185164	128609	NoCal	11.516	#
11)	TM	2-AMINO-4		7.505	215636	118897	NoCal	12.211	#
12)	TM	4-AMINO-2.		7.795	197591	95447	NoCal	12.132	#
13)	TM	2,4-DINIT		8.981	84481	123174	NoCal	11.650	#
14)	TM	2,6-DINIT		9,314	113243	70115	NoCal	11.489	Ħ
15)	TM	2-NITROTO		12.706	0	50185	N.D.	11.854	Ħ
16)	TM	4-NITROTO		13.316	0	48175	N.D.	11.550	••
17)	TM	3-NITROTO		14.175	0	58409	N.D.	11.759	#
18)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.	
-									

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(OT Reviewed) Quantitation Report

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

Signal Signal #1: DAD1B.ch 30-Jan-2012, 12:20:27 0130_0000005.D Signal(s)

#2: DADIA.ch

Operator Sample Misc

MD 8830B_CB 0.01 PPM 01/30/12

Sample Multiplier: 1 4097 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:12 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

214nm Signal ZORBAX Extend-C18 Signal Volume Inj. Signal #1 Phase Signal #1 Info

12.00 17.00 16.00 16.00 15.00 15.00 14.00 Page: 2 4.00 22V71(JOTORTIN-6 итвотог. И-интротог 616,610 3.00 13.00 #2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron лотоятім-а 007.51(12.00 12.00 11.00 100 10.00 9 8.00 9.00 1 FIC: 0130 0000005.D TIC: 0130_0000005.D P\$6.8< **ATIMIG-8,S** ZZ6'8< ATIMIC-A,S 8.00 162'2< S-ONIMA-P 7.00 9. 949.9 < TETRYL #2 .09 6.00 **авом**роояти/ NITROBENZE >2'554 8 W110907.M Tue Jan 31 07:54:26 2012 WALDORF 991'9ятию-а,ф 8 \$#INI8:\$;# 8 N.3,5-TRIN 5,913 2.00 2.00 008.h RDX #2 8 Z# XWH 976'0 1e+07 5000000 1000000 500000 Response 1.5e+07 Response Time 517

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File: 0130_0000006.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 12:57:53 Acq On

Operator : mp

Sample : 8830B_CB 0.02 PPM 01/30/12 Misc ALS Vial : 4098 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:14 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Rጥ#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Regn#2

nnh

nnh

Regn#1

System Monitoring Compounds 4) S 1,2-DINIT 0.000 3.749 0 279070 N.D. Spiked Amount 62.500 Recovery = 0.00% Target Compounds 1) TM HMX 0.000 0.949 0 596801 N.D.	o ppo
Spiked Amount 62.500 Recovery = 0.00% Target Compounds 1) TM HMX 0.000 0.949 0 596801 N.D.	
Target Compounds 1) TM HMX 0.000 0.949 0 596801 N.D.	. 23.442 #
1) TM HMX 0.000 0.949 0 596801 N.D.	37.51%
-,	
	24.697 #
2) TM RDX 0.000 1.801 0 380739 N.D.	23.879 #
3) TM 1,3,5-TRI 0.000 2.914 0 631470 N.D.	23.061 #
5) TM 1,3-DINIT 0.000 3.886 0 600521 N.D.	23.153 #
6) TM 3,5-DINIT 0.000 4.145 0 518340 N.D.	26.429 #
7) TM NITROBENZENE 0.000 5.273 0 275313 N.D.	22.885 #
8) TM NITROGLYC 6.130 0.000 122485 0 25.92	8 N.D. #
9) TM TETRYL 6.645 6.645 340045 199123 NoCal	. 22.785 #
10) TM 2,4,6-TRI 7.105 7.105 336670 256284 NoCal	. 22.948 #
11) TM 2-AMINO-4 7.502 7.502 375202 238771 NoCal	. 24.522 #
12) TM 4-AMINO-2 7.793 7.793 366649 188074 Nocal	. 23.906 #
13) TM 2,4-DINIT 8.970 8.979 163706 244455 NoCal	23.122 #
14) TM 2,6-DINIT 9.313 9.311 211367 138600 NoCal	. 22.711 #
15) TM 2-NITROTO 0.000 12.702 0 97207 N.D.	22,961 #
16) TM 4-NITROTO 0.000 13.311 0 95057 N.D.	22,791 #
17) TM 3-NITROTO 0.000 14.171 0 115073 N.D.	23.167 #
18) TM PETN 16.008 0.000 93499 0 24.17	9 N.D. #

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Data Path : Data File :

: H:\WALDORF\CHEM32\1\DATA\120130\ : 0130_0000006.D : Signal #1: DADIB.ch Signal #2: DADIA.ch : 30-Jan-2012, 12:57:53 Signal (s)

Acq On Operator Sample

: 4098 Sample Multiplier: 1 : 8830B_CB 0.02 PPM 01/30/12 ALS Vial Misc

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:14 2012
Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M
Quant Title : 8330B - Soil - Waldorf
QLast Update : Fri Jan 06 08:13:57 2012
Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBAX Extend-C18 Signal #2 Info : 20RBAX

800 × 1.800 × 1.800	39CM31	3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 17.00		
---------------------	--------	--	--	--

Data Path: H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000007.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 13:35:20 Acq On

Operator : mp

: 8830B_CB 0.05 PPM 01/30/12 Sample Misc ALS Vial : 4099 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:16 2012
Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M
Quant Title: 8330B - Soil - Waldorf
QLast Update: Fri Jan 06 08:13:57 2012

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #2 Phase: 254nm Signal #1 Phase : 214nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

daa

nnb

Resp#1

4)	S	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.747	0 Recovery	698329 =	N.D. 0.00%	58.659 93.85%	#
	Tarq	et Compounds							
1)	TM	HMX	0.000	0.949	0	1491883	N.D.	61.738	¥
2)	TM	RDX	0.000	1.800	0	961454	N.D.	60,300	#
3)	TM	1,3,5-TRI	0.000	2,912	0	1589883	N.D.	58.061	Ħ
5)	TM	1,3-DINIT	0.000	3.884	0	1511468	N.D.	58.274	Ħ
6)	TM	3,5-DINIT	0.000	4.143	0	1245058	N.D.	63.482	#
7)	TM	NITROBENZENE	0.000	5.270	0	699618	N.D.	58,155	#
8)	TM	NITROGLYC	6.125	0.000	289762	0	61.337	Ŋ.D.	#
9)	TM	TETRYL	6.643	6.643	849283	507538	NoCal	58.076	#
10}	TM	2,4,6-TRI	7.103	7.103	847679	648090	${\tt NoCal}$	58.031	
11)	TM	2-AMINO-4	7.498	7.498	926970	606794	NoCal	62,319	
12)	TM	4-AMINO-2	7.789	7.788	907539	481877	NoCal	61,250	
13)	TM	2,4-DINIT	8.970	8.974	450562	622938	NoCal	58.920	
14)	TM	2,6-DINIT	9.306	9.306	493266	350689	NoCal	57.465	**
15)	TM	2-NITROTO	0.000	12.692	0	250448	Ŋ.D.	59.158	
16)	TM	4-NITROTO	0.000	13.299	0	243523	N.D.	58.387	
17)	TM	3-NITROTO	0.000	14.160	0	294798	N.D.	59.351	
18)	TM	PETN	15.994	0.000	216730	0	56.048	N.D.	#

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path

0130_0000007.D Data File

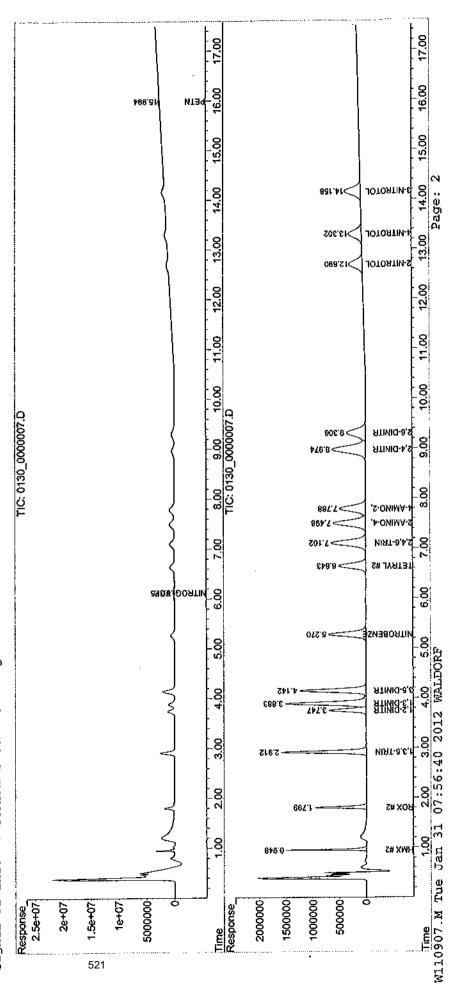
#2: DAD1A.ch Signal 30-Jan-2012, 13:35:20 Signal #1: DAD1B.ch Signal(s)

Acq On

Operator Sample

mp 8830B_CB 0.05 PPM 01/30/12 Misc

Sample Multiplier: 1 4099 ALS Vial


Integration File signal 1: Waldorf_Signal_1110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:16 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

: 40uL : 214nm

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 7. # # : 214nm : ZORBAX Extend-C18 Signal Volume Inj. Signal #1 Phase Signal #1 Info

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_000008.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch Acq On : 30-Jan-2012, 14:12:46

Acq On

Operator : mp

: 8830B_CB 0.1 PPM 01/30/12 Sample

Misc

ALS Vial : 4100 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:18 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	R T #2	Resp#1	Resp#2	ppb	ppb	_
4)	S	em Monitoring (1,2-DINIT d Amount 62.	0.000	3.747	0 Recovery			119.038 190.46%	Ħ
	Tarq	et Compounds						•	
1)	TM	нмх	0.000	0.950	0	3020082	N.D.	124.979	#
2)	TM	RDX	0.000	1.801	0	1935079	N.D.	,	#
3)	TM	1,3,5-TRI	0.000	2.913	0	3208656	N.D.	117.177	#
5)	TM	1,3-DINIT	0.000	3.884	0	3063543	N.D.	118.113	Ħ
6)	TM	3,5-DINIT	0.000	4,142	0	2496522	N.D.	127.291	#
7)	TM	NITROBENZENE	0.000	5,269	0	1413859	N.D.	117.526	#
8)	TM	NITROGLYC	6.125	0.000	525028	0	111.138	N.D.	Ħ
9)	TM	TETRYL	6.640	6.640	1668109	1021061	NoCal	116.837	Ħ
10)	TM	2,4,6-TRI	7.102	7.102	1654609	1314563	NoCal	117.709	Ħ
11)	TM	2-AMINO-4	7.495	7.494	1824013	1231831	NoCal	126.512	#
12)	TM	4-AMINO-2	7.786	7.786	1772002	971854	NoCal	123.530	#
13)	TM	2,4-DINIT	8.971	8.972	880676	1258388	NoCal	119.024	#
14)	TM	2,6-DINIT	9.306	9.305	959379	704858	${\tt NoCal}$	115.499	#
15)	TM	2-NITROTO	0.000	12.693	0	503647	N.D.	118.965	
16)	TM	4-NITROTO	0.000	13.301	0	491719	N.D.		
17)	TM	3-NITROTO	0.000	14.163	0	592330	N.D.	•	Ħ
18)	TM	PETN	15.996	0.000	419179	0	108.403	N.D.	Ħ
-									-

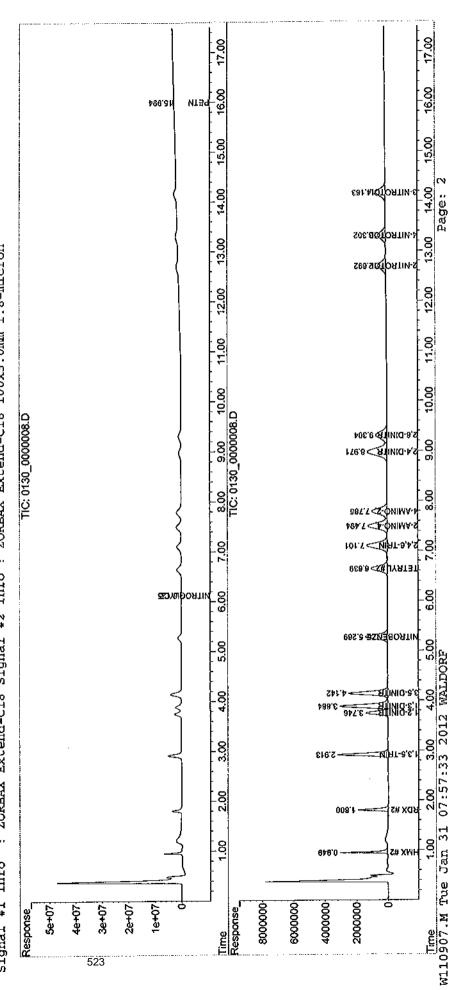
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

0130_0000008.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 30-Jan-2012, 14:12:46 Signal(s)

Acq On Operator

Sample Multiplier: 1 8830B_CB 0.1 PPM 01/30/12 4100 ALS Vial Sample Misc


Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:18 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

: 214nm : 20xBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron Volume Inj. Signal #1 Phase Signal #1 Info

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File: 0130_0000009.D

Signal(s) : Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 14:50:12 Acq On

Operator : mp

Sample : 8830B CB 0.2 PPM 01/30/12

Misc

ALS Vial : 4101 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:20 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

RT#1

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm

Signal #2 Phase: 254nm

RT#2

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

daa

daa

Resp#1

			~~~~~~~				ppb	<u>p</u> pb	_
4)	S	em Monitoring 1,2-DINIT d Amount 62,	0.000	3.741	0 Recovery	2790873	N.D. 0.00%	234.432 375.09%	#
		_			•				
1)	_	et Compounds HMX	0.000	0.948	0	5888471	N.D.	243.681	#
2)	TM	RDX	0.000	1.799	ŏ	3884260	N.D.	243.611	
3)	TM	1,3,5-TRI	0.000	2.909	ŏ	6416516	N.D.	234.325	
5)	TM	1,3-DINIT	0.000	3.879	ŏ	6080171	N.D.	234.418	
6)	TM	3,5-DINIT	0.000	4.136	ŏ	5125781	N.D.	261.350	
7)	TM	NITROBENZENE	0.000	5.266	ŏ	2772476	N.D.	230.460	
8)	TM	NITROGLYC	6.107	0.000	1028470	0	217.707		#
9)	TM	TETRYL	6.626	6.626	3221537	1972419	NoCal	225.698	
10)	TM	2,4,6-TRI	7,087	7.087	3224359	2549952	NoCa1	228.328	¥
11)	TM	2-AMINO-4	7.482	7,482	3513966	2386952	NoCa1	245.146	#
12)	TM	4-AMINO-2	7.772	7.772	3413125	1881007	NoCal	239.089	#
13)	TM	2,4-DINIT	8.957	8.957	1764865	2453692	NoCal	232.081	#
14)	TM	2,6-DINIT	9.289	9.289	1886480	1370289	NoCal	224,538	#
15)	TM	2-NITROTO	0.000	12.683	0	968566	N.D.	228.783	Ħ
16)	TM	4-NITROTO	0.000	13.291	0	946299	N.D.	226,884	¥
17)	TM	3-NITROTO	0.000	14.155	0	1139786	N.D.	229.469	#
18)	TM	PETN	15.981	0.000	848667	0	219.471	N.D.	Ħ
4									

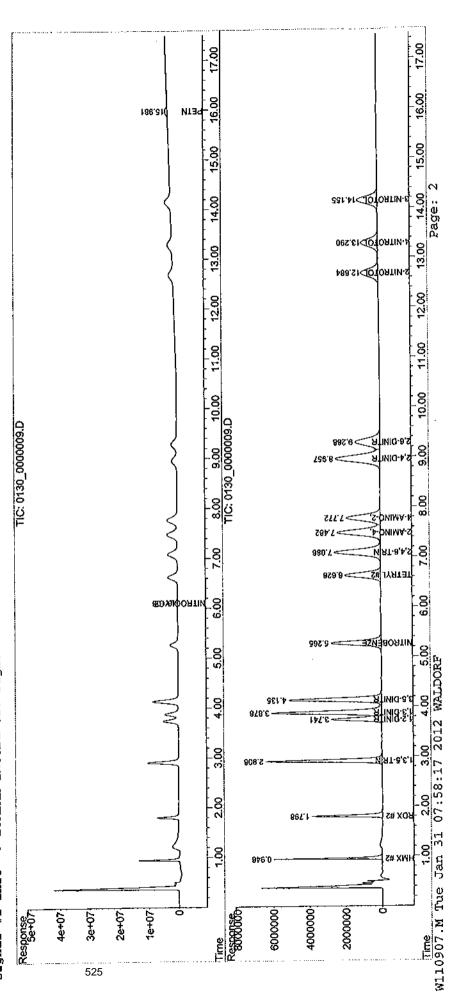
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ 0.130_000000.DE10 Data Path Data File

Signal #2: DAD1A.ch Signal #1: DADIB.ch : Signal(s)

Acg On

Operator


мр 8830в_СВ 0.2 РРМ 01/30/12 Sample

Sample Multiplier: 1 4101 Misc ALS Vial Integration File signal 1: Waldorf_Signal_1110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:20 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration

Integrator: ChemStation

40uL 214nm 20RBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron Volume Inj. Signal #1 Phase : Signal #1 Info :



Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File: 0130_0000010.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acg On : 30-Jan-2012, 15:27:39

Operator : mp

Sample : 8830B_CB 0.5 PPM 01/30/12

Misc

ALS Vial : 4102 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:22 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound		RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	
					·				-
4)	s	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.743	0 Recovery	6940646	N.D. 0.00%	583.011 932.82%	#
	Targ	et Compounds							
1)	TM	HMX	0.000	0.948	0	14217365	N.D.	588.355	
2)	TM	RDX	0.000	1,797	0	8996618	N.D.	564.245	
3)	TM	1,3,5-TRI	0.000	2,909	0	15346795	N.D.	560.451	
5)	TM	1,3-DINIT	0.000	3.879	0	14895805	N.D.	574.300	Ħ
6)	TM	3,5-DINIT	0.000	4.139	0	12208006	N.D.	622.454	
7)	TM	NITROBENZENE	0.000	5.264	0	6934531	N.D.	576.428	#
8)	TM	NITROGLYC	6.126	0.000	2595124	0	549.338	Ŋ.D.	#
9)	TM	TETRYL	6.643	6,643	8349482	5105934	NoCal	584.258	#
10)	TM	2,4,6-TRI	7.103	7.103	8334551	6606213	NoCal	591.535	#
11)	TM	2-AMINO-4	7.495	7.495	9125421	6187316	NoCa1	635.452	Ħ
12)	TM	4-AMINO-2	7.787	7.787	8852558	4870448	NoCal	619.069	Ħ
13)	TM	2,4-DINIT	8,971	8.971	4556832	6361186	NoCal	601.670	
14)	TM	2.6-DINIT	9.305	9.305	4880144	3549893	NoCal	581.691	
15)	TM	2-NITROTO	0.000	12,688	0	2553602	N.D.	603.180	#
16)	TM	4-NITROTO	0.000	13,295	0	2502848	N.D.	600.082	
17)	TM	3-NITROTO	0.000	14,160	0	3028315	N.D.		
18)	TM	PETN	15.996	0.000	2249019	0	581.612	N.D.	#

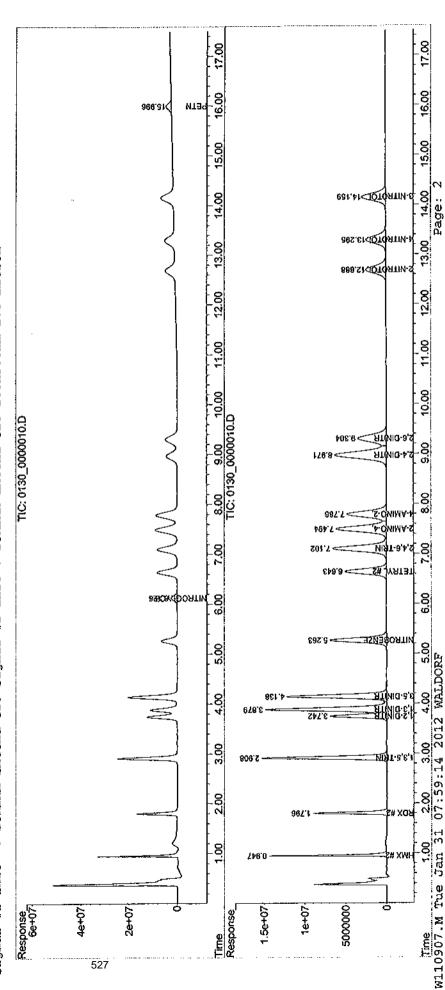
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

#2: DAD1A.ch 0130_0000010.D Signal #1: DAD1B.ch Signal 30-Jan-2012, 15:27:39 Signal(s)

Acq On

Operator


Sample Misc

Sample Multiplier: 1 mp 8830B_CB 0.5 PPM 01/30/12 4102 ALS Vial _110721.e Integration File signal 1: Waldorf_Signal_1110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:22 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration

Integrator: ChemStation

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron # # # Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : ZORBAX Extend-C18 Signal



Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000011.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 16:05:06 Aca On

: mp Operator

: 8830B_CB 1.0 PPM 01/30/12 Sample

Misc

ALS Vial : 4103 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:24 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration Integrator: ChemStation

: 40uL Volume Inj.

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

ppb

ppb

Resp#1

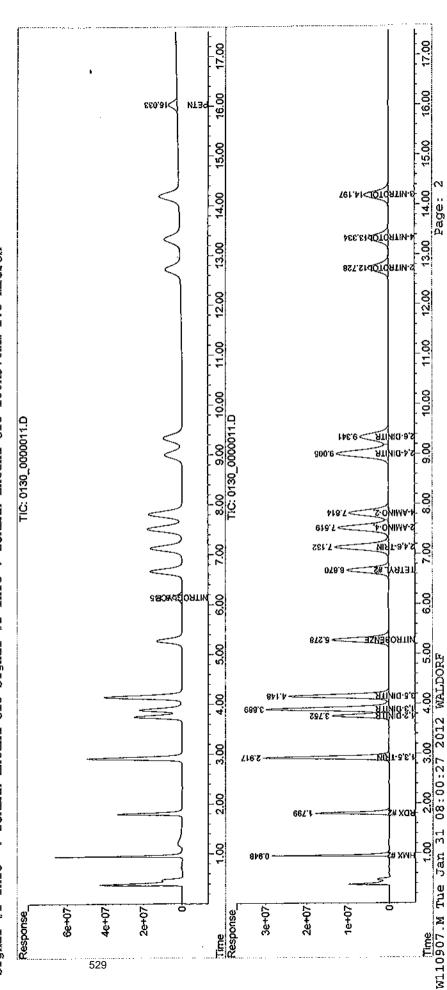
			" -				<b></b>		_
4)	ŝ	em Monitoring ( 1,2-DINIT d Amount 62.	0.000	3.752		13933702 Y =		1170.425 1872.68%	#
	Taro	et Compounds							
1)	TM	НМХ	0.000	0.949	0	28319958	N.D.	1171,959	#
2)	TM	RDX	0.000	1.800	0	17990471	Ŋ.D.	1128.316	#
3)	TM	1,3,5-TRI	0.000	2.917	0	30614228	Ŋ.D.	1118.004	#
5)	TM	1,3-DINIT	0.000	3.889	0	29817153	N.D.	1149.585	#
6)	TM	3,5-DINIT	0.000	4.149	0	24351428	N.D.	1241.615	Ħ
7)	TM	NITROBENZENE	0.000	5.278	0	13910609	N.D.	1156,309	Ħ
8)	TM	NITROGLYC	6.145	6.143	5157923	106270	1091.834	NoCal	Ħ
9)	TM	TETRYL	6.671	6,671	16762076	10268073	NoCal	1174.946	Ħ
10)	TM	2,4,6-TRI	7.133	7.133	16607140	13173668	NoCal	1179.600	#
11)	TM	2-AMINO-4	7.520	7.520	18209141	12380128	NoCal	1271.469	#
12)	TM	4-AMINO-2	7.815	7.815	17630086	9697138	NoCal	1232.576	
13)	TM	2,4-DINIT	9.006	9.005	9156912	12737799	NoCal	1204.800	
14)	TM	2,6-DINIT	9.341	9.341	9784688	7111957	NoCal	1165.377	
15)	TM	2-NITROTO	0.000	12.728	0	5159271	Ŋ.D.	1218.660	Ħ
16)	TM	4-NITROTO	0.000	13.334	0	5061551	Ŋ.D.	1213.557	
17)	TM	3-NITROTO	0.000	14.197	0	6118470	N.D.	1231.809	
18)	TM	PETN	16.033	0.000	4551781	0	1177.123	N.D.	Ħ

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ 0130_0000011.D Signal #1: DAD1B.ch Signal Data File Signal(s) Data Path

DADIA.ch #5: 30-Jan-2012, 16:05:06


Acq On

8830B_CB 1.0 PPM 01/30/12 Operator Sample

Sample Multiplier: 1 4103 ALS Vial Misc

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M 1_110721.e 2_110803.e Integration File signal 1: Waldorf_Signal_1
Integration File signal 2: Waldorf_Signal_2
Quant Time: Jan 31 07:52:24 2012 Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration - Waldorf Integrator: ChemStation

Phase: 254nm Info: 20RBAX Extend-C18 100x3.0mm 1.8-micron 7 # # : Z14nm Signal : ZORBAX Extend-C18 Signal 214nm Volume Inj. Signal #1 Phase Signal #1 Info



Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000012.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 16:42:32 Acq On

Operator : mp

: 8830B_MX-A 2.0 PPM 01/30/12 Sample

Misc

Sample Multiplier: 1 : 4104 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:00:35 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	-
System Monitoring ( 4) S 1,2-DINIT Spiked Amount 62.5	0.000	3.753	0 Recovery	27650957 =	N.D. 0.00%	2322.669 3716.27%	#
Target Compounds  1) TM HMX  2) TM RDX  3) TM 1,3,5-TRI  5) TM 1,3-DINIT  6) TM 3,5-DINIT  7) TM NITROBENZENE  8) TM NITROGLYC  9) TM TETRYL  10) TM 2,4,6-TRI  11) TM 2-AMINO-4  12) TM 4-AMINO-2  13) TM 2,4-DINIT  14) TM 2,6-DINIT  14) TM 2,6-DINIT  15) TM 2-NITROTO  16) TM 4-NITROTO  17) TM 3-NITROTO  18) TM PETN	0.000 0.000 0.000 0.000 0.000 0.000 6.673 7.137 7.517 7.814 9.006 9.343 0.000 0.000	0.950 1.801 2.919 3.891 0.000 5.278 6.243 6.673 7.137 7.517 7.814 9.006 9.343 12.727 13.332 14.196 0.000	0 0 0 0 0 0 33726477 32657891 35865113 34629131 18140454 19058611	19016229	N.D. N.D. N.D. N.D. N.D. N.D. N.Cal NoCal	2233.267 2210.015 2197.711 2267.424 N.D. 2275.237 d NoCal 2364.908 2322.504 2507.202 2417.100 2377.710 2275.627 2385.641 2388.116 2423.783 N.D.	#############

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 14.00 14.00 **อยา.ค**เ⊲ญโด**ก**เทษ6 Page: SEE ENDOTORING 13.00 13.00 #2 Phase: 254nm #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 7SY.SI4OTORTIN-S 2,8 12.00 17.00 11,00 10.00 10.00 TIC: 0130_0000012.D 8.00 9.00 1 TIC: 0130_0000012.D EÞE.8 ≪ATIŅIO-8 8.6 HI 10-5'2 8.00 S.OMMA. Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M 7.00 7.00 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 08:00:35 2012 Signal #2: DAD1A.ch 900 90.0 H:\WALDORF\CHEM32\1\DATA\120130\ Signal Signal 5.00 2.00 3.00 4.00 5.00 08:01:12 2012 WALDORF mp 8830B_MX-A 2.0 PPM 01/30/12 Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration Sample Multiplier: 1 : ZORBAX Extend-C18 8 - HINS & H 0130_0000012.D Signal #1: DAD1B.ch : 30-Jan-2012, 16:42:32 £87.£ 3.8 Integrator: ChemStation 214nm 5.00 2.00 008.1 W110907.M Tue Jan 31 4104 9.6 8 Volume Inj. Signal #1 Phase Signal #1 Info 616'0 Data File Response 1.5e+08 Data Path Signal(s) Se+07 1e+08 6e+07 2e+07 Time Response 4e+07 Operator ALS Vial Acq On Sample Misc 531

(OI Keviewed)

Krantracton Report

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File: 0130_0000013.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 17:19:58 Aca On

Operator : mp

: 8830B_MX-B 2.0 PPM 01/30/12 Sample

Misc

ALS Vial: 4160 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:01:50 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2 	Resp∦1	Resp#2	dqq 	dqq
	Svst	em Monitoring	Compounds					,
4)	-	1,2-DINIT	_	0.000	0	0	N.D.	N.D.
		d Amount 62.		*.**	Recovery	•	0.00%	0.00%
	Targ	et Compounds						
1)	TM	HMX	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D. d
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D. d
6)	TM	3,5-DINIT	0.000	4.150	0	48267489	N.D.	2461.031 #
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8)	TM	NITROGLYC	6.148	6.149	10264447	185815	2172.787	NoCal #
9)	TM	TETRYL	6.699	0.000	17554	0	NoCa1	N.D.
10)	TM	2,4,6-TRI	7.056	0.000	41082	0	NoCa1	N.D.
11)	TM	2-AMINO-4	7.500	0.000	34133	0	${\tt NoCal}$	N.D.
12)	TM	4-AMINO-2	7.822	0.000	44265	0	NoCal	N.D.
13)	TM	2,4-DINIT	8.915	0.000	31430	0	NoCal	N.D.
14)	TM	2,6-DINIT	9.344	0.000	223500	0	NoCal	N.D. d
15)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D. d
16)	TM	4-NITROTO	0.000	0.000	0	0	Ŋ.D.	Ŋ.D.
17)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	Ŋ.D. d
18)	TM	PETN	16.037	0.000	9104187	0	2354.407	N.D. #

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

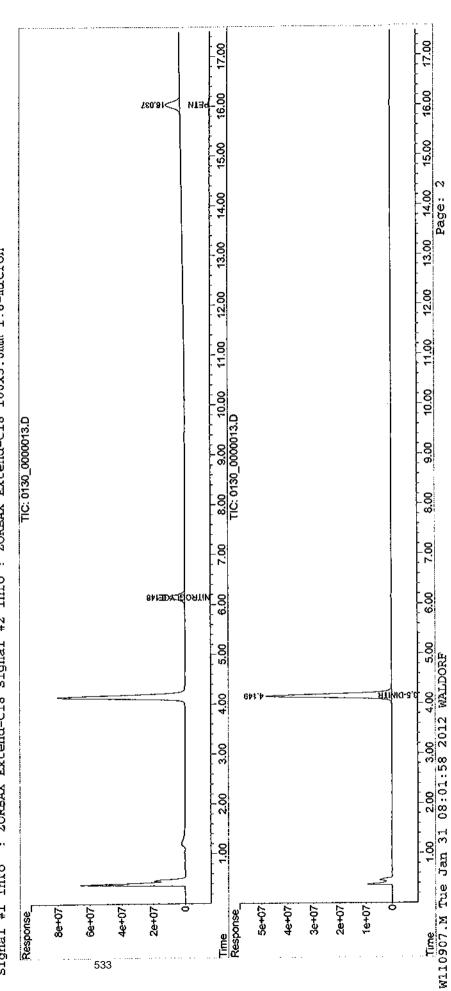
H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

0130_0000013.D Signal #1: DADIB.ch Signal #2: DADIA.ch 30-Jan-2012, 17:19:58 Signal(s)

Operator Acq On

Sample

8830B_MX-B 2.0 PPM 01/30/12 ALS Vial Misc


Sample Multiplier: 1 : 4160

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 08:01:50 2012
Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quast Update: Fri Jan 06 08:13:57 2012
Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214mm Signal #1 Info : 20RBA)

: 214nm : 20RBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron



The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File: 0130_0000014.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 17:57:25

Operator : mp

Sample : 8830B_SS 1.0 PPM 01/30/12

Misc

ALS Vial : 4161 Sample Multiplier: 1

And vital , first sample materprise.

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:12:57 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	_
4)	S	em Monitoring ( 1,2-DINIT d Amount 62.	0.000	3.756	0 Recovery	14072144 / =	N.D. 0.00%	1004,996 1607.99%	#
	Tarq	et Compounds							
1)	TM	HMX	0.000	0.952	0	29476143	Ŋ.D.	1007.927	#
2)	TM	RDX	0.000	1.803	0	18380279	N.D.	978.319	#
3)	TM	1,3,5-TRI	0.000	2.921	0	30304728	N.D.	961.715	#
5)	TM	1,3-DINIT	0.000	3.893	0	30551565	N.D.	1013.666	#
6)	TM	3,5-DINIT	0.000	4.153	0	26323499	N.D.	1026.404	#
7)	TM	NITROBENZENE	0.000	5.281	0	13922535	N.D.	998.607	Ħ
8)	TM	NITROGLYC	6,148	6.145	5522927	117796	1073.842	NoCa1	Ħ
9)	TM	TETRYL	6.676	6.676	14430548	8845938	NoCal	869.385	#
10)	TM	2,4,6-TRI	7.138	7.138	16006768	12700385	NoCal	974.760	#
11)	TM	2-AMINO-4	7.524	7.524	18660616	12690628	NoCal	1044.707	#
12)	TM	4-AMINO-2	7.819	7.819	18986754	10443669	NoCal	1090.959	#
13)	TM	2,4-DINIT	9.010	9.010	9563215	13319976	NoCal	1060.884	#
14)	TM	2,6-DINIT	9.347	9.347	9656064	7043586	NoCa1	996.054	#
15)	TM	2-NITROTO	0.000	12.731	0	5178966	N.D.	1038.845	#
16)	TM	4-NITROTO	0.000	13.336	0	5037825	N.D.	1032.033	#
17)	TM	3-NITROTO	0.000	14.198	0	6263188	N.D.	1066.683	#
18)	TM	PETN	16.035	0.000	4457865	0	1005.104	N.D.	Ħ
							<del></del>		-

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

Signal #1: DAD1B.ch Signal #2: DAD1A.ch 30-Jan-2012, 17:57:25 D130_0000014.D Signal(s)

Operator Acq On

8830B_SS 1.0 PPM 01/30/12 Sample

Misc

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 08:12:57 2012

Sample Multiplier: 1

4161

ALS Vial

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

: 214nm Volume Inj. Signal #1 Phase Signal #1 Info

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 0°0 ## Signal Signal ZORBAX Extend-C18

17.00 17.00 16.00 16.00 ¥£0,83€ MTBC 15.00 15.00 14.00 14.00 891.41<<u>⊄</u>QTQRTIN-6 BEE.ETAQTORTIN-1 13.00 13.00 PET, S KADT Q PITIN-S 12.00 12.00 1.8 2 9 10.00 8.00 9.00 1/1 FIC: 0130_0000014.D TIC: 0130_0000014.D 746.8 ATI/NO-0,S 8.00 200 8 ୫**ଇ**୦୯ଏଣ୍ଟ୍ରଚେମ।। .8 9.00 MIROB<u>ENZE</u> 9.00 5.00 2.00 3.00 4.00 5.0 08:16:00 2012 WALDORF 9.0 992'€ 3.00 8, Time 1.00 W110907.M Tue Jan 31 8 166.0 Response 8e+07 1e+07 6e+07 4e+07 2e+07 2e+07 Time Response_ 3e+07 535

Page:

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000004.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 15:05:36

Operator : mp

Sample : 8330_CCV 1.0 PPM 03/01/12

Misc

ALS Vial: 4424 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 08:08:20 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

dqq

dqq

Resp#1

									_
4)	s	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.765	0 Recover	13845692 Y =	N.D. 0.00%	988,823 1582,12%	Ħ
	Tarq	et Compounds							
1)	_	HMX	0.000	0.952	0	28644846	N.D.	979.501	#
2)	TM	RDX	0.000	1.807	0	18090172	N.D.	962.878	#
3)	TM	1,3,5-TRI	0.000	2.935	0	30364649	N.D.	963.617	#
5)	TM	1,3-DINIT	0.000	3.909	0	29712324	N.D.	985.821	#
6)	TM	3,5-DINIT	0.000	4.156	0	24287836	N.D.	947.030	Ħ
7)	TM	NITROBENZENE	0.000	5.295	0	13414734	N.D.	962.184	#
8)	TM	NITROGLYC	6.200	6.200	5099432	99272	991.299	NoCal	Ħ
9)	TM	TETRYL	6,706	6.706	15727992	9635290	NoCa1	946.963	#
10)	TM	2,4,6-TRI	7.182	7.182	16698943	13249903	NoCal	1016.936	
11)	TM	2-AMINO-4	7.535	7.535	18888622	12857578	NoCal	1058.450	
12)	TM	4-AMINO-2	7.823	7.823	18247693	10052232	NoCal	1050.069	
13)	TM	2,4-DINIT	9.058	9.057	9267018	12801528	NoCal	1019.592	
14)	TM	2,6-DINIT	9.393	9.392	9847288	7161107	NoCal	1012.673	-
15)	TM	2-NITROTO	0.000	12.764	0	5027974	N.D.	1008.557	
16)	TM	4-NITROTO	0.000	13.365	0	4989573	N.D.	1022.148	
17)	TM	3-NITROTO	0.000	14.227	0	5981623	N.D.	1018.730	
18)	TM	PETN	16.140	0.000	4598600	0	1036.835	N.D.	#

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Y:\CHEM32\WALDORF\DATA\120130\120302\ Data File Data Path

#2: DAD1A.ch Signal 0302_0000004.D Signal #1: DADIB.ch Signal(s)

02-Mar-2012, 15:05:36 Acq On

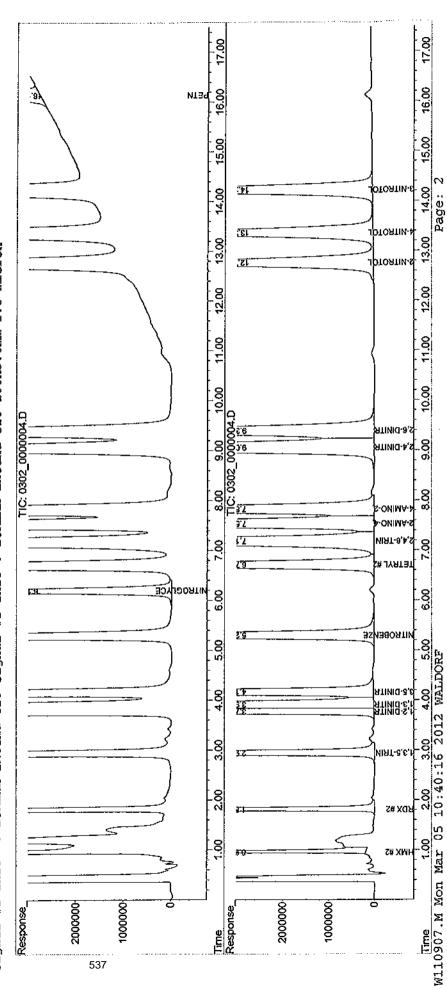
Operator Sample

8330_CCV 1.0 PPM 03/01/12 Misc

Sample Multiplier: 4424 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 08:08:20 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M


31 08:12:41 2012 : Tue Jan 31 08:12:41 : Initial Calibration 8330B - Soil QLast Update Title Quant

Integrator: ChemStation Response via

Volume

: 40uL : 214nm : ZORBAX Extend-C18 #1 Phase Signal Signal

Phase: 254nm Info: 20RBAX Extend-C18 100x3.0mm 1.8-micron Signal #2 N Signal #2 D Info



Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000019.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 23:37:51

Operator qm;

: 8330_CCV 1.0 PPM 03/01/12 Sample

Misc

ALS Vial : 4424 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf Signal 2 110803 e

RT#1

Quant Time: Mar 05 08:08:22 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

: 40uL

Signal #1 Phase : 214nm

Compound

Signal #2 Phase: 254nm

Resp#2

ppb

ppb

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#1

									-
4)	S	em Monitoring 1,2-DINIT d Amount 62,	0.000	3.759	0 Recovery	13832030 y =	N.D. 0.00%	987.847 1580.56%	#
	Taro	et Compounds							
1)	TM	нмх	0.000	0.953	0	28413600	N.D.	971.594	#
2)	TM	RDX	0.000	1.807	_	17892318	N.D.	952,347	#
3)	TM	1,3,5-TRI	0.000	2.931	-	30314377	N.D.	962,021	
5)	TM	1,3-DINIT	0.000	3,902	•	29739787	N.D.	986.733	
6)	TM	3,5-DINIT	0.000	4.153	_	24194955	N.D.	943.408	
7)	TM	NITROBENZENE	0.000	5,282	-	13153739	N.D.	943.464	
8)	TM	NITROGLYC	6.181	6,182	5087621	114439	988.997		Ĥ
9)	TM	TETRYL	6.691	6.691	14884403	9144563	NoCa1	898.734	
10)	TM	2,4,6-TRI	7.162	7.162	16532587	13149256	NoCa1	1009.211	
	TM	2-AMINO-4	7.524	7.524		12783334	NoCal	1052.338	
11)		4-AMINO-2	7.811	7.811	18179276	9986536	NoCa1	1043.206	
12)	TM	2,4-DINIT	9.036	9.036	9251959	12799357	NoCa1		#
13)	TM	2,4-DINIT	9.369	9.369	9816979	7158991	NoCal		#
14)	TM	•	0.000	12.740	0	4890090	N.D.	980.899	**
15)	TM	2-NITROTO		13.342	ő	4900019	N.D.	1003.802	
16)	TM	4-NITROTO	0.000		Ö	5843375	N.D.		#
17)	TM	3-NITROTO	0.000	14.203	-	0 433/3	1027.965		#
18)	TM	PETN	16.109	0.000	4559256	U	1047.903	N.D.	17

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(QT Reviewed) Quantitation Report

Y:\CHEM32\WALDORF\DATA\120130\120302\ Data File Data Path

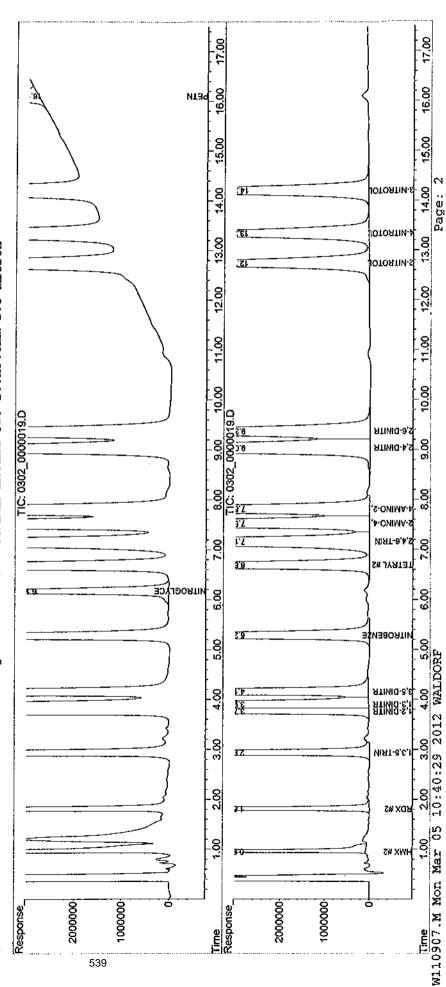
#2: DAD1A.ch Signal 0302_0000019.D Signal #1: DADIB.ch 02-Mar-2012, 23:37:51 Signal(s)

Operator Acq On

mp 8330_CCV 1.0 PPM 03/01/12 Sample

Sample Multiplier: 4424 Misc ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 08:08:22 2012


Quant Method

: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M : 8330B - Soil - Waldorf QLast Update Title Quant

: Tue Jan 31 08:12:41 2012 : Initial Calibration ChemStation Response via Integrator:

40uL Volume Inj. Signal #1 Phase Signal #1 Info

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron # # # # Signal Signal 214nm ZORBAX Extend-C18



Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000030.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 03-Mar-2012, 06:19:48 Acq On

: mp Operator

: 8330_CCV 1.0 PPM 03/01/12 Sample

Misc

ALS Vial : 4424 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal 2 110803.e

Quant Time: Mar 05 08:08:24 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	<b>-</b>
4)	S	em Monitoring 1,2~DINIT d Amount 62.	0.000	3.763	0 Recovery	13895695 Y =	N.D. 0.00%	992,394 1587.83%	#
,	Tarq	et Compounds							
1)	$\mathbf{TM}$	нмх	0.000	0.951	0	28079162	N.D.	960.158	#
2)	TM	RDX	0.000	1.806	0	17837751	N.D.	949.442	#
3)	TM	1,3,5-TRI	0.000	2.932	0	30260745	N.D.	960.319	#
5)	TM	1,3-DINIT	0.000	3.906	0	29763554	N.D.	987.521	#
6)	TM	3,5-DINIT	0.000	4.159	0	24093908	N.D.	939.468	#
7)	TM	NITROBENZENE	0.000	5.287	0	12928109	N.D.	927.281	Ħ
8)	TM	NITROGLYC	6.185	6.185	5101901	113654	991.780	NoCal	#
9)	TM	TETRYL	6.700	6.700	14792826	9087113	NoCal	893.088	Ħ
10)	TM	2,4,6-TRI	7.169	7.169	16522804	13135581	NoCal	1008.161	#
11)	TM	2-AMINO-4	7.536	7.536		12732139	NoCal	1048.124	#
12)	TM	4-AMINO-2	7.823	7.823	18114024	9940653	NoCal		Ħ
13)	TM	2,4-DINIT	9.045	9.044	9260388		NoCal		Ħ
14)	TM	2,6-DINIT	9.378	9.378	9834288	7178719	NoCal		#
15)	TM	2-NITROTO	0.000	12.746	0	4806732	N.D.		#
16)	TM	4-NITROTO	0.000	13.347	0	4837898	N.D.		Ħ
17)	TM	3-NITROTO	0.000	14,210	0	5736503	N.D.		#
18)	TM	PETN	16,111	0.000	4538780	0	1023.348	N.D.	#
-				~				<i></i>	

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Data File Data Path

#2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000030.D Signal #1: DAD1B.ch Signal #2: DAD1A Signal(s)

03-Mar-2012, 06:19:48 Acq On

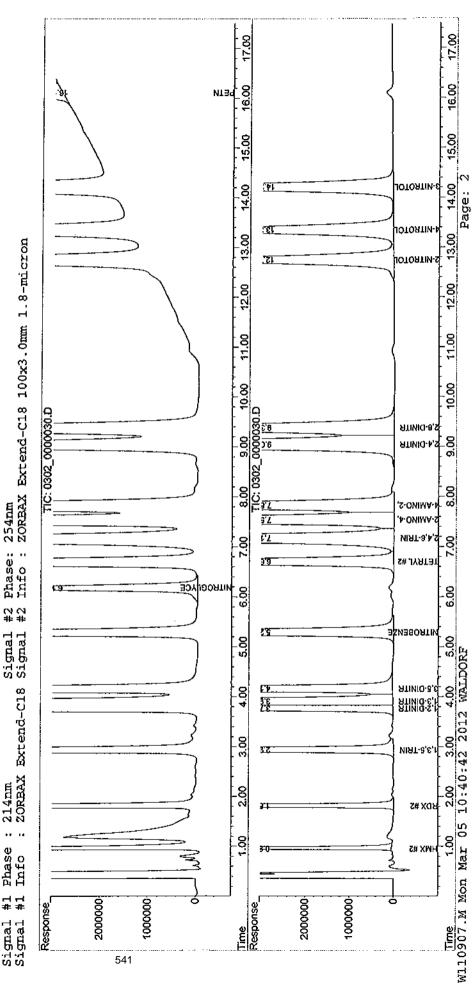
Operator

mp 8330_CCV 1.0 PPM 03/01/12 Sample Misc

Sample Multiplier: 4424 ALS Vial

ration File signal 1: Waldorf_Signal_1_110721.e ration File signal 2: Waldorf_Signal_2_110803.e Time: Mar 05 08:08:24 2012 Integration Integration

Quant


: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M - Waldorf 8330B - Soil Quant Method Title Quant

: The Jan 31 08:12:41 2012 : Initial Calibration Qlast Update

ChemStation Response via Integrator:

40tr

# # # # Signal Signal 214nm 20RBAX Extend-C18 Volume Inj. Signal #1 Phase Signal #1 Info



# EPA METHOD 8330B Explosives

**Raw Data** 



## Quantitation Report (QT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File : 0302_0000017.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 22:22:55

Operator : mp

: AY55846S02 8.000 DF 03/01/12 Sample

: soil Misc

ALS Vial : 4100 Sample Multiplier: 8

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:55 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	ppb
4)	S	em Monitoring 1,2-DINIT d Amount 600	0.000	3.762	0 Recovery	1102575 / =	N.D. 0.00%	629.944 # 104.99%
	Targ	et Compounds						
1)	TM	HMX	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8)	TM	NITROGLYC	6,219	0.000	7503	0	N.D.	N.D.
9)	TM	TETRYL	6.667	0.000	4366	0	${\tt NoCal}$	N.D.
10)	TM	2,4,6-TRI	7.170	0,000	9597	0	NoCal	N.D.
11)	TM	2-AMINO-4	7.517	0.000	10620	0	NoCal	N.D.
12)	TM	4-AMINO-2	7.789	0.000	5672	0	NoCal	N.D.
13)	TM	2,4-DINIT	9.067	0.000	9630	0	NoCal	N.D.
14)	TM	2,6-DINIT	9.434	0.000	9558	0	${\tt NoCal}$	N.D.
15)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
16)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
17)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
18)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 8.4 14.00 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.80 1.00 5 8 10.00 10.00 8.00 9.00 10 TIC: 0302_0000017.D TIC: 0302_0000017.D . 6 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:25:55 2012
Quant Time: Mar 05 11:25:55 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quast Update: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration 8.00 7.00 8 0302_0000017.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 02-Mar-2012, 22:22:55 Y:\CHEM32\WALDORF\DATA\120130\120302\ 9.00 8 9.00 ### 1.00 2.00 3.00 4.00 5.00 W110907.M Mar 05 11:44:19 2012 WALDORF AY55846S02 8.000 DF 03/01/12 Sample Multiplier: 8 : 40uL : 214nm : ZORBAX Extend-C18 .09 2-DINI∐B 3.00 Integrator: ChemStation 8 4100 Volume Inj. Signal #1 Phase : Signal #1 Info : 8 soil Data Path Data File Signal(s) Operator Sample Misc Response 2000000 1000000 2000000 1000000 ALS Vial Response Acq On Time 544

ממשער המנדים אמממירי

# Quantitation Report (QT Reviewed)

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000018.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 23:00:21

Operator : mp

Sample : AY55847S02 7.976 DF 03/01/12

Misc : soil

ALS Vial: 4101 Sample Multiplier: 7.97607

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:57 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

RT#2

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

daa

anh

Resp#1

		·				 .vesb#5		
		em Monitoring (		<b>2</b> 250				
	S.	1,2-DINIT		3.758		.098304	N.D.	625.627 #
S	brke	d Amount 598.	. 205		Recovery	=	0.00%	104.58%
	Targ	ret Compounds						
l)	TM	НМХ	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	ТM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8)	TM	NITROGLYC	6.099	0.000	2475	0	N.D.	N.D.
9)	TM	TETRYL	6.696	0.000	2846	0	NoCal	N.D.
10)	TM	2,4,6-TRI	7.230	0.000	5586	0	NoCal	N.D.
11)	TM	2-AMINO-4	7.598	0.000	7595	0	NoCal	N.D.
(2)	TM	4-AMINO-2	7.784	0.000	4756	0	NoCa1	N.D.
(3)	TM	2,4-DINIT	9.059	0.000	13124	0	NoCal	N.D.
L4)	TM	2,6-DINIT	9.411	0.000	3944	0	NoCal	N.D.
L5}	ТM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
L6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
.7)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
.8)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(QT Reviewed) Quantitation Report

Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000018.D Data Path Data File

Signal #2: DAD1A.ch Signal #1: DADIB.ch 02-Mar-2012, 23:00:21 Signal(s)

Acq On

AY55847S02 7.976 DF 03/01/12 Operator Sample

soil ALS Vial Misc

Sample Multiplier: 7.97607 4101

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:25:57 2012
Quant Time: Mar 05 11:25:57 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quant Title: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration

Integrator: ChemStation

: 40uL : 214nm Volume Inj. Signal #1 Phase : Signal #1 Info :

214nm Signal #2 Phase: 254nm 20RBAX Extend-C18 100x3.0mm 1.8-micron

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 12.00 12.00 11.00 11.00 8.00 9.00 10.00 TIC: 0302_0000018.D . 8 TIC: 0302_0000018.D 00.6 800 2.00 2.00 900 6.00 200 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:44:45 2012 WALDORF 90,4 S-DINI∯B 3.00 2.00 8 1000000 2000000 1000000 2000000 Response Response шe

# Quantitation Report (QT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File : 0302_0000020.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 00:05:21

Operator : mp

Sample : AY55848S02 7.976 DF 03/01/12

Misc : soil

ALS Vial: 4102 Sample Multiplier: 7.97607

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:59 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

**₽**Ψ#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Boan#2

nnh

nnh

Pogn#1

_	Compound	K1#1	RT#Z	kesp#1	кезр#и	ppo	agg
4)	ystem Monitoring S 1,2-DINIT iked Amount 59	$\bar{0}.000$	3.766	0 Recovery	1095569	N.D. 0.00%	624.069 #
	arget Compounds			_			
	тм нмх	0.000	0.000	0	0	N.D.	N.D.
2) '	TM RDX	0.000	0.000	0	0	N.D.	N.D.
	TM 1,3,5-TRI	• •	0.000	0	0	N.D.	N.D.
•	TM 1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
	TM 3,5-DINIT	0.000	0.000	0	0	N.D.	Ŋ.D.
-	TM NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
•	TM NITROGLYC	6.232	0.000	10987	0	Ŋ.D.	N.D.
9) 1	TM TETRYL	6.684	0.000	2589	0	NoCal	Ŋ,D,
•	TM 2,4,6-TRI	7.189	0.000	11614	0	NoCa1	Ŋ.D.
	TM 2-AMINO-4	7.536	0.000	8684	0	NoCal	N.D.
-	TM 4-AMINO-2	7.828	0.000	13924	0	NoCal	N.D.
	rm 2,4-DINIT	9.119	0.000	15075	0	NoCal	N.D.
	rm 2,6-dinit	9.395	0.000	13096	0	NoCal	N,D,
	rm 2-Nitroto	0.000	0.000	0	0	N.D.	N.D.
-	TM 4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
-	rm 3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
18) 3	IM PETN	0.000	0.000	0	0	N.D.	N.D.

pr#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16,00 15.8 15.00 Page: 2 14.00 14.00 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 12.80 1<u>2</u>8 11.00 11,00 10.00 10.00 TIC: 0302 0000020.D 8.00 9.00 1 TIC: 0302_0000020.D 9.00 Integration File signal 1: Waldorf_Signal___1110721.e
Integration File signal 2: Waldorf_Signal__2_110803.e
Quant Time: Mar 05 11:25:59 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quant Title: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration 800 2.00 8. Signal #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120302\ 89 9.00 Sample Multiplier: 7.97607 200 5.00 AY55848S02 7.976 DF 03/01/12 Time 1.00 2.00 3.00 4.00 5.0 W110907.M Mon Mar 05 11:46:45 2012 WALDORF : 40uL : 214nm : ZORBAX Extend-C18 8 Signal #1; DADIB.ch 03-Mar-2012, 00:05:21 99 0302_0000020.D Integrator: ChemStation 8, soil 4102 Volume Inj. Signal #1 Phase : Signal #1 Info : .8 Data Path Data File Signal(s) 1000000 ò 2000000 1000001 2000000 Response Operator ALS Vial Response Acg On Sample <u>a</u> Misc

(C.I. Revlewed)

Xuantiatiation Report

## Quantitation Report (OT Reviewed)

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File : 0302_0000021.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 00:42:47

Operator : mp

Sample : AY55849S02 7.952 DF 03/01/12

Misc : soil

ALS Vial: 4103 Sample Multiplier: 7.95229

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:01 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

PT#2

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Reco#2

anh

nnh

Regn#1

.Sy 4) S	vstem Monitoring 3 1,2-DINIT ked Amount 596	0.000	2 761				
		.421	3.761	0 1 Recovery	1111603 =	N.D. 0.00%	631.315 # 105.85%
Ta	rget Compounds						
	M HMX	0.000	0.000	0	0	Ŋ.D.	N.D.
_,	M RDX	0,000	0,000	0	Ó	N.D.	N.D.
	M 1,3,5-TRI	0.000	0,000	0	0	N.D.	N.D.
5) T	M 1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6) T	M 3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7) I	M NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8) T	M NITROGLYC	6.238	0.000	13258	0	N.D.	N.D.
9) I	M TETRYL	6.714	0.000	5340	0	NoCal	N.D.
г (ОІ	M 2,4,6-TRI	7.196	0.000	8352	0	NoCal	N.D.
•	M 2-AMINO-4	7.555	0.000	8572	0	NoCal	N.D.
•	M 4-AMINO-2	7.823	0.000	11173	0	NoCal	N.D.
	M 2,4-DINIT	9.040	0.000	11949	0	NoCal	N.D.
	M 2,6-DINIT	9.421	0.000	11981	0	NoCal	N.D.
	M 2-NITROTO	0.000	0,000	0	0	Ŋ.D.	Ŋ.D.
	M 4-NITROTO	0.000	0.000	0	0	Ŋ.D.	N.D.
•	M 3-NITROTO	0.000	0.000	0	0	N.D.	Ν.D.
T (8.	'M PETN	0.000	0.000	0	0	N.D.	Ŋ.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16,00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 11.00 1.00 10.00 10.00 TIC: 0302 0000021.D 8.00 9.00 10 TIC: 0302_0000021.D 8 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:26:01 2012
Quant Time: Mar 05 11:26:01 2012
Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title : 8330B - Soil - Waldorf
Quast Update : Tue Jan 31 08:12:41 2012
Response via : Initial Calibration 80 7.00 9. Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000021.D Signal #1: DADIB.ch Signal #2: DADIA.ch 03-Mar-2012, 00:42:47 9 6.00 Sample Multiplier: 7.95229 5.00 200 AY55849S02 7.952 DF 03/01/12 Time 1.00 2.00 3.00 4.00 5.0 WI10907.M Mon Mar 05 11:47:09 2012 WALDORF : 40uL : 214nm : ZORBAX Extend-C18 8 092'8 ----RJINIG-S' 3.00 Integrator: ChemStation 2.00 soil 4103 9. Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) Response 2000005 10000001 2000000 1000000 Operator ALS Vial Response Acq On Sample ſine Misc

(UT Reviewed)

Vudulication Report

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\
Data File : 0302_0000022.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 03-Mar-2012, 01:20:12 Acq On Operator : mp : mp : AY55850S02 7.929 DF 03/01/12 Sample

: soil Misc

ALS Vial : 4104 Sample Multiplier: 7.92079

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:03 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	<b>_</b>	Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	dqq
4)	S	em Monitoring ( 1,2-DINIT d Amount 594	0.000	3.768	0 Recovery	1089042 / =	N.D. 0.00%	·
	Targ	et Compounds						
1)	TΜ	НМХ	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0,000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	Ŋ.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT		0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	Ŋ.D.	N.D.
8)	TM	NITROGLYC	6.168	0.000	7455	0	N.D.	N.D.
9)	TM	TETRYL	6.708	0.000	12006	0	NoCal	N.D.
0)	TM	2,4,6-TRI	7.188	0.000	9234	0	NoCal	N.D.
1)	TM	2-AMINO-4	7.534	0.000	10458	0	NoCal	N.D.
2)	MT	4-AMINO-2	7.821	0.000	11246	0	NoCal	Ŋ,D,
3)	TM	2,4-DINIT	9.158	0.000	13595	0	NoCal	N.D.
4)	TM	2,6-DINIT	9.403	0.000	14313	0	NoCal	N.D.
5)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
6)	TM	4-NITROTO	0.000	0.000	0	0	Ŋ.D.	N.D.
7)	TM	3-NITROTO	0.000	0.000	0	Ó	N.D.	N.D.
8)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(QT Reviewed) Quantitation Report

Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000022.D Data Path Data File

Signal #1: DAD1B.ch Signal #2: DAD1A.ch 03-Mar-2012, 01:20:12

Signal(s) Acq On Operator

AY55850S02 7.929 DF 03/01/12 Sample Misc

Sample Multiplier: 7.92079 soil 4104 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Owant Time: Mar 05 11:26:03 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quant Title: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration

Integrator: ChemStation

: 40uL : 214nm Volume Inj. Signal #1 Phase : Signal #1 Info :

#2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron : 214nm : 20RBAX Extend-C18 Signal

17,00 17.00 16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 12.00 12.00 1,00 11.00 10.00 10.00 8.00 9.00 11 TIC: 0302_0000022.D TIC: 0302_0000022.D .8 8.0 8 8. 80.0 9.00 5.00 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:47:37 2012 WALDORF 9.09 ZEĴINIO-S, 3.768 3.00 8. 1.00 1000000 2000000 1000000 Response 2000000 Response ine Tage

#### Quantitation Report (OT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000023.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 03-Mar-2012, 01:57:38 Acq On

Operator : mp

Sample : AY55851S02 7.905 DF 03/01/12

Misc : soil

ALS Vial : 4160 Sample Multiplier: 7.90514

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:05 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb
4) S	em Monitoring C 1,2-DINIT d Amount 592.	0.000	3,757	0 Recovery	1102989 / =	N.D. 0.00%	
Taro	get Compounds			_			
1) TM	HMX	0.000	0.000	0	0	N.D.	N.D.
2) TM	RDX	0.000	0.000	Ö	Ŏ	N.D.	N.D.
3) TM	1,3,5-TRI	0.000	0.000	0	Ō	N.D.	Ŋ.D.
5) TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6) TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7) TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8) TM	NITROGLYC	6.270	0.000	11036	0	N.D.	N.D.
9) TM	$\mathtt{TETRYL}$	6.750	0.000	5351	0	NoCal	N.D.
10) TM	2,4,6-TRI	7.228	0.000	4092	0	NoCal	N.D.
11) TM	2-AMINO-4	7.554	0.000	9614	0	NoCal	N.D.
12) TM	4-AMINO-2	7.855	0.000	6377	0	NoCal	N.D.
13) TM	2,4-DINIT	9.025	0.000	18738	0	NoCa1	N.D.
14) TM	2,6-DINIT	9.307	0.000	17283	0	NoCal	Ŋ.D.
15) TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
16) TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
17) TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
18) TM	PETN	0.000	0.000	0	0	N.D.	Ν.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 #2 Phase: 254nm #2 Info : 20REAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 1.8 11.00 8.00 9.00 10.00 TIC: 0302_0000023.D 10.00 TIC: 0302_0000023.D 9.00 Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via: Initial Calibration 8.09 9.0 8 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:26:05 2012 0302_0000023.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 03-Mar-2012, 01:57:38 Y:\CHEM32\WALDORF\DATA\120130\120302\ 000 900 Sample Multiplier: 7.90514 : 40uL : 214nm : ZORBAX Extend-C18 Signal 2.00 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:48:09 2012 WALDORF AY55851502 7.905 DF 03/01/12 4.00 3.757 300 Integrator: ChemStation 2.00 4160 8 soil Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) Response Misc ALS Vial ₽ 2000000 1000000 2000000 Operator 1000001 Response Acq On Sample шe

(QT Reviewed)

Quantitation Report

## Quantitation Report (QT Reviewed)

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000024.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 03-Mar-2012, 02:35:04 Acq On

: mp Operator

: AY55852S02 7.984 DF 03/01/12 Sample

: soil Misc

ALS Vial : 4161 Sample Multiplier: 7.98403

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:48:44 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via: Initial Calibration

Integrator: ChemStation

: 40uL Volume Inj.

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	ggg	
4)	Š	em Monitoring ( 1,2-DINIT d Amount 598	0.000	3.763	0 Recovery	1108464 y =		632.045 105.55%	#
	_	et Compounds							
1)	TM	НМХ	0.000	0.000	0	0	N.D.	N.D.	
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.	
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.	
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.	
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.	
7}	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.	
8)	TM	NITROGLYC	0.000	0.000	0	0	N.D.	d N.D.⊷	LIM
9)	TM	TETRYL	6.743	0.000	19179	0	NoCal	N.D.	3/5/12
LO)	TM	2,4,6-TRI	7.177	0.000	9498	0	NoCal	N.D.	
(1)	TM	2-AMINO-4	7.577	0.000	16382	0	NoCal	N.D.	
12)	TM	4-AMINO-2	7.832	0.000	18453	0	NoCal	N.D.	
13)	TM	2,4-DINIT	9.067	0.000	9234	0	NoCal	N.D.	
4)	TM	2,6-DINIT	9.400	0.000	12715	0	${\tt NoCal}$	N.D.	
.5)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.	
.6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.	
.7)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.	
.8)	MT	PETN	0.000	0.000	0	0	N.D.	N.D.	

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.8 15.88 15.00 14.00 Page: 2 14.00 13.00 13.00 #2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 11.00 28 10.00 10.00 TIC: 0302 0000024.D 8.00 9.00 TIC: 0302_000024.D 9.00 Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via: Initial Calibration 8.00 7.00 9. Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:48:44 2012 Signal #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120302\ 9.00 900 Sample Multiplier: 7.98403 Signal Signal 200 5.00 AY55852S02 7.984 DF 03/01/12 W110907.M Mon Mar 05 11:48:55 2012 WALDORF : 214nm : ZORBAX Extend-C18 8 0302_0000024.D Signal #1: DADIB.ch : 03-Mar-2012, 02:35:04 3.00 Integrator: ChemStation 8. .8 soil 4161 Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) Misc ALS Vial 2000000 1000001 1000000 2000000 Operator Response Response Acg On Sample Sample iğ E 556

(QT Reviewed)

Mantitation Report

### Quantitation Report (OT Reviewed)

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000025.D Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 03-Mar-2012, 03:12:32 Acq On

: mp Operator

: AY55853S02 8.000 DF 03/01/12 Sample

: soil Misc

ALS Vial : 4162 Sample Multiplier: 8

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e.

Quant Time: Mar 05 11:26:09 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3 0mm 1.8-micron

Resp#2

dqq

dqq

Resp#1

S;	ystem Monitoring S 1,2-DINIT		3.762	0 1	.087341	Ŋ,D,	621,240 #
•	•	0.000		Recovery	=	0.00%	
$\mathbf{T}_{i}$	arget Compounds						
	TM HMX	0.000	0.000	0	0	N.D.	N.D.
	TM RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM 1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5) '	rм 1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM 3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7) ′	TM NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8) '	TM NITROGLYC	6.192	0.000	10976	0	N.D.	N.D.
9) '	rm tetryl	6.758	0.000	3649	0	NoCal	N.D.
10)'	rm 2,4,6-TRI	7.084	0.000	7881	0	NoCal	N.D.
11) '	rm 2-amino-4	0.000	0.000	0	0	N.D.	N.D.
12) ′	rm 4-amino-2	7.883	0.000	3203	0	NoCal	N.D.
13)'	rm 2,4-dinit		0.000	20561	0	NoCal	N,D,
14) '	rm 2,6-Dinit	9.404	0.000	10145	0	NoCal	Ŋ.D.
15) '	rm 2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
16) '	rm 4-NITROTO		0.000	0	0	N.D.	N.D.
•	rm 3-NITROTO		0.000	0	0	N.D.	N.D.
L8) 1	rm p <b>etn</b>	0.000	0.000	0	0	N.D.	N.D.

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 #2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 1.8 1.0 10.00 10.00 8.00 9.00 1 TIC: 0302_0000025.D TIC: 0302_0000025.D 9.00 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:26:09 2012
Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M 8.00 2.00 7.09 Signal #1: DAD1B.ch Signal #2: DAD1A.ch 03-Mar-2012, 03:12:32 Y:\CHEM32\WALDORF\DATA\120130\120302\ 909 8 Signal Signal 2.00 5.00 MP AY55853S02 8.000 DF 03/01/12 W110907.M Mon Mar 05 11:49:26 2012 WALDORF Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration Sample Multiplier: : 40uL : 214nm : ZORBAX Extend-C18 00.4 ЖĺМIG-S, 3.00 0302_0000025.D Integrator: ChemStation 5.0 1.00 4162 soil Volume Inj. Signal #1 Phase Signal #1 Info Data File Data Path Signal(s) 2000000 1000001 2000000 1000000 Response Operator Response ALS Vial Sample Acg On Time Misc

12.00

17.00

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302 0000026.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 03:49:59

em : Operator

: AY55854S02 7.960 DF 03/01/12 Sample

Misc : soil

ALS Vial : 4163 Sample Multiplier: 7.9602

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:11 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	ppb
	Syst S	em Monitoring (		3.762	0	1071303	Ŋ.D.	609.032 #
		d Amount 597		3.702	Recovery		0.00%	102.01%
	_	et Compounds						
1)	TM	нмх	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8)	TM	NITROGLYC	6.089	0.000	2998	0	N.D.	N.D.
9)	TM	TETRYL	6.765	0.000	12746	0	NoCal	N.D.
0)	TM	2,4,6-TRI	7.183	0.000	13307	0	NoCal	N.D.
1)	TM	2-AMINO-4	7.473	0.000	9640	0	NoCal	N.D.
2}	TM	4-AMINO-2	7.814	0.000	19313	0	NoCal	N,D,
3)	TM	2,4-DINIT	9.070	0.000	11420	0	NoCal	N.D.
4)	TM	2,6-DINIT	9.384	0.000	13617	0	NoCa1	N.D.
5)	TM	2-NITROTO	0.000	0.000	0	Ó	N.D.	N.D.
6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
7)	TM	3-NITROTO	0.000	0.000	0	Ō	N.D.	N.D.
8)	TM	PETN	0.000	0.000	Ō	Ö	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 Page: 2 14.00 14.00 13,00 13.00 #2 Phase: 254nm #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 5.8 11.00 10.00 10.00 TIC: 0302_0000026.D 8.00 9.00 1 TfC: 0302 0000026.D 8 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:26:11 2012 Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration 808 .8 .8. Signal #1: DADIB.ch Signal #2: DADIA.ch 03-Mar-2012, 03:49:59 Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000026.D 9 6.00 Sample Multiplier: 7.9602 : 214nm Signal : ZORBAX Extend-C18 Signal 5.00 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:49:47 2012 WALDORF MD AY55854S02 7.960 DF 03/01/12 4.00 3.762 3.0 Integrator: ChemStation 5.00 4163 soil 1.00 Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) 2000000 1000000 1000000 Time Response_ 2000000 Response Operator ALS Vial Acg On Sample Misc

(OT Reviewed)

Wuantitation Report

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\
Data File : 0302_0000027.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 04:27:25

Operator : mp

: AY55855S02 7.976 DF 03/01/12 Sample

Misc : soil

ALS Vial : 4164 Sample Multiplier: 7.97607

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:13 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info ; ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb
	Svst	em Monitoring (	Compounds					
	ŝ	1,2-DINIT		3.764	0	1095762	N.D.	624.179 #
•		d Amount 598		0.,01	Recovery			
,	Taro	et Compounds						
1)	TM	HMX	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RD <b>X</b>	0.000	0.000	0	Ö	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
B)	TM	NITROGLYC	6.197	0.000	9231	0	N.D.	N.D.
9)	TM	TETRYL	6.685	0.000	4050	0	NoCa1	N.D.
0)	TM	2,4,6-TRI	7.135	0.000	15017	0	NoCal	N.D.
1)	TM	2-AMINO-4	7.588	0.000	12607	0	NoCal	N.D.
2)	TM	4-AMINO-2	7.802	0,000	14658	0	NoCal	N.D.
3)	TM	2,4-DINIT	9.063	0.000	18203	0	NoCa1	Ŋ,D,
4)	TM	2,6-DINIT	9.394	0.000	13263	0	NoCal	N.D.
5)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
7)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
3)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 #2 Phase: 254nm #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 5 11.00 10.00 10.00 8.00 9.00 10 TIC: 0302_0000027.D TiC: 0302_0000027.D 8 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:26:13 2012 Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M 8.00 8 2.00 0302_0000027.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 03-Mar-2012, 04:27:25 Y:\CHEM32\WALDORF\DATA\120130\120302\ 6.00 9.00 Sample Multiplier: 7.97607 Signal Signal 20. 5.00 M110907.M Mon Mar 05 11:50:13 2012 WALDORF mp AY55855S02 7.976 DF 03/01/12 Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration : 214nm : ZORBAX Extend-C18 8 €97.€ 3.00 Integrator: ChemStation 5.0 4164 1.00 soil Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) 2000000 2000000 1000000 1000001 Operator Response ALS Vial Response Acq On Sample Time Misc 562

17.00

17.00

## Quantitation Report (QT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000028,D

Signal(s) : Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 05:04:52

: mp Operator

Sample : AY55856S02 8.000 DF 03/01/12

Misc : soil

ALS Vial : 4165 Sample Multiplier: 8

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:26:15 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb
4) S	tem Monitoring 1,2-DINIT ed Amount 600	0.000	3.760	0 Recovery	1082168 ' =	N.D. 0.00%	618.285 # 103.05%
Tar	get Compounds						
1) TM	НМХ	0.000	0.000	0	0	N.D.	N.D.
2) TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3) TM	_,_,,	0.000	0.000	0	0	N.D.	N.D.
5) TM	-,	0.000	0.000	0	0	N,D,	N.D.
<ol> <li>TM</li> </ol>	- · · · ·	0.000	0.000	0	0	N.D.	N.D.
7) TM		0.000	0.000	0	. 0	N.D.	N.D.
8) TM		6.205	0.000	5215	0	N.D.	N.D.
9) TM		6.722	0.000	8597	0	NoCal	N.D.
.0} TM	-, -, , , ,	7.154	0.000	17425	0	NoCal	N.D.
.1) TM		7.545	0.000	11233	0	NoCal	N.D.
.2) TM		7.763	0.000	7519	0	NoCa1	N.D.
.3) TM	•	9.049	0.000	18575	0	NoCal	N.D.
.4) TM		9.378	0.000	11711	0	NoCal	N.D.
.5) TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
.6) TM		0.000	0.000	0	0	N.D.	N.D.
.7) TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
MT (8.	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.8 17.00 16.00 16.00 15.00 15.00 14.00 14.00 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 11.00 1100 10.00 10.00 TIC: 0302 0000028.D TIC: 0302 0000028.D 9.00 80 Integration File signal 1: Waldorf_Signal___110721.e
Integration File signal 2: Waldorf_Signal__2_110803.e
Quant Time: Mar 05 11:26:15 2012
Quant Time: Mar 05 11:26:15 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quant Title: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration 80.0 8.00 7.8 9. 0302_0000028.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 03-Mar-2012, 05:04:52 Y:\CHEM32\WALDORF\DATA\120130\12030\ 9.00 8 200 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:50:43 2012 WALDORF AY55856S02 8.000 DF 03/01/12 Sample Multiplier: 8 Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : ZORBAX Extend-C18 8.0 ≖Σήνια·s, 69L'E ---300 Integrator: ChemStation 5.00 soil 4165 9 Data File Signal(s) Acq On Data Path Operator Sample 2000000 1000001 2000000 1000000 Response Response ALS Vial <u>H</u> Misc

(びかみひてくひと イズ)

つけつばしな かつさつせいせいけいかみろ

Data Path : Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000029.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 03-Mar-2012, 05:42:18

: mp Operator

Sample : AY55869S02 8.000 DF 03/01/12

Misc : soil

ALS Vial : 4166 Sample Multiplier: 8

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:51:14 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	<del></del>	Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	ppb
4)	S	em Monitoring ( 1,2-DINIT d Amount 600,	$\bar{0}.000$	3.767	0 Recovery		N.D. 0.00%	607.363 # 101.23%
	Targ	et Compounds						
1)		нмх	0.000	0.000	0	0	N.D.	N.D.
2)	_	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	·	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N.D.
8)	TM	NITROGLYC	0.000	0.000	0	0	N.D.	i N.D.⊷ ⊷a
9)	TM	TETRYL	6.668	0.000	6259	0	NoCal	N.D. Bishi
(0)	TM	2,4,6-TRI		0.000	10621	0	NoCal	N.D.
L1)	TM	2-AMINO-4	7.578	0.000	14132	0	NoCal	N.D.
12)	TM	4-AMINO-2	7.749	0.000	12358	0	NoCal	N.D.
13)	TM	2,4-DINIT		0.000	15084	0	NoCal	N.D.
4)	TM	2,6-DINIT	9.389	0.000	16627	0	NoCal	N.D.
15)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
.7)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
.8)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 14.00 14.00 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 1.8 1.00 10.00 5 8 TIC: 0302_0000029.D 8.00 9.00 1/2 TIC: 0302_0000029.D 9.00 Integration File signal 1: Waldorf_Signal_l_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:51:14 2012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
QLast Update: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration 8.8 .8 7.00 #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120302\ 9 9.00 20 200 3.00 4.00 5.00 11:51:27 2012 WALDORF 0302_0000029.D Signal #1: DADIB.ch Signal 03-Mar-2012, 05:42:18 mp AYS5869S02 8.000 DF 03/01/12 Sample Multiplier: 8 Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : ZORBAX Extend-C18 9.00 997.6 ----S-DINIDS. .8 Integrator: ChemStation 2.00 Time 1.00 W110907.M Mon Mar 05 4166 soil 8 Data Path Data File Signal(s) 2000000 1000000 2000000 1000000 Operator Response ALS Vial Response Sample Misc Acq On ige L 566

(CI Reviewed)

Knaileteachoil Reporc

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File : 0302_0000016.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 21:55:25

qm : Operator

Sample : 120301SBLK1A 7.976 DF 03/01/12

: soil Misc

ALS Vial : 4099 Sample Multiplier: 7,97607

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:53 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

: 40uL Volume Inj.

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	dqq
4)	S	em Monitoring ( 1,2-DINIT d Amount 598	0.000	3.763	0 Recovery	1096020 / =	N.D. 0.00%	624.326 # 104.37%
		et Compounds						
1)	TM	HMX	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D.
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D.
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D.
6)	TM	3,5-DINIT	0.000	0,000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	Ŋ,D,
8)	TM	NITROGLYC	6.177	0.000	5123	0	N.D.	N.D.
9)	TM	TETRYL	6.765	0.000	7203	0	NoCal	N.D.
.0)	TM	2,4,6-TRI	7.146	0.000	6764	0	NoCal	N.D.
.1)	TM	2-AMINO-4	7.466	0.000	13650	0	NoCal	N.D.
2)	TM	4-AMINO-2	7.809	0.000	18628	0	NoCal	N.D.
3) 4)	TM	2,4-DINIT	9.044	0,000	12317	0	NoCal	N.D.
5)	TM	2,6-DINIT	9.389	0.000	12219	0	NoCal	N.D.
	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
6) 7)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.
	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N.D.
8)	TM	PETN 	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 14,00 14.00 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 11.00 11.00 10.00 10.00 TIC: 0302 0000016.D 8.00 9.00 1 TIC: 0302_0000016.D 800 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:25:53 2012
Quant Time: Mar 05 11:25:53 Z012
Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M
Quant Title: 8330B - Soil - Waldorf
Quant Title: Tue Jan 31 08:12:41 2012
Response via: Initial Calibration 88 8 2.0 0302_0000016.D Signal #1: DADIB.ch Signal #2: DADIA.ch 02-Mar-2012, 21:55:25 Y:\CHEM32\WALDORF\DATA\120130\120302\ 6.00 6.00 Sample Multiplier: 7.97607 MP 120301SBLK1A 7.976 DF 03/01/12 5.00 : 40uL : 214nm : ZORBAX Extend-C18 8 £97.£ ATIMIO-S, 3.00 3.00 Integrator: ChemStation 200 4099 .8 soil 9. Volume Inj. Signal #1 Phase Signal #1 Info Data Path Data File Signal(s) 2000000 10000001 Operator Response Time Response 2000002 10000001 ALS Vial Acg On Sample Misc

(CI Keviewed) しょうびかい こうさいせい こうさいき

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302_0000013.D

Signal(s) : Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 20:12:55

Operator : mp

Sample : 120301SLCS1A 7.890 DF 03/01/12

Misc : soil

Sample Multiplier: 7.88955 ALS Vial : 4096

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:47 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Carre a.... d

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

200114

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	
4) S	rstem Monitoring 1,2-DINIT ked Amount 591	0.000	3.765	0 Recover	3547348 •v =	N.D. 0.00%	1998.757	#
DP I	niod ilmodiio 551	.,10		vecover	у –	0.00%	337,79%	
Та	rget Compounds							
•	XMH M	0.000	0.957	0	7950450	N.D.	2144.877	#
	M RDX	0.000	1.809	0	4583595	N.D.	1924,806	Ħ
	M 1,3,5-TRI	0.000	2.936	0 -	<b>3</b> 8042646	N.D.	2013.665	#
	M 1,3-DINIT	0.000	3.908	0	7572678	N.D.	1982.273	Ħ
-	M 3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.	
-	M NITROBENZENE	0.000	5.288	0	3481369	N.D.	1970.055	#
•	M NITROGLYC	6.184	6,012	8436	19597	N.D.	NoCal	
•	M TETRYL	6.702	6.702	4962116	3033753	${\tt NoCal}$	2352.344	Ħ
-	M 2,4,6-TRI	7.175	7.175	4392713	3473940	NoCal	2103.562	Ħ
.1) T		7.526	7.526	4895040	3302595	NoCal	2144.958	#
.2) T		7.814	7.813	4760901	2597449	NoCal	2140.694	#
.3) Т		9.045	9.045	2408397	3316001	NoCal	2083.681	#
.4) T	•	9.378	9.378	2574368	1859853	NoCal	2075.008	#
.5) T		0.000	12.747	0	1342059	N.D.	2123.886	Ħ
.6) T		0.000	13,351	0	1323592	N.D.	2139.227	#
.7) T		0.000	14.212	0	1607912	N.D.	2160.501	#
.8} Т	M PETN	0.000	0.000	0	0	N.D.	N.D.	
			- <b></b>					

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

بمعارية Algo J= (8042646) (20)(4) = 3/6/12 2013.097

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 4.00 112.414 JOTORTIN-6 14.00 и-ипвотог 13.00 13.00 Phase: 254nm Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron אודאס סב 12.00 12.00 11.00 11.00 10.00 0000013.D 10.00 IC: 0302_0000013.D 575.6 8 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 05 11:25:47 2012
Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M 808 8.00 200 8. Signal #1: DAD1B.ch Signal #2: DAD1A.ch 02-Mar-2012, 20:12:55 JYATƏT Y:\CHEM32\WALDORF\DATA\120130\120302\ 809 9.00 ## Sample Multiplier: 7.88955 Signal Signal зхи вояти mp 120301SLCS1A 7.890 DF 03/01/12 5.00 200 3.00 4.00 5.00 11:42:23 2012 WALDORF 31 08:12:41 2012 8330B - Soil - Waldorf 40uL 214nm 20RBAX Extend-C18 6,4 : Initial Calibration RINIO: E, H 8 0302_0000013.D Integrator: ChemStation Tue Jan 8 2# X0Я<del></del> Time 1.00 Wll0907.M Mon Mar 05 4096 9. Inj. #1 Phase #1 Info Soil 7# XMF Olast Update : Response via Quant Title Path Data File Signal(s) Response 2000000 1000000 2000000 100000 Time Response Operator ALS Vial Signal Signal Acg On Sample Volume Misc

(QT Reviewed)

Vuantitation Report

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File : 0302 0000014.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 02-Mar-2012, 20:40:27

Operator : mp

: AY55855S02_MS-1 7.992 DF 03/01/12 Sample

Misc : soil

Sample Multiplier: 7.99201 ALS Vial : 4097

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:49 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	<del></del>	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb
4)	S	em Monitoring ( 1,2-DINIT d Amount 599		3.761	0 Recov <del>e</del> r	3602129 y =	N.D. 0.00%	2055.981 # 343.01%
	Targ	et Compounds						
1)	TM	HMX	0.000	0.957	0	7563614	N.D.	2067.017 #
2)	TM	RDX	0.000	1.808	0	3769135	N.D.	1603.342 #
3)	TM	1,3,5-TRI	0.000	2.934	0	8165249	N.D.	2070.911 #
5)	TM	1,3-DINIT	0.000	3.904	0	7658059	N.D.	2030,656 #
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	5.284	0	3516982	N.D.	2016.054 #
8)	TM	NITROGLYC	6.285	6.008	10601	20579	N.D.	NoCal
9)	TM	TETRYL	6.697	6.697	4983193	3048306	NoCal	2394.325 #
0)	TM	2,4,6-TRI	7.170	7.170	4413345	3504123	NoCal	2149.395 #
1)	TM	2-AMINO-4	7.521	7.521	4889617	3311419	NoCal	2178.620 #
2)	TM	4-AMINO-2	7.809	7.809	4763371	2612165	NoCal	2180.781 #
3)	ΤM	2,4-DINIT	9.040	9.040	2413748	3351508	NoCal	2133.343 #
4)	TM	2,6-DINIT	9.373	9.373	2577751	1878297	NoCal	2122,800 #
5)	TM	2-NITROTO	0.000	12.744	0	1350731	N.D.	2165.371 #
6)	TM	4-NITROTO	0.000	13.347	0	1333465	N.D.	2183.172 #
7)	TM	3-NITROTO	0.000	14.208	0	1616839	N.D.	2200.711 #
8)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17,00 17.00 16.00 16.00 15.00 15.00 14.00 Page: 2 14.00 44°504 а-интвотю∟ В-интвотю∟ и-интвотог 13.00 #2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 3.8 P-NITROTOL 12.00 12.00 11.00 £ 8 10.00 9.0 IC: 0302 0000014.D 0000014.D 81333 9.00 9.00 TIC: 0302 Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title : 8330B - Soil - Waldorf 88 800 200 2.00 02-Mar-2012, 20:40:27 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:25:49 2012 TETRYL Y:\CHEM32\WALDORF\DATA\120130\120302\ 9 9,00 AY55855S02_MS-1 7.992 DF 03/01/12 Sample Multiplier: 7.99201 Sigmal Sigmal SYN 380ATIN 90 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:42:54 2012 WALDORF : Tue Jan 31 08:12:41 2012 : Initial Calibration 214nm ZORBAX Extend-C18 4.00 FINIS SINIE 0302_0000014.D Signal #1: DAD1B.ch 300 Integrator: ChemStation 5.00 KOX #2 soil 4097 8 Volume Inj. Signal #1 Phase Signal #1 Info Qlast Update Response via Data File Data Path Signal(s) Response 2000000 10000001 2000000 1000000 Operator ALS Vial Response Acq On Sample Time Misc

(QT Reviewed)

Vuantitation Report

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120302\

Data File: 0302 0000015.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 02-Mar-2012, 21:17:53 Acg On

: mp Operator

Sample : AY55855S02_MSD-1 7.992 DF 03/01/12

Misc : soil

ALS Vial : 4098 Sample Multiplier: 7.99201

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 05 11:25:51 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	dqq
4) S	cem Monitoring 1,2-DINIT ed Amount 599		3.763	0 Recover	3590020 Y =	N.D. 0.00%	2049.070 # 341.85%
Targ	get Compounds						
1) TM	HMX	0.000	0.957	0	7584748	N.D.	2072.792 #
2) TM	RDX	0.000	1.809	0	3752483	N.D.	1596.258 #
3) TM	1,3,5-TRI	0.000	2.935	0	8124407	N.D.	2060.553 #
5) TM	1,3-DINIT	0.000	3.906	0	7636405	N.D.	2024.914 #
6) TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7) TM	NITROBENZENE	0.000	5.286	0	3535736	N.D.	2026.805 #
8) TM	NITROGLYC	6.261	6.012	9358	19664	N.D.	NoCal
9) TM	TETRYL	6.700	6.700	4954160	3033827	NoCal	2382.952 #
10) TM	2,4,6-TRI	7.172	7.172	4397546	3495625	NoCal	2144.182 #
11) TM	2-AMINO-4	7.524	7.524	4876011	3302589	NoCal	2172.810 #
12) TM	4-AMINO-2	7.811	7.811	4762135	2609141	NoCal	2178.256 #
13) TM	2.4-DINIT	9.040	9.040	2397875	3340780	NoCa1	2126.514 #
14) TM	2,6-DINIT	9.373	9.373	2568445	1877748	NoCal	2122.180 #
15) TM	2-NITROTO	0.000	12,742	0	1360710	N.D.	2181.370 #
16) TM	4-NITROTO	0.000	13.346	0	1341053	N.D.	2195,595 #
17) TM	3-NITROTO	0.000	14.205	0	1628267	N.D.	2216.265 #
L8) TM	PETN	0.000	0.000	0	0	N.D.	N.D.
	<b></b>					<b></b>	

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 2.8 16.00 16.00 15.00 15.00 Page: 2 14.00 14,205 -10 годин-е или вотор 13.00 13.00 #2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 2-ИІТВОГО 12.00 12.00 17.00 11.00 10.00 9.00 IC: 0302_0000015.D TIC: 0302 0000015.D A (1NIC-8, ZZ€'8 <= 000 80 Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120302\W110907.M 8.00 8.00 .s-риіма-ь <u>-</u>фима-ф 9.0 8. Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 05 11:25:51 2012 Signal #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120302\ 0302_0000015.D 9.00 9 AY55855S02_MSD-1 7.992 DF 03/01/12 Sample Multiplier: 7.99201 Signal Signal DITRO8 NZE 20.0 Time 1.00 2.00 3.00 4.00 5.00 W110907.M Mon Mar 05 11:43:23 2012 WALDORF QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration : 8330B - Soil - Waldorf 40ur 214nm ZORBAX Extend-C18 8 HIS SIMILE Signal #1: DADIB.ch 02-Mar-2012, 21:17:53 30 Integrator: ChemStation 2.08 RDX #2 soil 4098 8 Inj. #1 Phase #1 Info Tast Update : Quant Title Data File Path Signal(s) 2000000 1000000 2000000 1000000 Time Response Operator ALS Vial Response Volume Signal Acg On Sample Signal Data Misc

(OT Reviewed)

Quantitation Report

198 Merket Straet New Haven, OT 08518 'USA

Walght compensated to 100% purity

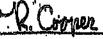
#### O AccuStandard, Inc. CERTIFICATE OF ANALYSIS

edykayıdyarıd Colm bijenis-biyli ( REN BUNG NUR OUT 1889110

CATALOG NO: M-8990B-R-10X

EXPIRATION: Dane, 2010

DESCRIPTION: Explosive by HPLO


LOT: B8120098 .

See reverse for additional certification information.

this a continue for the first of the

SOLVENT: MeOH:Acon (1:1)	٠,	. , . '	• '	rangan di karangan katangan pasasan Karangan di karangan katangan pasasan Karangan di karangan katangan pasasan
Component	Cas,#	Purity %	Prepared Concentration	Certified Analyte Concentration
1	٠.	(HPLO)	(µg/mL)	(µg/mL)
etri 6 Dinipololuene Kilololuene Nikololuene Amino 4.6 dinipololuene Amino 4.6 dinipololuene	479.45.8 60620-2. 88-72-2 99.98.1 99.99-0 38572.78-2 19406-51.9	99.4 100 99.0 98.7 99.2 97.8 98.5	1002 1006 1002 1003 1010 1027* 1005	956 1008 992 990 1002 604
	, A			•
		.:		r
				,
7 Company of Company	· t.All	willian the little in	wahanatatka siyah	iitoj .
<b>VII</b>		to a table Amendu	terren alle en de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña d	witer Madianahiranahatat fin

2. Contines de relies Consequence — Prodyn Arenes Consecution. The blank was excelled for this product to the consecution of the Consecution of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines of the contines o



i dokazako ko Kajana

128 Market Gligat New Haven, OT 05618

#### AccuStandard; Inc. CERTIFICATE OF ANALYSIS

WANTE - MARRISON WATER PRING BRIDGING MIND Rex BURG HITH COST TO SHIP Wakake Accubiant was

CATALOG NO: M-8330A-10X

EXPIRATION: Odi 24, 2009

Weight compensated to 100% purity

DESCRIPTION: Method 8980 - Mix A

LOT: 82120217-90

· 6:9 reverse for additional cartification information.

	MeOH:AdON (4:1)		eoninga ienoj	r Kali ililatulatian	tili primi legurintetutulla käsä et Rigriftä ärkyt och mittionika ylika Britter Disoribe taki
Compánent	4	CA9#	Purity %	Prepared Concentration	Gertified Analyte Concentration*
			(GC/M9)	(µg/mL)	(µg/mL)
1,3 D/nicobenzene 2,4 D/nicobenzene HMX Nicobenzene RDX 1,3,5 Trinicobenzene TNT	· .··	99-65-0 121-142 2601-41-0 98-98-0 121-82-4 99-38-4 118-98-7	97.0 100 98.7 98.8 98.0 99.8 99.9	1031 A 1001 1001 1002 1000 1001	1090 1094 988 1000 980
					·
• •				•	, ,
' . 			٠	wy i	
. · · · · · · · · · · · · · · · · · · ·			٠		

I. All weighte are incomine through Mist, Truths. | | |

2. Cardies Anabre Describillen — Prilly a Projurd Cornenties. The Unastrieg collected for the protect of a the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cornel of the Cor

Certified by:

Accustandard is accredited to ISO/IEC 17025:2005 and certified to ISO 9001:2000

OR-ORGANO-001 REARCH

189 Market Streat New Haven, OT 08618 USA

### AccuStandard; inc.

MITS! Loi de 107/00/108-20494 Res Press Herenz Interes

CERTIFICATE OF ANALYSIS

CATALOG NO. M-8380-ADD-2-10X

DESCRIPTION:

Individual Explosives Solution

**EXPIRATION** 

Oct 19, 2009

LOT

87100188

MaDH

Sse reverse for additional certification information.

જો ફેક્પના દિવામાં લાક કરવા છે. કર્યો કર્યો કર્યો ઉત્તરા કે તેના પૈતા કરવા હતા ત્યાં કર્યો છે. ક્રિયુ લાક પૈતાના પૈતાના કર્યો હતા.

Component

PETN

SOLVENT:

CA9#

Purity %

Prepared Concentration

Certified Analyte Concentration

(HPLO)

(µg/ml.)

(µg/ml.)

78-11-5

8.49

1008

985

Please note: Accusterifate follows the U.S. conventions in reporting numerical values, on both confileates and labels.

A comma (,) is used to separate units of one-thousand or greater. A pariod (,) is used as as decimal place marken.

OROHOUWOA) West

185 Markel Street New Haven, OT 08619 USA

### AccuStandard; Inc.

Faire Station States States Raps Wilking Kurkerp, 10/1909

CERTIFICATE OF ANALYSIS

CATALOG NO. M-8880-ADD-1-10X

DESCRIPTION:

individual Explosives Solution

LOT!

86040088-1A

SOLVENT: .

E10H : MaOH (971:8)

See reverse for additional cartification information.

EXPIRATION:

Oát 48, 2609

Component

**CA9#** 

Purity %

Prepared Controllerion

Certified Analyte Concentration

(HPLO)

(µg/mL)

(µg/mt)

Niiráglycerin

66-68-0

100

1000

1000

Please noise Acousticified Collows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma () is used to separate unite of one-thouseed or greater. A partod () is used at a decimal place marker.

Acoustandard to accredited to 180/120 17028:2015

oroadykoes Ristoi



2030 Bayage Road Charleston, South Cardina 29407 Phone (666) 272-0932 Fax (643) 766-9182 Www.02sl.com

1.0 dallo brando Loto: 142710 - 20180 Red 20180 HER exp. 01/01/12

Quality System
Audited & Registered
by NSE-ISR to ISO 9001:2000

	•	Date Recei	lyed	; <del>Cinicata</del>	<del>- Co- to- Cd</del> (sp)(t)

	Certific	ate of An	alysis	, Pago t
Catalog No.: Lot No.: Storage: 010086-01 142799 <10 Degrees C	Solvent: Acelonitrile	Exp. Date: 3-Feb-2012   1,	Descrip 2 Dinitrobensene Solution,	
Compound	CAS No.	Purity (%	Nest Malerial Lot No.	Concentration, mota.
1.2-dinitronenzene	528-29-0	99 '	861.3P	1002 44-14-021

Certified By:

Mndsay Bdwards

All weights are traceable through N. I. S. T. Test No. 822/254157-40, Concentration (correct for purity) and unsertainty (95% confidence) values listed are determined gravimetricity.

•	8
	6
	М
	ж
	ų
	ă.
	<i>y</i> 1
	73
	6
	Я
	1
•	.0.
R	. 98
¥	: W
٠.	1.37
٠,	
	v
-	Х
E	N
6	# S
6	<b>1</b>
ē	###CX
123	Zalenes Zalenes
144	Schilles
P-140-	
は一切	<b>bschut</b> es
200-140E	a <b>bsniut</b> es
2017-000	ra <b>bsritat</b> es
2000-140E	r.absolutes
	re absolutes
5-065-140F	over absolutes
20-368-112E	mm:absolutes

051208 (Sowert Safety bife. On Attached pg.) CHARD (THU) 1001.1 1002.8 1003.4 1002.6 1002.6 E37818 节 353335 9 1000 1 9 Ž. 9 components ESSO DES A 1522 ä Volume(s) shown below were combined and dimed to 72057 72072 72073 72073 72073 75.72 Park Mondes: Lot Monday Mondard Concentration (region), CERTURED WIREST REPORT 7. 3-Nitrotokerne 8. RDX 9. Triotrosiyozan Compranted

AXBORS MIN 001000-81860 Ren Viera Hfromovieli

Painted: SY222008, 52725

jog 1

Lot# 051208

THE 95093

री केंद्रे से ते

	-	
ŀ	N.	
Ł	51	
Y	<u> </u>	
	Ē.	
	+	
1	afficially a m St.	
- 6	ř	
- 7		
•	-	

i d	
S	Scon
Ø,	

	į								
CHRICED WEIGHT HEPORT	'								TOTAL STATE ASSESSMENT
Park Manufact		9-Siren		•		COMPANIES:		,	
East Manufact	. —	051208			ESTEMB	Acctordings	2		
Descriptions		SY20 Mee B							
•		8 contrarente	4		ı		ı	Ø	
- Equitation Cale:	,	451211	, ]						, '
		!				1		WHITE BY	4 ST 1208
Momines Concessession (payers:		900							DATE
,		}						\\\\	
Volume(s) stayon below were combined and distrect to:	व स्वाद विकास	Z E	OGE		Before Unerstand			Reviewed By:	de Messal
					4		•		Comp. Restas
Commence	Į	ij	Ħ	tole led	Carcatainny	1		Especial .	
	T T	Dander	2	Vol. (ms.)	Fresh	į			Total Carlos Services
1 2 America A C. ales James A.						И	Control	TOTAL (44) (Dates) Color	
A Particular of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C	75000	062707	0.10	100	0.002	4000			CSUI . COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPANIE COMPA
C. Caramanananananananananananananananananan	2404	CSTSOR	0.10	14	2000		1003	0.00047	
3. 2.6-Dadinotologrape	73073	100905	Ç	į		1987	1005	ı	W.A.
4. 24 Brokette	75075	ı			2002	10022	1003	ŀ	Torpfin Sallet Colores
5. 4-Natutolusme	OCTOX.	, question		3	2000	1008.1	1003	1	CANDESON 1 STEPHENS CALL
5. Leans			02.70	9	0.002	- 1664		Ì	(COR) 72.0 20 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17 EAST 17
		120003	0.30	4.00	2000		277	0.00417 contra	And a contraction of categories
7. 7.35-indicapercene	73061	OTOTO:	Ç.	٤			19D:1	Į	A CHARLES OF THE PROPERTY OF THE PARTY OF TH
8. 24.6-Téritephiene	79082	OH-SOTTING.	٤			1001.5	1002	L	With the second
				3	COLE	10020	1002	1	NAME OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS
					!			unite 80118-98-7	

Püntet. 5/12/2008, 5/27/25 PM

ush eredə filkərdəndri Tair fəliys-ələri Golomur

1041

-



2010 Savege Road Charleston, South Caroline 29407 Phone (816) 272-0932 Fax (843) 766-9182 www.ozeleom

Life 10003-25924 Rim 102023 his est 103103 Lightly bystom Audited & Registered by NSF-ISR to ISO 9001:2000

Date Received:

Certi	ficate	of At	alysis

Page 1

Storager Catalog No.: Lot No.: 010614-04 140802 4=6 Dagress

Bolyente

Erp. Dalei

Descriptions

ť

Acetonitrile

PHYN Solution, 1000 mg/L, 1 mi 31-001-2009

Compound

CAS No.

Purity (%) Neat Material Let No. Concentration, mg/L

PENN

18-16-5

99,9

6144,29

1000 4/- 14

Certified By:

DlokPotter

All weights are traceable through N. I. S. T. Test No. 823/264157-00. Concentration (correct for purity) and uncertainty (93% confidence) values listed are determined gravimentally.



2030 Savage Road Charleston, South Caroling 29407 Phone (666) 272-0932 Fax (649) 766-9182 www.o2si.com Quality System
Audited & Registered
by NSF-ISR to ISO 9001;2000

Dele Reselved: ....

(		Certific	ate of A	nalysis	Page 1
Calalog No.: Lot No.:	Storages	Bolyenite	Exp. Date:	Descri	
010612-04 140434	=-10</td <td>Acetonitrile</td> <td>3-Nov-2011</td> <td>3,5 Dinitrosnillas (9,5 DNA</td> <td>) Bolekon, 1000 mg/L, 1</td>	Acetonitrile	3-Nov-2011	3,5 Dinitrosnillas (9,5 DNA	) Bolekon, 1000 mg/L, 1
, I	Dagress C	•	•	M	
Compo	ınd	Casno.	Purity (	96) Neat Material Lot No.	Concentration, mg/L
Control of the second selection of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			4 44-44-4	•	
3.5 dialteralline		618-97-1	91	612.1.1	1000 +/-14

Contilled By: Michael S. Wrigh

Ali weights are traceable through N. I. S. T. Test No. 632/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values — Usted are determined gravimentally.

Mike Wrigiey

## LOMESTANDARD PREP LOGE 98 PAGES 18

NOTE: THE FOLLOWING: DOCUMENTATIONS  WAS PERFORMED AS DATEDISE TO 24-11 10-24-11  PCB-13014-/W 2.5 mg/ml 10-14-11:  PCB-13014-/W 550 mg/ml 10-13-11 10-14-11  PCB-13014-/W 50 mg/ml 10-13-11  PCB-13014-/W 50 mg/ml 10-13-11  PCB-13014-/W 500 mg/ml 10-13-11  PCB-13014-/W 500 mg/ml 10-16-11:  PCB-13014-/W 500 mg/ml		018	INITIAL SOURCE FINAL FINAL SCI. TOY. DATE:
DEB-13014 /W 25 mg/ml 10-14-11:  PCB-13014 /W 25 mg/ml 10-13-11 10-14-11  TOOK 0.005 ME WO ADDED TO  0.095 MI 1668 TCL 100 mg/ml 10-13-11  PCB-13014 /W 50 mg/ml 10-16-11  TOOK 0.010 ML AND ADDED TO  0.090 ML 1668 TCL 100 mg/ml 10-13-11  PCB-13014 /W 500 mg/ml 10-16-11  TOOK 0.020 ML AND ADDED TO  0.080 ML 1668 TCL 100 mg/ml 10-13-11  TOOK 0.020 ML AND ADDED TO  0.080 ML 1668 TCL 100 mg/ml 10-13-11  PCB-13014 /W 500 mg/ml 10-16-11  TOOK 0.020 ML AND ADDED TO  0.080 ML 1668 TCL 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13		25	LIMES ME FOLLOWALLE DOCUMENTATION
PCB-1301*-No. 25 mg/ml 10-13-11 10-14-11  TOOK 0.005 ML ALD ADDED TO  0.095 ML 1668 TCL 100 mg/ml 10-13-11  PCB-1301*-No. 50 mg/ml 10-16-11  TOOK 0.010 ML ADD ADDED TO  0.090 ML 1668 TCL 100 mg/ml 10-13-11  PCB-1301*-No. 500 mg/ml 10-16-11  PCB			WAS PERFORMED AS DATED TO 24-11 10-24-11
TOOK 0.005 MI ALS DODES TO  0.095 MI 1668 TCL 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:13:11  PCB-1301 & 100 mg/ml 10:15:11  PCB-1301 & 100 mg/ml 10:15:	<b> </b>  -		50 13014 /42 2.5 malme 10-14-11: 34
TOOK 0.005 ML ADD DOOR TO  0.095 ML 1668 TCL 100 mg/ml 10:13:11  PCB-1301* /W 500 mg/ml 10:13:11  TOOK 0.010 ML AND DODED TO  0.090 ML 1668 TCL 100 mg/ml 10:13:11  PCB-1301* /W 100 mg/ml 10:16:11  TOOK 0.020 ML AND ADDED TO  0.080 ML 1668 TCL 100 mg/ml 10:13:11  TOOK 0.020 ML AND ADDED TO  0.080 ML 1668 TCL 100 mg/ml 10:13:11  PETM 100 mg/ml 16:13:11	<b> </b>		DOB - 1301 4 /102 50 Maj MR 10-13-11 10-14-0
PCB-1301*/W 50 majord 10-16-11  PCB-1301*/W 50 majord 10-16-11  TOOK 0.010 Me AND ADDED TO  0.090 Me 1668-Tal 100 majord 10-13-11  PCB-1301*/W 100 majord 10-16-11  PCB-1301*/W 500 Agrowd 10-13-11  TOOK 0.020 Me AND AGDED TO  0.080 Me 1668-Tal 100 majord 10-13-11  TOOK 0.020 Me AND AGDED TO  0.080 Me 1668-Tal 100 majord 10-13-11  PETO 100 majord 16-10-10-10-10-10-10-10-10-10-10-10-10-10-	<b> </b>	سسسستششش	TOOL O OOF WE ALL ADDED TO
PCB-13014 / 12 50 mg/ml 10-16-11 10-16-11  PCB-13014 / 12 500 mg/ml 10-13-11  PCB-13014 / 12 100 mg/ml 10-13-11  PCB-13014 / 12 100 mg/ml 10-16-11  PCB-13014 / 12 500 mg/ml 10-16-11  TOOK 0.020 ML SUD AUDED TO	-		0.005 MI 1618 FCI 100 molme 10.13.11
PCB. 1301 1 100 ML ALD ADDED TO  O 090 ML 1668-TOL 100 mg/ml 10-13-11  PCB. 1301 1 100 mg/ml 10-16-11  PCB. 1301 1 100 mg/ml 10-16-11  TOOK 0.020 ML ALD ALD ED. TO  O 080 ML 1668-TOL 100 mg/ml 10-13-11  TOOK 0.020 ML ALD ALDED TO  O 080 ML 1668-TOL 100 mg/ml 10-13-11  FETT 100 mg/ml 10-13-11  PETT 100 mg/ml 16/13-11  PETT 100 mg/ml 16/13-11  PETT 100 mg/ml 103115  PETT 100 mg/ml 10/24111  PETT	-		0.043 MC
PCB. 1301 1 10 ML ALD ADDED TO  O 090 ML 1668-TOL 100 mg/ml 10-13-11  PCB. 1301 1 -/W 100 mg/ml 10-16-11  PCB. 1301 1 -/W 500 mg/ml 10-16-11  TOOK 0.020 ML ALD ALD ED. TO  O 080 ML 1668-TOL 100 mg/ml 10-13-11  TOOK 0.020 ML ALD ALD ED. TO  O 080 ML 1668-TOL 100 mg/ml 10-13-11  PETM 100 mg/ml 16-13-11  PETM 100 mg/ml 16-	-		PCB 130196 /10 50 majored 10-16-16-16-16
TOOK 0.010 ML ALD LOOMS (10-13-1)  O.090 ML 1668-TOL 100 mg/ml 10-16-11  PCB_1301x -/W 500 mg/ml 10-16-11  TOOK 0.020 ML ALD LOOMS (10-13-1)  TOOK 0.020 ML ALD LOOMS (10-13-1)  TOOK 0.020 ML ALD LOOMS (10-13-1)  PRINCE OF TOOL 100 mg/ml 10-13-11  PRINCE OF TOOL 100 mg/ml 10-13-11  PRINCE OF TOOL 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11  PETN 100 mg/ml 10-13-11	-		PCR 1301 \$ 100 ma(mil 10:13-11 10:16-11
DOGO ML 1668-TOL 100 mg/ml 10-13-11  PCB-13014-/W 500 mg/ml 10-16-11  PCB-13014-/W 500 mg/ml 10-13-11  TOOK 0.020 ML AND ANDED TO  100.080 ML 1668-TOL 100 mg/ml 10-13-11  POTH 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-13-11  PETM 100 mg/ml 10-12-111  PETM 100 mg/ml 10-12-11  PETM 100	#~		TOUR ODIO MU AND LODED TO
PCB-13014 /W 100 mg/ml 10-16-11  PCB-13014 /W 500 mg/ml 10-15-11  TOOK 0.020 ML MND ADDED TO  OOBD ML 1668 Tech 100 mg/ml 10-13-11  PATHONION 1000 mg/m.  Lass and the left and transferred to a ambor 1000 mg/ml 10-13-11  Lass 177778-22000 PETM  Lass 177778-22000 PETM  PETM  Loss 177778-22000 PETM 1000 mg/ml 10/24/11  PETM 100 mg/ml 10/24/11	╠		0.000 Mb 1668- TCL 100 mg (ml 10-13-11
POB 1301 1 / W 500 Mg MIL 1013-11  TOOK 0.020 ML AND AUDED TO  O.080 ML 1668 - The 100 mg/ml 10-13-11  PRIMARY 1000 mg/m. I brake give the vial labelled to  I the fett and transferred to an amber  PETN 100 mg/ml 1001115  PETN 100 mg/ml 10(2ml) 1 mt 10mt 100 mg/ml  PETN 100 mg/ml 10(2ml) 1 mt 10mt 100 mg/ml  O23883  HM  O23883  HM  O23883	-		0
POB 1301 1 / W 500 Mg MIL 1013-11  TOOK 0.020 ML AND AUDED TO  O.080 ML 1668 - The 100 mg/ml 10-13-11  PRIMARY 1000 mg/m. I brake give the vial labelled to  I the fett and transferred to an amber  PETN 100 mg/ml 1001115  PETN 100 mg/ml 10(2ml) 1 mt 10mt 100 mg/ml  PETN 100 mg/ml 10(2ml) 1 mt 10mt 100 mg/ml  O23883  HM  O23883  HM  O23883	╟		DCB 13014 =/k1 0100 malml 10-16-11.0
PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111 Int 10ml 100 method 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111  PETN 100 wolnt 1012111	₩		708 1301 4 /W 500 Malmel 10=13-11
PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt  PETN 100 uplnt	<b>-</b>	فسسسنسس	TO P O 20 MI SUD AUDED TO
Desired to Shrike often the vial labelled to the standard the left and transferred to an amber of the standard like injection in all permit seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of the seems of	<b>-</b>		000 xa1 1600 TOL 100 molane 10.13.11
PETN 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 1	_	<del>-</del>	0.000 ///
PETN 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 100 agm 1			
Late literace to the left and transferred to an amber the interest of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late of the late	₩-		
perm 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 100 mg/ml 10/29/14  PETN 100 mg/ml 10/29/11 Inc 10ml 10/29/11 Inc 10/29/14	<b>-</b>		PRESTRACTION, 1000 mga, I have vise the vial labelled to
PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 100 agint 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 10(2)111  PETN 100 agint 10(2)111 Inc 10mb 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 100 agint 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 10(2)111  PETN 1			sinous the left and transferred to an amber
PETN 100 walnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 100 walnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 100 walnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 100 walnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 10mL 100 gm 1:1  PETN 1000 malnut 10(24)11 1mL 10mL 10mL 10mL 10mL 10mL 10mL 10m	╟		Table Come
PETN 100 with 10/24/11 1ml 10ml 100 with 121 per me 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 10ml 100 with 12/24/11 1ml 10ml	₩-		ETN Into Call II
PETN 100 with 10/24/11 1ml 10ml 100 with 121 per me 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 100 with 12/24/11 1ml 10ml 10ml 100 with 12/24/11 1ml 10ml	<b>   </b>  -		
PETN 100 wold 10/24/11 1mL 10mL 100 wold 121  PETN 100 wold 10/24/11 1mL 10mL 100 wold 121  PETN 100 wold 121  HM  10/24/11 1mL 10mL 100 wold 121  HM  10/24/11 1mL 10mL 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  PETN 100 wold 121  P	<b>-</b>	نسسسسن	
PETN 1000 mg/mt 10(2ml) 1 mc 10mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10(2ml)  10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10(2ml)  10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10(2ml)  10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10(2ml)  10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10(2ml)  10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 10 mc 100 mg/ms 121  AFOR MO  DETABLES  HM  10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 10 mc 1	₩-		orral to a later than the same to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later to be a later
PENO 1300 331 MO (3 PM)  DEN 16 31  HM  10 (2 M)  9(x) (1) 2	╬		10 1 10 10 10 10 10 10 10 10 10 10 10 10
HM 10(12911) 9(2) 412	╟		DETA TOO SIGNED TO THE TOTAL PER ME
9(7. 412	₩	سسسطنس	
	₩	سسسنينس	
angul!!			
SMOUNT!	₩		
Sugary,	∦		
Det.			
		ber	

COMP STANDARD PREP LOGH 98 PAGEN 9 UNIE! 019 INITIAL INSTIALS STANDARD Source . FINAL FINAL Tabingtrohenzene SONC Solution 1000 mg/L, 1 ml BULL IN DAIR, DATE ALIQUOT VOLUME Œ ONC LOT# -IN!TIALS 10-24-26 **19146601** labelled - 6/285 non diaminations ЬO 45 1,2-Dinitrobenzane mection Lot #: 175528 - 29391 1344 10:140:0 Rec; B/26/11 MFR exp. 07/10/14 1000 ug(ml 1,2-0NB 10/24/11 1.2-0NB 100 walnut 12-0NB 1000 - 4/11/ 10/24/11 10 ml 100 melone Ime AEN MEON Æ, 18296 SIG75 HM 10/24/8 10-16-11 KRCB-AD 1.649/1 Willipsahake 10-25-11 200 AccuStandard Nitroglycerin LABORATORY USE ONLY Lot #: 211041387 - 28422 M-8330-ADD-1-10X Rec: 8/29/11 MFR exp. 04/19/13 Nitroglycerin 1000 µg/mL in EtOH:MeOH (97:3) STORAGE Refrig (0-5°C) Lot: 211041387 Exp. Apr 19, 2013 HIGHLY FLAMMABLE and transferred amber 1-8 m/ injection H=8330. Nitroglycern 1000 10/26/11 ساساهي HM 161261W amber 72 Diajtrobeazens Botation, 1,000 mg/L, 1 mi LOIS TONGO TONGO STORY STORY ASSOCIATION S labelled 174516 ใ้เร็วไปใต้เบิงซีลกรลูกล J.8 ml inicotion <u>vial</u> Lot #: 176526 - 29748 Rec: 10/24/11 MFR exp. 07/10/14 1,2- DNB 10/26/11 1000 uglant Acor MOUH DESTE FAM ·HM Nitroslycean 100 PPM isivetti Nitroglycean 822 7124II 111125101 ImL ا سوا rs. ACN MOON DEXAL SIGNA 444 <del>१८ १८ । ज</del> BLO 4/28/112

Opened 12-1-11

### LCMS STANDARD PREP LOGN_TS_PAULA_\$2

		INITIAL	SOURCE		· FINAL	FINAL	083	JAIRE
și	ANDARD	CONC	DATE	ALIQUOT		ONC	LOT#	INITIALS
<u>!!</u>	<del>- </del>	<u></u>	E		- <del>1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -</del>	<del></del>		
, <u></u>			<u>E_r 125</u>			<del> </del>		
<u> </u>		* · · · · · · · · · · · · · · · · · · ·	Absolut	<del>~</del>		<u> </u>		
	<del></del>	·	<u>.</u>		19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		· · ·						
<del></del>	<del> </del>					<del>,</del> ,	<del></del>	
<u> </u>		<u>. N.</u>			<del></del>			
ot #:	071409 _{Exp}		- See MSDS orage 0 °C					
ا ا	EPA Method 8330 A Pentaerythritol tetra	<b>knalvte</b> PETN ant Lote: 071409-282		<u>                               </u>	<u> ئىلىدى</u>			
•	1000 ug/mL in acet	On Rec: 2/11/11 MFR						
ABSOL	UTE STANDAR	DE,		- -				
	50	ampoule .		لمحمد عم	ed open	12-1-11	A trens	lived
	The	enjobole	س <u>حودوس</u> . باریدی	0	Jubellel	labelled:		
•-			-	······································				
	+		5 _ <b>5</b> T/C				**************************************	
<del></del>	<del> </del>	1000 1	<u> </u>					
			13-1-11	<del> </del>	<u> </u>	<u></u>		
<del></del>	-	,	12-1-12	<u> </u>				
	+	Absolut	<u>e</u>					
<del></del>	<del> </del>		<u></u>	<del></del>				<del></del>
	<u> </u>		·	**************************************	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·	125 Market St West Haven-Of	08513 USA FOR	LABORATORY USE				
Acc	euSiandar ^{r ®} 30 4 40 Y	125 Market St New Haven/GI 6-Dinitroaniline	lendard com		ONLY			
5-Dinitros	ihiline Re	t#: 210111284 - 30018 c: 11/16/11 MFR exp. 11/	19/13		ļ	<del>Les li</del>		
200 µg/ml ot: 2101	L in AcCN:MeO		POTL معجودة	AGE Ambient	محماليندر محماليندر			
xp. Nov	19, 2013 POIS	SON				<u> </u>		
			25(				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
	. : <u></u>	boke ope	He.	ial 1	abelled	above one	tomble	eaced
	to a	<b>1</b>	7.8.ml	inject	on sail			
				<u>Garade</u>		S (A)		
			<u>s:s:1</u>					
	3,5-10013	- IOO PPM						
	315-DNA	مهدده	<u>~ 1a-</u>		a lowl	larida	C 1:1 ACU Med	
	<del></del>			587			ACU Meo	h whi

### LC/MS STANDARD PREP LOCK 98 PAGES 103

103

					to seeing faile	<u>488</u>	8161		100	' 	
<u></u>	12. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INITIAL	SOUR	CRES	PAGE	FINAL	96 <b>F</b>		Lan	- <del>DAI</del>	
TANE	ARD	CONC	DAT	E /	LIQUOT	VOLUN	<u> </u>	NC	LOT#	INFT	<u>als</u>
	<del></del>		<i>ౖ</i> నిక			مطع	<u> </u>	<u> </u>	<u> </u>		
		following.	حدبي		ا 3 ا ده ايد						······································
<u></u>	documente	d here	- 100		A34 63 11	<u> </u>	<u></u>	· .			
	 6330_MX-B	10.0	ppm 11	1/30/11	0.10 ml	1.0 mL	1,0 ppm	1:1 ACN/DE29	12/04/11 6 : MeOH/51		+1M 02/03/12
	6330_MX-B	1.0 p	ipm 12	2/15/11	0.10 ml	1.0 mL	0.10 ppm	1:1	12/04/11 8 : MeOH/51	НМ 🤚	-
	6330МХВ_СВ 2.0 pp 8330_МХ-В 6330МХВ_СВ 1.0 pp	10.0	ppm 11	1/30/11	0.200 ml	1.0 mL	2.0 ppm	1:1:8 ACN:MeC DE298:51	12/15/11 OH : MILLIPC 1133 : H2O		
	8330_MX-B	10.0	ppm 11	1/30/11	0.100 ml	1.0 mL	1.0 ppm		12/15/11	ГНМ∄	
	8330MXB_CB 0.5 pp 8330_MX-B	10.0	ppm 11	1/30/11	0.050 ml	1,0 mL	0.5 ppm		12/15/11	: H <b>M</b> H;	
	8330MXB_CB 0.2 pp 8330_MX-B 6330MXB_CB 0.1 pp	1.0 p	opm 12	2/15/11	0.200 m1	1.0 mL	0.2 ppm		12/15/11	ما	
	6330MXB_CB 0.05   8330MXB_CB 0.05	1.0 p opm			0.100 ml	1.0 mL	0.1 ppm		12/15/11	ŀ	
	8330_MX-B 8330MXB_CB 0.02 p	1.0 £			0.060 ml	1.0 mL	0.05 ppm 0.02 ppm		12/15/11 12/15/11	Ī	
	8330_MX-B 8330MXB_CB 0.01 ( 8330_MX-B	ppm			0.200 ml	1.0 mL	0.02 ppm		12/15/1	]	
	8330_MXB_CB 0.005 8330_MX-B	i ppm			0.050 ml	1.0 mL	0.005 ppm		12/15/1	1 HM	
					·	<u>.</u>		<u> </u>			
			· .\		<u> </u>	<u> </u>	1/2/2	<u> </u>	<u>'.</u>	<u> </u>	
<u> </u>		<u> </u>							<del></del>		<del></del>
		1. N - N		· · · · · · · · ·		<u> </u>	12 12	<u> 4-18 - 13</u>	<u> </u>		
			<del>-</del>	<del>-</del>		<u> </u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>		
<u> </u>						<u> </u>	4.5	<u>. · Δ · .</u>		<u> </u>	سنست
	<del> </del>										
						-588					

104

	U4 			INITIAL	SOURC	£	15.75	FINAL	FINAL	OUL PN.	DATE
•	TANDA	RD		CONC	DATE	ALIQ	UOT V	<b>DLUME</b>	ONC	LOT#	INTTIA
		,	14.10	Verein	, talier	[A] [75]	1748 ·	. <del>, , , , , , , , , , , , , , , , , , ,</del>			HM
	8330_N	IX-A		10.0 ppm	11/30/11	0.10 ml	1.0 mL	1.0 ppm	1:1	12/15/11 HM	1 (01
	0410_11	163-63		i = PP. i						3 : MeOH/51133	
•	8330_N	IX-A		1,0 ppm	12/15/11	0.10 ml	1.0 mL	0.10 ppm	1:1	12/15/11 HM	
<del></del>	2447.			••					ACN/DE296	3 : MeOH/51193	
	8330M)	KB_CB:	2.0 ppm							4014544 1114	
	8330_N			10.0 ppm	11/30/11	0.200 ml	1.0 mL	2.0 ppm	1:1:6	12/15/11 HM	
	_									H:MILLIPORE	
								40	DE298 : 511	133 : H2U 12/15/11 HM	
	8330_6	ΛX-A		10.0 ppm	11/30/11	0.100 ml	1.0 mL	1.0 ppm		127 IOUTE FINE	
			0.5 ppm		4.185114	0.050!	اما	0.5 nnm		12/15/11 HM	
	8330_N			10.0 ppm	11/30/11	0.050 ml	1.0 mL	0.5 ppm		1 ( ( 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
			0.2 ppm		40/45/44	0.200!	1.0 mL	0.2 ppm		12/15/11 HM	
	8330_N			1.0 ppm	12/15/11	V.ZVV IT(I	I.V IIIL	Air bhiu			
	•		0.1 ppm	40	12/15/11	0.100 ml	1.0 mL	Ó.1 ppm		12/15/11 HM	
<del></del>	8330_N		ብ <b>ሰ</b> ሮ ~~~	1.v ppm	(ACTOR1)	U. 100 IIII		Ele			
<u> </u>			0.05 ppm	10.000	12/15/11	0.050 ml	1.0 mL	0.05 ppm		12/15/11 HM	
	8330_N		0.02 ppm	i.o ppiii	100 100 11	2					<u></u>
<del></del> -	8330_N		o.oz hhiii	0.10 man	12/15/11	0.200 ml	1.0 mL	0.02 ppm		12/15/11 HM	
			0.01 ppm	2.12 kk							
į	8330_N		ara , khiii	0.10 ppm	12/15/11	0.100 ml	1.0 mL	0.01 ppm		12/15/11 HM	
<del></del> -			0.005 ppm	Fl	-						·
	8330_N		23222 <b>F</b> F	0.10 ppm	12/15/11	0.050 ml	1.0 mL	0.005 ppm		12/15/11 HM	_
									<del>-:-</del>		$\longrightarrow$
. ====	8330M	XA SS	1.0 PPM							±≏ 12/ <del>15/</del> 11 HM	
		XA_SS		100 ppm	12/01/11	0.010 ml	1.0 mL	1.0 ppm	1:1:6	H : MILLIPORE	
		_							DE298 : 51		1
···									1:1:6	12/ <del>15</del> /11 HM	$\dashv$
	8330M	XB_SS	1.0 PPM			0.040	4 01	1.0 ppm	ACN : MeC	H : MILLIPORE	
	- 8330M	IXB_SS				0.010 ml		. 1.0 ppm		1133 : H2O	$\neg$
	PETN	_88_IN	TSTK	100 ppm	12/01/11	0.010 m)					
:		ı									
		A 7-	h . A	e, A	(11	, ,			<del></del>		n.
n 7				Sur 0				-//	1.1	1/51223	/ <del>//</del>
Vipheno	msd	100	0 10-	7-11 0	10	200	<u> </u>	54/4/	1-8/heys	1/31245 1	11-01-
	,						· · · · · · · · · · · · · · · · · · ·		<del> </del>		<del></del>
helhemid		. 1,0	\$ 11-2	2-11 3	/2	1.0	カチ	rul/	Rollard	51223 81	-03-12
HEINEM;A	ser he	192	V ((-)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<del></del>	( 2 1 2)	<del></del>			
		1		<del></del>		<del>'</del>			<del></del>	·	<del></del>
		WIL	chilib	phos sel	1569	1_/		·		· ·	-1/
hall a		120	to kie	カアンバン	1///	1 25.5	<u>ال</u> ا د	So This	201/0	1223 11-0	7-12
Mirch.	20/101	10t.	x 00	W-12- C	1,16h	1 23 16	, <u>v</u> ,	3 7 77 96	1010/ 13	1223 01-0	
					·			<del></del>			
· ·—								<u> </u>			
			<del>_</del>								

#### LOMS STANDARD PREP LOGH 99 PAGES 106 106 DATE OOL TING FINAL? FINAL SOURCE INITIAL INSTIALS **LOT#** ONC ALIQUOT VOLUME CONC DATE CRACIALTA HIM STEPLIE 8330B SS 10.0 μL 1.0 mL 1:1:6 1.0 ppm 12/1/2011 8330_07/13_MixA_SS_STK 100 ppm ACN: MeOH: MILLIPORE 12/20/2011 10.0 µL 1.0 mL 1.0 ppm 8330 07/13 MixB SS STK 100 ppm DE002: 51076: H2O 10.0 μL 1.0 mL 1.0 ppm 12/1/2011 PETN 07/13 SS INTSTK 100 ppm following CCUS use made on Ulastiz and 01/06/12 8330-MXA-CCU 1.0 PPM \$330-MIX-A 10.0 uglme H/30/11 1000 10ml 1.0 uglme 6:1:1 HIO RENTHAUM (15) 16016 S107-6 8330-MXB-CCV 1-0 PPM 1.0000/ml 6:1:1 83)0. MX-B 100w/mL 11/36/1 100 st 1000l HOS TEAMERY 052146 YUTE μМ 1/6/12 8330_MIX-A 10 ought 11/30/11 Miore recy 46/12 8330-MIX-B BONG YOU Standard Prap Docum-tata Perchlorate PARCISEL 1019/-1 Perchlorate 1000 11-19-11 0.10 10.0 W1-6-12 0.10 W/m/ 01-05-12 0.00

108	<i>f</i> :	LCMSS	TANDARD PREP LO	3# 48 PAUL#	108		
STANDARD  SOURCE DATE OF THE STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD S		INITIA	L SOURCE :	FINAL	FINAL		etac <del>Aitaai</del> -
The state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second st	STANDA	RO	DATE AEI	COOL AMEDICAL	<u> </u>		· `
The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co		Solution 1000 me/L 1 cal	Land I Bre	ke, vopen t	wal wal	~ labelled	<u> </u>
12-Date 1000 FRM SXP 07 Journ 1000 11 12 12 20013 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15 1000 uglint 01/05/15/15 1000 uglint 01/05/15/15/15/15/15/15/15/15/15/15/15/15/15	· · · · · · · · · · · · · · · · · · ·			Signal Angles	4 112 7 tien	stemed #	ð
Accustandard Manda 250-Exposition vice open the vice belief in the special open of the special open of the special open of the special open open open open open open open open		Being SOLUCIONS  1,2-Dinltrobenzene			•		
1,2 DNS_1000 PPM EXP 57004/2.  1,2 DNS_1000 right all plant 1000 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 11 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 pm 100 p		Lot #: 175526 - 30114			_	011091	12
Sassowix—a local Visit in the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the special solution of the					1 3		
R330 MIX-A 10 solar 1/30/11 Inquit four togeth (a. 1):  R330 MIX-B 10 solar 1/30/11 Inquit four togeth (a. 1):  R330 MIX-B 10 solar 1/30/11 Inquit four togeth (a. 1):  R330 MIX-B 10 solar 1/30/11 Inquit four togeth four four four four four four four four	:	713-12MB-16	SON PRM GXP		4-8-5 B	i state	
## Sabor Mix-15  ## Sabor Mix-15  ## Solution May not be seen the vial belief to the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the seen the		1/2 -00/15 - 10	00 48/mm 01/0	9/13 1000ul	10mt 10	Duglow 1:	neom
### S330-MIX-A 10-slat V13-pl11 10-out 10-mt 10-plnt (0.1)  ### S330-MIX-B 10-slat V13-pl11 10-out 10-mt 10-plnt (0.1)  #### S330-MIX-B 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-plnt 10-pln		· · · · · · · · · · · · · · · · · · ·	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		* 1 · · · · · · · · · · · · · · · · · ·	<u> </u>	51026
## S330 MIX-A 10 dat V130111 100 at 10 mt				<u>an an an an an an an</u>			<u>"i/1/</u>
State of the man and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon	1 1 1	1. 95330 CCN "	J "		en de		
## Accusiandard    Accusiandard   Method 8330 - Explosives by H    Rec: 1072911 MFR exp. 0472913   Method 8330 - Explosives by H    Rec: 1072911 MFR exp. 0472913   STORAGE Freediction C)   STORAGE Freediction C)   Exp. Apr 29,2013 HIGHLY FLAMMABLE			<del></del>	قاد عيوواد	me lo	alos 6:1:	,
Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution theorem  Solution the		8330 MIX-3	and the state of	<u> </u>	F 3 4	Han θυ	v Medh 196 Лоў
Scholar floor method to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case to in the case		1. 工作主题 1000年	1.548.65.71.5	<u> </u>	· 3		119
Late 1875 10 10 10 10 10 10 10 10 10 10 10 10 10		Is Philtrohenzene	_				
12-Dinitrobenzene Lot #: 175528-30116 Rec: 12/15/11 MFR exp. 07/10/14  ACCUSTANTAGE Method 8330 - Explosives by HI  Method 8330 - Explosives by HI  1000 µg/mL in MeOH:AccN (1:) Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101177-01 Lot: 209101171011 Lot: 20910117101 Lot: 20910117101 Lot: 20910117101 Lot: 20910117101 L	in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	d 2009 I	· · · · · · · · · · · · · · · · · · ·	,			
Accustandard  Method 8330-R  Method 8330-Explosives by HI  1000 µg/mL in MeOH:Accn (1:1)  Lot: 209101177-01  Lot: 209101177-01  Lot: 2092013  HIGHLY FLAMMABLE  Thanks SI - Incomposition of Proceedings Street of Composition of the State of Composition of the State of Composition of the State of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition		175626 110 Dagram C 7/18/14					
M-8330-R Method 8330 - Explosives by HI Method 8330 - Explosives by HI Mothod 8330 - Explosiv	Lot#	175526 - 80116		1/20.1		1	/ 10-11 a
Accustandard    Method 8330 - Explosives   Metho	Reo:	12/15/11 MFR exp. 07/10/14					
Accustancerd    125 Market St New Harmon and BORATORY USE ONLY		Same and the same	Charles			·	
Accustandard    125 Market St New Deposit Assistants   100 Method 8330 - Explosives by HI   1000 µg/mL in MeOH:Accn (1:7)   14 comps.   10 comps.   10 comps and productive harm.   1000 µg/mL in MeOH:Accn (1:7)   14 comps.   15 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market St 10 market S		y. 1.32	· .				
M-8330-R  Method 8330 - Explosives by HI  1000 µg/mL in MeOH:ACCN (1:1)  Lot: 209101177-01  Exp: Apr 29,2013  HIGHLY FLAMMABLE  Thanks expent the viel labelled above and transferred  to an author little of the production with the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of th		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	St New Haven, CT-06513 - USA - CO.	* * * * * * * * * * * * * * * * * * *			
Method 8330 - Explosives by HI  1000 μg/mL in MeOH:AcCN (1:1)  Lot: 209101177-01  Exp: Apr 29,2013  HIGHLY FLAMMABLE  Thouse epen the viel labelled above and transferred  to an author is that hyestern viel = 3	·	Lot#:	209101177-01 - 20865	G: This gradual contains			
Lot: 209101177-01  Exp: Apr 29,2013  HIGHLY FLAMMABLE  To bake upon the vial labelled above and transferred  to an auton 18ml hyerton vial ->	Method 83	330 - Explosives by HI Rec:	10/25/11 MFR exp. 04/29/13	I to cause cancer and birth		,	
I booke open the vial labelled above and transferred to an ambon 18 mi hyestion vial ->	Lot: 2091	• •	14 comps.	RAGE Freeze (<-10° C)	1		
to an ambon 1.8 on byection viel ->			FLAMMABLE		· · · · · · · · · · · · · · · · · · ·		
, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	T bake	pen the viel	labelled al	مه مر	transferre	<u>d_</u>
M-8530-12 1000 Mml //10/12			ben 18 ml da	jestion viel -	<del>}</del>		
	<del></del>	M-8830-12	1000 MM	1/10/1A		·	

#### LOMS STANDARD PREP LOG# 98 PAGE# LO9

	109	
STANDA	RD CONC DATE ALIQUOT VOLUME ONC LOT# INITIALS	
	M-838046 100 PM 5400 7/10/12 17 10/12	
	M 8880 - R. 1000 wilnes 11/6/12 - Thurs 10 me 100 wilnes 1/1	<b>b</b>
	12-pars I I I I per Meath Illie	-112
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
10 - C	8330W - A COU NO FRM	
6 <u>(</u> . <u> </u>	HAD BEN MECH IN	61/2
	1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 1137 - 11	
<u></u>	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
<u> </u>	NOTE: THE POLICION NO. DOCUMENTO	 2
		*******
	8290 = 40 mg/ml 01-08-17	
	EDF - 4055 500 mg/and 11-11-11 A TOOK OF-OB-	12.
	6,008 ML . 2 4 9 00 000 300	
	EDE-6005 100:500 Majane 09:01-11 B	
ا مورد در ا	TOOK ONO NEL	
	SIGMA - ALDRICH HOMANE LOT SHEB 2935V	
	TOOK 0.052 ML	
	CONTRINED THE ABOVE CONSTITUELTS	
	IN A MICRO INSELST WITHIN AN AMBER	<del>,</del>
	ANTECTION VIAL	
	121-221-2 Landon VIII. Landon December	
	8290-0C CHU   DF 01-08-121	
	EDE-HOSS BOOMS/MD 11-11-11 & TOOK	
	EDF-5005 100-500 majore 09-02-113	
	TOOK 0.040 ML	
	EDF-500B 100:500 mg/ml 10:17:11F	
	TOOK OLOLOME STORE	
	SIGNA- ALDRICH NONENE SHBB29350	
	TOOK O. OHZ MIL	
	COMBINED -ABOUT CONSTITUENTS	
	592	

### LOIMS STANDARD PREP LOCK 98 PAGES 105

105

a 👍			HALL THE	SOU			PILLA .			i (		
FIANCA	RD	DAILY Carry	CONC	DA	\$2635216.231A	STAC		CO FINA	446		· - VAR	
			<u> </u>		TE ALIQ	OOI V	DLUME	ON	D	LOT#	INTE	F
<del></del>				<del></del>				·				
			<u>-</u>					<del></del> -		<del></del>		
ŀ	6330	-w <u>-S</u>	JRROG	ATE_	5.0PPM	EX	<u> </u>	10-112				
			يد د ١٥٥٥	···	2106/11	50	100	<u>را 5</u> ر	اسلور	15.1		hr4
	] 1 1 - DF	712	10000	<u> </u>	<u> </u>				-	ACH Me		امدادك
			<del></del>		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		·	<u>- '                                   </u>	<del></del> .	rpare	, <del>, .</del>	
			<u></u>	<u>-</u> :	<u> </u>					<del></del>		<del>-:</del>
	8330	MLA-C	<u>در . بدد</u>	PPM	. Nedla e			<u></u>		<del> </del>	<del></del>	
				-		hi 10	: علنده	المدها	<u> 6</u>	<u> </u>		tra.
<del></del>	K330_	WIX-U	10	اصلهاما	- (11/25)			<u></u>	Нх	ρέλι Μεί <i>ΡΈμες ΙΙ</i>		104112
	3							<del></del>		PPARE II	-	
				<u> </u>	<u> </u>			<u> </u>	<del> </del>	<del></del>		
	0.330	. 417 10		.0#H	i de la fela.				<u> </u>	<u> </u>	<u> </u>	
<del></del>								1.0 uelm	1. 6	5.111		ton_
	<u>8330.</u>	- MN - E	<u>, jo.,</u>	<u> بهاهبا</u>	1113011	100	<u> البدد</u>	11-00-00-00-00-00-00-00-00-00-00-00-00-0		O ACAL M		o i femilia
			<u></u>	<u></u>	<u> </u>		<del></del>	<u>·                                      </u>		05.46	51076	<del>-</del>
								·	·			
					. 121							
	-71 -	Cu		<u></u>		ـــما	. 0	llasl ia	and	docum	rented	
·	The	follo	uing	Cßs		de o	O O	105/12	and	docum	rented	<u>.                                    </u>
	The here		<del>U</del>	CBs		de o	Λ <u>Ο</u>	1/05/12	and	docum	rented	
			<del>U</del>			de o	0	1/05/12	and	doun	rented	
	hare		<del>U</del>			de o	\ O	1/05/12	and	down	rented	
330_MX	here A		<del>U</del>	- GI I ac	Hm:		Λ. Ο	105/12				
3330_MX 8330_A	here A		<del>U</del>	- GI I ac			1.0 ml				IOGIN	14
	here A		<del>U</del>	- GI I ac	Hm:				ACN:	► 0\ 1:1:6 MeOH: M	IOGIVA B	1/4
8330_A	here _ <b>A</b> MX-A		<del>U</del>	- GI I ac	Hm:				ACN:	M 61	IOGIVA B	1/4
8330_A 330_MX	hece		<del>U</del>	10.0 ppn	НМ n 11/30/2011	1 200 բԼ	1.0 ml	L 2.0 ppm	ACN:	M 01 1:1:0 MeOH:M	10611/2 3 HLLIPORE 6: H2O	1/4
8330_N	hece		<del>U</del>	10.0 ppn	Hm:	1 200 բԼ		L 2.0 ppm	ACN:I	M 61 1:1:0 MeOH:M 02:5107	10611/2 8 HLLIPORE 6: H2O	
8330_A 330_MX	hece		<del>U</del>	10.0 ppn	НМ n 11/30/2011	1 200 բԼ	1.0 ml	L 2.0 ppm	ACN:I	1:1:6 MeOH:M 02:5107 1:1:6	IOGIVA 3 HILLIPORE 6: H2O JULIPORE	
8330_N 330_MX 8330_M	here  A  MX-A  B  MX-B		<del>U</del>	10.0 ppn	НМ n 11/30/2011	1 200 բԼ	1.0 ml	L 2.0 ppm	ACN:I	M 61 1:1:0 MeOH:M 02:5107	IOGIVA 3 HILLIPORE 6: H2O JULIPORE	
8330_A 330_MX 8330_M	_A MX-A B MX-B		<del>U</del>	10.0 ppn	НМ n 11/30/2011	1 200 բԼ	1.0 ml	L 2.0 ppm	ACN:I	1:1:6 MeOH:M 02:5107 1:1:6	IOGIVA 3 HILLIPORE 6: H2O JULIPORE	
8330_MX 8330_M 8330_M 330B_CB 8330_M	_A MX-A B MX-B		<del>U</del>	10.0 ppm	11/30/2011	( 200 μL 200 μL 100 μL	1.0 ml	2.0 ppm	ACN:I	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M	IOGIVA 3 HILLIPORE 6: H2O JULIPORE	
8330_MX 8330_MX 8330_M 8330_M 8330_M	A MX-A MX-B IX-A X-B		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm	11/30/2011 11/30/2011 11/30/2011	200 μL 200 μL 100 μL 100 μL	1.0 ml 1.0 mL 1.0 mL 1.0 mL	2.0 ppm	ACN: I DEO ACN: M DEO	1:1:6 MeOH:M 02:5107 1:1:6	10611/2 8 6: H2O 6: H2O 3: H2O	
8330_MX 8330_MX 8330_M 8330_M 8330_M	A MX-A B MX-B MX-B IX-A IX-B IX-A		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011	200 μL 200 μL 100 μL 100 μL 50 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm 2.0 ppm 1.0 ppm 1.0 ppm 0.5 ppm	ACN: I DEO ACN: M DEOC	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1	IOGINA BILLIPORE 6: H2O BILLIPORE 3: H2O DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M	_A MX-A B MX-B X-A X-B X-A X-B		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011	200 μL 200 μL 100 μL 50 μL 50 μL	1.0 ml 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm 2.0 ppm 1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M	A MX-A MX-B MX-B IX-A IX-B IX-A IX-B IX-A		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/5/2012	200 μL 200 μL 100 μL 100 μL 50 μL 50 μL	1.0 ml 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	_A MX-A MX-B MX-B MX-B MX-B MX-B MX-A MX-B MX-A MX-B		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm 2.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/5/2012 1/5/2012	200 μL 200 μL 100 μL 50 μL 50 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.2 ppm 0.2 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	A MX-A MX-B MX-B MX-B MX-B MX-B MX-B MX-B MX-B		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm 2.0 ppm 1.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/5/2012 1/5/2012 1/5/2012	200 μL 200 μL 100 μL 50 μL 50 μL 100 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm 1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.2 ppm 0.1 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	A MX-A  B MX-B  X-A  X-B  X-B  CB		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm 2.0 ppm 1.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/5/2012 1/5/2012 1/5/2012	200 μL 200 μL 100 μL 50 μL 100 μL 100 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.1 ppm 0.1 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	A MX-A  B MX-B  IX-A  IX-B		<del>U</del>	10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm 2.0 ppm 1.0 ppm 0.5 ppm 0.2 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2012 1/5/2012 1/5/2012 1/5/2012 1/5/2012	100 µL 100 µL 100 µL 50 µL 100 µL 100 µL 100 µL 100 µL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.2 ppm 0.2 ppm 0.1 ppm 0.1 ppm 0.05 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	
8330_MX 8330_MX 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	A MX-A  B MX-B  IX-A  IX-B  IX-A  IX-B  IX			10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 10.0 ppm 2.0 ppm 2.0 ppm 1.0 ppm	11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/30/2011 11/5/2012 1/5/2012 1/5/2012	200 µL 200 µL 100 µL 50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL	1.0 ml 1.0 ml 1.0 ml 1.0 ml 1.0 ml 1.0 ml 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.1 ppm 0.1 ppm	ACN: M	1:1:6 MeOH: M 02:51076 1:1:6 MeOH: M 02:51076 1:1 CN: MeO 1:1:6	IOG IVA B BILLIPORE B: H2O BILLIPORE DH	: 4

#### LCMS STANDARD PREP LOGH 98 RAGEN 106

106	,,,				EINIAL -	oth re	DATE
	RD A A A	INITIAL SOUP	RCE ALION	FINAL OT VOLUME	FINALO	LOT#	INSTIALS
STANDA	4 3550	CONC DA	THE MILITIAN	Off Parcon			<u> </u>
8330B S	<del></del>	·				tin silal	12
	07/13_MixA_SS_ST	K 100 ppm	12/1/2011	10.0 μL 1.0 mL	1.0 ppm	1:1:6	
8330_0	07/13_MIxB_SS_ST	K 100 ppm	12/20/2011	10.0 μL 1.0 mL		ACN : MeOH : MIL	
PETN	,07/13_SS_INTSTK	( 100 ppm	1 12/1/2011	10.0 μL 1.0 mL	1.0 ppm	DE002 : 51076	: H2O
	<del></del>	<u> </u>				<u> </u>	
_						<u></u>	<del></del> .
<u> </u>	The fo	ellowing cove	s use	mode on	ol/os/	12 and de	comented
	here.	en 01/06/12	Ham!		£ 3, .	<u> </u>	
	8330 MWA.	-CEU 1.0 PPM			<del></del> .		
<u></u>	8830_MIX-A	10.0 uglm	N/30/	1 100 VL	10 mL	1.0 edne 6:1	<u> </u>
		:	* <u>***</u>			Hyo	BOWNEY T
						<del></del>	
	8330_NXB_CCV	1.0 PPM					1
	83)0 MX-B		136]  108	ALL IO	ماك ا	Qualme 6:1	
						Ho H	NMeits IGC SUZZE
						- Uta	HM .
							— <del>[1] [5] [1]</del>
	8330_ccv 1.	OPPM	···	<del>_</del> · · <u></u>			
	8330_ИХ-Д		ulsalit	lon. L. l.e.	. 10	2 /	
	8330_NIX-B		7 1/30/(1	7 7 (100 Tr (100 Tr	<u> </u>	I HID ACOU	teoy 4613
	<u> </u>						(Vm
	standard 1	Prop Docum.	41-				
	٥.	Bonned		Docen	Led	11-0/1-	
Perchlorate DAG	acital 121	-//	0/~0_1.	-, I VINING	rea	01-06-12	
Perchlorate /	100 11-	19-11 0.1	/x /a a	101/1/	2.//	1.1	W
	<u> </u>	17-17 0.1	<u>υ 70, υ</u>	104/1/	Mill Sport	kvair of	05 72 //
Perchlorate	spile 8	mid	11-6-12	<del> </del>		<u></u>	
Bocklack DAZ	00 00 1 11	21-05-10	7 XX 2/	- 1 m/	( h.//. a	/	
Perchlorate DAG	- WVCE [U	01001:12	UITY D	J. U. Wag-	i mi. po	NR 01-05	12
	· · · · · · · · · · · · · · · · · · ·		•			<u> </u>	
-						<del></del>	
		·	<del></del>			·	
	·	1	·		·	<del></del>	

#### **Organic Extraction Worksheet**

Method Explosives Soil Extraction 8330B	Extraction Set   120301A	Extraction Method MSE018 Units mL
Spiked ID 1 8330 100ppm STK 02-23-12 exp 08-23-12	Surrogate ID 1	1,2-DNB STK 100 PPM 02-21-12 exp 08-21-12
Spiked ID 2	Surrogate ID 2	
Spiked ID 3	Surrogate ID 3	
Spiked ID 4	Surrogate ID 4	
Spiked ID 5	Surrogate ID 5	
Spiked ID 6	Sufficient Vol for	Matrix QC: YES
piked ID 7	Ext. Start Time:	03/01/12 16:25
piked ID 8	Ext. End Time:	03/02/12 10:25
	GC Requires Extr	raot By:
	pH1	Water Bath Temp Criteria
	рН2	
	рН3	

Spiked By: KY	•	Date 03/01/1	2		W	itness	ed By: C	FM		Date 03/01/	12
Sample	Sample Container	Spike Amount	Spike ID	Surrogate Amount	Surre ID	gate		Final Volume	рН	Extract Date/Time	Comments
I 120301A BIK		 	MIFIED	0.060	1	equip	10.03g		NA	03/01/12 16:25	
2 120301A LCS-1		0.2	1	NA	NA	equip	10.14g	20mL	NA	03/01/12 16:25	
3AY55846	AY55846S02			0.060	1	equip	10.00g	20mL	ΝA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
4 AY55847	AY55847S02		Ī.	0.060	1	equip	10.03g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
				0.060	1	equip	10.03g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
	AY55849S02			0.060	1	equip	10.06g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 402 Jar
				0.060	1	equip	10.10g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
				0.060	1	equip	10.12g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
				0.060	1	equip	10.02g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
	AY55853S02			0.060	ì	equip	10.00g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
	AY55854S02				1	equip	10.05g	20mL	NA	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
		0.2		na	NA ·	equip	10.01g	20mL	NA (	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
		0.2	1	NA	NA ·	quip	10.01g	20mL	NA (	03/01/12 16:25	67072 Rush 5 Day 4oz Jar
				•	1	equip	10.03g	20mL I	NA (	)3/01/12 16:25	67072 Rush 5 Day 4oz Jar
				<u> </u>	1	quip	=J.			03/01/12 16:25	67072 Rush 5 Day 4oz Jar
AY55869 A	Y55869802		] 	0.060	1	quip	10.00g	20mL ]	NA (	3/01/12 16:25	67072 Rush 5 Day 4oz Jar

Solvent and Lot#	
Acetonitrile	DF301
Sílica Sand	0-74-11
·	
	•

Extraction COC Transfer	
Extraction lab employee Initials	CFM
GC analyst's initials	HSM
Date	13-2-12
Time	10:30
Refrigerator	Hobart/Brown

	Technician's Initials		
Scanned By	СЕМ		
Sample Preparation	СРМ КҮ		
Extraction	СРМ КҮ		
Concentration			

Modified	03/02/12 8:44:51 AM

Reviewed By: Ky Ext_ID

595 Date 3-2-12

# **METALS EPA SW846 - 6010B**



#### METALS EPA SW846 - 6010B Forms



#### AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 6010B AAB #: 120301A-164424 Contract #: *G012 Lab Name: APPL, Inc Prime Contractor: Parsons Base/Command: CSSA Lab Sample ID Field Sample ID AY55857 B4-WC01 AY55858 B4-WC02 AY55859 B4-WC03 Comments: ARF: 67072 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Title:

Diane Anderson
Project Manager

Mame:

Date:

#### AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 6010B AAB #: 120301A-164465 Lab Name: APPL, Inc

Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons

Field Sample ID	Lab Sample ID			
B4-NT1-SW9	AY55846			
B4-NT1-SW6	AY55847			
B4-NT1-SW3	AY55848			
B4-NT1-BOT03	AY55849			
B4-NT1-SW8	AY55850			
B4-NT1-BOT02	AY55851			
B4-NT1-SW4	AY55852			
B4-NT1-SW7	AY55853			
B4-NT1-BOT01 FD	AY55854			
B4-NT1-BOT01	AY55855			
B4-NT1-SW5	AY55856			
B4-WC01	AY55857			
B4-WC02	AY55858			
B4-WC03	AY55859			
B4-NT1-SW6 FD	AY55869			

Comments:	ARF: 67072		
completeness, package and in	for other than the conditions detailed	l above. Relea	nditions of the contract, both technically and for use of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	Shuller	Name: _	Diane Anderson
Date:	3-13-12	Title: _	Project Manager

## AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2.1	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	4.4	1	F
COPPER (CU)	0.19	2.0	2.87	1	
LEAD (PB)	0.18	10.0	1.70	1	
NICKEL (NI)	0.12	2.0	1.99	1	F
ZINC (ZN)	0.6	5.0	5.4	1	

Comments:

ARF: 67072

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: 120306B

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	24.5	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	1.8	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	1.5	1	F
COPPER (CU)	0.19	2.0	3.31	1	
LEAD (PB)	0.18	10.0	1.41	1	J
NICKEL (NI)	0.12	2.0	1.53	1	F
ZINC (ZN)	0.6	5.0	14.4	1	•

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	****	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2.5	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	4.2	1	F
COPPER (CU)	0.19	2.0	3.02	1	
LEAD (PB)	0.18	10.0	2.32	1	J
NICKEL (NI)	0.12	2.0	2.56	1	
ZINC (ZN)	0.6	5.0	16.2	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0		-	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2.7	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	·
CHROMIUM (CR)	0.1	20.0	8.6	1	F
LEAD (PB)	0.18	10.0	33.59	1	J
NICKEL (NI)	0.12	2.0	5.32	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	35.2	5	
COPPER (CU)	0.95	10.0	11.43	5	
ZINC (ZN)	3.0	25.0	127.1	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2.0	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	5.3	1	F
COPPER (CU)	0.19	2.0	2.99	1	
LEAD (PB)	0.18	10.0	2.05	1	J
NICKEL (NI)	0.12	2.0	2.00	1	
ZINC (ZN)	0.6	5.0	13.9	1	

Comments:

Analytical Method; EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: 120306B

Date Received: 28-Feb-12 Concentration Units: mg/kg

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Qualifler
BARIUM (BA)	0.5	5.0	27.7		•

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2.1	1	F
CADMIUM (CD)	0.03	0.50	2.32	1	
CHROMIUM (CR)	0.1	20.0	5.5	1	F
LEAD (PB)	0.18	10.0	40.88	1	
NICKEL (NI)	0.12	2.0	19.13	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	57.4	5	
COPPER (CU)	0.95	10.0	105.53	5	
ZINC (ZN)	3.0	25.0	176.7	5	

Comments:

Analytical Method: EPA 6010B

Field Sample ID: B4-NT1-SW4

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc.

Contract #: *G012

Matrix: Soil

% Solids: 92.2

Lab Sample ID: AY55852

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.6	1	
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	8.4	1	I
COPPER (CU)	0.19	2.0	7.42	1	_
LEAD (PB)	0.18	10.0	3.75	1	
NICKEL (NI)	0.12	2.0	5.80	1	
ZINC (ZN)	0.6	5.0	10.4	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	32.2	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	5.2	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	14.5	1	F
COPPER (CU)	0.19	2.0	7.54	1	•••
LEAD (PB)	0.18	10.0	5.20	1	J
NICKEL (NI)	0.12	2.0	6.88	1	<del></del>
ZINC (ZN)	0.6	5.0	15.6	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: 120306B

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifler
BARIUM (BA)	0.5	5.0	52.2	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	2,2	1	F
CADMIUM (CD)	0.03	0.50	2.09	1	J
CHROMIUM (CR)	0.1	20.0	6.5	1	F
LEAD (PB)	0.18	10.0	10.65	1	J
NICKEL (NI)	0.12	2.0	3.51	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120306B

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	25.0	5	
COPPER (CU)	0.95	10.0	<u></u>	5	
ZINC (ZN)	3.0	25.0	42.8		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.9	1	М
CADMIUM (CD)	0.03	0.50	0.03	1	M
CHROMIUM (CR)	0.1	20.0	9.5	1	М
LEAD (PB)	0.18	10.0	12.30	1	М
NICKEL (NI)	0.12	2.0	5.62	1	М

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	41.7	5	М
COPPER (CU)	0.95	10.0	135.20		М
ZINC (ZN)	3.0	25.0		5	М

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	5.3	1	I
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	11.9	1	
COPPER (CU)	0.19	2.0	6.68	1	
LEAD (PB)	0.18	10.0	5.12	1	
NICKEL (NI)	0.12	2.0	7.13	1	
ZINC (ZN)	0.6	5.0	17.5	1	,

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: 120306B

Date Received; 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	47.7	5	

Comments:

Analytical Method: EPA 6010B Preparatory Method: E7A 1511/3610A AAB #: 120301A-164424

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-WC01 Lab Sample ID: AY55857 Matrix: Soil

% Solids: NA Initial Calibration ID: 120301B

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12 Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.002	0.03	0.003	1	F
BARIUM (BA)	0.0003	0.005	0.3974	1	
CADMIUM (CD)	0.0003	0.007	0.0003	1	U
CHROMIUM (CR)	0.001	0.01	0.001	1	U
LEAD (PB)	0.0012	0.025	0.0012	1	U
SELENIUM (SE)	0.002	0.03	0.002	1	Ų
SILVER (AG)	0.0002	0.01	0.0233	1	10.00

Comments: ARF: 67072

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC01

Lab Sample ID: AY55857

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.5	1,	F
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	8.0	1	F
LEAD (PB)	0.18	10.0	6.49	1	
NICKEL (NI)	0.12	2.0	4.83	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC01

Lab Sample ID: AY55857

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	39.7	5	
COPPER (CU)	0.95	10.0	14.27	5	
ZINC (ZN)	3.0	25.0	31.5	5	

Comments: ARF: 67072

Analytical Method: EPA 6010B Preparatory Method: ETA 13 11/3010 A AAB #: 120301A-164424

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-WC02 Lab Sample ID: AY55858 Matrix: Soil

% Solids: NA Initial Calibration ID: 120301B

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12 Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.002	0.03	0.006	1	
BARIUM (BA)	0.0003	0.005	0.5565	1	
CADMIUM (CD)	0.0003	0.007	0.0003	1	U
CHROMIUM (CR)	0.001	0.01	0.001	1	J
LEAD (PB)	0.0012	0.025	0.0012	1	Ţ
SELENIUM (SE)	0.002	0.03	0.002	1	U
SILVER (AG)	0.0002	0.01	0.0451	1	

Comments: ARF: 67072

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC02

Lab Sample ID: AY55858

Matrix: Soil

% Solids: 87.4

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.4	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	7.0	1	F
COPPER (CU)	0.19	2.0	7.63	1	
LEAD (PB)	0.18	10.0	5.55	1	
NICKEL (NI)	0.12	2.0	4.52	1	
ZINC (ZN)	0.6	5.0	21.6	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC02

Lab Sample ID: AY55858

Matrix: Soil

% Solids: 87.4

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5		36.0	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 6th 1311/3010A AAB #: 120301A-164424

Lab Name: APPL, Inc

c Contract #: *G012

813-12-12

Field Sample ID: B4-WC03

Lab Sample ID: AY55859

Matrix: Soil

% Solids: NA

Initial Calibration ID: 120301B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier	
ARSENIC (AS)	0.002	0.03	0.005	1	F	
BARIUM (BA)	0.0003	0.005	0.6150	1		
CADMIUM (CD)	0.0003	0.007	0.0003	1	U	
CHROMIUM (CR)	0.001	0.01	0.001	1	υ	
LEAD (PB)	0.0012	0.025	0.0012	1	U	
SELENIUM (SE)	0.002	0.03	0.002	1	υ	
SILVER (AG)	0.0002	0.01	0.0340	ì		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC03

Lab Sample ID: AY55859

Matrix: Soil

% Solids: 87.8

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	MDL RL Concentration		Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	4.6	1	F
CADMIUM (CD)	0.03	0.50	0.03	1	
CHROMIUM (CR)	0.1	20.0	12.3	1	
COPPER (CU)	0.19	2.0	9.70	1	
LEAD (PB)	0.18	10.0	6.28	1	
NICKEL (NI)	0.12	2.0	8.73	1	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC03

Lab Sample ID: AY55859

Matrix: Soil

% Solids: 87.8

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 07-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	56.8	5	
ZINC (ZN)	3.0	25.0	38.3	5	

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: 120306B

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 06-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifler	
ARSENIC (AS)	0.2	40.0	1.7	Ī	Ī	
CADMIUM (CD)	0.03	0.50	0.03	1		
CHROMIUM (CR)	0.1	20.0	2.7	1		
COPPER (CU)	0.19	2.0	4.03	1		
LEAD (PB)	0.18	10.0	1.53	1		
NICKEL (NI)	0.12	2.0	2.05	1		
ZINC (ZN)	0.6	5.0	5.2	1		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

Date Prepared: 01-Mar-12

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: 120306B

Date Analyzed: 07-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
BARIUM (BA)	0.5	5.0	10.4		

Comments:

### AFCEE INORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

Ana	lytical Method: BPA 60	10B				AAB#	120301A-164	424				
	Lab Name: APPL, I	nc.				Contract #	*G012					
e of Ini	tial Calibration:01-Mar-	12		Initial Calibration ID: 120301B								
	Instrument ID: PHOEB	Co	ncentratio	u Units (mg/L	or mg/kg):	ing/L						
	Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	ı	Q			
	Ag	0.0010	211.3	0.5	87064.9	0.1	176182,7	0.99999				
	As	0.0035	30.8	1.0	7271.9	2.0	14264.8	0.99997				
	Ba	0.0050	1716.8	1.0	284092.5	2.0	557360.7	0.99997	<del></del>			
	Cd	0.0050	3707.5	1.0	586409.2	2.0	1136907,6	0.99992				
	Cr	0.0050	1280.6	1.0	188363.8	2.0	371609,6	0.99999				
	Pb	0.0030	92.7	1.Ŏ	23475.8	2.0	45333.0	0.99990				
	Se	0,0050	29,8	1.0	6063.0	2.0	11765.7	0.99993				

AFCEE FORM I-3

# AFCEE INORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

Analytical Method:	EPA 6010B		<del></del>	-		AAB#	120301A-164	465	
Lab Name:	APPL, Inc.		<del></del>	-		Contract #:	*G012		<del></del>
te of Initial Calibration:	06-Mar-12				Initial Cal	ibration ID:	120306B		
Instrument ID;	РНОЕВЕ		Cor	ncentration	uuits (mg/L	or mg/kg):	ing/Kg		
A	nalyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	r	Q
As		0.3500	14.1	100.0	5111.4	200.0	9855.1	0.99989	<del></del>
Ba		0.5000	1381.4	100.0	240357.1	200.0	459176.6	0.99983	
Cd		0.5000	2867.1	100.0	489698.5	200.0	924198.6	0.99972	
Cr		0.5000	1036.7	100.0	162794.9	200.0	312055.8	0.99985	
Cu		0.5000	645.3	100.0	116564.7	200.0	226495.8	0.99993	
Ni		0.5000	507.5	100.0	78134.7	200.0	147918.0	0.99975	
РЬ		0.3000	81.6	100.0	20037.6	200,0	37510.0	0.99964	
Zn		2.0000	3525,7	100.0	145989.3	200,0	276292.8	0.99975	

AFCEE FORM I-3

### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120301A-164424
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Colibration ID: 120301B
2nd Source ID: ICV 3/1/12 15:30	ICV ID: ICV 3/1/12 15:30
CCV #1 ID: CCV1 3/1/12 15:54	CCV #2 ID: CCV I 3/1/12 18:05
Concentration Units (mg/Lo	r mg/kg); mg/L

		2nd S	ource Calib	ration	Init	Initial Calibration		Continuing Calibration						T
A	malyte	Verification		Verification			Verification						Q	
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	$\Box$
									1			2		П
Ag		0.500	0.485	3.1%	0.500	0.485	3.1%	0.500	0.502	0.4%	0.500	0.499	0.1%	1
As		1.000	0.965	3.5%	1.000	0.965	3.5%	1.000	1.003	0.3%	1.000	1.021	2.1%	$\Box$
Ba		1.000	1.000	0.0%	1.000	1.000	0.0%	1.000	1.019	1.9%	1.000	1.021	2.1%	
Cd		1.000	1.042	4.2%	1.000	1.042	4.2%	1.000	1.029	2.9%	1.000	1.019	1.9%	П
Cr		1.000	1.056	5.6%	1.000	1.056	5.6%	1.000	1.017	1.7%	1.000	1.018	1.8%	$\Box$
Pb		1.000	1.051	5.1%	1.000	1.051	5.1%	1.000	1.039	3.9%	1.000	1.010	1.0%	П
Se		1.000	1.046	4.6%	1.000	1.046	4.6%	1.000	1.029	2.9%	1.000	0.992	0.8%	П

Comments:		<del></del>		
	<del></del>		<u></u>	

AFCEE FORM I-4 Page 1 of 2

#### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB#: 120301A-164424
Lab Name: APPL, Inc.	Contract #: <u>*G012</u>
Instrument ID:PHOEBB	Initial Calibration ID: 12030113
2nd Source ID: ICV 3/1/12 15:30	ICV ID: ICV 3/1/12 15:30
CCV #1 ID: CCV2 3/1/12 19:07	CCV #2 ID:
Concentration Units (mg/	L or mg/kg)mg/L

		2nd S	2nd Source Calibration			Initial Calibration			Continuing Calibration					
Analyte		Verification		Verification		Verification						Q		
		Expected	Pound	%D	Expected	Found	%D	Expected	Pound	%D	Expected	Found	%D	T
·					,		·		1		T	2		$\top$
۸g		0.500	0.485	3.1%	0.500	0.485	3.1%	0.375	0.381	1.7%				T
Ав		1.000	0.965	3.5%	1.000	0.965	3.5%	0.750	0.743	0.9%	T			1
Ва		1.000	1.000	0.0%	1.000	1.000	0.0%	0.750	0.778	3.7%				
Cd		1.000	1.042	4.2%	1.000	1.042	4.2%	0.750	0.785	4.6%				$\top$
Cr		1.000	1.056	5.6%	1.000	1.056	5,6%	0.750	0.775	3.3%	T			
Pb		1.000	1,051	5,1%	1.000	1.051	5.1%	0.750	0.793	5.7%	1			1
Se		1.000	1.046	4,6%	1.000	1.046	4.6%	0.750	0,778	3.8%	1			1

Comments:	

AFCEE FORM I-4 Page 2 of 2

## AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120301A-164465
Lab Name; APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Calibration ID: 120306B
2nd Source ID: ICV 3/6/12 15:01	ICV ID: <u>ICV 3/6/12 15:01</u>
CCV #1 ID: CCV1 3/6/12 15:25	CCV #2 ID: CCV2 3/6/12 17:49
Concentration Units (mg/L	or mg/kg): mg/Kg

	2nd S	ource Calib	ration	Init	Initial Calibration			Continuing Calibration					
Analyte		Verification			Verification	1	Verification						О
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	十
<u> </u>								1			2		1-
As	100.0	96.0	4.1%	100.0	96.0	4.1%	100.0	103.6	3.6%	75.0	73.0	2.7%	T
Ba	100.0	99.0	1.0%	100.0	99.0	1.0%	100.0	103.1	3.1%	75.0	72.5	3.3%	1
Cd	100.0	104.5	4.5%	100.0	104.5	4.5%	100.0	105.0	5.0%	75.0	72.4	3.5%	†
Cr	100.0	105.0	5.0%	100.0	105.0	5.0%	0.001	103.4	3.4%	75.0	72.3	3.6%	$\top$
Cu	100.0	100.1	0.1%	100.0	100.1	0.1%	100.0	102.9	2.9%	75.0	72.0	4.0%	┰
Ni	100.0	106.6	6.6%	100.0	106.6	6.6%	100.0	104,9	4.9%	75.0	72.8	2.9%	<del>                                     </del>
Pb	100.0	103.9	3.9%	100.0	103.9	3.9%	100.0	106.6	6.6%	75.0	74.0	1.3%	<del> </del>
Zn	100.0	106.3	6.3%	100.0	106.3	6.3%	100.0	105.0	5.0%	75.0	72.5	3.4%	$\vdash$

Comments:		 	
,	· · · · · · · · · · · · · · · · · · ·	 	

AFCEE FORM I-4 Page 1 of 4

#### AFCEB INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120301A-164465
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PHOBBB	Initial Calibration ID: 120306B
2nd Source ID: ICV 3/6/12 15:01	ICV ID: ICV 3/6/12 15:01
CCV #1 ID: CCV1 3/6/12 18:50	CCV #2 ID: CCV2 3/6/12 22:01
Concentration Units (mg/	L or mg/kg)mg/kg

		2nd S	2nd Source Calibration Initial Calibration			Continuing Calibration								
Analyte		Verification		Verification			Verification						Q	
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Bxpcotcd	Found	%1)	T
								T	1		1	2		$\top$
As	· ·	100.0	96,0	4.1%	100.0	96.0	4.1%	100.0	100.6	0.6%	75.0	74.3	0.9%	
Ва		100.0	99.0	1.0%	100.0	99.0	1.0%	100.0	99.1	0,9%	75.0	73.0	2.6%	$\top$
Cd		100.0	104.5	4.5%	100.0	104.5	4.5%	100.0	100.4	0.4%	75.0	73,8	1.7%	
Cr		100.0	105.0	5.0%	100,0	105,0	5.0%	100.0	99,1	1,0%	75.0	72.9	2.9%	$\top$
Cu		100.0	100,1	0.1%	100.0	100.1	0.1%	100,0	99.3	0.7%	75.0	72,2	3,8%	1
Ni		100,0	106.6	6.6%	100,0	106,6	6.6%	100.0	99.7	0.3%	75.0	73.6	1.8%	$\top$
Pb	<u> </u>	100.0	103.9	3.9%	100.0	103.9	3.9%	100.0	102.4	2.4%	75.0	75.2	0.3%	+
Zn		100.0	106.3	6.3%	100.0	106.3	6.3%	100.0	100.2	0.2%	75.0	73.9	1.5%	_

Comments:	······································
	<del></del>

AFCEE FORM I-4 Page 2 of 4

## AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120301A-164465
Lab Namo: APPL, Inc.	Contract #: *G012
Instrument ID:PHOEBE	Initial Calibration 1D: 120306B
2nd Source ID: ICV 3/6/12 15:01	ICV ID: ICV 3/6/12 15:01
CCV #1 ID: CCV1 3/6/12 22:58	CCV #2 ID: CCV2 3/7/12 00:02
Concentration Units (mg/	L or mg/kg)mg/kg

		2nd S	outes Calib	ration	on Initial Calibration			Continuing Calibration						T
Analyte		Verification		Verification			Verification						ব	
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	1
		· .							1			2		1
As		100.0	96.0	4.1%	100,0	96,0	4.1%	100.0	99.8	0.2%	75.0	73.5	2.0%	$\top$
Ba		100.0	99.0	1.0%	100.0	99.0	1.0%	100.0	99.3	0.7%	75.0	72.1	3,8%	1
Cd		100.0	104.5	4.5%	100.0	104.5	4.5%	100.0	99.9	0.2%	75.0	72.6	3.2%	
Cr		100.0	105.0	5.0%	100.0	105.0	5.0%	100.0	99.3	0.7%	75.0	72.1	3,8%	T
Cu		100.0	100.1	0.1%	100.0	100.1	0.1%	100.0	99.5	0,5%	75.0	72.1	3.9%	T
Ni		100.0	106.6	6,6%	100.0	106.6	6.6%	100.0	99.2	0.8%	75.0	72.7	3.1%	
PЪ		100.0	103.9	3.9%	100.0	103,9	3.9%	100.0	100.3	0.3%	75.0	74.1	1.2%	1
Zn		100.0	106.3	6.3%	100.0	106.3	6.3%	100,0	100.0	0.0%	75.0	72.6	3.2%	1

Comments:	<del> </del>		······································	
<del></del>				<del></del>
	AFCEB FORM I-4	Page 3 of 4		

#### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120301A-164465	<u>.</u>
Lab Name: APPL, Inc.	Contract #: *G012	
Instrument ID: PHOEBE	Initial Calibration ID: 120306B	
2nd Source ID: ICV 3/6/12 15:01	ICV ID: ICV 3/6/12 15:01	
CCV #1 ID: CCV1 3/7/12 1:17	CCV #2 ID: CCV2 3/7/12 2:14	
Concentration Units (mg/L or 1	ug/kg): mg/kg	

		2nd Se	2nd Source Calibration Initial Calibration Continuing Calibration								$\Box$			
Analyte		١	Verificatio	)n		Verification			Verification					Q
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	
L									1			2		$\Box$
As		100.0	96.0	4.1%	100.0	96.0	4.1%	100.0	99.3	0.7%	75.0	74.7	0.4%	$\Box$
Ba		100.0	99.0	1.0%	100.0	99.0	1.0%	100.0	96.3	3.7%	75.0	71.2	5.1%	$\Box$
Cd		100.0	104.5	4.5%	100.0	104.5	4.5%	100.0	96.7	3.3%	75.0	71.2	5.1%	<b>├</b> ~
Cr		100.0	105.0	5.0%	100.0	105.0	5.0%	100.0	96.4	3.6%	75.0	71.6	4.5%	
Cu		100.0	100.1	0.1%	100.0	100.1	0.1%	100.0	96.4	3.6%	75.0	70.7	5.7%	$\vdash$
Ni		100.0	106.6	6.6%	100.0	106.6	6.6%	100.0	96.4	3.7%	75.0	71.5	4.7%	$\vdash \lnot$
Pb		100.0	103.9	3.9%	100.0	103.9	3.9%	100.0	97.2	2.8%	75.0	72.9	2.8%	$\dagger$
Zn		100.0	106.3	6.3%	100.0	106.3	6.3%	100.0	96.8	3.2%	75.0	71.6	4.5%	1

Comments:			
			_
		····	_
	·	 	

AFCEE FORM 1-4 Page 4 of 4

### AFCEE **INORGANIC ANALYSES DATA SHEET 5** BLANK

Analytical Method: EPA 6010B

AAB #: 120301A-164424

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/L

Initial Calibration ID: 120301B

Contract #: "GUIL Method Blank ID: 120301A-BLK \$610 T

Analyte	Method Blank	RL	Q
ARSENIC (AS)	< RL	0.03	U
BARIUM (BA)	< RL	0.005	U
CADMIUM (CD)	< RL	0.007	U
CHROMIUM (CR)	< RL	0.01	U
LEAD (PB)	< RL	0.025	Ū
SELENIUM (SE)	< RL	0.03	U
SILVER (AG)	< RL	0.01	U

Comments:

ARF: 67072, Sample: AY55857

## AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analy	dical Method:6010B			AAB #: 120301A-164424					
	Lab Name: APPL,	Ino.	Co	ontract #: <u>*0012</u>					
			Concentration Units (rng/L	or mg/kg <u>)mg/L</u>		, .	····		
oitial Calibrat	ion Blank ID: ICH 3/1	/12 15:35	Initial Calibr	Initial Calibration ID: 120301B					
	CCB #1 ID: <u>CCB 3/</u>	1/12 15:59	CCB #2 ID: CCB 3/1/12	: CCB 3/1/12 19:12					
Meth	od Blank ID: <u>120301</u>	A-3010T-BLK	Initial Calibra	ation ID: <u>120301</u>	В				
		7 44 4 ****			<del>,</del>		-		
	Analyte	Initial Calibration Diank	Continuing Calibration Blank	Method Blank	RL	Q			

	Analyte	Initial Calibration Blank	Continu	ing Calibral	ion Blenk	Method Blank	RL	Q
			1	2	3			
Λg		<rjl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rjl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.01</td><td></td></rl<>	0.01	
Λs		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.03</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.03</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.03</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.03</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td></td></rl<>	0.03	
Ba		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.005</td><td>-</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.005</td><td>-</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.005</td><td>-</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.005</td><td>-</td></rl<></td></rl<>	<rl< td=""><td>0.005</td><td>-</td></rl<>	0.005	-
Cd		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.007</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.007</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.007</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.007</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.007</td><td></td></rl<>	0.007	
Cr		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.01</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.01</td><td></td></rl<>	0.01	
Рb		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>≺RL</td><td>0.025</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>≺RL</td><td>0.025</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>≺RL</td><td>0.025</td><td></td></rl<></td></rl<>	<rl< td=""><td>≺RL</td><td>0.025</td><td></td></rl<>	≺RL	0.025	
Se		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td>0.03</td><td></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td>0.03</td><td></td></ri.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><ri.< td=""><td>0.03</td><td></td></ri.<></td></rl<></td></rl<>	<rl< td=""><td><ri.< td=""><td>0.03</td><td></td></ri.<></td></rl<>	<ri.< td=""><td>0.03</td><td></td></ri.<>	0.03	

Comments;			
	 	 .,	
	 	 	<del></del>

AFCBB FORM I-5 Page 1 of 1

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 6010B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120301A-BLK

Initial Calibration ID: 120306B

43-12-12

Analyte	Method Blank	RL	Q
ARSENIC (AS)	< RL	40.0	U
BARIUM (BA)	< RL	1.0	U
CADMIUM (CD)	< RL	0.50	U
CHROMIUM (CR)	< RL	20.0	U
COPPER (CU)	< RL	2.0	U
LEAD (PB)	< RL	10.0	U
NICKEL (NI)	< RL	2.0	U
ZINC (ZN)	< RL	5.0	U

Comments:

ARF: 67072, Sample: AY55855

#### AFCBE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 6010B	AAB #: 120301A-164465					
Lab Name: APPL, Inc.	Contract #: *G012	<u> </u>				
	Concentration Units (mg/L or mg/kg/mg/Kg	<u> </u>				
Initial Calibration Blank ID:ICB 3/6/12 15:86	Initial Calibration ID: 12030	6B				
CCB #1 ID: CCB 3/6/12 15:28	CCB #2 ID: CCB 3/6/12 17:53	CCB #3 ID: CCB 3/6/12 19:01				
Method Blank ID: 120301A-3050G-BLK	Initial Calibration ID: 12030	6В				

An	alyte	Initial Calibration Blank	Contim	ing Calibra	ion Blank	Method Blank	RL	Q
			1	2	3			
As		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ba		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<>	<rl< td=""><td>1,00</td><td></td></rl<>	1,00	
Cd		<rl< td=""><td><kl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></kl<></td></rl<>	<kl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></kl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr		<rl< td=""><td>&lt;ŔĹ</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<ŔĹ	<rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu		<ŘL	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td>,</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td>,</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td>,</td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td>,</td></rl<>	2.0	,
Ni		<rl< td=""><td><rl< td=""><td>⊲RL</td><td><rl< td=""><td>&lt;ŘL</td><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>⊲RL</td><td><rl< td=""><td>&lt;ŘL</td><td>2.0</td><td></td></rl<></td></rl<>	⊲RL	<rl< td=""><td>&lt;ŘL</td><td>2.0</td><td></td></rl<>	<ŘL	2.0	
Pb		<ŘL	<rl< td=""><td><rl< td=""><td><rl .<="" td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl></td></rl<></td></rl<>	<rl< td=""><td><rl .<="" td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl></td></rl<>	<rl .<="" td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zn	, .,	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td>·</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td>·</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td>·</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.0</td><td>·</td></rl<></td></rl<>	<rl< td=""><td>5.0</td><td>·</td></rl<>	5.0	·

Comments:									
			•						
				 	•				
		-,				 .,	,	 	

AFCBB FORM I-5 Page 1 of 3

## AFCBE INORGANIC ANALYSES DATA SHBET 5 BLANKS

Auslytical Method: 6010B	AAB #: 120301A-16	64465
Lab Name: APPL, Inc.	Contract #; *G012	W440
	Concentration Units (mg/L or mg/kg)mg/Kg	<del> </del>
Initial Calibration Blank ID: ICB 3/6/12 15:06	Initial Calibration ID; 120306B	<del></del>
CCB #1 ID: CCB 3/6/12 22:05	CCB #2 ID: CCB 3/6/12 23:03	7 CCB #3 ID: CCB 3/9/12 00:10
Method Blank ID: 120301A-3050G-BLK	Initial Calibration ID: 120306B	fp 3-12-12

Analyte	Initial Calibration Blank	Contin	uing Calibra	ion Blank	Method Blank	RL	Q
		1	2	3			
As	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ba Cd	<rl< td=""><td><rĺ< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<></td></rĺ<></td></rl<>	<rĺ< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<></td></rĺ<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>1.0</td><td></td></rl<>	1.0	
	¨ <rľ< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rľ<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu Ni Pb Zn	<rl< td=""><td><rjl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rjl<></td></rl<>	<rjl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rjl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Ni	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Pb	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zη	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>5.0</td><td></td></rl<>	5.0	

Comments:						
			 ~	,		 

AFCEE PORM I-5 Page 2 of 3

## APCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analy	tical Method:6010B			AAB #: 120301A-164465					
	Lab Name: APPL,	Ino.	Co	onfract #: <u>*0012</u>	<u>.</u>	<del> </del>	·····		
			Concentration Units (mg/L	or mg/kg <u>)</u> mg/Kg			<del></del>		
Initial Calibrat	ion Blank ID: <u>ICB 3/</u>	Initial Calibr	Initial Calibration ID: 120306B						
	CCB #1 ID: <u>CCB 3</u>	7/12 01:22	CCB #2 ID; CCB 3/7/12		CCB #3 ID:				
Meth	od Blank ID: 120301	A-3050O-BLK	Initial Calibr	ration ID: 120306	В		<del></del>		
		7 101		<del></del>	_		7		
	Analyto	Initial Calibration Blank	Continuing Calibration Blank	Method Blank	RL	Q			

Analyto	Initial Calibration Blank	Continuing Calibration Blank		Method Blank	RL	Q	
		1	2	3			
As	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1</td><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1</td><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>1</td><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<>	1	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ва	<rl< td=""><td><rl< td=""><td><kl< td=""><td></td><td><rl< td=""><td>1.0</td><td></td></rl<></td></kl<></td></rl<></td></rl<>	<rl< td=""><td><kl< td=""><td></td><td><rl< td=""><td>1.0</td><td></td></rl<></td></kl<></td></rl<>	<kl< td=""><td></td><td><rl< td=""><td>1.0</td><td></td></rl<></td></kl<>		<rl< td=""><td>1.0</td><td></td></rl<>	1.0	
Cd	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>		<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>		<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Çu	<rl< td=""><td><rl< td=""><td><rl.< td=""><td></td><td><rl< td=""><td>2.0</td><td><del></del></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td></td><td><rl< td=""><td>2.0</td><td><del></del></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td></td><td><rl< td=""><td>2.0</td><td><del></del></td></rl<></td></rl.<>		<rl< td=""><td>2.0</td><td><del></del></td></rl<>	2.0	<del></del>
Ni	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>2,0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>2,0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>2,0</td><td></td></rl<></td></rl<>		<rl< td=""><td>2,0</td><td></td></rl<>	2,0	
Ni Pb Zn	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>		<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zn	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<>		<rl< td=""><td>5.0</td><td></td></rl<>	5.0	

Comments;			
	- II. II.		
		· · · · · · · · · · · · · · · · · · ·	

AFCEE FORM I-5 Page 3 of 3

### AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 6010B

AAB #: 120301A-164424

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120301B

LCS ID: 120301A LCS
35107
Concentration Units: mg/L

Analyte	Expected	Found	% R	Control Limits	Q
ARSENIC (AS)	0.250	0.274	110	75-125	
BARIUM (BA)	0.2500	0.2697	108	75-125	
CADMIUM (CD)	0.0500	0.0536	107	75-125	
CHROMIUM (CR)	0.250	0.294	118	75-125	
LEAD (PB)	0.2500	0.2779	111	75-125	
SELENIUM (SE)	0.250	0.281	112	75-125	
SILVER (AG)	0.1000	0.1031	103	75-125	

Comments:

ARF: 67072, Sample: AY55857

### AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 6010B

AAB #: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120306B

LCS ID: 120301A LCS
36509 213-2-R
Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ARSENIC (AS)	25.0	24.4	97.6	75-125	
BARIUM (BA)	25.0	24.1	96.4	75-125	
CADMIUM (CD)	5.00	4.96	99.2	75-125	
CHROMIUM (CR)	25.0	26.2	105	75-125	
COPPER (CU)	25.00	25.54	102	75-125	
LEAD (PB)	25.00	25.43	102	75-125	
NICKEL (NI)	25.00	26.26	105	75-125	
ZINC (ZN)	50.0	49.6	99.2	75-125	

Comments:

ARF: 67072, Sample: AY55855

### AFCEE **INORGANIC ANALYSES DATA SHEET 7** MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 6010B

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Parent Field Sample ID: B4-NT1-BOT01

% Solids: 92.9 MS ID: 120301-558555 MS

					.,.				.,		-
Analyte	Parent Sample		Spiked Sample	% R	Duplicate Spiked	% R	% RPD		Control Limits %	o	3.12
•		Added			Sample			% R	RPD	`	
					Result						
ARSENIC (AS)	3.9	50.1	40.2	72.5	41.7	75.4	3.7	75-125	20	M	
BARIUM (BA)		50.1	78.4	156	79.3	158	1.1	75-125	20	М	
CADMIUM (CD)		10.00	6.38	63.8	6.35	63.5	0.5	75-125	20	M	
CHROMIUM (CR)	9.5	50.1	44.5	69.9	43.3	67.5	2.7	75-125	20	M	
COPPER (CU)		50.00	187.30	375	72.55	145	88.3	75-125	20	М	ĺ
LEAD (PB)	12,30	50.00	51.88	79.2	43.90	63.2	16.7	75-125	20	М	
NICKEL (NI)	5.62	50.00	43.85	76.5	38,88	66.5	12.0	75-125	20	M	
ZINC (ZN)		100.0	160.8	161	135.1	135	17.4	75-125	20	M	1

Comments:

ARF: 67072

### AFCEE **INORGANIC ANALYSES DATA SHEET 8** HOLDING TIMES

Analytical Method: EPA 6010B

AAB#: 120301A-164424

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date     Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-WC01	27-Feb-12	28-Feb-12	01-Mar-12	180	3	
B4-WC02	27-Feb-12	28-Feb-12	01-Mar-12	180	3	
B4-WC03	27-Feb-12	28-Feb-12	01-Mar-12	180	3	

Comments:

ARF: 67072

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 6010B

AAB#: 120301A-164465

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time	Time Held (days)	Q
				(days)		
B4-NT1-BOT01	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-BOT01	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-BOT01 FD	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-BOT01 FD	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-BOT02	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-BOT02	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW3	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW3	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW4	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW4	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW5	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW5	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW6	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW6	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW7	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW7	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW8	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-NT1-SW8	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW9	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-NT1-SW9	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-WC01	27-Feb-12	28-Feb-12	06-Mar-12	180	8	$\neg$
B4-WC01	27-Feb-12	28-Feb-12	07-Mar-12	180	9	$\neg \neg$
B4-WC02	27-Feb-12	28-Feb-12	07-Mar-12	180	9	
B4-WC02	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-WC03	27-Feb-12	28-Feb-12	06-Mar-12	180	8	
B4-WC03	27-Feb-12	28-Feb-12	07-Mar-12	180	9	

7	ARF:	770
lomments:	AKP:	6/U

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:	6010B

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PHOEBE ICAL ID: 120301B

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
CalBlk	01-Mar-12	15:11	01-Mar-12	15:11
STD 1	01-Mar-12	15:16	01-Mar-12	15:16
STD 2	01-Mar-12	15:21	01-Mar-12	15:21
STD 3	01-Mar-12	15:24	01-Mar-12	15:24
ICV	01-Mar-12	15:30	01-Mar-12	15:30
ICB	01-Mar-12	15:35	01-Mar-12	15:35
ICSA	01-Mar-12	15:45	01-Mar-12	15:45
ICSAB	01-Mar-12	15:49	01-Mar-12	15:49
CCV1	01-Mar-12	15:54	01-Mar-12	15:54
CCB	01-Mar-12	15:59	01-Mar-12	15:59
CCV1	01-Mar-12	18:05	01-Mar-12	18:05
CCB	01-Mar-12	18:13	01-Mar-12	18:13
120301A-3010T-BLK	01-Mar-12	18:17	01-Mar-12	18:17
120301A-3010T-LCS	01-Mar-12	18:22	01-Mar-12	18:22
AY55857S01	01-Mar-12	18:28	01-Mar-12	18:28
AY55858S01	01-Mar-12	18:33	01-Mar-12	18:33
AY55859S01	01-Mar-12	18:39	01-Mar-12	18:39
CCV2	01-Mar-12	19:07	01-Mar-12	19:07
CCB	01-Mar-12	19:12	01-Mar-12	19:12

### 6010 Injection Log

Directory: K:\ICAP PHOEBE\Backup Excel\

RunID	Injected		Sample Name	Misc Info	FileName	Multiplier
1	01 Mar 2012	15:11	CalBlk 120301EA I:PB O:EA		120301B6010	1.
2	01 Mar 2012	15:16	STD 1 120301EA I:PB O:EA		120301B6010	1.
3	01 Mar 2012	15:21	STD 2 120301EA I:PB O:EA		120301B6010	1.
4	01 Mar 2012	15:24	STD 3 120301EA I:PB O:EA		120301B6010	1.
5	01 Mar 2012	15:30	ICV 120301EA I:PB O:EA		120301B6010	1.
6	01 Mar 2012	15:35	ICB 120301EA I:PB O:EA		120301B6010	1.
8	01 Mar 2012	15:45	ICSA 120301EA I:PB O:EA		120301B6010	1.
9	01 Mar 2012	15:49	ICSAB 120301EA I:PB O:EA		120301B6010	1.
10	01 Mar 2012	15:54	CCV1 120301EA I:PB O:EA		120301B6010	1.
11	01 Mar 2012	15:59	CCB 120301EA I:PB O:EA		120301B6010	1.
34	01 Mar 2012	18:05	CCV1 120301EA I:PB O:EA		120301B6010	1.
35	01 Mar 2012	18:13	CCB 120301EA I:PB O:EA		120301B6010	1.
36	01 Mar 2012	18:17	120301A-3010T-BLK		120301B6010	1.
37	01 Mar 2012	18:22	120301A-3010T-LCS		120301B6010	1.
38	01 Mar 2012	18:28	AY55857S01		120301B6010	1.
39	01 Mar 2012	18:33	AY55858S01		120301B6010	1.
40	01 Mar 2012	18:39	AY55859S01		120301B6010	1.
45	01 Mar 2012	19:07	CCV2 120301EA I:PB O:EA		120301B6010	1.
46	01 Mar 2012	19:12	CCB 120301EA I:PB O:EA		120301B6010	1.

## AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical	Method:	6010B		

Lab Name: APPL, Inc.

Contract #: *G012

Instrument ID #: PHOEBE

ICAL ID: 120306B

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
CalBlk	06-Mar-12	14:43	06-Mar-12	14:43
STD 1	06-Mar-12	14;48	06-Mar-12	14:48
STD 2	06-Mar-12	14:53	06-Mar-12	14:53
STD 3	06-Mar-12	14:56	06-Mar-12	14:56
ICV	06-Mar-12	15:01	06-Mar-12	15:01
ICB	06-Mar-12	15:06	. 06-Мат-12	15:06
ICSA	06-Mar-12	15:15	06-Мат-12	15:15
ICSAB	06-Mar-12	15:22	06-Мат-12	15:22
CCVI	06-Mar-12	15:25	06-Mar-12	15:25
CCB	06-Mar-12	15:28	06-Mar-12	15:28
CCV2	06-Mar-12	17:49	06-Mar-12	17:49
CCB	06-Mar-12	17:53	06-Mar-12	17:53
120301A-3050G-BLK 120301A-3050G-LCS	06-Mar-12 06-Mar-12	17:58 18:03	06-Mar-12	17:58
CCV1	06-Mar-12	18:50	06-Mar-12 06-Mar-12	18:03 18:50
CCB	06-Mar-12	19:01	06-Mar-12	19:01
CCV2	06-Mar-12	22:01	06-Mar-12	22:01
CCB	06-Mar-12	22:05	06-Mar-12	22:05
AY55846S02	06-Mar-12	22:10	06-Mar-12	22:10
AY55847S02	06-Mar-12	22:15	06-Mar-12	22:10
AY55848S02	06-Mar-12	22:13	06-Mar-12	22:13
AY55849S02	06-Mar-12	22:25	06-Mar-12	22:25
AY55850S02	06-Mar-12	22:30	06-Mar-12	22:30
AY55851S02	06-Mar-12	22:35	06-Mar-12	22;35
AY55852S02	06-Mar-12	22:40	06-Mar-12	22:40
AY55853802	06-Mar-12	22:45	06-Mar-12	22:45
AY55854S02	06-Mar-12	22:49	06-Mar-12	22:49
AY55855S02	06-Mar-12	22:54	06-Mar-12	22:54
CCV1	06-Mar-12	22:58	06-Mar-12	22:58
CCB	06-Mar-12	23:03	06-Mar-12	23:03
AY55855S02 MS	06-Mar-12	23:11	06-Mar-12	23:11
AY55855802 MSD	06-Mar-12	23:16	06-Mar-12	23:16
AY55855S02-A	06-Mar-12	23:21	06-Mar-12	23:21
AY55855S02-1/5	06-Mar-12	23:26	06-Mar-12	23:26
AY55856S02	06-Mar-12	23:31	06-Mar-12	23:31
AY55857S02	06-Mar-12	23:36	06-Mar-12	23:36
AY55858S02	06-Mar-12	23:41	06-Mar-12	23:41
AY55859S02	06-Маг-12	23:46	06-Мат-12	23:46
AY55869S02	06-Mar-12	23:50	06-Mar-12	23:50
AY55846S02-1/5	06-Mar-12	23:56	06-Mar-12	23:56
CCV2	07-Mar-12	0:02	07-Mar-12	0:02
CCB	07-Mar-12	0:10	07-Mar-12	0:10
AY55847802-1/5	07-Mar-12	0;15	07-Mar-12	0:15
AY55848S02-1/5	07-Mar-12	0:21	07-Mar-12	0:21
AY55849S02-1/5	07-Mar-12	0:27	07-Mar-12	0:27
AY55850S02-1/5	07-Mar-12	0:35	07-Mar-12	0:35
AY55851802-1/5	07-Мат-12	0:41	07-Mar-12	0:41
AY55852S02-1/5	07-Mar-12	0:48	07-Мат-12	0:48
AY55853S02-1/5	07-Mar-12	0:53	07-Mar-12	0:53
AY55854S02-1/5	07-Mar-12	0:59	07-Mar-12	0:59
AY55855S02-1/25	07-Mar-12	1:11	07-Mar-12	1:11
CCVI	07-Mar-12	1:17	07-Mar-12	1:17
CCB	07-Mar-12	1:22	07-Mar-12	1:22
AY55855S02 MS-1/5	07-Mar-12	1:31	07-Mar-12	1:31
AY55855S02 MSD-1/5	07-Mar-12	1:36	07-Mar-12	1:36
AY55856S02-1/5	07-Mar-12	1:41	07-Mar-12	1:41
AY55857802-1/5	07-Mar-12	1:46	07-Mar-12	1:46
AY55858S02-1/5	07-Mar-12	1:52	07-Mar-12	1:52
AY55859S02-1/5	07-Mar-12	1:58	07-Mar-12	1:58
AY55869S02-1/5	07-Mar-12	2:03	07-Mar-12	2:03
CCV2	07-Mar-12	2:14	07-Mar-12	2:14
CCB	07-Mar-12	2:19	⁶ <del>0</del> 7-Мат-12	2:19

### 6010 Injection Log

Directory: K:\ICAP PHOEBE\Backup Excel\

RunID	Injected		Sample Name	Misc Info	FileName	Multiplier
1 .	06 Mar 2012	14:43	CalBlk 120306EA I:PB O:EA		120306B6010	1.
2	06 Mar 2012	14:48	STD 1 120306EA I:PB O:EA		120306B6010	1.
3	06 Mar 2012	14:53	STD 2 120306EA I:PB O;EA		120306B6010	1.
4	06 Mar 2012	14:56	STD 3 120306EA I:PB O:EA		120306B6010	1.
5	06 Mar 2012	15:01	ICV 120306EA I:PB O:EA		120306B6010	1.
6	06 Mar 2012	15:06	ICB 120306EA I:PB O:EA		120306B6010	1.
7	06 Mar 2012	15:11	LLICV 120306EA I:PB O:EA		120306B6010	1.
8	06 Mar 2012	15:15	ICSA 120306EA I:PB O:EA		120306B6010	1.
9	06 Mar 2012	15:22	ICSAB 120306EA I:PB O:EA		120306B6010	1.
10	06 Mar 2012	15:25	CCV1 120306EA I:PB O:EA		120306B6010	1.
11	06 Mar 2012	15:28	CCB 120306EA I:PB O:EA		120306B6010	1.
41	06 Mar 2012	17:49	CCV2 120306EA I:PB O:EA		120306B6010	1.
42	06 Mar 2012	17:53	CCB 120306EA I:PB O:EA		120306B6010	1.
43	06 Mar 2012	17:58	120301A-3050G-BLK		120306B6010	1.
44	06 Mar 2012	18:03	120301A-3050G-LCS		120306B6010	1.
53	06 Mar 2012	18:50	CCV1 120306EA I:PB O:EA		120306B6010	1.
54	06 Mar 2012	19:01	CCB 120306EA I:PB O:EA		120306B6010	1.
85	06 Mar 2012	22:01	CCV2 120306EA I:PB O:EA		120306B6010	1.
86	06 Mar 2012	22:05	CCB 120306EA I:PB O:EA		120306B6010	1.
87	06 Mar 2012	22:10	AY55846S02		120306B6010	1.
88	06 Mar 2012	22:15	AY55847S02		120306B6010	1.
89	06 Mar 2012	22:20	AY55848S02		120306B6010	1.
90	06 Mar 2012	22:25	AY55849S02		120306B6010	1.
91	06 Mar 2012	22:30	AY55850S02		120306B6010	1.
92	06 Mar 2012	22:35	AY55851S02		120306B6010	1.
93	06 Mar 2012	22:40	AY55852S02		120306B6010	1.
94	06 Mar 2012	22:45	AY55853S02		120306B6010	1.
95	06 Mar 2012	22:49	AY55854S02		120306B6010	1.
96	06 Mar 2012	22:54	AY55855S02		120306B6010	1.
97	06 Mar 2012	22:58	CCV1 120306EA I:PB O:EA		120306B6010	1.
98	06 Mar 2012	23:03	CCB 120306EA I:PB O:EA		120306B6010	1.
99	06 Mar 2012	23:11	AY55855S02 MS		120306B6010	1.
100	06 Mar 2012	23:16	AY55855S02 MSD		120306B6010	<b>1.</b> ·
101	06 Mar 2012	23:21	AY55855S02-A		120306B6010	1.
102	06 Mar 2012	23:26	AY55855S02-1/5		120306B6010	5.
103	06 Mar 2012	23:31	AY55856S02		120306B6010	1.
104	06 Mar 2012	23:36	AY55857S02		120306B6010	1.
105	06 Mar 2012	23:41	AY55858S02		120306B6010	1.
106	06 Mar 2012	23:46	AY55859S02		120306B6010	1.
107	06 Mar 2012	23:50	AY55869S02		120306B6010	1.
108	06 Mar 2012	23:56	AY55846S02-1/5		120306B6010	5.
109	07 Mar 2012	00:02	CCV2 120306EA I:PB O:EA		120306B6010	1.
110	07 Mar 2012	00:10	CCB 120306EA I:PB O:EA		120306B6010	1.

111	07 Mar 2012	00:15	AY55847S02-1/5	120306B6010	5.
112	07 Mar 2012	00:21	AY55848S02-1/5	120306B6010	5.
113	07 Mar 2012	00:27	AY55849S02-1/5	120306B6010	5.
114	07 Mar 2012	00:35	AY55850S02-1/5	120306B6010	5.
115	07 Mar 2012	00:41	AY55851S02-1/5	120306B6010	5.
116	07 Mar 2012	00:48	AY55852S02-1/5	120306B6010	5.
117	07 Mar 2012	00:53	AY55853S02-1/5	120306B6010	5.
118	07 Mar 2012	00:59	AY55854S02-1/5	120306B6010	5.
120	07 Mar 2012	01:11	AY55855S02-1/25	120306B6010	25.
121	07 Mar 2012	01:17	CCV1 120306EA I:PB O:EA	120306B6010	1.
122	07 Mar 2012	01:22	CCB 120306EA I:PB O:EA	120306B6010	1.
123	07 Mar 2012	01:31	AY55855S02 MS-1/5	120306B6010	5.
124	07 Mar 2012	01:36	AY55855S02 MSD-1/5	120306B6010	5.
125	07 Mar 2012	01:41	AY55856S02-1/5	120306B6010	5.
126	07 Mar 2012	01:46	AY55857S02-1/5	120306B6010	5.
127	07 Mar 2012	01:52	AY55858S02-1/5	120306B6010	5.
128	07 Mar 2012	01:58	AY55859S02-1/5	120306B6010	5.
129	07 Mar 2012	02:03	AY55869S02-1/5	120306B6010	5.
131	07 Mar 2012	02:14	CCV2 120306EA I:PB O:EA	120306B6010	1.
132	07 Mar 2012	02:19	CCB 120306EA I:PB O:EA	120306B6010	1.

· · · •

### A.P.P.L. INC.

9

### ICP SERIAL DILUTION

CLIENT SAMPLE NO.

B4-NT1-BOT01

Lab Name:	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67072	SDG:	67072

Matrix: soil

Analysis Date: 03/06/12 Concentration Units: mg/kg

Analyte	Initial Sample Result (I)		Serial Dilution Result (S)		%D	Q	М
İ		C		С			
Chromium (Cr)	8.871		10.53		18.7		М
Nickel (Ni)	5.219		6.813		30.5		M
Lead (Pb)	11.43		14.66		28.3		M

Comment	5.		
03/06/12	22:54	AY55855S02	
03/06/12	23:26	AY55855S02-1/5	

#### A.P.P.L. INC.

9

### ICP SERIAL DILUTION

CLIENT SAMPLE NO.

B4-NT1-BOT01

T aL	Mamai	۸
Lab	Name:	Α

.P.P.L. INC.

Contract: Parsons

ARF No.:

67072

SDG: 67072

Matrix:

soil

Analysis Date: 03/06/12

Concentration Units: mg/kg

Analyte	Initial Sample Result (I)	Serial Dilution Result (S)		%D	Q	М
	c		c			
Barium (Ba)	38.75	40.69	П	5.01	<del> </del>	
Copper (Cu)	125.6	129.15		2.83		
Zinc (Zn)	50.96	53.9		5.77	<b> </b>	

~			
	mi	пет	ite.
~	4144	шог	цэ.

03/06/12 23:26 AY55855S02-1/5

03/07/12

01:11 AY55855S02-1/25

### A.P.P.L. INC.

5B

### POST DIGEST SPIKE SAMPLE RECOVERY

CLIENT SAMPLE N	Ю
B4-NT1-BOT01	_

Lab Name:	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67072	SDG:	67072

Analysis Date: 03/06/12

Concentration Units: mg/kg

Analyte	Control Limit	Spiked Sample Result (SSR)	Sample Result (SF	2)	Spike Added (SA)	%R	Q	M
	%R		c	c				
Arsenic (As)	75-125	44.85	3.596		46.296	89.1		
Cadmium (Cd)	75-125	6.86	-0.005		9.259	74.1		M
Chromium (Cr)	75-125	45.25	8.871		46.296	78.6		
Nickel (Ni)	75-125	41.42	5.219		46.296	78.2		
Lead (Pb)	75-125	45.73	11.43		46.296	74.1		М

Comment	8:				
03/06/12	22:54	AY55855S02			
03/06/12	23:21	AY55855S02-A	 		
			<u></u>	<u>.</u>	<del></del>

# A.P.P.L. INC. 4 ICP INTERFERENCE CHECK SAMPLE

Lab Name:

A.P.P.L. INC.

Contract:

*G012

ARF#:

67072

SDG:

67072

ICP ID No

PHOEBE

ICS Source:

**Environmental Express** 

Analysis Date

03/01/12

Concentration Units: mg/L

ANALYTE		TRUE				Initial Found			
	SOL A	SOL AB	SOL A 15:45	Recovery	SOL AB 15:49	%R(1)			
Silver		1	0.000147	<rl< td=""><td>0.9305</td><td>93.1</td></rl<>	0.9305	93.1			
Aluminum	200	200	201.7	100.9	197.8	98.9			
Arsenic		0.5	ND	<rl< td=""><td>0.4724</td><td>94.5</td></rl<>	0.4724	94.5			
Barium		0.5	0.000006	<rl< td=""><td>0.4745</td><td>94.9</td></rl<>	0.4745	94.9			
Calcium	200	200	199.4	99.7	196.9	98.5			
Cadmium		1	0.000097	<rl.< td=""><td>0.9491</td><td>94.9</td></rl.<>	0.9491	94.9			
Chromium	<u> </u>	0.5	ND	<rl< td=""><td>0.4954</td><td>99.1</td></rl<>	0.4954	99.1			
Iron	200	200	180.1	90.1	179.5	89.8			
Magnesium	200	200	193	96.5	190.5	95.3			
Lead		1	0.000852	<rl< td=""><td>0.973</td><td>97.3</td></rl<>	0.973	97.3			
Selenium		0.5	ND	<rl< td=""><td>0.4843</td><td>96.9</td></rl<>	0.4843	96.9			

(1) Control Limits: Metals 80-120

### A.P.P.L. INC. ICP INTERFERENCE CHECK SAMPLE

Lab Name:

A.P.P.L. INC.

Contract:

*G012

ARF#:

67072

SDG:

67072

ICP ID No

PHOEBE

ICS Source: Environmental Express

Analysis Date

03/06/12

Concentration Units: mg/L

ANALYTE		TRUE		Initial Found			
	SOL A	SOL AB	SOL A 15:15	Recovery	SOL AB 15:22	%R(1)	
Aluminum	200	200	195.1	97.6	200.6	100.3	
Arsenic		0.5	0.001856	<rl< td=""><td>0.4818</td><td>96.4</td></rl<>	0.4818	96.4	
Barium		0.5	0.001103	<rl< td=""><td>0.4681</td><td>93.6</td></rl<>	0.4681	93.6	
Calcium	200	200	196.1	98.1	197.4	98.7	
Cadmium		1	ND	<rl< td=""><td>0.9427</td><td>94.3</td></rl<>	0.9427	94.3	
Chromium		0.5	ND	<rl< td=""><td>0.4884</td><td>97,7</td></rl<>	0.4884	97,7	
Copper		0.5	ND	<rl< td=""><td>0.4963</td><td>99.3</td></rl<>	0.4963	99.3	
Iron	200	200	184.1	92.1	182	91.0	
Magnesium	200	200	190.8	95.4	190.7	95.4	
Nickel		1	0.000425	<rl< td=""><td>0.9527</td><td>95.3</td></rl<>	0.9527	95.3	
Lead		1	0.001486	<rl< td=""><td>0.9891</td><td>98.9</td></rl<>	0.9891	98.9	
Zinc		1	ND	<rl< td=""><td>0.9437</td><td>94.4</td></rl<>	0.9437	94.4	

(1) Control Limits: Metals 80-120

### METALS EPA SW846 - 6010B Calibration Data



Sequence No.: 1

Sample ID: CalBlk 120301EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Nt:

Dilution:

Autoeampler Location: 1

Date Collected: 03/01/12 3:11:36 PM

Data Typs: Reprocessed on 03/02/12 9:43:54 AM

Mean Data:	CalBlk 120301EA I:PB O:EA				
	Mean Corrected			_	Calib
Analyte	Intensity	Std.Dev.		Conc.	Unite
Ag 338.289	-79.4	48.81	61.51%	[0.00]	
Al 308,215	145.8	31.58	21.66%	[0.00]	
As 188.979	-1.3	4.71	353.34%	[0.00]	
В	63.7	13.84	21.73%	[0.00]	
Ba 233.527	258.5	4.28	1.65%	[0.00]	
Be 313.107	-10739.9	288.41	2.69%	[0.00]	
Ca 315.887	253.7	19.23	7.58%	[0.00]	
Cd 214.440	723.7	1.05	0.15%	[0.00]	• • •
Co 228.616	180.2	13.86	7.69%	[0.00]	ug/L
Cr 267.716	1061.2	25.98	2.45%	[0.00]	ug/L
Cu 327.393	941.1	65.42	6.95%	[0.00]	ug/L
Fe 273.955	506.3	57.98	11.45%	[0.00]	ug/L
K 766.490	-684.8	226.13	33.02%	[0.00]	ug/L
Mg 285.213	-215.2	4.56	2.12%	[0.00]	ug/L
Mn 257.610	351.9	6.67	1.90%	[0.00]	
Mo 202.031	181.7	7.33	4.04%	[0.00]	ug/L
Na 589.592	519.9	142.16	27.34%	[0.00]	ug/L
Ni 231.604	-210.7	14.56	6.91%	[0.00]	ug/L
P 213.617	-51.8	2.98	5.74%	[0.00]	ug/L
Pb 220.353	-18.0	3.92	21.84%		ug/L
Sb 206.836	4.2	0.88	21.20%		ug/L
Se 196.026	-25.7	2,40	9.34%	[0.00]	ug/L
Sn 189.927	36.5	1.42	3.00%	[0.00]	ug/L
Sr 421.552	1715.9	42.36	2.47%	[0.00]	ug/L
Ti 337.279	-735.0	27.68	3.77%	[0.00]	ug/L
Tl 190.801	-172.4	11.91	6.91%		ug/L
V 292.402	-386.4	160.08	41.63%		ug/L
Zn 206.200	-211.2	15.56	7.37%		ug/L

Sequence No.: 2 Sample ID: STD 1 120301EA I:PB 0:EA

Analyst

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 03/01/12 3:16:25 PM

Data Type: Reprocessed on 03/02/12 9:43:56 AM

	amp 4 10020155 Y pp 6.55				~
Mean Data:	STD 1 120301EA I:PB O:EA				Calib
3 1 b -	Mean Corrected	Std.Dev.	RSD	Conc.	
Analyte	Intensity			[1.00]	
Ag 338.289	211.3	89.05	42.14%		
Al 308.215	286.9	8.39	2.93%	[100.00]	
As 188.979	30.8	2.64	8.54%	[3.50]	
В	366.3	6.17	1.69%	(50.00)	<b>-</b>
Ba 233.527	1716.8	16.85	0.98%	[5.00]	
Be 313.107	19370.9	104.83	0.54%	[2.00]	
Ca 315.887	5950.4	8.06	0.14%	[100.00]	
Cd 214.440	3707.5	0.81	0.02%	[5.00]	
Co 228.616	769.0	25.87	3.36%	[5.00]	
Cr 267.716	1280.6	8.93	0.70%	[5.00]	
Cu 327.393	1176.1	118.36	10.06%	[5.00]	
Fe 273,955	2713.4	25.52	0.94%	(50.00)	
K 766.490	6160.4	295.34	4.79%	[1000.00]	
Mg 285.213	3379.0	12.86	0.38%		ug/L
Mn 257.610	142.2	4.72	3,32%	[5.00]	
Mo 202.031	373.9	15.25	4.08%	[5.00]	
Na 589.592	17729.9	75.65	0.43%	[1000.00]	
Ni 231.604	623.0	16.45	2.64%	[5.00]	
P 213.617	268.2	1.96	0.73%	[25.00]	ug/L
Pb 220.353	92.7	15.35	16.56%	[3.00]	ug/L
Sb 206.836	55.8	2.34	4.19%	[5.00]	ug/L
Se 196.026	29.8	7.44	24.96%	[5.00]	ug/L
Sn 189.927	19.2	1.22	6.35∜	[5.00]	ug/L
Sr 421,552	7960.0	77.52	0.97%	[5.00]	ug/L
Ti 337.279	408.1	28.74	7.04%	[5,00]	
Tl 190.801	108.4	2.50	2.31%	[5.00]	
V 292.402	2023.9	142.20	7.03%	(5.00)	
Zn 206.200	5581.0	6.03	0.11%	[20.00]	
2 200.200				•	٠.

Bequence No.: 3

Sample ID: STD 2 120301EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 03/01/12 3:21:18 PM

Data Type: Reprocessed on 03/02/12 9:43:57 AM

Mean Data:	STD 2 120301EA I:PB O:EA			
	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
Ag 338,289	87064.9	<b>8</b> 81.58	1.01%	[500.0] ug/L
Al 308.215	43060.5	331.85	0.77%	[20000.00] ug/L
As 188.979	7271.9	56.37	0.78%	[1000.00] ug/L
В	6896.8	31.67	0.46%	[1000.00] ug/L
Ba 233.527	284092.5	2470.91	0.87%	[1000.00] ug/L
Be 313.107	7700164.9	68977.83	0.90%	[1000.00] ug/L
Ca 315.887	1014564.0	2166.87	0.21%	[50000] ug/L
Cd 214.440	586409.2	5326.85	0.91%	[1000.00] ug/L
Co 228.616	112591.6	876.21	0.78%	[1000.00] ug/L
Cr 267.716	188363.8	1681.01	0.89%	[1000.00] ug/L
Cu 327.393	<b>18</b> 569 <b>0.</b> 0	1010.19	0.54%	[1000.00] ug/L
Fe 273.955	830605.6	5551.84	0.67%	[20000] ug/L
K 766.490	115021.9	475.74	0.41%	[20000] ug/L
Mg 285.213	2000462.0	3678.25	0.18%	[50000] ug/L
Mn 257.610	88073.4	324.63	0.37%	[1000.00] ug/L
Mo 202.031	65470.5	467.06	0.71%	[1000.00] ug/L
Na 589.592	395974.3	664.02	0.17%	[25000] ug/L
Ni 231.604	92841.9	963.69	1.04%	[1000.00] ug/L
P 213.617	51410.7	408.92	0.80%	[5000] ug/L
Pb 220.353	23475.8	247.03	1.05%	(1000.00) ug/L
Sb 206.836	8766.4	66.20	0.76%	[1000.00] ug/L
Se 196.026	6063.0	63.17	1.04%	[1000.00] ug/L
Sn 189.927	12453.0	88.09	0.71%	[1000.00] ug/L
Sr 421.552	1396923.1	3149.00	0.23%	[1000.00] ug/L
Ti 337.279	96117.7	357.47	0.37%	(1000.00) ug/L
Tl 190.801	16526.7	81.50	0.49%	[1000.00] ug/L
V 292.402	349471.4	3039.61	0.87%	[1000.00] ug/L
Zn 206.200	177724.3	1789.80	1.01%	[1000.00] ug/L

Sequence No.: 4

Sample ID: STD 3 120301EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosempler Location: 10

Date Collected: 03/01/12 3:24:30 PM

Data Type: Reprocessed on 03/02/12 9:43:58 AM

,							
Mean Data: STI	3 120301RA I:PB O:	EA					
	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc.	Unite		
Ag 338.289	176182.7	668.86	0.38%	[1000.00]	ug/L		
Al 308.215	87190.3	1329.34	1.52%	[40000.00]	ug/L		
As 188.979	14264.8	209.71	1.47%	[2000.00]	ug/L		
В	13972.9	138.56	0.99%	[2000.00]	ug/L		
Ba 233.527	557360.7	3812.49	0.68%	[2000.00]	ug/L		
Be 313.107	15018916.9	40636.16	0.27%	[2000.00]	ug/L		
Ca 315.887	1993000.8	12482.67	0.63%	[100000.0]	ug/L		
Cd 214.440	1136907.6	12482.67 7044.26	0.62%	[2000.00]	ug/L		
Co 228.616	219839.7	1455.76	0.66%	[2000.00]	ug/L		
Cr 267.716	371609.6 372320.1	2448.52	0.66%	[2000.00]	ug/L		
Cu 327.393	372320.1	1642.57	0.44%	[2000.00]	ug/L		
Fe 273.955	1619108.5	10384.88	0.64%	[40000]	ug/L		
K 766.490	227404.3	1341.55	0.59%	[40000]	ug/L		
Mg 285.213	3096388.5	20891.07	0.54%	[100000]	ug/L		
Mn 257.610	174987.0	1104.66	0.63%	[2000.00]	ug/L		
Mo 202.031	127400.4	1813.76	1.42%	[2000.00]	ug/L		
Na 589.592	785095.1	4259.09	0.54%	(50000)	ug/L		
Ni 231.604	181273.0	1073.14	0.59%	[2000.00]	ug/L		
P 213.617	101501.5	1935.65	1.91%	[10000]	ug/L		
Pb 220.353	45333.0	762.95	1.68%	[2000.00]	ug/L		
Sb 206.836	17263.5	293.48	1.70%	[2000.00]	ug/L		
Se 196.026	11765.7	215.42	1.83%	[2000.00]	ug/L		
Sn 189.927	24147.2	366.83	1.52%	(2000.00)	ug/L		
Sr 421.552	2774288.5 191438.0	15525.98	0.56%	(2000.00)	ug/L		
Ti 337.279	191438.0	1412.88	0.74%	[2000.00]	ug/L		
Tl 190.801	31439.9	458.45	1.46%	[2000.00]			
V 292.402	695326.8	462 <b>0.14</b> 2544.63	0.66%	[2000.00]	ug/L		
Zn 206.200							
Calibration Su							
Calibration 30	EMICAL Y						
Analyte	Stds. Equation				ırvature	Corr. Coef.	Reslope
Ag 338.289	3 Lin Thru 0 3 Lin Thru 0	0	.0	175.8	0.00000	0.999989	_
Al 308.215	3 Lin Thru 0	0	.0	2.174	0.00000	0.999988	
As 188.979	3 Lin Thru 0	0		7.160	0.00000	0.999970	
В	3 Lin Thru 0	0	.0	6.969	0.00000	0.999986	
Ba 233.527	3 Lin Thru O	0	. 0	279.8	0.00000	0.999970	
Be 313.107	3 Lin Thru 0 3 Lin Thru 0 3 Lin Thru 0 3 Lin Thru 0 3 Lin Thru 0	0	. 0	7548	0.00000	0.999949	

Method: 120301B-6010B-C			Page	a 5		Date: 03/02/12 9:43:59 AM
V 292,402	3	Lin Thru 0	0.0	348.0	0.00000	0.999998
Zn 206,200	3	Lin Thru 0		173.0	0.00 <b>00</b> 0	0.999893

Sequence No.: 5 Sample ID: ICV 120301EA I:PB 0:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 11 Date Collected: 03/01/12 3:30:52 PM Data Type: Reprocessed on 03/02/12 9:43:59 AM

Me	an Data: ICV 120	0301EA I:PB O:E						
_		Mean Correcte	d Calib			Sample		
	alyte		Conc. Units			Unite	Std.Dev.	RSD
Ag	338.289		484.6 ug/L		484.6	ug/L	1,53	0.32%
n 1			338.289 Recover	-	05050			
AI	. 308.215 . 00 waluo withir	55173.6	25370 ug/L 308.215 Recover	176.4	25370	ug/L	176.4	0.70%
n a				-	0.45 0	/*	10.70	1 200
AS	188.979	6909.9	965.0 ug/L 188.979 Recover	12.70	965.0	ug/L	12.70	1.32%
В	OC AUTHE MICHIE	6566.4	1030 uq/L	y = 96.50* 13.1	1020	/T	12.1	1 070
0	OC value within		Recovery = 102.9		. 1030	ug/L	13.1	1.27%
Ba	233.527	280751.4	1000 ug/L	3.0	1000	ug/L	3.0	0.30%
Du			233.527 Recover		1000	ug/ D	3.0	0.30%
Re	313.107	7703271.9	1024 ug/L	.y - 100.03* 8.5	1024	ug/L	8.5	0.83%
			313.107 Recover		1021	ug/ 11	0.5	0.030
Ca	315.887		25190 ug/L	456.5	25190	ug/L	456.5	1,81%
			315.887 Recover		-52,4	~ <del>5</del> , ~	13013	1.010
Cd	214.440	596846.3	1042 ug/L	3.3	1042	ug/L	3.3	0.31%
	QC value within	limits for Cd	214.440 Recover	y = 104.22%		,,		
Co	228.616		1054 ug/L	3.0	1054	ug/L	3.0	0.29%
	QC value within	limits for Co	228.616 Recover	y = 105.40%		3,		
Cr	267.716	196652.0	1056 ug/L	2.4	1056	ug/L	2.4	0.23%
	QC value within	limits for Cr	267.716 Recover	y = 105.55%		<b>J</b> .		
Cu	327.393	188017.0	1013 ug/L	2.5	1013	ug/L	2.5	0.25%
	QC value within	limits for Cu	327.393 Recover	y = 101.31%		<b>.</b>		
Fe	273.955	1054305.4	25760 ug/L	73.8	25760	ug/L	73.8	0.29%
	QC value within	limits for Fe	273.955 Recover	y = 103.03%		<del>-</del>		
K	766.490	141917.9	24880 ug/L	431.1	24880	ug/L	431.1	1.73%
		limits for K 7	766.490 Recovery	≃ 99.50%				
Mg	285.213	996600.7	25420 ug/L	414.5	25420	ug/L	414.5	1.63%
	QC value within		285,213 Recover	y = 101.67				
Mn	257.610	92822.7	1059 ug/L	7.6	1059	ug/L	7.6	0.72%
			257.610 Recover	-		_		
Мо	202.031	62483.5	977.2 ug/L	8.28	977.2	ug/L	8.28	0.85%
	-		202.031 Recover					
Na	589.592	394611.5	25050 ug/L		25050	ug/L	405.6	1.62%
			589.592 Recover	-				
NΊ	231.604	95904.5	1050 ug/L	2.4	1050	ug/L	2.4	0.23%
ъ,			231.604 Recover	-	4003	/7		
Ρ.	213.617		4903 ug/L	69.1	4903	ug/ь	69.1	1.41%
Dh	220.353	24003.2	13.617 Recovery		1051	/T	12.2	1 600
PD			1051 ug/L 220.353 Recover	17.7	1051	աց/ և	17.7	1.68%
Sh	206.836	8964.3	1035 ug/L	10.5	1035	υσ/T.	10.5	1.01%
SD			206.836 Recover		1033	ug/ II	10.5	1.014
Se	196.026		1046 ug/L	17.6	1046	υσ/Ι.	17.6	1.68%
56			196.026 Recover		1040	ug, n	17.0	1.000
Sn	189.927	6962.0	573.0 uq/L	8.69	573.0	ua/L	8.69	1.52%
~			r limit for Sn 1				0.03	1.520
Sr	421.552	1373453.9	988.0 ug/L	16.70	988.0		16.70	1.69%
			421.552 Recover			- 5,		
Ti	337.279	96435.5	1006 ug/L	7.6	1006	ug/L	7.6	0.75%
			337.279 Recover	y = 100.55%		<u> </u>		
Tl	190.801	16482.5	1057 ug/L	8.8	1057	ug/L	8.8	0.83%
	QC value within	limits for Tl	190.801 Recover	y = 105.68%				
	92.402	350424.8	1025 ug/L	2.7	1025	ug/L	2.7	0.27%
	QC value within	limits for V 2	92.402 Recovery	<b>= 102.47%</b>				
$\mathbf{z}_{\mathbf{n}}$	206.200	180726.6	1048 ug/L	2.4	1048	ug/L	2.4	0.23%
			206.200 Recovery	y = 104.75 <b>%</b>				
QC	Pailed. Continu	ue with analysi	8.					

Dilution:

Sequence No.: 6 Sample ID: ICB 120301EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/01/12 3:35:27 PM Data Type: Reprocessed on 03/02/12 9:44:00 AM

Mean Data: ICB 120301EA I:PB O:EA								
Mean Correct	ed Calib.		Sample					
Analyte Intensity Ag 338.289 -32.2	Cong. Units	Std.Dav. Conc.	Unite Std.Dev. RSD ug/L 0.2080 113.67					
Ag 338.289 -32.2	-0.183 ug/L	0.2080 -0.183	ug/L 0.2080 113.67					
QC value within limits for A	g 338.289 Recovery	Not calculated						
	-1.229 ug/L		ug/L 18.0558 >999.98					
QC value within limits for A								
As 188.979 -2.7			ug/L 0.2733 73.769					
QC value within limits for A								
В 47.9	6.877 ug/L		ug/L 1.3164 19.148					
QC value within limits for B			0.0504 -000 00					
	0.002 ug/L		ug/L 0.0596 >999.99					
QC value within limits for B		⇒ NOC Calculated	/7 0.0000 37.000					
Be 313.107 404.4	0.054 ug/L	0.0202 0.054	ug/L 0.0202 37.289					
QC value within limits for B	1.724 ug/L		uq/L 1.2080 70.068					
Ca 315.887 34.7 QC value within limits for C			ug/					
Cd 214,440 -14.3	-0.025 ug/L	0.0218 -0.025	ug/L 0.0218 87.798					
QC value within limits for C			dg/ 1 0.0210 07775					
	0.131 ug/L	0.0863 0.131	ug/L 0.0863 65.798					
QC value within limits for C			49,2					
	0,224 ug/L		ug/L 0.1744 77.98%					
QC value within limits for C			93, 2					
Cu 327.393 135.5		0.7258 0.728	ug/L 0.7258 99.62%					
QC value within limits for C	1 327.393 Recovery							
	0.547 ug/L	0.7043 0.547	ug/L 0.7043 128.65%					
QC value within limits for Fo	273.955 Recovery	= Not calculated	2,					
K 766,490 275.0	48.25 ug/L	18.322 48.25	ug/L 18.322 37.97%					
QC value within limits for K	766.490 Recovery =	: Not calculated	_					
Mg 285,213 -20.8	-0.533 ug/L	0.2748 -0.533	ug/L 0.2748 51.598					
QC value within limits for M	285.213 Recovery	⇒ Not calculated						
	-0.016 ug/L		ug/L 0.0739 452.168					
QC value within limits for M		■ Not calculated						
Mo 202.031 11.5			ug/L 0.2439 135.58%					
QC value within limits for Mo	202.031 Recovery	= Not calculated	/					
Na 589.592 26.1	1.651 ug/L	8.7171 1.651	ug/L 8.7171 528.078					
QC value within limits for No		≈ Not Calculated	/7 0.0000 0.010					
	0.125 ug/L		ug/L 0.0008 0.618					
QC value within limits for N			ug/L 0.5138 218.46%					
P 213.617 -2.4 QC value within limits for P	-0.235 ug/L	0.5136 -0.235 Not calculated	ug/h 0.5138 218.468					
Of Alide Arcuru timits for b	0.126 ug/L	0 6464 0 126	ug/L 0.6464 514.33%					
Pb 220.353 2.9 QC value within limits for Pl	0.120 ug/D	- Not calculated	ug/D 0.0404 514.554					
Sb 206.836 4.2	0.485 ug/L		ug/L 0.5797 119.55%					
QC value within limits for Si	206 936 Recovery		49/11 0.3/5/ 115.55					
Se 196.026 1.7	0.291 119/1	1.8144 0.291	uq/L 1.8144 624.258					
QC value within limits for Se	196.026 Recovery		23, 2					
Sn 189.927 14.4	1.184 ug/L		ug/L 0.1045 8.83%					
QC value within limits for Si			_5,					
	-0.063 ug/L		ug/L 0.1019 160.61%					
QC value within limits for Si		= Not calculated						
Ti 337.279 13.0	0.135 ug/L	0.3349 0.135	ug/L 0.3349 247.25%					
QC value within limits for Ti	. 337.279 Recovery	= Not calculated						
T1 190.801 14.5	0.915 ug/L	0.6736 0.915	ug/L 0.6736 73.64%					
QC value within limits for T	190.801 Recovery	= Not calculated						
V 292.402 3.2	0.014 ug/L	0.1184 0.014	ug/L 0.1184 853.80%					
QC value within limits for V		Not calculated						
Zn 206.200 -34.1	-0.196 ug/L	0.0225 -0.196	ug/L 0.0225 11.49%					
QC value within limits for Zr	206.200 Recovery	= Not calculated						
All analyte(s) passed QC.								

Dilution:

Sequence No.: 8 Sample ID: ICSA 120301BA I:PB O:EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 12 Date Collected: 03/01/12 3:45:10 PM Data Type: Reprocessed on 03/02/12 9:44:03 AM

						<del>-</del> -	
Mean Data: ICSA 12	0301BA I:PB O:	SA Goldh			gamala		
	Mean Corrected	Calib. Conc. Units	Chd Dav	Cona	naite pampre	RED Dov	ran rag
Analyte Ag 338.289	Tuceueich	Cone. Units	Sta.Dev.	0.347	UNITED	0.0072	4.92%
Ag 338.289	25.9	0.147 ug/L			ug/ D	0.0072	1.720
		338.289 Recovery		:u	u~/r	2259.9	1 129
A1 308.215	438657.7			201700	սց/և	2439.9	1.12%
-		308.215 Recovery		0.000		0 2000	77 048
		-3.260 ug/L			ug/L	2,3750	12.848
QC value within		188,979 Recovery		ed			44 860
В		-23.71 ug/L	3.499	-23.71	ug/L	3.499	14.76%
QC value within		Recovery - Not cal			_		
Ba 233.527		0.006 ug/L			ug/L	0.2907	>999.9%
QC value within	limits for Ba	233.527 Recovery	= Not calculate	ed			
Be 313.107	23647.5	0.081 ug/L	0.0368	0.081	ug/L	0.0368	45.47%
OC value within	limits for Be	313.107 Recovery	= Not calculate	ed			
Ca 315.887	4000007.3	199400 ug/L	1952.9	199400	ug/L	1952.9	0.98%
OC value within		315.887 Recovery			<b>.</b>		
Cd 214.440	7384.2	0.097 ug/L	0.2047	0.097	ug/L	0.2047	211.80%
OC value within	limita for Cd	214.440 Recovery	= Not calculate		-57 -		
	TIMICS TOT CO	-0.416 ug/L	0.5153	-0 416	ug/L	0.5153	123.91%
Co 228.616	Jimina faw Ca	228.616 Recovery		0.410	ug/ D	0.3133	103.310
	11001 60	228.816 Recovery	- NOC CATCUTACE	_n 463	ug/L	0.2549	E6 2E8
Cr 267.716	1295.2	-0.453 ug/L	0.2545 Nab anlawlaba		ug/D	0.2345	30.230
		267.716 Recovery		:u		0.8286	E0 048
Cu 327.393	-1086.2	-1.423 ug/L	0.8286	-1.423	ug/L	0.8286	58.248
QC value within	limits for Cu	327.393 Recovery		ıα			
Fe 273.955		180100 ug/L	1076.1	180100	ug/L	1076.1	0.60%
		273.955 Recovery					
		31.10 ug/L			ug/L	15.267	49.09%
OC value within	limits for K 7	66.490 Recovery =	: Not calculated	l			
Ma 285.213	7564564.5	193000 ug/L	1630.9	193000	ug/L	1630.9	0.85%
OC value within	limits for Mg	285.213 Recovery	= 96.49%				
Mn 257.610	593.5	-0.011 ug/L	0.9097	-0.011	ug/L	0.9097	>999.9%
OC value within	limits for Mn	257.610 Recovery	= Not calculate	ed.			
Mo 202.031	-501.3	0.005 ug/L	0.9765	0.005	ug/L	0.9765	>999.9%
OC value within	limits for Mo	202.031 Recovery		ed.	-5, -		
	2421.1	-12.57 ug/L	6.883	-12.57	μα/Ι.	6.883	54.75%
Na 589.592	limita for No	589,592 Recovery			49/2	0.002	
	TIMILES TOT NO	0.002 ug/L	0 5436	. ი იია	ug/L	0.5436	~000 0%
Ni 231.604	749.0	231.604 Recovery	Not onloudate		ug/ n	V.5450	,,,,,,,,
				0 655	~/T	4,4023	10 608
P 213.617	98.3	9.655 ug/L	4.4023	9.000	ug/L	4.4023	45.003
	limits for P 2	13.617 Recovery =	NOT CATCULATED		/=	0.0044	262 248
Pb 220.353	19.4	0.852 ug/Ն			ug/L	3.0941	363.348
QC value within	limits for Pb	220.353 Recovery	= Not calculate	ia	,_		
Sb 206.836	-18.9	-2.180 ug/L	2.2544		ug/L	2.2544	103.41%
QC value within	limits for Sb	206.836 Recovery	= Not calculate	d			
Se 196.026	-3.4	-0.580 ug/L	15.1656	-0.580	ug/L	15.1656	>999.9%
OC value within	limits for Se	196.026 Recovery	= Not calculate	:d			
Sn 189,927	209.3	17.23 uq/L	0.463	17.23	ug/L	0.463	2.69%
OC value within	limits for Sn	189.927 Recovery	= Not calculate	d			
Sr 421.552	7131.7	0.002 ug/L	0.2605	0.002	ug/L	0.2605	>999.9%
OC value within	limits for Sr	421.552 Recovery	= Not calculate	d	•		
Ti 337.279	891.8	2.228 ug/L	0.3858	2.228	uq/L	0.3858	17.31%
OC value within	limite for Ti	337.279 Recovery			Jr -		
	62.7	1.988 ug/L	1.6747	1.988	ng/L	1.6747	84.23%
Tl 190.801	Dimite for m	1,988 ug/1 190.801 Recovery			~5/ ~	1,0/4/	54.204
		1 OOC "~ /T	0.4367	-1.086	ua/I.	0.4367	40 228
V 292,402	15597.4	-1.086 ug/L	. Not delaulated		497 H	0.430/	#U1229
		92.402 Recovery =	n acoi	2 /0^	/T	0.0001	9.92%
Zn 206,200	4643.2	-3.629 ug/L	0.3601	-3.629	ug/ L	0.3601	3.32°T
		206.200 Recovery	= NOT CUTCUINE	u			
All analyte(s) pass	sed QC.						

Initial Sample Wt:

Dilution:

Sequence No.: 9 Sample ID: ICSAB 120301EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals

Autosampler Location: 13 Date Collected: 03/01/12 3:49:53 PM Data Type: Reprocessed on 03/02/12 9:44:04 AM

		 	2020173 - 57 0			~					
Me	an Data:		20301EA I:PB O		Calib.				g1-		
	. 3		Mean Corrected	a	Calib.		gr4 D	<b>a</b>	Sample	0 t d D	. RSD
An	arace		Intensity 163560.3	Con	o. Units		Std.Dev.	Conc.	Unite	Btd.Dev	
Ag	330.209	مراجع المراجع	163360.3	330	.5 ug/ti	,	12.50	930.5	ug/L	12.50	1.34%
		within	limits for Ag					100000	1+		4 000
AI	308.215	* 1 1 2	430204.4					197800	ug/L	2112.0	1.07%
_	_	within	limits for Al			= 5					
AS	188.979		3382.4		.4_ug/L	_	12.46	472.4	ug/L	12.46	2.64%
	QC value	within	limits for As								
В	_		-4257.4				8.691	-12.84	ng/L	8.691	67.69%
		within	limits for B	Recovery	y = Not ca						
Вa	233.527		140227,9				5.86	474.5	ug/L	5.86	1.24%
		within	limits for Ba		-						
Ве	313.107			483			2.66	483.4	ug/L	2.66	0.55%
			limits for Be								_
Ca	315.887		3948689,9					196900	ug/L	1025. <b>0</b>	0.52%
	QC value	within	limits for Ca			= 9					
Cd	214.440		550085.9		.1 ug/L		11.81	949.1	ug/L	11.81	1.24%
		within	limits for Cd								
Co	228.616			484			4.48	484.5	ug/L	4.48	0.92%
	QC value	within	limits for Co								
Cr	267.716		93555.6					495.4	ug/L	5.49	1.11%
	QC value	within	limits for Cr			= 9	9.08%				
Cu	327.393		92927.9		.0 ug/L		6.33	504.0	ug/L	6,33	1.26%
	QC value		limits for Cu								
Гe	273.955		7323950.5					179500	ug/L	824.0	0.46%
	QC value	within	limits for Fe	273.955	Recovery	≈ 8	9.77%				
K '	766.490			37.2			13.144	37.26	ug/L	13.144	35.27%
	QC value	within	limits for K 7	66.490	Recovery :	≠ No	t calcula	ited			
Mg	285.213			19050			955.3	190500	ug/L	955.3	0.50%
	QC value	within	limits for Mg	285.213	Recovery	<b>≕</b> 9	5.23%				
Mn	257.610		44002.3					495.7	ug/L	0.38	0.08%
	QC value	within	limits for Mn	257.610	Recovery	<b>≖</b> 9	9.14%				
Mo	202.031		29196.9		0 ug/L		3.44	464.0	ug/L	3.44	0.74%
	QC value	within	limits for Mo	202.031	Recovery	= 9	2.80%				
Na	589.592		2541.5					~6.003	ug/L	7.8106	130.10%
	QC value	within	limits for Na	589.592	Recovery	= N	ot calcul	ated	_		
Νi	231.604			942.			12.82	942.0	ug/L	12.82	1.36%
	QC value	within	limits for Ni	231,604	Recovery	= 9	4.20%		-		
P 2	13.617		62.9	6.18	0 ug/L		2.7426		ug/L	2.7426	44.38%
	QC value	within	limits for P 2	13.617	Recovery =	· No	t calcula	ited			
Рb	220.353		22211.8	973.	0 ug/L		2.35	973.0	ug/L	2.35	0.24%
	QC value	within	limits for Pb	220.353	Recovery	= 9	7.30%		_		
Sb	206.836		4279.9		3 ug/L		5.50	494.3	ug/L	5.58	1.13%
	QC value	within	limits for Sb	206.836	Recovery	= 9	8.86%				
Se	196.026		2866.6				12.67	484.3	ug/L	12.67	2.62%
	OC value	within	limits for Se	196.026	Recovery	= 9	6.86%		•		
Sn	189.927		206.3		8 ug/L		0.607	16.98	uq/L	0.607	3.58%
		within	limits for Sn	189.927	Recovery	= N	ot calcul		<b>.</b>		
Sr	421.552		7101.4		1 ug/L		0.1196	0.011	uq/L	0.1196	>999.9%
		within	limits for Sr	421.552	Recovery	⇒ N	ot calcul				
Тi	337.279		849.7	1.93	B ug/L		1.2024	1.938	uq/L	1.2024	62.04%
	OC value	within	limits for Ti	337.279	Recovery	= N	ot calcul	ated	3,		
Tl	190.801	•	7798.6		7 ug/L		7.07	493.7	ug/L	7.07	1.43%
	OC value	within	limite for Tl			<b>=</b> 9		·	u.	·	
V 2	92.402		181043.3		4 ug/L		6.79	486.4	ug/L	6.79	1.40%
•		within	limits for V 2			97		- · ·	٥.		
Zn	206.200	·	166422.8		0 ug/L		13.02	935.0	ug/L	13.02	1.39%
		within	limits for Zn		•	<b>= 9</b>	3.50%				
A11	analyte(			-	•						
			-								

Sequence No.: 10
Sample ID: CCV1 120301EA I:PB O:EA
Analyst:

Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Dilution:

Autosampler Location: 3
Date Collected: 03/01/12 3:54:37 PM
Data Type: Reprocessed on 03/02/12 9:44:05 AM

Mean Data: CCV1 120301EA I:PB O:EA							
Mean Corrected Calib. Sample							
Analyte			Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	88167.6	Conc. Units 501.6 ug/L	6.23	501.6	ug/L	6.23	1.24%
		338.289 Recovery					
Al 308.215	42934.8	19750 ug/L	348.9	19750	ug/L	348.9	1.77%
QC value with	in limits for Al	308.215 Recovery	<b>= 98.73</b> %		_		
As 188.979	7178.3	1003 ug/L	6.9	1003	ug/L	6.9	0.68%
QC value with		188.979 Recovery					
В	6871.0	1059 ug/L	16.9	1059	ug/L	16.9	1.60%
_		Recovery = 105.94%					
Ba 233.527	285909.6	1019 ug/L	12.8	1019	ug/L	12.8	1.25%
_		233.527 Recovery		1010	/=		0.600
Be 313.107		1019 ug/L	6.1	1019	ug/ь	6.1	0.60%
		313.107 Recovery		40000	/ T	407.1	0.97%
Ca 315.887		49980 ug/L 315.887 Recovery		49900	ug/L	487.1	0.978
Cd 214.440	589214.7	1029 ug/L	12.1	1020	ug/L	12.1	1.18%
		214.440 Recovery		1029	ug/ L	12.1	1.10%
			12.7	1023	ug/L	12.7	1.24%
		228.616 Recovery		1023	ug/ 1	12.7	1.210
Cr 267.716	189698.2	1017 ug/L	10.8	1017	ug/L	10.8	1.06%
		267.716 Recovery			-5/ -	20.0	
Cu 327.393		1006 ug/L	9.5	1006	ug/L	9.5	0.95%
		327.393 Recovery			51		
		20320 ug/L		20320	uq/L	239.3	1,18%
	n limits for Fe	273.955 Recovery	≈ 101.61%		2.		
K 766.490	115178.4	20170 ug/L	342.0	20170	ug/L	342.0	1.70%
QC value withi	n limits for K	766.490 Recovery =	100.84%				
Mg 285.213		50470 ug/L	447.7	50470	ug/L	447.7	0.89%
QC value withi	n limits for Mg	285.213 Recovery	= 100.93%				
Mn 257.610		996.3 ug/L	18.98	996.3	ug/L	18.98	1.90%
QC value withi		257.610 Recovery					
Mo 202.031		1023 ug/L	11.5	1023	ug/L	11.5	1.12%
_		202.031 Recovery			,_		
Na 589.592	393345.7			24960	ug/L	205.5	0.82%
. –		589.592 Recovery			1.		
Ni 231.604	93517.2	1023 ug/L	13.3	1023	ug/L	13.3	1.30%
		231.604 Recovery		5060		77.0	1 540
P 213.617	51588.2	5069 ug/L 213.617 Recovery =	77.8	5009	սց/Ն	77.8	1.54%
		1037 ug/L	19.3	1027	ug/L	19.3	1.86%
Pb 220.353		220.353 Recovery		1037	ug/ L	17.5	1.000
Sb 206.836	8755.6	1011 ug/L	7.3	1011	ug/L	7.3	0.72%
OC value withi		206.836 Recovery		1011	αg, <u>π</u>	1.5	0.,20
	6088.0	1029 ug/L	15.6	1029	ug/L	15.6	1.51%
		196.026 Recovery			-3, -		
Sn 189.927	12476.8	1027 ug/L	13.9	1027	ug/L	13.9	1.35%
	n limite for Sn	189.927 Recovery :	<b>102.69%</b>		•		
Sr 421.552	1383697.6	995.1 ug/L	9.13	995.1	ug/L	9.13	0.92%
QC value withi	n limits for Sr	421.552 Recovery :	≠ 99.51%		-		
Ti 337.279	95067.9	990.5 ug/L	17.48	990.5	ug/L	17.48	1.76%
QC value withi		337.279 Recovery :					
Tl 190.801	16544.7	1060 ug/L	9.1	1060	ug/L	9.1	0.86%
		190.801 Recovery			,_		
V 292.402	351870.4	1030 ug/L	11.4	1030	ug/L	11.4	1.10%
		92.402 Recovery =		1000	/T	12.0	1 000
Zn 206.200	178341.7	1033 ug/L	13.0	1033	սց/ և	13.0	1.26%
		206.200 Recovery =	. 103.308				
All analyte(s) passed QC.							

Sequence No.: 11 Sample ID: CCB 120301EA I:PB 0:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/01/12 3:59:20 PM Data Type: Reprocessed on 03/02/12 9:44:06 AM

Mean Daca: CCB I	20301EA I:PB O:EA Mean Corrected	Calib.			Come? -	
Bana leeba		Calip.	a. • =	_	Sample	
Analyte Ag 338.289	THEORDICA	Conc. Units	Std.Dev.			Std.Dev. RSD
	-DD.V in limits for he limits	-0.375 ug/L	0.2597	-0.375	ug/L	0.2597 69.19%
Al 308.215	in limits for Ag 330 -48.8					40 000 100 000
	in limite for Al 30	-22.40 uy/p	40.276	-22.46	ug/ ո	40.276 179.33%
As 188.979	2.5	0.349 ug/L				0 4017 100 600
	in limits for As 188	0.343 ug/II 2 970 Pegarawa	U.4213	0.349	ug/L	0.4213 120.60%
B	38.5	5.540 ug/L		5.540	wer/T	1 0000 10 779
_	in limits for B Red		1.0555 Loulated	3.340	սց/ հ	1.0955 19.77%
Ba 233.527	-12.6	-0.046 ug/L		-0.046	110 /I	0.0857 185.74%
	in limits for Ba 233	1.527 Recovery	- Not calculated	-0.040	ug/ D	0.005/ 105./48
Be 313.107	648.4	0.086 uq/L	0.0218		ug/L	0,0218 25.36%
	in limits for Be 313	107 Pacovery		0.000	ug/II	0.0210 25.30%
Ca 315.887	77.4	3.867 ug/L	1.2340		uq/L	1.2340 31.91%
	in limite for Ca 315	AA7 Daggi	- Not coloulated	3.007	ug/ D	1.2340 31.91%
Cd 214.440	-34.7	-0.061 ug/L			uq/L	0.0218 35.65%
	in limits for Cd 214	.440 Recovery	= Not calculated	0.001	ug/ II	0.0210 33.03%
Co 228.616	-18.0	-0.163 ug/L		-0.163	na/L	0.1268 77.71%
	in limits for Co 228	1.616 Recovery	= Not calculated	0.105	ug/ D	0.1200 11.11%
Cr 267.716	18,1	0.096 ug/L	0.0469	0.096	na/ī.	0.0469 48.75%
	in limits for Cr 267	7.716 Recovery		0.050	49/11	0.0105 10,756
Cu 327.393	32.2	0.173 ug/L	0.6609	0.173	na/t	0.6609 380.95%
OC value withi	n limits for Cu 327	.393 Recovery		,.	~3 <i>)</i> ~	0.0000 500.550
Fe 273.955	211.3	5.220 ug/L		5.220	μα/Τι	7.4887 143.47%
QC value withi	n limits for Fe 273				-97 -	
K 766.490	194.1	34.05 ug/L	31,242	34.05	ug/L	31.242 91.75%
QC value withi	n limits for K 766.	490 Recovery =			51	0-1212 521150
Mg 285,213		0.486 ug/L		0.486	uq/L	0.6027 124.08%
QC value withi	n limits for Mg 205				3, -	
Mn 257.610	11.6	0.132 ug/L	0.0347	0.132	ug/L	0.0347 26.23%
QC value withi	n limits for Mn 257	.610 Recovery	= Not calculated		•	
Mo 202.031		-0.092 ug/L		0.092	ug/L	0.0533 57.76%
QC value withi	n limits for Mo 202	.031 Recovery	= Not calculated		-	
Na 589.592	53.3	3.384 ug/L	7.5589	3.384	ug/L	7.5589 223.40%
QC value withi	n limits for Na 589		= Not calculated			
Ni 231.604	1.7	0.018 ug/L	0.0840	0.018	ug/L	0.0840 462.01%
QC value withi	n limits for Ni 231					
P 213.617		-0.598 ug/L	0.9494 -	0.598	ug/L	0.9494 158.88%
	n limits for P 213.					
Pb 220.353	1.4	0.060 ug/L	0.4795	0.060	ug/L	0.4795 802.24%
	n limite for Pb 220				_	
Sb 206.836	10.5	1.213 ug/L		1.213	ug/L	0.4952 40.84%
	n limits for Sb 206					
Se 196.026	2.6	0.441 ug/L		0.441	ug/L	0.9056 205.44%
	π limits for Se 196				•	
Sn 189.927		0.715 ug/L	0.4453	0.715	ug/L	0.4453 62.26%
	n limits for Sn 189					
Sr 421.552		-0.182 ug/L	0.0730 -	0.182	ug/L	0.0730 40.14%
	n limits for Sr 421					
ri 337.279	-1.5 - limita for Ti 227	-0.015 ug/L	0.3381 -	0.015	ug/L	0.3381 >999,9%
	n limits for Ti 337			0 000	17	0 5100 040 -:-
rl 190.801	4.4	0.276 ug/L		0.276	ug/ь	0.7400 268.51%
	n limits for Tl 190			A 345	17	0.0046 == ==:
/ 292.402		-0.347 ug/L	0.2046 -	0.347	ng/т	0.2046 58.98%
	n limits for V 292.					A A488 5
In 206.200		·0.088 ug/L		0.088	ug/L	0.0187 21.35%
QC value within All analyte(s) pa	n limits for Zn 206.	.200 Recovery	- NOT CATCULATED			
in analyce(s) bas	aped QC.					

Sequence No.: 34 Sample ID: CCV1 120301EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 03/01/12 6:05:04 PM Data Type: Reprocessed on 03/02/12 9:44:31 AM

			,						
Ме	an Data: CCV	L 120301EA I:PB	O:BA						•
		Mean Corre	ted	Calib.			Sample		
Αn	alyte	Intensi	y Conc.	Units	Std.Dev.		Units	Std.Dev.	RSD
Ag	338.289	87777.	499.4	lug/L	1.59	499.4	ug/L	1.59	0.32%
		hin limits for	Ag 338,289	Recovery =			4		
ΑI	308.215	43974.3		ug/L	385.5	20220	ug/L	385.5	1.91%
_		hin limits for							
As	188.979	7308.3		_ug/L	10.2	1021	ug/L	10.2	1.00%
_	OC ASING MIL	hin limits for					,_		
В	00 1 1	6819.		ug/L	24.9	1052	ug/L	24.9	2.36%
_		hin limits for							
ва	233.527	286242.0	D- 000 F00	. ug/L	3.1	1021	ug/L	3.1	0.31%
n -		hin limits for					17		
ве	313.107	7607717.5			7.1	1011	ug/L	7.1	0.70%
~		hin limits for				50060	17		
Ca	315.887	1003547.7		ug/L	449.2	50060	ug/ь	449.2	0.90%
		hin limits for				1010		3.0	0.370
Ca	214.440	583264.6		ug/L	3.8	1019	ug/L	3.0	0.37%
۵.		hin limits for				1000	/T	2.1	0.700
CO		113196.6				1023	ug/L	3.1	0.30%
a.,		hin limits for				1030	/7		A 446
Cr	267.716	189775.2 hin limita for		ug/L	4.4	1019	ug/L	4.4	0.44%
<b>~</b>		hin limits for				3010		4.0	0 200
Çu	327.393	189150.4 منابع المعالم المعالم			4.0	1019	ug/L	4.0	0.39%
	_	hin limits for				20240	/T	<b>60.0</b>	0.31%
rе	273.955	835424.0		ug/L		20340	ug/L	62.8	0.318
	-	hin limits for 114329.2				20020	/T	202.0	1.96%
κ.	766,490				392.9	20020	ug/L	392.9	1.906
м~		hin limits for 1989530.2			428.4	50750	ug/L	428,4	0.84%
Mg	200.213	hin limits for				30730	ug/D	420,4	0.042
Mn	257.610	87154.1			20.30	992 1	ug/L	20.30	2.05%
11111		hin limits for				334.1	ug/ II	20.30	2.05%
Мо	202.031	64501,2			4.2	1008	ug/L	4.2	0.41%
140		hin limite for				1000	ag, n	7.2	0.410
Ma	589.592	394289.1		ug/L		25020	ug/L	223.0	0.89%
110		hin limits for		_,		23020	45/ <b>2</b>	223.0	0.050
Ni	231.604	93356.1		ug/L	1.9	1021	ug/L	1.9	0.18%
		hin limits for		<b>—</b> ·			~5, ~	217	5,150
		49986.8			51.4	4912	ug/L	51.4	1.05%
•		hin limits for					-5/ -		
Рb	220.353	23056.6		ug/L	12.7	1010	ug/L	12.7	1,26%
		nin limits for			101.00%		3		
	206.836	8724.4		ug/L	5.8	1008	ug/L	5.8	0.58%
		nin limits for			100.76%	-,-			
	196.026	5873.8			4.02	992.4	uq/L	4.02	0.41%
		nin limits for		_	99.24%		5.		
	189.927	12324.8			6.3	1014	ug/L	6.3	0.62%
	QC value with	nin limits for	Sn 189.927	Recovery =	101.44%		_		
	421.552	1372789.9			8.76	987.3	ug/L	8.76	0.89%
	QC value with	nin limits for	Sr 421.552 1	Recovery =	98.73%				
Тi	337.279	93952.2	978.8	ug/L	19.04	978.8	ug/L	19.04	1.95%
	QC value wit)	nin limits for	ri 337.2 <mark>79</mark> 1	Recovery =	97.88%				
T1	190.801	16378.3	1050	ug/L	5.2	1050	ug/L	5.2	0.49%
	QC value with	in limits for			104.96%				
	92.402	353519.2		ug/L	3.6	1035	ug/L	3,6	0.35%
	_	in limits for							
	206.200	176511.4		ug/L	2,7	1022	ug/L	2.7	0.26%
		in limits for	in 206.200 I	Recovery =	102.24%				
A11	analyte(s) p	assed QC.							

Dilution:

Sequence No.: 35 Sample ID: CCB 120301EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/01/12 6:13:03 PM Data Type: Reprocessed on 03/02/12 9:44:32 AM

Mean Data: CCB 1203	Mass downsals	3	Caldh			Sample	
Analyte Ag 338.289	Theoret by	Cona	Unite	Std. Dov.	Cong.	Units	Std.Dev. RSD
Auglice	-20 8	-0 170	ua/L	0 2600	-0.170	ua/L	0.2600 153.10%
QC value within	limits for Ac	338 289	Recovery	= Not calculat	:eu		
Al 308.215	-116.7	-53.66	na/L	28.532	-53.66	uq/L	28.532 53.17%
QC value within	limits for Al	308.215	Recovery	= Not calculat	ed:	3/	
As 188,979	-4.6			0.5509	-0.643	ug/L	0.5509 85.73%
QC value within	limits for As	188.979	Recovery		eđ	_	
B	-7.1	-1.026	ug/L	0.9832	-1.026	ug/L	0.9832 95.80%
QC value within	limits for B	Recovery	= Not cal	culated			
Ba 233.527	1.6	0.006	uq/L	0.0554	0.006	ug/Ľ	0.0554 928.03%
QC value within	limits for Ba	233.527	Recovery	= Not calculat	:ed		
Be 313.107	899.4	0.119	ug/L	0.0147	0.119	ug/L	0.0147 12.38%
OC value within	limits for Be	313.107	Recovery	⇒ Not calculat	ed		
Ca 315.887	84.8	4.259	ug/L	0.9187	4.259	ug/L	0.9187 21.57%
QC value within	limits for Ca	315.887	Recovery	≈ Not calculat	:ed		
Cd 214.440	-76.7	-0.135	ug/L	0.0057	-0.135	ug/L	0.0057 4.20%
QC value within	limits for Cd	214.440	Recovery	⇒ Not calculate	:ed	,	
Co 228.616	-18.9	-0.171	ug/L	0.1802	-0.171	ug/L	0.1802 105.27%
QC value within	limits for Co	228.616	Recovery	⇒ Not calculat	ed		
Cr 267.716	-42.7	-0.227	ug/L	0.1232	-0.227	ug/L	0.1232 54.31%
QC value within	limits for Cr	267.716	Recovery	⇒ Not calculate	ed	-	
Cu 327.393	51.3	0.276	ug/L	0.5225	0.276	ug/L	0.5225 189.07%
QC value within	limits for Cu	327.393	Recovery	= Not calculat	ed	-	
Fe 273.955	-50.7	-1.231	ug/L	0.5301		ug/L	0.5301 43.05%
QC value within	limits for Fe	273.955	Recovery	= Not calculat	ed	-	10.000 51.000
K 766.490	177.9	31.22	ug/L	19.067	31.22	ug/L	19.067 61.08%
QC value within	limits for K 7	766.490 R	ecovery =	Not calculate	ed .	1-	0.0000.000.048
Mg 285.213	~7,0	-0.176	ug/L	0.3668	-0.176	ug/ь	0.3668 208.84%
QC value within	limits for Mg	285.213	Recovery	= Not calculat	ea .	/-	0.1092 3.69%
Mn 257.610	-259.7	-2.964	ug/L	0.1092		ug/L	0.1092 3.69%
QC value within	limits for Mn	257.610	Recovery	= NOC CATCUTAG	eu o ont	/1	0.2692 92.64%
Mo 202.031	-18.6	-0.291	ла\г	0.2692		ug/L	0.2092 92.046
QC value within	limits for Mo	202.031	Recovery	= NOC CATCUTAC	.eu 22.00	na/t.	4.819 21.05%
Na 589.592	360.2	22.90	па/г	- Not coloulat		ug/ II	4.019 21.050
QC value within	limits for Na	589.592	Recovery	0.1183	-0 056	ug/L	0.1183 209.36%
Ni 231.604	-5.2	-0.056	ug/L		-0.050	ug/ n	0:1103 203:50
QC value within	Timits for Ni	231.604	Recovery	0.6622	.6G _1 025	ug/L	0.6622 64.58%
P 213.617 QC value within	-10.4	-1.U23 -1.U23	ug/i	. Not calculate	-1.025 id	ug/ L	0.0022
	-2.5	. 110.CI	ua/L	0.3629	-0.110	ug/L	0.3629 329.75%
Pb 220.353 QC value within	1imita for Dh	220 353	eg, b Recovery		ed	37	
		-0.366	na/L	0.3969	-0.366	ug/L	0.3969 108.39%
Sb 206.836 QC value within	limite for Sh	206 836	Recovery			5/	
	11111111 TOL DD	-0.812	na/L	0.9685	-0.812	uq/L	0.9685 119.25%
Se 196.026 QC value within	limite for Se	196.026	Recovery	= Not calculat	ed .	. 3,	
Sn 189.927	-6.1	-0.502	ua/L	0.2251	-0.502	uq/L	0.2251 44.82%
QC value within	limits for Sn	189.927	Recovery		ed	•	
ar 421 552	-262.8	-0.189	uq/L	0.0113	-0.189	ug/L	0.0113 5.98%
QC value within	limite for Sr	421.552	Recovery	= Not calculat	ed:	•	
Ti 337,279	-11.9	-0.125	ug/L	0.2832	-0.125	ug/L	0.2832 227.20%
QC value within	limits for Ti	337.279	Recovery	= Not calculat	:eđ	=	
ጥን 190.803	17.2	1.065	ug/L	0.7345	1.065	ug/L	0.7345 68.95%
QC value within	limits for Tl	190.801	Recovery	= Not calculat	:ed	=	
W 292 402	-26.7	-0.083	uq/L	0.1376	-0.083	ug/L	0.1376 164.89%
QC value within	limits for V 2	92.402 R	ecovery =	Not calculate	ed	_	
Zn 206, 200	55.8	0.321	ug/L	0.0795	0.321	ug/L	0.0795 24.77%
QC value within	limits for Zn	206.200	Recovery	= Not calculat	e <b>d</b>		
All analyte(s) pass	ed QC.		-				
	_						

Sequence No.: 45
Sample ID: CCV2 120301EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Sequence No.: 45
Sample ID: CCV2 120301EA I:PB O:EA
Analyst:

Autosampler Location: 8
Date Collected: 03/01/12 7:07:24 PM
Data Type: Reprocessed on 03/02/12 9:44:42 AM

ean Data: CCV2 12	Mean Corrected	Calib.			Sample		
nalyte	Intensity	Conc. Units	Std.Dev.		Units	Std.Dev.	RSD
a 338.289	67024.4	381,3 ug/L	3.00	381.3	ug/L	3,00	0.79%
	limits for Ag 338	1.289 Recovery 14940 ug/L	= 101.68% 107.2	14940	11 <b>0</b> /L	107.2	0.728
1 308.215 OC value within	limits for Al 308	.215 Recovery	= 99.58%		ug, =		
ธ 188.979	5322.1	743.3 ug/L	12.05	743.3	ug/L	12.05	1.62
QC value within	limits for As 188	.979 Recovery			4.0		
	5354.3	824.4 ug/L	3.44	824.4	ug/L	3.44	0.428
	llimita for B Rec 218221.2	overy = 109.91% 778.0 uq/L	4.17	778.0	ug/L	4.17	0.548
a 233.527	limits for Ba 233			.,,,,	ug, ~		
e 313.107	5815534.8	773.2 ug/L	9.49	773.2	ug/L	9.49	1.238
QC value within	limits for Be 313	.107 Recovery	<b>= 1</b> 03.09%				
	768923.5	38360 ug/L		38360	ug/L	120.7	0,318
_	limits for Ca 315		± 102.29* 4.74	794 5	ug/L	4.74	0,608
d 214.440	449195.9 1 limits for Cd 214	784.5 ug/L		704.5	ug/ n	4,73	0.00.
o 228.616	86334.4	780.4 uq/L	5.79	780.4	ug/L	5.7 <b>9</b>	0.748
OC value within	limits for Co 228						
r 267.716	144542.8	775.1 ug/L	6.37	775.1	ug/L	6.37	0.829
QC value within	limits for Cr 267	.716 Recovery	= 103.35%			4 34	^ ===
u 327.393	141595.5	762,9 ug/L	4.34	762.9	ug/L	4.34	0.579
	limits for Cu 327	7,393 Recovery 15510 ug/L	101.71%	15510	uq/L	100.5	0.658
e 273.955	636956.9 1 limits for Fe 273			13310	ug/ L	2013	• • • • • • • • • • • • • • • • • • • •
766.490	85231.0	14920 ug/L	72.7	14920	ug/L	72.7	0.498
OC value within	limits for K 766.		99.49%		_		
α 285.213	1519603.5	38770 ug/L	150.2	38770	ug/L	150.2	0.398
QC value within	limits for Mg 285	.213 Recovery	= 103.37%	776 0		2 62	0.349
n 257.610	68181.2	776.2 ug/L	2.63	776.2	սց/ո	2.63	0.341
	limits for Mn 257 49002.3	765.8 ug/L	9.92	765.8	ug/L	9.92	1.309
o 202.031	limits for Mo 202	.031 Recovery			-3		
a 589.592	292913.0	18590 ug/L	83.4	18590	ug/L	83.4	0.45
OC value within	limite for Na 589	.592 Recovery	<b>≈ 99.14</b> %		•		
1 231 604	71250.6	779.6 uq/L	5.25	779.6	ug/L	5.25	0.67
QC value within	limits for Ni 231	.604 Recovery	= 103.95*	2002	/1	60.8	1.609
213.617	38694.5	3802 ug/L	60.8	3802	ug/L	00.0	1.00
QC value within	limits for P 213. 18093.0	792 6 va/L	13.28	792.6	ug/L	13.28	1.689
b 220.353 OC value withir	limits for Pb 220	.353 Recovery	= 105.68%		J.		
h 206 836	6597.2	761.9 ug/L	9.46	761.9	ug/L	9.46	1.24
OC value within	limits for Sb 206	.836 Recovery	≈ 101.59%		,_	= 04	
e 196.026	4606.1	778.2 ug/L	7.24	778.2	ug/L	7.24	0.93
	limits for Se 196	0.026 Recovery	12.36	777 3	ug/L	12.36	1.59
n 189.927	9443.5 1 limits for Sn 189	777.3 ug/L		,,,,	ug/ D	12.30	1.00
r 421.552	1024127.5	736.5 ug/L	2.65	736.5	ug/L	2.65	0.36
OC value within	limits for Sr 421	.552 Recovery	<b>= 98.20%</b>		_		
i 337.279	71727.1	747.3 ug/L	2.18	747.3	ug/L	2.18	0.299
QC value within	limits for Ti 337	.279 Recovery	= 99.63%		17	<i>(</i> 73	0.049
1 190.801	12563.8	805.1 ug/L	6.73	805.1	ug/L	6.73	0.849
	limits for Tl 190	.801 Recovery	4.93	791 1	ug/L	4.93	0.639
292.402	266822.6 limits for V 292.	781.1 ug/L 402 Recovery =		10111	7912	2123	5,00
n 206.200	135948.8	787.4 ug/L	5.21	787.4	սց/Ն	5,21	0.66
OC value within	limits for Zn 206	.200 Recovery					
ll analyte(s) pas	nad 00	-					

Initial Sample Wt:

Dilution:

Sequence No.: 46 Sample ID: CCB 120301EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals

Autosampler Location: 2 Date Collected: 03/01/12 7:12:05 PM Data Type: Reprocessed on 03/02/12 9:44:43 AM

W D 00D 100	20102 T.DD O.DZ					
Mean Data: CCB 120		Calib.			Sample	
	Intensity	Conc. Units	Std.Dev.	Conc.		Std.Dev. RSD
Analyta Ag 338.289	-46.5	Conc. Units -0.265 ug/L	0.3609 -	0.265	ug/L	0.3609 136.31%
OC value within	limits for Ag	338.289 Recovery	= Not calculated		<b>J</b> .	
Al 308.215		-90.25 ug/L	8.171 -	90.25	ug/L	8.171 9.05%
QC value within	limits for Al	308.215 Recovery	= Not calculated			
As 188.979	-0.5	-0.072 ug/L		0.072	ug/L	0.7065 987.26%
QC value within		188.979 Recovery	= Not calculated			
В	6.3	0.871 ug/L		0.871	ug/L	0.9628 110.54%
		Recovery = Not cal				0 1001 007 100
Ba 233.527		-0.044 ug/L		0.044	ug/L	0.1001 226.43%
_		233.527 Recovery		0 001	uq/L	0.0428 52.66%
Be 313.107	615.8	0.081 ug/L		0.001	ug/ n	0.0420 32.000
Ca 315.887		313.107 Recovery 14.25 ug/L	3 460	14 25	na/L	3.460 24.28%
		315.887 Recovery		14.25	ug, n	5.400 21.200
Cd 214.440	-52.8		0.0192 ~	0.092	ua/L	0.0192 20.76%
OC value within	limits for Cd	214.440 Recovery		0.022	45/2	
Co 228,616	4.4	0.042 uq/L		0.042	uq/L	0.3061 737.44%
		228.616 Recovery			. 5.	
Cr 267.716	3.5			0.023	ug/L	0.2291 >999.9%
		267.716 Recovery			•	
Cu 327.393		1.256 ug/L	0.5054	1.256	ug/L	0.5054 40.24%
QC value within	limits for Cu	327.393 Recovery	Not calculated		_	
Fe 273.955	-420.7	-10.32 ug/L	0.312 -	10.32	ug/L	0.312 3.02%
QC value within	limits for Fe	273.955 Recovery	= Not calculated			
K 766.490		66.72 ug/L		66.72	ug/L	38.538 57.76%
QC value within	limits for K 7	66.490 Recovery =	Not calculated			
Mg 285.213		-0.314 ug/L		0.314	ug/L	0.9018 286.85%
QC value within	limits for Mg	285.213 Recovery	= Not calculated			
Mn 257.610	-428.0	-4.885 ug/L	0.0601 -	4.885	ug/L	0.0601 1.23%
		257.610 Recovery			1=	
Mo 202.031	6.3	0.097 ug/L		0.097	ug/L	0.2539 263.08%
	limits for Mo	202.031 Recovery	= Not calculated	22 00	ug/L	7.153 30.06%
Na 589.592	374.5	23.80 ug/L		23.80	սց/ հ	7.153 30.00%
_		589.592 Recovery -0.120 ug/L		0 120	ug/L	0.1042 87.13%
Ni 231.604	-11.0	231.604 Recovery		0.120	ug/ II	0.1042 07.136
P 213.617	6.1	0.598 ug/L	0.4729	0.598	ug/L	0.4729 79.07%
OC value within		13.617 Recovery =	Not calculated		-5/ -	011100 10.0.0
Pb 220.353	-2.8	-0.124 ug/L	0.3017 -	0.124	ug/L	0.3017 243.29%
OC value within		220.353 Recovery			-37 -	
Sb 206.836	0.5	0.053 ug/L	1.0253	0.053	ug/L	1.0253 >999.9%
OC value within		206.836 Recovery	Not calculated		<u>.</u>	
Se 196.026	1.9	0.329 ug/L	0.5437	0.329	ug/L	0.5437 165.50%
QC value within	limits for Se	196.026 Recovery	<b>=</b> Not calculated			
Sn 189.927	-2.8	-0.230 ug/L	0.2780 -	0.230	ug/L	0.2780 120.73%
QC value within	limits for Sn	189.927 Recovery				
Sr 421.552	-155.0	-0.111 ug/L		0.111	ug/L	0.1571 141.07%
		421.552 Recovery	= Not calculated		1-	
Ti 337.279	-13.1	-0.137_ug/L		0.137	ug/L	0.1994 145.31%
	limits for Ti	337.279 Recovery	≈ Not calculated	A = 4.4	17	0.0000 60.040
Tl 190.801	9.2	0,544 ug/L		0.544	ug/ь	0.3797 69.84%
		190.801 Recovery	> NOT CATCUIACEC	0.004	va /ī	0 2040 443 054
V 292.402	-23.6	-0.064 ug/L 92.402 Recovery =		0.064	п <b>3</b> /п	0.2848 441.95%
		92.402 Recovery = -0.325 uq/L	0.1855 -	0.325	ua/I.	0.1855 57.06%
Zn 206,200	-56.5	206.200 Recovery		0.323	α <del>3</del> 1 μ	5.1055 57.000
All analyte(s) pass		200.200 RECOVERY	- 400 0010010000			
wit anathre(a) base	sea ye.					

Reprocessing Begun

Logged In Analyst: chemist_metals

Technique: ICP Continuous

Results Data Set (original): 120306B6010X

Results Library (original): C:\PE\chemist\RESULTS\Results.mdb
Results Data Set (reprocessed):

Results Library (reprocessed):

Sequence No.: 1

Sample ID: CalBlk 120306EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 1 Date Collected: 03/06/12 2:43:44 PM Data Type: Reprocessed on 03/07/12 2:12:06 PM

Mean Data:	CalBlk 120306EA I:PB O:EA
	Mean Corrected
Analyte	Intensity

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev	. RSD	Conc.	
Ag 338.289	-34.5	75.31	218.36%	[0.00]	ug/L
Al 308.215	<b>225.0</b>	5.57	2.48%	[0.00]	
As 188.979	-0.1	2.27	>999.9%	[0.00]	
В	57.3	4.14	7.22%	[0.00]	
Ba 233.527	219.5	7.26	3.31%	[0.00]	
Be 313.107	-9357.1	98.30	1.05%	[0.00]	
Ca 315.887	471.4	24.54	5.21%	[0.00]	
Cd 214,440	603 <b>.6</b>	14.36	2.38%	[0.00]	
Co 228.616	. 128.2	21,53	16.78%	[0.00]	
Cr 267.716	1076.6	23.06	2,14%	[0.00]	
Cu 327.393	-1 <b>6</b> 6.0	25.00	15.06%	[0.00]	ug/L
Fe 273.955	369.6	297.63	80.52%	[0.00]	
K 766.490	-621.3	114.69	18.46%	[0.00]	
Mg 285.213	-294.8	16.48	5,59%	[0.00]	
Mn 257.610	-90.4	4.41	4.88%	[0.00]	
Mo 202.031	178.1	17.19	9.65%		ug/L
<b>N</b> a 589.592	-90.4	155.14	157.64%		ug/L
Ni 231.604	-214.9	11.57	5.38%		ug/L
P 213.617	-16.3	4.28	26.25%	[0.00]	ug/L
Pb 220.353	-25.6	12.46	48.61%	[0.00]	
Sb 206.836	15.1	2.77	18.35%		ug/L
Se 196.026	~13.5	3.11	22.99%	[0.00]	ug/L
Sn 189.927	203.8	2.68	1.31%		ug/L
Sr 421.552	1818.4	292.59	16.09%	(0.00)	ug/L
Ti 337.279	~712.0	8.58	1.20%		ug/L
Tl 190.801	~177.7	6.58	3.70%		ug/L
V 292.402	-247.6	120.13	48.52%		ug/L
Zn 206.200	99.6	3.02	3.04%	[0.00]	ug/L

Sequence No.: 2 Autosampler Location: 5 Sample ID: STD 1 120306EA I:PB O:EA

Analysti

Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Dilution:

Date Collected: 03/06/12 2:48:34 PM Data Type: Reprocessed on 03/07/12 2:12:07 PM

Mean Data:	STD 1 120306EA I:PB 0:EA				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Ag 338.289	99.1	20.24	20.43%	[1.00]	ug/L
Al 308.215	252.9	15.49	6.12%	[100.00]	
As 188.979	14.1	4.17	29.64%	[3.50]	
В	304.8	12.20	4.00%	[50.00]	
Ba 233.527	1381.4	16.34	1.18%	[5.00]	
Be 313.107	14538.9	212.66	1.46%	[2.00]	
Ca 315.887	2389.9	44.69	1.87%	[100.00]	
Cd 214.440	2867.1	37.50	1.31%	[5.00]	
Co 228.616	583.6	32.89	5.64%	[5.00]	
Cr 267.716	1036.7	10.59	1.02%	[5.00]	
Cu 327,393	645.3	41.34	6.41%	[5.00]	
Fe 273.955	2117.7	10.80	0.51%	[50.00]	
K 766.490	4185.3	323.92	7.748	[1000.00]	ug/L
Mg 285.213	2504.3	22.74	0.91%	[50]	ug/L
Mn 257.610	441.1	6.26	1.42%	[5.00]	ug/L
Mo 202.031	271.7	18.43	6.78%	[5.00]	ug/L
Na 589.592	12593.0	285.97	2.27%	[1000.00]	ug/L
Ni 231.604	507.5	12.51	2.47%	[5.00]	ug/L
P 213.617	209.3	7.82	3.74%	[25.00]	ug/L
Pb 220.353	81.6	12.68	15.54%	[3.00]	ug/L
9b 206.836	28.9	2.90	10.05%	[5.00]	ug/L
Se 196.026	30.7	14.69	47.93%	[5.00]	ug/L
Sn 189.927	13.3	1.10	8.29%	(5.00)	ug/L
Sr 421,552	5725.9	134.84	2.35%	[5.00]	ug/L
Ti 337.279	234.5	18.67	7.96%	[5.00]	ug/L
Tl 190.801	85.7	7.31	8.53%	[5.0 <b>0</b> ]	ug/L
V 292.402	1501.6	85.33	5.68%	[5,00]	
Zn 206.200	3525.7	9.52	0.27%	[20.00]	ug/L

Sequence No.: 3

Sample ID: STD 2 120306EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : ohemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 3 Date Collected: 03/06/12 2:53:31 PM Data Type: Reprocessed on 03/07/12 2:12:08 PM

				. ~	
Mean Data:	STD 2 120306EA I:PB 0:EA				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	
Ag 338.289	75954.2	432.16	0.57%	[500.0]	ug/L
Al 308.215	46191.1	183.47	0.40%	[20000.00]	ug/L
As 188.979	5111.4	59.04	1.16%	[1000.00]	
В	5997.8	40.60	0.68%	[1000.00]	
Ba 233.527	240357.1	618.12	0.26%	[1000.00]	ug/L
Be 313.107	6339738.5	19569.08	0.31%	[1000.00]	ug/L
Ca 315.887	876316.2	3805.25	0.43%	[50000]	
Cd 214.440	489698.5	1978.05	0.40%	[1000.00]	ug/L
Co 228.616	93622.7	330.38	0.35%	[1000.00]	ug/L
Cr 267.716	162794.9	511.69	0.31%	[1000.00]	
Cu 327.393	116564.7	583.02	0.50%	[1000.00]	ug/L
Fe 273.955	693249.9	2491.83	0.36%	[20000]	ug/L
K 766.490	80924.7	335.98	0.42%	[20000]	ug/L
Mg 285.213	1662789.8	5500.81	0.33%	[50000]	ug/L
Mn 257.610	76381.7	372.59	0.49%	[1000.00]	ug/L
Mo 202.031	54286.5	683.08	1.26%	[1000,00]	ug/L
Na 589.592	289627.2	922.67	0.32%		ug/L
Ni 231.604	78134.7	343.37	0.44%		ug/L
P 213.617	41439.2	751.17	1.81%	[5000]	ug/L
Pb 220.353	20037.6	339.71	1,70%		ug/L
Sb 206.836	7161.2	79.25	1.11%		ug/L
Se 196,026	4894.4	126.43	2.58%		ug/L
<b>Sn 18</b> 9.927	10471.0	133.71	1.28%		ug/L
Sr 421.552	1020493.2	3807.76	0.37%		ug/L
Ti 337.279	76440.4	268.75	0.35%		ug/L
Tl 190.801	13510.5	216.10	1.60%		ug/L
V 292.402	299684.0	1331.52	0.448		ug/L
Zn 206.200	145989.3	623.08	0.43%		ug/L

Sample ID: STD 3 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 10 Date Collected: 03/06/12 2:56:43 PM Data Type: Reprocessed on 03/07/12 2:12:10 PM

Mean Data: STD 3	3 120306EA I:PB O: Mean Corrected	EA		- 4	
Analyte	Intensity	Std.Dev.	Dan	Calib	
Ag 338.289	147667.0	1334.72		Conc. Units	
Al 308.215	89982.4	329.62	0.90%	[1000.00] ug/L	
As 188.979	9855.1	77.67	0.37%	[40000.00] ug/L	
В	11756.7	91.42	0.79%	[2000.00] ug/L	
Ba 233.527	459176.6	3666,64	0.78%	[2000.00] ug/L	
Be 313.107	12135630.0	138636,20	0.80%	[2000.00] ug/L	
Ca 315.887	1720958.3	16028,85	1.14%	[2000.00] ug/L	
Cd 214.440	924198.6	8227,99	0.93%	[100000.0] ug/L	
Co 228.616	177425.4	1602.15	0.89% 0.90%	[2000.00] ug/L	
Cr 267.716	312055.8	2486.57	0.80%	[2000.00] ug/L	
Cu 327.393	226495.8	2201.67	0.97%	[2000.00] ug/L	
Fe 273,955	1312960.6	11180.20	0.85%	[2000.00] ug/L	
K 766.490	161949.1	396.80	0.25%	[40000] ug/L	
Mg 285.213	3221531.9	29082.80	0.90%	[40000] ug/L	
Mn 257.610	148164.1	412.75	0.28%	[100000] ug/L	
Mo 202.031	101952.2	784.07	0.77%	[2000.00] ug/L	
Na 589.592	571318.4	4739.84	0.83%	[2000.00] ug/L	
Ni 231.604	147918.0	1290.35	0.87%	[50000] ug/L	
P 213.617	78181.5	739.05	0.95%	[2000.00] ug/L	
Pb 220.353	37510.0	289.39	0.77%	[10000] ug/L	•
Sb 206.836	13676.3	60,09	0.44%	[2000.00] ug/L [2000.00] ug/L	
Se 196.026	9299.1	82,39	0.89%	[2000.00] ug/L	
Sn 189,927	20123.7	62.16	0.31%	(2000.00) ug/L	
Sr 421.552	2017882.2	16760.60	0.83%	[2000.00] ug/L	
Ti 337,279	150287.8	680.06	0.45%	[2000.00] ug/L	
Tl 190.801	25234.3	45.95	0.18%	12000.003 49/1	
V 292.402	580068.5	4986.17	0.86%	[2000.00] ug/L	
Zn 206.200	276292.8	2495.52	0.90%	[2000.00] ug/L [2000.00] ug/L	

Cali	hrat	100	Garmon was

Analyte Ag 338.289	8tds. 3	Equation Lin Thru 0	Intercept	Slope	Curvature	Corr. Coef.	Reslope
AĬ 308.215	3	Lin Thru 0	0.0	148.5	0.00000	0.999935	
As 188.979	3		0.0	2.262	0.00000	0.999944	
B	3	Lin Thru 0	0.0	4.964	0.00000	0.999890	
Ba 233.527	3	Lin Thru 0	0.0	5.902	0.00000	0.999967	
Be 313.107	_	Lin Thru 0	0.0	231.7	0.00000	0.999827	
Ca 315.887	3	Lin Thru 0	0.0	6122	0.00000	0.999842	
Cd 214.440	3	Lin Thru 0	0.0	17.27	0.00000	0.999973	
	3	Lin Thru 0	0.0	467.6	0.00000	0.999721	
Co 228.616	3	Lin Thru 0	0.0	89.69	0.00000	0.999760	
Cr 267.716	3	Lin Thru 0	0.0	157.4	0.00000		
Cu 327.393	3	Lin Thru 0	0.0	113.9	0.00000	0.999852	
Fe 273.955	3	Lin Thru O	0.0	33.19	0.00000	0.999932	
K 766.490	3	Lin Thru 0	0.0	4.048	0.00000	0.999755	
Mg 285.213	3	Lin Thru 0	0.0	32,42	0.00000	1.000000	
Mn 257.610	3	Lin Thru 0	0.0	74,54	0.00000	0.999918	
Mo 202.031	3	Lin Thru O	0.0	51,64	_	0.999924	
Na 589.592	3	Lin Thru O	0.0	11.46	0.00000	0.999671	
Ni 231.604	3	Lin Thru 0	0.0	74.79	0.00000	0.999983	
P 213.617	3	Lin Thru 0	0.0	7.912	0.00000	0.999750	
Pb 220.353	3	Lin Thru 0	0.0		0.00000	0.999718	
Sb 206.836	3	Lin Thru 0	0.0	19.01	0.00000	0.999636	
Se 196.026	3	Lin Thru 0		6.903	0.00000	0.999825	
Sn 189.927	3	Lin Thru 0	0.0	4.699	0.00000	0.999783	
Sr 421.552	3	Lin Thru 0	0.0	10.14	0.00000	0.999869	
Ti 337.279	ž	Lin Thru 0	0.0	1011	0.00000	0.999990	
Tl 190.801	3	Lin Thru 0	0.0	75.40	0.00000	0.999976	
	3	TILL O	0.0	12.80	0.00000	0.999610	
			í	391			

Method: 120306E	-6010B	1-C	Pag	e 5	Date: 03/07/12 2:12:11 PM			
V 292.402 Zn 206.200	3 3	Lin Thru 0 Lin Thru 0	0.0	292.0 139.7	0.00000 0.00000	0.999913 0.999745		

Dilution:

Sequence No.: 5 Sample ID: ICV 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 11 Date Collected: 03/06/12 3:01:29 PM Data Type: Reprocessed on 03/07/12 2:12:11 PM

			**					
Me	an Data: ICV 12	0306EA I:PB O:E	A					
		Mean Correcte	d Calib.			Sample		
AΓ	alyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag	338.289	72256.9	486.5 ug/L	2.28	486.5	ug/L	2.28	0.47%
	QC value withi	n limits for Ag	338,289 Recovery =					
AI	308.215	56759.1	25010 ug/L	136.8	25010	ug/L	136.8	0.55%
2 ~	QC value withi		308.215 Recovery =			_		
AB	188.979	4763.0	959.5 ug/L	8.10	959.5	ug/L	8.10	0.84%
В	Ac Autre Atent	5629.2	188.979 Recovery =		1010			
	OC value within		1040 ug/L Recovery = 103.97%	12.5	1040	ug/L	12.5	1.21%
Ba	233.527	230439.5	990.4 ug/L	5.04	000 4	ug/L	F 0.4	0 500
			233.527 Recovery =	90 049	990.4	ug/L	5.04	0.51%
Ве	313.107	6147473.3	1008 ug/L	5.0	1008	ug/L	5.0	0.49%
	QC value within	limite for Be	313.107 Recovery =	100.78%	1000	49, 5	3.0	0.496
Ca	315.887	428150.7		198.6	24690	ug/L	198.6	0.80%
	QC value within	limits for Ca	315.887 Recovery =	98.74%		~5, =	170.0	0.00%
Cd	214.440	489332.4	1045 ug/L	7.6	1045	ug/L	7.6	0.73%
	QC value within	limits for Cd	214.440 Recovery =	104.54%				
Co	228.616	95867.0	1067 ug/L	6.4	1067	ug/L	6.4	0.60%
		limits for Co	228.616 Recovery =	106.71%				
Cr	267.716	165190.1	1050 ug/L	5.4	1050	ug/L	5.4	0.52%
<b>a</b>		limits for Cr	267.716 Recovery =					
Çu	327,393	114066.1	1001 ug/L	2.1	1001	ug/L	2.1	0.21%
Po		Limite for Cu	327.393 Recovery =	100.14%				
re	273.955	846213.1	25340 ug/L 273.955 Recovery =	157.5	25340	ug/L	157.5	0.62%
к,	766.490	96669.0	23850 ug/L		22.050	1=		
			66.490 Recovery # 9	181.3	23850	ug/L	181.3	0.76%
Ma	285.213	806117.9	24840 ug/L		24940	ug/L	150.0	0.549
9			285.213 Recovery =		24040	ug/п	158.9	0.64%
Mn	257.610		1052 ug/L	3.8	1052	ug/L	3.8	0.36%
			257.610 Recovery =		1032	ug/ L	3.0	0.308
	202.031	50275.7	975.2 ug/L	5.66	975.2	ug/L	5.66	0,58%
	QC value within	limits for Mo	202.031 Recovery =	97.52%		3,	3.00	0.500
Na	589.592	278566.5	24280 ug/L	186.2	24280	ug/L	186.2	0.77%
	QC value within	limite for Na	589.592 Recovery =	97.12%		J.		
	231.604	79967.6	1066 ug/L	5.0	1066 n	ızg/L	5.0	0.47%
		limits for Ni	231.604 Recovery =	106.58%				
	13.617	39189.9	4953 ug/L	45.1	4953 t	ug/L	45.1	0.91%
			13.617 Recovery = 9					
	220.353	19762.1	1039 ug/L	6.3	1039 ι	ug/L	6.3	0.61%
			220.353 Recovery =			4-		
	206.836 OC value within	6956.7	1008 ug/L 206.836 Recovery =	9.0	1008 ι	1 <b>3</b> /F	9.0	0.89%
	96.026	4824.4	208.836 Recovery ≡ 1027 ug/L		1007 .		00.0	
			196.026 Recovery =	22.3	1027 ι	л <b>д</b> / г	22.3	2.17%
	189.927	5316.3	524.1 ug/L	6.14	524.1 (	ia/I.	6.14	1.17%
			189.927 Recovery =	104.82%	324.1	497 D	0.14	1.1/5
	421.552	991996.0	980.3 ug/L	7.04	980.3 t	ια / τ.	7.04	0.72%
			121.552 Recovery =		200.5	-9, 1	7.04	0.720
Ti	337.279	74059.7	981.1 ug/L	6.14	981.1 u	ıq/L	6.14	0.63%
	QC value within	limits for Ti 3	337.279 Recovery =	98.11%		<b>-</b> -		2.000
T1	190.801	13109.8	1043 ug/L	7.0	1043 u	ıg/L	7.0	0.67%
		limits for Tl 3	190.801 Recovery =	104.31%				
	92.402	291329.9	1016 ug/L	5.6	1016 ປ	ıg/L	5.6	0.56%
			2.402 Recovery = 1			_		
	206.200	147889.8	1063 ug/L	7.8	1063 ບ	ıg/L	7.8	0.74%
			206.200 Recovery =	T06.31%				
WIT	analyte(s) pass	seu QC.						

Dilution:

Sequence No.: 6 Sample ID: ICB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/06/12 3:06:12 PM Data Type: Reprocessed on 03/07/12 2:12:12 PM

							-				
Me	an Data: ICB 1		PB 0:EA		0+14 <b>&gt;</b>						
7.0	alyte	Mean Co			Calib.		_		Sample		
	338.289	Tuce	neity	Conc.	Units	8to	d.Dev.	Conc.	Units	Std.Dev	. RSD
Ay	338.289		10.0	~0.121	. uu/li	v	. 2492	-0.121	ug/L	0.2492	205.97%
	QC value with	in limits	for Ag 3	38.289	Recovery	= Not	calculated				
ΑT	308.215		6.7	2.981	.ug/L ¯	3	. 9996	2.981	ug/L	3.9996	134.16%
	QC value with	in limits :	for Al 3	08.215	Recovery	= Not	calculated		277		
Ae	188.979		0.6	0.127	uq/L	0	4080	0.127	ug/L	0.4080	321,97%
	QC value with	in limite :	for As 1	88.979	Recovery	= Not	calculated	,	~9/ <u>-</u>	0.4000	321.716
В		<u>.</u>	52.4		ug/L		0408		ug/L	0.0400	0.460
	QC value with			acovoru	- Mot as	יט מארונים	. 0400	0.072	ug/ L	0.0408	0.46%
Вa	233.527		11.0	0.0461.9	= NOC Ca.				4_	_	
Du				V.U48	ug/L		0969	0.048	ug/L	0.0969	200.04%
п.	QC value with	THE TIME OF	LOF Ba 2	33.527	Recovery	= Not					
ве	313.107	-25	90.6	-0.048	ng/L	0.	0699	-0.048	ug/L	0.0699	145.64%
	QC value with	in limits 1	for Be 31	L3.107	Recovery	<ul><li>Not</li></ul>	calculated		_		
Ca	315.887		1.1	0.071	uq/L	0.	2589	0.071	ug/L	0.2589	367.03%
	QC value with	in limite f	for Ca 31	5.887	Recovery	= Not	calculated		<b>5,</b>	******	
Cd	214.440		27.1	0.058			0114	0.058	na/1.	0 0114	10 428
	QC value with			4.440	Pecovery	- NAE	delanlated	0.050	ug/ D	0.0114	19.43%
Co	228,616	_1	15.1	-0.168	wecovery				1.		
-				-0.100	ug/L		3570	-0.168	ug/ ь	0.3570	212,90%
~	QC value with			8.616	Recovery						
CI	267.716		4.6	0.220	ug/L	0.	0283	0.220	ug/L	0.0283	12.87%
	QC value with:	ın limite f	or Cr 26	7.716	Recovery	= Not	calculated				
	327.393		1.1	-0.097	ug/L	0.	1405 -	0.097	uq/L	0.1405	144.25%
	QC value with:	in limits f	or Cu 32	7.393	Recovery	= Not	calculated		J. —		
	273.955	-16	8.9	-5.102	ug/L	0.		5.102	na/L	0 7105	13.93%
	QC value with:	n limits f	or Pe 27	3.955	Recovery	₩ Not	calculated	J. 102	49/10	0.7103	13.938
К 7	66.490		8.8	9.580	110/T.		7762	0 500	/T	40 8860	
	QC value with			490 B	ug/ 2	Tab a	//04 -11	9.580	ш9/ Б	49.7763	519.60%
Mor	285.213								-		
			.8.1	0.559	_ид/п	0.	2660	0.559	ug/L	0.2660	47.59%
	QC value withi										
	257.610		7.0	0.228	ug/L	0.	1952	0.228	ug/L	0.1952	85.73%
	QC value withi	n limits f	or Mn 25	7.610 I	Recovery	= Not	calculated				
	202.031		2.5	0.242	ug/L	0.	0664	0.242	ug/L	0.0664	27.37%
	QC value withi	n limits f	or Mo 20	2.031 E	Recovery	= Not	calculated		3, -		271370
	589.592	-2	0.5	-1.787	ug/L	13		1 797	ug/L	13.3965	740 668
	QC value withi	n limits for	or Na 58	9 592 1	ro, ~ Recovery	- Not	calculated.	4.707	ug/ L	13.3703	/49.55%
Ni	231.604		8.0						/-		_
				0.374	ug/ Б		0748	0.374	սց/ և	0.0748	20.01%
	QC value withi								_		
	13,617		9.7	1.221	ug/L	0.	4207	1.221	ug/L	0.4207	34.46%
	QC value withi										
	220.353		9.6		ug/L	0.	7683	1.033	uq/L	0.7683	74.35%
1	QC value withi	n limits fo	or Pb 22	0.353 R	lecovery	= Not	calculated		J,		
	206.836		1.6	0.231	ug/L			0.231	na /1.	0.5070	210 248
1	QC value withi			6.836 B	ecovery :	≈ Not α	hatelunlar	0.231	ug/D	0.3070	217.348
Se	196.026		2.0	0 424	ug/L	- 1100 V			/7	2 (=00	
	QC value withi	n limita fa	2.0 22.0	C 036 D	ag/ L	ا د د	11	0.424	ug/L	3.6599	863.46*
- Cm -	SC ANTHE MICHT										
	189.927		2.2	1.202	ug/ь	0	L685	1.202	ug/L	0.1685	14.01%
	QC value withi	n limits to	or Sn 18	9.927 R	ecovery	¤ Not o					
	121.552		8.0	0.146	ug/L	0.0	)521	0.146	ug/L	0.0521	35.58%
(	QC value withi	n limits fo	or Sr 42:	1.552 R	ecovery «	□ Not o	calculated		•		
Ti :	337.279	-11	1.6	-0.154	ug/L	0.4	1785 -	0.154	ug/L	0.4785	909.809
(	C value withi	n limits fo	or Ti 331	7.279 R	ecovery :	⊨ Not α	alculated		- <i>31</i> <b>-</b>	V. 1703 .	
Tl	190.801		5.7	1.224				1 224 -	ua/T.	0 4017	40 170
	C value within			1 001 P	~21 ~	U.4 - Nar -	eria. Glandakar	1.224 1	ч9/ п	0.4917	40.TP#
יר אר עד	22.402								-	_	
			1.8	0.126	ug/ь	0.3	1957	D,126 1	ug/L	0.3957 3	312.87%
_ {	C value within										
	206.200	-53		-0.378			1696 - (	3.378 ι	лд/L	0.0696	18.42%
	C value within	limits fo	or <b>Z</b> n 206	.200 R	ecovery =	= Not c	alculated			-	
All	analyte(s) pa	ased QC.									

Sequence No.: 8
Sample ID: ICSA 120306EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metale
Initial Sample Wt:
Dilution:

Autosampler Location: 12
Date Collected: 03/06/12 3:15:58 PM
Data Type: Reprocessed on 03/07/12 2:12:14 PM

Mean Data: ICSA 120306BA I:PB O:EA											
	Mean Correcte	đ Calib.			Sample	Std.Dev. RSD 0.4300 >999.9%					
Analyte	Intensity	Conc. Units	Std.Dev.	Cong.	Unite	Std.Dev. RSD					
Ag 338.289	-1.4	-0.010 ug/L	0.4300	-0.010	ug/L	0.4300 >999.9%					
	hin limits for Ag	338.289 Recovery	□ Not calculate	:d							
Al 308.215	442418.5	195100 ug/L	868.6	195100	ug/L	868.6 0.45%					
		308.215 Recovery									
As 188.979	9.2	1.856 ug/L	0.6333	1.856	ug/L	0.6333 34.13%					
		188.979 Recovery									
В			6.371	~31.76	ug/L	6.371 20.06%					
		Recovery = Not cal			. /-						
Ba 233.527		1.103 ug/L	0.5804		ug/L	0.5804 52.64%					
QC value wit	nin limics for Ba	233,527 Recovery	= Not calculate		/*	0.0440.05.000					
Be 313.107	1/98/.6 bin limite fem Do	-0.122 ug/L 313.107 Recovery	0.0448	~U.122	ug/L	0.0448 36.82%					
		196100 ug/L			~ /T	1115 6 0 578					
		315.887 Recovery		190100	ug/L	1115.6 0.57%					
Cd 214.440		-0.498 ug/L	0.1443	-0 499	ua/I.	0.1443 28.98%					
		214.440 Recovery			ug/ D	0.1443 20.90%					
Co 228.616	837.7		0.3192		ug/L	0.3192 217.34%					
		228.616 Recovery	= Not calculate		ug/ L	0.5252 217.549					
Cr 267.716		-0.734 ug/L			ua/Ti	0.0935 12.74%					
		267.716 Recovery		d	497 2	0,0555 12.740					
Cu 327.393	-205.0	-1.800 ug/L	0.2708		ug/L	0.2708 15.05%					
		327.393 Recovery		d	~5/ ~	0.1.00 13.03					
		184100 ug/L			ug/L	569.0 0.31%					
		273.955 Recovery			<b>37</b>						
K 766.490			24.103	48,76	ug/L	24.103 49,43%					
		66.490 Recovery =			<b>3</b> +						
Mg 285,213		190800 ug/L	689.6		uq/L	689.6 0.36%					
QC value wit	hin limits for Mg	285.213 Recovery	= 95.42%		•						
Mn 257.610		0.017 ug/L		0.017	ug/L	0.2180 >999.9%					
QC value wit	hin limita for Mn	257.610 Recovery	= Not calculate	đ							
Mo 202.031		0.180 ug/L	0.5268		ug/L	0.5268 292.30%					
QC value with	hin limits for Mo	202.031 Recovery	= Not calculate								
		-14.73 ug/L			ug/L	7,099 48.18%					
_		589.592 Recovery									
Ni 231.604		0.425 ug/L	0.6501		սց/Ն	0.6501 153.13%					
		231.604 Recovery									
P 213.617	79.4	10.03 ug/L	0.754		ug/L	0.754 7.51%					
		13.617 Recovery =			,_						
Pb 220.353		1.486 ug/L			ug/L	0.6141 41.32%					
		220.353 Recovery				0 4000 01 040					
Sb 206.836		-1.547 ug/L			ug/L	0.4927 31.84%					
Se 196.026		206.836 Recovery 6.313 ug/L		6.313	/T	0.8112 12.85%					
		196.026 Recovery			ug/ D	0.0112 12,05%					
Sn 189.927	8.6	0.846 ug/L	0.0115		ug/L	0.0115 1.36%					
		189.927 Recovery			ug/ L	0.0115 1.30%					
Sr 421.552	4861.5	-0.311 ug/L	0.2388	-0.311	υα/T.	0.2388 76.73%					
		421.552 Recovery			ug, 1	0.2300 /0.751					
Ti 337.279	643.9	1.641 ug/L	1.3793	1.641	na/L	1.3793 84.07%					
		337.279 Recovery			gr =						
Tl 190.801	12.9	-0.984 ug/L	1.1001	-0.984	uq/L	1.1001 111.78%					
		190.801 Recovery			<b>~</b> ·						
V 292.402	12826.0	-0.843 ug/L	0.4576	-0.843	ug/L	0.4576 54.29%					
		92.402 Recovery =			<b>4</b> .						
Zn 206.200	2866.5	-0.263 ug/L	0.2353	-0.263	ug/L	0.2353 89.33%					
QC value with	in limits for Zn	206.200 Recovery	≈ Not calculated	i	=						
All analyte(s) p	assed QC.										

Sequence No.: 9

Sample ID: ICSAB 120306BA I:PB O:EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Logation: 13

Date Collected: 03/06/12 3:22:01 PM

Data Type: Reprocessed on 03/07/12 2:12:15 PM

Me	an Dete:	TCSAR 1	20306EA I:PB O		~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				· · · · · · · · · ·
140	an Data:	ICOMD 1	Mean Correcte		Calib.			Sample		
Αn	alyte		Intensity	Coi	nc. Units	Std.Dev.	Cong.	Imita	Std. Dev	. RSD
Ag	338.289		138016.0	929	9.3 ug/L	Std.Dev. 6.66	929.3	ug/L	6.66	0.72%
	QC value	within	l limits for Ag	338.289	Recovery	° = 92.93%		<b>3</b> , -		- · · · - •
Al	308.215		454942.0	200€	500 ug/L	2989.0	200600	ug/L	2989.0	1.49%
		within	limits for Al							
As	188.979		2391.7	483	L.8_ug/L	4.84	481.8	ug/L	4.84	1.01%
В	QC value	WICHIN	limits for As		s kecovery .25 ug/L		33 05		10.000	22 252
-	OC value	within	limite for B	Recover	izo ug/b iv - Not ca	10.299	-33.25	ug/L	10.299	30.97%
Вa	233.527		116188.5	466	., - 200 ca 1.1 ug/I	3.06	468.1	ug/L	3.06	0.65%
	QC value	within	limits for Ba	233.527	Recovery	¤ 93.62%	100.2	ug/ D	3.00	0.050
Вe	313.107		2979883.6	483	1.7 ug/b -	4.18	483.7	ug/L	4.18	0.86%
			limits for Be			<b>⊭ 96.74%</b>				
Ca	315.887		3419211.0	1974	100 ug/L	3381.4	197400	ug/L	3381.4	1.71%
a.		within	limits for Ca							
Cu	214.440	ud+bin	446707.9 limits for Cd		1.7 ug/L	8.74	942.7	ug/L	8.74	0.93%
Co	228.616	WICHIII	45021.9		.5 uq/L	4.98	403 5	/T	4 00	1 019
		within	limits for Co				493.5	ug/L	4.98	1.01%
Cr	267.716				.4 ug/L		488.4	ug/L	3.08	0.63%
-		within	limits for Cr	267.716	Recovery	= 97.68%		~5, ~	3.00	0.050
Cu	327.393		56534.5	496	.3 ug/L	5,18	496.3	ug/L	5.18	1.04%
	QC value	within	limits for Cu			= 99.26%		_		
Рe	273.955			1820		1480.5	182000	ug/L	1480.5	0.81%
		within	limits for Fe							
	66.490		751.0	70.	19 ug/L	43.609	70.19	ug/L	43.609	62.13%
		within	Timics for K 7	66.490	Recovery	Not calculate			004.0	
•	285.213	within	6187759.7 limits for Mg				190700	ug/L	2764.2	1.45%
	257.610	WICHIN				6.87	508 3	ug/L	6.87	1.35%
			limits for Mn				300.3	ug/11	0.07	1.330
	202.031		24066.5		.8 ug/L	3.98	473.8	ug/L	3.98	0.84%
	QC value	within	limits for Mo					-5, -	- 170	0.010
	589.592			25.		5.058	25.67	ug/L	5.058	19.70%
		within				= Not calculate	ed			
	231.604		72012.4				952.7	ug/L	9.66	1.01%
		within	limits for Ni					•-		
	13.617		244.3		87 ug/L	6.940		ug/L	6.940	22.48%
			18803.6		.1 ug/L	Not calculated		/T	10.00	1 050
			limits for Pb				309.1	ug/L	10.35	1.05%
	206.836	W _ C	3397.6		.2 ug/L		492 2	ug/L	11.48	2.33%
		within	limits for Sb	206.836	Recovery	= 98.44%	152.2	ug/ <u>D</u>	11.40	2,330
Se	196.026		2360.1	502	.3 ug/L	3.54	502.3	ug/L	3.54	0.70%
1	QC value	within	limits for Se	196.026	Recovery	= 100.46%		0.		
	189.927		8.4	0.82	29 ug/L	1.2542	0.829	ug/L	1.2542	151.24%
		within				= Not calculate		_		
	421,552	2 4 4 5 4 4	5197.2			0.1797	-0.004	ug/L	0.1797	>999.9%
		within				= Not calculate				
	337.279 OC value	within	700.3		14 ug/L	2.4285 = Not calculate	2.334	nd\r	2.4285	104.07%
	190.801	44 C11 TI	6374.0		.7 ug/L	3.42	500.7 1	na/I.	3,42	0 608
		within	limits for Tl	190.801	Recovery		300.7	7 <b>4</b> \ D	3,42	0.68%
	92.402		149617.0		2 ug/L	4.00	480.2	ua/L	4.00	0.83%
		within	limits for V 2					-ar <del>-</del>	1.00	0.000
Zn :	2 <b>0</b> 6.200		134261.7	943.	7 ug/L	8.75	943.7	ug/L	8.75	0.93%
			limite for Zn :	206.200	Recovery	= 94.37%				
A11	analyte(	s) pass	ed QC.							

Sequence No.: 10

Sample ID: CCV1 120306EA I:PB O:EA

Analystı

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: Dilution:

Autosampler Location: 3

Date Collected: 03/06/12 3:25:25 PM

Data Type: Reprocessed on 03/07/12 2:12:16 PM

Mean Data: CCVI	120306EA I:PB O:E Wean Corrected	Coldb			Sample		
Amelyte	Totanaity	Conc. Units	Grd Day	Cona	na tra	Std Day	RSD
Δα 338 289	Intensity 76425.4	514 6 117/1.	2.14	E14 6	ua/L	2.14	0.42%
ng 000.200 ∩C value wit	hin limits for Ag	339 289 Pecovery	- 100 COB	324.0	ug/ L	2.13	0.420
Al 308.215	46542.4	20450 ug/t	210 7	20450	va/L	210.3	1.03%
	hin limits for Al			20430	ug/ 11	210.3	1.05
As 188,979	5143 2	1036 ug/L	9.8	1026	υα /T.	9.8	0.94%
	hin limits for As			1030	ug/ D	5.0	0.941
QC value wit	5929.3		23.5	1000	ug/L	23.5	2.18%
	hin limits for B			1080	ug/L	23.5	2.100
	239768.7			1021	ua/I	4.3	0.42%
OC value wit	hin limits for Ba	1031 ug/L	4.J _ 102 128	1031	աց/ և	4.3	0.421
e 313.107		1044 ug/L	7.3	1044	~ /T	7.3	0.70%
				1044	ug/L	7.3	0.700
	nin limits for Be			C1710	/7	150 0	A 310
	895058.7			51/10	идуп	158.9	0.31%
	in limits for Ca			1050	/ 7		0.400
	491631.6			1050	ug/L	5.1	0.48%
	in limits for Cd 2						
0 228,616		1045 ug/L	5.3	1045	ug/L	5.3	0.50%
	in limits for Co 2				-		
	162800.6			1034	ug/L	5.6	0.54%
	in limits for Cr 2						
u 327.393		1029 ug/L	3.3	1029	ug/L	3.3	0.32%
	in limits for Cu 3						
	693988.2			20710	ug/L	102.0	0.49%
	in limits for Fe 2						
	82285.0			20280	ug/L	33.6	0.17%
QC value with	in limite for K 76	6.490 Recovery =	: 101.40%				
g 285.213	1695490.2	52260 ug/L	110.1	52260	ug/L	110.1	0.21%
QC value with	in limits for Mg 2	85.213 Recovery	= 104.51%				
n 257.610	77271.2	1034 ug/L	15.1	1034	ug/L	15.1	1.46%
QC value with	in limits for Mn 2	57.610 Recovery	<b>□ 103.35%</b>				
202.031			7.5	1066	ug/L	7.5	0.70%
QC value with	in limits for Mo 2	02.031 Recovery	≈ 106.63%		٥.		
a 589.592	293803.5	25600 ug/L	38.3	25600	ug/L	38.3	0.15%
	in limits for Na 5				J.		-
	78710.3			1049	ua/L	6.2	0.59%
	in limits for Ni 2				57	V.2	0,000
213.617		5273 ug/L	28.1	5273	υσ/I.	28.1	0.53%
	in limits for P 21			3213	-9 <i>,</i> -	20,1	0.000
	20257.6			1066	ua/I.	6.6	0.62%
	in limits for Pb 2			1000	ug/ II	0.0	0.020
206.836			6.6	1044	ug/L	6.6	0.64%
	in limits for Sb 2			1044	ug/ L	0.0	0.010
	4893.9			1042	ua/I.	20.0	2 019
				1042	ug/ D	40.9	2.010
	in limits for Se l 10615.6	1047 ug/L		1047	/T	7 0	0.75%
n 189.927			7.8	1047	ug/ L	7.8	0.75%
	in limits for Sn 1			7076			0.050
r 421.552	1038494.9	1026 ug/L	2.5	1026	աց/ n	2.5	0.25%
	in limits for Sr 4			1010	/*		
i 337.279	76905.1	1018 ug/L	14.0	1018	սց/ ւ	14.0	1.37%
	in limits for Ti 3						<b>-</b>
L 190.801	13651.4	1086 ug/L	12.2	1086	ug/L	12.2	1.13%
-	in limits for Tl 1						
292.402	299565.2	1046 ug/L	4.9	1046	ug/L	4.9	0.47%
	in limits for V 29						
1 206.200	146258.5	1050 $ug/L$	6.0	1 <b>0</b> 50	ug/L	6.0	0.57%
AA 1	in limits for Zn 2	OC 200 Podovoru	_ 105 029				
QC value with ll analyte(s) p		06.200 Recovery	= 105.03%				

Dilution:

Sequence No.: 11 Sample ID: CCB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/06/12 3:28:52 PM Data Type: Reprocessed on 03/07/12 2:12:17 PM

Analyte Ag 338.289 QC value within	Mean Correct Intensit -65.4 limits for -0.7	y Conc.	Units	Std.D	Dev. Conc.	Sample Units	Std.Dev.	RSD
Al 308.215 QC value within As 188.979 QC value within	TYMITCH FOT	-0.440	) wa/r	aca.D	bev. Conc.	OUTCR	BEG.Dev.	KSH
Al 308.215 QC value within As 188.979 QC value within	TYMITCH FOT	-U.44(		~ ~ ~ ~	-		0.000	15 050
Al 308.215 QC value within As 188.979 QC value within 3	-0.7	an 220 300	Pagauau-	U. UB	3/2 -U.44U	пд/ п	0.0672	15.278
QC value within As 188.979 QC value within 3		-0 200 -0 200	recovery	a NOL Ca	icatatea v see	ug/L	9 0520	
As 188.979 QC value within 3	limita for	-0.20: 31 200 215	Possesses	7.85	-0.285	ug/ L	7.8539	>999.98
QC value within	1.6	WT 300.513	Recovery	⇒ NOC Ca	iculaced	ug/L	1 0001	350 040
3			ug/L	1.22	333	<b>ս</b> գ∧ Ի	1.2291	370.94%
						- 1-		
OC AUTHE ATTUIN	limita for	7.250	, ug/L	1.//	40 7,250	ug/L	1.7740	24.47%
Ba 233.527	8.1	B Recovery	= NOC Cal	iculated				
QC value within	D.I Dimita fou	U.UJ0	ug/L	0.02	21 U,U36	ug/L	0.0221	62.06%
	29.0	Ba 233.52/	Recovery	= NOT Ca				
Be 313.107 QC value within		U.UUS	ug/L	0.02	7.3 0.005	ug/L	0.0273	542.35%
OC AGING MICHIN	TIMITER FOR	Be 313.10/	Recovery	= NOT Ca	TCMTated	- 1-		
Ca 315.887	84.4	4,891	. ug/ь	1.26	68 4.891	ug/L	1.2668	25.90%
QC value within								
d 214,440		0.051	ug/L	0.01	75 0.051	ug/L	0.0175	34.63%
QC value within	TIMILE TOL	CO 214.440	Recovery	= NOT Ca.				
20 228,616	12.4	0.139	ug/L	0.13	39 0.139	ug/L	0.1339	96.66%
QC value within	Timics for	CO 558'PTP	Recovery	= Not ca.				
r 267.716	12.5	0.080	ug/ь	0.15	56 0.080	ug/L	0.1556	195.51%
QC value within						,_		
u 327.393	24.4	0.214	ug/ь	0.84	75 0.214	ug/L	0.8475	396.02%
QC value within	Timica for (	JU 327.393	xecovery	= NOT Ca.				
'e 273.955	~80.8	-2.453	րց/ Ի	0.35	98 -2.453	ug/L	0.3598	14.67%
QC value within						4-		
766.490		-18.29				ug/L	57.539	314.61%
QC value within	TIMICS FOR 1	( 766.490 R	ecovery =	Not cale	culated	4-		_
g 285.213	89.1	2.746	ี ก3\ ก	0,16	39 2.746	ug/L	0.1639	5.97₺
QC value within	limits for t	ig 285.213	Recovery	- Not ca.		,_		
n 257.610	5.0	0.066	ug/ь	0.110	0.066	ug/L	0.1106	166.44%
QC value within								_
0 202.031		0.009		0.326	69 0,009	ug/L	0.3269	>999.9%
QC value within	Timits for b	10 202.031	Recovery	= Not cal		4-		
a 589.592	-10.2	-1.590	ug/L	6.931	16 -1.590	ug/L	6.9316	435.96%
QC value within	limits for t	ia 589.592	Recovery	= Not cal		4-		
i 231.604	11.8	0.157	_ug/ь	0.25	78 0.157	ug/L	0.2578	164.10%
QC value within						4-		
213.617	11.9			0.707	70 1.500	ug/L	0.7070	47.13%
QC value within	limits for F	213.617 R	ecovery =	Not calc	culated			
	11.1					ug/L	0.2875	49.07%
QC value within						4-		
b 206.836	-1.7		ug/L			ug/L	0.4359	174.89%
QC value within								
e 196.026	0.2	0.044	ug/L	2.789	93 0.044	ug/L	2.7893	>999.9%
QC value within		e 196.026 I	gecovery :		lculated			
n 189.927	16.6			0.365		ug/L	0.3657	22.31%
QC value within						4		
r 421.552	123.0	0.122		0.116		ug/L	0.1163	95.68%
QC value within								
i 337.279	5.3	0.071		0.207		ug/L	0.2071 2	292.05%
QC value within								
1 190.801	18.3	1.435		0.465		ug/L	0.4656	32.45%
QC value within								
292.402	58.4	0.201		0.077		ug/L	0.0776	38.55%
QC value within								
n 206.200		-0.580				ug/L	0.1454	25.09%
QC value within		n 2 <b>0</b> 6,200	ecovery :	≈ Not cal	lculated			
ll analyte(s) pass	- 1 00							

Sequence No.: 41 Sample ID: CCV2 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 8 Date Collected: 03/06/12 5:49:06 PM Data Type: Reprocessed on 03/07/12 2:12:49 PM

Me	an Data:	CCV2 12	0306EA I:PB O:							
_			Mean Correcte		Calib.			Sample		
	alyte		Intensity	Cor	nc. Unite	Std.Dev.		Unite	Std.Dev.	RSD
Ag	338.289		53432,1	359	9.8 ug/L	2.90	359.8	ug/L	2.90	0.81%
	QC value	withir	limits for Ag	338.289	9 Recovery	⇒ 95.94%				
AI	308.215		34404.0	157	120 ug/L	125.7	15120	ug/L	125.7	0.83%
_		within	limits for Al			≈ 100.78%				
As	188.979		3623.0		9.8 ug/L	9.60	729.8	ug/L	9.60	1.31%
	QC value	within	limits for As	188.979	Recovery	= 97.31%				
В			4377.4	794	1.3 ug/L -	6.10	794.3	ug/L	6.10	0.77%
		within	limits for B	Recover	ry ¤ 105.90%	s				
Ва	233.527		168574.2	725	5.0 ug/L	6.49	725.0	ug/L	6.49	0.90%
	QC value	within	limits for Ba	233.527	Recovery	= 96.67%				
Ве	313.107		4412530.4	723	3.4 ug/L	3.54	723.4	ug/L	3.54	0.49%
	QC value	within	limits for Be	313.107	Recovery	≈ 96.46%				
Ca	315.887		644828.2		250 ug/L	137.8	37250	uq/L	137.8	0.37%
	QC value	within	limits for Ca	315.887	Recovery	≈ 99.34%		-		
Cd	214.440		339083.5	724	l.4 ug/L	7.86	724.4	uq/L	7.86	1.08%
	QC value	within	limits for Cd	214.440	Recovery	≈ 96.59%		٠,		
Co	228.616		65528.8		.3 ug/L	6.09	729.3	uq/L	6.09	0.84%
	QC value	within	limits for Co	228.616	Recovery	≈ 97.24%		<b>3</b> / -		
Cr	267.716		113919.3		.1 ug/L	5.57	723.1	ua/L	5.57	0.77%
	OC value	within	limits for Cr	267.716	Recovery			-5/ -	3.3.	0.770
Cu	327.393		81998.7		.8 ug/L	7.12	719.8	pa/L	7.12	0.99%
	OC value	within	limits for Cu					-5/ -	7.12	0.,,
Fe	273.955	-	484698.5		60 ug/L	124.7	14460	uα/τ.	124.7	0.86%
		within	limits for Fe	273.955	Recovery		11100	~9, n	124.7	0.00%
к .	766.490		58363.5		80 ug/L	51.9	14380	ua/I.	51.9	0.36%
		within	limits for K 7				14300	ug/ D	31.9	0.300
Ма	285.213		1250159.4		30 ug/L	151.2	38530	υα/τ.	151,2	0.39%
5		within	limits for Mg	285.213	Recovery		30330	ug/ n	131,2	0.398
Mn	257.610		56824.0		.0 ug/L	5.73	760.0	na/I.	5.73	0.75%
		within	limits for Mn				700.0	ugy D	5.73	0.75%
Mo	202.031	***************************************	37275.3		.5 ug/L	7.74	722.5	υ~ /T	7 74	1 000
		within	limits for Mo				722.5	ug/ L	7.74	1.07%
Na	589.592	***********	205541,9		10 ug/L	59.3	17910	~/1	50.3	A 226
		within	limits for Na				1/910	ug/L	59.3	0.33%
	231.604	WICHTIE	54660.9		.1 ug/L	6.94	770 1	/1	c 0.4	0.058
		within	1imits for Ni				728.1	սց/ և	6.94	0.95%
	23.617	WICHIII	27352.9		recovery . 57 ug/L	31.8	2452	/T	21.0	
		within	limits for P 2				3457	սց/ և	31.8	0.92%
Вh	220.353	WICHIN	14067.8		.0 ug/L		740.0		1 60	
		within	limits for Pb			1.69	740.0	սց/ Ե	1.69	0.23%
	206.836	MT CHITH	5042.1		.5 uq/L		236 F	/7	4 00	
		i.bin	limits for Sb			1.27	730.5	ug/L	1.27	0.17%
		MICHILI					a	. 1=		
	196.026	and who does	3369.2 limits for Se	100 000	.1 ug/L	3.54	717.1	ug/L	3.54	0.49%
		MTCUIU								
	189.927		7468.0		.2 ug/L	1.57	736.2	ug/L	1.57	0.21%
		wichin	limits for Sn :					1-		_
	421.552		741802.3		.6 ug/L	2.75	732.8	ng/L	2.75	0.38%
		within	limits for Sr							
	337.279		56312.7		.4 ug/L	6.86	745.4 1	ոց/Ի	6.86	0.92%
		wicuin	limits for Ti					•-		
	190.801	1.1.1	9750.0		.8 ug/L	1.56	775.8 ι	ıg/L	1.56	0.20%
		wicuin	limits for Tl :					-		
	92.402	1.3.1	210278.2		.9 ug/L	5.93	733.9 t	1g/L	5.93	0.81%
		within	limits for V 29					_		
	206.200		100925.5		.7 ug/L	7.99	724.7 t	ıg/L	7.99	1.10%
			limits for Zn 2	206.200	kecovery =	96.63%				
ALI	analyte(	s) pass	ea QC.							

Sequence No.: 42 Sample ID: CCB 120306EA I:PB O:EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 2 Date Collected: 03/06/12 5:53:12 PM Data Type: Reprocessed on 03/07/12 2:12:50 PM

wec	n Data: C	.CB 120											
<b>.</b>	1		Mean Co	orrecte	d		Calib.				Sample		
Ane	TACE		Inte	ensity		Conc.	Unite	øt	d.Dev.	Conc.	Units	Std.Dev	. RSD
нg	338.289		1411	-33.1		0.223	ug/L	C	.5794	-0.223	ug/L	Std. Þev 0.5794	260.37
_	Ac Aginc	wicnin	TYIIITCD	LOT MG	330.	209	Kecovery	' = NOT	: calcula	ated			
	308.215		12.1.	~3.4	-:	1.573	ug/L '	10	.0991	-1.573	ug/L	10.0991	642.11
_	QC value	wichin	11W1C8	for Al	308.	215	Recovery	= Not	calcula				
	188.979		31-16-	~3.4		0.689	ug/L	0	8214	-0.689	ug/L	0.8214	119.12
	QC value	within	11m1f8	tor As	188.5	979	Recovery	= Not					
	00 3		11-1	50.2	_	8.496	ug/L	_ 1	.1166	8.496	ug/L	1,1166	13.14
_ '	QC value	within	limita	for B	Reco	very	= Not ca	lculat	ed				
	233.527	end to be done		-3.9	-(	0.017	_ug/L	. 0	.0616	-0.017	ug/L	0.0616	368.409
_ '	QC value	wichin	114168	cor Ba	233.5	527	Recovery						
	313.107		12	229.9	(	200	ug/L	0	.0215	0.200	ug/L	0.0215	10.75%
_ '	QC value	within	Timits	tor Be	313.1	L07	Recovery	= Not					
	315.887	2.1.1	2	109.8		L2.13	ug/L		2.046	12.13	ug/L	2.046	16.868
, (	2C value	within	TIMICE	for Ca	315.8	387	Recovery	= Not	calcula				
	214.440			22.8	-0	0.049	ug/L	0	.0248	-0.049	ug/L	0.0248	50.68%
	QC value	within	limite	for Cd	214.4	140	Recovery	≈ Not					
	228.616			-4.5	-0	.049	ug/L	0	. 2746	-0.049	ug/L	0.2746	557.26%
. }	C value	within	limits	tor Co	228.6	16 1	Recovery	= Not	calcula				
	267.716			62.7	-0	.400	ug/L	0	.1339	-0.400	ug/L	0.1339	33.518
	C value	vituin			267.7	16 1	Recovery	= Not	calcula				
	327.393	2 . 1. 3		43.7	0,	.384	ug/L	0	.5580	0.384	սց/Լ	0.5580	145.50%
٠	C value v	vitnin	limita :	for Cu	327.3	93 I	Recovery	= Not	calcula				
	273.955		-1	60.9	4	.840	ug/L '	0	.3048	-4.840	ug/L	0.3048	6.309
	C value w	vitnin	limite :	tor Fe				≃ Not	calcula				
	6.490		1	06.5	2	6.30	ug/L	5:	2.332	26.30	ug/L	52.332	199.00%
Č	C value w	ithin.	limits :	for K 7	66.49	0 Re	covery =	Not o	calculate	ed			
	85.213			78.3	2	.405	ug/L	0.	.3003	2.405	ug/L	0.3003	12.49%
Č	C value w	ithin .	limits:	for Mg	285.2	13 F	Recovery	⊭ Not	calculat				
	57.610			14.6	0	195	ug/L	0.	.1201	0.195	ug/L	0.1201	61.63%
Ç	C value w	ithin .			257.6	10 F	Recovery						
	02.031			-6.1	-0	.119	ug/L	0.	1624	-0.119	ug/L	0.1624	136.52%
Q	C value w	ithin .							calculat	ted			
	89.592			16.4		7.61	ug/L	17	7.066	27.61	ug/L	17.066	61.82%
Q	C value w	ithin l						= Not	calculat	ed	_		
	31.604			31.5	0	.419	ug/L	0.	2987	0.419	սց/և	0.2987	71.22%
Q	C value w	ithin 1	limits f	for Ni	231.6	04 R	lecovery	= Not	calculat	ed			
	3.617			3.2	0	.406	ug/L	1.	1536	0.406	ug/L	1.1536	283.98%
Q	C value w	ithin ]	limite f	for P 2	13.61	7 Re	covery =	Not c	alculate	ed	<b>J</b> ,		
	20.353		1	11.2	0	.589	ug/L	0.	2609	0.589	ug/L	0.2609	44.32%
Q	C value w	ithin ]	limits f	for Pb :	220.39	53 R	ecovery	= Not	calculat	ed	2,		
2	06.836			5.2	0	.760	uq/L	0.	5768	0.760	ug/L	0.5768	75.95%
Q	C value w	ithin ]	limite f	for Sb 2	206.83	36 R	ecovery	= Not	calculat	ed	- <b>3</b> 7 —	******	70.550
1	96.026		-	-9.1	-1	.945	uq/L	1.	8569	-1.945	ug/L	1,8569	95.49%
Q	C value w	ithin 1	imite f	or Se	196.03	26 R	ecovery	= Not	calculat	ed	, _	2.0203	501.50
1	89.927			3.9	0.	.382	uq/L	0.	0586	0.382	ug/L	0.0586	15.35%
Q	C value w	ithin 1	imits f	or Sn 1	189.92	27 R	ecovery	= Not	calculat	ed	-3, -	010300	13.330
4	21.552		_	5.4	-0.	.005	uq/L	0.	1059	-0.005	υα/Τι	0.1059	-999 9&
Q	C value w	ithin 1	imits f	or Sr 4	21.55	52 R	ecovery	= Not	calculat	ed	-3, -	0.1000	,,,,,,,
3:	37.279		-1	9.6	-0.	260	uq/L	0.	1069	-0.260	ua/1.	0.1069	41 10%
Q	C value w	ithin l	imits f	or Ti 3	337.27	79 R	ecoverv	= Not	calcular	ed	-5/ -	0.1005	41.108
1:	90.801		2	8.5	2.	218	ug/L	0.	8810		ug/L	0.8810	20 718
Q	C value w	ithin 1		or Tl 1	90.80	)1 R	ecoverv :	= Not	calcular	ed	.g, L	0.0010	37.710
29:	2.402		-14		-0.			0.			ug/L	0.1369	20 26%
	C value w	ithin 1	imits f	or V 29	2.402	Re	coverv =	Not c	alculate	y 	75/ D	0.1369	20.20₹
20	06.200		-26	7.2	-1	916	ug/L		0425		ıg/L	0.0405	0.000
	value w	ithin 1		or 2n 2	206.20	0 P	-3,- ecovery :	= Not	calculat	- 4.340 ( 6/1	-9/ L	0.0425	2.22%
			d QC.					2100	-ar-urat	<del>-u</del>			

Sequence No.: 53 Sample ID: CCV1 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 03/06/12 6:50:27 PM Data Type: Reprocessed on 03/07/12 2:13:01 PM

Me	Mean Data: CCV1 120306EA I:PB O:EA												
	Mean Corrected Calib. Sample												
An	alyte			_	Con	c. Units	Std.Dev.	Conc.		Std.Dev.	RSD		
Ag	338.289		73616.0		495	.7 uq/L	Std.Dev. 5.12	495.7	ug/L	5.12	1,03%		
	QC valu	e withir	limits for Ag	338	. 289	Recovery	≈ 99.14 <b>%</b>		-5.				
Al	308.215		47914.3		210	50 ug/L	295.0	21050	ug/L	295.0	1.40%		
_			limits for Al	308	.215	Recovery	≈ 105.26%						
As	188.979		4995.1		100	06_ug/L	4.7	1006	ug/L	4.7	0.47%		
n	QC value	e within	limits for As										
B	00					14 ug/L	23.9	1114	ug/L	23.9	2.14%		
מם	233.527		er than the upp 230401.9	er 1	1000	for B Rec	covery = 111.43%		/-				
Ба			limits for Ba	222	590. 527	.9 ug/L Becovery	10.82	990.9	ug/ь	10.82	1.09%		
Be	313.107		6103794.0	233	100	recovery	4.1	3001	~ /T	4.1	0 410		
			limits for Be	313	.107	Recovery		1001	ug/L	4.1	0.41%		
Ca	315.887		901313.2		5207	70 ug/L	106.3	52070	ug/L	106.3	0.20%		
	QC value	within	limits for Ca	315	. 887	Recovery	= 104.14%	02010	49,2	100,5	0.200		
Cd	214.440		469764.8		100	4 ug/L	12.4	1004	uq/L	12,4	1.23%		
	QC value	e within	limits for Cd	214	.440	Recovery	= 100.36%		٥,		4.22		
Co	228.616				998.	3 ug/L	10.89	998.3	ug/L	10.89	1.09%		
		within	limits for Co										
Cr	267.716		156041.0		990.	5 ug/L	9.48	990.5	ug/L	9.48	0.96%		
<b>a</b>		within	limits for Cr										
Cu	327.393					6 ug/L	7.62	992.6	ug/L	7.62	0.77%		
F.	273.955		limits for Cu 663979.7					10010	/=				
re		within	limits for Fe	273	1307	Decorery	205.6	19810	ug/L	205.6	1.04%		
к 7	66.490	WICHILL				0 ug/L	46.3	10000	սց/ <b>L</b>	46.3	0.23%		
		within	limits for K					13300	աց, ո	40.3	0.238		
	285.213		1729548.1		5331		78.2	53310	ug/L	78.2	0.15%		
_	QC value		limits for Mg						~5, 2	10.2	0.130		
Mn	257.610		79368.8		106	2 ug/L	17.9	1062	ug/L	17.9	1.68%		
	QC <b>v</b> alue	within	limits for Mn				= 106.16%		-				
	202.031					8 ug/L	3.5	1038	ug/L	3.5	0.34%		
			limits for Mo						_				
	589.592		283910.3				28.8	24730	ug/L	28.8	0.12%		
		wichin	limits for Na										
	231.604	within	74875.5 limits for Ni			4 ug/L	12.22	997.4	ug/L	12.22	1.23%		
	13.617	MT CIITII	39824.7	231.	504 502	Recovery 3 ug/L	= 99.748	5022	/T		0.000		
		within	limits for P 2	11 6	17	o ug/o Recovery -		5033	սց/ և	11.7	0.23%		
	220.353		19476.5		102	4 ug/L	5.2	1024	սց/Ն	5.2	0.51%		
			limits for Pb	220.	353	Recovery	= 102.45%	1021	49/10	J.2	0.510		
Sb	206.836		7043.3		102	0 ug/L	6.9	1020	ug/L	6.9	0.68%		
	QC value		limits for Sb	206.	836	Recovery	= 102.04%		3,	*			
	196.026		4698.7				10.1	1000	ug/L	10.1	1.01%		
		within	limits for Se	196.			= 100.00%						
	189.927		10319.4			7 ug/L	2.7	1017	цg/Г	2.7	0.26%		
		within	limits for Sn	189.									
	421.552		1024633.3	401		2 ug/L	0.8	1012	ıg/L	0.8	0.08%		
		within	limits for Sr	421,				1000	1-				
	337.279 OC value	within	78438.1 limits for Ti	227	7031	Bug/L Pecovery	16.9 - 103 92%	1038	1 <b>3</b> \ P	16.9	1.63%		
η	20 varue 190.801	17 T CII T I I	13330.8	JJ ( .		kecovery : l ug/L	3.5	1061 -	1α/T.	3 6	0 226		
		within	limits for Tl	190.				1061 1	тА\ Г	3.5	0.33%		
	92.402		288110.4			Kaccvery . S ug/L	10.4	1006 t	na / I.	10.4	1.03%		
		within	limits for V 2	92.4				1000 (	~9/ D	10.4	1.030		
	206.200	<del>-</del>	139551.8			2 ug/L	14.4	1002	ia/P	14.4	1.43%		
			limits for Zn					• • • •	<b></b> -				
QC 1	Failed.	Continu	e with analysi	g.									

______

Sequence No.: 54
Sample ID: CCB 120306EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 03/06/12 7:01:18 PM
Data Type: Reprocessed on 03/07/12 2:13:02 PM

Mean Data: CCB 120306EA I:PB O:EA		
	Calib.	Sample
	Cond. Units Std.Dev. C	
		.610 ug/L 0.7043 115.43%
QC value less than the lower limit		
Al 308.215 -11.1 QC value within limits for Al 308.		.944 ug/L 9.8632 199.50%
		.061 ug/L 0.8729 >999.9%
QC value within limits for As 188.	979 Pecovery - Not calculated	.001 dg/L 0.0727 7333.78
		.430 ug/L 1.3023 53.59%
QC value within limits for B Reco		1.3020 03.030
	0.001 ug/L 0.0424 -0	.001 ug/L 0.0424 >999.9%
QC value within limits for Ba 233.		19, 1
		.088 ug/L 0.0282 32.03%
QC value within limits for Be 313.	· · · · · · · · · · · · · · · · · · ·	
		.504 ug/L 1.7562 20.65%
QC value within limits for Ca 315.0	387 Recovery = Not calculated	<b>~</b> .
	0.010 ug/L 0.0191 0	.010 ug/L 0.0191 185.52%
QC value within limits for Cd 214.4		-
		.326 ug/L 0.1049 32.20%
QC value within limits for Co 228.6		
Cr 267.716 -6.9 -6	).044 ug/L 0,2134 -0	.044 ug/L 0.2134 489.24%
QC value within limits for Cr 267.	716 Recovery = Not calculated	
		.329 ug/L 0.8854 269.33%
QC value within limits for Cu 327.3		
		0.61 ug/L 0.452 4.27%
QC value within limits for Fe 273.9	)55 Recovery = Not calculated	
		9.00 ug/L 14.247 75.00%
QC value within limits for K 766.49		/
	<del>_</del> .	.707 ug/L 0.0628 3.68%
QC value within limits for Mg 285.2		4.44/7 0.01.65 150 538
Mn 257.610 -10.5 -0		.141 ug/L 0.2165 153.73%
QC value within limits for Mn 257.6		0.21/1 0.2100 - 0.00 0.9
		.021 ug/L 0.3400 >999.9%
QC value within limits for Mo 202.0 Na 589.592 932.2		L.36 ug/L 7.223 8.88%
QC value within limits for Na 589.5	02 Pecovery - Not calculated	1.30 ug/D 7.223 8.00%
Ni 231.604 8.0 0		.106 ug/L 0.4475 423.28%
QC value within limits for Ni 231.6		1100 49,5
	0.086 ug/L 1.2347 0	.086 ug/L 1.2347 >999.9%
QC value within limits for P 213.61		1100 43, 2
	0.423 ug/L 0.5471 0	.423 ug/L 0.5471 129.44%
QC value within limits for Pb 220.3	53 Recovery = Not calculated	
	0.941 ug/L 0.4170 -0	.941 ug/L 0.4170 44.31%
QC value within limits for Sb 206.8		
Se 196.026 -5.8 -1	236 ug/L 1.5938 -1	.236 ug/L 1,5938 128.94%
QC value within limits for Se 196.0	26 Recovery = Not calculated	
		0.04 ug/L 0.220 1.16%
QC value less than the lower limit		
		124 ug/L 0.0733 58.97%
QC value within limits for Sr 421.5		
		653 ug/L 0.2604 39.86%
QC value within limits for Ti 337.2		
Tl 190.801 15.0 1		166 ug/L 0.5378 46.15%
QC value within limits for Tl 190.8		A34 /v
		036 ug/L 0.2613 718.34%
QC value within limits for V 292.40		077
		077 ug/L 0.0469 1.52%
QC value within limits for Zn 206.2	on Recovery = Not carcurated	
QC Failed. Continue with analysis.		

Dilution:

Sequence No.: 85
Sample ID: CCV2 120306EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:

Autosampler Location: 8
Date Collected: 03/06/12 10:01:11 PM
Data Type: Reprocessed on 03/07/12 2:13:32 PM

Me	an Data: CCV	V2 120	306BA I:PB O:	BA								
			Mean Corrected			Calib.				Sample		
	alyte		Intensity							Units	Std.Dev.	RSD
Ag	338.289		53501.5			٠.		.42	360.2	ug/L	2.42	0.67%
		ıtnın	limits for Ag								100.0	4 020
AI	308.215		34982.1			ug/L		8.9	15370	ug/L	188.9	1.23%
		cnin	limits for Al						742 2		F 04	0.708
Aß	188.979		3689.5			ug/L		. 84	743.2	ug/L	5.84	0.79%
	QC value wi	CHIM	limits for As						702 0	/T	16 20	2.07%
В	00	-1-1-	4367.0			ug/L		.39	793.0	и9/ Б	16.39	2.0/8
D-		cnin	limits for B 169777.6			= 105./3% ug/L	3 .	70	720 2	/T	3.79	0.52%
Ва	233.527	-hin	limits for Ba						730.2	ug/ L	3.73	0.328
D.	313,107	CHIH	4463714.5			ug/L		.17	731.8	υα/T.	4.17	0.57%
DE		-hin	limits for Be						,31.0	ug/ II	4.17	0.570
Ca	315.887	CILTI	653031.9			ug/L	- 97.50° 7 <b>7</b> 3		37730	ua/I.	773.3	2.05%
Ca		rhin	limits for Ca						37730	ug/ 1	,,,,,	4,030
ca	214.440	CILLII	345198.9			ug/L		. 21	737.5	υσ /Τ.	4.21	0.57%
Cu		thin	limits for Cd						15715	u3/ 2		••••
Co	228.616	011411	66242.0			ug/L		20	737.2	υα/Τι	5.20	0.71%
-		thin	limits for Co							-5/-	3,23	****
Cr	267.716	011111	114772.6			uq/L			728.5	ua/L	3.59	0.49%
-		thin	limits for Cr						, 20, 5	~5/ <del>-</del>	5.55	
Cu	327.393	J.,_,,	82188.7			ug/L		60	721.5	uq/L	6.60	0.91%
		thin	limits for Cu							57		
Fe	273.955		488928.2			uq/L		0.1	14590	ug/L	70.1	0.48%
		thin	limits for Pe							5		
ĸ ·	766.490		58229.3			ug/L	217		14350	ug/L	217.7	1.52%
		thin	limits for K 7						•	5/		
Mor			1259180.9					.0	38810	ua/L	674.0	1.74%
5			limits for Mg							-3,		
Mn	257.610		57599.1			ug/L			770.4	uq/L	9.76	1.27%
		thin	limits for Mn				102.72			<b>J</b> ,		
Мо	202.031		37714.6			ug/L			731.0	uq/L	2.61	0.36%
		thin	limits for Mo				97.478			2.		
Na	589.592		206207.7			ug/L	322		17960	ug/L	322.1	1.79%
		thin	limite for Na	589.59	92 1	lecovery =	95.81%			•		
Νi	231,604		55277.8			ug/L			736.3	ug/L	3.48	0.47%
	QC value wit	thin :	limits for Ni				98.18%					
P 2	213.617		27883.9			ug/L		5	3524	ug/L	21.5	0.61%
	QC value wit	thin :	limits for P 2	13.617	7 Re	covery =	93.98%					
Pb	220.353		14295.0			ug/L			751.9	ug/L	0.98	0.13%
	QC value wit	thin :	limits for Pb	220.39	53 F	Recovery =	: 100.25	*				
Sb	206.836		5134.7			ug/L			743.9	ug/L	1.08	0.15%
	QC value wit	thin 🗅	limits for Sb	206.83	36 F	Recovery =	99.18%					
Se	196.026		3445.5	73	33.3	ug/L			733.3	ug/L	1.74	0.24%
	QC value wit	thin :	limits for Se				97.78%	i				
Sn	189.927		7618.0	75	1.0	ug/L			751.0	ug/L	0.44	0.06%
		thin :	limits for Sn					8				
Sr	421.552		747766.9			ug/L	12.		738.7	ug/L	12.68	1.72%
		thin :	limits for Sr									
Ti	337.279		57316.5			ug/L			758.7	ug/L	6.84	0.90%
	**	thin 1	limits for Ti									
Tl	190.801		9887.4			ug/L			786.7	ug/L	2.16	0.27%
		thin 1	limits for Tl	190.80	)1 R	ecovery =		*		-		
V 2	92 402		211468.8			ug/L		56	738.1	ug/L	2.56	0.35%
_		thin ]	limits for V 2					0.0	maa a	/*		0.550
Zn	206.200		102897.1			ug/L			738.0	ид/ ь	4.03	0.55%
			limits for Zn	206.20	O R	ecovery =	98.51%					
A1]	analyte(s)	passe	ea QC.									

Sequence No.: 86 Sample ID: CCB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 2 Date Collected: 03/06/12 10:05:12 PM Data Type: Reprocessed on 03/07/12 2:13:33 PM

Mean Data: CCB 12	Ban Correcto	A d Calib.			Sample	
Ampluto	Totopolty	Callo.	and Deep	<b>7</b>	pandre	and non pan
Augilte	Incensicy	Conc. Units 0.076 ug/L	sta.Dev.	Conc.	Unite	Sta.Dev. RBD
Ag 336.269 OC value within	11.2 1 limits for Aq	338.289 Recovery	U.3748 = Not calculated	0.076	ug/L	0.3748 496.30%
Al 308.215	-17.6	-7.793 ug/L	3.8507	-7.793	uq/L	3.8507 49.41%
QC value within	n limits for Al	308.215 Recovery	⇒ Not calculated			
As 188.979	-0.2	-0.044 ug/L	0.7637	-0.044	ug/L	0.7637 >999.9%
		188.979 Recovery				
B OC value within	28.6	4.825 ug/L Recovery = Not cal	2.3905	4.825	ug/L	2.3905 49.55%
Ba 233.527	19 2	0.084 ug/L	0 0106	0 084	ug/L	0.0106 12.60%
	limite for Ba	233.527 Recovery	■ Not calculated	0.004	ug, D	0.0100 12.00%
Be 313.107	1323.9	0.215 ug/L	0.0172	0.215	ug/L	0.0172 7.99%
QC value withir	ı limits for Be	313.107 Recovery	= Not calculated		_	
Ca 315.887	-29.8	-1.714 ug/L	2.9784	-1.714	ug/L	2.9784 173.75%
		315.887 Recovery		0 015	17	0 0005 105 110
Cd 214.440	6.7 Limits for Cd	0.015 ug/L 214.440 Recovery			ug/L	0.0275 186.41%
		0.065 ug/L			ug/L	0.1082 167.65%
		228.616 Recovery	= Not calculated	0.003	19/1	0.1002 107.05%
Cr 267.716	-47.2	-0.299 ug/L			ug/L	0.1642 54.85%
		267.716 Recovery			J,	
Cu 327.393		0.198 ug/L	0.3975	0.198	ug/L	0.3975 200.81%
QC value within	limits for Cu	327.393 Recovery	= Not calculated			
Fe 273.955	-229.5	-6.938 ug/L	0.6274	-6.938	ug/L	0.6274 9.04%
		273.955 Recovery			17	CO 2000 000 00
K 766.490		-5.650 ug/L 766.490 Recovery =	Not calculated	-5.650	ug/L	68.3273 >999.9%
4g 285.213		1.295 ug/L		1 295	ua/I.	0.4519 34.90%
		285.213 Recovery		1.233	ug/ L	V.4515 34.500
n 257.610	4.6	0.062 ug/L	0.1416		ug/L	0.1416 229.67%
QC value within	limits for Mn	257.610 Recovery	= Not calculated		0.	
40 202.031	15.7				ug/L	0.0844 27.73%
		202.031 Recovery				
		17.94 ug/L		17.94	ug/L	26.384 147.10%
		589.592 Recovery		0 201	/1	0 2320 111 200
Ni 231.604		0.281 ug/L 231.604 Recovery		0.281	ug/L	0.3132 111.38%
213.617	-9.8	-1.239 ug/L	0.9259	1.239	ug/L	0.9259 74.73%
	limits for P 2	13.617 Recovery =	Not calculated	1.23,	ug/ ti	0.5255 14.750
		1.028 ug/L		1.028	ug/L	0.7637 74.31%
QC value within	limits for Pb	220.353 Recovery	= Not calculated			
Sb 206.836	-0.4		0.6941	0.060	ug/L	0.6941 >999.9%
		206.836 Recovery			•	
		-1.070 ug/L		1.070	ug/L	0.9706 90.74%
_	-90.2	196.026 Recovery		0 000		0 3000 0 440
n 189.927		-0.893 ug/L 109.927 Recovery	0.3058 - Not galgulated	.8.893	ug/L	0.3050 3.44%
3r 421.552	52.9	0.052 ug/L		0.052	ua/L	0.0223 42.52%
		421.552 Recovery		0.002	ug, 1	0.0223 42.326
i 337.279	-25.9	-0.343 ug/L		0.343	ug/L	0.4726 137.58%
		337.279 Recovery			•	
1 190.801	27.5	2.146 ug/L	0.8338	2.146	ug/L	0.0338 38.86%
		190.801 Recovery			•-	
7 292.402	68.9	0.240 ug/L	0.5506	0.240	ug/L	0.5506 229.65%
		92.402 Recovery =		2 640	/T	A 0500 1 000
n 206.200		-2.640 ug/L 206.200 Recovery :		2.640	ug/L	0.0500 1.90%
QC value within all analyte(s) pas		AUG. AUG. RECOVELY	- Not Calculated			
wintlester bas	ou you					

Sequence No.: 97 Sample ID: CCV1 120306EA I:PB O:EA Analystı Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 03/06/12 10:58:46 PM Data Type: Reprocessed on 03/07/12 2:13:44 PM

Ме	an Data: (	CCV1 12	0306EA I:PB O:							
	_		Mean Corrected		Calib.			Sample		
	alyte				nc. Unite			Units	Std.Dev.	RSD
Ag	338.289		73169.3		2.7 ug/L	3.95	492.7	ug/L	3.95	0.80%
		within	limits for Ag							0.600
AI	308.215		46988.9		550 ug/L	142.1	20650	ug/L	142.1	0.69%
2.0		WICHIN	limits for Al				000 1	/ T	C (F	0.67%
АВ	188.979	within	4954.8		3.1 ug/L	6.65	998.1	ug/L	6.65	0.67%
В	OC ANIME	WICHIN	limits for As 5668.4		32 ug/L		1027	ug/L	10.3	0.99%
р	oulay 20	within	limits for B			10.3	1032	ug/ D	10.3	0.220
ag	233.527	MICHIE	230854.4		.y = 103.20 3.9 ug/L	5,38	992.9	ua /1.	5.38	0.54%
Dα		within	limits for Ba				3,2.,	ug/D	3.30	V.3±0
Be	313.107	" TOTTLE	5995849.5		1.1 ug/L	12.46	983.1	υσ/T.	12.46	1.27%
-		within	limits for Be				305.1	ug, 1	11.40	2.5.0
Ca	315.887		870964.6		20 ug/L	519.5	50320	ua/L	519.5	1.03%
		within	limits for Ca					5, -		<del>-</del> -
Cd	214.440		467370.6		3.5 ug/L	4.57	998.5	uq/L	4.57	0.46%
	QC value	within	limits for Cd			= 99.85%		J.		
Co	228.616		89274.5	993	.6 ug/L	3.93	993.6	ug/L	3.93	0.40%
	QC value	within	limits for Co			= 99.36%		•		
$\mathtt{cr}$	267.716		156486.2		.4 ug/L	5.33	993.4	ug/L	5.33	0.54%
	QC value	within	limits for Cr	267.716	Recovery	= 99.34%				
Cu	327.393		113370.0	995	.2 ug/L	8.10	995.2	ug/L	8.10	0.81%
	QC value	within	limits for Cu	327.393	Recovery	= 99.52%				
Рe	273.955		661529.8		'40 ug/L	90.0	19740	ug/L	90.0	0.46%
	QC value	within	limits for Fe			= 98.70%				
	66.490		77709.7		50 ug/L	181.7	19150	ug/L	181.7	0.95%
		within	limits for K 7		•					
	285.213		1645003.6		00_ug/L	460.1	50700	ug/L	460.1	0.91%
		within	limits for Mg							
	257.610		75092.4		04_ug/L	8.9	1004	ug/L	8.9	0.89%
	_	within	limits for Mn					1-		
	202.031		\$2653.5		21 ug/L	11.2	1021	ug/L	11.2	1.10%
		within	limits for Mo				22020	/T	205.3	0.068
	589.592		274713.1		30 ug/L	205.1	23930	ug/L	205.1	0.86%
		WICUIN	limits for Na		.2 ug/L		992.2	~/T	2.30	0.23%
	231.604	udebie	74482.1 limite for Ni			2,30	992.2	ug/ Li	2.30	0.234
	13.617	MICHIE	38902.2		17 ug/L	49.1	4917	na/L	49.1	1.00%
		within	limits for P 2				4317	ug/ D	49.1	1.00%
	220.353	WICHILL	19071.3		03 ug/L	10.0	1003	ug/L	10.0	1.00%
		within	limite for Pb				1005	45,2	10.0	1.000
	206.836		6948.3		07 ug/L	8.8	1007	ug/L	8.8	0.87%
		within	limits for Sb					<b>-</b>		
	196.026		4565.9		.8 ug/L 1	11.48	971.8	ug/L	11.48	1.18%
		within	limits for Se			= 97.18%				
	189.927		10107.0		.4 ug/L	10.19	996.4	ug/L	10.19	1.02%
	QC value	within	limits for Sn	189.927	Recovery	= 99.64%		_		
	421.552		1024840.3		12 ug/L	9.0	1012	ug/L	9.0	0.89%
		within	limits for Sr	421.552	Recovery	= 101.25%		_		
	337.279		77881.9		31 ug/L	10.9	1031	ug/L	10.9	1.06%
	QC value	within	limite for Ti							
	190.801		13151.8		47 ug/L	10.4	1047	ug/L	10.4	0.99%
		within	limits for Tl					. /-		
	92.402		289447.2		11 ug/L	4.2	1011	ug/L	4.2	0.42%
		within	limits for V 2							
zn	206.200		139216.8		.8 ug/L	3.73	999.8	ug/L	3.73	0.37%
			limits for Zn	206.200	Recovery	= 99.98%				
All	analyte(:	a) pass	ea uc.							

Sequence No.: 98 Sample ID: CCB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/06/12 11:03:12 PM Data Type: Reprocessed on 03/07/12 2:13:45 PM

Analyte Intensity Conc. Units 93.38.289   -0.472 ug/L 0.5178   -0.472 ug/L 0.5182   -0.472 ug/L 0.5182   -0.472 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug/L 0.5182   -0.482 ug	Mean Data: CCB 12	Mean Correcte	A d Calib.		<b>Gample</b>	
QC value within limits for Ag 338.289   Recovery = Not calculated   0.340 ug/L   6.6564   >999   QC value within limits for Al 308.215   Recovery = Not calculated   0.340 ug/L   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   914.   1.7365   9	Analyte	Intensity	Conc. Units	Std.Dav. Con	o. Units	Std.Dev. RSD
QC value within limits for Ag 338.289   Recovery = Not calculated   0.340 ug/L   6.6564   >999   QC value within limits for Al 308.215   Recovery = Not calculated   1.7365   -0.190 ug/L   1.7365   914.	Ag 338.289	-70.1	-0.472 ug/L	0.5178 -0.4	72 ug/L	0.5178 109.75%
QC value within limits for Al 308.215 Recovery = Not calculated	QC value within	n limits for Ag	338.289 Recovery	= Not calculated		
QC value within limits for Al 308.215 Recovery = Not calculated as 188.979   QC value within limits for As 188.979   Recovery = Not calculated   1.8   Q.285 ug/L   2.3263   Recovery = Not calculated   2.3263   Recovery = Not calculated   0.1405   QC value within limits for B   Recovery = Not calculated   0.1405   QC value within limits for B   233.527   Recovery = Not calculated   0.1405   QC value within limits for B   233.527   Recovery = Not calculated   0.1405   QC value within limits for B   233.527   Recovery = Not calculated   0.1405   QC value within limits for C   233.5287   Recovery = Not calculated   0.0521   QC value within limits for C   233.5287   Recovery = Not calculated   0.0521   QC value within limits for C   234.640   Recovery = Not calculated   0.0521   QC value within limits for C   241.440   Recovery = Not calculated   0.0521   QC value within limits for C   228.616   Recovery = Not calculated   0.0521   QC value within limits for C   228.616   Recovery = Not calculated   0.0563   QC value within limits for C   257.716   Recovery = Not calculated   0.0645   DC value within limits for C   273.955   Recovery = Not calculated   0.0645   DC value within limits for C   273.955   Recovery = Not calculated   0.316   QC value within limits for Recovery = Not calculated   0.316   QC value within limits for Recovery = Not calculated   0.349   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery = Not calculated   0.264   QC value within limits for Recovery =	Al 308.215	1.1	0.340 ug/L	6.6564 0.3	40 ug/L	6.6564 >999.9%
1.7365   1.90   1.7365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17365   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366   1.17366	QC value within	n limits for Al	308.215 Recovery	= Not calculated	•	
OC value within limits for As 188.979 Recovery = Not calculated 1.8 0.285 ug/L 2.3263 0.285 ug/L 2.3263 815. OC value within limits for B Recovery = Not calculated 1.323.527 3.0 0.013 ug/L 0.1405 > 999 0.000 C value within limits for Ba 233.527 Recovery = Not calculated 1.323.527 Recovery = Not calculated 1.323.527 Recovery = Not calculated 1.323.527 Recovery = Not calculated 1.324.3 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 2.52 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.0521 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L 0.000 ug/L				1.7365 -0.1	90 ug/L	1.7365 914.09%
1.8		limits for As			٠. ٥,	
QC value within limits for B Recovery = Not calculated a 233.527				2.3263 0.2	85 ug/L	2.3263 815.33%
18 233.527	OC value within		Recovery = Not cal	culated		
QC value within limits for Ba 233.527   Recovery = Not calculated   0.0521   0.207 \text{ vg/L}   0.0523   0.002 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126 \text{ vg/L}   0.0563   0.126  vg/L					13 μα/Ι.	0,1405 >999.9%
18 313.107				= Not calculated	, -	
QC value within limits for Be 313.107   Recovery = Not calculated   315.887   1424.3   82.43 ug/L   9.601   11.   QC value within limits for Co 2315.887   Recovery = Not calculated   0.282   -0.012 ug/L   0.282   -0.012 ug/L   0.282   -0.012 ug/L   0.283   -0.012 ug/L   0.283   -0.012 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.283   -0.026 ug/L   0.281   -0.02					07 ng/L	0.0521 25.17%
As 315.887					v. 4g, 4	5100 <u>2</u> 2 251270
QC value within limits for Ca 315.887   Recovery = Not calculated   0.2022 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0202 -0.012 ug/L   0.0563 -0.420 ug/L   0.0645 -0.420 ug/L   0.0645 -0.420 ug/L   0.0645 -0.420 ug/L   0.0645 -0.420 ug/L   0.0645 -0.420 ug/L   0.0537 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.420 ug/L   0.0547 -0.7374 ug/L   0.5497 -7.374 ug/L   0.2641 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0.2014 ug/L   0	a 315 887	1424 3	82 43 119/1.	9 601 82	43 ua/t.	9 601 11 65%
d 214.440					15 ug/ H	3:001 11:030
OC value within limits for Cd 214.440 Recovery = Not calculated 0.228.616 1.1.1 0.126 ug/L 0.0563 0.126 ug/L 0.0563 4.4   OC value within limits for Co 228.616 Recovery = Not calculated 0.0645 -0.420 ug/L 0.0645 15.   OC value within limits for Cr 267.716 Recovery = Not calculated 0.327.393 Recovery = Not calculated 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176 0.3176				0 0383 -0 0	12 na/t.	0 0202 226 85%
0 228.516					ir ag/D	0.0202 230.034
OC value within limits for Co 228.616 Recovery = Not calculated r 267.716 - 65.8 - 0.420 ug/L 0.0645 - 0.420 ug/L 0.0645 15.   QC value within limits for Cr 267.716 Recovery = Not calculated 0.3176 0.3176 234.   QC value within limits for Cr 267.716 Recovery = Not calculated 0.3176 0.3176 234.   QC value within limits for Cr 27.733 Recovery = Not calculated 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.5497 -7.374 ug/L 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2990 -0.094 ug/L 0.0989 -0.094 ug/L 0.0989 -0.094 ug/L 0.2990 ug/L 0.2590 240.   0C value within limits for Na 589.592 Recovery = Not calculated 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 -0.258 u					26 va/t	0 0563 44 748
267.716	00 mlm within	Alita for Co	0.120 ug/D	V.0303 U.I	20 ug/L	0.0303 44.748
OC value within limits for Cr 267.716 Recovery = Not calculated 1327.393 15.4 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.3176 0.135 ug/L 0.349 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.5497 7.374 ug/L 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2814 0.349 ug/L 0.2909 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.108 ug/L 0.2590 0.					20/1	0.0045 35.308
13.27.393 15.4 0.135 ug/L 0.3176 0.135 ug/L 0.0 value within limits for Cu 3273.936 0.73755 -241.9 -7.374 ug/L 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5497 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5499 0.5494 0.5499 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.5494 0.6					20 ug/L	0.0645 15.36%
QC value within limits for Cu 327.393 Recovery = Not calculated 2273.955				m Not calculated		
e 273.955					15 ug/L	0.3176 234.62%
OC value within limits for Pe 273.955 Recovery = Not calculated 766.490						
766.490 253.9 62.64 ug/L 13.677 62.64 ug/L 13.677 21.  QC value within limits for K 766.490 Recovery = Not calculated 12.9 0.349 ug/L 0.2814 0.349 ug/L 0.2814 80.  QC value within limits for Mg 285.213 Recovery = Not calculated 0.257.610	273.955	-241.9	-7.374 ug/L	0.5497 -7.3	74 ug/L	0.5497 7.46%
QC value within limits for K 766.490   Recovery = Not calculated   QC value within limits for Mg 285.213   Recovery = Not calculated   QC value within limits for Mg 285.213   Recovery = Not calculated   QC value within limits for Mg 285.213   Recovery = Not calculated   QC value within limits for Mg 276.610   Recovery = Not calculated   QC value within limits for Mg 276.610   Recovery = Not calculated   QC value within limits for Mg 202.031   Recovery = Not calculated   R	_					
285.213   12.9   0.349 ug/L   0.2814   0.349 ug/L   0.2814   80. QC value within limits for Mg 285.213   Recovery   Not calculated   0.2939   -0.094 ug/L   0.0989   -0.094 ug/L   0.0989   -0.094 ug/L   0.2590   0.108 ug/L   0.2590   240. QC value within limits for Mn 257.610   Recovery   Not calculated   0.2590   0.108 ug/L   0.2590   240. QC value within limits for Mn 202.031   Recovery   Not calculated   17.912   49.08 ug/L   17.912   36. QC value within limits for Na 589.592   Recovery   Not calculated   231.604   -19.2   -0.258 ug/L   0.1203   -0.258 ug/L   0.1203   -0.258 ug/L   0.203   -0.258 ug/L   0.203   -0.258 ug/L   0.1203   -0.258 ug/L   0.203   -0.873 ug/L   0.203   -0.873 ug/L   0.203   -0.873 ug/L   0.203   -0.873 ug/L   0.203   -0.873 ug/L   0.203   -0.873 ug/L   0.2841   0.203   -0.873 ug/L   0.2841   0.204   0.2841   0.204   0.2841   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.204   0.20				13.677 62.	64 ug/L	13.677 21.83%
QC value within limits for Mg 285.213 Recovery = Not calculated 0.257.610						
257.610	285.213				19 ug/L	0.2814 80.54%
OC value within limits for Mn 257.610 Recovery = Not calculated 0.220.031 5.7 0.108 ug/L 0.2590 0.108 ug/L 0.2590 240. OC value within limits for Mo 202.031 Recovery = Not calculated 589.592 562.9 49.08 ug/L 17.912 49.08 ug/L 17.912 36. OC value within limits for Na 589.592 Recovery = Not calculated 231.604 -19.2 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 46. OC value within limits for Ni 231.604 Recovery = Not calculated 213.617 -6.9 -0.873 ug/L 1.0584 -0.873 ug/L 1.0584 121. OC value within limits for P 213.617 Recovery = Not calculated 220.353 17.8 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.206.836 -6.8 -0.989 ug/L 0.5367 -0.989 ug/L 0.5367 54. OC value within limits for Pb 200.353 Recovery = Not calculated 196.026 -19.0 -4.052 ug/L 1.5760 -4.052 ug/L 1.5760 38. OC value within limits for Se 196.026 Recovery = Not calculated 189.927 -193.9 -19.12 ug/L 0.245 -19.12 ug/L 0.245 1.0819 0.011 ug/L 0.245 1.0819 0.011 ug/L 0.245 1.0896 ug/L 0.0995 -0.896 ug/L 0.0995 11.0819 0.0095 11.0819 0.0095 11.0819 0.0095 11.0819 0.0095 11.0819 0.0095 11.0819 0.0095 11.0819 0.0095 0.0095 11.0819 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095	QC value within	limits for Mg	285.213 Recovery	<pre>= Not calculated</pre>		
202.031   5.7   0.108 ug/L   0.2590   0.108 ug/L   0.2590   240.     QC value within limits for Mo 202.031 Recovery = Not calculated   17.912   49.08 ug/L   17.912   36.     QC value within limits for Na 589.592   Recovery = Not calculated   17.912   36.     QC value within limits for Na 589.592   Recovery = Not calculated   17.912   36.     QC value within limits for Ni 231.604   Recovery = Not calculated   1.0584   -0.873 ug/L   1.0584   21.     QC value within limits for P 213.617   Recovery = Not calculated   1.0584   -0.873 ug/L   1.0584   121.     QC value within limits for P 213.617   Recovery = Not calculated   1.0584   -0.873 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.2841   0.934 ug/L   0.268   0.936   0.936   0.936   0.936   0.936   0.5367   -0.989 ug/L   0.5367   -0.989 ug/L   0.5367   54.   0.934 ug/L   0.5367   -0.989 ug/L   0.5367   54.   0.934 ug/L   0.245   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0.936   0	1 257.610	-6.9	-0.094 ug/L	0.0989 -0.09	94 ug/L	0.0989 105.44%
QC value within limits for Mo 202.031 Recovery = Not calculated a 589.592 562.9 49.08 ug/L 17.912 49.08 ug/L 17.912 36. QC value within limits for Na 589.592 Recovery = Not calculated 1231.604 -19.2 -0.258 ug/L 0.1203 -0.258 ug/L 0.1203 46. QC value within limits for Ni 231.604 Recovery = Not calculated 213.617 -6.9 -0.873 ug/L 1.0584 -0.873 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.2841 0.934 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.5367 0.989 ug/L 0.245 1.989 ug/L 0.989 ug/L 0.245 1.989 ug/L 0.	QC value within	limits for Mn	257.610 Recovery	= Not calculated		
17.912   49.08 ug/L   17.912   49.08 ug/L   17.912   36.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00   20.00	202.031	5.7	0.108 ug/L	0.2590 0.10	08 ug/L	0.2590 240.52%
17.912   49.08 ug/L   17.912   49.08 ug/L   17.912   36.00   QC value within limits for Na 589.592   Recovery = Not calculated   1231.604   -19.2   -0.258 ug/L   0.1203   -0.258 ug/L   0.1203   46.00   QC value within limits for Ni 231.604   Recovery = Not calculated   123.617   -6.9   -0.873 ug/L   1.0584   -0.873 ug/L   1.0584   121.00   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200   0.200	QC value within	limits for Mo	202.031 Recovery	= Not calculated	_	
QC value within limits for Na 589.592 Recovery = Not calculated 1 231.604	a 589.592	562.9	49.08 ug/L	17.912 49.0	08 uq/L	17.912 36.49%
231.604	OC value within	limits for Na	589.592 Recovery	= Not calculated		
QC value within limits for Ni 231.604 Recovery = Not calculated 213.617				0.1203 -0.2	58 ug/L	0.1203 46.67%
213.617	OC value within	limits for Ni	231.604 Recovery	= Not calculated		
QC value within limits for P 213.617 Recovery = Not calculated 220.353 17.8 0.934 ug/L 0.2841 0.934 ug/L 0.2841 30.0 QC value within limits for Pb 220.353 Recovery = Not calculated 206.836 -6.8 -0.989 ug/L 0.5367 -0.989 ug/L 0.5367 54.0 QC value within limits for Sb 206.836 Recovery = Not calculated 196.026 -19.0 -4.052 ug/L 1.5760 -4.052 ug/L 1.5760 38.0 QC value within limits for Se 196.026 Recovery = Not calculated 189.927 -193.9 -19.12 ug/L 0.245 -19.12 ug/L 0.245 1.0 QC value less than the lower limit for Sn 189.927 Recovery = Not calculated 1.15 0.011 ug/L 0.1819 0.011 ug/L 0.1819 0.011 ug/L 0.1819 999 QC value within limits for Sr 421.552 Recovery = Not calculated 1.337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.0 QC value within limits for Ti 337.279 Recovery = Not calculated 1.90.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.0 QC value within limits for Ti 190.801 Recovery = Not calculated 1.92.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0 QC value within limits for V 292.402 Recovery = Not calculated 1.90.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.50 QC value within limits for Zn 206.200 Recovery = Not calculated	_			1.0584 -0.8	73 ug/L	1.0584 121.26%
1.8   0.934 ug/L   0.2841   0.934 ug/L   0.2841   30.000   0.2841   30.000   0.2841   0.2841   0.2841   30.000   0.28366   0.6.8   0.989 ug/L   0.5367   0.989 ug/L   0.5367   54.000   0.2841   0.2841   30.000   0.28366   0.2836   0.28367   0.2841   0.5367   54.000   0.28367   0.28367   0.28367   54.000   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367   0.28367					3, ~	
QC value within limits for Pb 220.353 Recovery = Not calculated 206.836					34 nα/τ.	0.2841 30 43%
206.836					49/1	0.2011 30.430
QC value within limits for Sb 206.836 Recovery = Not calculated 196.026				0.5367 -0 90	l9 μα/τ.	0 5367 5 <i>A</i> 208
196.026			206 036 Degovery	- Not calculated	75 ag/1	0.5507 54.200
QC value within limits for Se 196.026 Recovery = Not calculated 189.927 -193.9 -19.12 ug/L 0.245 -19.12 ug/L 0.245 1.0 QC value less than the lower limit for Sn 189.927 Recovery = Not calculated 2421.552 11.5 0.011 ug/L 0.1819 0.011 ug/L 0.1819 >999 QC value within limits for Sr 421.552 Recovery = Not calculated 337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.0 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.0 QC value within limits for Ti 190.801 Recovery = Not calculated 292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated	OC ASIGE MICHIN	1101 601 50	4 052 va/I	1 E7604 O	:2a/T	1 6760 30 00%
189.927	196.026	-19.U	-4.052 ug/D	1.5760 "4.0;	2 ug/L	1.5760 36.90%
QC value less than the lower limit for Sn 189.927 Recovery = Not calculated (421.552 11.5 0.011 ug/L 0.1819 0.011 ug/L 0.1819 >999 QC value within limits for Sr 421.552 Recovery = Not calculated (337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.5 QC value within limits for Ti 337.279 Recovery = Not calculated (190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.0 QC value within limits for Ti 190.801 Recovery = Not calculated (292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0 QC value within limits for V 292.402 Recovery = Not calculated (206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated (207.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 -2.916 ug/L						0.04" 1.000
11.5 0.011 ug/L 0.1819 0.011 ug/L 0.1819 >999  QC value within limits for Sr 421.552 Recovery = Not calculated  337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.5  QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.0  QC value within limits for Ti 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5  QC value within limits for Zn 206.200 Recovery = Not calculated						0.245 1.28*
QC value within limits for Sr 421.552 Recovery = Not calculated  337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.5  QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.5  QC value within limits for Ti 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.5  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5  QC value within limits for Zn 206.200 Recovery = Not calculated						
337.279 -67.4 -0.896 ug/L 0.0995 -0.896 ug/L 0.0995 11.5  QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.5  QC value within limits for Ti 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.5  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5  QC value within limits for Zn 206.200 Recovery = Not calculated					ll ug/L	0.1819 >999.9%
QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.4  QC value within limits for Ti 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.4  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5  QC value within limits for Zn 206.200 Recovery = Not calculated						
190.801 15.0 1.160 ug/L 0.7317 1.160 ug/L 0.7317 63.0 QC value within limits for T1 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0 QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.0 QC value within limits for Zn 206.200 Recovery = Not calculated	337.279			0.0995 ~0.89	96 ug/L	0.0995 11.11%
QC value within limits for T1 190.801 Recovery = Not calculated  292.402 -76.6 -0.263 ug/L 0.2235 -0.263 ug/L 0.2235 85.0  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.0  QC value within limits for Zn 206.200 Recovery = Not calculated		limits for Ti			_	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					50 ug/L	0.7317 63.09%
QC value within limits for V 292.402 Recovery = Not calculated 206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zm 206.200 Recovery = Not calculated	QC value within	limits for T1	190.801 Recovery	⊨ Not calculated		
$_1$ 206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.5 QC value within limits for Zn 206.200 Recovery = Not calculated	292.402	-76.6	-0.263 ug/L	0.2235 -0.26	3 ug/L	0.2235 85.06%
$_1$ 206.200 -406.6 -2.916 ug/L 0.1247 -2.916 ug/L 0.1247 4.3 QC value within limits for Zn 206.200 Recovery = Not calculated	QC value within	limits for V 2	92.402 Recovery =	Not calculated		
QC value within limits for Zn 206.200 Recovery = Not calculated					l6 ug/L	0.1247 4.28%
					<b>.</b>	
Failed. Continue with analysis.						

Sequence No.: 109 Sample ID: CCV2 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 8 Date Collected: 03/07/12 12:02:20 AM Data Type: Reprocessed on 03/07/12 2:13:56 PM

Mean	Data: CCV2 12	10306EA I:PB O:			~~~~		*	,
	_	Mean Corrected				Sample		
Analy	yte	Intensity	Conc. Units	Std.Dev.		Units	Std.Dev.	RSD
Ag 33	38.289	53168.9	358.0 ug/L	4.31	358.0	ug/L	4.31	1.20%
		limits for Ag	338.289 Recovery	= 95.47%				
	08.215	33707.1	14810 ug/L	221.8	14810	ug/L	221.8	1.50%
			308.215 Recovery	= 98.74%				
	38.979	3650.4	735.3 ug/L	6.56	735.3	ug/L	6.56	0.89%
	C value within	limits for As	188.979 Recovery	= 98.04%		-		
В		4033.6	735.5 ug/L ¹	7.06	735.5	ug/L	7.06	0.96%
QC	: value within	limits for B	Recovery = 98.07%			•		
Ba 23	33.527	167733.7	721.4 ug/L	9.32	721.4	ug/L	9.32	1.29%
QC	: value within	limits for Ba	233.527 Recovery	= 96.19%		3, -		
	.3.107	4386497.2	719.2 ug/L	7.84	719.2	ug/L	7.84	1.09%
QC	value within	limits for Be	313.107 Recovery	= 95.89%	113.2	ug/ 2	7.04	1.038
	.5.887	632142.0	36520 ug/L	170 1	36520	ua /T.	170.1	0.47%
		limits for Ca	315.887 Recovery	- 97 30%	30320	ug/ L	170.1	0.476
	4.440	339683.3	725.7 ug/L	10.64	725 7	/T	10.64	1.47%
		limite for Cd	214.440 Recovery	10.04	125.1	ug/L	10.64	1.478
	8.616	CE222 1	727.2 ug/L	= 90.768				
	0.010	14-4	727.2 ug/µ	10.39	727.2	ug/L	10.39	1.43%
			228.616 Recovery					
Cr 26'		113600.8	721.2 ug/L	9.52	721.2	ug/L	9.52	1.32%
			267.716 Recovery					
Cu 32'		82093.2	720.7 ug/L	9.05	720.7	ug/L	9.05	1.26%
	value within	limits for Cu	327.393 Recovery	= 96.09%				
	3.955	481591.2	14370 ug/L	188.0	14370	ug/L	188.0	1.31%
QC	value within	limits for Fe	273.955 Recovery	= 95.81%		_		
K 766		57615.1	14200 ug/L	35.5	14200	ug/L	35.5	0.25%
QC	value within	limits for K 7	66.490 Recovery =	94.67%		- J. –		
Mg 289	5.213	1188421.8	36630 ug/L	139.8	36630	ug/L	139.8	0.38%
_ 00	value within	limits for Ma	285.213 Recovery	≈ 97.67%		5/ -	233.0	0.500
Mn 257		53223.5		11.21	711.A	ug/L	11.21	1.57%
			257.610 Recovery			~g, ±	11.21	1.578
Mo 202		37415.7		8.93	725.2	ug/L	8.93	1.23%
			202.031 Recovery		72312	աց, ը	0.93	1.230
	9.592		17900 ug/L		17000	/7	05.0	A 478
		limits for No.	589.592 Recovery	. 05.0	1/900	ug/L	85.0	0.47%
Ni 231					====	. 15		
		54565.3	726.9 ug/L	10.80	726.9	ug/L	10.80	1.49%
		TIMICS FOR NI	231.604 Recovery					
P 213.			3454 ug/L	57.1	3454	ug/L	57.1	1.65%
			13.617 Recovery #					
Pb 220		14088.3	741.0 ug/L	4.91	741.0	ug/L	4.91	0.66%
			220.353 Recovery					
Sb 206		5068.1	734.2 ug/L	4.55	734.2 1	ug/L	4.55	0.62%
QC	<b>va</b> lue within	limits for Sb :	206.836 Recovery	= 97.90%				
Se 196	5.026	3366.9	716.6 ug/L	6.31	716.6	ıq/L	6.31	0.08%
QC	value within	limits for Se 3	196.026 Recovery :	= 95.55%				
Sn 189		7524.7	741.8 ug/L	4.09	741.8	ia/r	4.09	0.55%
QC	value within	limits for Sn 1	189.927 Recovery :	= 98.91%		<b>.</b>		
Sr 421		765182.3	756.0 ug/L	2.80	756.0 t	1a/1,	2.80	0.37%
OC	value within	limits for Sr 4	121.552 Recovery				2.00	0.5.0
Ti 337		56299.5	745.2 ug/L	12.48	745.2 1	ıa/ī.	12.48	1.67%
			37.279 Recovery		113.2	.g, 1	12.40	1.016
Tl 190		9798.8	779.3 ug/L	5.23	779.3 ı	100 / T.	E 33	0.079
			190.801 Recovery =		113.3 l	л9/ п	5.23	0.67%
V 292.		210132.6	733.5 ug/L		722 5	/ T		
			733.5 Ug/L	8.92	733.5 t	19/11	8.92	1.22%
			2.402 Recovery =		no			
Zn 206		101135.6	726.3 ug/L	10.51	726.3 t	ıg/L	10.51	1.45%
			06.200 Recovery =	: 96.84*				
All an	alyte(s) pass	ea QC.						

Semence No.: 110

Sequence No.: 110
Sample ID: CCB 120306RA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 2
Date Collected: 03/07/12 12:10:52 AM
Data Type: Reprocessed on 03/07/12 2:13:57 PM

Mean Data: CCB 120:	306EA I:PB O:E	A					·	
	Mean Corrected	đ.	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.		Unite	Std.Dev.	
Ag 338.289				0.4397		ug/L	0.4397	96.71%
QC value within	limits for Ag	338.289 I	Recovery		i 	4_		45 040
A1 308.215	-21.1	-9.393	ug/L	4.3153		ug/L	4.3153	45.94%
QC value within					0.221	/T	1 7400	791.68%
As 188.979 QC value within	1.1	0,221		1.7499 - Mot galgulated		սց/ և	1.7499	791.00%
B OC VALUE WICHIN	11.5	1,943		1.1435	1.943	ua/L	1.1435	58.86%
QC value within					1.713	ug/ 2	1.1133	201001
Ba 233.527	6.3	0.028		0.0105	0.028	uq/L	0.0105	37.91%
QC value within						- <b>J</b> , -		
Be 313.107	1507.9	0.243		0.0307		ug/L	0.0307	12.62%
QC value within	limits for Be	313.107 F	Recovery	<ul> <li>Not calculated</li> </ul>	l			
Ca 315.887	951.0	55.06		14.015		ug/L	14.015	25.45%
QC value within								
Cd 214.440	-14.4	-0.031		0.0391	-0.031	ug/L	0.0391	126.07%
QC value within							0.0015	10 479
Co 228.616	18.2		ug/L			ug/L	0.0215	10.47%
QC value within				= NOT CAICUIACEC 0.1950		uq/L	0 1050	52.54%
Cr 267.716 QC value within	-58.2	-0.371	ug/u			ug/ D	<b>Q.1330</b>	32.340
Cu 327.393	39.3	0.345		0.2715	0.345	ng/L	0.2715	78.66%
QC value within						49, 2	012.20	
Fe 273.955	-159.2			0.7962	-4.836	uq/L	0.7962	16.46%
QC value within				- Not calculated		J.		
K 766.490	135.5	33.43	ug/L	20.247	33.43	ug/L	20.247	60.57%
QC value within	limits for K 7	766.490 Re	ecovery =	Not calculated				
Mg 285.213		1,125			1.125	ug/L	0.1891	16.81%
QC value within	limits for Mg	285,213 F	Recovery :		l	-		
Mn 257.610	1.4	0.018	ug/L	0.1559	0.018	ug/L	0.1559	888.88
QC value within					۱ ۸۸۸	17	0 0000	005 304
Mo 202.031	5.1	0.098		0.2803	0.098	ug/ь	0.2803	285.20%
QC value within	11m1ts for MO		ug/L		15.50	υα/τ.	8.042	51 99%
Na 589.592 QC value within		580 502 5	ug/l Pecoverv :	e.oaz - Not calculated		ug/ II	0.012	31.000
Ni 231.604	4.5	0.058		0.1120	0.058	11 <b>0/</b> L	0.1120	191.50%
QC value within	limits for Ni	231.604 R	Recovery :		1	~g, ~	* \ *	
P 213.617		-1.487		1.2311	-1.487	uq/L	1.2311	82.82%
QC value within						<b>J</b> .		
Pb 220.353	16.0	0.840	ug/L	0.3262	0.840	ug/L	0.3262	38.83%
QC value within	limits for Pb	220.353 F	Recovery :	<ul> <li>Not calculated</li> </ul>	ļ			
Sb 206.836	-4.9	-0.709		0.1729	-0.709	ug/L	0.1729	24.39%
QC value within	limits for Sb	206.836 R	lecovery :	= Not calculated	l 			
Se 196.026	-3.0	-0.635	ug/L	2.7944	-0.635	ug/L	2.7944	440.31%
QC value within		196.026 R	lecovery :	= Not calculated		/7	0 2020	2 278
Sn 189.927	-94.0	-9.265	ug/L			ug/L	0.3029	3.27%
QC value within	-236.7	-0.234		NOC Carculated	-U 234	ug/L	<b>A</b> 1190	50.74%
Sr 421.552 QC value within	1imite for Sr	421 552 B	ug/II Decoverv :			ug/ L	0.1170	30.740
Ti 337.279	-49.2	-0.654	ua/L	0.3549	-0.654	ug/L	0.3549	54.30%
QC value within						gr —		
Tl 190.801	24.4	1.895	ug/L	0.2858	1.895	ug/L	0.2858	15.08%
QC value within	limits for Tl	190.801 R	Recovery =	Not calculated	Į.	•		
V 292,402	-57.1	-0.196	ug/L	0.2468	-0.196	ug/L	0.2468	125.70%
QC value within	limits for V 2	92.4 <b>0</b> 2 Re	covery =	Not calculated		_		
Zn 206.200	-366.9	-2.630	ug/L	0.0702		ug/L	0.0702	2.67%
QC value within		206.2 <b>00</b> R	Recovery =	<ul> <li>Not calculated</li> </ul>	Į			
All analyte(s) pass	ed QC.							

Sequence No.: 121 Sample ID: CCV1 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 3
Date Collected: 03/07/12 1:17:42 AM Data Type: Reprocessed on 03/07/12 2:14:07 PM

Mean Data: CCV1 12	0306RA T.PR O.						
Medii pata. CC11 12	Mean Corrected	_		-	Sample		
Analyte			Std.Day.	Conc.	Units	Std.Dev.	RSD
Analyte Ag 338.289	70843.2	477.0 ug/L	1.87	477.0	ug/L	1.87	0.39%
QC value within	limits for Ag	338.289 Recovery	= 95.40%				
Al 308.215		19760 ug/L		19760	ug/L	118.1	0.60%
		308.215 Recovery			_		
Ав 188.979	4930.3	993.2 ug/L	7.60	993.2	ug/L	7.60	0.77%
		188.979 Recovery					
B		D	3.78		ug/L	3.78	0.39%
		Recovery = 98.08%	4.28	262.6	17		
Ba 233.527				962.6	ug/L	4.28	0.44%
	5858817.9	233.527 Recovery 960.6 ug/L	7.79	060.6		7 70	0.81%
Be 313.107		313.107 Recovery		960.6	ц9/п	7.79	0.016
		47620 ug/L		47620	սց/Ն	123.5	0.26%
		315.887 Recovery		47020	ug/ D	123.5	0.200
Cd 214.440	452441.1	966.6 ug/L	3.11	966.6	ug/L	3.11	0.32%
		214.440 Recovery		500.0	-5/ -	3.22	******
	86546.6		4.68	963.3	ug/L	4.68	0.49%
		228.616 Recovery			5, -		
		964.3 ug/L		964.3	ug/L	2.98	0.31%
QC value within	limits for Cr	267.716 Recovery	≈ 96.43%				
Cu 327.393	109780.6	963.7 ug/L	6.44	963.7	ug/L	6.44	0.67%
		327.393 Recovery					
Fe 273.955		<u> </u>		19130	ug/L	85.6	0.45%
QC value within		273.955 Recovery					
K 766.490	76463.6	18850 ug/L	30.0	18850	ug/L	30.0	0.16%
		66.490 Recovery =					
			110.9	48070	ug/L	110.9	0.23%
		285.213 Recovery		053.0		6 55	0 600
Mn 257,610		951.0 ug/L		951.0	ug/L	6.57	0.69%
	51180.8	257.610 Recovery 992.0 ug/L	5.69	002.0	ug/L	5.69	0.57%
Mo 202.031		202.031 Recovery		332.0	ug/ D	3.03	0.578
		23890 ug/L		23890	ug/L	57.4	0.24%
		589.592 Recovery		23030	ug/ <u>D</u>	3711	0.240
Ni 231.604	72328.2	963.5 ug/L	5,13	963.5	ug/L	5.13	0.53%
		231.604 Recovery			57		*
P 213.617	37481.0		36.8	4737	ug/L	36.8	0.78%
QC value within		13.617 Recovery =	94.74%		<b>.</b>		
		971.7 ug/L		971.7	սց/Ն	7.65	0.79%
QC value within	limits for Pb	220.353 Recovery	= 97.17%				
Sb 206.836	6748.4	977.6 ug/L	3.10	977.6	ug/L	3.10	0.32%
		206.836 Recovery					
		938.7 ug/L		938.7	ug/L	5.92	0.63%
		196.026 Recovery		074 0			
Sn 189.927	9881.7	974.2 ug/L	3.13	974.2	ug/ь	3.13	0.32%
		189.927 Recovery		1007	/ 7	2.4	0.23%
Sr 421.552	1019368.8	1007 ug/L 421.552 Recovery	2.4	1007	աց/ Б	2.4	0.230
Ti 337.279	75161.4	995.0 ug/L	4.89	995.0	ua /ī.	4.89	0.49%
		337.279 Recovery		223.0	ug/ L	4.05	0.450
Tl 190.801	12782.7	1017 ug/L	6.5	1017	ոգ/Ն	6.5	0.64%
		190.801 Recovery			~5/ ~	313	0.010
V 292.402	281535.6	983.0 ug/L	3.33	983.0	ոգ/բ	3.33	0.34%
		92.402 Recovery =		•	- <b>-</b> .		• •
Zn 206.200	134816.8	968.2 ug/L	4.46	968.2	ug/L	4.46	0.46%
		206.200 Recovery	= 96.82%		<del></del> -		
All analyte(s) pass		-				•	

Sequence No.: 122 Sample ID: CCB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/07/12 1:22:56 AM Data Type: Reprocessed on 03/07/12 2:14:08 PM

	CCB 120306EA I:PB Mean Corre	ected Cali	lb.		Sample		
Analyte	Intengi	ty Cono. Unit	S Std.Dev.	Conc.	Unite	ged Dov	ban
Ag 338.289	Intensi -60:	3 -0.406 ug/I	0.8560	-0.406	ug/L	0 8560	. KBD 210 60%
QC varue	s wituiu liwita 101	: Ag 338.289 Recou	erv = Not calcula	ited	_		
AL 308.215	-17.	.2 -7.658 ug/ī	3 8220	_7 CEO	ug/L	3.8229	49.92%
As 188.979	within limits for	Al 308.215 Recov	ery = Not calcula	ted			
	2. Within limits for	5 0.500 ug/I	2.0603	0.500	ug/L	2.0603	412.29%
B Oc varue	within limits for	AS 188.979 Recov	ery = Not calcula	teđ			
_	within limits for	2 3.057 ug/I	1.7715	3.057	ug/L	1.7715	57.95%
Ba 233.527	-2.	7 -0.011 ug/L	0.1257	0 011	1-		
	within limits for	Ra 233.527 Recov	U.1257 Arv = Not delaule	~U.011	ug/L	0.1257	>999.9%
Be 313.107	1742.	5 0.282 ug/t	0 0404	A 202	ng/I		
QC value	within limits for	Be 313 107 Recov	erv = Not calcula	U.202	ug/L	0.0404	14.31%
Ca 315.887	362.	4 20.98 ug/fi	2 709	20 00	ug/L	2 700	13 03%
QC value	within limits for	Ca 315.887 Recov	ery = Not calculat	ted	ug/ II	2.709	12.928
Ca 214.440	25.	4 0.055 հα/և	0.0344	0.056	ug/L	0.0344	63 128
QC value	within limits for	Cd 214.440 Recov	ery = Not calculat	ted	5,	0.0344	03,120
CO 228.616	13.	4 0.151 սգ/Ն	0.2808	0 161	ug/L	0.2808	185.41%
QC value	within limits for	Co 228.616 Recov	ery = Not calculat	ted			
Cr 267.716	-68.	0 -0.433 ug/L	0.1415	-0.433	ug/L	0.1415	32,68%
Cu 327.393	within limits for	Cr 267.716 Recov	ery = Not calculat				
	35.:	9 0.315 ug/L	0.0475	0.315	ug/L	0.0475	15.07%
Fe 273.955	within limits for	0 -9.027 ug/L	ery = Not calculat	ed			
	within limits for	Fe 273 955 Pegar	1.2293 Prv - Mot golgul-v	-9.027	ug/L	1.2293	13.62%
K 766.490	99,4	24.53 ug/L	31.635		1 =		
QC value	within limits for	K 766.490 Recover	or.opp or = Not calculate	24.53	ug/L	31.635	128.95%
Mg 285.213	10.9	5 0.312 ug/I	0.8634	0 212	ug/L	0.0634	006 500
QC value	within limits for	Mg 285.213 Recove	rv = Not calculat	ed	ug/ n	0.8634	2/6.58%
Mn 257.610	5.9	0.078 ug/I	0.0620	0.070	ug/L	0.0620	70 //8
OC value	within limits for	Mn 257.610 Recove	ry = Not calculat	ed	-5, -	0.0020	12.440
MO 202.031	2.9	0.047 ug/t.	0.3431	0.047	ug/L	0.3431	723.28%
QC value	within limits for	Mo 202.031 Recove	ry = Not calculat	eđ			
Na 589.592	. 386.2	33.70 ug/L	3.940	33.70 1	ug/L	3.940	11.69%
Ni 231,604	within limits for	Na 589.592 Recove		eđ			
	13.8 within limits for		0.2116	0.183	ug/L	0.2116	L15.52%
P 213.617	-19.0	~2.399 ug/L	ry = Not calculat		,_		
	within limits for	-г.эээ ug/ь Р 213 617 Рассесс	0.5047	ا 2.399ء	ug/L	0.5047	21.04%
Pb 220.353	17.3	0.910 ug/L	U SONY A MOR COTCUTUGE		·~ /T	0.00	48.5
	within limits for	Pb 220,353 Recove	v.sour rv = Not calculate	የዓ የነ ሀኒዩ ነ	ıg/L	0.3844	42.23%
BD 206.836	-9.8	-1.426 ug/ī	0 2015	-1 426 .	ıg/L	0.2015	14 130
QC value	within limits for	Sb 206.836 Recove	ry = Not calculate	-1.420 ( ed	тА\ п	0.2015	14.13%
Se 196.026	~2.3	-0.480 ug/L	3.4162	-0 480 ı	ıg/L	3.4162.5	111 679
QC value	within limits for	Se 196.026 Recove	ry = Not calculate	ed		3.4402	. II. U / T
Sn 189.927	-193.1	-19.03 ng/L	በ 282	-10 02 0	ıg/L	0.282	1.48%
QC value	less than the lowe	r limit for Sn 189	.927 Recovery = 1	Not calcul	lated		
DI 441,332	34.2	0.034 ug/L	0.0588	0 034 1	ıg/L	0.0588 1	74.02%
UC value Ti 337.279	within limits for	sr 421.552 Recove:			_		
	-43.8 within limits for (	-0.581 ug/L	0.2494	ุ-0.581 น	ıg/L	0.2494	42.90%
Tl 190.801	within limits for ' 30.3	ri 337.279 Recove:			1		
	within limits for	2.363 ug/L	0.6982	2.363 u	ıg/L	0.6982	29.55%
V 292.402	-62.4	-0.214 ug/L			_ 1=		
	within limits for	/ 292.402 Recovery	0.2556 / = Not calculated	-0.214 u	d\r	0.2556 1	19.19%
Zn 206.200	-428.2	-3.068 ug/L	0.0504	-3 060 "	σ/T.	0 0504	4 4.0
QC value	within limits for :	n 206.200 Recover	o.050@ CV = Not calculate	-3.008 H	9/ u	0.0504	1.64%
QC Failed. (	Continue with analy	/sis.	, ouroutate				
	-						

Sequence No.: 131 Sample ID: CCV2 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : ohemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 8 Date Collected: 03/07/12 2:14:16 AM Data Type: Reprocessed on 03/07/12 2:14:17 PM

u.,	an Data: CCV2 12	1206EF T.DB ():1							
Me	BII Data: CCV2 12	Mean Corrected	9	Calib.			Sample		
Att	e1vte				Std.Dev.	Conc.	Units	Std.Dev.	RSD
Aq	<b>alyte</b> 338,289	52036.9	350.	4 ug/L	1,68	350.4	ug/L	1.68	0.48%
5	QC value within	limits for Ag	338.289	Recovery	= 93.43%				
Al	308,215	32217.2	1415	0 ug/L	68.7	14150	ug/L	68.7	0.49%
	QC value within	limits for Al	308.215	Recovery			4-		A 600
Ae	188.979	3707.0	746.	7 ug/L	7.39	746.7	ug/L	7.39	0.99%
	QC value within					<b>600.</b> 2		4.31	0.62%
В		3819.0		3 ug/L	4.31	690.3	ug/L	4.31	0.020
_	QC value within				3.79	711 7	ug/L	3.79	0.53%
Ba	233.527 QC value within	165456.6		7 ug/L		,,	49/ =	5112	
п.	313.107	4367581.3		0 ug/L	3.07	716.0	ug/L	3,07	0.43%
ье	QC value within								
Ca	315.887	607075.4	3507	0 ug/L	342.9	3507 <b>0</b>	ug/L	342.9	0.98%
-	QC value within	limits for Ca	315.887		= 93.52%				
Cd	214.440	334806.4	715.	3 ug/L 📑	3.30	715.3	ug/L	3.30	0.46%
	QC value within	limits for Cd	214.440	Recovery :	= 95.37%				
Co	228.616	64226.4	714.	9 ug/L	2.92	714.9	ug/L	2.92	0.41%
	QC value within	limits for Co	228.616	Recovery :	= 95.32%			1 70	A 250
Cr	267.716	112188.1	712.	3_ug/L	1.79	712.3	ug/L	1.79	0.25%
	QC value within	limits for Cr	267.716	Recovery	= 94.978	707.0	na/I	2.74	0.39%
Cu	327.393	80530.7		0 ug/L	2.74	707.0	ug/L	2.77	0.350
_	QC value within			kecovery :	67.4	14160	ug/L	67.4	0.48%
ŀе	273.955 QC value within	474392.0				14100	45/2	<b>V</b> .,-	
v		56889.1	1402	0 ug/L	141.3	14020	ug/L	141.3	1.01%
r.	766.490 QC value within	limits for K 2					3.		
Ma	285.213	1152836.0	3553	0 ug/L	290.9	35530	ug/L	290.9	0.82%
i i g	QC value within	limits for Mq	285.213	Recovery	= 94.75%				
Mπ	257.610	51167.3	684.	3 ug/L	2.57	684.3	ug/L	2.57	0.38%
	QC value within	limits for Mn	257.610	Recovery	= 91.24%				
Mo	202.031	36951.9	716.	2 ug/L	3.75	716.2	ug/L	3.75	0.52%
	QC value within	limits for Mo	202.031	Recovery	= 95.50%				0.79%
Na	589.592	204425.4	1781	0_ug/L	140.0	17810	ug/L	140.0	0.798
	QC value within		589.592	Recovery	= 94.99*	215 0	ner/T.	2.45	0.34%
Ni	231.604	53668.4	715.	0 ug/L	2.45	715.0	ug/L	2.43	0.540
_	QC value within		337	Recovery	16.2	2272	ug/L	16.2	0.48%
P	213.617 QC value within					33.3	49/1		
пh	220.353	13864.7	729.	3 ug/L	1.41	729.3	ug/L	1.41	0.19%
PD	QC value within	limits for Pb	220.353	Recovery	= 97.24%		٥.		
Sh	206.836	5011.8	726.	1 ug/L	0.47	726.1	ug/L	0.47	0.06%
	OC value within	limits for Sb	206.836	Recovery	= 96.81%				
Se	196.026	3298.0	701.	9 ug/L	3.02	701.9	ug/L	3.02	0.43%
	QC value within	limits for Se	196.026	Recovery	≈ 93.59 <b>%</b>				
Sn	189.927	7468.1	736.	2 ug/L	1.42	736.2	ug/L	1.42	0.19%
	QC value within		189.927	Recovery	⊭ 98.16¥	246.5		5 00	0.80%
Sr	421.552	755780.6	746.	7 ug/L	5.98	746.7	ug/L	. 5.98	0.000
	QC value within		421.552	Recovery	# 99.56% 1.47	912 9	ug/L	1.47	0.21%
Ti	337.279	53913.7		7 ug/L		/13./	ug/ D	1.7/	V.210
	QC value within		337.279	8 ug/L	0.76	770.8	na/t.	0.76	0.10%
Tl	190.801 QC value within	9696.9				,,,,,	~5/ <del>~</del>	0	
.,	292.402	207421.5	724	0 ug/L	2.48	724.0	uq/L	2.48	0.34%
٧	292.402 QC value within						<b>J.</b>		
2n	206.200	99756.5	716.	4 ug/L	3.66	716.4	ug/L	3.66	0.51%
2011	QC value within	limits for Zn			<b>= 95.52</b> %		_		
Al	l analyte(s) pass	sed QC.		-					

Sequence No.: 132 Sample ID: CCB 120306EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 2 Date Collected: 03/07/12 2:19:23 AM Data Type: Reprocessed on 03/07/12 2:14:18 PM

QC value within limits for P 213.617 Recovery = Not calculated 20 220.353	Mean Data: CCB	120306BA I:PB 0:E	A			
Al 308.215  OC value within limits for Al 308.215 Recovery Not calculated  OC value within limits for Al 308.215 Recovery Not calculated  Al 188 979  OC value within limits for Bl 89.379 Not calculated  OC value within limits for Bl 89.379 Not calculated  OC value within limits for Bl 89.379 Not calculated  OC value within limits for Bl 89.379 Not calculated  OC value within limits for Bl 23.571 Recovery Not calculated  OC value within limits for Bl 89.379 Not calculated  OC value within limits for Bl 23.572 Recovery Not calculated  OC value within limits for Bl 23.572 Recovery Not calculated  OC value within limits for Bl 23.572 Recovery Not calculated  OC value within limits for Bl 23.572 Recovery Not calculated  OC value within limits for Bl 23.572 Recovery Not calculated  OC value within limits for Bl 23.573 Recovery Not calculated  OC value within limits for Bl 23.573 Recovery Not calculated  OC value within limits for Bl 23.573 Recovery Not calculated  OC value within limits for Cl 23.577 Recovery Not calculated  OC value within limits for Cl 24.440 Recovery Not calculated  OC value within limits for Cl 24.440 Recovery Not calculated  OC value within limits for Cl 24.440 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Cl 27.716 Recovery Not calculated  OC value within limits for Not Service Not calculated  OC value within limits for Not Service Not calculated  OC value within limits for Service Not Service Not calculated  OC value within limits for Not Service Not calculated  OC value within limits for Service Not Service Not calculated  OC value within limits for Service Not Service Not Calculated  OC value within limits for Service No		Mean Correcte	d Calib.		Sample	
Al 308.215  OC value within limits for Al 308.215 Recovery Not calculated  OC value within limits for Al 308.215 Recovery Not calculated  Al 388.979  OC value within limits for Al 308.215 Recovery Not calculated  OC value within limits for Bl 89.779 Not calculated  1.8786 3.462 ug/L  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Cl 89.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC v	Analyte	Intensity	Conc. Units	Std.Dev. Conc	. Units St	d.Dev. RSD
Al 308.215  OC value within limits for Al 308.215 Recovery Not calculated  OC value within limits for Al 308.215 Recovery Not calculated  Al 388.979  OC value within limits for Al 308.215 Recovery Not calculated  OC value within limits for Bl 89.779 Not calculated  1.8786 3.462 ug/L  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.779 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Bl 89.799 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Cl 89.899 Not calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Cl 89.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC value within limits for Not 20.899 Not Calculated  OC v	Ag 338.289	-12.9	-0.087 ug/L	0.5062 -0.08	7 ug/L (	).5062 582.80%
OC value within limits for Al 308.215 Recovery = Not calculated	Ac Agrac Atc	nith timico for wa	330.203 KECOVELY			
As 188.979	Al 308.215	-30.6	~13.58 ug/L	2.920 -13.58	B ug/L	2.920 21.51%
C value within limits for As   188,979   Recovery = Not calculated   1.8786   3.462 ug/L   1.8786   54.278		nin limits for Al	308.215 Recovery	= Not calculated		
B QC value within limits for B Recovery = Not calculated QC value within limits for B 233.527 Recovery = Not calculated QC value within limits for Ba 233.527 Recovery = Not calculated QC value within limits for Ba 233.527 Recovery = Not calculated QC value within limits for Ba 213.107 Recovery = Not calculated QC value within limits for Ba 213.107 Recovery = Not calculated QC value within limits for Ca 214.440 Recovery = Not calculated QC value within limits for Ca 228.616 Recovery = Not calculated QC value within limits for Ca 228.616 Recovery = Not calculated QC value within limits for Ca 228.616 Recovery = Not calculated QC value within limits for Ca 228.616 Recovery = Not calculated QC value within limits for Ca 27.716 Recovery = Not calculated QC value within limits for Ca 27.716 Recovery = Not calculated QC value within limits for Ca 27.938 Recovery = Not calculated QC value within limits for Ca 27.938 Recovery = Not calculated QC value within limits for Not 27.66.490 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits for Ma 27.610 Recovery = Not calculated QC value within limits			-1.332 ug/L	0.8823 -1.332	:ug/Մ (	).8823 66.22%
OC value within limits for B   Recovery = Not calculated   0.0398   0.067 ug/L   0.0398   59.00%		in limits for As	188.979 Recovery			
Ba 233.527 Recovery = Not calculated 0.031 ug/L 0.031 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0351 ug/L 0.0530 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0630 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0530 0.053 ug/L 0.0500 0.053 ug/L 0.0500 0.053 ug/L 0.0500 0.053 ug/L 0.0500 0.053 ug/L 0		20.5	3.462 ug/L	1.8786 3.462	! ug/L 1	8786 54.27%
OC value within limits for Ba 233.527 Recovery = Not calculated		iin limits for B	Recovery = Not cal	culated		
Be 313.107		15.5 nin limita fan Da	0.067 ug/L	0.0398 0.067	ug/L 0	.0398 59.00%
OC value within limits for Be 313.107 Recovery = Not calculated Ca 315.887 356.7 20.66 ug/L CO value within limits for Ca 315.887 Recovery = Not calculated CO 248.440 24.8 0.053 ug/L CO 228.616 8.7 0.098 ug/L CO 228.616 8.7 0.098 ug/L CO 238.616 8.7 0.098 ug/L CO 248.16 8.7 0.098 ug/L CO value within limits for Cc 228.616 Recovery = Not calculated CO 248.77.16 88.5 -0.563 ug/L CO value within limits for Cc 228.616 Recovery = Not calculated CO 248.77.16 1-88.5 -0.563 ug/L CO value within limits for Cc 227.393 Recovery = Not calculated CO 247.395 -0.373 Recovery = Not calculated CO value within limits for Fc 273.955 Recovery = Not calculated CO value within limits for Fc 273.955 Recovery = Not calculated CO value within limits for Fc 273.955 Recovery = Not calculated CO value within limits for Fc 273.955 Recovery = Not calculated CO value within limits for Fc 66.490 Recovery = Not calculated CO value within limits for M 285.213 Recovery = Not calculated CO value within limits for M 257.610 Recovery = Not calculated CO value within limits for M 257.610 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.031 Recovery = Not calculated CO value within limits for M 202.038 Recovery = Not calculated CO value within limits for So 206.836 Recovery = Not calculated CO value within limits for So 206.836 Recovery = Not calculated CO value within limits for So 196.026 Recovery = Not calculated CO value within limits for So 196.026 Recovery = Not calculated CO value within limits for So 196.026 Recovery = Not calculated CO value within limits for T 130.801 Recovery = Not calculated CO value within limits for T 130.801 Recovery = Not calculated CO value within limits for T 190.801 Recovery = Not calculated CO v		IIII IIIIILU TOF BA	233.527 Recovery	= Not calculated		
1.038   20.66 ug/L   1.038   5.038   0.053 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630 ug/L   0.0630		4 <b>0</b> 34.5	U.331 Ng/L	0.0351 0.331	. ug/ь 0	.0351 10.61%
OC value within limits for Ca 315.887 Recovery = Not calculated CO 224.616 CO 236.616 CO 236.616 CO 236.616 CO 236.616 CO 236.616 CO 241.016 CO	Co 315 007	itu timits for Be	313.107 Recovery	= Not calculated		
Cd 214.440	Cd 315.887	356.7	20.66 ug/L	1.038 20.66	ນຊາມ	1.038 5.03%
OC Value within limits for Cd 214.440 Recovery = Not calculated C 228.616		ITH TIMES FOR CA	315.887 Recovery	= NOT CAICUIATEG	17	
Co 228.616 8.7 0.098 ug/L 0.1436 0.098 ug/L 0.7436 145.78% OC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716 -6.542 ug/L 1.0212 -6.542 ug/L 1.0212 -6.542 ug/L 1.0232 15.64% Cr 267.713 -6.542 ug/L 1.0212 -6.542 ug/L 1.0232 15.64% Cr 267.713 -6.542 ug/L 1.0212 -6.542 ug/L 1.0232 15.64% Cr 267.713 -5.5 -1.367 ug/L 55.5011 -1.367 ug/L 55.5011 -999.9% Cr 273.955 Recovery = Not calculated Cr 267.610 Recovery = Not calculated Cr 267.610 Recovery = Not calculated Cr 267.610 Recovery = Not calculated Cr 267.610 Recovery = Not calculated Cr 267.610 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated Cr 273.91 Recovery = Not calculated C		24.0 Sin limita for Cd	0.053 ug/L	0.0630 0.053	սցչը ս	.0630 118.85*
QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716		iin iimits for cu	0 000/I	= NOE Carculated		1406 145 800
Cr 267.716		in limite for Co	229 616 Pagarage	- Not enlawlaked	աց/ Ե	.1436 145.78%
QC value within limits for Cr 267.716 Recovery = Not calculated Cr 327.393					/7	1530 05 000
QC value within limits for Po 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co value within limits for Mo 202.031   Co v					ug/L 0	.1539 27.328
QC value within limits for Cu 327.393 Recovery = Not calculated Fe 273.955					ua/T 0	E004 110 349
Fe 273.955					ц9/п 0	.5004 119.348
QC value within limits for Fe 273.955 Recovery = Not calculated K 766.490	Fe 273 955	-217 3	*6 542 ng/T.	1 0222 E42	na/L 1	0000 15 648
X 766.490	OC value with	in limits for Pe	273 955 Perovery	- Not calculated	ug/L I	.0232 13.648
QC value within limits for K 766.490 Recovery = Not calculated  QC value within limits for Mg 285.213 Recovery = Not calculated  QC value within limits for Mg 285.213 Recovery = Not calculated  QC value within limits for Mm 257.610 Recovery = Not calculated  QC value within limits for Mm 257.610 Recovery = Not calculated  QC value within limits for Mo 202.031 Recovery = Not calculated  QC value within limits for Mo 202.031 Recovery = Not calculated  QC value within limits for No 589.592 Recovery = Not calculated  QC value within limits for No 589.592 Recovery = Not calculated  QC value within limits for No 231.604 Recovery = Not calculated  QC value within limits for No 231.604 Recovery = Not calculated  QC value within limits for No 231.604 Recovery = Not calculated  QC value within limits for P 213.617 Recovery = Not calculated  QC value within limits for P 202.353 Recovery = Not calculated  QC value within limits for P 202.353 Recovery = Not calculated  QC value within limits for Sb 206.836 Recovery = Not calculated  QC value within limits for Sb 206.836 Recovery = Not calculated  QC value within limits for Sc 196.026 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Sn 189.927 Recovery = Not calculated  QC value within limits for Ti 377.279 Recovery = Not calculated  QC value within limits for Ti 190.801 Recovery = Not calculated  QC value within limits for V 292.402 Recovery = Not calculated  QC value within limits for V 292.402 Recovery = Not calculated  QC value within limits for V 292.402 Recovery = Not calculated  QC value within limits for V 292.402 Recovery = Not calculated  QC value within limits for V 292.402 Recovery = Not calculated  QC value within limits for V 292.402 Rec					110/T. SE	E011 -000 0%
Mg 285.213   52.0   1.595 ug/L   0.4061   1.595 ug/L   0.4061   25.468   QC value within limits for Mg 285.213   Recovery   Not calculated   0.1896   -0.050 ug/L   0.1896   -0.050 ug/L   0.1896   -0.050 ug/L   0.1896   -0.050 ug/L   0.1896   378.878   QC value within limits for Mn 257.610   Recovery   Not calculated   0.126 ug/L   0.1293   0.126 ug/L   0.1293   102.278   QC value within limits for Mn 202.031   Recovery   Not calculated   0.126 ug/L   0.1293   102.278   QC value within limits for Na 589.592   Recovery   Not calculated   0.670 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.715   0.207 ug/L   0.8417   0.8417   0.8417   0.849 ug/L   0.849 ug/L   0.2924   0.849 ug/L   0.		in limits for K	1.30, dg/D 166 490 Becovery =	Not calculated	ug/11 55	.5011 >555.5%
QC value within limits for Mg 285.213 Recovery = Not calculated Mc 257.610	Ma 285 213	52 N	1 595 ng/t.		ua/t. 0	4061 25 469
Mn 257.610	OC value with	in limits for Ma	285.213 Recovery	# Not calculated	a3/11 0	.4001 A3.400
QC value within limits for Mn 257.610 Recovery = Not calculated QC value within limits for Mo 202.031 Recovery = Not calculated Na 589.592 191.1 16.67 ug/L 9.853 16.67 ug/L 9.853 59.11% QC value within limits for Na 589.592 Recovery = Not calculated Na 231.604 15.6 0.207 ug/L 0.0715 0.207 ug/L 0.0715 34.51% QC value within limits for Ni 231.604 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for Pb 220.353 Recovery = Not calculated QC value within limits for Pb 220.353 Recovery = Not calculated QC value within limits for Pb 200.353 Recovery = Not calculated QC value within limits for Sb 206.836 Recovery = Not calculated QC value within limits for Sb 206.836 Recovery = Not calculated QC value within limits for Sb 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Ti 190.801 Recovery = Not calculated QC value within limits for Ti 190.801 Recovery = Not calculated QC value within limits for Ti 190.801 Recovery = Not calculated QC value wi	Mn 257.610	-3.7	-0.050 NG/I		ng/L 0	1896 279 979
Mo 202.031 6.6 0.126 ug/L 0.1293 0.126 ug/L 0.1293 102.27% QC value within limits for Mo 202.031 Recovery = Not calculated Na 589.592 191.1 16.67 ug/L 9.853 16.67 ug/L 9.853 59.11% QC value within limits for Na 589.592 Recovery = Not calculated Ni 231.604 15.6 0.207 ug/L 0.0715 0.207 ug/L 0.0715 34.51% QC value within limits for Ni 231.604 Recovery = Not calculated Plant	OC value with	in limits for Mn	257.610 Recovery	= Not calculated	49/11	.1070 370.076
QC value within limits for Mo 202.031 Recovery = Not calculated No 589.592  191.1  16.67 ug/L  9.853  16.67 ug/L  9.853  59.11%  QC value within limits for No 589.592 Recovery = Not calculated No 231.604  15.6  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.0715  0.207 ug/L  0.08417  -3.816 ug/L  0.8417  -3.816  -4.16,679  -3.816  -4.16,679  -3.816  -4.16,679  -3.816  -4.16,779  -3.816  -4.16,779  -3.816  -4.16,771  -3.816  -4.16,771  -3.816  -4.16,771  -3.816  -4.1		6.6	0.126 vg/L		υσ/T. Λ	1293 102 278
Na 589.592 191.1 16.67 ug/L 9.853 16.67 ug/L 9.853 59.11% QC value within limits for Na 589.592 Recovery = Not calculated Ni 231.604 15.6 0.207 ug/L 0.0715 0.207 ug/L 0.0715 34.51% QC value within limits for Ni 231.604 Recovery = Not calculated P 213.617 -30.2 -3.816 ug/L 0.8417 -3.816 ug/L 0.8417 22.06% QC value within limits for P 213.617 Recovery = Not calculated P 220.353 16.1 0.849 ug/L 0.2924 0.849 ug/L 0.2924 34.43% QC value within limits for Pb 220.353 Recovery = Not calculated P 206.836 PROPERTY = Not calculated P 206.836 PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculated P 207.06% PROPERTY = Not calculat					ug/12 V	.1233 102.270
QC value within limits for Na 589.592 Recovery = Not calculated Ni 231.604	Na 589.592	191.1	16.67 ug/L		ng/L	9.853 59.11%
Ni 231.604   15.6   0.207 ug/L   0.0715   0.207 ug/L   0.0715   34.51% QC value within limits for Ni 231.604   Recovery = Not calculated   0.8417   -3.816 ug/L   0.8417   22.06% QC value within limits for P 213.617   Recovery = Not calculated   0.849 ug/L   0.2924   0.849 ug/L   0.2924   34.43% QC value within limits for Pb 220.353   Recovery = Not calculated   0.849 ug/L   0.2924   0.849 ug/L   0.2924   34.43% QC value within limits for Pb 220.353   Recovery = Not calculated   0.86836   Recovery = Not calculated   0.869 ug/L   0.2711   263.87% QC value within limits for Sb 206.836   Recovery = Not calculated   0.880 ug/L   0.6779   0.880 ug/L   0.6779   190.70%   0.880 ug/L   0.1535   -8.980 ug/L   0.1535   1.71%   0.89927   Recovery = Not calculated   0.1535   -8.980 ug/L   0.1535   1.71%   0.811   0.881   0.0630 ug/L   0.0630   0.083 ug/L   0.0630   75.97%   0.083 ug/L   0.3162   -0.323 ug/L   0.3162   -0.323 ug/L   0.3162   -0.323 ug/L   0.3162   97.98%   0.2975   3.168 ug/L   0.2975   9.39%   0.2975   0.296 ug/L   0.1655   -0.296 ug/L   0.1655   -0.296 ug/L   0.1655   -0.296 ug/L   0.1655   55.83%   0.2972   0.296 ug/L   0.1655   -0.296 ug/L   0.165	OC value with	in limits for Na	589.592 Recovery	= Not calculated	-5/ -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
QC value within limits for Ni 231.604 Recovery = Not calculated 2213.617					ug/L 0	.0715 34.51%
2 213.617				= Not calculated	5/-	
QC value within limits for P 213.617 Recovery = Not calculated 2D 220.353 16.1 0.849 ug/L 0.2924 0.849 ug/L 0.2924 34.43% QC value within limits for Pb 220.353 Recovery = Not calculated 3D 206.836 -3.3 -0.482 ug/L 1.2711 -0.482 ug/L 1.2711 263.87% QC value within limits for Sb 206.836 Recovery = Not calculated 3D 16.026 -4.1 -0.880 ug/L 1.6779 -0.880 ug/L 1.6779 190.70% QC value within limits for Se 196.026 Recovery = Not calculated 3D 189.927 -91.1 -8.980 ug/L 0.1535 -8.980 ug/L 0.1535 1.71% QC value within limits for Sn 189.927 Recovery = Not calculated 3D 421.552 84.0 0.083 ug/L 0.0630 0.083 ug/L 0.0630 75.97% QC value within limits for Sr 421.552 Recovery = Not calculated 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.98% QC value within limits for Ti 37.279 Recovery = Not calculated 31 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39% QC value within limits for Ti 190.801 Recovery = Not calculated 32 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83% QC value within limits for V 292.402 Recovery = Not calculated	P 213.617			0.8417 -3.816	uq/L 0	.8417 22.06%
2b 220.353	QC value with	in limits for P ?	13.617 Recovery =	Not calculated	57	
QC value within limits for Pb 220.353 Recovery = Not calculated 30 206.836				0.2924 0.849	ua/L 0	.2924 34.43%
Sb 206.836	QC value with	in limits for Pb	220.353 Recovery	= Not calculated	<b>_</b> ,	
QC value within limits for Sb 206.836 Recovery = Not calculated 68 196.026	Sb 206.836	-3.3	-0.482 ug/L	1.2711 ~0.482	uq/L 1	.2711 263.87%
Se 196.026	QC value with	in limits for Sb	206.836 Recovery	= Not calculated	<b>_</b> .	
In 189.927 -91.1 -8.980 ug/L 0.1535 -8.980 ug/L 0.1535 1.718  QC value within limits for Sn 189.927 Recovery = Not calculated  R 421.552 84.0 0.083 ug/L 0.0630 0.083 ug/L 0.0630 75.978  QC value within limits for Sr 421.552 Recovery = Not calculated  C1 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.988  QC value within limits for Ti 337.279 Recovery = Not calculated  C1 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.398  QC value within limits for Tl 190.801 Recovery = Not calculated  C2 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.838  QC value within limits for V 292.402 Recovery = Not calculated	Se 196.026	-4.1	-0.880 ug/L		ug/L 1	.6779 190.70%
QC value within limits for Sn 189.927 Recovery = Not calculated 3r 421.552 84.0 0.083 ug/L 0.0630 0.083 ug/L 0.0630 75.97% QC value within limits for Sr 421.552 Recovery = Not calculated G1 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.98% QC value within limits for Ti 337.279 Recovery = Not calculated G1 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39% QC value within limits for Tl 190.801 Recovery = Not calculated G2 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83% QC value within limits for V 292.402 Recovery = Not calculated	QC value with	in limits for Se	196.026 Recovery			
8r 421.552 84.0 0.083 ug/L 0.0630 0.083 ug/L 0.0630 75.97% QC value within limits for Sr 421.552 Recovery = Not calculated Ci 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.98% QC value within limits for Ti 337.279 Recovery = Not calculated Ci 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39% QC value within limits for Ti 190.801 Recovery = Not calculated Ci 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83% QC value within limits for V 292.402 Recovery = Not calculated	Sn 189.927	-91.1	-8.980 ug/L	0.1535 -8.980	ug/L 0.	.1535 1.71%
QC value within limits for Sr 421.552 Recovery = Not calculated  1 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.98%  QC value within limits for Ti 337.279 Recovery = Not calculated  1 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39%  QC value within limits for Tl 190.801 Recovery = Not calculated  2 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83%  QC value within limits for V 292.402 Recovery = Not calculated	QC value with		189.927 Recovery	= Not calculated	<del>-</del> -	•
Ci 337.279 -24.3 -0.323 ug/L 0.3162 -0.323 ug/L 0.3162 97.98%  QC value within limits for Ti 337.279 Recovery = Not calculated  Cl 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39%  QC value within limits for Tl 190.801 Recovery = Not calculated  7 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83%  QC value within limits for V 292.402 Recovery = Not calculated	Br 421.552	84.0	0.083 ug/L	0.0630 0.083	ug/L 0	.0630 75.97%
QC value within limits for Ti 337.279 Recovery = Not calculated 1 190.801		in limits for Sr				
Pl 190.801 40.6 3.168 ug/L 0.2975 3.168 ug/L 0.2975 9.39%  QC value within limits for Tl 190.801 Recovery = Not calculated  7 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83%  QC value within limits for V 292.402 Recovery = Not calculated			-0.323 ug/L	0.3162 -0.323	ug/L 0.	.3162 97.98%
QC value within limits for Tl 190.801 Recovery = Not calculated  / 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83%  QC value within limits for V 292.402 Recovery = Not calculated				= Not calculated		
7 292.402 -86.1 -0.296 ug/L 0.1655 -0.296 ug/L 0.1655 55.83% QC value within limits for V 292.402 Recovery = Not calculated	rl 190.801				ug/L 0.	.2975 9.39%
QC value within limits for V 292.402 Recovery = Not calculated	QC value with	in limits for Tl		= Not calculated		
, <del>-</del>	7 292.402				ug/L 0.	.1655 55.83%
'n 206 200 -392 7 -2 751 pg/t.						
	In 206.200		-2.751 ug/L	0.1435 -2.751	ug/L 0.	.1435 5.22%
QC value within limits for Zn 206.200 Recovery = Not calculated			206.200 Recovery :	<ul> <li>Not calculated</li> </ul>		
ill analyte(s) passed QC.	All analyte(s) p	∍ssed QC.				

## METALS EPA SW846 - 6010B Raw Data



Sequence No.: 87

Autosampler Location: 135

Sequence No.: 87
Sample ID: AY55846S02
Analyst: EA
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt: 1.15 g
Dilution:

Autosampler Location: 135
Date Collected: 03/06/12 10:10:07 PM
Data Type: Reprocessed on 03/07/12 2:13:34 PM

Mean Data: AY558	46S02							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	3759.3	25.31	սց/ւ	0.498		mg/kg	0.0433	1.97%
Al 308.215	1 <b>8</b> 6889.6	80140	ug/L	267.5	6969	mg/kg	23.3	0.33%
As 188.979	104.7	21.10	ug/L	1.531		mg/kg	0.1332	7.26%
В	-316.5	279.6		2.91	24.31	mg/kg	0.253	1.04%
Ba 233.527	52608.1	208.1	ug/L	2.48	18.09	mg/kg	0.215	1.19%
Be 313.107	12962.1	-5.220	ug/L	0.1179	~0.454	mg/kg	0.0103	2.26%
Ca 315.887	39452552.3	2284000	ug/L	31299.5	198600	J. J	2721.7	1.37%
Cd 214.440	1467.7	-17.48		0.298	-1.520		0.0259	1.70%
Co 228.616	1705.3	-1.593	ug/L	0.3229	-0.139	mg/kg	0.0281	20.27%
Cr 267.716	11322.9	43.96	ug/L	0.328	3.823	mg/kg	0.0285	0.75%
Cu 327.393	3282.3	28.81	ug/L	0.284	2.506	mg∕kg	0.0247	0.99%
Fe 273.955	1863432.5	54160	ug/L	374.0		mg/kg	32.5	0.69%
K 766.490	79623.0	17770	ug/L	10.7	1545	mg/kg	0.9	0.06%
Mg 285.213	626488.3	18090	ug/L	63.4		mg/kg	5.5	0.35%
Mn 257.610	81686.1		ug/L	3.8	92.49		0.327	0.35%
Mo 202.031	4.1	-19.16	ug/L	0.614	-1.666	mg/kg	0.0534	3.20%
Na 589.592	9371.1	-306.9	ug/L	14.18	-26.69	J. J	1.233	4.62%
Ni 231.604	3392.4	19.97	ug/L	0.284	1.736	u, u	0.0247	1.42%
P 213.617	4564.0	576.8	ug/L	1.18	50.16	mg/kg	0.103	0.21%
Pb 220.353	324.5	17.07	ug/L	0.568	1.484		0.0494	3.33%
Sb 206.836	-27.1	-3.920	ug/L	0.8645	-0.342	mg/kg	0.0752	22.01%
Se 196.026	-50.7	-10.79	ug/L	3.461	-0.938	mg/kg	0.3009	32.07%
Sn 189.927	-287.5	-28.34		0.508	-2.465		0.0442	1.79%
Sr 421.552	231157.4	203.5	ug/L	0.90	17.70		0.078	0.44%
Ti 337.279	26816.0	323.5		3.03	28.13		0.263	0.94%
Tl 190.801	-147.2	-7.816	ug/L	0.9544	-0.680	mg/kg	0.0830	12.21%
V 292.402	41499.4	113.7	ug/L	1.03	9.886	mg/kg	0.0898	0.91%
Zn 206.200	17758.4	53.94	ug/L	0.838	4.690	mg/kg	0.0729	1.55%

Companyo No. 4 100

Sequence No.: 108
Sample ID: AY55846802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.15 g

Dilution: 5X

Autosampler Location: 154
Date Collected: 03/06/12 11:56:02 PM
Data Type: Reprocessed on 03/07/12 2:13:55 PM

Mean Data:	AY55846S02-1/5						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dav.	Conc.	Unite	Std.Dev. RSD
Ag 338,289	639.9	4.308		0.4082	1.873	mg/kg	0.1775 9.47%
Al 308.215	41201.8	17630	ug/L	480.1	7667	mg/kg	208.7 2.72%
As 188.979	6.7	1.355	ug/L	1.9820	0.589	mg/kg	0.8618 146.32%
В	-72.8	65.67		2.263		mg/kg	0.984 3.45%
Ba 233.527	12410.7	49.11	ug/L	0.223	21.35	mg/kg	0.097 0.45%
Be 313.107	3338.7	-1.189		0.0148	-0.517	mg/kg	0.0064 1.24%
Ca 315.887	9238493.0	534800	ug/L	12747.2	232500	mg/kg	5542.3 2.38%
Cd 214,440	370.8	-4.043	ug/L	0.0767	-1.758	mg/kg	0.0334 1.90%
Co 228.616	427.9	-0.036		0.1574	-0.016	mg/kg	0.0684 438.02%
Cr 267.716	2532.4	9.558	ug/L	0.3421	4.156	mg/kg	0.1487 3.58%
Cu 327.393	426.7	3.746	ug/L	0.4915	1,629	mg/kg	0.2137 13.12%
Fe 273.955	437387.8	12710	ug/L	83.3	5528	mg/kg	36.2 0.66%
K 766,490	16927.9	3736	ug/L	142.8	1624	mg/kg	62.1 3.82%
Mg 285.213	137519.6		ug/L	94.3	1718	mg/kg	41.0 2.38%
Mn 257.610	18347.0	238.6	ug/L	6.94	103.7	mg/kg	3.02 2.91%
Mo 202.031	23.8	-4.035	ug/L	0.4620	-1.754	mg/kg	0.2009 11.45%
Na 589.592	2304.3	-62.12	ug/L	13.405	-27.01	mg/kg	5.828 21.58%
Ni 231.604	797.2	4.725	ug/L	0.3289	2.054	mg/kg	0.1430 6.96%
P 213.617	966.8	122.2		1.21	53.13	mg/kg	0.527 0.99%
Pb 220.353	79.8	4.197	ug/L	0.5436	1.825	mg/kg	0.2363 12.95%
Sb 206.836	-12.5	-1.805		0.2874	-0.785		0.1249 15.92%
Se 196.026	-21.7	-4.627	ug/L	2.1752	-2.012	mg/kg	0.9457 47.01%
Sn 189.927	-253.2	-24.96	ug/L	0.703	-10.85	mg/kg	0.306 2.82%
Sr 421.552	54602.5	48.12		1.204	20.92	mg/kg	0.524 2.50%
Ti 337.279	5935.9	71.21	ug/L	2.423	30.96		1.054 3.40%
Tl 190.801	-27.4	-1.399	ug/L	1. <b>77</b> 57	-0.608	mg/kg	0.7720 126.91%
V 292.402	9562.4	26.09		0.033	11.34	mg/kg	0.014 0.13%
Zn 206.200	4024.4	11.68	ug/L	0.425	5.077	mg/kg	0.1848 3.64%

Sequence No.: 88 Autosampler Location: 136

Sample ID: AY55847802

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.2 g

Dilution:

Data Collected: 03/06/12 10:15:15 PM
Data Type: Reprocessed on 03/07/12 2:13:35 PM

Mean Data:	AY55847802							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.		Units	Std.Dev.	
Ag 338.289	4237.5	28.53	ug/L	0.377		mg/kg	0.0315	1.32%
Al 308.215	92611.2	38300	ug/L	649.8	3191	mg/kg	54.1	1.70%
As 188.979	88.0	17.72	ug/L	2.087		mg/kg	0.1739	11.78%
В	-313.3	271.6		3.93	22.63	mg/kg	0.328	1.45%
Ba 233.527	22542.3	78.70	ug/L	0.697	6.559	mg/kg	0.0581	0.89%
Be 313.107	7141.9	-7.134		0.0244	-0.594		0.0020	0.34%
Ca 315.B87	42106507.3	2438000	ug/L	277 <b>8</b> .8	203100	mg/kg	231.6	0.11%
Cd 214.440	1560.0	-18.36	ug/L	0.070	-1.530	mg/kg	0.0058	0.38%
Co 228.616	1482.6	-4.499		0.0212	-0.375		0.0018	0.47%
Cr 267.716	7092.7	15.22	ug/L	0.129		mg/kg	0.0108	0.85%
Cu 327,393	3765.5	33.06	ug/L	0.774		mg/kg	0.0645	2.34%
Fe 273.955	1694288.7	48960	ug/L	66.5		mg/kg	5.5	0.14%
K 766.490	59040.1	12550	ug/L	207.4		mg/kg	17.3	1.65%
Mg 285.213	687247.7	19890	ug/L	337.9		mg/kg	28.2	1.70%
Mn 257.610	99306.5	1298	ug/L	22.7	108.2		1.89	1.75%
Mo 202.031	160.2	-17.63	ug/L	0.220	-1.469	mg/kg	0.0184	1.25%
Na 589.592	8208.9	-477.1	ug/L	2.52	-39.76	mg/kg	0.210	0.53%
Ni 231.604	3127.5	15.23	ug/L	0.231	1.269		0.0192	1.52%
P 213.617	4561.7	576.5	ug/L	3.25	48.05	mg/kg	0.271	0.56%
Pb 220.353	268.2	14.11	ug/L	0.388	1.176		0.0324	2.75%
5b 206.836	-36.4	-5.274	ug/L	0.9329	-0.439		0.0777	17.69%
Se 196.026	-43.6	-9.290	ug/L	3.2040	-0.774		0.2670	34.49%
Sn 189.927	-311.4	-30.70	ug/L	0.307	-2.559		0.0256	1.00%
Sr 421.552	514418.0	482.1	ug/L	7.95	40.18		0.663	1.65%
Ti 337.279	16897.9	190.2	ug/L	1.28	15.85		0.107	0.67%
Tl 190.801	-137.0	-7.247	ug/L	0.9144	-0.604		0.0762	12.62%
V 292.402	41310.8	113.2	ug/L	0.53	9.435		0.0443	0.47%
Zn 206.200	30973.4	144.2	ug/L	0.31	12.02	mg/kg	0.026	0.22%

Sequence No.: 111

Sample ID: AY55847802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.2 g

Dilution: 5X

Autosampler Location: 155
Date Collected: 03/07/12 12:15:35 AM
Data Type: Reprocessed on 03/07/12 2:13:58 PM

Mean Data:	AY55847802-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	<i>B</i> td.Dev.		Units	8td.Dev.	
Ag 338.289	727.4	4.898		0.3591		mg/kg	0.1496	7.33%
A1 308.215	20518.9	8442	ug/L	335.0		mg/kg	139.6	3.97%
As 188.979	8.0	1.621	ug/L	1.4085	0.675	mg/kg	0.5869	86.91%
В	-83.3	61.95	ug/L	3.502		mg/kg	1.492	5.78%
Ba 233.527	4935.5	16.94	ug/L	0.120		mg/kg	0.0499	0.71%
Be 313,107	2237.7	-1.628	ug/L	0.0596	-0.678	mg/kg	0.0248	3.66₺
Ca 315.887	10029457.9	580600	ug/L	20609.7	241900	U, D	8587.4	3.55%
Cd 214.440	371.4	~4.352	ug/L	0.1668	-1.813	mg/kg	<b>0</b> .0695	3.83%
Co 228.616	384.8	-0.686	ug/L	0.5023	-0.286	mg/kg	0.2093	73.25%
Cr 267.716	1558.1	2.814	ug/L	0.2564		mg/kg	0.1 <b>0</b> 68	9,11%
Cu 327.393	410.1	3.600	ug/L	0.4778	1.50 <b>0</b>	mg/kg	0.1991	13.27%
Fe 273.955	390944.7	11280	ug/L	114.5	4701	mg/kg	47.7	1.01%
K 766.490	12612.7	2631	ug/L	60.3	1096	mg/kg	25.1	2.29%
Mg 285.213	148601.7	4271	ug/L	167.9	1780	mg/kg	70.0	3.93%
Mn 257.610	22394.8	292.3	ug/L	11.27	121.8	mg/kg	4.70	3.86%
Mo 202.031	54.4	-3.907	ug/L	0.4846	-1,628	mg/kg	0.2019	12.40%
Na 589.592	1903.2	-118.0	ug/L	7.62	-49.15	mg/kg	3.175	6.46%
Ni 231.604	744.5	3.642	ug/L	0.0652	1.518	mg/kg	0.0272	1.79%
P 213.617	949.5	120.0	ug/L	0.54	50.00	mg/kg	0.225	0.45%
Pb 220.353	76. <b>0</b>	3.999	ug/L	0.1241	1.666	mg/kg	0.0517	3.10%
Sb 206.836	-11,4	-1.645	ug/L	0.7619	-0.685	mg/kg	0.3175	46.32%
Se 196.026	~27.2	-5.797	ug/L	1.7638	-2.415		0.7349	30.43%
Sn 189.927	-255.6	-25.20	ug/L	0.639	-10.50	mg/kg	0.266	2.53%
Sr 421.552	117509.8	109.9	ug/L	4.48	45.78	mg/kg	1.866	4.08%
Ti 337.279	3614.2	39.88	ug/L	1.737	16.61		0.724	4.36%
Tl 190.801	-23.6	-1.201	ug/L	1.1379	-0.500		0.4741	94.77%
V 292,402	9345.9	25.36	ug/L	0.195	10.57	mg/kg	0.081	0.77%
Zn 206.200	7355.6	34.22	ug/L	0.616	14.26	mg/kg	0.257	1.80%

Sequence No.: 89 Sample ID: AY55848802 Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.13 g

Dilution:

Autosampler Location: 137
Date Collected: 03/06/12 10:20:55 PM
Data Type: Reprocessed on 03/07/12 2:13:36 PM

Mean Data:	AY55848902					_		
	Mean Corrected		Çalib.			Sample		
Analyte	Intensity	Cona.	Units	Std.Dev.	Cona.		Btd.Dev.	
Ag 338.289	3521.4	23.71	ug/L	0.470	2.098		0.0416	1.98%
Al 308.215	2073 <b>7</b> 7.5	89310	ug/L	865.4		mg/kg	76.6	0.97%
As 188.979	123.2	24.81	ug/L	2.032		mg/kg	0.1798	8.19%
В	-663.8	203.0	ug/L	4.09	17.96		0.362	2.02%
Ba 233.527	61885.3	249.1	սց/ե	3.24	22.04	• •	0.287	1.30%
Be 313.107	3590.5	-5.072	ug/L	0.0497	-0.449		0.0044	0.98%
Ca 315.887	37752613.5	2185000	ug/L	7739.8	193400		684.9	0.35%
Cd 214.440	1346.5	-16.69	ug/L	0.246	-1.477	• •	0.0218	1.48%
Co 228.616	2159.6	3.478	ug/L	0.6246		mg/kg	0.0553	17.96%
Cr 267.716	10872.1	41.99	ug/L	1.095	3.716	• •	0.0969	2.61%
Cu 327.393	3433.8	30.14	ug/L	0.328	2,668	• . •	0.0290	1.09%
Fe 273.955	1739539.5	50510	ug/L	659.7		mg/kg	58.4	1.31%
K 766.490	68340.8	15060	ug/L	175.4		mg/kg	15.5	1.16%
Mg 285.213	614411.9	17760	ug/L	177.5		mg/kg	15.7	1.00%
Mn 257.610	100026.6	1311	ug/L	12.1	116.0	• •	1.07	0.92%
Mo 202.031	20.3	-18.14	ug/L	0.110	-1.606	• . •	0.0098	0.61%
Na 589.592	11756.3	-50.71	ug/L	10.479	-4.488	•	0.9273	20.66%
Ni 231.604	3738.3	25.55	ug/L	0.324	2.261		0.0287	1.27%
P 213.617	4606.7	582.2	ug/L	6.33	51.53	mg/kg	<b>0.</b> 560	1.09%
Pb 220.353	440.5	23.17	ug/L	2.319	2.050	mg/kg	0.2052	10.01%
Sb 206.836	-41.7	-6.046	ug/L	1.4528	-0.535	-·	0.1286	24.03%
Se 196.026	-53.6	-11.40	ug/L	12.310	-1.009	mg/kg		107.97%
Sn 189.927	-309.8	-30.54	ug/L	1.477	-2.703	mg/kg	0.1307	4.84%
Sr 421.552	532552.2	502.6	ug/L	5.10	44.48		0.451	1.01%
Ti 337.279	51237.9	648.6	ug/L	10.72		mg/kg	0.949	1.65%
Tl 190,801	-172.0	-4.572	ug/L	4.3166	-0.405		0.3820	94.40%
V 292.402	42586.5	118.7	ug/L	2.69	10.50	mg/kg	0.238	2.27%
Zn 206,200	32426.6	162.0	ug/L	2.89	14.34	mg/kg	0.256	1.78%

Sequence No.: 112 Sample ID: AY55848802-1/5 Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.13 g

Dilution: 5X

_______ Autosampler Location: 156 Date Collected: 03/07/12 12:21:39 AM Data Type: Reprocessed on 03/07/12 2:13:59 PM

Mean Data:	AY55848S02-1/5							
	Mean Corrected		Calib.	,		Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Unite	Std.Dev.	RSD
Ag 338.289	654.6	4.408	ug/L	0.3601	1.950	mg/kg	0.1593	8.17%
Al 308.215	46479.4	19990	ug/L	573.2	8843	mg/kg	253.6	2.87%
As 188.979	11.4	2.302	ug/L	1.3938	1.019	mg/kg	0.6167	60.54%
В	-157.5 '	47.90	ug/L	2.269	21.20	mg/kg	1.004	4.74%
Ba 233.527	14039.2	56.33	ug/L	1.303	24.93	mg/kg	0.576	2.31%
Be 313.107	1648.7	-1.111	ug/L	0.0565	-0.491	mg/kg	0.0250	5.09%
Ca 315.887	8970187.7	519300	ug/L	12802.2	229800	mg/kg	5664.7	2.47%
Cd 214.440	396.7	-3.804	ug/L	0.0934	-1.683	mg/kg	0.0413	2.46%
Co 228.616	537.4	1.132	ug/L	0.2598	0.501	mg/kg	0.1149	22.95%
Cr 267.716	2500.6	9.463	ug/L	0.0876	4.187	mg/kg	0.0388	0.93%
Cu 327.393	414.7	3.641		0.0949	1.611	mg/kg	0.0420	2.61%
Fe 273.955	410718.8	11920		429.4		mg/kg	190.0	3,60%
K 766.490	14704.7	3200	ug/L	59.8		mg/kg	26.5	1.87%
Mg 285.213	137964.5	3974		103.9		mg/kg	46.0	2.62%
Mn 257.610	23440.1	307.1	ug/L	6,22	135.9	-·	2.75	2.03%
Mo 202.031	15.6	-4.099	ug/L	0.2301	-1.814	mg/kg	0.1018	5.61%
Na 589.592	2772.7	-13.66		15.712	-6.045			115.00%
Ni 231.604	907.9	6.350	ug/L	0.1950	2.810		0.0863	3.07%
P 213.617	1006.8	127.2	ug/L	2.95	56.30		1.306	2.32%
Pb 220.353	122.5	6.443	ug/L	0.7016	2.851	- · · ·	0.3105	10.89%
Sb 206.836	-13.9	-2.014	ug/L	0.7351	-0.891	~ . ~	0.3253	36.50%
Se 196.026	-18.7	-3.983	ug/L	0.6226	-1.763		0.2755	15.63%
Sn 189.927	-248.2	-24.47	ug/L	0.646	-10.83		0.286	2.64%
Sr 421.552	126546.1	119.4	ug/L	2.99	52.85	mg/kg	1.323	2.50%
Ti 337.279	11451.0	144.5	<b>-</b> '.	2.71	63.95		1.200	1.88%
Tl 190.801	-38.7	-1.059		0.6949	-0.469		0.3075	65.61%
V 292.402	9582.2	26.39		0.794	11.68		0.351	3.01%
Zn 206.200	7716.7	38.60	ug/L	1.172	17.08	mg/kg	0.519	3.04%

Dilution:

Sequence No.: 90 Sample ID: AY55849802 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.12 g

Autosampler Location: 138
Date Collected: 03/06/12 10:25:34 PM Data Type: Reprocessed on 03/07/12 2:13:37 PM

Mean Data:	AY55849802							
	Mean Corrected		Calib.			<b>Sample</b>		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	
Aq 338.289	3601,8	24.25	ug/L	0.620	2.165	mg/kg	0.0554	2.56%
Al 308.215	235706.7	101800	ug/L	381.7	9088	mg/kg	34.1	0.38%
As 188.979	132.2	26.62	ug/L	6.366	2.377	mg/kg	0.5684	23.91%
В	~54.4	325.8	ug/L	13.01	29.08	mg/kg	1.162	3.99%
Ba 233.527	77865.4	317.1		3.52	20,31	mg/kg	0.315	1.11%
Be 313,107	6895.5	-4.917	ug/L	0.0631	-0.439		0.0056	1.28%
Ca 315.887	38387598.4	2222000	ug/L	22839.7	198400	mg/kg	2039.3	1.03%
Cd 214.440	2253.4	-15.30	ug/L	0.284	-1.366	mg/kg	0.0254	1.86%
Co 228.616	2687.9	8.825	ug/L	0.5201	0.788	-·	0.0464	5.89%
Cr 267.716	18146.9	86.27	ug/L	0.370	7.703		0.0330	0.43%
Cu 327.393	14572.7	127.9	ug/L	1.49	11.42		0.133	1.17%
Fe 273.955	1095149.0	55130	ug/L	655.9		mg/kg	58.6	1.19%
K 766.490	104605.4	23990	ug/L	155.2		mg/kg	13.9	0.65%
Mg 285.213	1100090.7	32720	ug/L	93.6		mg/kg	8.4	0.29%
Mn 257.610	223889.0	2971	ug/L	9.3		mg/kg	0.83	0.31%
Mo 202.031	-3.7	-18.41	ug/L	0.933	-1.644		0.0833	5.07%
Na 589.592	18720.7	534.5	ug/L	14.13	47.72	-·	1.262	2.64%
Ni 231.604	5890.8	53.31	ug/L	0.864		mg/kg	0.0771	1.62%
P 213.617	6550.0	828.9	ug/L	7.13	74.00		0.637	0.86%
Pb 220.353	6394.3	336.3	ug/L	1.23	30.03		0.110	0.37%
Sb 206.836	22.9	3.319	ug/L	6.1189	0.296			184.36%
Se 196.026	-52.1	-11.08	ug/L	0.855	-0.989		0.0764	7.72%
Sn 189.927	-183.6	-18.10	ug/L	0.932	-1.616		0.0832	5.15%
Sr 421.552	1266481.4	1228	ug/L	5.0	109.6		0.44	0.41%
Ti 337.279	48547.6	611.9	ug/L	3.82	54.63		0.341	0.63%
T1 190.801	-304.4	-3.156	ug/L	3.2198	-0.282			102.01%
V 292.402	79483.2	244.4		2.73	21.82		0.244	1.12%
Zn 206.200	165016.3	1110	ug/L	17.2	99.07	mg/kg	1.535	1.55%

Sequence No.: 113

Sample ID: AY55849802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: 1.12 g

Dilution: 5X

Autosampler Location: 157
Date Collected: 03/07/12 12:27:58 AM
Data Type: Reprocessed on 03/07/12 2:14:00 PM

Mean Data:	AY55849802-1/5							<b></b>
	Mean Corrected		Calib.	,		Sample		
Analyte	Intensity	Cona.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	605.7	4.079		0.0234	1.821	mg/kg	0.0104	0.57%
Al 308.215	50505.4	21770		842.9		mg/kg	376.3	3,87%
As 188.979	16.1	3.242		0.8289	1.447	mg/kg	0,3700	25.56%
В	-8.1	74.09	ug/L	2.174	33.08	mg/kg	0.970	2.93%
Ba 233.527	17333.9	70.54		0.212	31.49	mg/kg	0.095	0.30%
Be 313.107	1986.3	-1.098		0.0602	-0.490	mg/kg	0.0269	5.48%
Ca 315.887	8784744.0	508500	ug/L	28618.1	227000	mg/kg	12775.9	5.63%
Cd 214.440	558.0	-3.398		0.1717	-1.517	mg/kg	0.0766	5.05%
Co 228.616	650.1	2.461	ug/L	0.3196	1.099	mg/kg	0.1427	12.99%
Cr 267.716	3968.4	18.61	ug/L	0.377	8.308	mg/kg	0.1685	2.03%
Cu 327.393	2606.5	22.88		0.718	10.22	mg/kg	0.320	3.14%
Fe 273.955	422712.2	12290	ug/L	48.5	5485	mg/kg	21.7	0.40%
K 766.490	22119.7	5041	ug/L	254.0	2250	mg/kg	113.4	5.04%
Mg 285.213	236890.0		ug/L	292.5	3138	mg/kg	130.6	4.16%
Mn 257,610	48651.0	645.3	ug/L	26.31	288.1	mg/kg	11.75	4.08%
Mo 202.031	17.8	-3.868		0.2283	-1.727	mg/kg	0.1019	5.90%
Na 589.592	4382.6	131.2	ug/L	0.68	58.57	mg/kg	0.304	0.52%
Ni 231.604	1333.5	12.03	ug/L	0.417	5.372	mg/kg	0.1862	3.47%
P 213.617	1354.3	171.2	ug/L	0.98	76.41	mg/kg	0.436	0.57%
Pb 220.353	1485.9	78.16	ug/L	0.593	34.89	mg/kg	0.265	0.76%
Sb 206.836	2.0	0.286	սց/Ն	0.2796	0.128	mg/kg	0.1248	97.79%
Se 196.026	~16.9	-3.602		0.5088	-1.608	mg/kg	0.2271	14.12%
Sn 189.927	-219.4	-21.63	ug/L	0.057	-9.656	mg/kg	0.0254	0.26%
Sr 421.552	286072.9	277.3	ug/L	11.57	123.8	mg/kg	5.16	4.178
Ti 337.279	10253.6	128.7		6.38	57.46	mg/kg	2.847	4.96%
Tl 190.801	-64.8	-0.708	ug/L	1.3013	-0.316	mg/kg	0.5809	183.68%
V 292.402	17420.2	53.37	ug/L	0.083	23.83	mg/kg	0.037	0.16%
Zn 206.200	37848.6	254.6	ug/L	1.17	113.6	mg/kg	0.52	0.46%

Sequence No.: 91 Sample ID: AY55850802

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.17 g

Dilution

Autosampler Location: 139
Date Collected: 03/06/12 10:30:17 PM

Data Type: Reprocessed on 03/07/12 2:13:38 PM

Mean Data: AY55								
	Mean Corrected	_	Calib.		_	Sample		
Analyte	Intensity		Units	Std.Dev.		Units	Std.Dev.	
Ag 338.289	3956.6	26.64	•	0.599		mg/kg	0.0512	2.25%
Al 308.215	235903.7	101700	41	1601.8		mg/kg	136.9	1.58%
AB 188.979	101.0	20.34		7.018		mg/kg	0.5998	34.51%
В	-177.8	309.0	ug/L	6.33		mg/kg	0.541	2.05%
Ba 233.527	60103.2	240.1	ug/L	2,15	20.52	mg/kg	0.184	0.90%
Be 313.107	10182.6	-5.570	ug/L	0.1079	-0.476		0.0092	1.94%
Ca 315.887	41380955.3	2396000	ug/L	24224.0	204700	mg/kg	2070.4	1.01%
Cd 214.440	15 <b>1</b> 8.8	-18.02	ug/L	0.168	-1.540	mg/kg	0.0143	0.93%
Co 228.616	1406.7	~6.194	ug/L	0.4015	-0.529	mg/kg	0.0343	6,48%
Cr 267.716	12987.1	53.38	ug/L	0.454	4.562	mg/kg	0.0388	0.85%
Cu 327.393	3407.3	29.91	ug/L	0.804	2.557	mg/kg	0.0687	2.69%
Fe 273.955	1830249.4	53050	ug/L	525.7	4534	mg/kg	44.9	0.99%
K 766.490	92075.1	20750	ug/L	345.2	1774	mg/kg	29.5	1.66%
Mq 285.213	690417.8	19990	ug/L	314.0	1709	mg/kg	26.8	1.57%
Mn 257.610	55437.7	709.7		11.48	60.66	mg/kg	0.981	1.62%
Mo 202.031	-54.9	-21.69	ug/L	0.058	-1.853	mg/kg	0.0050	0.27%
Na 589.592	10147.2	-295.1	ug/L	13.09	-25.22	mg/kg	1.119	4.44%
Ni 231.604	3491,1	20.04		0.599	1,713	mg/kg	0.0512	2.99%
P 213.617	3916.4	495.0	uq/L	6.19	42.31	mg/kg	0.529	1.25%
Pb 220.353	389.3	20.48	ug/L	2.452	1.750	mq/kq	0.2095	11.97%
9b 206.836	-60.1	-8.700	uq/L	1.5916	-0.744	mq/kq	0.1360	18.30%
Se 196,026	-75.4	-16.05		12.600	-1.372		1.0769	78.49%
Sn 189,927	-291.9	-28.78		0.907	-2.460	• •	0.0775	3.15%
Sr 421.552	325964.6	296.0	<del>-</del> · .	4.76	25.30	· · ·	0.407	1.61%
Ti 337.279	36829.8	454.5		8.07	38.84		0.690	1.78%
Tl 190.801	-122.3	-7.158	<b>-</b>	5.8410	~0.612		0.4992	81.60%
V 292.402	46060.0	128.6	<b>-</b> .	1.28	10.99		0.109	0.99%
Zn 206.200	30086.3	138.7	• .	2.52	11.86		0.216	1.82%
						J J		

Sequence No.: 114 Sample ID: AY55850802-1/5 Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.17 g

Dilution: 5X

Autosampler Location: 38 Date Collected: 03/07/12 12:35:04 AM Data Type: Reprocessed on 03/07/12 2:14:01 PM

Mean Data:	AY55850S02-1/5							
	Mean Corrected		Calib.			<b>Sample</b>		
Analyte	Intensity	Conc.	Units	Std.Dev.		Unite	Std.Dev.	RSD
Ag 338.289	677.5	4.562	ug/L	0.3299		mg/kg	0.1410	7.23%
Al 308.215	49655.9	21350	ug/L	670.6	9125	mg/kg	286.6	3.14%
As 188.979	8.5	1.704	ug/L	1.1543		mg/kg	0.4933	67.75%
В	-38.0	72.07		0.480		mg/kg	0.205	0.67%
Ba 233.527	13898.8	55.51	ug/L	0.188		mg/kg	0.080	0.34%
Be 313.107	2656.1	-1.274	ug/L	0.0712	-0.544		0.0304	5.59%
Ca 315.887	9591195.3	555200	ug/L	24331.1	237300		10397.9	4.38%
Cd 214.440	420.6	-4.046	ug/L	0.2473	-1.729		0.1057	6.11%
Co 228.616	383.6	-0.757	ug/L	0.2030	-0.324	J. J	0.0867	26.80%
Cr 267.716	2906.6	11.74	ug/L	0.262	5.017	mg/kg	0.1120	2.23%
Cu 327.393	351.8	3.088	ug/L	0.2003		mg/kg	0.0856	6.49%
Fe 273.955	425343.0	12330	ug/L	53.2	5270	mg/kg	22.7	0.43%
K 766.490	19160.3	4271	ug/L	80.6	1825	mg/kg	34.4	1.89%
Mg 285.213	146139.9	4206	ug/L	125.5		mg/kg	53,6	2.98%
Mn 257.610	12095.4	154.4	ug/L	6.84		mg/kg	2.922	4.43%
Mo 202.031	17.5	-4.423	ug/L	0.2675	-1,890	mg/kg	0.1143	6.05%
Na 589.592	2130.0	-87.49	ug/L	24.724	-37.39	~. ~	10.566	28.26%
Ni 231.604	825.5	4.885	ug/L	0.4119		mg/kg	0.1760	8.43%
P 213.617	815.5	103.1	ug/L	1.80	44.05	-·	0.770	1.75%
Pb 220.353	104.9	5.516	ug/L	0.31 <b>09</b>		mg/kg	0.1329	5.64%
Sb 206.836	-11.2	-1.617	ug/L	0.7845	-0.691	mg/kg	0.3353	48.51%
Se 196.026	-22.8	-4.855	ug/L	1.8259	-2.075		0.7803	37.61%
Sn 189.927	~252.6	-24.90	ug/L	0.497	-10.64	mg/kg	0.213	2.00%
Sr 421.552	72608.7	65.71	ug/L	2.074	28.08		0.886	3.16%
Ti 337.279	78637	96.45	ug/L	4.519	41.22		1.931	4.69%
Tl 190.801	-34.8	-2.343	ug/L	0.1607	-1.001		0.0687	6.86%
V 292.402	10119.0	27.90	ug/L	0.139	11.92	mg/kg	0.059	0.50%
Zn 206.200	7000.7	32.37	ug/L	0.743	13.83	mg/kg	0.318	2.30%

Sequence No.: 92 Sample ID: AY55851802 Analyst: BA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.04 g Dilution:

Autosampler Location: 140 Date Collected: 03/06/12 10:35:24 PM Data Type: Reprocessed on 03/07/12 2:13:39 PM

Mean Date: AY	66851902							
Mean Date. At	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cona.	Units	Std.Dev	RSD
Ag 338.289	16280.8	109.6	uq/L	2.44	10.54	mg/kg	0.234	2.22%
Al 308.215	171029.3	73110		709.5	7029	mg/kg	68.2	0.97%
As 188.979	103.0	20.75		2.053	1.995	mg/kg	0.1974	9.89%
В	99.5	329.1		6.14	31,65	mg/kg	0.591	1.87%
Ba 233.527	116832.2	486.3	ug/L	0.72	46.76	mg/kg	0.069	0.15%
Be 313.107	6568.8	-5.771	ug/L	0.0227	-0.555	mg/kg	0.0022	0.39%
Ca 315.887	39755338.6	2301000	ug/L	18643.8	221300	mg/kg	1792.7	0.81%
Cd 214.440	20318.2	23.11	ug/L	0.866	2.222	mg/kg	0.0833	3.75%
Co 228,616	2860.8	10.97	ug/L	0.838	1.055	mg/kg	0.0806	7.64%
Cr 267.716	13316.7	54.68	ug/L	0.579	5.258	mg/kg	0.0557	1.06%
Cu 327,393	114785.4	1008	ug/L	7.8	96.89	mg/kg	0.750	0.77%
Fe 273.955	1620107.4	46800	ug/L	117.9	4500	mg/kg	11.3	0.25%
K 766.490	78989.0	17590	ug/L	186.9	1692	mg/kg	18.0	1.06%
Mg 285.213	1064013.0	31570	ug/L	291.8	3036	mg/kg	28.1	0.92%
Mn 257.610	206514.7	2737	ug/L	27.4	263.2	mg/kg	2.64	1.00%
Mo 202.031	269.6	-14.30	ug/L	1.697	-1.375	mg/kg	0.1632	11.87%
Na 589.592	16843.4	337.5	ug/L	16.34	32.45	mg/kg	1.571	4.84%
Ni 231.604	16189.5	190.6	ug/L	1.76	18.33		0.169	0.92%
P 213.617	5296.1	669.4	ug/L	13.02	64.36	mg/kg	1.252	1.94%
Pb 220.353	7742.4	407.2	ug/L	10.52	39.16	mg/kg	1.012	2.58%
Sb 206.836	88.5	12.82	ug/L	0.609	1.233		0.0586	4.75%
Se 196.026	-8.4	-1.791	ug/L	10.6839	-0.172			596.50%
\$n 189.927	458.5	45.20	ug/L	1.545	4.346	- · · ·	0.1485	3.42%
Sr 421.552	1309709.1	1270	ug/L	12.0	122.1		1.15	0.94%
Ti 337.279	36753.4	454.7	ug/L	3.46	43.72		0.333	0.76%
Tl 190.801	-270.7	-5.012		1.1683	-0.482	· · ·	0.1123	23.31%
V 292.402	43941.1	124.0	ug/L	1.36	11.92		0.131	1.10%
Zn 206.200	213875.2	1457	ug/L	5.3	140.1	mg/kg	0.51	0.36%

Sequence No.: 115

Sample ID: AY55851802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.04 g

Dilution: 5X

Autosampler Location: 39
Date Collected: 03/07/12 12:41:21 AM
Data Type: Reprocessed on 03/07/12 2:14:02 PM

Mean Data: AY558	51802-1/5					_		
	Mean Corrected		Calib.		•	Sample		
Analyte	Intensity	Cono.	Unite	Std.Dev.	Conc.		Std.Dev.	RSD
Ag 338,289	3250.6	21.89	ug/L	0.318		mg/kg	0.153	1.45%
AĪ 308.215	37631.8	16050	ug/L	571.8	7714	mg/kg	274.9	3.56%
As 188.979	7.5	1.515	ug/L	0.4823	0.729	mg/kg	0.2319	31.82%
В	8.7	74.75	ug/L	0.872	35.94		0.419	1.17%
Ba 233.527	27464.5	114.3	ug/L	0.32	54.96	mg/kg	0.156	0.28%
Be 313.107	2244.7	-1.287	ug/L	0.0427	-0.619	mg/kg	<b>0</b> .0205	3.31%
Ca 315.887	9389375.9	543600	ug/L	18050.5	261300	mg/kg	8678.1	3.32%
Cd 214.440	4796.6	5.451	ug/L	0.1107	2.621	mg/kg	. 0,0532	2.03%
Co 228,616	699.6	2.897	ug/L	0.2892	1.393	mg/kg	0.1390	9.98%
Cr 267.716	2983.2	11.93	ug/L	0.082	5.734	mg/kg	0.0394	0.69%
Cu 327.393	23943.1	210.2		2.00	101.1	mg/kg	0.96	0.95%
Fe 273.955	378933.7	10940	ug/L	102.3	5262	mg/kg	49.2	0.93%
К 766,490	17133.5	3779	ug/L	102.3	1817	mg/kg	49.2	2.71%
Mg 285.213	236096.7	6988	ug/L	243.2	3359	mg/kg	116.9	3.48%
Mn 257,610	46268.5	612.9	ug/L	20.87	294.6	mg/kg	10.03	3.41%
Mo 202,031	79.3	-3.078	ug/L	0.1282	-1.480	mg/kg	<b>0</b> .0616	4.16%
Na 589.592	3900.4	73.14	ug/L	6.873	35.16	mg/kg	3.304	9.40%
Ni 231.604	3780.2	44.46	ug/L	0.058	21.38	mg/kg	0.028	0.13%
P 213.617	1092.5	138.1	ug/L	1.10	66.39	mg/kg	0.531	0.80%
Pb 220.353	1833.7	96.45	ug/L	0.372	46.37	mg/kg	0.179	0.39%
Sb 206.836	12.1	1.754	ug/L	0.6036	0.843	mg/kg	0.2902	34.40%
Se 196.026	-18.6	-3.950	ug/L	2.3590	-1.899	mg/kg	1.1341	59.71%
Sn 189.927	-74.4	-7.338	ug/L	0.4610	-3.528	mg/kg	0.2217	6.28%
Sr 421.552	302673.4	293.4		10.47	141.0	mg/kg	5.03	3.57%
Ti 337.279	7910.2	97.20	ug/L	5.220	46.73	mg/kg	2.509	5.37%
Tl 190.801	-54.7	-0.811	ug/L	0.2451	-0.390	mg/kg	0.1178	30.20%
V 292.402	9637.0	26.77		0.105	12.87	πg/kg	0.051	0.39%
Zn 206.200	51615.4	352.1	ug/L	3.00	169.3	mg∕kg	1.44	0.85%

Sequence No.: 93 Sample ID: AY55852802 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.08 g Dilution:

Autosampler Location: 141 Date Collected: 03/06/12 10:40:11 PM Data Type: Reprocessed on 03/07/12 2:13:40 PM

Mean Data: AY55852	1802							
	Mean Corrected		Calib.			Sample		242
Analyte	Intensity	Conc.	Units	Std.Dev.	Cona.	_	Std.Day.	RSD
Aq 338.289	2897.0	19.51	ug/L	0.378		mg/kg	0.0350	1.94%
Al 308.215	316736.1	137900	ug/L	1171.8	12770		108.5	0.85%
As 188.979	178.5	35.95	ug/L	6,103	3.329		0.5651	16.98%
В	-155.0	401.6	ug/L	5.17	37.18		0.479	1.29%
Ba 233.527	68267.1	270.6	ug/L	2.70	25.06		0.250	1.00%
Be 313,107	18387.5	-2.310	ug/L	0.0218	-0.214		0.0020	0.94%
Ca 315.887	33697097.3	1951000	ug/L	12756.6	180600		1181.2	0.65%
Cd 214,440	2161.3	-15.53	ug/L	0.083	-1.438		0.0077	0.54%
Co 228,616	2714.8	9.794	ug/L	0.3780	0.907		0.0350	3.86%
Cr 267.716	17141.5	84.08	ug/L	0.758		mg/kg	0.0702	0.90%
Cu 327.393	8421.2	73.93	ug/L	0.747		mg/kg	0.0691	1.01%
Fe 273.955	3053101.9	90230	ug/L	834.0		mg/kg	77.2	0,92%
K 766.490	145384.7	34290	ug/L	495.9		mg/kg	45.9	1.45%
Mg 285.213	899286.3	26670	ug/L	238.5		mg/kg	22.1	0.89%
Mn 257.610	142516.9	1885	ug/L	5.2	174.5		0.48	0.27%
Mo 202.031	-80.1	-15.47	ug/L	0.809	-1.432		0.0749	5.23%
Na 589.592	12029.4	68.60	ug/L	10.246		mg/kg	0.9487	14.94%
Ni 231.604	6075.6	57.79	ug/L	1.918		mg/kg	0.1776	3.32%
P 213.617	6022.5	761.2	ug/L	9.39		mg/kg	0.869	1.23%
Pb 220.353	710.9	37.39	ug/L	1.264	3,462	~·. —	0.1171	3.38%
Sb 206.836	-27.3	-3.959	ug/L	1.1288	-0.367	• • •	0.1045	28.51%
Se 196.026	-61.6	-13.11	ug/L	12.653	-1.214	••	1.1716	96.51%
Sn 189.927	<b>-288.4</b>	-28.44	ug/L	2.589	-2.633	••. •	0.2398	9.11%
Sr 421.552	319984.1	294.3	ug/L	2.33		mg/kg	0.215	0.79%
Ti 337.279	50377.0	639.9	ug/L	2.23	59.25	••	0.207	0.35%
Tl 190.801	-237.4	-4.374	ug/L	1.6746	-0.405		0.1551	38.29%
V 292.402	77340.9	230.6	ug/L	2.03		mg/kg	0.188	0.88%
Zn 206.200	23565.5	103.3	ug/L	2.11	9.565	mg/kg	0.1951	2.04%

Sequence No.: 116

Sample ID: AY55852802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.08 g

Dilution: 5X

Autosampler Location: 40 Date Collected: 03/07/12 12:48:19 AM Data Type: Reprocessed on 03/07/12 2:14:03 PM

Mean Data:	AY55852S02-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	8td.Dev.	
Ag 338.289	543.8	3.662	ug/L	0.3805	1.695	mg/kg	0.1762	10.39%
Al 308.215	66533.7	28940	ug/L	435.7	13400	mg/kg	201.7	1.51%
As 188.979	10.5	2.105	ug/L	1.2796		mg/kg	0.5924	60.78%
В	-62.5	87.66	ug/L	7.027		mg/kg	3.253	8.02%
Ba 233.527	16150.5	64.20	ug/L	0.075	29.72	mg/kg	0.035	0.12%
Be 313.107	4808.0	-0.426	ug/L	0.0611	-0.197	mg/kg	0.0283	14.36%
Ca 315.887	7353400.6	425700	ug/L	4098.9	197100	•	1897.6	0.96%
Cd 214.440	596.1	-3.238	ug/L	0.0938	-1.499	mg/kg	0.0434	2.90%
Co 228.616	690.1	3.203	ug/L	0.1419	1.483	mg/kg	0.0657	4.43%
Cr 267.716	3949.1	19.72	ug/L	0.222	9.127	• •	0.1026	1.12%
Cu 327.393	1560.6	13.70	ug/L	0.029	6.342		0.0134	0.21%
Fe 273.955	719622.6	21300	ug/L	202.9		mg/kg	94.0	0.95%
K 766.490	29914.3		ug/L	102.7	3257	mg/kg	47.5	1.46%
Mg 285.213	189892.0	5624	ug/L	66.8		mg/kg	30.9	1.19%
Mn 257.610	29492.9	389.8	ug/L	6.82	180.4		3.16	1.75%
Mo 202.031	6.1	-2.808	ug/L	0.0608	-1.300		0.0282	2.17%
Na 589.592	2551.3	8.279	ug/L	9.3773	3.833			113.26%
Ni 231.604	1482.1	14.68	ug/L	0.520	6.797		0.2406	3,54%
P 213.617	13 <b>0</b> 2.0	164.6		1.02	76.18		0.473	0.62%
Pb 220.353	183.8	9.670	ug/L	0.2855	4.477		0.1322	2.95%
Sb 206.836	-9.7	-1.410		0.4411	-0.653	-·	0.2042	31.29%
Se 196.026	-11.1	-2.371	ug/L	1.5883	~1.098		0.7353	66.98%
Sn 189.927	-237.1	-23.37	ug/L	0.331	-10.82		0.153	1.41%
Sr 421.552	70067.9	64.46	ug/L	0.682	29.84		0.316	1.06%
Ti 337.279	10240.5	129.7	ug/L	2.07	60.04		0.959	1.60%
Tl 190.801	-58.2	-1.687	ug/L	0.8786	-0.781		0.4068	52.08%
V 292.402	17867.4	53.37	ug/L	0.184	24.71		0.085	0.34%
Zn 206.200	5531.3	25.26	ug/L	0.215	11.69	mg/kg	0.10 <b>0</b>	0.85%

Sequence No.: 94 Sample ID: AY55853802 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.14 g Dilution:

Autosampler Location: 142 Date Collected: 03/06/12 10:45:09 PM Data Type: Reprocessed on 03/07/12 2:13:41 PM

Mean Data: AY	55853902							
110411	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	Units	Std.Dev.	
Ag 338.289	2545.0	17.14	ug/L	0.549	1.503	mg/kg	0.0482	3.20%
Al 308.215	429797.9	188000		2708.2	16490	mg/kg	237.6	1.44%
As 188.979	256.4	51.65	ug/L	3.569	4.531	mg/kg	0.3131	6.91%
В	-1110.3	274.7	ug/L	11.86	24.10	mg/kg	1.040	4.32%
Ba 233.527	108157.1	441.0	ug/L	3.52	30.60	mg/kg	0.309	0.80%
Be 313.107	9751.7	-0.797	ug/L	0.0795	-0.070	mg/kg	0.0070	9.98%
Ca 315,887	31152973.3	1803000	ug/L	2856.1	158200		250.5	0.16%
Cd 214.440	2571.5	-14.12	ug/L	0.106	-1.238	mg/kg	0.0093	0.75%
Co 228.616	3440.6	16.63	ug/L	1.168	1.459	mg/kg	0.1024	7.02%
Cr 267.716	26515.9	145.2	ug/L	2.61	12.74	mg/kg	0.229	1.80%
Cu 327.393	8589.9	75.41	ug/L	0.690	6.615	-·	0.0605	0.92%
Fe 273.955	3496286.8	103700	ug/L	701.5	9094	mg/kg	61.5	0.68%
К 766.490	147449.1	34930	ug/L	520.3	3064	mg/kg	45.6	1.49%
Mg 285.213	952365.8	28380	ug/L	432.5		mg/kg	37.9	1.52%
Mn 257.610	143372.9	1898	ug/L	14.8	166.5	- · · ·	1.29	0.78%
Mo 202.031	39.9	-11.18	ug/L	0.246	-0.981	- · · -	0.0216	2.20%
Na 589.592	11357.2	73.27	ug/L	11.218	6.427		0.9840	15.31%
Ni 231.604	6837.0	68.78	ug/L	1.323	6.033	~·	0.1161	1.92%
P 213.617	9821.6	1241	ug/L	16.7	108.9	~ ~	1.47	1.35%
Pb 220.353	987.9	51.96	ug/L	2.042	4.558		0.1792	3.93%
Sb 206.836	-31.0	-4.484	ug/L	1.8338	-0.393		0.1609	40.89%
Se 196.026	-14.1	~3.003	ug/L	3.9960	-0.263			133.08%
Sn 189.927	-274.6	-27.07	ug/L	0.980	-2.374		0.0860	3.62%
Sr 421.552	597872.0	570.4	ug/L	8.52	50.04		0.747	1.49%
Ti 337.279	98730.9		ug/L	14.0	112.5		1.23	1.09%
Tl 190.801	-246.2	2.225	ug/L	6.6332	0.195			298.06%
V 292.402	96311.7	293.4		2.45	25.74		0.215	0.84%
Zn 206.200	30350.4	155.7	ug/L	3.28	13.65	mg/kg	0.288	2.11%

Sequence No.: 117 Sample ID: AY55853S02-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.14 g

Dilution: 5X

Autosampler Location: 41
Date Collected: 03/07/12 12:53:38 AM
Data Type: Reprocessed on 03/07/12 2:14:04 PM

Mean Data: AY558	53802-1/5					_		
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	<b>Std.Dev.</b>		Unite	Std.Dev.	RSD
Ag 338.289	436.5	2.939	ug/L	0.3308		mg/kg	0.1451	11.25%
Al 308.215	87766.7	38360	ug/L	79.8		mg/kg	35.0	0.21%
As 188.979	40.0	8.055	ug/L	0.6502		mg/kg	0.2852	8.07%
В	~194.3	73.88	ug/L	1.402		mg/kg	0.615	1.90%
Ba 233.527	25588.5	104.5	ug/L	0.39		mg/kg	0.171	0.37%
Be 313,107	2618.9	-0.173	ug/L	0.0438	-0.076		0.0192	25.27%
Ca 315.887	6868196.7	397600	ug/L	1565.0	174400		686.4	0.39%
Cd 214.440	646.1	-3.069	ug/L	0.0457	-1.346		0.0200	1.49%
Co 228.616	864.0	4.847	ug/L	0.3458	2.126	mg/kg	0.1517	7.13%
Cr 267.716	6092.5	33.65	ug/L	0.326	14.76	mg/kg	0.143	0.97%
Cu 327.393	1607.5	14.11	ug/L	0.188	6.190	mg/kg	0.0822	1.33%
Fe 273.955	824471.4	24480	ug/L	147.0	10730	mg/kg	64.5	0.60%
К 766.490	30111.5	7108	ug/L	32.2	3118	mg/kg	14.1	0.45%
Mg 285.213	196498.1		ug/L	15.8	2562	mg/kg	6.9	0.27%
Mn 257.610	29939.3	396.1	ug/L	6.67	173.7	mg/kg	2.93	1.68%
Mo 202.031	20.2	-2.118	ug/L	0.3556	-0.929		0.1560	16.79%
Na 589.592	2494.4	15.26	ug/L	9.693	6.692	mg/kg	4.2515	63.53%
Ni 231.604	1656.7	17.16	ug/L	0.341	7.526	mg/kg	0.1497	1.99%
P 213.617	2162.9	273.4	ug/L	0.90	119.9	mg/kg	0.40	0.33%
Pb 220,353	262.5	13.81	ug/L	0.362	6.055		0.1589	2.62%
Sb 206.836	-13.9	-2.007	սց/և	0.4580	- <b>0.</b> 880	mg/kg	0.2009	22.81%
Se 196.026	-19.3	-4.102	ug/L	3.4604	-1.799	mg/kg	1.5177	84.36%
Sn 189.927	-239.5	-23.61	ug/L	0.447	-10.35	mg/kg	0.196	1.89%
Sr 421.552	127590.5	121.6	ug/L	0.39	53.32	mg/kg	0.170	0.32%
Ti 337.279	20511.3	266.2		5.10	116.8	mg/kg	2.24	1.92%
Tl 190.801	-74.9	-1.422	ug/L	0.4509	-0.624	mg/kg	0.1978	31.71%
V 292.402	22256.2	67.86	ug/L	0.290	29.77	mg/kg	0.127	0.43%
Zn 206.200	7187.0	37.82	ug/L	0.314	16.59	mg/kg	0.138	0.83%

Sequence No.: 95
Sample ID: AY55854802
Analyst: EA
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt: 1.08 g
Dilution:

Sequence No.: 95

Sample ID: AY55854802

Autosampler Location: 143

Date Collected: 03/06/12 10:49:32 PM

Data Type: Reprocessed on 03/07/12 2:13:42 PM

Mean Data:	AY55854802							
	Mean Corrected		Calib.		_	Sample	a. 1 n	Dan
Analyte	Intensity	Conc.	Vnite	Std.Dev.	Conc.		Std.Dev.	RSD
Aq 338.289	2750.5	18.52	ug/L	0.853		mg/kg	0.0790	4.61%
Al 308.215	201402.7	87510	ug/L	180.8		mg/kg	16.7	0.21%
As 188.979	111.3	22.43	ug/L	1.183		mg/kg	0.1096	5.28%
В	-288.4	206.7	ug/L	7.74		mg/kg	0.717	3.74%
Ba 233.527	53733.9	217.5	ug/L	0.94		mg/kg	0.087	0,43%
Be 313.107	3485.8	-2.261	ug/L	0.1024	-0.209		0.0095	4.53%
Ca 315.887	23970234.3	1388000	ug/L	7779.4	128500		720.3	0.56%
Cd 214.440	16047.3	20.95	ug/L	0.076		mg/kg	0,0070	0.36%
Co 228.616	1875.8	6.418	ug/L	0.1870		mg/kg	0.0173	2.91%
Cr 267.716	13025.9	65.19	ug/L	0.126		mg/kg	0.0117	0.19%
Cu 327.393	37502.0	329.2	ug/L	1.21		mg/kg	0.112	0.37%
Fe 273.955	1661555.1	48820	ug/L	162.6		mg/kg	15.1	0.33%
к 766.490	75239.2	17430		42.0		mg/kg	3.9	0.24%
Mg 285.213	713724.4	21260	ug/L	44.0	1968	mg/kg	4.1	0.21%
Mn 257.610	76391.2	1005	ug/L	0.7		mg/kg	0.063	0.07%
Mo 202.031	58.8	-9.749	ug/L	0.2031	-0,903		0.0188	2.08%
Na 589.592	9891.5	170.8	ug/L	26.90		mg/kg	2,491	15.75%
Ni 231.604	3850.1	35.23	ug/L	0.253	3.262	mg/kg	0.0235	0.72%
P 213.617	6090.0	769.7		1.74	71.27	mg/kg	0.161	0.23%
Pb 220.353	2031.3	106.8	ug/L	0.21	9.893	mg/kg	0.0193	0.20%
Sb 206,836	25.1	3.635	ug/L	0.5483	0.337	mg/kg	0.0508	15.08%
Se 196.026	-18.3	-3.900	uq/L	2.6581	-0.361	mg/kg	0.2461	68.16%
Sn 189,927	-193.9	-19.12	<b>-</b> .	0.454	-1.770	mg/kg	0.0420	2.37%
Sr 421.552	556910.2	535.2	ug/L	0.85	49.55	mg/kg	0.078	0.16%
Ti 337.279	50821.8	653.9	ug/L	10.31	60.55	mg/kg	0.955	1.58%
Tl 190.801	-180.7	-4.594	<b>-</b> · .	0.4085	-0.425	mg/kg	0.0378	8.89%
V 292.402	44865.8	132.6		0.77	12.28	mg/kg	0.072	0.58%
Zn 206.200	55710.1	353.2	<b>-</b> .	2.25	32.70	mg/kg	0.208	0.64%
DII 200.200	33.20.4							

Sequence No.: 118 Sample ID: AY55854902-1/5 Analyst: EA Logged In Analyst (Original) : ohemist_metals Initial Sample Wt: 1.08 g Dilution: 5X

Autosampler Location: 42 Date Collected: 03/07/12 12:59:33 AM Data Type: Reprocessed on 03/07/12 2:14:04 PM

Mean Data: AY	55 <b>854</b> \$02-1/5							
	Mean Corrected		Calib.			Sample	<b></b>	202
Analyte	Intensity		Units	Std.Dev.	Conc.		Std.Dev.	
Ag 338.289	497.6	3.350	ug/L	0.4120		mg/kg	0.1908	12.30%
Al 308.215	39296.5	17050	ug/L	185.3		mg/kg	85.8	1.09%
Ав 188.979	10.8	2.169	ug/L	1,1444	1.004		0.5298	52.75%
В	-86.5	41.86	ug/L	0.425	19.38		0.197	1.02%
Ba 233,527	12375.5	50.22	ug/L	0.113	23.25	mg/kg	0.052	0.23%
Be 313,107	1523.2	-0.366	ug/L	0.0203	-0.169	mg/kg	0.0094	5.55%
Ca 315.887	4996302.5	289200	ug/L	2409.8	133900	mg/kg	1115.7	0.83%
Cd 214,440	3714.4	5.079	ug/L	0.0216	2.351	mg/kg	0.0100	0.42%
Co 228,616	476.4	2.272	ug/L	0.1312	1.052	mg/kg	0.0608	5.78%
Cr 267.716	2860.9	14.54	ug/L	0.183	6.729	mg/kg	0.0846	1.26%
Cu 327.393	7876.9	69.15	uq/L	0.116	32.01	mg/kg	0.054	0.17%
Fe 273.955	382097.4	11250	ug/L	82.5	5210	mg/kg	38.2	0.73%
K 766.490	14402.9	3317	uq/L	64.7	1536	mg/kg	30.0	1.95%
Mg 285.213	139928.2	4158	uq/L	50.3	1925	mg/kg	23.3	1.21%
Mn 257.610	16117.7	212.1	uq/L	1.22	98,20	mg/kg	0.564	0.57%
Mo 202.031	43.5	-1.345	ug/L	0.4358	-0.623	mg/kg	0.2018	32.41%
Na 589,592	2041.7	33.72	• .	11.736	15,61	mg/kg	5.433	34.81%
Ni 231.604	881.8	8.391		0.1500	3.885	mg/kg	0.0695	1.79%
P 213.617	1261.4	159.4		0.74	73.81	mg/kg	0.343	0.46%
Pb 220.353	477.0	25.09	•	0.366	11.62	mg/kg	0.170	1.46%
Sb 206,836	0.1	0.019	•	0.6144	0.009	mg/kg	0.2845	>999.9%
Se 196.026	-5.4	-1.146		0.7046	-0.531	mg/kg	0.3262	61.47%
9n 189.927	-213.7	-21.07		0.360	-9.753	mg/kg	0.1667	1.71%
Sr 421.552	113806.3	109.3		1.20	50.60		0.557	1.10%
Ti 337.279	10256.3	131.9		0.76	61.05	mg/kg	0.352	0.58%
Tl 190.801	-39.1	-1.090		1.3469	-0.504	mg/kg	0,6236	123.62%
V 292.402	10105.7	30.01	_	0.052	13.89		0.024	0.17%
Zn 206.200	13324.3	85.83		0.438	39.74		0.203	0.51%
ZII ZU0.ZUU	13324.3	55.65	~5, ~			J. J		

Sequence No.: 96 Sample ID: AY55855802 Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.08 g

Dilution:

Autosampler Location: 144

Date Collected: 03/06/12 10:54:21 PM

Data Type: Reprocessed on 03/07/12 2:13:43 PM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data:	AY55855802							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unita	<b>Std.Dev.</b>	Conc.	Units	Std.Dev.	. Rød
Ag 338.289	3986.3	26.84	ug/L	0.461	2.485	mg/kg	0.0427	1.72%
Al 308.215	301814.9	131200		163.9	12150	mg/kg	15.2	0.12%
As 188.979	192.8	38.84	ug/L	0.521	3.596	mg/kg	0.0482	1.34%
B	-622.8	273.0	ug/L	1.84	25.28	mg/kg	0.171	0.68%
Ba 233.527	82360.8	334.1	ug/L	3.03	30.94	mg/kg	0.281	0,91%
Be 313.107	7562.6	~3.160	ug/L	0.0674	-0.293	mg/kg	0.0062	2.13%
Ca 315.887	34983346.5	2025000		20058.1	187500		1857.2	0.99%
Cd 214.440	9115.6	~0.055		0.2591	-0.005	mg/kg	0.0240	470.13%
Co 228.616	2738.6	9.446	ug/L	0.4372	0.875	mg/kg	0.0405	4,63%
Cr 267.716	19130.0	95.81	ug/L	0.373	0.071	mg/kg	0.0345	0.39%
Cu 327.393	139228.1	1222	ug/L	12.8	113.2	mg/kg	1.18	1.04%
Fe 273.955	2480370.0	72920	ug/L	479.6	6752	mg/kg	44.4	0.66%
K 766.490	110953.0	25720	ug/L	54.8	2382	mg/kg	5.1	0.21%
Mg 285.213	1063773.7	31700	ug/L	47.9	2935	mg/kg	4.4	0.15%
Mn 257.610	118934.7	1566	ug/L	35.0	145.0	mg/kg	3.24	2.23%
Mo 202.031	142.9	-13.03		1.541	-1.207	mg/kg	0.1427	11.82%
Na 589.592	13146.9	136.0		20.89	12.59	mg/kg	1,934	15.36%
Ni 231.604	5994.5	56.36	ug/L	0.707	5.219	mg/kg	0.0655	1.25%
P 213.617	9407.2	1189	ug/L	1.7	110.1		0:15	0.14%
Pb 220.353	2347.5	123.5	ug/L	2.48	11.43	mg/kg	0.229	2.01%
Sb 206.836	-33.0	-4.788		4.4950	-0.443	mg/kg	0.4162	93.89%
Se 196.026	3.8	0.819	ug/L	13.6145	0.076	mg/kg	1.2606	>999.9%
Sn 189.927	-16.9	~1.665	ug/L	0.8857	-0.154	mg/kg	0.0820	53.19%
Sr 421.552	902657.6	869.9	ug/L	1.30	80.55	mg/kg	0.120	0.15%
Ti 337.279	69646.9	894.3		19.45	82.81	mg/kg	1.801	2.17%
Tl 190.801	-223.2	-3.413	ug/L	2.4284	-0.316	mg/kg	0.2249	71.14%
V 292.402	66746.B	197.7		0.42	18.30		0.039	0.21%
Zn 206.200	66193.9	407.2	ug/L	2.95	37.70	mg/kg	0.273	0.72%

Sequence No.: 102

Sample ID: AY55855802-1/5

Analyst: BA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.08 g

Dilution: 5X

Autosampler Location: 148 Date Collected: 03/06/12 11:26:23 PM Data Type: Reprocessed on 03/07/12 2:13:49 PM

Mean Data:	AY55855802-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Cond.	Unite	Std.Dav.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	781.3	5.261	ug/L	0.3764	2.436	mg/kg	0.1743	7.16%
Al 308.215	66916.7	29070	ug/L	488.9		mg/kg	226.4	1.68%
As 188.979	30.7	6.194		0.7805		mg/kg	0.3614	12.60%
В	-140.2	67.81	ug/L	1.852		mg/kg	0.857	2.73%
Ba 233.527	20587.6	83.69	ug/L	0.316		mg/kg	0.147	0.38%
Be 313.107	2215.4	-0.723	ug/L	0.0515	-0.335		0.0238	7.12%
Ca 315.887	8119998.1	470000		5475.5	217600	mg/kg	2535.0	1.16%
Cd 214.440	2298.3	0.285		0.0784	0.132		0.0363	27.50%
Co 228.616	715.9	3.088		0.1092		mg/kg	0.0505	3.53%
Cr 267.716	4515.5	22.75	ug/L	0.233	10.53		0.108	1.03%
Сц 327.393	30892.0	271.2		4.79	125.6	mg/kg	2.22	1.77%
Fe 273.955	616751.9	18160		258.8	8408	mg/kg	119.8	1.42%
K 766.490	23215.6		ug/L	52.6		mg/kg	24.4	0.98%
Mg 285.213	237142.9	7058		59.2	3267	mg/kg	27.4	0.84%
Mn 257.610	26263.0	345.6		4.84	160.0	mg/kg	2.24	1.40%
Mo 202.031	44.9	-2.708	ug/L	0.2071	-1.254	mg/kg	0.0959	7.65%
Na 589.592	3307.5	53.80	ug/L	10.620	24.91	mg/kg	4.916	19.74%
Ni 231.604	1514.3	14.72		0.347	6.813	mg/kg	0.1608	2.36%
P 213.617	2088.7	264.0		2.62	122,2	mg/kg	1.21	0.99%
Pb 220.353	602. <b>0</b>	31.67		0.609	14.66	mg/kg	0.282	1.92%
9b 206.836	-8.8	-1.277		0.6194	-0.591	mg/kg	0.2868	48.50%
Se 196.026	-4.3	-0.908		3.5432	-0.421	mg/kg	1.6404	390.09%
Sn 189.927	-180.0	-17.75	ug/L	0.076	-8.216	mg/kg	0.0350	0.43%
Sr 421.552	199558.9	192.1		1.62	88.92	mg/kg	0.749	0.84%
T1 337.279	15111.1	193.6	ug/L	2.75	89.64	mg/kg	1.271	1.42%
Tl 190.801	-49.9	-0.916	ug/L	0.2742	-0.424	mg/kg	0.1270	29.94%
V 292.402	15590.1	45.95		0.302	21.27		0.140	0.66%
Zn 206.200	17546.5	110.1	ug/L	0.76	50.96	mg/kg	0.352	0.69%

Sequence No.: 103 Sample ID: AY55856802 Analyst: BA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.08 g

Dilution:

Autosampler Location: 149 Date Collected: 03/06/12 11:31:51 PM Data Type: Reprocessed on 03/07/12 2:13:50 PM

Mean Data:	AY55856S02							
	Mean Corrected		Calib.			Semple		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	2466.7	16.61	ug/L	0.322	1.538	mg/kg	0.0298	1.94%
A1 308.215	364636.3	159300	ug/L	736.8		mg/kg	68.2	0.46%
As 188.979	264.6	53.30		2.241		mg/kg	0.2075	4.20%
В	-1191.0	257.1	ug/L	5.37	23.80	mg/kg	0.498	2.09%
Ba 233.527	93738.7	379.0	ug/L	1.44	35.09	mg/kg	0.133	0.38%
Be 313.107	21790.8	-1.057		0.0354	-0.098	mg/kg	0.0033	3.35%
Ca 315.887	29794039.0	1725000	ug/L	9843.8	159700	mg/kg	911.5	0.57%
Cd 214.440	2724.2	-13.44	ug/L	0.466	-1.245	mg/kg	0.0432	3.47%
Co 228.616	3488.4	19.46	ug/L	0.390		mg/kg	0.0361	2.00%
Cr 267.716	22235.1	119.0	ug/L	0.77	11.01	mg/kg	0.071	0.64%
Cu 327.393	7621.3	66.91	ug/L	0.423	6.195	mg/kg	0.0392	0.63%
Fe 273.955	3526097.8	104700	ug/L	323.5		mg/kg	30.0	0.31%
K 766.490	144138.4	34180		216.4	3164	mg/kg	20.0	0.63%
Mg 285.213	1028209.8	30760	ug/L	131.5	2849	mg/kg	12.2	0.43%
Mn 257.610	152541.1	2022	ug/L	9,4	187.2	mg/kg	0.87	0.46%
Mo 202.031	10.8	-10.69	ug/L	2.044	-0.990	mg/kg	0.1892	19.12%
Na 589.592	12297.8	195.4	ug/L	24.18	18.09	mg/kg	2,239	12.38%
Ni 231.604	6961.9	71.42	ug/L	1.509	6.613	mg/kg	0.1397	2.11%
P 213.617	9068.8	1146	ug/L	2.3	106.1	mg/kg	0.21	0.20%
Pb 220.353	975.7	51,32	ug/L	2.331	4.752	mg/kg	0.2158	4.54%
Sb 206.836	-37.1	-5.379		5.1466	-0.498	mg/kg	0.4765	95.68%
Se 196.026	-24.3	-5.175		3.7704	-0.479	mg/kg	0.3491	72.86%
Sn 189.927	-262.2	-25.85	ug/L	1.426	-2.393	mg/kg	0.1320	5.52%
Sr 421.552	578108.9	551.8	ug/ь	2.60	51.09	mg/kg	0.241	0.47%
Ti 337.279	51587.0	658.9	ug/L	12.85	61.01	mg/kg	1,190	1.95%
Tl 190.801	-252.0	-3.346	ug/L	2.6657	-0.310	mg/kg	0.2468	79.67%
V 292.402	92071.7	279.6	ug/L	1.13	25.89		0.105	0.40%
Zn 206.200	32828.7	175.7	ug/L	0.49	16.27		0.045	0.28%

Sequence No.: 125

Sample ID: AY55856802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.08 g

Dilution: 5X

Autosampler Location: 47
Date Collected: 03/07/12 1:41:33 AM
Data Type: Reprocessed on 03/07/12 2:14:11 PM

Mean Data: 2	AY55856S02-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cond.	Units	Std.Dev.	
Ag 338.289	477.4	3.214	ug/L	0.2677		mg/kg	0.1239	8.33%
Al 308.215	82594.4	36040	ug/L	402.0	16690	mg/kg	186.1	1.12%
As 188.979	37.8	7.620		0.4777	3,528	mg/kg	0.2212	6.27%
В	-302.1	64.43	ug/L	7.313	29.83	mg/kg	3.386	11.35%
Ba 233.527	23665.2	95.68	ug/L	1.669	44.30	mg/kg	0.772	1.74%
Be 313.107	6220.0	~0.157	ug/L	0.0427	-0.073	mg/kg	0.0198	27.29%
Ca 315.887	7208493.7	417300	ug/L	5503.6	193200	mg/kg	2548.0	1.32%
Cd 214,440	781.5	-3.107	ug/L	0.0885	-1,438	mg/kg	0.0410	2.85%
Co 228.616	950.7	5.886	ug/L	0.0186	2.725	mg/kg	0.0086	0.32%
Cr 267.716	6055.1	33.07	ug/L	0.605	15.31	mg/kg	0.280	1.83%
Cu 327.393	1629.9	14.31	ug/L	0.493	6.624	mg/kg	0,2282	3.44%
Fe 273.955	904413.4	26870		651.6	12440	mg/kg	301.7	2.43%
K 766.490	32099.4	7583	ug/L	100.3	3511	mg/kg	46.4	1.32%
Mg 285.213	237402.3	7093	ug/L	74.0	3284	mg/kg	34.3	1.04%
Mn 257.610	39871.4	529.1	ug/L	2.50	245.0	mg/kg	1.16	0.47%
Mo 202.031	34.1	-1.850	ug/Ъ	0.3358	-0.857	mg/kg	0.1555	18.15%
Na 589.592	3642.6	105.4		4.77	48.80	mg/kg	2.209	4.53%
Ni 231.604	1903.9	20.20	ug/L	0.338	9.351	mg/kg	0.1564	1.67%
P 213.617	2144.5	271.0	ug/L	4.41	125.5	mg/kg	2.04	1.63%
Pb 220.353	271.9	14.30		0.613	6.622	mg/kg	0.2838	4.29%
Sb 206.836	-12.3	-1.788	ug/L	0.7747	-0.828	mg/kg	0.3587	
Se 196.026	-10.5	-2.234	ug/L	2.6571	-1.034		1.2302	118.94%
Sn 189.927	-233.5	-23.02	ug/L	0.469	-10.66	mg/kg	0.217	2.04%
Sr 421.552	135633.3	129.3	ug/L	1.52	59.86	mg/kg	0.702	1.17%
Ti 337.279	11582.9	147.5		0.51	68.31		0.235	0.34%
Tl 190.801	-58.2	-0.461	ug/L	0.3607	-0.213	mg/kg	0.1670	78.32%
V 292.402	22376.6	<b>67.7</b> 3		1.540	31.35		0.713	2.27%
Zn 206.200	8736.8	48.16	ug/L	1.116	22.29	mg/kg	0.516	2.32%

Sequence No.: 38 Sample ID: AY55857S01

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 51 Date Collected: 03/01/12 6:28:16 PM Data Type: Reprocessed on 03/02/12 9:44:35 AM

Mean Data:	AY55857801							
•	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cona.	Unite	Std.Dev.	RSD
Ag 338.289	4087.3	23.25	ug/L	0.385	23.25		0.385	1.66%
Al 308.215	-467.9	-215,2	ug/L	58.84	-215.2		58.84	27.34%
As 188.979	19.6	2.740		0.8471	2.740		0.8471	30.91%
В	1330.5	313.2	ug/L	3,39	313.2		3.39	1,08%
Ba 233.527	113223.6	397.4		3.40	397.4		3.40	0.86%
Be 313.107	-1321.6	-6.715		0.0811	-6.715		0.0811	1.21%
Ca 315.887	36698360.4	1835000	ug/L	18833.9	1835000	uq/L	18833.9	1.03%
Cd 214.440	1570.5	-11.20		0.181	-11.20		0.181	1.61%
Co 228.616	70.6	-13.26		0.097	-13.26		0.097	0.73%
Cr 267.716	164.8	-21.17	ug/L	0.101	-21.17		0.101	0.48%
Cu 327.393	-2257.4	19.12	ug/L	0.744	19.12		0.744	3,89%
Fe 273.955	-66.9	-1547	ug/L	16.2	-1547		16.2	1.05%
K 766.490	9383.3	114.9		70.84	114.9		70.84	61.66%
Mg 285.213	5226 <b>80</b> .4	12360		152.2	12360		152.2	1.23%
Mn 257.610	25311.5	262.4	ug/L	1.84	262.4		1.84	0.70%
Mo 202.031	127.1	-16.05		0.228	-16.05		0.228	1.42%
Na 589.592	38002.4	1532	ug/L	19.7	1532		19.7	1.29%
Ni 231.604	554.3	-12.73		0.406	-12.73		0.406	3.19%
P 213.617	2985.2	293.3		0.53	293.3	ug/L	0.53	0.18%
Pb 220.353	~116.8	-5.110		0.3262	~5.118		0.3262	6.37%
8b 206.836	-16.3	-1.884	ug/L	0.6266	-1.884	ug/L	0.6266	33.25%
Se 196.026	-15.3	-2.583	ug/L	2.2617	-2.583		2.2617	87,55%
Sn 189.927	-110.4	-9.089		0.1477	-9.089	ug/L	0.1477	1.63%
Sr 421.552	684156.8	473.0		5.80	473.0	ug/L	5.80	1.23%
Ti 337.279	212.8	-23.17		0.528	-23.17		0.528	2.28%
Tl 190.801	-51.9	-7.686		0.8495	-7.686		0.8495	11.05%
V 292.402	770.4	-10.52		0.056	-10.52	ug/L	0.056	0.54%
Zn 206.200	7778.5	-11.17	ug/L	0.667	-11.17		0.667	5.97%

Gemiorgo No. 4 104

Sequence No.: 104 Sample ID: AY55857802 Analyst: EA

Logged In Analyst (Original) : chemist metals Initial Sample Wt: 1.13 g

Dilution:

Autosampler Location: 150
Date Collected: 03/06/42 11:36:45 PM
Data Type: Reprocessed on 03/07/12 2:13:51 PM

Mean Data: AY558	5 <b>7</b> 802							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	2899.8	19.53	ug/L	0.528	1.728	mg/kg	0.0467	2.70%
Al 308,215	263699.3	114600	ug/L	1166.5		mg/kg	103.2	1.02%
Ав 188.979	172.4	34.72	ug/L	5.428	3.073	mg/kg	0.4803	15.63%
В	-703.2	231.7	ug/L	9.10	20.51	mg/kg	0.805	3.93%
Ba 233.527	83756.1	341.7	ug/L	2.36	30.24	mg/kg	0.209	0.69%
Be 313,107	9380.1	-2.741	ug/L	0.0063	-0.243	mg/kg	0.0006	0.23%
Ca 315.887	30985967.2	1794000	ug/L	23362.4	158700	mg/kg	2067.5	1.30%
Cd 214.440	2508.2	-12.35	ug/L	0.032	-1.093	mg/kg	0,0028	0.26%
Co 228.616	2449.2	8.701	ug/L	1.1636	0.770	mg/kg	0.1030	13.37%
Cr 267.716	16 <b>16</b> 3.8	79.96	ug/L	0.200	7.076	mg/kg	0.0177	0.25%
Cu 327.393	1 <b>6</b> 096. <b>7</b>	141.3		1.42	12.51	mg/kg	0.126	1.00%
Fe 273.955	2367620.3	69730	ug/L	530.8	6171	mg/kg	47.0	0.76%
K 766.490	93584.4	21630		236.3	1914	mg/kg	20.9	1.09%
Mg 285.213	857940.1	25480		274.6	2255	mg/kg	24.3	1.08%
Mn 257.610	113252.4	1494	ug/L	17.4	132.2	mg/kg	1.54	1.16%
Mo 202.031	79.1	-12.09	<b>-</b> .	0.136	-1.070		0.0120	1.12%
Na 589.592	10117.5	-13.44		5.557	-1.189	mg/kg	0.4918	41.36%
Ni 231.604	5184.8	48,17		1.651	4.263	mg/kg	0.1461	3.43%
P 213.617	9728.1	1230	ug/L	8.2	108.8	mg/kg	0.73	0.67%
Pb 220.353	1230.9	64.74		2.319	5.730		0.2052	3.58%
Sb 206.836	-19.4	-2.816		4.9353	-0.249	mg/kg	0.4367	175.27%
Se 196.026	-36.9	~7.857	ug/L	7.2796	-0.695		0.6442	92.65%
Sn 189.927	-260.4	-25.67		0.876	-2.272		0.0775	3.41%
Sr 421.552	637448.6	610.2	ug/L	6.02	54.00	mg/kg	0.533	0.99%
Ti 337.279	55263.8	707.1		6.80	62.57	mg/kg	0.602	0.96%
Tl 190.801	-186.3	-2.191		1.6556	-0.194	mg/kg	0.1465	75.57%
V 292.402	61714.7	182.8	ug/L	1.05	16.18	mg/kg	0.093	0.58%
Zn 206.200	43159.7	249.7	ug/L	2.45	22.09	mg/kg	0.217	0.98%

Sequence No.: 126
Sample ID: AY55857802-1/5

Analyst: BA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.13 g

Dilution: 5X

Autosampler Location: 48
Date Collected: 03/07/12 1:46:28 AM
Data Type: Reprocessed on 03/07/12 2:14:12 PM

Mean Data: A	Y55857\$02-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	545.0	3.675		0.4077	1.626	mg/kg	0.1804	11.09%
A1 308.215	57076.1	24780		462.0	10960	mg/kg	204.4	1.86%
As 188.979	26.5	5.347		0.7887		mg/kg	0.3490	14.75%
В	-156.0	54.90		1.381	24.29	mg/kg	0.611	2.52%
Ba 233, <b>527</b>	19430.4	79.26	ug/L	0.247	35.07	mg/kg	0.109	0.31%
Be 313.107	3254.6	-0.499	ug/L	0.0311	-0.221	mg/kg	0.0130	6.25%
Ca 315.887	7105301.3	411300		8969.7	182000	mg/kg	3968.9	2.18%
Cd 214.440	733.1	-2.525		0.0497	-1.117	mg/kg	0.0220	1.97%
Co 228.616	685.4	3.400		0.3876	1.504	mg/kg	0.1715	11.40%
Cr 267.716	4558.7	23.71		0.133	10.49	mg/kg	0.059	0.56%
Cu 327.393	3245.0	28.49		0.234	12.60		0.103	0.82%
Fe 273.955	554931.0	16350		201.9	7236	mg/kg	89.3	1.23%
K 766.490	19623.5		ug/L	84.5		mg/kg	37.4	1.08%
Mg 285.213	191307.2	5676		115.3		mg/kg	51.0	2.03%
Mn 257.610	30353.8	401.4		12.84	177.6	mg/kg	5.68	3.20%
Mo 202.031	29.9	-2.500		0.1787	-1.106	mg/kg	0.0791	7.15%
Na 589.592	3183.8	72.41		5.591	32.04	mg/kg	2.474	7.72%
Ni 231.604	1390.7	13.85		0.097	6.126		0.0427	0.70%
P 213.617	2104.5	266.0		1.89	117,7	mg/kg	0.84	0.71%
Pb 220.353	333.2	17.52		0.882	7.754	mg/kg	0.3903	5.03%
Sb 206.836	-14.5	-2.105		0.9246	-0.932		0.4091	43.92%
Se 196.026	-11.9	-2.529		1.1664	-1.119		0.5161	46.11%
Sn 189.927	-232.0	-22.87	<b>-</b> .	0.441	-10.12	mg/kg	0.195	1.93%
Sr 421.552	143004.1	136.8		2.68	60.53	mg/kg	1.186	1.96%
Ti 337.279	11731.8	149.7		5.34	66.23		2.363	3.57%
T1 190,801	-34.0	0.430		0.8632	0.190	~ -	0.3820 2	200.82%
V 292,402	13790.1	40.68		0.229	18.00		0.101	0.56%
Zn 206.200	10666.8	62.79	ug/L	0.155	27.78	mg/kg	0.068	0.25%

Initial Sample Wt:

Dilution:

Sequence No.: 39 Sample ID: AY55858501 Analyst: BA Logged In Analyst (Original) : chemist_metals

Autosampler Location: 52 Date Collected: 03/01/12 6:33:53 PM Data Type: Reprocessed on 03/02/12 9:44:36 AM

Initial Sample Vol: Sample Prep Vol:

Mean Data:	AY55858901					*		
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Ag 338.289	7926.0	45.09	սց/L	0.584	45.09		0.584	1.29%
Al 308.215	338.3	155.6	uq/L	44.37	155.6		44.37	28.52%
As 188.979	46.1	6.432		0.2392	6.432		0.2392	3.72%
В	1615.6	450.3		4.54	450.3		4.54	1.01%
Ba 233.527	159364.5	556.5		0.97	556.5		0.97	0.17%
Be 313.107	-409.8	-11.68		0.078	-11.68	-,	0.078	0.66%
Ca 315.887	64788023.5	3239000		22782.9	3239000		22782.9	0.70%
Cd 214.440	3265.6	~19.06		0.163	-19.06		0.163	0.86%
Co 228.616	268.4	-22.34		0.343	-22.34		0.343	1.54%
Cr 267.716	587.6	~36.19	ug/L	0.278	-36.19		0.278	0.77%
Cu 327.393	-3411.5	36.86		0.346	36.86		0.346	0.94%
Fe 273,955	7181.9	-2573		17.9	-2573		17.9	0.69%
K 766.490	21536.9		ug/L	68.0	1062		68.0	6.41%
Mg 285.213	729790.0	16890	ug/L	128.3	16890		128.3	0.76%
Mn 257.610	85593.2	930.2	ug/L	8.42	930.2		8.42	0.91%
Mo 202.031	-21.8	-32.25		0.303	-32.25		0.303	0.94%
Na 589.592	780045.6	48030		330.9	48030		330.9	0.69%
Ni 231.604	1084.4	-21.54	ug/L	0.319	-21.54		0.319	1.40%
P 213.617	2772.2	272.4	ug/L	0.67	272.4		0.67	0.25%
Pb 220.353	-152.6	~6.683		0.4011	-6.683		0.4011	6.00%
Sb 206.836	~32.9	~3.805	ug/L	0.2702	-3.805		0.2702	7.10%
Se 196.026	2.8	0.475	ug/L	1.7381	0.475			365.54%
Sn 189.927	-00.3	-7.264		0.2215	-7.264		0.2215	3.05%
Sr 421.552	1198157.9	828.1	ug/L	5.74	828.1		5.74	0.69%
Ti 337.279	1179.0	-32.68	ug/L	0.947	-32.68		0.947	2.90%
Tl 190.801	-106.9	-11.42		0.107	-11.42		0.107	0.94%
V 292.402	1614.9	-17.98	ug/L	0.118	-17.98		0,118	0.65%
Zn 206.200	15906.0	-7.542		0.6034	-7.542		0.6034	8.00%

Sequence No.: 105 Sample ID: AY55858802

Analyst: EA

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: 1.14 g

Dilution:

Autosampler Location: 151 Date Collected: 03/06/12 11:41:11 PM Data Type: Reprocessed on 03/07/12 2:13:52 PM

Meaπ Data:	AY55858S02							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Cona.	Units	Std.Dev.	Cona.	Units	Std.Dev	. RSD
Ag 338.289	2854.2	19.22	ug/L	0.684	1.686	mg/kg	0.0600	3.56%
Al 308.215	224967.5	97440	ug/L	770.1	0548	mg/kg	67.5	0.79%
As 188.979	169.7	34.18		2.717	2.998	mg/kg	0.2384	7.95%
В	-795.4	208.2		6.05	18.26	mg/kg	0.531	2.91%
Ba 233.527	77972.3	317.2		1.88	27.82	mg/kg	0.165	0.59%
Be 313.107	10763.0	~3.246		0.1211	-0.285	mg/kg	0.0106	3.73%
Ca 315.887	31636817.8	1831000		20718.1	160600	mg/kg	1817.4	1,13%
Cd 214.440	2775.2	-11.98		0.488	-1.051		0.0428	4.07%
Co 228.616	2348.3	7.898	ug/L	0.4563	0.693	mg/kg	0.0400	5.70%
Cr 267.716	14512.8	69.26	ug/L	0.875	6.076	mg/kg	0.0768	1.26%
Cu 327.393	8656.2	75.99		0.644	6.666	mg/kg	0.0565	0.85%
Pe 273,955	2270442.4	66780		420.5	5858	mg/kg	36.9	0.63%
K 766.490	78334.6	17830	ug/L	123.9	1564	mg/kg	10.9	0.69%
Mg 285.213	836510.3	24800	ug/L	190.8	2176	mg/kg	16.7	0.77%
Mn 257.610	97673.7	1284	ug/L	9.7	112,7	mg/kg	0.85	0.75%
Mo 202.031	76.5	-12.61	ug/L	0.933	-1.106	mg/kg	0.0818	7.40%
Na 589.592	13397.7	257.5	ug/L	4.52	22.59	mg/kg	0.396	1.75%
Ni 231.604	4963.6	45.07	ug/L	0.887	3.954		0.0778	1.97%
P 213.617	9787.0	1237		7.3	108.5	mg/kg	0.64	0.59%
Pb 220.353	1050.7	55.27		3.242	4.848	mg/kg	0.2844	5.87%
Sb 206.836	-42.2	-6.118		3.6677	-0.537		0.3217	59.95%
Se 196.026	-31.7	-6.737		9.8068	-0.591	mg/kg	0.8602	145.58%
Sn 189.927	-269.1	-26.53		0.468	-2.327		0.0411	1.77%
Sr 421.552	619836.6	592.5		4.35	51.97	mg/kg	0.381	0.73%
Ti 337.279	43117.0	545.6		6.31	47.86		0.554	1.16%
Tl 190.801	-179.8	-4.871		3.6720	-0.427	mg/kg	0.3221	75.38%
V 292.402	58151.6	171.1		1.34	15.01	mg/kg	0.118	0.78%
Zn 206.200	38463.7	215.1	ug/L	2.25	18.87	mg/kg	0.198	1,05%

Sequence No.: 127

Sample ID: AY55858502-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.14 g

Dilution: 5X

Autosampler Location: 49 Date Collected: 03/07/12 1:52:07 AM Data Type: Reprocessed on 03/07/12 2:14:13 PM

Mean Data:	AY55858802-1/5							
	Mean Corrected		Calib.	•		Sample		
Analyte	Intensity	Cono.	Units	Std.Dev.	Cona.	Unite	Std.Dev.	RSD
Ag 338.289	496.3	3.341	ug/L	0.3845	1.466	mg/kg	0.1686 1	L.51%
Al 308.215	48590.4	21020	ug/L	277.7	9219	mg/kg	121.8	1.32%
<b>As 188.979</b>	19.5	3.932	ug/L	0.8294	1.725	mg/kg	0.3638 21	L.09%
В	-186.6	46.54	ug/L	0.573	20.41	mg/kg	0.251 1	L.23%
Ba 233.527	17637.2	71.70		1.699	31.45	mg/kg	0.745 2	2.37%
Be 313.107	3404.0	-0.622	ug/L	0.0180	-0.273	mg/kg	0.0079 2	8.89
Ca 315.887	7264375.9	420500	ug/L	9765.0	184400		4282.9 2	2.32%
Cd 214.440	726.6	-2.555	ug/L	0.0824	-1.121	mg/kg	0.0361 3	.22%
Co 228.616	584.4	2.349	ug/L	0.0702	1.030	mg/kg	0.0308 2	2.99%
Cr 267.716	3769.8	18.65	ug/L	0.366	8.178	mg/kg	0.1605 1	96%
Cu 327.393	1617.2	14.20	ug/L	0.153	6.227	mg/kg	0.0673 1	08%
Fe 273.955	516239.6	15180		474.9	6659	mg/kg	208.3 3	1.13%
K 766.490	16364.8	3693	ug/L	81.2	1620	mg/kg	35.6 2	.20%
Mg 285.213	185998.4	5508		75.0	2416	mg/kg	32.9 1	36%
Mn 257.610	26207.5	345.6	ug/L	6.14	151.6	mg/kg	2.69 1	78%
Mo 202.031	31.8	-2.612	ug/L	0.3575	-1,145	mg/kg	0.1568 13	.69%
Na 589.592	3546.9	100.4	ug/L	10,77	44.04	mg/kg	4.726 10	).73%
Ni 231.604	1251.9	11.86		0.501	5.200		0.2196 4	.22%
P 213.617	2020.7	255.4		6.15	112.0	mg/kg	2.70 2	.41%
Pb 220.353	275.4	14.49	ug/L	0.283	6.354	mg/kg	0.1241 1	.95%
Sb 206.836	-11.9	-1.723		0.9202	-0.756	mg/kg	0.4036 53	.42%
Se 196.026	-18.4	-3.922		1.4835	-1.720	mg/kg	0.6507 37	.83%
Sn 189.927	-237.7	-23.43	ug/L	0.305	-10.28	mg/kg	0.134 1	.30%
Sr 421.552	138299.6	132.1		2.13	57.92	mg/kg	0.935 1	.61%
Ti 337.279	9288.2	117.2		2.56	51.40	mg/kg	1.121 2	.18%
Tl 190.801	-33.8	-0.307	ug/L	0.9833	-0.135		0.4313 320	.35%
V 292.402	12410.9	36.14		0.704	15.85	mg/kg	0.309 1	.95%
Zn 206.200	9402.8	53.52	ug/L	1.018	23.47	mg/kg	0.446 1	.90%

Dilution:

Sequence No.: 40 Sample ID: AY55859801 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 53 Date Collected: 03/01/12 6:39:33 PM Data Type: Reprocessed on 03/02/12 9:44:37 AM

Mean Data:	AY55859801							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Unite	Std.Dev.	RSD
Ag 338,289	5980.1		ug/L	0.571	34.02	սգ/և	0.571	1.68%
Al 308.215	-447.9	-206.0	ug/L	103,15	-206.0	uq/L	103,15	50.08%
Ав 188.979	36.1	5.041		0.8348	5.041	uq/L	0.8348	16.56%
В	1456.4	384.3	սց/Ն	2.04	384.3	ug/L	2.04	0.53%
Ba 233.527	174995.6	615.0	ug/L	3.78	615.0		3.78	0.62%
Be 313.107	-905.8	-9.484		0.0085	~9.484		0.0085	0.09%
Ca 315.887	51804484.6	2590000		4761.2	2590000		4761.2	0.18%
Cd 214.440	5715.6	-9.864		0.0483	-9.864	ug/L	0.0483	0.49%
Co 228.616	96.4	-18.99		0.272	-18.99	ug/L	0.272	1.43%
Cr 267.716	345.2	-29.66		0.134	-29.66	ug/L	0.134	0.45%
Cu 327.393	-32 <b>21.1</b>	26.76		0.743	26.76	ug/L	0.743	2.78%
Fe 273.955	1045.1	-2184		4.4	-2184	ug/L	4.4	0.20%
K 766.490	18261.6		սց/և	28.2	1028	ug/L	28.2	2.75%
Mg 285.213	700376.2	16480		114.8	16480		114.8	0.70%
Mn 257.610	59020.9	636.0		6.58	636.0	ug/L	6.58	1.03%
Mo 202,031	-9.4	-25. <b>7</b> 7		0.473	-25.77		0.473	1.84%
Na 589.592	875203.2	54390		393.7	54390	ug/L	393.7	0.72%
Ni 231.604	927.7	-16.63		0.191	-16.63		0.191	1.15%
P 213.617	1634.7	160.6		0.44	160.6		0.44	0.27%
Pb 220.353	-172.9	-7.576		0.2259	-7.576	ug/L	0.2259	2.98%
Sb 206.836	-28.7	-3.319		0.1669	-3.319		0.1669	5.03%
Se 196.026	-16.6	-2.808		2.2535	-2.808		2.2535	80.25%
Sn 189.927	-117.0	-9.629		0.5985	-9.629		0.5985	6.22%
Sr 421.552	973462.3	673.2		4.71	673.2		4.71	0.70%
Ti 337.279	338.3	-32.59		0.158	-32.59		0.158	0.49%
Tl 190.801	-104.4	-11.17		0.177	-11.17	ug/L	0.177	1.59%
V 292.402	800.4	-15.85		0.061	-15.85		0.061	0.39%
Zn 206.200	9415.8	-25.30	ug/L	0.146	-25.30	ug/L	0.146	0.58%

Sequence No.: 106 Sample ID: AY55859802 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.14 g Dilution:

Autosampler Location: 152 Date Collected: 03/06/12 11:46:13 PM Data Type: Reprocessed on 03/07/12 2:13:53 PM

Mean Data:	AY55859S02							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Unite	Std.Dev.	RSD
Ag 338.289	2412.1	16.24		0.143	1.425	mg/kg	0.0126	0.88%
A1 308.215	389422.9	170400	ug/L	1117.8	14940	mg/kg	98.0	0.66%
As 188.979	226.4	45.60		4.325	4.000	mg/kg	0.3794	9,48%
В	-807.5	275.9	ug/L	2.25	24.20	mg/kg	0.197	0.81%
Ba 233.527	109170.6	448.1	ug/L	2.23	39.31	mg/kg	0.195	0.50%
Be 313.107	48.7	-0.517	ug/L	0.0678	-0.045	mg/kg	0.0060	13.13%
Ca 315.887	27945984.1	1618000		17580.3	141900	mg/kg	1542.1	1.09%
Cd 214.440	3871.0	-9.271	ug/L	0.3341	-0.813	mg/kg	0.0293	3.60%
Co 228.616	3154.0	14.66		0.735	1.286	mg/kg	0.0645	5.02%
Cr 267.716	22695.4	123.0	ug/L	0.85	10.79	mg/kg	0.075	0.69%
Cu 327.393	11063.8	97.13		0,212	8.520	mg/kg	0.0186	0.22%
Fe 273.955	3106048.6	92090		408.2	8078	mg/kg	35.8	0.44%
K 766.490	131447.2	31130		193.4		mg/kg	17.0	0.62%
Mg 285.213	1052072.1	31550		193.4		mg/kg	17,0	0.61%
Mn 257.610	138156.2		ug/L	3.1	160.6		0.27	0.17%
Mo 202.031	-19.4	-11.19	ug/L	0.289	-0.981	mg/kg	0.0254	2.59%
Na 589.592	13312.4	338.1	ug/L	7.90	29.66	mg/kg	0.693	2.34%
Ni 231.604	8063.8	87.42	ug/L	0.962	7.669	mg/kg	0.0844	1,10%
P 213.617	10467.5	1323	ug/L	16.0	116.1		1.40	1.21%
Pb 220.353	1195.3	62.87		2.132	5.515		0.1870	3.39%
Sb 206.836	-3.3	-0.478		1.3815	-0.042	mg/kg	0.1212	289.29%
Se 196.026	9.9	2.100		8.4374	0.184	mg/kg	0.7401	
Sn 189.927	-217.3	-21.42	ug/L	1.038	-1.879		0.0910	4.84%
Sr 421.552	592383.7	567.1	ug/L	2.89	49.75	mg/kg	0.253	0.51%
Ti 337.279	118778.1	1551		. 5.5	136.1		0.48	0.35%
Tl 190.801	-328.2	-1.794	ug/L	1.1674	-0.157	mg/kg	0.1024	65.08%
V 292.402	82734.7	250.4		1.58	21.97		0.139	0,63%
Zn 206.200	46813.4	279.7	ug/L	3.31	24.54	mg/kg	0.290	1.18%

Sequence No.: 128

Sample ID: AY55859802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.14 g

Dilution: 5X

Autosampler Location: 50

Date Collected: 03/07/12 1:58:27 AM

Data Typs: Reprocessed on 03/07/12 2:14:14 PM

Mean Data: AY5	· · · · · · · · · · · · · · · · · · ·					_	
3 m = 1 t -	Mean Corrected	_	Calib.		Sa	mple	
Analyte	Intensity		Units	Std.Dev.	Conc. Un		. RSD
Ag 338.289	519.7	3.500		0.6202	1.535 mg		17.729
Al 308,215	90358.7	39500		208.9	17320 mg		0.53
As 188.979	40.5	8.155		0.2971	3.577 mg	/kg 0.1303	3.649
B	~194.2	70.96		5.098	31.12 mg		7.189
Ba 233.527	27701.4	113.7		3.28	49.89 mg	/kg 1.44(	2.899
Be 313.107	893.5	-0.062		0.0449	-0.027 mg		72.029
Ca 315.887	6893188.8	399000		1944.1	175000 mg	/kg 852,7	0.499
Cđ 214.440	1038.2	-2.171	ug/L	0.0197	-0.952 mg		
Co 228.616	892.4	4.928	ug/L	0.2248	2.161 mg	/kq 0.0986	4.568
Cr 267.716	6178.2	34.03	ug/L	0.817	14.92 mg		
Cu 327.393	2435.5	21.38	ug/L	0.664	9.377 mg/		
Fe 273.955	790315.9	23440		919.5	10280 mg/	/kg 403.3	3.92
X 766.490	29940.3	7065	ug/L	59.5	3099 mg/		
Mg 285.213	249137.4	7464	ug/L	46.9	3274 mg/		0.63%
Mn 257.610	36577.9	485.1	ug/L	5.71	212.7 mg/		
Mo 202.031	19.5	-2.215	ug/L	0.3374	-0.972 mg/		
Na 589.592	3945.6	141.3	ug/L	14.12	61.97 mg/		10.00%
Ni 231.604	2153.7	23.77		0.582	10.42 mg/		
P 213.617	2450.2	309.7	ug/Ь	8.62	135.8 mg/		
Pb 220.353	343.9	18.09	ug/L	0.271	7.933 mg/	kg 0.1189	1.50%
Sb 206.836	-14.2	-2.053		0.5455	-0.901 mg/		
Se 196.026	-7.6	-1.610	ug/L	2.4842	-0.706 mg/		154.27%
Sn 189.927	-225.1	-22.19	ug/L	0.414	-9.734 mg/	kg 0.1814	1.86%
Br 421.552	140930.2	134.8		0.87	59.10 mg/		0.65%
ri 337,279	27843.8	363.4		4.26	159.4 mg/		1.17%
rl 190.801	-88.0	-0.968		0.1074	-0.425 mg/		11.09%
7 292.402	20580.8	62.28		1.896	27.31 mg/		3.04%
Zn 206.200	12630.2	76.75		2.235	33.66 mg/		2.91%

deservation 107

Sequence No.: 107 Sample ID: AY55869902 Analyst: EA

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: 1,17 g

Dilution

Autosampler Location: 153
Date Collected: 03/06/12 11:50:44 PM
Data Type: Reprocessed on 03/07/12 2:13:54 PM

Mean Data: AY5	5869S02							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cono.		Std.Dev.	RSD
Ag 338.289	3319.6	22.35	ug/L	0.096		mg/kg	0.0082	0.43%
Al 308.215	120883.2	51220	ug/L	481.2		mg/kg	41.1	0.94%
Ав 188.979	86.1	17.35	ug/L	1.120	1.483	mg/kg	0.0957	6.46%
В	18.6	304.0	ug/L	7.85	25.98	mg/kg	0.671	2.58%
Ba 233.527	25093. <b>6</b>	91.19	ug/L	0.760	7.794	mg/kg	0.0650	0.83%
Be 313.107	6400.4	-5.342	ug/L	0.0434	-0.457	mg/kg	0.0037	0.81%
Ca 315.887	35228098.2	2039000	ug/L	12302.7	174300	mg/kg	1051.5	0.60%
Cd 214.440	1394.3	-15.65	ug/L	0.067	-1.337	mg/kg	0.0057	0.43%
Co 228.616	1507.9	-1.620	ug/L	0.3657	-0.138	mg/kg	0.0313	22.57%
Cr 267.716	8182.3	26.74	ug/L	0.520	2.286	mg/kg	0.0445	1.95%
Cu 327.393	4583.5	40,24	ug/L	0.364	3.439	mg/kg	0.0311	0.90%
Fe 273.955	1710473.7	49770	ug/L	379.3	4254	mg/kg	32.4	0.76%
K 766.490	77375.7	17410	ug/L	149.3	1488	mg/kg	12.8	0.86%
Mg 285.213	636976.6	18550	ug/L	173.2	1585	mg/kg	14.8	0.93%
Mn 257.610	105423.3	1386	ug/L	12.0	118.4	mg/kg	1.03	0.87%
Mo 202.031	53.2	-15.83	ug/L	0.242	-1.353	mg/kg	0.0207	1.53%
Na 589.592	10167.6	-116.2	ug/L	19.04	-9.929	mg/kg	1.6274	16.39%
Ni 231.604	3228.0	20.51	ug/L	0.769	1.753	mg/kg	0.0657	3.75%
P 213.617	4172.7	527.4	ug/L	3.19	45.08	mg/kg	0.273	0.61%
Pb 220.353	291.1	15.31	ug/L	0.423	1.309	mg/kg	0.0362	2.77%
Sb 206.836	-34.8	-5.040	ug/L	0.8978	-0.431	mg/kg	0.0767	17.81%
Se 196.026	~49.2	-10.48	ug/L	3.167	-0.896	mg/kg	0.2707	30.22%
Sn 189,927	-298.1	-29.39	ug/L	0.033	-2.512	mg/kg	0.0028	0.11%
Sr 421.552	433600.1	406.4	ug/L	3.19	34.74	mg/kg	0.273	0.79%
Ti 337.279	26547.0	323.5	ug/L	4.55	27.65	mg/kg	0.389	1.41%
Tl 190.801	-166.1	-6.190	ug/L	0.7595	-0.529	mg/kg	0.0649	12.27%
V 292.402	45687.9	130.8	ug/L	0.97	11.18	mg/kg	0.083	0.74%
Zn 206.200	16347.4	51.59	ug/L	0.801	4.409	mg/kg	0.0685	1.55%

______

Sequence No.: 129 Sample ID: AY55869802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.17 g

Dilution: 5X

Autosampler Location: 51 Date Collected: 03/07/12 2:03:16 AM Data Type: Reprocessed on 03/07/12 2:14:15 PM

Mean Data:	AY55869802-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Cona.	Units	Std.Dev.	
Ag 338.289	673.6	4.536	ug/L	0.5374		mg/kg	0.2297	11.85%
Al 308,215	26784.8	11330		49.1	4843	mg/kg	21.0	0.43%
As 188.979	7.8	1.564	ug/L	0.1661	0.668	mg/kg	0.0710	10.63%
В	-30.4	66.42		0.667		mg/kg	0.285	1.00%
Ba 233.527	5 <b>7</b> 53.3	20.76	ug/L	0.047	8.873	mg/kg	0.0203	0.23%
Be 313.107	2222.4	-1.127	ug/L	0.0433	-0.482		0.0185	3.84%
Ca 315.887	8055958.0	466400		2865.4	199300		1224.5	0.61%
Cd 214.440	377.0	-3.517	ug/L	0.0681	-1.503	mg/kg	0.0291	1.94%
Co 228.616	411.4	0.359	ug/L	0.4289		mg/kg		119.44%
Cr 267.716	1878.1	6.168	ug/L	0.0403	2.636	mg/kg	0.0172	0.65%
Cu 327.393	721.4	6.333		0.2119	2.707	mg/kg	0.0905	3.35%
Fe 273.955	421617.3	12300	ug/L	17.4	5256	mg/kg	7.4	0.14%
K 766.490	15814.4	3518	ug/L	27.0	1503	mg/kg	11.5	0.77%
Mg 285.213	138458.2	4019	ug/L	19.9	1718	mg/kg	8.5	0.49%
Mn 257.610	24794.2	326.1	ug/L	1.72	139.4		0.74	0.53%
Mo 202.031	39.7	-3.021	ug/L	0.4853	-1.291	mg/kg	0.2074	16.06%
Na 589.592	2334.9	-25.83	ug/L	9.869	-11.04	mg/kg	4.217	38.21%
Ni 231.604	785.2	5.303	ug/L	0.1403	2.266	mg/kg	0.0599	2.65%
P 213.617	906.2	114.5	ug/L	0.83	48.94	mg/kg	0.353	0.72%
Pb 220.353	89.1	4.687	ug/L	0.7813	2.003	mg/kg	0.3339	16.67%
Sb 206.836	-16.5	-2.397	ug/L	0.6329	-1.024		0.2705	26.40%
Se 196.026	-14.6	-3.103	ug/L	2.3225	-1.326		0.9925	74.84%
Sn 189.927	-249.6	-24.60	ug/L	0.238	-10.51	mg/kg	0,1 <b>0</b> 2	0.97%
Sr 421.552	94118.6	87.95		0.314	37.58	mg/kg	0,134	0.36%
Ti 337.279	5644.1	68.34	ug/L	0.243	29.20		0.104	0.36%
Tl 190.801	-39.1	-1.492	ug/L	0.6644	-0.638	mg/kg	0.2839	44.54%
V 292.402	10937.7	31.39	ug/L	0.033	13.42	mg/kg	0.014	0.11%
Zn 206.200	3898.9	12.90	ug/L	0.233	5.513	mg/kg	0.0996	1.81%

Sequence No.: 36

Sample ID: 120301A-3010T-BLK

Analyst: BA

Logged In Analyst (Original) : chemist_matals

Initial Sample Wt:

Dilution:

Autosampler Location: 49

Date Collected: 03/01/12 6:17:49 PM

Data Type: Reprocessed on 03/02/12 9:44:33 AM

Mean Data:	120301A-3010T-BLK						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev. RSD
Ag 338.289	-93.6	-0.533	ug/L	0.1311	-0.533	ug/L	0.1311 24.61%
Al 308.215	-504.6	-232.1	ug/L	11.28	-232.1	ug/L	11.28 4.86%
As 188.979	3.8	0.533	ug/L	0.9495	0.533	ug/L	0.9495 178.15%
В	9.6	1.398	ug/L	0.8338	1.398	ug/L	0.8338 59.65%
Ba 233.527	-19.8	-0.071	ug/L	0.0222	-0.071	ug/L	0.0222 31.33%
Be 313.107	839.7	0.113	ug/L	0.0426	0.113	ug/L	0.0426 37.65%
Ca 315.887	9.2	0.478	ug/L	1.5103	0.478	ug/L	1.5103 315.65%
Cd 214.440	-20.9	-0.038	ug/L	0.0177	-0.038	ug/L	0.0177 46.52%
Co 228.616	-10.8	-0.098	ug/L	0.1128	-0.098	ug/L	0.1128 114.93%
Cr 267.716	32.3	0.176	ug/L	0.1790	0.176	ug/L	0.1790 101.58%
Cu 327.393	247.5	1.336	ug/L	0.6741	1.336	ug/L	0.6741 50.45%
Fe 273.955	17.5	0.463	ug/L	0.4054	0.463	ug/L	0.4054 87.55%
K 766.490	3576.7	627.6	ug/L	14.74	627.6	ug/L	14.74 2.35%
Mg 285.213	173.0	4.471	ug/L	0.2871	4.471	ug/L	0.2871 6.42%
Mn 257.610	-393.6	-4.493	ug/L	0.1680	-4.493	ug/L	0.1680 3.74%
Mo 202.031	6.7	0.106	ug/L	0.3870	0.106	ug/L	0.3870 366.28%
Na 589.592	500.9	31.74	ug/L	10.256	31.74	ug/L	10.256 32.31%
Ni 231.604	-35.7	-0.392	ug/L	0.1678	-0.392		0.1678 42.79%
P 213.617	767.0	75.37	ug/L	1.263	75.37	ug/L	1.263 1.68%
Pb 220.353	6.2	0.271	ug/L	0.6186	0.271	ug/L	0.6186 228.14%
Sb 206.836	4.2	0.485	ug/L	0.3771	0.485	ug/L	0.3771 77.79%
Se 196.026	24.4	4.119	ug/L	0.2824	4.119	ug/L	0.2824 6.86%
Sn 189.927	33.0	2.719	ug/L	0.3939	2.719	ug/L	0.3939 14.49%
Sr 421.552	-307.1	-0.220	ug/L	0.1172	-0.220	ug/L	0.1172 53.34%
Ti 337.279	34.2	0.354		0.3158	0.354	ug/L	0.3158 89.32%
Tl 190,801	2.1	0.103	ug/L	0.5787	0.103	ug/L	0.5707 561.33%
V 292.402	-105.7	-0.302	ug/L	0.2773	-0.302	ug/L	0.2773 91.78%
Zn 206.200	831.1	4.805	ug/L	0.1017	4.805	ug/L	0.1017 2.12%

Sequence No.: 43

Sample ID: 120301A-3050G-BLK

Analyst: EA

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: 1 g

Dilution

Autosampler Location: 99

Date Collected: 03/06/12 5:58:29 PM

Data Type: Reprocessed on 03/07/12 2:12:51 PM

Mean Data: 120	301A-3050G-BLK					- F
	Mean Corrected		Calib.		Samp	le
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc. Unit.	
Ag 338.289	-63.1	-0.425	ug/L	0.7083	~0.043 mg/kg	
Al 308,215	-2.7	-1.248		5.2153	-0.125 mg/kg	
As 188.979	4.5	0.906		1.3821	0.091 mg/kg	
В	22.1	3.829	ug/L	1.2316	0.383 mg/kg	
Ba 233.527	-5.1	~0.026		0.0597	-0.003 mg/kg	
Be 313.107	967.6	0.156	ug/L	0.0464	0.016 mg/kg	0.0046 29.82%
Ca 315.887	-29.9	-1.791		2.0006	-0.179 mg/kg	
Cd 214.440	~14.9	-0.034	ug/L	0.0418	-0.003 mg/kg	
Co 228.616	10.0	0.111	ug/L	0.1734	0.011 mg/kg	
Cr 267.716	-57.7	-0.367	ug/L	0.0404	-0.037 mg/kg	0.0040 11.01%
Cu 327.393	148.3	1.302	ug/L	0.3705	0.130 mg/kd	
Fe 273.955	792.8	23.86	ug/L	0.165	2.386 mg/kg	
K 766.490	48.5	11.96	ug/L	45.763	1.196 mg/kg	
Mg 285.213	72.2	2,223		0.4707	0.222 mg/kg	
Mn 257.610	46.2	0.620	ug/L	0.2669	0.062 mg/kg	
Mo 202.031	-17,3	-0.334	ug/L	0.0935	-0.033 mg/kg	
Na 589.592	339.7	29.63	ug/L	12.806	2.963 mg/kg	
Ni 231.604	32.9	0.439		0.0847	0.044 mg/kg	
P 213.617	189.0	23.89	ug/L	1.346	2.389 mg/kg	
Pb 220.353	20.9	1.102	ug/L	0.3703	0.110 mg/kg	
Sb 206.836	8.5	1.227	ug/L	0.6199	0.123 mg/kg	
Se 196.026	~8.4	-1.779		1.7081	-0.178 mg/kg	
Sn 189.927	-146.8	~14.47	ug/L	0.797	-1.447 mg/kg	0.0797 5.50%
Sr 421.552	<b>-297.</b> 7	-0.295	ug/L	0.1377	-0.029 mg/kg	
Ti 337.279	~39.8	~0.528		0.2324	-0.053  mg/kg	
Tl 190.801	14.8	1.156		0.4016	0.116 mg/kg	
V 292.402	27.3	0.080	ug/L	0.2758	0.008 mg/kg	
Zn 206.200	325.5	2.326		0.0064	0.233 mg/kg	

Sequence No.: 37 Sample ID: 120301A-3010T-LC9

Analyst: BA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Dilution:

Autosampler Location: 50 Date Collected: 03/01/12 6:22:46 PM Data Type: Reprocessed on 03/02/12 9:44:34 AM

Medit back, sev.	301A-3010T-LCS Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cona.	Unite	Std.Dev.	RØD
An 338.289	18128.7	103.1		1.13	103.1	ug/L	1.13	1.10%
Al 308.215	3971,5		ug/L	55.5	1826	ug/L	55.5	3.04%
As 188.979	1963.4	274.2	<b>—</b>	0.64	274.2	ug/L	0.64	0.23%
B	1783.1	264.6	<b></b> -,	5.56	264.6	ug/L	5.56	2.10%
Ba 233.527	75521.0	269.7	<b>—</b> • .	2.22	269.7	ug/L	2.22	0.829
Be 313.107	405948.3	54.66	<b>-</b> .	0.377	54.66	ug/L	0.377	0.69%
Ca 315.887	540521.1	26980	•	112.7	26980	ug/L	112.7	0.42%
Cd 214.440	30763.8	53.60	•	0.387	53.60	ug/L	0.387	0.72%
Co 228.616	32379.8	292.6		0.51	292.6	ug/L	0.51	0.179
Cr 267.716	54910.2	293.9	•	1.92	293.9	ug/L	1.92	0.65%
Cu 327.393	49810.0	268.2	ug/L	1.92	268.2	ug/L	1.92	0.72%
Fe 273.955	47115.9	1074	ug/L	7.6	1074	ug/L	7.6	0.70%
K 766.490	33857.9	5916	ug/L	17.9	5916	ug/L	17.9	0.30%
Mg 285,213	1045597.8	26670	ug/L	97.6	26670	ug/L	97.6	0.37%
Mn 257.610	24572.1	278.6	ug/L	4.50	278.6	ug/L	4.50	1.61%
Mo 202.031	17121.2	267.0	ug/L	0.63	267.0	ug/L	0.63	0.248
Na 589.592	414809.9	26350	ug/L	97.4	26350	<b>-</b>	97.4	0.379
Ni 231.604	26720.7	292.1	ug/L	0.39	292.1	<b>-</b>	0.39	0.139
P 213.617	23417.3	2301	ug/L	4.9		ug/L	4.9	0,21%
Pb 220.353	6343.1	277.9	ug/L	0.80	277.9		0.80	0.29%
Sb 206.836	2327.2	268.8	ug/L	0.92	268.8		0.92	0.348
Se 196.026	1662.7	280.9	սց/Ն	0.89	280.9	•	0.89	0.329
Sn 189.927	3648.4	300.3	ug/L	0.53	300.3	•.	0.53	0.189
Sr 421.552	362918.9	260.8	ug/L	0.78	260.8	• .	0.78	0.309
Ti 337.279	25576.3	265.9	ug/L	4.16	265.9	<b>-</b> · .	4.16	1.569
Tl 190.801	4372.6	280.2	ug/L	0.63	280.2	• .	0.63	0.239
V 292.402	96655.7	283.8	ug/L	1.75	283.8		1.75	0.629
Zn 206.200	95227.2	550.8	ug/L	3.48	550.8	ug/L	3.48	0.63%

Dilution

Sequence No.: 44 Sample ID: 120301A-3050G-LCS Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt. 1 g

Autosampler Location: 100 Date Collected: 03/06/12 6:03:11 PM Data Type: Reprocessed on 03/07/12 2:12:52 PM

Mean Data:	120301A-3050G-LCS						
	Mean Corrected		Calib.		Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Cong. Units	Std.Dev.	RSD
Ag 338,289	14732.8	99.20	ug/L	0.845	9.920 mg/kg	0.0845	0.85%
Al 308.215	4725.7	2025	ug/L	37.0	202.5 mg/kg	3,70	1.83%
As 188.979	1213.1	244.4	ug/L	2.97	24.44 mg/kg	0.297	1.22%
В	1556.1	271.7		5.56	27.17 mg/kg	0.556	2.05%
Ba 233.527	55825.5	240.6		1.53	24.06 mg/kg	0.153	0.64%
Be 313.107	314306.9	52.19	ug/L	0.424	5.219 mg/kg	0.0424	0.81%
Ca 315.887	443803.8	25650	ug/L	81.1	2565 mg/kg	8.1	0.32%
Cd 214.440	23294.2	49.64	ug/L	0.120	4.964 mg/kg	0.0120	0.24%
Co 228.616	23146.2	257.5	ug/L	0.57	25.75 mg/kg	0.057	0.22%
Cr 267.716	41343.8	261.9		2.48	26.19 mg/kg	0.248	0.95%
Cu 327.393	29088.8	255.4	ug/L	2.61	25.54 mg/kg	0.261	1.02%
Fe 273.955	33579.7	932.5	ug/L	10.05	93.25 mg/kg	1.005	1.02%
K 766.490	20043.8	4927		11.3	492.7 mg/kg	1,13	0.23%
Mg 285.213	858753.8	26470	ug/L	90.4	2647 mg/kg	9.0	0.34%
Mn 257.610	20502,0	273.2	ug/L	4.19	27.32 mg/kg	0.419	1,53%
Mo 202.031	12724.1	246.1		0.69	24.61 mg/kg	0.069	0.28%
Na 589.592	285909.9	24940	ug/L	94.2	2494 mg/kg	9.4	0.20%
Ni 231.604	19732.3	262.6	ug/L	0.76	26.26 mg/kg	0.076	0.29%
P 213.617	15709.3	1985		3.6	198.5 mg/kg	0.36	0.29%
Pb 220.353	4835.5	254.3	ug/L	1.07	25.43 mg/kg	0.107	0.42%
Sb 206.836	1706.5	247.2		0.21	24.72 mg/kg	0.021	0.09%
Se 196.026	1162.6	247.4		2.92	24.74 mg/kg	0.021	1,18%
Sn 189.927	2473.7	243.9	ug/L	0.44	24.39 mg/kg	0.044	0.18%
Sr 421.552	254899.0	251.7		0.87	25.17 mg/kg	0.087	0.15%
Ti 337.279	19561.8	258.4		3.08	25.84 mg/kg	0.087	
Tl 190,801	3302.2	262.8		0.18	26.28 mg/kg	0.018	1.19%
V 292.402	72775.8	254.8		1,88	25.48 mg/kg	0.188	0.07%
Zn 206.200	69320.8	496.5		3.18	49.65 mg/kg		0.74%
						0.318	0.64%

=

Sequence No.: 99 Sample ID: AY55855S02 MS Analyst: EA Logged In Analyst (Original) : ohemist_metals Initial Sample Wt: 1.08 g Dilution:

Autosampler Location: 145 Date Collected: 03/06/12 11:11:54 PM Data Type: Reprocessed on 03/07/12 2:13:46 PM

Mean Data:	AY55855802 MS							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cono.	Units	Std.Dev.	RSD
Aq 338.289	44848.8	302.0	ug/L	2,51	27.96	mg/kg	0.232	0.83%
Al 308.215	344677.2	150100	ug/L	1106.7	13900	mg/kg	102.5	0.74%
As 188.979	2000.1	402.9	ug/L	12.93		mg/kg	1.197	3.21%
В	1856.5	711.9	ug/L	7.57	65.92	mg/kg	0.701	1.06%
Ba 233.527	155894.2	650.7	ug/L	6.35	60.25	mg/kg	0.588	0.98%
Be 313.107	444611.9	69.85	ug/L	0.627		mg/kg	0.0580	0.90%
Ca 315.887	35299908.5	2043000	ug/L	16300.1	189200	mg/kg	1509.3	0.80%
Cd 214,440	39169.2	64.00	ug/L	0.920	5.926	mg/kg	0.0852	1.44%
Co 228,616	32753.8	342.9	ug/L	2.41	31.75	mg/kg	0.223	0.70%
Cr 267.716	74511.1	446.7	ug/L	5.24	41.36		0.485	1.17%
Cu 327.393	189641.7	1665	ug/L	15.7	154.1		1.46	0.94%
Fe 273.955	2604266.4	76540	ug/L	794.4	7087	mg/kg	73.6	1.04%
К 766.490	154969.6	36580	ug/L	328.7		πg/kg	30.4	0.90%
Mg 285.213	2287484.4	69420	ug/L	537.7		mg/kg	49.8	0.77%
Mn 257.610	142999.5	1887	ug/L	16.8	174.7	πg/kg	1.55	0.89%
Mo 202.031	16658.8	306.6	ug/L	1.92	28.39	mg/kg	0.177	0.62%
Na 589.592	460897.5	39190	ug/L	292.9		mg/kg	27.1	0,75%
Ni 231,604	34806.4	440.0	ug/L	1.76	40.74		0.163	0.40%
P 213.617	30538.5	3860	ug/L	40.7	357.4	mg/kg	3.77	1.05%
Pb 220,353	9897.0	520.6	ug/L	3.07	48.20	-·	0.284	0.59%
Sb 206.836	2310.3	334.7	ug/L	4.18	30.99		0.387	1.25%
Se 196.026	1658.7	353.0	ug/L	9.20	32.69		0.852	2.60%
Sn 189.927	3732.9	368.0	ug/L	2.97	34.07		0.275	0.81%
Sr 421.552	1347733.9	1310	ug/L	9.5	121.3		0.88	0.72%
Ti 337.279	105086.6	1363	ug/L	16.7	126.2		1.55	1.22%
Tl 190.801	3785.1	317.4	ug/L	2.71	29.39		0.251	0.85%
V 292,402	172406.9	566.2	ug/L	5.30	52.42		0.491	0.94%
Zn 206.200	183788.4	1249	ug/L	13.3	115.7	mg/kg	1.23	1.06%

Sequence No.: 100 Sample ID: AY55855802 MSD Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.08 g Dilution:

Autosampler Location: 146 Date Collected: 03/06/12 11:16:27 PM Data Type: Reprocessed on 03/07/12 2:13:47 PM

Mean Data:	AY55855802 MSD							
	Mean Corrected		Calib.		_	Sample	a	DOD
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.		Std.Dev.	RBD
Ag 338.289	27169.5	182.9	ug/L	1.29	16.94		0.119	0.70%
AĬ 308,215	317003.8	137700	ug/L	1103.7	12750		102.2	0.80%
As 188,979	2074.9	418.0	ug/L	5.26	38.70	mg/kg	0.487	1.26%
В	2057.5	736.2	ug/L	5.48	68.17	mg/kg	0.508	0.74%
Ba 233.527	152337.3	635.8	ug/L	8.61	58.87	mg/kg	0.797	1.35%
Be 313.107	428736.5	66.41	ug/L	0.989	6.149	mg/kg	0.0916	1.49%
Ca 315.887	37286347.6	2158000	ug/L	29478.1	199800	mg/kg	2729.5	1.37%
Cd 214.440	39335.9	63.74	ug/L	0.659	5.902	mg/kg	0.0610	1.03%
Co 228.616	32345.4	338.1	ug/L	2.52	31,31	mg/kg	0.233	0.75%
Cr 267.716	72836.1	434.6	ug/L	6.12	40.25	mg/kg	0.566	1.41%
Cu 327.393	72377.7	635.4	ug/L	9.74	58.83	mg/kg	0.902	1.53%
Fe 273.955	2425233.5	71060	ug/L	936.3	6579	mg/kg	86.7	1.32%
K 766,490	158072.9	37250	ug/L	238.8	3449	mg/kg	22.1	0.64%
Mg 285.213	2382631.5	72300	ug/L	559.3	6694	mg/kg	51.8	0.77%
Mn 257.610	145724.8		ug/L	15.4	177.9	πg/kg	1.43	0.80%
Mo 202,031	17351.6	318.6	ug/L	3,42	29.50	mg/kg	0.317	1.07%
Na 589.592	472507.4	40160	ug/L	296.1	3718	mg/kg	27.4	0.74%
Ni 231.604	31149.8	390.1	ug/L	3.52	36.12	mg/kg	0.326	0.90%
P 213.617	31627.1	3997	ug/L	28.5	370.1	mg/kg	2.64	0.71%
Pb 220.353	8373.4	440.4	ug/L	1,72	40.78	mg/kg	0.159	0.39%
8b 206.836	2463.1	356.8	ug/L	2.96	33.04	mg/kg	0.274	0.83%
Se 196.026	1681.9	358.0	<b>-</b> · .	6.01	33.15	mg/kg	0.557	1.68%
Sn 189,927	3383.9	333.6	ug/L	2.84	30.89	mg/kg	0.263	0.05%
Sr 421.552	1549601.2	1508	uq/L	11.6	139.6	mg/kg	1.08	0.77%
Ti 337.279	95848.4		ug/L	7.0	114.7	mg/kg	0.65	0.56%
Tl 190.801	3804.9	317.5	<b>-</b> · .	0.75	29.40	mg/kg	0.070	0.24%
V 292.402	167885.1	551.3		7.28	51.05	mg/kg	0.674	1.32%
Zn 206.200	150657.6		uq/L	17.5	93.44	mg/kg	1.622	1.74%
ZII 200.200	230057.0							

Secuence No.: 2 Sample ID: AY55855802 MS-1/5 Analyst: EA Logged In Analyst (Original) : chemist metals Initial Sample Wt: 1.08 g Dilution: 5X

Autosampler Location: 45 Date Collected: 03/07/12 1:31:41 AM Data Type: Reprocessed on 03/12/12 2:56:31 PM

Mean Data:	AY55855802 MS-1/5							<b></b>
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Cono.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	9893.6	66.62		2.677	30.84	mg/kg	1.239	4.02%
Al 308.215	76866.8	33430	ug/L	185.1	15480	mg/kg	85.7	0.55%
Ав 188.979	451.1	90.88	ug/L	1.215		mg/kg	0.563	1.34%
В	364.8	159.9		6.72		mg/kg	3.109	4.20%
Ba 233.527	37705.5	157.3	ug/L	4.92		mg/kg	2.278	3.13%
Be 313.107	104792.8	16.36		0.538		mg/kg	0.2492	3.29%
Ca 315.887	8521757.8	493300	ug/L	4211.3	228400		1949.7	0.85%
Cd 214.440	9815.9	16.15	ug/L	0.591	7.478	mg/kg	0.2736	3.66%
Co 228.616	8332.2	87.57		2.719	40.54		1.259	3.11%
Cr 267.716	18780.6	112.9	ug/L	3.59	52.28		1.661	3,18%
Cu 327.393	42802.5	375.8		12.07	174.0		5.59	3.21%
Fe 273.955	654862.6	19270	ug/L	667.3		mg/kg	308.9	3.46%
K 766.490	34329.1	8069	ug/L	98.6		mg/kg	45.7	1.22%
Mg 285.213	524321.9	15900		80.1		mg/kg	37,1	0.50%
Mn 257.610	33826.5	446.3		3.30	206.6		1.53	0.74%
Mo 202.031	4002.7	73.73	ug/L	2.330	34.14		1.079	3.16%
Na 589.592	106398.8	9038		46.0	4184	mg/kg	21.3	0.51%
Ni 231.604	8724.1	110.5		3.40	51.17		1.575	3.08%
P 213.617	7171.6	906.4		32.70	419.6	mg/kg	15.14	3.61%
Pb 220.353	2490.3	131.0		4.60	60.64	mg/kg	2.130	3.51%
9b 206.836	521.8	75.59		2.684	35. <b>0</b> 0	mg/kg	1.243	3.55%
Se 196.026	365.7	77.84		2.876	36.04	mg/kg	1.332	3.70%
Sn 189.927	744.9	73.43	ug/L	2.693	34.00	mg/kg	1.247	3.67%
Sr 421.552	313416.3	304.3	ug/L	1.54	140.9	mg/kg	0.71	0.51%
Ti 337.279	23713.1	307.1		3.98	142.2		1.84	1.30%
Tl 190.801	960.8	79.99		2,255	37.03	mg/kg	1.044	2.82%
V 292.402	41155.8	135.0		4.49	62.49		2,078	3.33%
Zn 206.200	47297.2	322.6	ug/L	10.95	149.4		5.07	3.39%

Sequence No.: 3

Sample ID: AY55855802 M8D-1/5

Analyst: EA

Logged In Analyst (Original) : ohemist_metals Initial Sample Wt: 1.08 g

Dilution: 5X

Autosampler Location: 46

Date Collected: 03/07/12 1:36:41 AM

Data Type: Reprocessed on 03/12/12 2:56:32 PM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: AY558	55802 M9D-1/5							
	Mean Corrected		Calib.	1		Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	6012.3	40.48	ug/L	1.539	18.74	mg/kg	0.713	3.80%
Al 308.215	72358.9	31390	ug/L	187.0	14530	mg/kg	86.6	0.60%
As 188.979	456.4	91.93	ug/L	2.932	42.56	mg/kg	1,357	3.19%
В	464.1	176.7		2.32	81.82	mg/kg	1.073	1.31%
Ba 233.527	38169.2	159.2	ug/L	4.12	73.72	mg/kg	1.908	2.59%
Be 313.107	104245.7	16.04	ug/L	0.423	7.424	mg/kg	0.1959	2.64%
Ca 315.887	9174161.4	531100	ug/L	4418.6	245900	mg/kg	2045.7	0.83%
Cd 214.440	10142.2	16.60		0.416	7.684	mg/kg	0.1924	2,50%
Co 228.616	8434.9	88.55	ug/L	1.948	40.99	mg/kg	0.902	2.20%
Cr 267.716	19154.1	114.8		2.55	53.16	mg/kg	1.181	2,22%
Cu 327.393	16576.4	145.5	ug/L	3.43	67.37	mg/kg	1.588	2.36%
Fe 273.955	628748.1	18450	ug/L	463.1	8542	mg/kg	214,4	2.51%
K 766.490	35814.2		ug/L	22.0	3891	mg/kg	10.2	0.26%
Mg 285.213	562982.1	17070		106.0	7904	mg/kg	49.1	0.62%
Mn 257.610	35342.8	466.0	ug/L	4.92	215.7	mg/kg	2.28	1.06%
Mo 202.031	4245.9	78.03		1.989	36.12	mg/kg	0.921	2,55%
Na 589.592	111080.8	9428	ug/L	42.9	4365	mg/kg	19.8	0.45%
Ni 231.604	7992.3	100.4	ug/L	2.26	46.46	mg/kg	1.046	2.25%
P 213.617	7417.8	937.5	ug/L	19.05	434.0	mg/kg	8.82	2.03%
Pb 220.353	2148.1	113.0	ug/L	1.89	52.31	mg/kg	0.875	1.67%
Sb 206.836	563.0	81.57	ug/L	1.544	37.76	mg/kg	0.715	1.89%
Se 196.026	371.4	79.04	ug/L	2.289	36.59	mg/kg	1.060	2.90%
Sn 189.927	681.5	67.18	ug/L	1.621	31.10	mg/kg	0.750	2.41%
Sr 421.552	366294.1	356.2	ug/L	2.03	164.9	mg/kg	0.94	0.57%
Ti 337.279	21698.6	279.9		2,47	129.6	mg/kg	1.15	0.88%
Tl 190.801	1004.9	83.17		2.061	38.50		0.954	2.48%
V 292.402	41144.1	135.0		3.31	62.48	mg/kg	1.534	2.45%
Zn 206.200	40258.3	271.2	ug/L	6.48	125.5	mg/kg	3.00	2.39%

Sequence No.: 101 Sample ID: AY55855S02-A Analyst: EA Logged In Analyst (Original) : ohemist_metals Initial Sample Wt: 1.08 g Dilution

Autosampler Location: 147 Date Collected: 03/06/12 11:21:52 PM Data Type: Reprocessed on 03/07/12 2:13:48 PM

> Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: AY5585	5802-A							
	Mean Corrected		Calib.			Bample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	RBD
Ag 338.289	27915.7	188.0	ug/L	1.71		mg/kg	0.159	0.91%
A1 308.215	292556.1	127100	ug/L	633.8	11770	mg/kg	58.7	0.50%
As 188.979	2404.8	484.4	ug/L	7.92	44.85		0.733	1.63%
В	2010.5	714.1	ug/L	4.26	66.12	mg/kg	0.395	0.60%
Ba 233.527	166410.3	697.4	ug/L	4.08	64.57	~·. ~	0.378	0.58%
Be 313.107	496519.1	78.51	ug/L	0.398	7,270	mg/kg	0.0368	0.51%
Ca 315.887	33644016.5	1947000	ug/L	18743.9	180300	mg/kg	1735.5	0.96%
Cd 214.440	43427.6	74.09	ug/L	1.196	6.860	•. •	0.1107	1.61%
Co 228.616	37404.1	396.1	ug/L	4.23	36.68	mg/kg	0.392	1.07%
Cr 267.716	80926.1	488.7	ug/L	2.70	45.25	mg/kg	0.250	0.55%
Cu 327.393	181575.1	1594	ug/L	11.7	147.6	mg/kg	1.08	0.73%
Fe 273.955	2428423.6	71330	ug/L	398.7	6604	mg/kg	36.9	0.56%
К 766.490	143805.1	33900	ug/L	265.3	3139	mg/kg	24.6	0.78%
Mg 285.213	2399531.0	72930	ug/L	337.2	6753	mg/kg	31,2	0.46%
Mn 257.610	138883.6	1833	ug/L	11.2	169.7		1.04	0.61%
Mo 202.031	20410.4	380.0	ug/L	3.85	35.18	mg/kg	0.356	1.01%
Na 589.592	537704.0	45950	ug/L	197.2	4254	mg/kg	18.3	0.43%
Ni 231,604	35271.8	447.3	ug/L	5.12	41.42	mg/kg	0.474	1.14%
P 213,617	34112.4	4311	ug/L	36.5	399.2	mg/kg	3.38	0.85%
Pb 220,353	9388.9	493.9	ug/L	7.77	45.73	mg/kg	0.719	1.57%
Sb 206.836	2889.6	418.6		5.67	38.76	mg/kg	0.525	1.35%
Se 196.026	1968.7	419.0	ug/L	9.32	38.80	mg/kg	0.863	2.22%
Sn 189,927	4143.9	408.5	ug/L	5.81	37.83	mg/kg	0.538	1.42%
Sr 421,552	1320767.1	1284	ug/L	5.1	118.9	mg/kg	0.47	0.40%
Ti 337,279	100922.5	1309	ug/L	6.4	121.2	mg/kg	0.59	0.49%
T1 190.801	4580.2	378.8		4.11	35.08	mg/kg	0.380	1.08%
V 292.402	180184.9	596.3	ug/L	3.08		mg/kg	0.285	0.52%
Zn 206.200	164425.8	1114	ug/L	8.9	103.2	mg/kg	0.83	0.80%

Sequence No.: 102

Sample ID: AY55855802-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.08 g

Dilution: 5X

Autosampler Location: 148
Date Collected: 03/06/12 11:26:23 PM

Data Type: Reprocessed on 03/07/12 2:13:49 PM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data:	AY55855802-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	781.3	5.261	ug/L	0.3764	2.436	mg/kg	0.1743	7.16%
Al 308.215	66916.7	29070		488.9	13460	mg/kg	226.4	1.68%
As 188.979	30.7	6.194	ug/L	0.7805		mg/kg	0.3614	12.60%
В	-140.2	67.81		1.852	31.40	mg/kg	0.857	2.73%
Ba 233.527	20587.6	83.69		0.316	38.75	mg/kg	0.147	0.38%
Be 313.107		-0.723	ug/L	0.0515	-0.335	mg/kg	0.0238	7.12%
Ca 315.887		170000		5475.5	217600	mg/kg	2535.0	1.16%
Cd 214.440	2298.3	0.285	ug/L	0.0784	0.132	mg/kg	0.0363	27.50%
Co 228.616	715.9	3.088	ug/L	0.1092		mg/kg	0.0505	3.53%
Cr 267.716	4515.5	22.75	ug/L	0.233	10.53	mg/kg	0.108	1.03%
Cu 327.393	30892.0	271.2	ug/L	4.79	125.6	mg/kg	2.22	1.77%
Fe 273.955	616751.9	18160	ug/L	258.8	8408	mg/kg	119.8	1.42%
K 766.490	23215.6	5344	ug/L	52. <b>6</b>	2474	mg/kg	24.4	0.98%
Mg 285.213	237142.9		ug/L	59.2	3267	mg/kg	27.4	0.84%
Mn 257.610	26263.0	345.6		4.84	160.0	mg/kg	2,24	1.40%
Mo 202.031		2.708	ug/L	0.2071	~1.254	mg/kg	0.0959	7.65%
Na 589.592	3307.5	53.80	ug/L	10.620	24.91	mg/kg	4.916	19.74%
Ni 231.604	1514.3	14.72	սց/և	0.347	6.813	mg/kg	0.1608	2.36%
P 213.617	2088.7	264.0	ug/L	2.62	122.2	mg/kg	1.21	0.99%
Pb 220.353	602.0	31.67	ug/L	0.609	14.66	mg/kg	0.282	1.92%
Sb 206.836	-8.8 -	1.277	ug/L	0.6194	-0.591		0.2868	48.50%
Se 196.026	-4.3 -	0.908	ug/L	3.5432	-0.421			390.09%
Sn 189.927	-180.0 -	17.75	ug/L	0.076	-8.216		0.0350	0.43%
Sr 421.552	199558.9	192.1	ug/L	1.62	88.92		0.749	0.84%
Ti 337.279	15111.1	193.6	ug/L	2.75	89.64		1.271	1.42%
Tl 190.801		0.916		0.2742	-0.424		0.1270	29.94%
V 292.402		45.95		0.302	21.27		0.140	0.66%
Zn 206.200		110.1		0.76	50.96		0.352	0.69%

Company No. 4 1

Sequence No.: 1

Sample ID: AY55855S02-1/25

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.08 g

Dilution: 25X

Autosampler Location: 44
Date Collected: 03/07/12 1:11:25 AM
Data Type: Reprocessed on 03/12/12 2:56:30 PM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: AY5	5855 <b>802-1/25</b>						~ * *
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cono.	Units	Std.Dev. RSD
Ag 338.289	31.5	0.212	ug/L	0.3370	0.490	mg/kg	0.7801 159.12
Al 308.215	13517.8	5871	ug/L	10.1	13590	mg/kg	23.4 0.17
As 188.979	~9.5	-1.922	ug/L	1.0757	-4.450		2.4902 55.96
В	-20.8	15.81	ug/L	1.679	36.60	mg/kg	3.887 10.62
Ba 233.527	4325.3	17.58	ug/L	0.093	40.69	mg/kg	0,214 0.53
Be 313.107	1600.3	0.036	ug/L	0.0473	0.083	mg/kg	0,1096 131.54
Ca 315.887	1646767.1	95330	ug/L	1241.6	220700		2874.0 1.30
Cd 214.440	551.8	0.225	ug/L	0.0311	0.521	mg/kg	0.0720 13.82
Co 228.616	199.0	1.221	ug/L	0.0862	2.826	mg/kg	0.1995 7.069
Cr 267.716	1004.8	5.179		0.0781	11.99	mg/kg	0.181 1.51
Cu 327.393	6355.0	55.79	ug/L	0.597	129.1	mg/kg	1.38 1.07
Fe 273.955	133275.9	3930	ug/L	39.1	9098	mg/kg	90.6 1.00
K 766.490	4748.1	1094	ug/L	13.6	2531	mg/kg	31.6 1.25
Mg 285.213	47164.0	1403	ug/L	17.5		mg/kg	40.4 1.25
Mn 257.610	5656.7	74.54	ug/L	0.125		mg/kg	0.29 0.179
Mo 202.031	41.4	0.093	ug/L	0.2544	0.216	mg/kg	0.5889 272,479
Na 589.592	1117.7	49.84		2.587	115.4	mg/kg	5.99 5,199
Ni 231.604	327.9	3.256	ug/L	0.1356	7.536	mg/kg	0.3138 4,169
P 213.617	431.3	54.52	ug/L	1.488	126.2	mg/kg	3.44 2.73
Pb 220.353	144.5	7.601	սց/և	0.5313	17.59	mg/kg	1.230 6.999
Sb 206.836	-8.9	-1.284	ug/L	0.3928	-2.971	mg/kg	0.9092 30.609
Se 196.026	-8.4	-1.791	ug/L	1.8883	-4.145	mg/kg	4.3710 105.459
Sn 189.927	-203.7	-20.08	ug/L	0.122	-46.49	mg/kg	0.282 0.619
Sr 421.552	40012.2	38.49	ug/L	0.503	89.11		1.165 1.319
Ti 337.279	3002.3	38.45	ug/L	0.090	88.99	mg/kg	0.208 0.239
Tl 190.801	~9.6	-0.123	ug/L	0.5776	-0.284	mg/kg	1.3371 470.658
V 292.402	3254.9	9.599	ug/L	0.0434	22.22		0.101 0.459
Zn 206.200	3695.3	23.29	ug/L	0.352		mg/kg	0.816 1.519

TCLP   FILLD ##2	0.72	ls Standards Log Book # _3৭ Page # ০기2 !									
ADD   144	ا ماد ا	TOLD FIND #2	<u> </u>								
To 191	NM ZIOMZ	ADD 114NL OF GLACIAL ACETIC ACID J.T. BAKER K45803-3022									
FUL WAY BOLD TO THE HEAD   FEMALE   F											
1000 03   12		Exp: 2 29 13	ু হৈ								
		FICE WE 18 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-	_								
CPCO S		LOX EXPINATE									
Prof.   1903	Kws 03/01/12	MANUALT STATE COLUMN   MANUALTERIAR   LOT   OPEN DATE   AMOUNT   STI   MANUALTERIAR   OVIZO12									
SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY   SECURITY	GOIO B-C	20mL HNO3 Π BAKER K23022 12/27/11 HILL . Mg CPI (042/13/2785) 04/20/12									
### 3 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00 pt   00	(B)	STO 1 / LDL 6010B/6010C  AMOUNT STD MANYACTURES LOT EXPENSE Property 100 ml 1/H/NO/95/HC1									
### 179 1790 4991NMS 4 ABSURE 0100624500 400 400 41		0.5 mL 6010 LDL ABSOLUTE GREATERS INT. AT CPI 166012-27665 0472012									
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc		STD 3 / NDL 60108/6010C	<b>T</b>								
### Product of the MINOSON SMALE   SWIDARE   S		IML	<u> </u>								
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		Project in 100 mt 1/4/DX037 55/HC1 6616/BK6016/C DCV CP1 1/1C/74-2548 09/17/12 STD 37 CCV1 6016/BK6016/C6016/C DX BASES	NBS.								
Solid   September   Septembe		AMOUNT   STD3   Today   1 week   0.5ML   OCS ICV B   CP    TOTAL   CP									
Project   Today   To		CCV) 6016B-6010C PARE EXPLATE									
### OS OU A HIGH WORKING STANDARD    High WORKING STANDARD		AMOUNT SID3 Today I week									
### HOS TOUR STANDARD  ### STANDARD ### STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1/2 ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml U	1	35ml (194580207020									
### HOS TOUR STANDARD  ### STANDARD ### STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023  ### 1 10 ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1/2 ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml Ug/ml U		1									
1ml X 10ug/mi Hg STOCK STD. (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/17/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/12kWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/mi Hg STOCK ICV (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml 1 House Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml Icv (02/12kWS)/200ml	ews malla	TANDARD '	7.72								
Time   Concentration   So ug/L   Expires   Concentration	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		UIAD:								
Final concentration is 50 ug/L. Expires    Concentration is 50 ug/L. Expires   Concentration is 50 ug/L.		1ml X 10ug/ml Hg STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023									
CP-NS STANDARDS 6020/8020/3018/30051A   COUNTY		Final concentration is 50 ug/L. Expires									
CP-NS STANDARDS 6020(6020A391M3051A   Ox002/12   Today's Date: Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   Ox002/12   O											
NBS   03   02   12											
Sylines		Today's Date:   Amount StD									
Lof # K220   Lof # K2902   Expires:	NBS 03/02/12	Expires: NOO14 0WHCI. SOUTH ON THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF									
Expires: 03/03/12  Internal Standard Mix: Prep 02/29/2012  Internal Standard Mix: Prep 02/29/2012  Internal Standard Mix: Prep 02/29/2012  Standard 4 Amount STD Manufacturer 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/141 103/407-28/139 103/407-28/141 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/139 103/407-28/1	6020 16020A	Lot # K20022 Standard   Standard   STD 03/02/12									
Standard 4   Amount   STD   Manufacturer   Lot #   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28139   1038407-28144   1038407-28139   1038407-28139   1038407-28144   1038407-28144   1038407-28139   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-28144   1038407-2	(A)	Expires: 03/09/12									
Amount STD Maintenance 1038407-28139		Internal Standard Mix: Prep 02/29/2012 Prepared in 50 mL of 1% HN03/1.0% HCL 03/02/12									
So til.   CCV-B   Env. Express   1100309-28141   So til.   CCS (CV A   CP    11C174-28549   So til.   CCS (CV A   CP    CCV-B   CP    O3/02/12   CCV-B   CCV		Amount STD Manufactures 1038407-28139 ICP-MS ICV									
Prepared in 100 mL of 1% HNO3/1.0% HCL  Standard 3 03/09/12 Amounk STD Amounk STD 25 uL CCV-A Env. Express 1038407-28139 1038410-28140 25 uL CCV-C Env. Express 1039810-28141 25 uL 25 uL CCV-C Env. Express 103000-28141 100300-28141 25 uL 25 uL CCV-C Env. Express 103000-28141 100300-28141 25 uL 25 uL CCV-C Env. Express 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-28141 100300-2814		50 UL CCV-B Env. Express 1100009-28141 50 UL CCS ICV A CPI 11C174-28549 50 UL CCV-C Env. Express 1100009-28141 50 UL CCS ICV B CPI 11C174-28549 03/02/12	2.QX								
Standard 3   03/09/12   Lot #   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-28139   103/407-2813		Prepared in 100 mL of 1% MNO3/1.0% MCL ICSA Prep: 03/09/12 11/086-28529									
25 U. CCV-B Env. Express 1098/10-2014 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 100309-28141 1 1 100309-28141 1 1 100309-28141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Standard 3 03/09/12 Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot # Lot									
Prepared in 100 mL of 1% HNO3/1.6% HCL 03/02/12 Prepared in 5 mL of 1% HNO3/1.6% HCL 03/02/12 Prepared in 5 mL of 1% HNO3/1.6% HCL 03/08/12 Amount STO 50 uL CCV-A Env. Express 1038410-28140 50 uL CCV-B Env. Express 1038410-28141		25 UL CCV-B Env. Express 1038410-22140 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 1100309-28141 ICSAB Prep: 03/08/12 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-28529 11C066-2852									
Amount STO Amount STO Env. Express 1038407-28139 50 uL CCV-A Env. Express 1038410-28140 50 uL CCV-B Env. Express 1100309-28141 Fig. Express 1100309-28141		Prepared in 100 mL of 1% HN03/1.0% HCL 0,025mL INT 025/12 03/02/12 Prepared in 6 mL of 1% HN03/1.0% HCL									
50 UL CCV-8 Env. Express 1100309-28141		Amount STO Env. Express 1038407-28139   50 ut CCV-A Env. Express 1038407-28140									
Interpretation in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the		50 UL COV-B ETV. EXPRESS 1100309-2014									
		[Pispares at 10 miles 1 - 2 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 miles 1 mi									

07414	e	als		itai	nda	ards	Log		30	<u>o</u> k :	# 3	<u> </u>	Page	e #	7
						·····					NB	S OF		2	
مراء أم	Te	odays Date		D\$ 6020/60		3051A 03/05/F	2		8landari		03/12/12				! -
NBS 63/05/12	— [P _ℓ	xpires: rep 1% HN			-				Amount 500 uL	\$TD Standa	ard 4			03/05/12	
6020 6020A	1 20		3 / 2004 Lot#K	0 ml, DI Wai (23022	ler				Prepared	i in 50 mL of	1% KNO3/1.0	% HCL		03/05/12	
100/20 0-001	20	Oml, HCL /:	2000ml	L DI Water				1	Standar	d 1	03/12/12				-
(AR)	ε,	xolres:	Lot #K	43032 03/12/13	2			1	Amount 50 uL	8landa	8TO ed 4			03/05/12	۱
		ternal Sta	ndard k	Mix: Prep 03	V06/2012			ı							_
	I							1	<u> </u>						l –
100	Ar		STD		Manufec	turer	Loi#	1	Prepared	ilin 60 miL of	1% HNO3/1.01	& HCL		03/05/12	
	— 50 50		CCV-A CCV-B		Env. Exp		1038407-28139	L	ICP-MS I Amount		03/12/12 STD				
			ccv.c		Env. Exp		1100309-28141	П	50 UL	QCS IC	CVA C			74-28548	ĺ
K0/2	- Pr	repared in 1	00 mL	of 1% KNO	3/1.0% HC	L	03/06/12	2	50 ut. Prepared	QCSK IIn 50 m£ of	CV B C: 1% HNQ3V1.01		110	174-28549 03/05/12	l –
	_{st}	landard 3		03/12/12	2				ICSA Pre	an!	03/12/12				l _
	An	mount	STO CCV-A		Manufact Env. Exp		Lot# 1038407-28139	1.	1 mL	ICSA	cı		110	66-28529	
	25	ouL (	CCV-B		Епу. Ехр	(883	1036410-28140	П			% нкоз/1.0%	HCL		03/05/12	-
			CCV-C	of 1% HNO	Env. Exp 3/1.0% HC		1100309-28141		ICSAB PA	rep; ICSA	03/12/12 CI	וכ	110	08-28529	
101	一 [ ^{**}								0.025mL	INT	0:	185		805-28210	-
	: [							Ιi	ICP-LDR		% HNO3/1.0% 03/12/12	riuL		03/05/12	
	<b>−</b> ¦								Amount 50 ut	STO CCV-A	Ēr	v. Express	1038	407-28139 407-28139	
	[							! !	50 UL 50 UL	CCV-B CCV-C	En	rv. Express	1036	410-28140	
	L			· · · · · · · · · · · · · · · · · · ·							E1 1% HNO3/1.09	w. Express LHCL	1100	309-28141 03/05/12	
Art s								_	—-·						
										1.17		1-c 1	10		
		Intern	al St	andard	Conco	ntestion				1/2/	35-03	105/	6		
NBS 03/03/12		Amt	_	TD	Elemer		for	Lot	#	1	Final Cond	. In Std	Expire	긁 _	
		500uL	10	OD ug/mL	Ц	CP)		COL	79-27839		5000 µg/L			O/12	
ENTON DATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE		500uL		00 ug/mL 00 ug/ml,	ln Ho	CPI CPI			55-28574 107-28576		5000 ug/L			5/12	
		500ut.	10	00 pg/mL	Тъ	CPI			054-28575		5000 ug/L			<u>15/12</u> 15/12	
		500uL		00 ug/mL	Sc Ge	028			073-28527		5000 ug/L			₩12	
		-	10	00 ug/mL	i Ga	Ferenco	nmental Express	3116	011-29381	<u>) .</u>	5000 ug/L		02/0	M8/13	
		Prep: Expires		V05/12	N8\$	Prep	ln -	1%	HNO3/1.	0%HCL:	Lot #KK230	22/43032	in 100ml	⇉	
<b>10071</b>		CASIGO	. 104	/04/12			· <u>-</u> -								
												_	1 . 11 .		
											\mus	> 03	toelle		
WS. 03 06/12	- [			H	a W	'ORK	ING S	TΑ	١ND	)ARD	)		•		
209/203/04/1C		1ml	X 10				STD. (02					% HN	lO3 Lot#	K4702	3
		1 ml	V 4	Oug/m	100	STOCK	ICV (02	14-	7/40V	AN CNO	200ml 4	70 I II 4	U3   VH	ピップのつ	2
												70 LIA	O3 LUM	114702	J
2000	i	Fina	I CO	ncentr	ation	is 50 u	g/L. Expi	res	sQ.5	(WK)	·   #	• • • • • • • • •	•••		
	'				.5%										
	<u> </u>					T	<del>,</del>							<del></del>	7 A
3-6-12	<u> </u>	AMOUNT		5%HC1BLK REAG		MANUFACTURE	LOT	OP	ENDATE	AMOUNT	010B/6010C1C STD	MUNUFACTUR	LOT	EXP DATE	
/1886-12 Colors C	~ -	AMOUNT 100 mL	$\overline{}$	HC		BOH	411040		2/26/11	Int	A	ÇPI	10E012-2768	04/20/12	
201015-C	⊏	2) (nL		HDN		JT BAKER	K23022	1	2/27/11	lmL	Ca	CPI	11A006-26528 10H213-2766	09/15/12 04/20/12	- #
	Prop	ared in 2000		Valer 60108/64100		<del> </del>	<del> </del>	╁		lmL lmL	Mg Fe	CPI O2SI	1022245-2768	04/22/12	
	<b></b>  −	AMOUNT		5T		MANUFACTURE	R LOT		CP DATE	Propared	in 50 ml 1 %H2N	OJ/SWHCI			1
	二	0.5 mL		6010	LDL	ABSOLUTE	091409-25205	1.9	W14/12		0108/6010C1C	AB CPI	10E012-2769	04/20/12	13
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				1%80x03/5% .6010B/60104		<del> </del>	<del> </del>	+		lmL lmL	Ct	CPI	10E012-27095		
	$\vdash$	IML	31 HDF	CCA		ABSOLUTE	091409-25208	1.9	9/(4/12	Iml	Mg	CPI	10H213-2760	04/20/12	
		1ML		CCV	7- <b>9</b>	ABSOLUTE			9/14/12	imL	Fe	D281	180495-01-01		18
		1ML		CCV		ABSOLUTE	091009-25207	╬	99/10/12	0.5mL Prepared	IT SPECIAL M in 50 ml 19/HN		100/95-01-03	- CAUTIE	
	}			15/HXO373 010B/6010C/		<u> </u>		士			6010B/6010C [C	y			-  %
SAME SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE S		AMOUN		ST	D	PREP DATE		F		0.61.0L	QCS ICV A	CPI	51C174-2864		-
	·	25mL 25mL	_[	STE EVARNOS		Today	1 week	+		O.SMIL Prepared	QCS ICV B		1101/4-2031	V911012	
			CV160	10B/6010C	-JANCI	July	1 11000	士		перия					-  日本
		AMOUNT	_	ST		PREP DATE		Ι						<del> </del>	- 8
	<b>—</b>  -	15mL	}	STE		Today Today	1 week	+		<del> </del>	A . 7	1	<del></del>	<u> </u>	][[
	حبا	25m2		1%HNO3	vyyunC1	3 000 000 000 000 000 000 000 000 000 0	- Non-		<del></del>	<del>'</del>	/ <del>  5</del>	77	Correction	14008	2.00

n h

### Metals Digestion Worksheet

Method Name 3010A Digestion (TCLP)

Prep Method M3010TCLP T

Set 120301A

Units mL

Spiles value at the			
Spiked ID 1	LCSW LOTA	# 1032278-30260	
Spiked ID 2	LCSW LOTA	# 1032271-30258	
Spiked ID 3			
Spiked ID 4			<u> </u>
Spiked By	NM	Date:	03/01/12 9:00:00 AM
Witnessed By	EĄ	Date:	03/01/12 9:00:00 AM

Starting Temp:	95 c
Ending Temp:	95 c
Temperature Type:	Mod Block
Sufficient Vol for Matrix QC:	Yes
End Date/Time	03/01/12 13:30

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
1 120301 A Blk		!	۱.	50mL	50mL	03/01/12 9:00	equip: Modblock2 Tumble Start Time 2-28-12 @ 15:00
2 120301A LCS		500uL	Ì+2	50mL	50mL	03/01/12 9:00	equip: Modblock2 Tumble End Time 2-29-12 @ 0900
3 AY55857	AY55857S01			50mL	50mL	03/01/12 9;00	equip: Modblock2 Fluid # 2
4 AY55858	AY55858S01	· · · · · · · · · · · · · · · · · · ·		50mL	50mL	03/01/12 9:00	equip: Modblock2 Fluid # 2
5 AY55859	AY55859S01			50mL	50mL	03/01/12 9:00	equip: Modblock2 Fluid # 2
6 AY55859 MS	AY55859S01	500uL	1+2	50mL	50mL	03/01/12 9:00	equip: Modblock2 Fluid # 2
7 AY55859 MSD	AY55859S01	500uL	1+2	50mL	50mL	03/01/12 9:00	equip: Modblock2 Fluid # 2

SOIV HNO3	J.T.B K47	Loi# 023 0145	
1:1 HC	L 2-29-12		· · · · · ·
	21		 

Sample COC Transier	
Sample prep employee Initials	nm
Analyst's initials	EA
Date	3-1-12
Time	13:30
Moved to	Metals

Technician similate.	
Scanned By	nm
Sample Preparation	nm
Digestion	lo
Bring up to volume	lo
Modified	03/01/12 8:52:22 AM

Reviewed By:

94

Date: 3-1-12

### Metals Digestion Worksheet

Method Name 3050B Digestion (GROSS UP)

Prep Method M3050GROSSa

Set 120301A

Units mL

Spikes (Spikes			
Spiked ID I	LCSW LOT# #1032	278-30261	
Spiked ID 2	LCSW LOT# #1032	271-30259	· •
Spiked ID 3		•	
Spiked ID 4			
Spiked By	ro	Date:	·03/01/12 9:55:00 AM
Witnessed By	NM	Date:	03/01/12 9:55:00 AM

Starting Temp:	95 C
Ending Temp:	95 C
Temperature Type:	Mod Block
Sufficient Vol for Matrix QC:	YES
End Date/Time	03/01/12 13:00

Sample	Sample	Spike	Spike	Digested		Start Date/Time	Comments
1 120301 A Blk	Container	Amount	ID	Amount 1.00g		03/01/12 9:55	equip: Modblock1
2 120301A LCS		lmL	1+2	1.00g	100mL	03/01/12 9:55	equip: Modblock1
3 AY55846	AY55846S02	T		1.15g	100mL	03/01/12 9:55	equip: Modblock I
4/AY55847	AY55847S02	<u> </u>		1.20g	100mL	03/01/12 9:55	equip: Modblock1
5 AY55848	AY55848S02			1.13g	100mL	03/01/12 9:55	equip; Modblock1
6 AY55849	AY55849S02			1.12g	100mL	03/01/12 9:55	equip: Modblock1
7.AY55850	AY55850S02		}	1.17g	100mL	03/01/12 9:55	equip: Modblockl
8 AY55851	AY55851S02	T	Ι.,	1.04g	100mL	03/01/12 9:55	equip: Modblock1
9 AY55852	AY55852S02		T	1.08g	100mL	03/01/12 9:55	equip: Modblock1
10 AY55853	AY55853S02		Ī.,	1.14g	100mL	03/01/12 9:55	equip: Modblock I
11 AY55854	AY55854S02		]	1,08g	100mL	03/01/12 9:55	equip: Modblocki
12 AY55855	AY55855S02		1 .	1.08g	100mL	03/01/12 9:55	equip: Modblock1
13 AY55855 MS	AY55855S02	2mL	1+2	1.08g	100mL	03/01/12 9:55	equip: Modblock1
14 AY55855 MSD	AY55855802	2mL	1+2	1.08g	100mL	03/01/12 9:55	equip: Modblock1
L5 AY55856	AY55856802			1.08g	100mL	03/01/12 9:55	equip: Modblock I
16 AY55857	AY55857S02		T	1.13g		03/01/12 9:55	equip: Modblock1
17 AY55858	AY55858S02		- · ·	1.14g		03/01/12 9:55	equip: Modblock1
18/AY55859	AY55859S02			1,14g		03/01/12 9:55	equip: Modblock1
19 AY55869	AY55869S02		1	1.17g	100mL	03/01/12 9:55	equip: Modblock1

Solvenrand Lot#2	
1:1 HNO3 na	
HNO3 J.T.B K47023 0145	
H2O2 EMD na	
HCL B.D.H. 4111060 0146	

Sample COC Transfers 2. 7.46	
Sample prep employee Initials	ro
Analyst's initials	EX
Date	3-1-12.
Time	13:00
Moved to	Hetais

Technician's Initials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/01/12 5:18:02 PM

Reviewed By: %

Date: 3-1-12

### MERCURY EPA SW846 7470A and 7471A



### MERCURY EPA SW846 7470A and 7471A Forms



### AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 7470A AAB #: 120301A-164393 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-WC01 AY55857 B4-WC02 AY55858 B4-WC03 AY55859 ARF: 67072 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

Diane Anderson
Project Manager

the Manager's designee, as verified by the following signature.

Date:

### AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 7471B AAB #: 120301A-164409

Lab Name: APPL, Inc Contract #: *G012

Base/Cominand: CSSA Prime Contractor: Parsons

Field Sample ID	Lab Sample ID
B4-NT1-SW9	AY55846
B4-NT1-SW6	AY55847
B4-NT1-SW3	AY55848
B4-NT1-BOT03	AY55849
B4-NT1-SW8	AY55850
B4-NT1-BOT02	AY55851
B4-NT1-SW4	AY55852
B4-NT1-SW7	AY55853
B4-NT1-BOT01 FD	AY55854
B4-NT1-BOT01	AY55855
B4-NT1-SW5	AY55856
B4-WC01	AY55857
B4-WC02	AY55858
B4-WC03	AY55859
B4-NT1-SW6 FD	AY55869

Comments:	ARF: 67072		
completeness, package and in	for other than the conditions	detailed above. Rele submitted on diskette	nditions of the contract, both technically and for ase of the data contained in this hardcopy data has been authorized by the Laboratory Manager or
Signature:	designee, as verified by the 1	Name:	Diane Anderson

755

Date:

Project Manager

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW9

Lab Sample ID: AY55846

Matrix: Soil

% Solids: 87.3

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.03		F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6

Lab Sample ID: AY55847

Matrix: Soil

% Solids: 83.2

Initial Calibration ID: 120305A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0,01	0.1	0.05	. 1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW3

Lab Sample ID: AY55848

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1		1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT03

Lab Sample ID: AY55849

Matrix: Soil

% Solids: 89.4

Initial Calibration ID: 120305A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.53		

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW8

Lab Sample ID: AY55850

Matrix: Soil

% Solids: 85.5

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.24	1	

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT02

Lab Sample ID: AY55851

Matrix: Soil

% Solids: 95.8

Initial Calibration ID: 120305A

Date Received: 28-Feb-12 Concentration Units: mg/kg Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1		1;	

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW4

Lab Sample ID: AY55852

Matrix: Soil

% Solids: 92.2

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifter
MERCURY (HG)	0.01	0,1	0.09		F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW7

Lab Sample ID: AY55853

Matrix: Soil

% Solids: 87.7

Initial Calibration ID: 120305A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.07	1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01 FD

Lab Sample ID: AY55854

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120305A

Date Received: 28-Feb-12 Concentration Units: mg/kg Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01		0.34	1	

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT01

Lab Sample ID: AY55855

Matrix: Soil

% Solids: 92.9

Initial Calibration ID: 120305A

Date Received: 28-Feb-12 Concentration Units: mg/kg Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.30	1	

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW5

Lab Sample ID: AY55856

Matrix: Soil

% Solids: 92.8

Initial Calibration ID: 120305A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.93	1	

Comments:

Analytical Method: EPA 7470A Preparatory Method: 1311/7470A AAB #: 120301A-164393

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-WC01 Lab Sample ID: AY55857 Matrix: Soil

% Solids: NA Initial Calibration ID: 120301A

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12 Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.0001	0.002	0.0001	1	U

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC01

Lab Sample ID: AY55857

Matrix: Soil

% Solids: 88.3

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	1.20	1	

Comments:

Analytical Method: EPA 7470A Preparatory Method: 1311/7470A AAB #: 120301A-164393

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-WC02 Lab Sample ID: AY55858 Matrix: Soil

% Solids: NA Initial Calibration ID: 120301A

Date Received: 28-Feb-12 Date Prepared: 01-Mar-12 Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.0001	0.002	0.0001	1	ט

Comments: ARF: 67072

Analytical Method: EPA 7471B

Preparatory Method: 7471B

Date Prepared: 01-Mar-12

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC02

Lab Sample ID: AY55858

Matrix: Soil

% Solids: 87.4

Initial Calibration ID: 120305A

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	1.46	1	

Comments:

Analytical Method: EPA 7470A

Preparatory Method: 1311/7470A

AAB #: 120301A-164393

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC03

Lab Sample ID: AY55859

Matrix: Soil

% Solids: NA

Initial Calibration ID: 120301A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 01-Mar-12

Concentration Units: mg/L

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.0001	0.002		1	U

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-WC03

Lab Sample ID: AY55859

Matrix: Soil

% Solids: 87.8

Initial Calibration ID: 120305A

8 Initial Calibration ID: 120305

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Date Received: 28-Feb-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.05	0.5	0.00	. 5	

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW6 FD

Lab Sample ID: AY55869

Matrix: Soil

% Solids: 85.4

Initial Calibration ID: 120305A

Date Received: 28-Feb-12

Date Prepared: 01-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	****		F

Comments:

### AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Analytical Metho	d: <u>7470</u> A				_		AAB#;	120301A-16	54393		-			
Lab Nam	e: APPL, Inc				-		Contract #:	*G012		··-·	-			
Instrument II	D: PE300				Date	of Initial (	Calibration:	03/01/12			-			
Initial Calibration II	D: <u>120301A</u>			Conce	entration U	nits (mg/L	or mg/kg);	mg/L		·	_			
												_		
Analyte	Std	RF	Std 2	RF 2	Std 3	RF 3	Std 4	RF	Std	RF 5	Std	RF	, r	Q
Mercury	0.0002	0.004	0,0005	0.008	0.001	0.015	0.002	0.030	0,005	0.074	0.010	0.147	0.99995	
											r = coπela	tion coeffi	cient	
Comments	s:		<del>_</del>			<u> </u>			<u></u>					
										·				

AFCEE FORM 1-3A

#### AFCRE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Date of Initial Calibration:   05-Mar-12		_			•G012	Contract #;		_			<del></del>	APPL, Inc	Lab Name:
Analyte Std RF Std RF Std RF Std RF Std RF Std RF T 1 1 2 2 3 3 3 4 4 5 5 5 Mercury 0.006208 0.004 0.000521 0.011 0.001642 0.020 0.002083 0.041 0.005208 0.100 0.99997		_		··	05-Mar-12	itial Calibration;	Date of In	_				PB300	strument ID:
1 1 2 2 3 3 3 4 4 5 5 5 Mercury 0.007208 0.004 0.000521 0.011 0.001042 0.020 0.002083 0.041 0.005208 0.100 0.99997		_			mg/kg	ng/L or mg/kg); _i	ation Units (n	Concentr				120305A	libration ID:
1 1 2 2 3 3 3 4 4 5 5 5 Mercury 0.000208 0.004 0.000521 0.011 0.001042 0.020 0.002083 0.041 0.005208 0.100 0.99997													
Mercury 0.000208 0.004 0.000521 0.011 0.001042 0.020 0.002083 0.041 0.005208 0.100 0.99997		l r	_			F . I					RF 1	Std 1	Analyte
r = correlation		1			2011	0.002093	0.020	0.001042	0.011	0.000521	0.004	0.000208	Мегсигу
	╄	0,99997	0.100	0.005208	0.041	0.002083	0,020	0.051012	0.011			0,00000	

AFCEE FORM 1-3A

#### AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Anaty	ytical Method:	7471 Gross U	Jp			-		AAB #	: <u>120301A-1</u> -	64409	 _	
	Lab Name:	APPL, Inc				_		Contract #	: <u>*G012</u>		 _	
]	Instrument ID:	PE300					Date of Initi	al Calibration	: <u>05-Mar-12</u>		 _	
· Initial C	Calibration ID:	120305A			C	oncentratio	n Units (m	g/L or mg/kg	: mg/kg			
	Analyte	Std 6	RF 6	Γ							г	· Q
	Mercury	0.01042	0,202								0.99997	
	Comments:										r = correlat	ion coefficier

APCEE FORM 1-3A

Analytical Method: 7470A	AAB#: <u>12</u>	0301A-164393
Lab Name: APPL, Inc.	Contract #: *C	5012
Instrument ID: PE300	Initial Calibration ID: 12	0301A
2nd Source ID: ICV 03/01/12 14:22	ICV ID: IC	V 03/01/12 14:22
CCV #1 ID: CCV 03/01/12 14:25	CCV #2 ID: <u>C</u> C	CV 03/01/12 14:43
Concentration Units (mg/L	or mg/kg): mg/L	

	2nd S	Source Cali	bration	In	itial Calibr	ation		Cont	timuing Calib	ration		$\Box$
Analyte		Verification	n		Verificati	DIL			Verification	1		l Q l
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	
								1		2		
Mercury (Hg)	0.00400	0.00427	6.6%	0.00400	0.00427	6.6%	0.00500	0.00505	1.0%	0.00524	4.7%	

Comments:			<del></del>
-			 
	AFCEE FORM I-4	Page <u> </u> of <u>2</u>	

Analytical Method: 7470A	AAB #: 120301A-164393
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PE300	Initial Calibration JD: 120301A
2nd Source ID: ICV 03/01/12 14:22	ICV ID: ICV 03/01/12 14:22
CCV #1 ID: CCV 03/01/12 14:52	CCV #2 ID:
Concentration Units (mg	/L or mg/kg): mg/L

	2nd S	Source Cali	bration	In	itial Calibr	ation		Cont	inuing Calib	ration		П
Analyte		Verificatio	n	Verification			Verification					
į .	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	$\Box$
							<u></u>	1		2		i 1
Mercury (Hg)	0.00400	0.00427	6.6%	0.00400	0.00427	6.6%	0.00500	0.00518	3.6%			П

Comments:		<del></del>	
	AFCEE FORM I-4	Page 2 of 2	

Analytical Method;	7471 Gross Up	AAB#:	120301A-164409
Lab Name:	APPL, Inc.	Contract #:	*G012
Instrument ID;	PE300	Initial Calibration ID:	120305A
2nd Source ID:	ICV 03/05/12 10:23	ICV ID:	ICV 03/05/12 10:23
CCV#1 ID:	CCV 03/05/12 10:30	CCV #2 1D:	CCV 03/05/12 10:51
	Concentration Units (mg/L	or mg/kg): mg/kg	

	2nd	Source Calil	oration	`	Initial Calibrat	ion		Cont	inning Calibra	tion		П
Analyte					Verification			Verification				
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	
	}		_	_				1		2		╧
Mercury (Hg)	0,00417	0.00417	0.0%	0.00417	0,00417	0.0%	0.005208	0.00509	2.3%	0.00549	5.5%	

Comments:	<del></del>		·				
-		<u></u>	M 1-4 Page _	1_or_2			

Analytical Method: 7471 Gross Up	AAB #:	120301A-164409				
Lab Name; APPL, Inc.	Contract#:	*G012				
Instrument ID: PE300	Initial Calibration ID:	120305A				
2nd Source ID; ICV 03/05/12 10:23	ICV ID:	ICV 03/05/12 10:23				
CCV #1 ID: CCV 03/05/12 11:17	CCV#2 ID;	CCV 03/05/12 11:23				
Concentration Units (mg/L or mg/kg): mg/kg						

	2nd Source Calibration		Initial Calibration		Continuing Calibration					$\Box$		
Analyte	Verification .		Verification		Verification					Q		
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	$\Box$
							-	1		2		اـــا
Mercury (Hg)	0.00417	0.00417	0.0%	0.00417	0.00417	0.0%	0.005208	0,00564	8,3%	0,00536	2.9%	

Comments:			
	AFCEE FO	RM I-4	Page 2 of 2

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7470A

AAB #: 120301A-164393

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/L

Method Blank ID: 120301A-BLK

Initial Calibration ID: 120301A

Analyte	Method Blank	RL	Q
MERCURY (HG)	< RL	0.002	U

Comments:

ARF: 67072, Sample: AY55859

#### AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 7470	d: 7470Λ AAB #: 120301A-164393									
Lab Name; APP	ne; APPL, Inc. Contract #: *G012									
		Cone	centration	Units (mg/L o	or mg/kg); <u>mg/L</u>					
Initial Calibration Blank 1D: ICB	k ID: ICB 03/01/12 14:24 Initial Calibration ID: 120301A									
CCB #1 ID: <u>CCE</u>	03/01/12 14:27	C	CB #2 1D	CCB 03/01/1	2 14:45	_ c	CB #3 ID:	CCB 03/01	/12 14:54	
Method Blank ID: 1203	01A-BLK		-	Initial Calibr	ation ID: <u>120301</u> A	<u> </u>				
							<u> </u>			
Analyte	Initial Calibration   Blank		ing Calibra	ation Blank	Method Blank	RL	Q			
		1	2	3						
Mercury (Hg)	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.002</td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.002</td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.002</td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.002</td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td>0.002</td><td></td><td></td><td></td><td></td></rl<>	0.002				
Comments:								<u>.</u>		
		AFO	CEE FORM	1 I-5 Page	e <u>l</u> of <u>l</u>					

### AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120301A-BLK

Initial Calibration ID: 120305A

Analyte	Method Blank	RL	Q
MERCURY (HG)	< RL	0.1	U

Comments:

ARF: 67072, Sample: AY55855

#### AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 7471 Gros	s Up			_	AAB#: 120301A-	164409			
Lab Name: APPL, Inc									
		C	Concentration	n Units (mg/L	or mg/kg): mg/kg				
Initial Calibration Blank ID: <u>ICB 03/05</u>	/12 10:26		-	Initial Cali	ibration ID: 120305A				
CCB#1 ID: CCB 03/0.	5/12 10:33		CCB #2 ID:	CCB 03/05/1	2 10:53	_ '	CCB #3 ID:	CCB 03/05/12 11	:19
Method Blank ID: 120301A-	BLK		_	Initial Cali	bration ID: 120305A				
	· · · · · · · · · · · · · · · · · · ·							-	
Analyle	Initial Calibration Blank	Contin	uing Calibra	tion Blank	Method Blank	RL	Q		
	Вил	1	2	3	Бушіқ			<u> </u>	
Mercury (Hg)	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>- <rl< td=""><td>0.1</td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>- <rl< td=""><td>0.1</td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>- <rl< td=""><td>0.1</td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>- <rl< td=""><td>0.1</td><td></td><td></td><td></td></rl<></td></rl<>	- <rl< td=""><td>0.1</td><td></td><td></td><td></td></rl<>	0.1			
Comments:									

Page 1 of 2

AFCEE FORM I-5

#### AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

	ìross Up			•	AAB #: 120301A	-164409		
Lab Name: APPL,	Inc.				ontract #: •G012			
		c	Concentration	Units (mg/Lo	or mg/kg): <u>mg/kg</u>			<del></del>
libration Blank ID: <u>ICB 0</u>	/05/12 10:26		_	Initial Calib	ration 1D: 120305A			
CCB #1 ID: CCB (	3/05/12 11:25		CCB #2 ID:	<del> </del>		_	CCB #3 ID:	
CCD #1 ID, CCD (								
Method Blank ID: 12030			•	Initial Calib	ration ID: <u>120305A</u>			
			•	Initial Calib	ration ID: <u>120305A</u>			
	A-BLK Initial Calibration		uing Cafibrat		Method	RL	Q	
Method Blank ID: 12030	A-BLK		uing Catibrat				Q	

AFCEE FORM 1-5 Page 2 of 2

# AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7470A

AAB #: 120301A-164393

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120301A LCS

Initial Calibration ID: 120301A

Concentration Units: mg/L

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.0040	0.0039	97.5	85-115	

Comments:

ARF: 67072, Sample: AY55859

# AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7471B

AAB #: 120301A-164409

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120301A LCS

Initial Calibration ID: 120305A

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.67	0.72	107	77-120	

Comments:

ARF: 67072, Sample: AY55855

### AFCEE **INORGANIC ANALYSES DATA SHEET 7** MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 7471B

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

% Solids: 92.9

Parent Field Sample ID: B4-NT1-BOT01

MS ID: 120301-558558 MS MSD ID: 120301-558558 MSD A-AY 02 KWS 03/08/12 A-AY 02 KWS 03/08/12

					A-NT O	<b>Σ ΚΨ</b>	US100113		77MT 07		<u>_</u>
	Parent		Spiked		Duplicate		, ,,	Control	Control		1
Analyte	Sample	Spike	Sample	% R	Spiked	% R	% RPD	Limits	Limits %	Q	l
	Result	Added	Result	•	Sample			% R	RPD	1	l
					Result						ļ
MERCURY (HG)	0.30	0.67	1.03	109	1.07	115	3.8	77-120	25		Ī

Comments:

ARF: 67072

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7470A

AAB#: 120301A-164393

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-WC01	27-Feb-12	28-Feb-12	01-Mar-12	28	3	
B4-WC02	27-Feb-12	28-Feb-12	01-Mar-12	28	3	
B4-WC03	27-Feb-12	28-Feb-12	01-Mar-12	28	3	

Comments:

ARF: 67072

## AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7471B AAB#: 120301A-164409

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-NT1-BOT01	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-BOT01 FD	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-BOT02	27-Feb-12	28-Feb-12	05-Mar-12	28	. 7	
B4-NT1-BOT03	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW3	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW4	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW5	27-Feb-12	28-Feb-12	05-Маг-12	28	7	
B4-NT1-SW6	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW6 FD	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW7	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW8	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-NT1-SW9	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-WC01	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-WC02	27-Feb-12	28-Feb-12	05-Mar-12	28	7	
B4-WC03	27-Feb-12	28-Feb-12	05-Mar-12	28	7	

Comments: ARF: 67072

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7470A	ICAL ID: 120301A

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PE300

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
Calib Blank	01-Mar-12	14:06	01-Mar-12	14:06
0.2	01-Mar-12	14:07	01-Mar-12	14:07
0.5	01-Mar-12	14:08	01-Mar-12	14:08
1	01-Mar-12	14:10	13-Jan-12	14:10
2	01-Mar-12	14:12	13-Jan-12	14:12
5	01-Mar-12	14:15	13-Jan-12	14:15
10	01-Mar-12	14:17	01 <u>-Mar-12</u>	14:17
ICV	01-Mar-12	14:22	01-Mar-12	14:22
ICB	01-Mar-12	14:24	01-Mar-12	14:24
CCV	01-Mar-12	14:25	01-Mar-12	14:25
CCB	01-Mar-12	14:27	01-Mar-12	14:27
120301A BLK	01-Mar-12	14:29	01-Mar-12	14:29
120301A LCS	01-Mar-12	14:33	01-Mar-12	14:33
AY55857S01	01-Mar-12	14:41	01-Mar-12	14:41
AY55858S01	01-Mar-12	14:42	01-Mar-12	14:42
cev	01-Mar-12	14:43	01-Mar-12	14:43
CCB	01-Mar-12	14:45	01-Mar-12	14:45
AY55859801	01-Mar-12	14:47	01-Mar-12	14:47
CCV	01-Mar-12	14:52	01-Mar-12	14:52
CCB	01-Mar-12	14:54	01-Mar-12	14:54

Sample_ID `	EL	Date	Time	Mean SA	Units	Batch ID	Wt	Dilu
Calib. Blank	Hg	03/01/12	14:06:18	_	μg/L	_		
0.2 03-01-12 NM	Нg	03/01/12	14:07:31		μg/L			
0.5	Нġ	03/01/12	14:08:44		μg/L			
1	Нġ	03/01/12	14:10:51		μg/L			
2	Hg	03/01/12	14:12:58		μg/L			
5	Hg	03/01/12	14:15:05		μg/L			
10	Hg	03/01/12	14:17:14		μg/L			
ICV 03-01-12 NM	Hg	03/01/12	14:22:01	4.265288	μg/L			
ICB 03-01-12 NM	Hg	03/01/12	14:24:08	0.041167	μg/L			
CCV 03-01-12 NM	Hg	03/01/12	14:25:23	5.048688	μg/L			
CCB 03-01-12 NM	Hg	03/01/12	14:27:31	0.038447	μg/L			
120301A-BLK	- Hg	03/01/12	<del>14:28:44</del>	0.043083	μg/L	120301A-7470A		
120301A BLK	Hg	03/01/12	14:29:57	0.032822	μg/L	120301A-7470TCLP		
120301A LCS	Hg	03/01/12	14:31:10	4.033948	µg/L	120301A-7470A		_
120301A LCS	Hg	03/01/12	14:33:17	3.936059	μg/L	120301A-7470TCLP		
AY55891W01	· <del>Hg</del>	03/01/12	44:35:23	0.057526	µg/L—	120301A-7470A		
AY55891W01 DUP-	- <del>Hg</del>	03/01/12	14:36:36	0.029649	µg/L—	120301A-7470A		
AY55891W01 MS	H <del>g</del>	03/01/12	14:37:49	4.045692	μg/L	120301A-7470A	•	
AY55892W01	Hg	03/01/12	14:39:56	0.065046	µg/L—	120301A-7470A		
AY55857S01	Нg	03/01/12	14:41:09	0.06857	μg/L	120301A-7470TCLP		
AY55858S01	Нg	03/01/12	14:42:22	0.106192	μg/L	120301A-7470TCLP		
CCV 03-01-12 NM	Нg	03/01/12	14:43:38	5.23643	μg/L			
CCB 03-01-12 NM	Нg	03/01/12	14:45:45	0.046173	μg/L			
AY55859S01	Нg	03/01/12	14:47:00	0.146658	μg/L	120301A-7470TCLP		
AY55859S01-MS	Hg	03/01/12	<del>14:48:13</del>	4.134227	μg/L	120301A-7470TCLP-		
AY55859S01 MSD -	Hg	03/01/12	<del>14:50:22</del>	4.151822	μg/L	120301A-7470TCLP		_
CCV 03-01-12 NM	Hg	03/01/12	14:52:31	5.181727	μg/L			
CCB 03-01-12 NM	Hg	03/01/12	14:54:38	0.095849	μg/L			
R=0.99995								

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7471B ICAL ID: 120305A

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PE300

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis	Time Analysis
			Completed	Completed
Calib Blank	05-Mar-12	10:08	05-Mar-12	10:08
0.208	05-Mar-12	10:09	05-Mar-12	10:09
0.520833	05-Mar-12	10:10	05-Mar-12	10:10
1.041667	05-Mar-12	10:12	05-Mar-12	10:12
2.083333	05-Mar-12	10:14	05-Mar-12	10:14
5.208	05-Mar-12	10:16	05-Mar-12	10:16
10.417	05-Mar-12	10:18	05-Mar-12	10:18
ICV	05-Mar-12	10:23	05-Mar-12	10:23
ICB	05-Mar-12	10:26	05-Mar-12	10:26
CCV	05-Mar-12	10:30	05-Mar-12	10:30
ССВ	05-Mar-12	10:33	05-Mar-12	10:33
120301A-BLK	05-Mar-12	10:34	05-Mar-12	10:34
120301A-LCS	05-Mar-12	10:35	05-Mar-12	10:35
AY55846S02	05-Mar-12	10:37	05-Mar-12	10:37
AY55847S02	05-Mar-12	10:38	05-Mar-12	10:38
AY55848S02	05-Mar-12	10:39	05-Mar-12	10:39
AY55849S02	05-Mar-12	10:41	05-Mar-12	10:41
AY55850S02	05-Mar-12	10:43	05-Mar-12	10:43
AY55851S02	05-Mar-12	10:45	05-Mar-12	10:45
AY55852S02	05-Mar-12	10:47	05-Mar-12	10:47
AY55853S02	05-Mar-12	10:49	05-Mar-12	10:49
CCV	05-Mar-12	10:51	05-Mar-12	10:51
CCB	05-Mar-12	10:53	05-Mar-12	10:53
AY55854S02	05-Mar-12	10:57	05-Mar-12	10:57
AY55855S02	05-Mar-12	10:59	05-Mar-12	10:59
AY55855S02 MS	05-Mar-12	11:01	05-Mar-12	11:01
AY55855S02 MSD	05-Mar-12	11:03	05-Mar-12	11:03
AY55856S02	05-Mar-12	11:06	05-Mar-12	11:06
AY55857S02	05-Mar-12	11:08	05-Mar-12	11:08
AY55858S02	05-Mar-12	11:10	05-Mar-12	11:10
AY55859S02-1/5	05-Mar-12	11:12	05-Mar-12	11:12
AY55869S02	05-Mar-12	11:14	05-Mar-12	11:14
ccv	05-Mar-12	11:17	05-Mar-12	11:17
ССВ	05-Mar-12	11:19	05-Mar-12	11:19
AY55849S02-1/5	05-Mar-12	11:21	05-Mar-12	11:21
ccv	05-Mar-12	11:23	05-Mar-12	11:23

CCB	 1 11:23	05-Mar-12	

Sample_ID Calib Blank 0.2083 03-01-12 LO 0.520833 1.041667 2.083333 5.208 10.417 ICV 03-01-12 LO	Hg Hg Hg Hg	03/05/12 03/05/12	10:09:25 10:10:38 10:12:41 10:14:43 10:16:46 10:18:49	Mean_SA 4.16831	Units  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L  µg/L	Batch_ID	₩t	Dilu
ICB 03-01-12 LO	Нg	03/05/12	10:26:34	0.215869	μg/L			
CCV 03-01-12 LO	Hg	03/05/12		5.088997	-			
CCB 03-01-12 LO	Hg	03/05/12		0.048038				
120301A BLK	Hg	03/05/12		0.014378		120301A-7471GROSS	0.6	
120301A LCS	_	03/05/12		0.723271		120301A-7471GROSS	0.6	
AY55846S02	Hg	03/05/12		0.029659		120301A-7471GROSS	0.69	
AY55847S02	Hg	03/05/12		0.038569		120301A-7471GROSS	0.72	
AY55848S02	Hg	03/05/12		0.027405		120301A-7471GROSS	0.68	
AY55849S02	Hg	03/05/12		0.471988		120301A-7471GROSS	0.67	
AY55850S02	_	03/05/12		0.203841		120301A-7471GROSS	0.7	
AY55851\$02	_	03/05/12		1.448188		120301A-7471GROSS	0.63	
AY55852S02	Hg	03/05/12		0.082542		120301A-7471GROSS	0.65	
AY55853S02	Hg	03/05/12		0.060867		120301A-7471GROSS	0.68	
CCV 03-01-12 LO	Hg	03/05/12		5,492005				
CCB 03-01-12 LO	Hg	03/05/12		0.288966		400004	0.65	
AY55854\$02	Hg	03/05/12		0.313818		120301A-7471GROSS	0.65	
AY55855S02	Hg	03/05/12		0.278477		120301A-7471GROSS	0.65	
AY55855S02 MS	Hg	03/05/12		0.961009		120301A-7471GROSS	0.65	
AY55855S02 MSD	Hg	03/05/12		0.990535		120301A-7471GROSS	0.65	
AY55856S02 AY55857S02	Hg Hg	03/05/12 03/05/12		0.860637 1.055423		120301A-7471GROSS 120301A-7471GROSS	0.65 0.68	
AY55858S02	Hg	03/05/12		1.055425		120301A-7471GROSS	0.69	
AY55859\$02-1/5	_	03/05/12		2.546945		120301A-7471GROSS	0.68	5
AY55869\$02	Hg	03/05/12		0.068582		120301A-7471GROSS	0.7	J
AY55849S02-A	-Hg	03/05/12				120301A-7471GROSS	– <del>0.67</del>	
CCV 03-01-12 LO	Hg	03/05/12		5.641633		12000 17 ( 7 4) 10 ( 0000	0.01	
CCB 03-01-12 LO	Hg	03/05/12		0.293978				
AY55849S02-1/5	_	03/05/12		0.439084	. –	120301A-7471GROSS	0.67	5
CCV 03-01-12 LO	Hg	03/05/12		5.358688			0.01	ū
CCB 03-01-12 LO	Hg	03/05/12		0.050701				
R=0.99997					1.0			

#### A.P.P.L. INC.

9

#### CVAA SERIAL DILUTION

CLIENT SAMPLE NO.

				AY555849
Lab Name: APPL, INC.		Contract:	PARSONS	
Lab Code: \$HGAFBS	ARF No .: 67072	_SAS No.:		SDG No.: 67072

Matrix (soil/water): SOIL

#### Concentration Units: mg/Kg

		Serial		8	T	<u> </u>
	Initial Sample	Dilution	ĺ	Differ-	ĺ	
Analyte	Result (I) C	Result (S)	c	ence	Ω	М
						<u> </u>
Mercury	0.47	0.44		7.0		<u> </u>

03/05/12 11:15	AY55849S02	
		<del></del>
03/05/12 11:21	AY55849S02-1/5	

FORM IX - IN

ILM02.0

### MERCURY EPA SW846 7470A and 7471A Calibration Data



**Parsons** 

Hg BY METHOD 7470A QCG: 120301A-7470TCLP

ARF 67072

ANALYSIS DATE: 03/01/12

### R=0.99995

NAME	TRUE	RESULT	% RECOVERY
ICV	4.00ppb	4.265	106.6%
ICB	0ppb	0.041	
CCV-1	5.00ppb	5.049	101.0%
CCB-1	0ppb	0.038	
CCV-2	5.00ppb	5.236	104.7%
CCB-2	0ppb	0.046	
CCV-3	5.00ppb 0ppb	5.182 0.096	103.6%

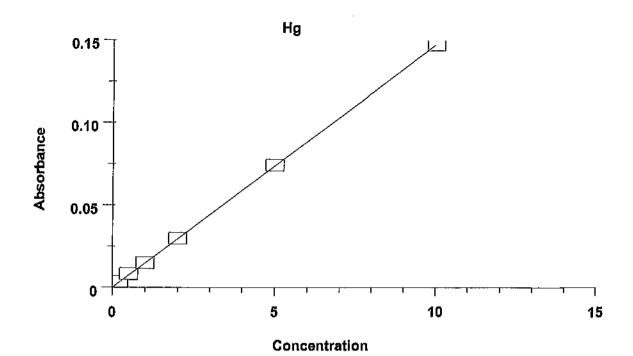
Parsons

### Hg BY METHOD 7471B QCG 120301A-7471GROSS ANALYSIS DATE: 03/05/12

ARF#67072

#### R=0.99997

NAME	TRUE	RESULT	% RECOVERY
ICV	4.17ppb	4.168	100.0%
ICB	Oppb	0.216	
CCV-1	5.208ppb	5.089	97.7%
CCB-1	0ppb	0.048	
CCV-2	5.208ppb	5.492	105.5%
CCB-2	Oppb	0.289	400.004
CCV-3	5.208ppb	5.642	108.3%
CCB-3	Oppb	0.294	
CCV-4	5.208ppb	5.359	102.9%
CCB-4	0ppb	0.051	


```
Blement: Hg Seq. No.: 14 Date: 03/01/2012
Sample ID: Sample
    SampleConc StndConc BlnkCorr
Repl
                          Time
    \mu g/L \mu g/L
                  Signal
 #
                   0.002
1
                          14:05:00
Auto-zero performed.
___________
Blement: Hg Seq. No.: 15 Date: 03/01/2012
Sample ID: Calib. Blank
Repl
   SampleConc StndConc BlnkCorr
                         Time
#
    \mu g/L
                  Signal
           μg/L
1
                   0.000
                          14:06:07
                   0.000
                          14:06:13
2
                   0.000
                          14:06:18
3
Mean:
                   0.000
SD :
                   0.000
                  199.78
%RSD:
Auto-zero performed.
___________
Element: Hg Seq. No.: 16 Date: 03/01/2012
Sample ID: 0.2 03-01-12 NM
Repl SampleConc StndConc BlnkCorr
                         Time
    \mu g/\bar{L}
           μg/L
                  Signal
#
                   0.003
                          14:07:20
1
                   0.004
2
                         14:07:26
                   0.004
                         14:07:31
3
                   0.004
Mean:
SD :
                   0.000
                   5.42
%RSD:
Standard number 1 applied. [0.2]
Correlation Coefficient: 1.0000
                              Slope: 0.0175
_______
Element: Hg Seg. No.: 17 Date: 03/01/2012
Sample ID: 0.5
_____
Repl SampleConc StndConc BlnkCorr
                         Time
                  Signal
#
    μq/L
           μq/L
                   0.008
                         14:08:33
1
                   0.008
                         14:08:39
2
                         14:08:44
3
                   0.008
                   0.008
Mean:
SD :
                   0.000
                   2.43
%RSD:
Standard number 2 applied. [0.5]
Correlation Coefficient: 0.9987
                             Slope: 0.0167
```

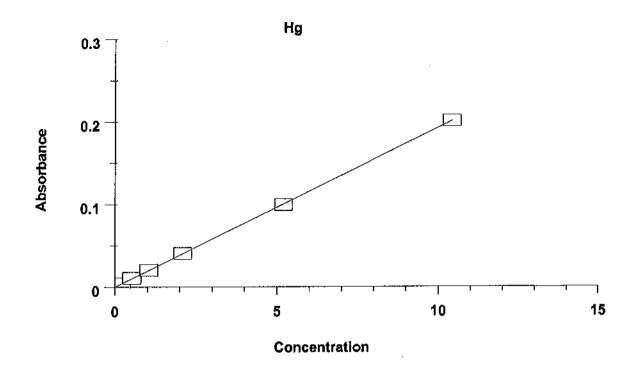
```
__________
Element: Hg Seq. No.: 18 Date: 03/01/2012
Sample ID: 1.0
______
     SampleConc StndConc BlnkCorr
Repl
                           Time
 #
     μq/L μq/L
                   Signal
 1
                    0.015
                          14:10:40
                    0.015
 2
                           14:10:45
 3
                    0.015
                           14:10:51
Mean:
                    0.015
SD :
                    0.000
%RSD:
                     1.40
Standard number 3 applied. [1.0]
Correlation Coefficient: 0.9954
                                Slope: 0.0154
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 19 Date: 03/01/2012
Sample ID: 2.0
Repl
   SampleConc StndConc BlnkCorr
                           Time
#
    μq/L
                 Signal
            μg/L
1
                    0.029
                           14:12:47
2
                    0.030
                           14:12:52
                    0.031
                           14:12:58
3
                    0.030
Mean:
                    0.001
SD :
%RSD:
                     3.87
Standard number 4 applied. [2.0]
Correlation Coefficient: 0.9990
                                Slope: 0.0151
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 20 Date: 03/01/2012
Sample ID: 5.0
____
   SampleConc StndConc BlnkCorr
                           Time
Repl
#
    μg/L μg/L
                   Signal
                    0.072
                           14:14:55
1
                    0.074
                           14:15:00
2
3
                    0.077
                           14:15:05
Mean:
                    0.074
SD :
                    0.003
%RSD:
                     3.63
Standard number 5 applied. [5.0]
Correlation Coefficient: 0.9999
                               Slope: 0.0149
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 21 Date: 03/01/2012
Sample ID: 10.0
Repl
    SampleConc StndConc BlnkCorr
                           Time
                   Signal
#
    μg/L
            μg/L
                    0.141
                           14:17:03
1
                    0.149
                           14:17:08
2
                    0.153
                           14:17:14
3
                    0.147
Mean:
                    0.006
SD :
%RSD:
The calibration curve may not be linear.
Standard number 6 applied. [10.0]
```

801

Slope: 0.0148

Correlation Coefficient: 1.0000




		Entered	Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	(μg/L)	(μg/L)	Deviation	&RSD
Calib. Blank	0.000		0.000	0.000077	
0.2 03-01-12 NM	0.004	0.2	0.2371	0.000190	5.423821
0.5	0.008	0.5	0.5601	0.000201	2.427843
1.0	0.015	1.0	1.012	0.000209	1.396262
2.0	0.030	2.0	2.023	0.001158	3.873132
5.0	0.074	5.0	5.028	0.002695	3.626343
10.0	0.147	10.0	9.976	0.005839	3.959377
Correlation Coeffic	cient: 0.99995	Slope: 0.0	1478		

```
Method Name: Hg-7471 - KWS Element: Hg
Date: 03/05/2012
Results Data Set: 120301AA-7471A
Element: Hq Seq. No.: 71 Date: 03/05/2012
Sample ID: Sample
_____
   SampleConc StndConc BlnkCorr
                      Time
Repl
    \mu g/L \mu g/L Signal
#
1
                0.331
                      10:06:49
Auto-zero performed.
Element: Hg Seq. No.: 72 Date: 03/05/2012
Sample ID: Sample
_____
Repl SampleConc StndConc BlnkCorr Time
    \mug/L \mug/L Signal
#
                0.000
                      10:06:56
1
Auto-zero performed.
Element: Hg Seq. No.: 73 Date: 03/05/2012
Sample ID: Calib Blank
______
Repl SampleConc StndConc BlnkCorr
#
   \mu g/L \mu g/L Signal
                     10:08:01
                 0.000
1
                 0.001
                      10:08:06
2
                      10:08:12
                 0.000
3
                0.000
Mean:
                0.000
SD :
                258.30
%RSD:
Auto-zero performed.
Element: Hg Seq. No.: 74 Date: 03/05/2012
Sample ID: 0.2083 03-01-12 LO
_
  SampleConc StndConc BlnkCorr
                      Time
Repl
#
   \mu g/L \mu g/L
                Signal
                0.004
                      10:09:15
1
                      10:09:20
                 0.004
2
                      10:09:25
                0.004
3
                0.004
Mean:
                0.000
SD :
                 5.40
%RSD:
Standard number 1 applied. [0.2083333]
                          Slope: 0.0201
Correlation Coefficient: 1.0000
Element: Hg Seq. No.: 75 Date: 03/05/2012
Sample ID: 0.520833
_
Repl SampleConc StndConc BlnkCorr
                      Time
   μg/L μg/L
               Signal
#
                      10:10:28
                0.010
1
                      10:10:33
                0.011
2
                      10:10:38
                0.011
3
                0.011
Mean:
                0.000
SD :
%RSD:
Standard number 2 applied. [0.520833]
Correlation Coefficient: 1.0000
                          Slope: 0.0203
```

```
Element: Hg Seq. No.: 76 Date: 03/05/2012
Sample ID: 1,041667
SampleConc StndConc BlnkCorr
Repl
                         Time
 #
    \mu g/L \mu g/L Signal
 1
                  0.020
                        10:12:30
 2
                   0.020
                        10:12:36
 3
                   0.021
                        10:12:41
Mean:
                   0.020
SD :
                   0.001
%RSD:
Standard number 3 applied. [1.041667]
Correlation Coefficient: 0.9994
                             Slope: 0.0197
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 77 Date: 03/05/2012
Sample ID: 2.083333
Repl SampleConc StndConc BlnkCorr
                         Time
                 Signal
#
    \mu g/L \mu g/L
                   0.040
1
                         10:14:32
2
                   0.041
                         10:14:38
3
                   0.042
                         10:14:43
Mean:
                   0.041
SD :
                  0.001
%RSD:
                   2.35
Standard number 4 applied. [2.083333]
Correlation Coefficient: 0.9999
                             Slope: 0.0195
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 78 Date: 03/05/2012
Sample ID: 5.208
SampleConc StndConc BlnkCorr Time
Repl
#
    μg/L μg/L
                Signal
                       10:16:35
                  0.097
1
                  0.100
2
                        10:16:40
                  0.102
                        10:16:46
3
Mean:
                  0.100
                  0.003
SD :
%RSD:
                   2.70
Standard number 5 applied. [5.208]
Correlation Coefficient: 0.9999
                             Slope: 0.0192
An extra autosampler wash has been performed.
Blement: Hg Seq. No.: 79 Date: 03/05/2012
Sample ID: 10.417
SampleConc StndConc BlnkCorr Time
Repl
    \mu g/L \mu g/L Signal
#
                  0.196
                         10:18:38
1
                  0.203
                         10:18:44
2
                  0.207
                         10:18:49
3
                  0.202
Mean:
SD :
                  0.006
Standard number 6 applied. [10.417]
```

Slope: 0.0193

Correlation Coefficient: 1.0000



Calibration data for Hg		Entered	Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	$(\mu g/L)$	(μg/ <b>L</b> )	Deviation	%RSD
Calib Blank	0.000		0.000	0.000437	
0.20B3 03-01-12 LO	0.004	0.2083333	0.2172	0.000226	5.395408
0.520833	0.011	0.520833	0.5475	0.000415	3.918925
1.041667	0.020	1.041667	1.049	0.000585	2.885956
2.083333	0.041	2.083333	2.104	0.000957	2.352540
5.208	0.100	5.208	5.158	0.002694	2.702820
10.417	0.202	10.417	10.44	0.005726	2.839507
Correlation Coeffici	ent: 0.99997	\$lope: 0.0	01933		

MERCURY EPA SW846 7470A and 7471A Raw Data



Element: Hg Seq. No.: 22 Date: 03/01/2012 Sample ID: ICV 03-01-12 NM _____ Repl SampleConc StndConc BlnkCorr Time #  $\mu g/L$   $\mu g/L$  Signal π μg/L μg/L signal
1 4.114 4.114 0.061
2 4.280 4.280 0.063
3 4.401 4.401 0.065
Mean: 4.265 4.265 0.063
SD : 0.1444 0.1444 0.002
%RSD: 3.38 3.38 3.38 14:21:50 14:21:55 14:22:01 OC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 23 Date: 03/01/2012 Sample ID: ICB 03-01-12 NM Repl SampleConc StndConc BlnkCorr Time 

 Rep1
 sampleConc
 stndConc
 BinkCorr

 #
 μg/L
 signal

 1
 0.02221
 0.000

 2
 0.06536
 0.06536
 0.001

 3
 0.03593
 0.03593
 0.001

 Mean:
 0.04117
 0.04117
 0.001

 SD:
 0.02204
 0.02204
 0.000

 %RSD:
 53.55
 53.55
 53.55

 14:23:58 14:24:03 14:24:08 QC value within specified limits. ______ Element: Hg Seq. No.: 24 Date: 03/01/2012 Sample ID: CCV 03-01-12 NM -Repl SampleConc StndConc BlnkCorr Time #  $\mu g/\bar{L}$   $\mu g/L$  Signal 4.818 4.818 0.071 5.089 5.089 0.075 5.239 5.239 0.077 5.049 5.049 0.075 14:25:13 14:25:18 14:25:23 Mean: SD : 0.2134 0.2134 0.003 %RSD: 4.23 4.23 4.23 OC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 25 Date: 03/01/2012 Sample ID: CCB 03-01-12 NM Repl SampleConc StndConc BlnkCorr Time #  $\mu$ g/L  $\mu$ g/L Signal
1 0.06301 0.06301 0.001
2 0.02901 0.02901 0.000
3 0.02332 0.02332 0.000
Mean: 0.03845 0.03845 0.001
SD: 0.02146 0.02146 0.000
%RSD: 55.81 55.81 14:27:20 14:27:25 14:27:31 SD: 0.02146 0.02146 %RSD: 55.81 55.81

55.81

QC value within specified limits.

_______ Element: Hg Seq. No.: 26 Date: 03/01/2012 Sample ID: 120301A BLK Repl SampleConc StndConc BlnkCorr Time Element: Hg Seq. No.: 27 Date: 03/01/2012 Sample ID: 120301A BLK _____ Repl SampleConc StndConc BlnkCorr 

 Rep1
 sampleConc
 stndCone
 BinkCorr

 #
  $\mu g/L$  signal

 1
 0.03328
 0.03328
 0.000

 2
 0.02116
 0.02116
 0.000

 3
 0.04403
 0.04403
 0.001

 Mean:
 0.03282
 0.03282
 0.000

 SD:
 0.01144
 0.01144
 0.000

 %RSD:
 34.86
 34.86
 34.86

 14:29:47 14:29:52 14:29:57 Element: Hg Seq. No.: 28 Date: 03/01/2012 Sample ID: 120301A LCS Repl SampleConc StndConc BlnkCorr Time 

 Repl
 SampleConc
 StndConc
 BinkCorr

 #
  $\mu g/L$  Signal

 1
 3.886
 0.057

 2
 4.068
 4.068
 0.060

 3
 4.148
 4.148
 0.061

 Mean:
 4.034
 4.034
 0.060

 SD:
 0.1342
 0.1342
 0.002

 %RSD:
 3.33
 3.33
 3.33

 14:31:00 14:31:05 14:31:10 An extra autosampler wash has been performed. Element: Hg Seq. No.: 29 Date: 03/01/2012 Sample ID: 120301A LCS Repl SampleConc StndConc BlnkCorr Time 

 Repl
 SampleConc
 StndConc
 BinkCorr

 #
  $\mu g/L$  Signal

 1
 3.770
 0.056

 2
 3.950
 3.950
 0.058

 3
 4.088
 4.088
 0.060

 Mean:
 3.936
 3.936
 0.058

 SD:
 0.1595
 0.1595
 0.002

 %RSD:
 4.05
 4.05
 4.05

 14:33:06 14:33:11 14:33:17 An extra autosampler wash has been performed. Element: Hg Seq. No.: 30 Date: 03/01/2012 Sample ID: AY55891W01 Repl SampleConc StndConc BlnkCorr Time #  $\mu$ g/L  $\mu$ g/L Signal # µ9/L µ9/L Signal
1 0.06814 0.06814 0.001
2 0.05472 0.05472 0.001
3 0.04972 0.04972 0.001
Mean: 0.05753 0.05753 0.001
SD : 0.009524 0.009524 0.000
%RSD: 16.56 16.56 16.56 14:35:12 14:35:17 14:35:23

		eq. No.: 31			
	e ID: AY5589			, ,	
Repl	SampleCond	StndConc	BlnkCorr	Time	
#	$\mu \mathbf{g}/\mathbf{\bar{L}}$	μg/L	Signal		
1	0.04860	0.04860	0.001	14:36:25	
2	0.02450	0.02450	0.000	14:36:31	
3	0.01584	0.01584	0.000	14:36:36	
Mean:		0.02965	0.000	22700100	
SD :	0.01698		0.000		
%R\$D:	57.26	57.26	57.26		
Elemen		q. No.: 32		03/01/2012	
	ID: AY5589	1W01 MS		,	
Repl	SampleConc	StndConc	BlnkCorr	Time	
. –	μg/L		Signal	111110	
1	3.899		0.058	14:37:38	
2	4.067	4.067			•
			0.060	14:37:44	
3	4.171	4.171	0.062	14:37:49	
Mean:			0.060		•
SD :	0.1370	0.1370	0.002		
%R\$D:	3.39	3.39	3.39		
An ext	ra autosamp	ler wash ha	s been perf	ormed.	
					=======================================
Elemen		q. No.: 33		03/01/2012	
	ID: AY5589			03/01/2012	
Repl	SampleConc	StndConc	BlnkCorr	Time	
#	μg/L	ua/I	Cianal	111116	
# 1	μ9/1 0.08983	μg/ <b>L</b> 0.08983	Signal	14.20.45	
			0.001 0.001	14:39:45	
2	0.06529			14:39:51	
3		0.04001	0.001	14:39:56	
Mean:		0.06505	0.001		
SD :	0.02491	0.02491	0.000		
%RSD:	38.30	38.30	38.30		
858262				*******	**************************************
Elemen	t: Hg Sec	q. No.: 34	Date:	03/01/2012	
Sample	ID: AY5585	7\$01			
					**-**
Repl	SampleConc	StndConc		Time	
#	μg/L	μg/L	Signal		
1	0.06128	0.06128	0.001	14:40:59	
2	0.06517	0.06517	0.001	14:41:04	
3	0.07926	0.07926	0.001	14:41:09	
Mean:		0.06857	0.001	21112102	
SD :	0.009463	0.009463	0.000		
%RSD:	13.80	13.80	13.80		
tKaD:	13.00	13.00	13.00		
Element	: Hg Sec	q. No.: 35	Date:	03/01/2012	
Sample	ID: AY55858				
Repl	SampleConc	StndConc	BlnkCorr	Time	
				TIME	
#	μg/L	μg/L	Signal	24.40.40	•
1	0.1204	0.1204	0.002	14:42:12	
2	0.1150	0.1150	0.002	14:42:17	
3	0.08316	0.08316	0.001	14:42:22	
Mean:	0.1062	0.1062	0.002		
SD :	0.02013	0.02013	0.000		
%RSD:	18.96	18.96	18.96		

Element: Hg Seq. No.: 36 Date: 03/01/2012 Sample ID: CCV 03-01-12 NM ______ Repl SampleConc StndConc BlnkCorr Time 

 Repl
 sampleConc
 stndConc
 BinkCorr

 #
  $\mu g/L$  signal

 1
 5.068
 5.068
 0.075

 2
 5.272
 5.272
 0.078

 3
 5.369
 5.369
 0.079

 Mean:
 5.236
 5.236
 0.077

 SD:
 0.1536
 0.1536
 0.002

 %RSD:
 2.93
 2.93
 2.93

 14:43:27 14:43:33 14:43:38 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 37 Date: 03/01/2012 Sample ID: CCB 03-01-12 NM Repl SampleConc StndConc BlnkCorr Time QC value within specified limits. Element: Hg Seq. No.: 38 Date: 03/01/2012 Sample ID: AY55859S01 Repl SampleConc StndConc BlnkCorr Time #  $\mu$ g/L  $\mu$ g/L Signal
1 0.1505 0.1505 0.002 14:46:50
2 0.1310 0.1310 0.002 14:46:55
3 0.1584 0.1584 0.002 14:47:00

Mean: 0.1467 0.1467 0.002

SD : 0.01413 0.01413 0.000 Mean: SD : %RSD: 9.63 9.63 9.63 _______ Element: Hg Seq. No.: 39 Date: 03/01/2012 Sample ID: AY55859S01 MS ____ Repl SampleConc StndConc BlnkCorr Time μg/L μg/L Signal
3.969 3.969 0.059
4.178 4.178 0.062
4.255 4.255 0.063
4.134 4.134 0.061 # 14:48:03 1 14:48:08 2 3 4.255 4.255 Mean: 4.134 4.134 SD: 0.1477 0.1477 %RSD: 3.57 3.57 14:48:13 0.061 0.002 3.57

3.57

Element: Hg Seq. No.: 40 Date: 03/01/2012 Sample ID: AY55859S01 MSD SampleConc StndConc BlnkCorr Repl Time μg/L # μg/L Signal 1 3.973 3.973 0.059
2 4.188 4.188 0.062
3 4.294 4.294 0.063
Mean: 4.152 4.152 0.061
SD : 0.1637 0.1637 0.002
%RSD: 3.94 3.94 3.94 3.973 14:50:11 14:50:11 14:50:17 14:50:22 An extra autosampler wash has been performed. Element: Hq Seq. No.: 41 Date: 03/01/2012 Sample ID: CCV 03-01-12 NM Repl SampleConc StndConc BlnkCorr Time # 14:52:20 14:52:26 1 3 14:52:31 Mean: SD : 3.99 3.99 3.99 %RSD: QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 42 Date: 03/01/2012 Sample ID: CCB 03-01-12 NM _____ SampleConc StndConc BlnkCorr Time Repl 

 Rep1
 SampleConc
 StndConc
 BinkCorr

 #
  $\mu g/L$  Signal

 1
 0.09781
 0.09781
 0.001

 2
 0.1083
 0.1083
 0.002

 3
 0.08143
 0.08143
 0.001

 Mean:
 0.09585
 0.09585
 0.001

 SD:
 0.01355
 0.01355
 0.000

 %RSD:
 14.14
 14.14
 14.14

 14:54:28 14:54:33 14:54:38

QC value within specified limits.

Element: Hg Seq. No.: 80 Date: 03/05/2012

Sample ID: ICV 03-01-12 LO

Repl SampleConc StndConc BlnkCorr Time #  $\mu g/L$   $\mu g/L$  Signal 4.023 0.078 10:23:42 4.210 0.081 10:23:47 4.272 0.083 10:23:53 4.023 4.023 1 4.210 2 3 4.272 4.168 4,168 0.081 Mean: SD : 0.1297 0.1297 %RSD: 3.11 3.11 0.003 3.11

QC value within specified limits.

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 81 Date: 03/05/2012

Sample ID: ICB 03-01-12 LO

керт	SampleConc	stnacone	BINKCOFF	Time
#_	μg/L	μg/Ъ	Signal	
1	0.2137	0.2137	0.004	10:26:24
2	0.2204	0.2204	0.004	10:26:29
3	0.2135	0.2135	0.004	10:26:34
Mean:	0.2159	0.2159	0.004	
SD :	0.003933	0.003933	0.000	
%RSD:	1.82	1.82	1.82	
		_		

QC out of limits. An alarm was sounded and the system waits for operator action.

Element: Hg Seq. No.: 82 Date: 03/05/2012

Sample ID: Sample

SampleConc StndConc BlnkCorr Repl

μg/L 0.1964 Signal 0.004 # μg/L

0.1964 10:28:16

Auto-zero performed.

Method Name: Hg-7471 - KWS Element: Hg

Date: 03/05/2012

Results Data Set: 120301AA-7471A

Element: Hg Seq. No.: 83 Date: 03/05/2012

Sample ID: CCV 03-01-12 LO

Repl	SampleConc	StndConc	BlnkCorr	Time
#	μg/L	μg/Ľ	Signal	
1	4,918	4.918	0.095	10:29:50
2	5.117	5.117	0.099	10:29:56
3 .	5.232	5.232	0.101	10:30:01
Mean:	5.089	5.089	0.098	
SD :	0.1590	0.1590	0.003	
%RSD:	3,12	3.12	3.12	

QC value within specified limits.

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 84 Date: 03/05/2012

Sample ID: CCB 03-01-12 LO

_ SampleConc StndConc BlnkCorr Time Repl

 $\mu$ g/L Signal # μg/L 10:32:50 0.001 0.05418 0.05418 0.001 10:32:55 0.04213 0.04213 0.04780 0.04780 0.001 10:33:01 3 0.001 0.04804 0.04804 Mean: 0.000 SD : 0.006032 0.006032 12.56 12.56 12.56 RSD:

OC value within specified limits.

Element: Hg Seq. No.: 85 Date: 03/05/2012

Sample ID: 120301A BLK

Repl	SampleConc	StndConc	BlnkCorr	Time
#	mg/kg	μg/Ľ	Signal	
ì	0.01465	0.09154	0.002	10:34:03
2	0.01384	0.08652	0.002	10:34:09
3	0.01465	0.09154	0.002	10:34:14
Mean:	0.01438	0.08987	0.002	
SD :	0.000463	0.002894	0.000	
%RSD:	3.22	3.22	3.22	

Element: Hg Seq. No.: 86 Date: 03/05/2012

Sample ID: 120301A LCS 

Repl	SampleConc	StndConc	BlnkCorr	Time
#	mq/kg	μg/L	Signal	
ï	0.7032	4.395	0.085	10:35:16
2	0.7313	4.570	0.088	10:35:22
3	0.7354	4.596	0.089	10:35:27
Mean:	0.7233	4.520	0.087	
SD :	0.01752	0.1095	0.002	
%RSD:	2.42	2.42	2.42	

Element: Hg Seq. No.: 87 Date: 03/05/2012 Sample ID: AY55846902 Repl SampleConc StndConc BlnkCorr Time # mg/kg  $\mu$ g/L Signal 0.02647 0.1903 0.03068 0.2205 10:37:18 10:37:24 0.004 1 0.02647 0.004 2 3 0.03183 Mean: 0.02966 10:37:29 0.2287 0.004 Mean: 0.02966 0.2132 0.004 SD: 0.002820 0.02027 0.000 %RSD: 9.51 9.51 9.51 Element: Hg Seq. No.: 88 Date: 03/05/2012 Sample ID: AY55847S02 _____ Repl SampleConc StndConc BlnkCorr Time Signal mg/kg μg/L # 1 0.03714 0.2786 0.005
2 0.03975 0.2981 0.006
3 0.03881 0.2911 0.006
Mean: 0.03857 0.2893 0.006
SD : 0.001319 0.009893 0.000
%RSD: 3.42 3.42 3.42 10:38:32 10:38:37 10:38:42 Element: Hg Seq. No.: 89 Date: 03/05/2012 Sample ID: AY55848S02 Repl SampleConc StndConc BlnkCorr Time 10:39:45 10:39:50 10:39:55 Element: Hg Seq. No.: 90 Date: 03/05/2012 Sample ID: AY55849S02 _______ Repl SampleConc StndConc BlnkCorr Time 10:40:58 10:41:03 10:41:08 An extra autosampler wash has been performed. _______ Element: Hg Seq. No.: 91 Date: 03/05/2012 Sample ID: AY55850S02 Repl SampleConc StndConc BlnkCorr Time mg/kg μg/L Signal
0.1966 1.433 0.028
0.2070 1.510 0.029
0.2079 1.516 0.029
0.2038 1.486 0.029 10:43:29 10:43:34 2 10:43:40 3 Mean: SD: 0.006307 0.04599 0.001 %RSD: 3.09 3.09 3.09

Element: Hg Seq. No.: 92 Date: 03/05/2012 Sample ID: AY55851802 Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu$ g/L Signal # 9.211 1.404 0.178 10:45:31 1 9.561 0.185 9.739 0.188 9.504 0.184 1.457 10:45:37 2 1.484 1.448 3 10:45:42 Mean: SD: 0.04097 0.2689 0.005 %RSD: 2.83 2.83 2.83 An extra autosampler wash has been performed. _______ Element: Hg Seq. No.: 93 Date: 03/05/2012 Sample ID: AY55852S02 Repl SampleConc StndConc BlnkCorr Time # mg/kg  $\mu$ g/L Signal 0.5544 0.011 0.5485 0.011 0.5738 0.011 0.5589 0.011 0.01326 0.000 2.37 0.08100 0.544F 0.08188 1 10:47:34 10:47:39 2 10:47:44 3 0.08475 Mean: 0.08254 0.5589 SD: 0.001958 0.01326 %RSD: 2.37 2.37 An extra autosampler wash has been performed. ____________________________________ Element: Hg Seq. No.: 94 Date: 03/05/2012 Sample ID: AY55853802 SampleConc StndConc BlnkCorr Time Repl mg/kg μg/L Signal # 0.05980 0.4236 0.008 0.06079 0.4306 0.008 0.06201 0.4392 0.008 0.06087 0.4311 0.008 10:49:37 10:49:42 1 10:49:47 Mean: 0.06087 SD : 0.001107 0.007840 0.000 %RSD: 1.82 1.82 1,82 _______ Element: Hg Seq. No.: 95 Date: 03/05/2012 Sample ID: CCV 03-01-12 LO Repl SampleConc StndConc BlnkCorr Time # 5.339 10:50:50 10:50:56 1 2 10:51:01 Mean:

SD: 0.1455 0.1455 %RSD: 2.65 2.65 0.003 2.65 OC value within specified limits.

Date: 03/05/2012

Element: Hg Seq. No.: 96 Sample ID: CCB 03-01-12 LO

Repl #	SampleConc µg/L	StndConc µg/L	BlnkCorr Signal	Time	
1	0.2925	0.2925	0.006	10:53:33	
2	0.2748	0.2748	0.005	10:53:38	
3	0.2996	0.2996	0.006	10:53:44	
Mean:	0.2890	0.2890	0.006		
SD :	0.01278	0.01278	0.000		
%RSD:	4.42	4.42	4.42		
QC out	of limits.	QC will be	repeated	based on Retry	setting.

Element: Hg Seq. No.: 97 Date: 03/05/2012 Sample ID: Sample 4------SampleConc StndConc BlnkCorr Time Repl ha\r μg/L # Signal 0.2682 0.2682 0.005 10:55:53 1

Auto-zero performed.

Method Name: Hg-7471 - KWS Element: Hg

Date: 03/05/2012

Results Data Set: 120301AA-7471A

Element: Hg Seq. No.: 98 Date: 03/05/2012

Sample ID: AY55854802

Repl SampleConc StndConc BlnkCorr Time # mg/kg  $\mu$ g/L Signal 1 0.3053 2.067 0.040
2 0.3148 2.131 0.041
3 0.3214 2.176 0.042

Mean: 0.3138 2.125 0.041

SD : 0.008056 0.05454 0.001

%RSD: 2.57 2.57 10:57:26 10:57:32 10:57:37

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 99 Date: 03/05/2012

Sample ID: AY55855S02

-Repl SampleConc StndConc BlnkCorr # mg/kg  $\mu g/L$  Signal 10:59:36 10:59:42 10:59:47

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 100 Date: 03/05/2012

Sample ID: AY55855802 MS _____

Repl SampleConc StndConc BlnkCorr Time # mg/kg \mug/L Signal
1 0.9291 6.291 0.122
2 0.9661 6.541 0.126
3 0.9879 6.689 0.129
Mean: 0.9610 6.507 0.126
SD : 0.02973 0.2013 0.004
*RSD: 3.09 3.09 3.09 11:01:41 11:01:46 11:01:51

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 101 Date: 03/05/2012

Sample ID: AY55855S02 MSD

____ Repl SampleConc StndConc BlnkCorr Time #

1 3 Mean: SD : %RSD:

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 102 Date: 03/05/2012 Sample ID: AY55856802 Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu g/L$  Signal # 5.637 0.8326 0.109 11:05:50 1 5.864 0.113 5.981 0.116 5.827 0.113 0.8660 11:05:55 2 0.8833 11:06:01 3 Mean: 0.8606 SD: 0.02578 0.1746 %RSD: 3.00 3.00 0.003 3.00 An extra autosampler wash has been performed. Blement: Hg Seq. No.: 103 Date: 03/05/2012 Sample ID: AY55857S02 Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu$ g/L Signal # 7.268 0.140 7.512 0.145 7.648 0.148 7.476 0.144 1.026 11:07:53 1 11:07:58 1.060 2 1.080 11:08:03 3 1.055 Mean: SD : 0.02720 0.1927 %RSD: 2.58 2.58 0.004 2.58 An extra autosampler wash has been performed. Element: Hg Seq. No.: 104 Date: 03/05/2012 Sample ID: AY55858S02 _ Time Repl SampleConc StndConc BlnkCorr mg/kg µg/L Signal 1.238 8.899 # 1 1.238 8.899 0.172 11:09:53
2 1.283 9.220 0.178 11:09:58
3 1.303 9.366 0.181 11:10:04

Mean: 1.275 9.162 0.177

SD : 0.03325 0.2390 0.005

RSD: 2.61 2.61 2.61 An extra autosampler wash has been performed. Element: Hg Seq. No.: 105 Date: 03/05/2012 Sample ID: AY55859S02-1/5 .....

		·		
Repl #	SampleConc mg/kg	StndConc µg/L	BlnkCorr Signal	Time
ı" 1	2.458	3.482	0.067	11:11:54
2	2.563	3.631	0.070	11:11:59
3	2.620	3.711	0.072	11:12:05
Mean:	2.547	3.608	0.070	
SD :	0.08197	0.1161	0.002	
%RSD:	3.22	3.22	3.22	

An extra autosampler wash has been performed.

Element: Hq Seq. No.: 106 Date: 03/05/2012 Sample ID: AY55869S02 Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu g/L$  Signal # 0.5114 0.010 0.07013 11:13:55 1 0.4917 0.010 2 0.06743 11:14:00 0.4972 0.010 3 0.06818 11:14:05 0.5001 Mean: 0.06858 0.010 SD : 0.001396 0.01018 0.000 %RSD: 2.03 2.03 2.03 Element: Hg Seq. No.: 107 Date: 03/05/2012 Sample ID: AY55849S02~A Repl SampleConc StndConc BlnkCorr Time 11:15:09 11:17 # mg/kg  $\mu$ g/L Signal 7.321 0.141
7.511 0.145
7.629 0.147
7.487 0.145
0.1555 0.003
2.08 2.08 7.321 1.049 1 1.076 2 3 1.093 11:15:20 1.073 Mean: SD : 0.02229 0.1555 2.08 2.08 %RSD: An extra autosampler wash has been performed. Element: Hq Seq. No.: 108 Date: 03/05/2012 Sample ID: CCV 03-01-12 LO Repl SampleConc StndConc BlnkCorr Time # 11:17:11 1 11:17:17 2 11:17:22 3 Mean: 0.1519 0.1519 0.003 SD : 2.69 2.69 2.69 %RSD: QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 109 Date: 03/05/2012 Sample ID: CCB 03-01-12 LO _ SampleConc StndConc BlnkCorr Time Repl  $\mu g/L$   $\mu g/L$  Signal # 0.006 11:19:14 0.3092 0.3092

2	0.2952	0.2952	0.006	11:19:19	
3	0.2775	0.2775	0.005	11:19:24	
Mean:	0.2940	0.2940	0.006		
SD :	0.01587	0.01587	0.000		
%RSD:	5.40	5.40	5.40		
QC out	of limits.	QC will be	repeated	based on Retry s	etting.

```
Element: Hg Seq. No.: 110 Date: 03/05/2012
Sample ID: Sample
SampleConc StndConc BlnkCorr Time
Repl
     μg/L μg/L Signal
              0.2652
                      0.005 11:20:29
     0.2652
 1
Auto-zero performed.
Element: Hg Seq. No.: 111 Date: 03/05/2012
Sample ID: AY55849802-1/5
Repl SampleConc StndConc BlnkCorr Time
     mg/kg \mu g/L Signal
 #
# Mg/kg µg/L Signal
1 0.4164 0.5813 0.011
2 0.4294 0.5993 0.012
3 0.4714 0.6581 0.013
Mean: 0.4391 0.6129 0.012
SD : 0.02876 0.04015 0.001
%RSD: 6.55 6.55 6.55
     0.\overline{4}164
                               11:21:37
                               11:21:42
                               11:21:47
An extra autosampler wash has been performed.
_______
Element: Hg Seq. No.: 112 Date: 03/05/2012
Sample ID: CCV 03-01-12 LO
____
Repl SampleConc StndConc BlnkCorr
# \mu g/L \mu g/L Signal
1 5.228 5.228 0.101
2 5.371 5.371 0.104
3 5.477 5.477 0.106
Mean: 5.359 5.359 0.104
SD : 0.1246 0.1246 0.002
%RSD: 2.32 2.32 2.32
                             11:23:39
11:23:44
                               11:23:50
OC value within specified limits.
An extra autosampler wash has been performed.
Blement: Hg Seq. No.: 113 Date: 03/05/2012
Sample ID: CCB 03-01-12 LO
Repl SampleConc StndConc BlnkCorr Time
Repl SampleCone StndCone BinkCorr # \mug/L \mug/L Signal 1 0.05863 0.05863 0.001 2 0.03726 0.03726 0.001 3 0.05622 0.05622 0.001 Mean: 0.05070 0.05070 0.001 SD : 0.01170 0.01170 0.000 %RSD: 23.09 23.09 23.09
                             11:25:41
11:25:47
                              11:25:52
```

QC value within specified limits.

# Mercury Digestion Worksheet

Method Name 7470 Mercury Digestion (TCLP)

Prep Method M7470TCLP

Set 120301A

Units mL

Hg WORKING STANDARD prep 3-1-12.
Hg WORKING ICV prep 3-1-12
NM Date: 03/01/12 9:25:00 AM
RJS Date: 03/01/12 9:25:00 AM

End Date/Time			03/01/12 11:3	0:00 AM
Тетр Туре:	Modblocki	Tumble Start Time 2-28-12 @ 15:00		
Ending Temp:	95 ¢		. '	1 1
Starting Temp:	95 c			

Mercura	(Calibration A		
Sample	Spike Amount	Spike ID	Final Volume
0 ppb		1	[44,5 m]
0.2 ppb	0.4 ml	1	144.5 ml
0.5 ppb	I ml	1	144.5 ml
1 ppb	2 ml	1	144.5 ml
2 ppb	4 ml	1	144.5 ml
5 ppb	10 ml	I	144.5 ml
5 ppb	10 ml	1	144.5 ml
t0 ppb	20 ml	1	144.5 m]
ICV	8 ml	2	144.5 ml

Start Date/Time of Calibration 03/01/12 9:25
Sufficient Vol for Matrix QC: Yes

Sample	Sample. Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
1 120301 A Bik	 }}}}	]		50mL	72.25mL	03/01/12 9:25	equip: Modblock1 Tumble Start Time 2-28-12 @ 15:00
2 120301A LCS		4mL	1	50mL	72.25mL		equip: Modblock1 Tumble End Time 2-29-12 @ 0900
3 AY55857	AY55857801			50mL	72.25mL	03/01/12 9:25	equip: Madblock1 Fluid # 2
4 AY55858	AY55858S01	1		50mL	72.25mL	03/01/12 9:25	equip: Modblock I
5 AY55859	AY55859S01			50mL	72.25mL	03/01/12 9:25	equip: Modblock1
6 AY55859 MS	AY55859S01	4mL	Í	50mL	72.25mL	03/01/12 9:25	equip: Modblock1
7 AY55859 MSD	AY55859S01	4mL	- 1	50mL	72.25mL	03/01/12 9:25	equip: Modblock1

Solvent and Lof# 3000	
HNO3 J.T.B K47023 0145	
H2SO4 JTB J32024 0112	
KMnO4 1-11-12	
K2\$2O8 1-30-12	
Decolorizer 2-9-12	

Sample COC Pransier 342 34	
Sample prep employee Initials	nm
Analyst's initials	Ex
Date	3-1-12
Time	11:30
Moved to	METALS

aleennio and Sainthais	
Scanned By	лm
Sample Preparation	nm
Digestion	lo
Bring up to volume	10
Modified	03/01/12 9:05:14 AM

Reviewed By: 🎉

B23 Date: 3-1-12

# **Mercury Digestion Worksheet**

Method Name 7471A Mercury Digestion (GROSS UP Prep Method M7471GRO

Set 120301A

Units mL

Spikes .						
Spiked ID-1	Hg WORKING	STANDARD prep 0	3-01-12			
Spiked ID 2	Hg WORKING I	CV prep 03-01-12				٠.
Spiked ID 3					· .	 -;
Spiked ID 4		•		••••		
Spiked By	LO	Date:	03/01/12	10:00:00 A	vI	 
Witnessed By	NM	Date:	03/01/12	10:00:00 AN	v1	

Sample	Spike Amount	Spike ID	Final Volume
0 ppb	,	1	96 ml
0.2 ppb	0.4 ml	1	96 ml
0.5 ppo	I ml	1	96 ml
1 ppb	2 ml	1	96 ml
2 ppb	4 ml	1	96 ml
5 ppb	10 ml	1	96 ml
5 ppb	10 ml	. 1	96 ml
10 ppb	20 ml	l l	96 ml
ICV.	8 ml	2	96 ml

Starting Temp:	95 C
Ending Temp:	95 C
Тетр Туре:	Modblocki
End Date/Time	03/01/12 10:40:00 AM

Sufficient Vol for Matrix QC: YES

Sample	. Sample	Spike	Spike	Digested	Final	Start Date/Time	Comments
Sumpio -	Container	Amount	ID Spins	Amount		2441	
1 120301 A Bik				0,60g	96mL	03/01/12 10:00	equip: Modblock1
2 120301A LCS	A A L L L L L L L L L L L L L L L L L L	8mL	1 -	0.60g	96mL	03/01/12 10:00	equip: Modblock1
3 AY55846	AY55846S02			0.69g	96mL	03/01/12 10:00	equip: Modblock I
4 AY55847	AY55847S02			0.72g	96mL	03/01/12 10:00	equip: Modblock1
5 AY55848	AY55848S02		,	0,68g	96mL	03/01/12 10:00	equip: Modblock1
6 AY55849	AY55849S02			0.67g	96mL	03/01/12 10:00	equip: Modblock1
7AY55850	AY55850S02			0.70g	96mL	03/01/12 10:00	equip: Modblock1
8 AY55851	AY55851S02	) ; ; ;		0.63g		03/01/12 10:00	equip: Modblock1
9 AY55852	AY55852S02	· •	 	0.65g	96mL	03/01/12 10:00	equip: Modblock1
10 AY55853	AY55853SQ2			0.68g	96mL	03/01/12 10:00	equip: Modblock1
I 1 AY55854				0.65g	96mL	03/01/12 10:00	equip: Modblocki
12 AY55855	AY55855S02	·	ļ. 	0.65g	96mL	03/01/12 10:00	equip: Modblock I
13 AY55855 MS	AY55855S02	8mL	l	0.65g	96mL	03/01/12 10:00	equip: Modblock1
14 AY55855 MSD	AY55855802	8mL į	1	0.65g	96mL	03/01/12 10:00	equip: Modblock1
15 AY55856	AY55856S02			0.65g		03/01/12 10:00	equip: Modblock1
16 AY55857 ~				0.68g		03/01/12 10:00	equip: Modblock1
17 AY55858 			E	0.69g	96mL	03/01/12 10:00	equip: Modblock1
18 AY55859 	AY55859802		1,3	0.68g		03/01/12 10:00	equip: Modblock1
19 AY55869	AY55869S02			0.70g	96mL	03/01/12 10:00	equip; Modblock1

Solvent and Lot# 1888	
AQUAREGIA 2-16-12	
KMnO4 12-15-11	
DECOLORIZER 12-14-11	·

Sample COC Transfer Ass.	
Sample prep employee Initials	LO .
Analyst's initials	EA
Date	3-1-12
Time	10:40
Moved to	Metals_

Tedinician silnicials 20	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/01/12 5:25:58 PM

Reviewed By: &

Date: 3-1-12

P724 a	ls Standards Log Book # _3 ^৭ Page # ৩ገ2		N
NM 2/29/12	TCLP FiuiD #2		
	ADD 114AL OF GLACIAL ACETIC ACID J.T. BAKER K45803-30222		$\perp$
	to 192 of DI H20 PH to 2.88 = 0.01		
	FILL UP to 201 DI HZO EXP: 2 29 13		
<u> </u>		_ <u></u>	$\bot$
ws 03/01/12	19/HD103/59/HCI BLK 6010R6016C ICSA CUS O 3/01/12  AMOUNT REAGENT MANAGEMES LOT OPEN DATE AMOUNT STD MANAGEMES LOT EXP DATE		$\bot$
Leolo B-C	100 mL HCL 9DH 411040 12/28/11 1mL AI CPI 108012-27685 04/20/12 20 mL HNO3 ЛЕВАКЕ К23022 12/27/11 ImL Cs CPI 114006-28526 06/15/12		$\bot$
	Prepared in 2000 ml DI Water   Imt. Mg	<u></u>	_ _
<del></del>	0.5 mL   6010 LDL   ABSOLUTE   061409-25205   09/14/32   6010B/6010C JCSAB     TimL   AJ   CPJ   106012/27685   04/20/12		$\bot$
	STD 3 / HDL 6010B/6010C   ImL Ca CP? 11A008-20526 05/15/12   ImL CCV-A ABSOLUTE 051409-25206 05/14/12   ImL Mg CP1 10H213-2786 04/20/12   IML CCV-B ABSOLUTE 051109-25208 05/14/12   ImL Fe 0261 1052245-27669 04/22/12		1
	IML   CCV-B   ABSOLUTE   081109-25208   D9141/2   ImL   Fe   O281   109245-27609   O472712		+
<u> </u>	STD 27 CCV1 6010B/S010C/S010C   6010B/S010C ICV		$\bot$
	25mL   STD )   Today   1 week   D.5ML   QCS ICV 8   CPI   11C174-26549   O9/17/12		4-
	AMOUNT		_
	25mL   IMHNODISMHCI Today   1 week		
ws or forther	Hg WORKING STANDARD  1ml X 10ug/ml Hg STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023		<del> </del>
	1ml X 10ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Final concentration is 50 ug/L. Expires		+
·			+
			工
		<del></del>	1
			$\perp$
		<u> </u>	$\perp$
	12/2		$\perp$
	0310		
	Wis -	<del></del>	$\bot$
		<u></u>	4
		<u> </u>	4
	825	<u>-</u>	$\perp$

# Wefals Standards Log Book # 34 Page # 063

2 2/17/12

# Hg STANDARD

CPI Lot # 11D140-28885 10ua/ml in 1% HNO3 LOT#K47023 02/17/12 Prep. Date 03/16/12 Exp. Date

By KWS

Manufacturer: J.T. Baker

# Hg STOCK ICV

Ultra Scientific Lot # K00200-26307

10ua/ml in 1% HNO3 LOT#K47023

Prep.Date 02/17/12 03/16/12 Exp. Date

By KWS

Manufacturer: J.T. Baker

# STANNOUS CHLORIDE

125g SnCl2 MACRON Lot #K12620 100 mL HCl J.T. BAKER Lot #K29026 Brought to 500 mL with DI Water

Prep. Date

02/17/12

Exp. Date

02/16/13

By KWS

ICP-MS STANDARDS 6020/8020A/3015/305 Todavs Date: 02/17/12 02/24/12 EXPYS: 02/24/12 Prep 1% HNO3/1,0%HGL 20 mL HNO3 / 2000 mL DI Water Lot # K23022 20ml, HCL / 2000mL DI Water 2000mx. La Lot #K43032 02/24/12 Ехрігез:

Internal Standard Mix: Prep 02/16/2012

Amount 50 uL 50 trl. 50 trl.

STO

Manufacturer Env. Express

1100309-28141

Prepared in 100 mL of 1% HNO3/1.0% HCL

STD Manufacturer

Amount 25 UL 25 UL 25 UL Env. Express Env. Exprese

1036407-26139 1038410-28140

02/17/12

Lot# 1038407-28139 1038410-28140 1100309-28141 02/17/12 Standard 2 02/24/12 STD Amount 600 uL

Standard 4 Prepared in 60 mL of 1% HNO3/1.0% HCL

Standard 1 02/24/12 Amount 50 oL

Prepared in 50 mL of 1% HNO3/1.6% MCL

02/24/12 Amount STO 50 J.L 50 J.L QCS ICV A Prepared in 60 mL of 1% HWOS/1.0% HCL

ICSA Prep: 02/24/12 ICSA Prepared in 5 mL of 1% HNO3/1.0% HCL

ICSAB Prep: 1mL 0.025mL

Env. Express CCV-C 50 M. Env. Express 02/17/12

02/17/12

02/17/12

11C174-28548 11C174-28549 02/17/12

11C068-28529 02/17/12 110066-28529

1023805-28210

1036407-28139 1036410-28140 1100309-28141

# NBS 02/20/12

Amt	STD	Ælement	Vendor	Lot#	Final Conc. In Std	Expires
500UL	1000 ug/mL	LI .	CPI	10L079-27839	5000 ug/L	06/10/1
500uL 500uL	1000 ug/mi,	ln .	CPI	103155-28574	5000 ug/L	09/25/1
	1000 ug/mL	Ho	CPI	10A107-28576	5000 up/L	09/25/1
500uL	1000 ug/mL	Τb	CPI	118054-28575	5000 ug/L	09/25/1
500ut.	1000 ug/mL	Sc	02el	1024073-26527	5000 ug/L	08/18/1:
500yl.	1000 ug/mL	Ge	Environmental Express	11(601(-29381	5000 ug/L	02/08/1

Prepin • 1%HNO3/1.0%HCL: Lot #KK23022/43032

# Wetlab Results

ARF: 67072

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

**Parsons** 

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL Uni	ts	Prep Date	Analysis Date
APPL ID: A	Y55846 -Client Sample ID: B4-NT1-SW9		-Sample Collection Date: 02/27/	/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	12.7	2,0	%	02/28/12	02/29/12
APPL ID: A	Y55847 -Client Sample ID: B4-NT1-SW6		-Sample Collection Date: 02/27/	12	Project: 74837	2.06000 CS\$A
CLP MOIST	MOISTURE	16.8	2.0	% 	02/28/12	02/29/12
APPL ID: A	<b>Y55848</b> -Client Sample ID: B4-NT1-SW3		-Sample Collection Date: 02/27/	12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	11.7	2.0	%	02/28/12	02/29/12
APPL ID: A	Y55849 -Cilent Sample ID: B4-NT1-BOT03		-Sample Collection Date: 02/27/	12	Project: 748372	2.06000 C\$SA
CLP MOIST	MOISTURE	10.6		%	02/28/12	02/29/12
	Y55850 -Client Sample ID: B4-NT1-SW8		-Sample Collection Date: 02/27/	12	Project: 748372	2.06000 CS\$A
CLP MOJST	MOISTURE	14.5	2.0	%	02/28/12	02/29/12
APPL ID: A	Y55851 -Client Sample ID: B4-NT1-BOT02		-Sample Collection Date: 02/27/	12	Project: 748372	2.06000 CSSA
CLP MOIST	MOISTURE	4.2	2.0	%	02/28/12	02/29/12
APPL ID: A	Y55852 -Client Sample ID: B4-NT1-SW4		-Sample Collection Date: 02/27/	12	Project: 748372	2.06000 ÇSSA
CLP MOIST	MOISTURE	7.8	2.0	%	02/28/12	02/29/12
,	<b>Y55853</b> -Client Sample ID: B4-NT1-SW7		-Sample Collection Date: 02/27/	12	Project: 748372	.08000 CSSA
CLP MOIST	MOISTURE	12.3	2.0	%	02/28/12	02/29/12
APPL ID: A	/55854 -Client Sample ID: B4-NT1-8OT01 FC	)	-Sample Collection Date: 02/27/	12	Project: 748372	:.08000 CSSA
CLP MOIST	MOISTURE	7.1	2.0	%	02/28/12	02/29/12
APPL ID: A	/55855 -Client Sample ID: B4-NT1-BOT01		-Sample Collection Date: 02/27/	12	Project: 748372	.08000 CSSA
CLP MOIST	MOISTURE	7.1	2.0	%	02/28/12	02/29/12
WII	/55856 -Client Sample ID: B4-NT1-SW5		-Sample Collection Date: 02/27/	12	Project: 748372	:.06000 CSSA
CLFMOIST	MOISTURE	7.2	2.0	%	02/28/12	02/29/12
APPL ID: A	/55857 -Client Sample ID: B4-WC01		-Sample Collection Date: 02/27/	12	Project: 748372	.08000 CSSA
CLP MOIST	MOISTURE	11.7		%	02/28/12	02/29/12

# Wetlab Results

ARF: 67072

APPL Inc.

908 North Temperance Avenue

Glovis, CA 93611

**Parsons** 

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: A	Y55858 -Client Sample ID: B4-WC02		-Sample Collection Da	ate: 02/27/12	Project: 74837	2.08000 CSSA
CLP MOIST	MOISTURE	12.6	2.0	%	02/28/12	02/29/12
APPL ID: A	Y55859 -Client Sample ID: B4-WC03		-Sample Collection D	ate: 02/27/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	12,2	2.0	%	02/28/12	02/29/12
APPL ID: A	Y55869 -Client Sample ID: B4-NT1-SW6 F	:D	-Sample Collection Da	ate: 02/27/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	14.8	2.0	%	02/28/12	02/29/12

# WETLAB

***

# Sample/Sample Duplicate Results

8000 Centre Park Drive Ste 200 Austin, TX 78754

Parsons

Sample ID: AY55855 Client ID: B4-NT1-BOT01

APPL Inc. 908 North Temperance Avenu

Clovis, CA 93611

ARF: 67072

Attn: Tammy Chang

Project: 748372.06000 CSSA

Sample Dup	Analysis Date	02/29/12
Sample Sample Dup Sample Dup	Extract Date Analysis Date Extract Date Analysis Date	02/28/12
Sample	Analysis Date	02/29/12
Sample	Extract Date	% 02/28/12
	Units	
	Max POL Units E	2.0
RPD	Max	20
	RPD	NA
Sample Dup	Result	7.2
Sample	Result	7.1
	Sample ID	AY55855
	Analyte	MOISTURE
	Method	CLP MOIS

# WETLAB

4. 9.7.

100 A. F.

# Sample/Sample Duplicate Results

Parsons
8000 Centre Park Drive Ste 200
Austin, TX 78754

Project: 748372.06000 CSSA

Attn: Tammy Chang

Sample ID: AY55856 Client ID: B4-NT1-SW5

908 North Temperance Avenu APPL Inc.

· . ·

Clovis, CA 93611

ARF: 67072

Sample Dup	Analysis Date	02/29/12
Sample Sample Dup Sample Dup	POL Units Extract Date Analysis Date Extract Date Analysis Date	02/28/12
1	Analysis Date	02/29/12
Sample	Extract Date	% 02/28/12
	Units	
	PQL	2.0
RPD	Max	20
	RPD	¥
Sample Dup	Result F	7.0
Sample	Result	7.2
	Sample ID	AY55856
	ethod Analyte	LP MOIS MOISTURE
	Method	CLP MOIS

% Moisture

٠,

Wednesday, March 07, 2012

275.5651

0.8350

02/28/12 13:06

7.3747

02/28/12 13:07

6.5428

02/29/12 12:02

Batch: QCG 120228-M003929

**CLP 4.0** Method:

Sample Container Pan+Wet Pan+Dry 1 Pan+Dry 2 Moisture Comments (%)(g) (g) (g) (g) AY55855D 7.246 AY55855S02 0.8312 7.2875 6.8196 6.8197 13, 02/29/12 12:07 02/28/12 13:15 02/28/12 13:16 02/29/12 12:07 7.111 AY55855S02 AY55855 0.8319 7.0711 6.6273 6.6274 02/29/12 12:07 02/29/12 12:07 02/28/12 13:15 02/28/12 13:14 AY55854 7.087 AY55854S02 0.8270 7.6123 7.1312 7.1314 02/29/12 12:06 02/29/12 12:06 02/28/12 13:13 02/28/12 13:14 0.8270 7.0288 6.2630 6.2631 12.346 AY55853S02 AY55853 02/29/12 12:06 02/28/12 13:12 02/28/12 13:13 02/29/12 12:06 7.832 AY55852S02 6.3808 6.3810 6.8525 AY55852 0.8325 02/28/12 13:12 02/29/12 12:06 02/29/12 12:06 02/28/12 13:12 4.175 AY55851S02 AŸ55851 0.8342 6.5568 6.3179 6.3179 02/28/12 13:11 02/28/12 13:11 02/29/12 12:06 02/29/12 12:06 AY55850S02 14.453 AY55850 0.8351 9.2138 8.0027 8.0028 02/29/12 12:05 02/28/12 13:11 02/29/12 12:05 02/28/12 13:10 AY55849S02 8.4750 7.6615 7.6614 10.642 AY55849 0.8296 02/28/12 13:09 02/28/12 13:10 02/29/12 12:05 02/29/12 12:05 AY55848 7.3605 6.5928 6.5928 11.748 AY55848S02 0.8256 02/29/12 12:05 02/28/12 13:08 02/28/12 13:09 02/29/12 12:05 AY55847S02 5.6398 16,813 AY55847 6.6109 5.6400 0.8361 02/28/12 13:08 02/29/12 12:03 02/29/12 12:03 02/28/12 13:07 12.719 AY55846S02 6.5429

Date/Time	Date/Time	Date/Time	Date/Time
InOven@104°C	OutOven@104°C	InOven@104°C	OutOven@104°C
02/28/12 1:16:00 PM		-	02/29/12 12:03:00 PM

831

02/29/12 12:03

Date: 02/28/12 13:15

% Moisture

Batch: QCG 120228-M003930

Method: CLP 4.0

Date: 02/28/12 13:22 Comments

Sample	Container	Pan (g)	Pan+Wet (g)	Pan+Dry 1 (g)	Pan+Dry 2 (g)	Moisture (%)	Comments
AY55869	•	0.8351	7.3892	6.4349	6.4353	14.554	AY55869S02
		02/28/12 13:22	02/28/12 13:23	02/29/12 12:12	02/29/12 12:13		
AY55859	-	0.8332	7.5067	6.6925	6.6926	12.199	AY55859S02
1.30		02/28/12 13:21	02/28/12 13:22	02/29/12 12:12	02/29/12 12:12		
Y55858		0.8318	8,4214	7.4676	7.4677	12.566	AY55858S02
		02/28/12 13:20	02/28/12 13:21	02/29/12 12:12	02/29/12 12:12		
\Y55857	-:	0.8321	8.2476	7.3821	7.3820	11.673	AY55857802
, '''		02/28/12 13:20	02/28/12 13:20	02/29/12 12:12	02/29/12 12:12		
Y55856D		0.8343	7.0445	6.6078	6.6078	7.032	AY55856S02
•		02/28/12 13:17	02/28/12 13:19	02/29/12 12:11	02/29/12 12:11		
Y55856		0.8324	6.8952	6.4560	6.4561	7.243	AY55856S02
		02/28/12 13:16	02/28/12 13:17	02/29/12 12:11	02/29/12 12:11		

	Date/Time OutOven@104°C	 Date/Time OutOven@104°C
02/28/12 1:23:00 PM		02/29/12 12:11:00 PM

Date	Initials	Balance	Weight	Reading	Lower	Upper	Comments / Is
					Limit	Limit	the Bubble Centered?
1/28/12	RB	Mettler AT200	0.5g	0.5000 B	0.4995	0.5005	Yes
	l	Mettler AT200	1g		0.9990	1.0010	7
<del> </del>		Mettler AT200	20g		19.9800	20.0200	
1		Mettler AT200	50g		49.9500	50.0500	
		Mettler AT200	100g		99.9000	100.1000	
		Mettler AT200	150g		149,8500	150.1500	
		OHAUS ARC120	0.1g		0.08	0.12	
		OHAUS ARC120	0.5g		0.48	0.52	
		OHAUS ARC120	1g	1000 B	0.98	1.02	
		OHAUS ARC120	100g	100.00 g	98.00	102.00	
		OHAUS ARC120	lkg	8 06,0001	980.00	1020.00	
V	4	OHAUS ARC120		1999.978	1960.00	2040.00	<u> </u>
							-
1-29-12	CK	Mettler AT200	0.5g	O 5000 g	0.4995	0,5005	Hei
	1	Mettler AT200	1g	1.0000g	0.9990	1.0010	17
		Mettler AT200	20g	20.0001g	19.9800	20.0200	·····
	7	Mettler AT200	50g	50.00148	49.9500	50.0500	
		Mettler AT200	100g	100.0027 g	99.9000	100.1000	
		Mettler AT200	150g	150.0040 g	149.8500	150.1500	
		OHAUS ARC120	0.1g		0.08	0.12	Ì
7		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	lg	1.00 g	0.98	1.02	
		OHAUS ARC120	100g	LOD-DO g	98.00	102.00	-
		OHAUS ARC120		1000200 g	980.00	1020.00	
	1	OHAUS ARC120		2000.00 g	1960.00	2040.00	- J
							••
3-1-12	Ck	Mettler AT200	0.5g	0.5000 g	0.4995	0.5005	Hes
1	1	Mettler AT200	1g	COCOUS	0.9990	1,0010	0
		Mettler AT200	20g	10.000bg	19.9800	20.0200	
		Mettler AT200	50g	50.00148	49.9500	50.0500	
		Mettler AT200	100g	100.0027g	99.9000	100.1000	
		Mettler AT200	150g	15000H 8	149.8500	150.1500	
		OHAUS ARC120	0.1g	010 g	80.0	0.12	
		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	1g	1-00 g	0.98	1.02	
		OHAUS ARC120	100g	100.00 g	98.00	102.00	
		OHAUS ARC120	1kg	999.98 g	980.00	1020.00	
J.	/	OHAUS ARC120	2kg	1999.96 g	1960.00	2040.00	V
3-2-12	CK	Mettler AT200	0.5g	0.500g	0.4995	0.5005	Mes
		Mettler AT200	lg	\ .000Dg	0.9990	1.0010	Qi 🐪
		Mettler AT200	20g	20.0006g	19.9800	20.0200	
		Mettler AT200	50g	50.0013 g	49.9500	50.0500	
- [	!	Mettler AT200		100.0015g	99.9000	100.1000	
		Mettler AT200	150g	150 0038g	149.8500	150.1500	
<u> </u>		OHAUS ARC120	0.1g	0.LO g	0.08	0.12	
		OHAUS ARC120	0.5g	0-57) g	0.48	0.52	
		OHAUS ARC120	lg .	1.00 g	0.98	1.02	
		OHAUS ARC120	100g	100.00 g	98.00	102.00	
<del>- \.  </del>		OHAUS ARC120		999.96 g	980.00	1020.00	
/		OHAUS ARC120	2kg	199997 g	1960.00	2040.00	•

# DATA VERIFICATION SUMMARY REPORT

# for B4 samples collected from

### CAMP STANLEY STORAGE ACTIVITY

# **BOERNE, TEXAS**

Data Verification by: Tammy Chang Parsons - Austin

### INTRODUCTION

The following data verification summary report covers one soil sample and one associated field quality control (QC) sample collected from B4 at Camp Stanley Storage Activity (CSSA) on February 29, 2012. The samples were assigned to the following Sample Delivery Group (SDG):

67099

The samples in this SDG were analyzed for volatile organic compounds (VOCs), semi-VOCs (SVOCs), explosives, and metals. QC sample included one trip blank (TB) for VOC only.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 2.0°C, which was within the 2-6°C range recommended by the CSSA QAPP.

### **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

### **ICP-AES Metals**

### General

The ICP-AES metal portion of this SDG consisted of one (1) soil sample for the analysis of arsenic, barium, cadmium, chromium, copper, nickel, lead, and zinc.

The metal analyses were performed using USEPA SW846 Method 6010B. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

PAGE 1 OF 8

The sample was digested in batch #164505. All analyses were performed undiluted.

# **Accuracy**

Accuracy was evaluated using the percent recovery obtained from the laboratory control sample (LCS).

The LCS recoveries for all target metals were within acceptance criteria.

### **Precision**

Precision could not be evaluated due to the lack of duplicate analyses.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

This sample was analyzed following the COC and the analytical procedures described in the Work Plan. This sample was prepared and analyzed within the holding times required by the method.

- All instrument initial calibration criteria were met.
- Low-level check standard met the criteria.
- All second source criteria were met. The initial calibration verification (ICV) sample was prepared using a secondary source.
- All continuing calibration verification (CCV) criteria were met.
- All interference check (ICSA/ICSAB) criteria were met.
- The dilution test (DT) was performed on sample B4-NT1-SW1. This test was applicable to barium and chromium:

Metal	<b>%</b> D	Criteria
Barium	19	%D < 10
Chromium	17	70D ≥ 10

• The post digestion spike (PDS) was performed on the same sample as the DT. It was applicable for barium, cadmium, nickel, and zinc:

Metal	%R	Criteria
Arsenic	96	
Barium	70	

Cadmium	64	
Chromium	78	75 – 125%
Copper	86	
Nickel	78	
Lead	77	
Zinc	76	

"J" flag was applied to the barium and cadmium results of the soil sample in this SDG.

There were one method blank and several calibration blanks associated with the metal analyses in this SDG. All blanks were compliant.

# Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metal results for the sample in this SDG were considered usable. Therefore, the completeness for the lead portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

# **MERURY**

### General

The mercury portion of this SDG consisted of one (1) soil sample. This sample was collected on February 29, 2012 and was prepared and analyzed for total mercury using USEPA Method SW7471B.

This sample was analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

The sample was digested in batch #164455 and analyzed undiluted.

# **Accuracy**

Accuracy was evaluated using the percent recovery obtain from the LCS.

The LCS recovery was within acceptance criteria.

# **Precision**

Precision could not be evaluated due to the lack of duplicate analysis.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;

PAGE 3 OF 8

- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

The sample in this SDG was analyzed following the COC and the analytical procedures described in the CSSA QAPP. This sample was prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All calibration verification criteria were met.
- DT and PDS are not applicable.

There were one method blank and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

# **Completeness**

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

The mercury result for the sample in this SDG was considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

# **VOLATILES**

# General

This data package consisted of one (1) soil samples and one TB. The samples were collected on February 29, 2012 and were analyzed for a full list of VOCs.

The VOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8260B. The samples were analyzed in two analytical batches under two sets of initial calibration (ICAL) curves. All samples were analyzed following the procedures outlined in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method. All samples were analyzed undiluted.

### Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the two LCSs and the surrogate spikes.

All LCSs and surrogates recoveries were within acceptance criteria for both batches.

# **Precision**

Precision could not be evaluated due to the lack of duplicate analyses in this SDG.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining TB and laboratory blanks for cross contamination of samples during sample collection and analysis.

Both samples in this data package were analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. Both samples were prepared and analyzed within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- Both two LCS samples were prepared with a secondary source. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.

There were two MBs, one TB, and few calibration blanks associated with the VOC analyses in this SDG. All blanks were non-detect for all target VOCs at RLs.

# **Completeness**

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All VOC results for the samples in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

### **SEMI-VOLATILES**

### General

This data package consisted of one (1) soil sample which was collected on February 29, 2012 and was analyzed for a full list of SVOCs.

The SVOC analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8270C. This soil sample was analyzed following the procedures outlined in the CSSA QAPP, prepared, and analyzed undiluted within the holding time required by the method.

# **Accuracy**

Accuracy was evaluated using the percent recovery (%R) obtained from the LCS and the surrogate spikes.

The LCS and surrogate spike recoveries were within acceptance criteria.

### Precision

Precision could not be evaluated due to the lack of duplicate analysis in this SDG.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

The sample in this data package was analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0, prepared and analyzed undiluted within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- The LCS sample was prepared with a secondary source. All second source verification criteria were met.
- All ICV criteria were met.
- All CCV criteria were met.
- All internal standard criteria were met.

There were one MB and few calibration blanks associated with the SVOC analyses in this SDG. All blanks were non-detect for all target SVOCs.

# Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All SVOC results for the sample in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

### **EXPLOSIVES**

### General

This data package consisted of one (1) soil sample which was collected on February 29, 2012 and was analyzed for a full list of explosives by SW8330B.

The explosive analyses were performed using United States Environmental Protection Agency (USEPA) SW846 Method 8330B. The sample was analyzed in one analytical batch under one set of initial calibration (ICAL) curves. This sample was analyzed following the procedures outlined in the CSSA QAPP. This sample was prepared and analyzed undiluted within the holding time required by the method.

# **Accuracy**

Accuracy was evaluated using the percent recovery (%R) obtained from the LCS and the surrogate spikes.

All LCS and surrogate spike recoveries were within acceptance criteria.

# Precision

Precision could not be evaluated due to the lack of duplicate analysis.

# Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blank for cross contamination of samples during sample preparation and analysis.

The sample in this data package was analyzed following the COC and the analytical procedures described in the CSSA QAPP, Version 1.0. This sample was prepared and analyzed undiluted within the holding time required by the method.

- All instrument performance check criteria were met.
- All initial calibration criteria were met.
- The LCS was prepared with a secondary source. All second source verification criteria were met.
- All initial calibration verification (ICV) criteria were met.
- All continuing calibration verification (CCV) criteria were met.

There were one MB and several calibration blanks associated with the explosive analyses in this SDG. All blanks were non-detect for all target explosives.

# Completeness

Completeness has been evaluated in accordance with the CSSA QAPP. The number of usable results has been divided by the number of possible individual analyte results and expressed as a percentage to determine the completeness of the data set.

All explosive results for the sample in this SDG were considered usable. The completeness for this SDG is 100%, which meets the minimum acceptance criteria of 95%.

# **Laboratory Report**

# **Parsons**

Project #: 748372.06000 CSSA B-4

ARF: 67099

Samples collected: February 29, 2012

APPL, Inc.

# Data Validatable Package

# for

# Project #: 748372.06000 CSSA B-4

# ARF 67099

# **TABLE OF CONTENTS**

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	3
Chain of Custody and ARF	11
EPA 8270C SVOC Analysis	16
AFCEE Forms	<u>17 ·</u>
Calibration Data	<u>43</u>
Raw Data	74_
EPA 8260B VOC Analysis	<u>93</u>
AFCEE Forms	94
Calibration Data	139
Raw Data	197
EPA 8330B Explosive Analysis	<u> 398</u>
AFCEE Forms	993
Calibration Data	<u> 240</u>
Raw Data	T06.
EPA 6010B Analysis	297
AFCEE Forms	<u> २१४</u>
Calibration Data	313_
Raw Data	329
EPA 7471B Analysis	<u> 337</u>
AFCEE Forms	<u> 338</u>
Calibration Data	<u>350</u>
Raw Data	355

**CASE NARRATIVE** 



# **Case Narrative**

ARF:

67099

Project: 748372.06000 CSSA B-4

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)
Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

# Sample Receipt Information:

The sample group was received March 1, 2012, at 2.0°C. The samples were assigned Analytical Request Form (ARF) number 67099. The sample numbers and requested analyses were compared to the chain of custody. No exception was noted.

# Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
TB-1	AY56026	WATER	02/29/12	03/01/12
B4-NT1-SW1	AY56027	SOIL	02/29/12	03/01/12

Percent moisture was determined using CLP 4.0.

# EPA Method 8270C Semi-Volatile Organic Compounds

# Sample Preparation:

The soil sample was extracted according to EPA method 3550B. All holding times were met.

# Sample Analysis Information:

The sample was analyzed according to the method using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector.

# Quality Control/Assurance

### Calibrations:

Initial and continuing calibrations were performed according to the method. All calibration criteria were met.

### Blanks:

No target compound was detected at or above the reporting limit.

# Spikes:

A Laboratory Control Spike (LCS) was used for quality assurance. All recoveries were acceptable.

No sample was designated by the client for MS/MSD analysis.

# Surrogates

All surrogate recoveries met acceptance criteria.

# Tuning:

The instrument was tuned using DFTPP. All method criteria were met.

# Internal Standards

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8270. All method criteria were met.

# Summary:

No problem was encountered. The data generated are acceptable.

# Volatile Organic Compounds EPA Method 8260B

# Sample Preparation:

The water sample was purged according to EPA method 5030B and the soil sample was purged according to EPA method 5035. All holding times were met.

# Sample Analysis Information:

The samples were analyzed according to EPA method 8260B using a Hewlett Packard Gas Chromatograph with a mass spectrometer detector. All holding times were met.

# Quality Control/Assurance:

# Spike Recovery:

Laboratory Control Spikes (LCS) were used for quality assurance. A second-source standard (SS) was used for the LCS. All LCS and SS criteria were met.

No sample was designated by the client for MS/MSD analysis.

# Surrogates:

All surrogate recoveries met acceptance criteria.

# Method blanks:

No target compound was detected above its reporting limit in the method blanks.

### Calibration:

Initial and continuing calibrations were analyzed according to the method. All calibration criteria were met.

# Tuning:

The instrument was tuned using BFB. All method criteria were met.

## Internal Standards:

The internal standard area counts were compared to the mid-point of the initial calibration according to method 8260. All acceptance criteria were met.

# Summary:

No analytical exception was noted. All data generated are acceptable.

# **EPA Method 8330B**

# **Energetics**

# Sample Preparation:

The soil sample was dried and extracted according to EPA method 8330B, without using incremental sampling procedures. All holding times were met.

# Analysis:

The sample was analyzed according to EPA Method 8330B using an Agilent 1290 HPLC with DA detector.

# Quality Control/Assurance:

# Spike Recovery

A Laboratory Control Spike (LCS) was used for quality assurance. All spike acceptance criteria was met.

No sample was designated by the client for MS/MSD analysis.

# Method blanks:

No target analyte was detected at or above the reporting limit in the method blank.

# Surrogates:

All surrogates had acceptable recoveries.

# Calibration:

The initial and continuing calibrations and second source were analyzed according to the method. All calibration criteria were met.

# Summary:

No analytical problem was encountered. The data generated are acceptable.

# EPA Method 6010B

# Metals

# **Digestion Information:**

The soil sample was digested according to EPA method 3050B. All holding times were met.

# Analysis Information:

# Samples:

The sample was analyzed according to EPA method 6010B using a Perkin Elmer Optima 5300DV ICP.

# Calibrations:

Calibrations were performed according to the methods for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank.

# Spikes:

Laboratory Control Spike (LCS), Post Digestion Spike (PDS) and serial dilution test (DT) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-NT1-SW1 was selected by the laboratory as the QC sample for the analytical batch. The DT was applicable to barium and chromium, which exceeded the 10% deviation limit. The PDS was applicable to all eight analytes; two analytes recovered below the 75% lower control limits, barium at 70% and cadmium at 64.0%. Barium and cadmium are flagged with a "J" in all associated samples, in accordance with CSSA QAPP guidelines.

# Summary:

No other analytical exception is noted.

# EPA Method 7471B Mercury

## **Digestion Information:**

The soil sample was digested according to EPA method 7471B. No exceptions were encountered. All holding times were met.

## Analysis Information:

### Samples:

The sample was analyzed according to EPA method 7471B using a Perkin Elmer AAnalyst 300.

### Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank.

### Spikes:

A Laboratory Control Spike (LCS) was used for quality assurance. All acceptance criteria in the LCS were met.

No sample was designated by the client for MS/MSD analysis.

### Summary:

No analytical exception is noted.

# CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or her designee, as verified by the following signature.

Sharon Dehmlow, Laboratory Director / Date

# CHAIN OF CUSTODY AND ARF

/ ₇	APPL - Ana	lysis Request For	
Client: Parsons		Received by:	TBV (MILLINIA)
Address: 8000 Centre Par	rk Drive Ste 200	Date Received:	03/01/12 Time: 10:00
Austin, TX 7875	4	Delivered by:	FED EX
Attn: Tammy Chang		Shuttle Custody	Seals (Y/N): Y Time Zone: CS
Phone: 512-719-6092	Fax: 512-719-6099	Chest Temp(s):	2.0°C
lob: 748372.06000 CSSA	B-4	Color:	VOA,G-BLUE
O #: 748336.30000-00 (p	prime *G012)		until Placed in Refrig/Freezer:
Chain of Custody (Y/N): Y	# 022912APPFA		r: Diane Anderson TAY 2
RAD Screen (Y/N): Y	pH (Y/N): <u>N</u>	QC Report Type	e: DVP4/AFCEE/ERPIMS/TX
urn Around Type:	3 DAYS	Due Date:	03/05/12
lew contract: definitive data : ase Narrative. CSSA QAPP	needs DVP 4; needs AFCE: '. Only report MS/MSD when	E forms and package?√) requesteda∫h	
lew contract: definitive data : Case Narrative. CSSA QAPP	needs DVP 4; needs AFCE C. Only report MS/MSD when ocked TXF to Pam.Ford@pal	E forms and package?√) requesteda∫h	
For Off-Post samples, send polew contract: definitive data and case Narrative. CSSA QAPPEDD: ERPIMS 4 Lab PC4 che	needs DVP 4; needs AFCE C. Only report MS/MSD when ocked TXF to Pam.Ford@pal	E forms and package?√) requesteda∫h	invoice To:
New contract: definitive data in Case Narrative. CSSA QAPPEDD: ERPIMS 4 Lab PC4 che  3-5 Sunt ARE  Sample Distribution:  IC: 1-\$827AF	needs DVP 4; needs AFCE COnly report MS/MSD when icked TXF to Pam.Ford@pai	E forms and package?√ requesteda A rsons.comQ}	·
Jew contract: definitive data in Case Narrative. CSSA QAPP EDD: ERPIMS 4 Lab PC4 che served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and served and ser	needs DVP 4; needs AFCE COnly report MS/MSD when icked TXF to Pam.Ford@pai	E forms and package?√ requesteda A rsons.comQ}	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200
Sample Distribution:  ACT 1-\$827AF  EDA: 1-\$86AW, 1-\$826AF	needs DVP 4; needs AFCE. Conly report MS/MSD when icked TXF to Pam.Ford@pail	E forms and package?\\` requested\\ rsons.com\(\frac{1}{2}\)  Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200 Austin, TX 78754-5140
Sample Distribution: AC: 1-\$827AF EXTRACTIONS: 1-\$826AF CMS: 1-\$83CS Letals: 1-\$HGAFBS: 15M1/A	needs DVP 4; needs AFCE. Conly report MS/MSD when icked TXF to Pam.Ford@pail	E forms and package?\\` requested\\ rsons.com\(\frac{1}{2}\)  Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200
Sample Distribution: AC: 1-\$827AF EXTRACTIONS: 1-\$826AF CMS: 1-\$83CS Setals: 1-\$HGAFBS: 15M1/A Vetlab: 1-MOIST	needs DVP 4; needs AFCE.  Conly report MS/MSD when icked TXF to Pam.Ford@pail  CON009GROSS	E forms and package?\\` requested\\ rsons.com\(\frac{1}{2}\)  Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200 Austin, TX 78754-5140
Sample Distribution:  AC: 1-\$827AF  EVANCE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE	needs DVP 4; needs AFCE.  Conly report MS/MSD when icked TXF to Pam.Ford@pail  CON009GROSS	E forms and package?\\` requested\\ rsons.com\(\frac{1}{2}\)  Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200 Austin, TX 78754-5140
Sample Distribution: AC: 1-\$827AF EXTRACTIONS: 1- MSE018, 1- S CMS: 1-\$83CS Letals: 1-MOIST	needs DVP 4; needs AFCE.  Conly report MS/MSD when icked TXF to Pam.Ford@pail  CON009GROSS	E forms and package?\\` requested\\ rsons.com\(\frac{1}{2}\)  Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200 Austin, TX 78754-5140
Sample Distribution: AC: 1-\$827AF EXTRACTIONS: 1- MSE018, 1- S CMS: 1-\$83CS Letals: 1-MOIST	needs DVP 4; needs AFCE.  Conly report MS/MSD when icked TXF to Pam.Ford@pail  CON009GROSS	E forms and package?\\ requested?\ rsons.com\(\gamma\)\ Charges:	invoice To: BOA 748336.30000 TO# 2 8000 Centre Park Drive Ste 200 Austin, TX 78754-5140
Sample Distribution: AC: 1-\$827AF Extractions: 1- MSE018, 1- S CMS: 1-\$86AW, 1-\$826AF CMS: 1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1-\$1	needs DVP 4; needs AFCE . Only report MS/MSD when icked TXF to Pam.Ford@pail SON009GROSS IS(A) Barcd(G)(CUINURG)	E forms and package?\\ requested?\ rsons.com\(\gamma\)\ Charges:	invoice To:  BOA 748336.30000 TO# 2  8000 Centre Park Drive Ste 200  Austin, TX 78754-5140  Attn: Ellen Felfe  ses Requested

AY56027S 02/29/12 13:20 \$826AF, \$827AF, \$83CS, \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), \$

\$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST

2. B4-NT1-SW1

Sample Container Type

pН

Count

Sample	Container Type	Count	pН		
AY56026	13 VOAs - HCL	2	NA		
AY56027	²⁰ 4oz Jar	3	ΝΛ		

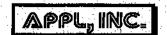
13

# Camp Stanley Storage Activity Chain Of Custody

SBD FOCIE Project Location: B-4 Task Manager Creation Date: Job Number: COC ID: 748372.06000 022912APPFA Laura Marbury 2/29/2012 Relinquish_Time: 4:30 PM Relinquish_Date: 2/29/2012 Collection Team: Relinquished_By: Sample Data Type Definitive 줐 Carrier: Cooler ID: Airbill Carrier; LabCode: APPF FedEx 3 Day TAT 876436443230 Sampler(s): Sam Elliott

Required:  VOLATILE ORGANIC CO  VOLATILE ORGANIC CO  REQUIRED:  SW8010B BARIUM  CAPPER SW8010B HICKEL  LEAD SW8010B ZINC  MERCURY SW8010B ZINC  MERCURY SW8010B ZINC
----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Recieved by: Relinquished by: Date 3/1/12 ime 1000 Recieved by:_ Relinquished by:


_Date_ Date_

_Time_ Time___ Recieved by: Relinquished by:

,Date Date_

Page 1 of 1 _Time_ _Time_

# EPA METHOD 8270C Semivolatile Organic Compounds



# EPA METHOD 8270C Semivolatile Organic Compounds AFCEE Forms



# AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8270C AAB #: 120302A-164436 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID AY56027 B4-NT1-SW1 Comments: ARF: 67099 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

___ Title:

Diane Anderson

Project Manager

Madlin ____ Name:

Signature:

Date:

### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C

Preparatory Method:

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

3550B

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: Y120301B

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,2,4-TRICHLOROBENZENE	0.04	0.7	0.04	1		U
1,2-DCB	0.03	0.7	0.03	. 1	L	U
1,3-DCB	0.04	0.7	0.04	1		U
1,4-DCB	0.03	0.7	0.03	1		U
2,4,5-TRICHLOROPHENOL	0.04	3.3	0.04	1		U
2,4,6-TRICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DICHLOROPHENOL	0.04	0.3	0.04	1		U
2,4-DIMETHYLPHENOL	0.08	0.3	0.08	1		U
2,4-DINITROPHENOL	0.03	3.3	0.03	1		U
2,4-DNT	0.05	0.7	0.05	1		U
2,6-DNT	0.04	0.7	0.04	1		U
2-CHLORONAPHTHALENE	0.04	0.7	0.04	1		U
2-CHLOROPHENOL	0.03	0.3	0.03	1		U
2-METHYLNAPHTHALENE	0.05	0.7	0.05	1		U
2-METHYLPHENOL	0.02	0.3	0.02	1		U
2-NITROANILINE	0.04	3.3	0.04	1		U
2-NITROPHENOL	0.04	0.3	0.04	1		Ü
3,3'-DICHLOROBENZIDINE	0.02	1.3	0.02	j		U
3-NITROANILINE	0.01	3.3	0.01	1		U
4,6-DINITRO-2-METHYLPHENOL	0.03	3.3	0.03	1		U
4-BROMOPHENYL PHENYL ETHER	0.05	0.7	0.05			Ü
4-CHLORO-3-METHYLPHENOL	0.04	1.3	0.04	1		U
4-CHLOROANILINE	0.04	1.3	0.04	1		U
4-CHLOROPHENYL PHENYL ETHER	0.04	0.7	0.04	. 1		U
4-METHYLPHENOL	0.04	0.3	0.04	1		υ
4-NITROANILINE	0.03	3.3	0.03	1		U
4-NITROPHENOL	0.04	1.6	0.04	1		U
ACENAPHTHENE	0.04	0.7	0.04	1		U
ACENAPHTHYLENE	0.03	0.7	0.03	1		U
ANTHRACENE	0.04	0.7	0.04	1		U
BENZ (A) ANTHRACENE	0.04	0.7	0.04	1		U
BENZO (A) PYRENE	0.05	0.7	0.05	. 1		<u>ບ</u> ບ
BENZO (B) FLUORANTHENE	0.06	0.7	0.06	1		Ū
BENZO (G,H,I) PERYLENE	0.04	0.7	0.04	1		U
BENZOIC ACID	0.02	1.6	0.02	1		Ų

A.		
COL	mme	mis.

ARF: 67099

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C Preparatory Method: 3550B AAB #: 120302A-164436

Lab Name: APPL, Inc Contract #: *G012

Field Sample ID: B4-NT1-SW1 Lab Sample ID: AY56027 Matrix; Soil

% Solids: 89.8 Initial Calibration ID: Y120301B

Date Received: 01-Mar-12 Date Prepared: 02-Mar-12 Date Analyzed: 02-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
BENZYL ALCOHOL	0.12	1.3	0.12	1		U
BIS (2-CHLOROETHOXY) METHANE	0.06	0.7	0.06			υ
BIS (2-CHLOROETHYL) ETHER	0.04	0.7,	0.04	1		U
BIS (2-CHLOROISOPROPYL) ETHER	0.05	0.7	0.05	1		U
BIS (2-ETHYLHEXYL) PHTHALATE	0.03	0.7	0.03	1	·	U
BUTYLBENZYLPHTHALATE	0.04	0.7	0.04	1,		U
CHRYSENE	0.04	0.7	0.04	1		U U
DI-N-BUTYLPHTHALATE	0.04	0.7	0.04	i		U
DI-N-OCTYLPHTHALATE	0.03	0.7	0.03	t		U
DIBENZ (A,H) ANTHRACENE	0.04	0.7	0.04	1		U
DIBENZOFURAN	0.04	0.7	0.04	1		U
DIETHYL PHTHALATE	0.04	0.7	0.04	1		U
DIMETHYLPHTHALATE	0.04	0.7	0.04	1		Ū
FLUORANTHENE	0.04	0.7	0.04	1		U
FLUORENE	0.04	0.7	0.04	1		U
HEXACHLOROBENZENE	0.05	0.7	0.05	. 1		J
HEXACHLOROBUTADIENE	0.06	0.7	0.06	1		Ü
HEXACHLOROCYCLOPENTADIENE	0.03	0.7	0.03	1		U
HEXACHLOROETHANE	0.04	0.7	0.04	1	•	U
INDENO (1,2,3-CD) PYRENE	0.04	0.7	0.04	1		Ü
ISOPHORONE	0.04	0.7	0.04	1		U
N-NITROSODI-N-PROPYLAMINE	0.04	0.7	0.04	1		U
N-NITROSODIPHENYLAMINE	0.05	0.7	0.05	1		U
NAPHTHALENE	0.04	0.7	0.04			U
NITROBENZENE	0.05	0.7	0.05	1		U
PENTACHLOROPHENOL	0.03	3.3	0.03	1		υ
PHENANTHRENE	0.04	0.7	0.04	1		U
PHENOL	0.04	0.3	0.04	1		U
PYRENE	0.05	0.7	. 0.05	. 1	-	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	60.7	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	54.1	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	50.8	25-135	
SURROGATE: NITROBENZENE-D5 (S)	54.3	25-135	
SURROGATE: PHENOL (S)	59.3	25-135	

$\sim$					
Ca	١m	ım	-	1te	
$\sim$	<i>3</i> 11	пп			٠

ARF: 67099

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8270C

Preparatory Method: 3550B

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: Y120301B

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 02-Mar-12

Concentration Units: nig/kg

Surrogate	Recovery	Control Limi	ts Qualifier
SURROGATE: TERPHENYL-D14 (S)	76.5	32	-136
Internal Std		Qualifler	
1,4-DICHLOROBENZE	NE-D4 (IS)		
ACRNAPTHTHENE-D1	0 (IS)		

Internal Std	Qualifler
1,4-DICHLOROBENZENE-D4 (IS)	
ACENAPTHTHENE-D10 (IS)	
CHRYSENE-D12 (IS)	
NAPHTHALENE-D8 (IS)	:
PERYLENE-D12 (IS)	
PHENANTHRENE-D10 (IS)	

Comments:		
ARF: 67099		

# AFCER ORGANIC ANALYSES DATA SHEET 3A INTIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analyti	cal Method	EPA 827	OC			AAB #: 120302A-164436					-							
	Lab Name	me: APPL, Inc. Contract #: *G012								_								
Ins	trument ID:	YODA				_	Date	of Initial C	alibration		01-N	far-12						
Initial Cal	fibration ID:	Y120301	В			Concent	tration Un	its (ug/L	or mg/kg).	nıg/kg				-				
Analyte	Std	RF L	Sid 2	RF 2	S1d	RF 3	\$1d 4	RF 4	81d 5	NF s	51.5 6	RF 6	Sid 7	RP 2	Std	* 8F	Sid	RF 9
Hexachlorocyclopentadiene •	5.0	<del>                                     </del>	10.0	0.218	20.0	0.259	40.0	0.283	50.0	0.305	60.0	0.318	80.0	0.324	100.0	0.319	<u> </u>	<del>-</del> -
n-Nitresodi-n-propylamine	5.0	1.572	10.0	1.610	20.0	1.451	40.0	1.323	50.0	1.328	60.0	1.159	80.0		100.0			<u> </u>
2,4-Dinitrophenol •	5.0		10.0	0.098	20.0	0.152	40.0	0.192	50.0	0.217	60.0	0.245	80.0	0.245	100.0	0.244	· · · · · -	<del>                                     </del>
4-Nitrophenol *	5.0		10.0	0.119	20.0	0.138	40.0	0.155	50.0	0.182	60.0	0.173	80.0	0.177	100.0	0.174		· · · · ·
I.4-DCB#	5.0	2.247	10.0	2.247	20.0	2.022	40.0	1.858	50.0	1.890	60.0	1.988	80.0	1.848	100.0	1.813		
Acenaphthene#	5.0	1.651	10.0	1.591	20.0	1.482	40.0	1.349	50.0	1.362	60.0	1.332	80.0	1.356	100.0	1.252		
Вепго (а) ругепе #	5.0	1.259	10.0	1.385	20.0	1.281	40.0	1.239	50.0	1.253	60.0	1.274	80.0	1.242	100.0	1.161		
Di-n-octylphthalate#	5.0	1.626	10.0	1.712	20.0	1.674	40.0	1.630	50.0	1.668	60.0	1.653	80.0	1.695	100.0	1.637		
Fluoranthene#	5.0	1.463	10.0	1.488	20.0	1.432	40.0	1.325	50.0	1.318	60.0	1.305	80.0	1.352	100.0	1.188		
Hexachlorobutadiene#	5.0	0.218	10.0	0.217	20.0	0.202	40.0	0.188	50.0	0.188	60.0	0.191	80.0	0.182	100.0	0.181		
n-Nitrosodiphenylamine#	5.0	0.557	10.0	0.546	20.0	0.507	40.0	0.439	50.0	0.434	60.0	0.454	80.0	0.48	100.0	0.415		
2,4,6-Trichlorophenol#	5.0	0.453	10.0	0.474	20.0	0.447	40.0	0.430	50.0	0.435	60.0	0.456	80.0	0.436	100.0	0.427		
2,4-Dichtorophenol#	5.0	0.371	10.0	0.398	20.0	0.370	40.0	0.346	\$0.0	0.349	60.0	0.353	80.0	0.344	100.0	0.324		$\overline{}$
2-Nitrophenol#	5.0	0.253	10.0	0.266	20.0	0.260	40.0	0.245	50.0	0.248	60.0	0.254	80.0	0.252	100.0	0.247		
4-Chloro-3-methylphenol #	5.0	0.382	10.0	0.405	20.0	0.383	40.0	0.370	50.0	0.371	60.0	0.385	80.0	0.371	100.0	0.37		
Pentachlorophenol#	5.0	0.104	10.0	0.121	20.0	0.132	40.0	0,140	50.0	0.141	60.0	0.153	80.0	0.155	100.0	0.15		
Phenol#	5.0	2.476	10.0	2.543	20.0	2.396	40.0	2.244	50.0	2.259	60.0	2.341	80.0	2.21	100.0	2.18		
• SPCCs	# CCCs						L			نست								
Comment																		

AFCEB FORM O-JA Page ____ of ____

# AFCBE ORGANIC ANALYSISS DATA SHEET 3A INITIAL MULTIFOINT CALIBRATION-GC/MS ANALYSIS

ytical Method: EPA 8270C	· · ·		•			AAB#:	120302A-164436
Lab Name: APPL, Inc.	<del></del>					Contract #:	*G012
Instrument ID: YODA				Da	te of Initial	Calibration:	01-Mar-12
Calibration 1D: Y120301B			. Co	ncentration l	Units (ug/L	or mg/kg):	mg/kg
	Analyte	1 %	mean	r	COD		1
	Í	RSD	MRSD	i		'	
	Hexachlorocyclopentadiene *	13.5	· · · · ·				1
	n-Nitrosodi-n-propylamine *	12.1					1
	2,4-Dinitrophenol*	28.3		0.9960		<del></del> -	1
	4-Nitrophenol *	13.8					1
	1,4-DCB#	8.8					
	Acenaphthene #	9.8					1
	Benzo (a) pyrene #	4.9					1
	Di-n-octylphthalate #	1.9					1
	Fluoranthene #	7.2					1
	Hexachlorobutadicne #	7.5					1
	n-Nitrosodiphenylamine#	11.2					1
	2,4,6-Trichlorophenol#	3.6					1
	2,4-Dichlorophenol#	6.2					1
	2-Nitrophenol#	2.7					]
	4-Chloro-3-methylphenol#	3.2					]
	Pentachlorophenol #	12.7					]
	Phenol #	5.6					J
'a #CCCa							
Comments:							
<del></del>							

### AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: EPA 82700	AA8 #: 120302A-164436
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: YQDA	Date of Initial Calibration: 01-Mar-12
Initial Calibration ID: Y120301B	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	S _M	RF 1	Std 2	RF 2	Sid 3	RF 3	\$1J 4	RF 4	S1d 5	RF 5	S1d 6	RP 6	Std 7	RF 7	SIA 8	KF 8	Std 9	RF 9
1.2.4-Trichlorobenzene	5.0	0.430	10.0	0.435	20.0	0.390	40.0	0.366	50.0	0.368	60.0	0.379	80.0	0.369	100.0	0.356		
I.2-DCB	5.0	2.049	10.0	2.061	20.0	1.868	40.0	1.714	50.0	1.746	60.0	1.797	80.0	1,691	100.0	1.861		
I.3-DCB	5.0	2.120	10.0	2.159	20.0	1.974	40.0	1.838	50.0	1.852	60.0	1.931	80.0	1.829	100.0	1.793	i	
2,4-DNT	5.0	0.530	10.0	0.575	20.0	0.550	40.0	0.524	50.0	0.519	60.0	0.557	80.0	0.530	100.0	0.499	l	
2,6-DNT	5.0	0.394	10.0	0.394	20.0	0.405	40.0	0.386	50.0	0.378	60.0	0.399	80.0	0.371	100.0	0.378		
2-Chloronaphthalene	5.0	1.657	10.0	1.634	20.0	1.488	40.0	1.361	50.0	1.384	60.0	1.412	80.0	1.323	100.0	1.312		
2-Methylnaphthalene	5.0	0.975	10.0	1,008	20.0	0.930	40.0	0.849	50.0	0.854	60.0	0.872	80.0	0.872	100.0	0.803		
2-Nitroaniline	5.0	0.548	10.0	0.571	20.0	0.552	40.0	0.534	50.0	0.547	60.0	0.543	80.0	0.550	100.0	0.545		
3-Nitroaniline	5.0	0.581	10.0	0.548	20.0	0.529	40.0	0.517	50.0	0.518	60.0	0.518	80.0	0.513	100.0	0.494		· · · ·
3,3'-Dichlocobenzidine	5.0	0.418	10.0	0.432	20.0	0.450	40.0	0,441	50.0	0.445	60.0	0.433	80.0	0.426	100.0	0.400		
4-Bromophenyl phenyl ether	5.0	0.254	10.0	0.258	20.0	0.238	40.0	0.218	50.0	0.214	60.0	0.220	\$0.0	0.225	100.0	0.201		
4-Chloroaniline	5.0	0.488	10.0	0.522	20.0	0.512	40.0	0.465	50.0	0.467	60.0	0.481	80.0	0.426	100.0	0,416		
4-Chlorophenyl phenyl ether	5.0	0.904	10.0	0.896	20.0	0.816	40.0	0.748	50.0	0.754	60.0	0.748	80.0	0.770	100.0	0.670		
4-Nitroaniline	5.0	0.447	10.0	0.433	20.0	0,429	40.0	0.414	50.0	0.418	60.0	0.430	80.0	0.435	100.0	0.395		
Acenaphthylene	5.0	2.668	10.0	2.644	20.0	2.530	40.0	2.277	50.0	2.294	60.0	2.320	80.0	2.330	100.0	2.132		
Anthracene	5.0	1.592	10.0	1.565	20.0	1.425	40.0	1.299	50.0	1.302	60.0	1.292	80.0	1,306	100.0	1.166		-
Benz (a) anthracene	5.0	1.370	10.0	1.401	20.0	1.304	40.0	1.221	50.0	1.240	60.0	1.284	80.0	1,199	100.0	1.237		
Benzo (b) fluoranthene	5.0	1.503	10.0	1,554	20.0	1.318	40.0	1.261	50.0	1.284	60.0	1,477	80.0		100.0			
Benzo (g,h,i) perylene	5.0	1.193	10.0	1.249	20.0	1.164	40.0	1.133	50.0	1,136	60.0	1.182	80.0	1.151	100.0	1.106		-
Benzyl alcohol	5.0	1.360	10.0	1.426	20.0	1.338	40.0	1.257	50.D	1.271	60.0	1.335	80.0	1.280	100.0	1.252		
Bis (2-chloroethoxy) methane	5.0	0.537	10.0	0.532	20.0	0.506	40.0	0.473	50.0	0.468	60.0	0.478	80.0	0.478	100.0	0.447		
Bis (2-chloroethyl) ether	5.0	1.303	10.0	1.294	20.0	1.245	40.0	1.191	50.0	1.247	60.0	1,685	80.0	1.593	100.0	1.567		
	5.0	3.014	10.0	2.993	20.0	2.736	40.0	2.470	50.0	2.475	60.0	2.569	80.0	2.401	100.0	2.302	,	
Bis (2-chloroisopropyl) ether	5.0	1,103	10.0	1.137	20.0	1.051	40.0	1.000	50.0	1.009	60.0	1.016	80.0	0.937	100.0	0.995		
Bis (2-ethylhexyl) phthalato	5.0	0.688	10.0	0.710	20.0	0.708	40.0	0.690	50.0	0.695	60.0	0.718	80.0	0.654	100.0	0.724		$\vdash$
Butyl benzylphthalate					20.0	1.365	40.0	1.252	50.0	1,296	60.0	1.270	80.0	1,318	100.0	1.232		<del> </del>
Chrysenc	5,0	1.560	10.0	1.505			40.0	1.387	50.0	1.366	60.0	1.405	80.0	1.497	100.0	1.299		
Di-n-butylphthalate	5.0	1.550	10.0	1.597	20.0	1,489	40.0	1.185	50.0	1.183	60.0	1.205	80.0	1.199	100.0	1.113		
Dibenz (a,h) anthracene	5.0	1.148	10.0	1,228	20.0				50.0	1.025	60.0	1.060	80.0	1.021	100.0	1.028		<b>—</b>
Dibenzofugn	5.0	0.788	10.0	0.809	20.0	1.042	40.0	1.018	50.0	1.553	60.0	1.605	80.0	1.585	100.0	1.527		<b>-</b>
Diethy) phthalate	5.0	1.809	10.0	1.789	20.0	1.684	40.0	1.544	50.0	1.551	60.0	1.642	80.0	1.568	100.0	1.562		
Dimethyl phthalate	5.0	1.800	10.0	1.802	20.0				50.0	1.437	60.0	1.516	80.0	1,419	100.0	1.372		$\vdash$
Fluorene	5.0	1.716	10.0	1.732	20.0	1.575	40.0	1.440				-		0.237	100.0	0.223		$\vdash$
Rexachlorobenzene	5.0	0.278	10.0	0.277	20.0	0.253	40.0	0.234	50.0	0.235	60.0 60.0	0.241	80.0 80.0	0.630	100.0	0.594		
Hexachloroethane	5.0	0.749	10.0	0.743	20.0	0.686	40.0	0.634	50.0	0.643		0.668		1.380	100.0	1.400		
Indeno (1,2,3-cd) pyrene	5.0	1.333	10.0	1.382	20.0	1.332	40.0	1.302	50.0	1,344	60.0	1.415	80.0					$\vdash$
Isophorone	5.0	0.867	10.0	0.892	20.0	0.819	40.0	0.774	50.0	0.783	60.0	0.813	80.0	0.797	100.0	0.776		$\vdash$
Naphthalene	5.0	1.525	10.0	1.520	20.0	1.382	40.0	1.277	50.0	1.271	60.0	1.323	80.0	1.221	100.0	1.212	<u> </u>	
Nitrobenzene	5.0	0.488	10.0	0.507	20.0	0.463	40.0	0.436	50.0	0.439	60.0	0.451	80.0	0.433	100.0	0.437	<b>-</b>	
Phenanthrene	5.0	1.593	10.0	1.541	20.0	1.376	40.0	1.230	50.0	1.210	60.0	1.288	80.0	1.221	100.0	1.187		<u> </u>
Рутепе	5.0	1.692	10.0	1,736	20.0	1.640	40.0	1.511	50.0	1.535	60.0	1.521	80.0	1.523	100.0	1.443		<b></b>
2,4,5-Trichlorophenol	5.0	0.510	10.0	0.508	20.0	0.485	40.0	0.467	50.0	0.475	60.0	0.469	80.0	0.452	100.0	0.439		<del></del>
2,4-Dimethylphenol	5.0	0.492	10,0	0.482	20.0	0.449	40.0	0.418	50.0	0.415	60.0	0.440	80.0	0.416	100.0	0.408		
2-Chlorophenol	5.0	1.829	10.0	1.904	20.0	1.769	40.0	1.844	50.0	1.659	60.0	1.737	80.0	1.847	100.0	1.617		<b> </b>
2-Methylphenol	5.0	1.746	10.0	1,771	20.0	1.615	40.0	1.509	50.0	1.517	60.0	1.585	80.0	1.489	100.0	1.449		<b></b>
4,6-Dinitro-2-methylphenol	5.0		10.0	0.147	20.0	0.168	40.0	0.171	50.0	0.178	60.0	0.186	80.0	0.189	100.0	0.178		<b> </b>
Benzole acid	5.0	0.047	10.0	0.175	20.0	0.192	40.0	0.205	50.0	0.235	60.0	0.250	80.0	0.255	100.0	0.263	<b></b>	
2,4,6-Tribromophenol(S)	5.0	0.173	10.0	0.184	20.0	0.173	40.0	0.168	50.0	0.165	60.0	0.166	80.0	0.168	100.0	0.161		
2-Fluorobiphenyl(S)	5.0	1.590	10.0	1.615	20.0	1.439	40.0	1.352	50.0	1.321	60.0	1.338	80.0	1.321	100.0	1.220		<u> </u>
2-Fluorophenol (S)	5.0	1.584	10.0	1.594	20.0	1.463	40.0	1.431	50.0	1.385	60.0	1.455	80.0	1,391	100.0	1.349		
Nitrobenzene-D5(S)	5.0	0.410	10.0	0.415	20.0	0.382	40.0	0.374	50.0	0.360	60.0	0.373	80.0	0.369	100.0	0.353		<u> </u>
Phenol-D6 (S)	5.0	1.835	10.0	1.901	20.0	1.763	40.0	1.708	50.0	1.650	60.0	1.723	80.0	1.633	100.0	1.582		
Cerphenyl-D14(S)	5.0	0.697	10.0	0.930	20.0	0.847	40.0	0.819	\$0.0	0.788	60.0	0.824	80.0	0.805	100.0	0.775		
														L				

Comments:		

# AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: EPA 8270C	AAB #: 120302A-164436	
Lab Name: APPL, Inc.	Contract #: •G012	
Instrument ID: YODA	Date of Initial Calibration: 01-Mar-12	
Initial Calibration ID: Y120301B	Concentration Units (ug/L or mg/kg): mg/kg	

Analyte	% RSD	mean %RSD	г	COD	Q
1.2.4 Tricklershovens	7.8	701.317			1
1,2,4-Trichlorobenzene		<del>                                     </del>			1
1,2-DCB	8.6	<del>  </del>			<del> </del>
1,3-DCB	7.1	-			
2,4-DNT	4.5	<del> </del>		··· · · · · · · · · · · · · · · · · ·	
2,6·DNT	3.1				
2-Chloronaphthalene	9.4	<del>  </del>			
2-Methylnaphthalene	7.8	<del>                                     </del>			<b> </b>
2-Nitroaniline	1.9	<b>├</b>			
3-Nitroaniline	5.0	[			<b></b>
3,3'-Dichtorobenzidine	3.7				
4-Bromophenyl phenyl ether	8.6				<b></b>
4-Chloroaniline	7.9	<u> </u>			
4-Chlorophenyl phenyl ether	10.1				
4-Nitroanifine	3.7				L
Acenaphthylene	8.0				
Anthracene	10.8				
Benz (a) anthracene	5.7				
Benzo (b) fluoranthene	9.0				
Benzo (g,h,i) perylene	3.8				
Benzyl alcohol	4.6				
Bis (2-chloroethoxy) methane	6.5				
Bis (2-chloroethyl) ether	13.8		T T		
Bis (2-chloroisopropyl) ether	10.2			•	
Bis (2-ethylhexyl) phthalate	6.2				
Butyl benzylphthalate	3.2				
Chrysene	9.0				
Di-n-butylphthalate	7.0				
Dibenz (a,h) anthracene	3.2				
Dibenzofuran	11.2				
Diethyl phthalate	6.7				· · · · · ·
Dimethyl phthalate	6.6				
Fluorene	9.0			<del></del>	<del></del>
Hexachlorobenzene	8.1			<del></del>	
Hexachloroethane	8.3		+		!
Indeno (1,2,3-cd) pyrene	2.9				
	5.3	-			
Isophorone Naphthalene	9.3	—— <u> </u>	<del></del>  -		
Nitrobenzene	6.0	-			
Phenanthrene	11.9				<del></del>
Pyrene	6.5	<del></del>			· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2,4,5-Trichtorophenol	5.3				
2,4-Dimethylphenol	6.8				
2-Chlorophenol	5.9				
2-Methylphenol	7.5				
4,6-Dinitro-2-methylphenol	8.1				
Benzoic acid	34.8		0.998		
2,4,6-Tribromophenol(S)	4.0				
2-Fluorobiphenyl(S)	9.9				
2-Fluorophenol (S)	6.2				
Nitrobenzene-D5(S)	5.8				
Phenol-D6 (S)	6.2				

# AFCER ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Lab Name: APPL, Inc.   Contract #; *G012	nc.								
Analyte % mean r COD Q RSD %RSD			-		Contract #: *0	3012			
Analyte % mean r COD Q RSD %RSD				Date of Initial Calibration: 01-Mar-					
R\$D %R\$D	1B		Concentra	ation Units	(ug/L or mg/kg); <u>m</u>	g/kg			
	Analyle		1 F	1	COD	Q	1		
	Terphenyl-D14(S)		781313						
							1		
		Analyte	Analyte % R\$D	Analyte % mean RSD %RSD	Analyte % mean r RSD %RSD	Analyte % mean r COD RSD %RSD	Analyte % mean r COD Q RSD %RSD		

*SPCCs #CCCs

# AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

Analytical Method: EPA 8270C	AAB#:	120302A-164436
Lab Name: APPL, Inc.	Contract #:	*G012
Instrument ID: YODA	Initial Calibration (D:	Y120301B
2nd Source ID: 0301Y010.D	Concentration Units (ug/L or mg/kg):	ing/kg

Analyte	Expected	Found	%D	Q
1,2,4-Trichlorobenzene	50.00	49.29	1.4	
1,2-DCB	50.00	47.41	5.2	
1,3-DCB	50.00	48.23	3.5	·
1,4-DCB	50.00	47.40	5.2	· · · · ·
2,4-DNT	50.00	49.37	1.3	
2,6-DNT	50.00	48.74	2.5	
2-Chloronaphthatene	50.00	48.13	3.7	
2-Methylnaphthalene	50.00	48.66	2.7	
2-Nitroaniline	50.00	50.65	1.3	
3-Nitroaniline	50.00	49.56	0.9	
3,3'-Dichlorobenzidine	50.00	52.56	5.1	
4-Brontophenyl phenyl ethe	50.00	48.19	3.6	
4-Chloroaniline	50.00	51.34	2.7	
4-Chlorophenyl phenyl ethe	50.00	47.38	5.2	
4-Nitroaniline	50.00	51.13	2.3	
Acenaphthylene	50.00	48.72	2.6	
Acenaphthene	50.00	47.99	4.0	
Anthracene .	50.00	48.70	2.6	
Benz (a) anthracene	50.00	49.31	1.4	
Венго (а) ругене	50.00	50.29	0.6	
Benzo (b) fluoranthene	50.00	54.60	9.2	
Benzo (g,h,i) perylene	50.00	48.77	2.5	
Benzyl alcohol	50.00	48.30	3.4	
Bis (2-chloroethoxy) metha	50.00	50.14	0.3	
Bis (2-chloroethyl) ether	50.00	44.34	11	
Bis (2-chloroisopropyl) eth	50.00	47.19	5.6	
Bis (2-ethylhexyl) phthalate	50.00	50.38	0.8	
Butyl benzylphthalate	50.00	51.40	2.8	
Chrysene	50.00	48.67	2.7	
Di-n-butylphthalate	50.00	48.68	2.6	
Di-n-octylphthalate	50.00	50.55	1.1	
Dibenz (a,h) anthracene	50.00	51.94	3.9	
Dibenzofuran	50.00	54.56	9.1	
Diethyl phthalate	50.00	48.90	2.2	
Dimethyl phthalate	50.00	48.25	3.5	
Fluoranthene	50.00	49.58	0.8	
Fluorene	50.00	48.60	2.8	
Hexachlorobenzene	50.00	49.19	1.6	
Hexachlorobutadiene	50.00	47.81	4.4	
Hexachlorocyclopentadiend	50.00	52.38	4.8	
Hexachloroethane	50.00	48.39	3.2	
Indeno (1,2,3-cd) pyrene	50.00	51.42	2.8	
Isophorone	50.00	49.33	1.3	
n-Nitrosodiphenylamine	50.00	49.06	1.9	
n-Nitrosodi-n-propylamine	50.00	47.41	5.2	
Naphthalene	50.00	49.46	1.1	

# AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

Analytical Method: EPA 8270C	AAB #: 120302A-164436
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: YODA	Initial Calibration ID: Y120301B
2nd Source ID: 0301 V010 D	Concentration Units (up/L or mg/kg); mg/kg

Analyte	Expected	Found	%D	Q
Nitrobenzene	50.00	49.50	1.0	
Phenanthrene	50.00	47.03	5.9	
Pyrene	50.00	48.42	3.2	·
2,4,5-Trichlorophenol	50.00	51.05	2.1	
2,4,6-Trichlorophenol	50.00	50.07	0.1	
2,4-Dichlorophenol	50.00	49.66	0.7	
2,4-Dimethylphenol	50.00	49.23	1.5	
2,4-Dinitrophenol	50.00	52.81	5.6	
2-Chlorophenol	50.00	47.96	4.1	
2-Methylphenol	50.00	47.56	4.9	
2-Nitrophenol	50.00	50.76	1.5	
4,6-Dinitro-2-methylpheno	50.00	54.35	8.7	·
4-Chloro-3-methylphenol	50.00	49.79	0.4	
4-Nitrophenol	50.00	53.39	6.8	
Benzoic acid	50.00	40.37	19	
Pentachlorophenol	50.00	56.49	13	
Phenol	50.00	47.50	5.0	

Comments:	
	AFCEE FORM O-4 Page of

# AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

Instrument ID: YODA		Initial Ca	libration ID:	Y120301B			
e; 0302Y002.D		CV#1 ID:_				CCV #2 ID:	<del> </del>
	IC'	٧	CCA	7#1	CC	V #2	
Analyte	RF	% D	RF	% D	RF	% D	Q
Hexachlorocyclopentadicne *	0.277618	4.1					
n-Nitrosodi-n-propylamine *	1.28767	8.5					
2,4-Dinitrophenol *	0.174268	12					
4-Nitrophenol *	0.141963	9.5					
1,4-DCB#	1.84758	7.1					
Acenaphthene#	1.33139	6.4	<u> </u>				
Benzo (a) pyrene #	1.22371	3.0					
Di-n-octylphthalate#	1.64292	1.1					
Fluoranthene #	1.27834	5.9					
Hexachtorobutadiene#	0.184346	5.8					
n-Nitrosodiphenylamine#	0.419342	12					
2,4,6-Trichlorophenol#	0.422489	5.0					
2,4-Dichlorophenol#	0.342202	4.1	. 1				
2-Nitrophenol #	0.243293	3.9					
4-Chloro-3-methylphenol#	0.366309	3.5					
Pentachlorophenol#	0.144587	5.5					
Phenol #	2.16046	7.3					

AFCEE FORM O-5A Page ____ of ____

# AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method:	EPA 8270C		AAB #: _1	120302A-164436
Lab Name:	APPL, Inc.		Contract #: *	G012
Instrument ID:	YODA		Initial Calibration ID:	Y120301B
ICV ID: 0302Y002.D		CCV #1 ID:	CCV #2 JD;	

	ICV	CCV#1	CCV#2	<u> </u>
Analyte	%D or % drift	%D or % drift	%D or % drift	Q
1,2,4-Trichlorobenzene	5.7			
1,2-DCB	7.4			
1,3-DCB	7.3			
2,4-DNT	5.9			
2,6-DNT	4.5			
2-Chloronaphthalene	6.8			
2-Methylnaphthalene	6.2			
2-Nitroaniline	2.7			
3-Nitroaniline	3.2			
3,3'-Dichlorobenzidine	1.0			
4-Bromophenyl phenyl ether	7.1			
4-Chloroaniline	3.8			·
4-Chlorophenyl phenyl ether	7.1			
4-Nitroaniline	6.2			
Acenaphthylene	6.2			
Anthracene	7.2			
Benz (a) anthracene	4.6		• •	
Benzo (k) fluoranthene	2.0			
Benzo (b) fluoranthene	11	· · · · · · · · · · · · · · · · · · ·		
Benzo (g,h,i) perylene	1.9			
Benzyl alcohol	7.3	·		
Bis (2-chloroethoxy) methane	3.5			
Bis (2-chloroethyl) ether	14			
Bis (2-chloroisopropyl) ether	6.6			
Bis (2-ethylhexyl) phthalate	6.7			
Butyl benzylphthalate	0.0		· · · · · · · · · · · · · · · · · · ·	
Chrysene	5.6			
Di-n-butylphthalate	4.4			••••
Dibenz (a,h) anthracene	2.3			
Dibenzofuran	1.7			
Diethyl phthalate	7.3			
Dimethyl phthalate	6.8			
Fluorene	7.3			
Hexachlorobenzene	5.3			
Hexachloroethane	7.1			
Indeno (1,2,3-cd) pyrene	1.8			
Isophorone	4.2			
Naphthalene	5.0	·		

# AFCEE ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method: EPA 8270C		AAB#: 120302A-164436
Lab Name: APPL, Inc.		Contract #: *G012
Instrument ID: YODA	·	Initial Calibration ID: Y120301B
ICV ID: 0302Y002.D	CCV #1 ID:	CCV #2 ID:

	ICV	CCV#1	CCV#2	
Analyte	%D or % drift	%D or % drift	%D or % drift	Q
Nitrobenzene	2.8			
Phenanthrene	12			
Pyrene	3.4			
2,4,5-Trichlorophenol	3.6			
2,4-Dimethylphenol	5.8		•	
2-Chlorophenol	7.4			
2-Methylphenol	8.7			
4,6-Dinitro-2-methylphenol	3.5			
Benzoic acid	18			

Comments:	 	 	

# AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8270C

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120302A-BLK 1/30x06

(F3/1/12

Initial Calibration ID: Y120301B

Analyte	Method Blank	RL	Q
1,2,4-TRICHLOROBENZENE	< RL	0.7	Ü
1,2-DCB	< RL	0.7	U
1,3-DCB	< RL	0.7	U
I,4-DCB	< RL	0.7	Ū
2,4,5-TRICHLOROPHENOL	< RL	3.3	U
2,4,6-TRICHLOROPHENOL	< RL	0.3	U
2,4-DICHLOROPHENOL	< RL	0.3	U
2,4-DIMETHYLPHENOL	< RL	0.3	U
2,4-DINITROPHENOL	< RL	3.3	U
2,4-DNT	< RL	0.7	U
2,6-DNT	< RL	0.7	U
2-CHLORONAPHTHALENE	< RL	0.7	U
2-CHLOROPHENOL	< RL	0.3	U
2-METHYLNAPHTHALENE	< RL	0.7	U
2-METHYLPHENOL	< RL	0.3	U
2-NITROANILINE	< RL	3.3	U
2-NITROPHENOL	< RL	0.3	U
3,3'-DICHLOROBENZIDINE	< RL	1.3	U
3-NITROANILINE	< RL	3.3	Ü
4,6-DINITRO-2-METHYLPHENOL	< RL	3.3	U
4-BROMOPHENYL PHENYL ETHER	< RL	0.7	U
4-CHLORO-3-METHYLPHENOL	< RL	1.3	U
4-CHLOROANILINE	< RL	1.3	U
4-CHLOROPHENYL PHENYL ETHER	< RL	0.7	U
4-METHYLPHENOL	< RL	0.3	U
4-NITROANILINE	< RL	3.3	U
4-NITROPHENOL	< RL	1.6	U
ACENAPHTHENE	< RL	0.7	U
ACENAPHTHYLENE	< RL	0.7	Ü
ANTHRACENE	< RL	0.7	U
BENZ (A) ANTHRACENE	< RL	0.7	U,
BENZO (A) PYRENE	< RL	0.7	Ü
BENZO (B) FLUORANTHENE	< RL	0.7	U
BENZO (G,H,I) PERYLENE	< RL	0.7	U
BENZOIC ACID	< RL	1.6	U
BENZYL ALCOHOL	< RL	1.3	U
BIS (2-CHLOROETHOXY) METHANE	< RL	0.7	U
BIS (2-CHLOROETHYL) ETHER	< RL	0.7	υ
BIS (2-CHLOROISOPROPYL) ETHER	< RL	0.7	U
BIS (2-ETHYLHEXYL) PHTHALATE	< RL	0.7	U
BUTYLBENZYLPHTHALATE	< RL	0.7	U

Comments:

ARF: 67099, Sample: AY56027

# **AFCEE** ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8270C

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120302A-BLK 1/30.004 France

Initial Calibration ID: Y120301B

Analyte	Method Blank	RL	Q
CHRYSENE	< RL	0.7	<u> </u>
DI-N-BUTYLPHTHALATE	< RL	0.7	U
DI-N-OCTYLPHTHALATE	< RL	0.7	U
DIBENZ (A,H) ANTHRACENE	< RL	0.7	U
DIBENZOFURAN	< RL	0.7	U
DIETHYL PHTHALATE	< RL	0.7	U
DIMETHYLPHTHALATE	< RL_	0.7	U
FLUORANTHENE	< RL	0.7	U
FLUORENE	< RL	0.7	U
HEXACHLOROBENZENE	< RL	0.7	U
HEXACHLOROBUTADIENE	< RL	0.7	U
HEXACHLOROCYCLOPENTADIENE	< RL	0.7	U
HEXACHLOROETHANE	< RL_	0.7	U
INDENO (1,2,3-CD) PYRENE	< RL	0.7	<u>U</u>
ISOPHORONE	< RL	0.7	U
N-NITROSODI-N-PROPYLAMINE	< RL	0.7	U
N-NITROSODIPHENYLAMINE	< RL	0.7	U
NAPHTHALENE	< RL	0.7	U
NITROBENZENE	< RL	0.7	U
PENTACHLOROPHENOL	< RL	3.3	U
PHENANTHRENE	< RL	0.7	U
PHENOL	< RL	0.3	<u>U</u>
PYRENE	< RL	0.7	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHEN	68.5	25-144	
SURROGATE: 2-FLUORBIPHENYL (S	62.8	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	61.0	25-135	
SURROGATE: NITROBENZENE-D5 (S	65.3	25-135	
SURROGATE: PHENOL (S)	69.1	25-135	
SURROGATE: TERPHENYL-D14 (S)	83.9	32-136	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
ACENAPTHTHENE-D10 (IS)	
CHRYSENE-D12 (IS)	
NAPHTHALENE-D8 (IS)	
PERYLENE-D12 (IS)	
PHENANTHRENE-D10 (IS)	

Comments:	:
-----------	---

ARF: 67099, Sample: AY56027

### AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8270C

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120302A LCS-1 1/30.00 G

Initial Calibration ID: Y120301B

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,2,4-TRICHLOROBENZENE	1.67	1.00	59.9	34-152	
1,2-DCB	1.67	0.95	56.9	32-135	
1,3-DCB	1.67	0.94	56.3	26-135	
1,4-DCB	1.67	0.92	55.1	25-135	
2,4,5-TRICHLOROPHENOL	1.67	1.05	62.9	25-175	
2,4,6-TRICHLOROPHENOL	1.67	1.05	62.9	29-138	
2,4-DICHLOROPHENOL	1.67	1.05	62.9	36-135	
2,4-DIMETHYLPHENOL	1.67	0.99	59.3	35-149	
2,4-DINITROPHENOL	1.67	0.92	55.1	25-161	
2,4-DNT	1.67	1.06	63.5	29-149	
2,6-DNT	1.67	1.09	65.3	41-135	
2-CHLORONAPHTHALENE	1.67	1.04	62.3	50-135	
2-CHLOROPHENOL	1.67	0.99	59.3	31-135	
2-METHYLNAPHTHALENE	1.67	1.08	64.7	31-135	
2-METHYLPHENOL	1.67	0.99	59.3	25-135	
2-NITROANILINE	1.67	1.08	64.7	40-135	
2-NITROPHENOL	1.67	1.04	62.3	34-135	
3,3'-DICHLOROBENZIDINE	1.67	0.93	55.7	25-175	
3-NITROANILINE	1.67	1.00	59.9	41-135	
4,6-DINITRO-2-METHYLPHENOL	1.67	1.04	62.3	25-144	
4-BROMOPHENYL PHENYL ETHER	1.67	1.10	65.9	43-137	
4-CHLORO-3-METHYLPHENOL	1.67	1.05	62.9	34-135	
4-CHLOROANILINE	1.67	0.98	58.7	35-146	
4-CHLOROPHENYL PHENYL ETHER	1.67	1.10	65.9	41-142	
4-METHYLPHENOL	3.33	2.02	60.7	25-135	
4-NITROANILINE	1.67	0.99	59.3	30-153	
4-NITROPHENOL	1.67	1.05	62.9	25-141	
ACENAPHTHENE	1.67	1.05	62.9	39-135	
ACENAPHTHYLENE	1.67	1.04	62.3	37-135	
ANTHRACENE	1.67	1.04	62.3	35-175	
BENZ (A) ANTHRACENE	1.67	1.08	64.7	41-143	
BENZO (A) PYRENE	1.67	1.09	65.3	31-135	
BENZO (B) FLUORANTHENE	1.67	1.05	62.9	27-135	
BENZO (G,H,I) PERYLENE	1.67	1.13	67.7	25-159	
BENZOIC ACID	1.67	0.64	38.3	25-172	
BENZYL ALCOHOL	1.67	0.92	55.1	25-135	
BIS (2-CHLOROETHOXY) METHANE	1.67	1.05	62.9	39-135	
BIS (2-CHLOROETHYL) ETHER	1.67	1.22	73.1	34-135	
BIS (2-CHLOROISOPROPYL) ETHER	1.67	1.03	61.7	26-175	
BIS (2-ETHYLHEXYL) PHTHALATE	1.67	1.07	64.1	25-139	]

Comments:

ARF: 67099, QC Sample ID: AY56027

## AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8270C

AAB #: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120302A LCS-1 1/30,006

Initial Calibration ID: Y120301B

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
BUTYLBENZYLPHTHALATE	1.67	1.08	64.7	25-135	
CHRYSENE	1.67	1.03	61.7	45-143	
DI-N-BUTYLPHTHALATE	1.67	1.12	67.1	25-136	
DI-N-OCTYLPHTHALATE	1.67	1.08	64.7	28-137	
DIBENZ (A,H) ANTHRACENE	1.67	1.11	66.5	40-135	
DIBENZOFURAN	1.67	1.14	68.3	42-135	
DIETHYL PHTHALATE	1.67	1.09	65.3	27-135	
DIMETHYLPHTHALATE	1.67	1.08	64.7	25-175	
FLUORANTHENE	1.67	1.10	65.9	37-135	
FLUORENE	1.67	1.07	64.1	38-149	
HEXACHLOROBENZENE	1.67	1.06	63.5	36-143	
HEXACHLOROBUTADIENE	1.67	1.00	59.9	25-135	
HEXACHLOROCYCLOPENTADIENE	1.67	0.88	52.7	31-135	
HEXACHLOROETHANE	1.67	0.93	55.7	25-163	
INDENO (1,2,3-CD) PYRENE	1.67	1.07	64.1	25-170	
ISOPHORONE	1.67	1.06	63.5	25-175	
N-NITROSODI-N-PROPYLAMINE	1.67	1.04	62.3	27-135	
N-NITROSODIPHENYLAMINE	1.67	1.07	64.1	25-135	
NAPHTHALBNE	1.67	1.02	61.1	40-135	
NITROBENZEŅĒ	1.67	1.03	61.7	36-143	
PENTACHLOROPHENOL	1.67	1.21	72.5	38-146	
PHENANTHRENE	1.67	1.06	63.5	44-135	
PHENOL	1.67	1.01	60.5	25-135	
PYRENE	1.67	1.05	62.9	37-146	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 2,4,6-TRIBROMOPHENOL	73.0	25-144	
SURROGATE: 2-FLUORBIPHENYL (S)	67.6	34-135	
SURROGATE: 2-FLUOROPHENOL (S)	61.6	25-135	
SURROGATE: NITROBENZENE-D5 (S)	67.9	25-135	
SURROGATE: PHENOL (S)	68.5	25-135	
SURROGATE: TERPHENYL-D14 (S)	83.8	32-136	

Comments:

ARF: 67099, QC Sample ID: AY56027

## AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8270C

AAB#: 120302A-164436

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received		Max. Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
B4-NT1-SW1	29-Feb-12	01-Mar-12	02-Mar-12	14	2	02-Mar-12	40	0	

Comments:

ARF: 67099

# AFCEE ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 8270C	
Lab Name: APPL, Inc.	Contract #:
Instrument ID #: YODA	ICAL ID: <u>Y120301B</u>

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
SV TUNE 02-28-12	01-Mar-12	18:36	01-Mar-12	18:46
5.0 ug/mL SVOC 03-01-12	01-Mar-12	18:54	01-Mar-12	19;12
10 ug/mL SVOC	01-Mar-12	19:20	01-Mar-12	19:38
20 ug/mL SVOC	01-Mar-12	19:46	01-Mar-12	20:04
40 ug/mL SVOC	01-Mar-12	20:12	01-Mar-12	20:29
50 ug/mL SVOC	01-Mar-12	20:37	01-Mar-12	20:55
60 ug/mL SVOC	01-Mar-12	21:03	01-Mar-12	21:21
80 ug/mL SVOC	01-Mar-12	21:29	01-Mar-12	21:47
100 ug/mL SVOC	01-Mar-12	21:54	01-Mar-12	22:12
50 ug/mL SVOC SS 03-01-12	01-Mar-12	22:20	01-Mar-12	22:38
SV TUNE 02-28-12	02-Mar-12	17:44	02-Mar-12	17:54
50 ug/mL SVOC 03-01-12	02-Mar-12	18:02	02-Mar-12	18:20
120302A BLK 1/30.00G	02-Mar-12	19:20	02-Mar-12	19:37
120302A LCS-1 1/30,00G	02-Mar-12	19:45	02-Mar-12	20:03
AY56027S02 1/33.44G	02-Mar-12	22:19	02-Mar-12	22:37
·				

Comments:					
			<b>1</b>		
-		,			

AFCEE

AFCEE FORM O-10 Page ___ of ____

# Injection Log

Directory: M:\YODA\DATA\Y120301B\

Line	Vial	FileName M	lultiplier	SampleName	Misc Info	Injected
1	1	0301Y001.D 1		SV TUNE 02-28-12		1 Mar 12 18:36
2	2	0301Y002.D 1		5.0 ug/mL SVOC 03-01-12		1 Mar 12 18:54
3	3	0301Y003.D 1		10 ug/mL SVOC		1 Mar 12 19:20
4	4	0301Y004.D 1		20 ug/mL SVOC		1 Mar 12 19:46
5	5	0301Y005.D 1		40 ug/mL SVOC		1 Mar 12 20:12
6	6	0301Y006.D 1		50 ug/mL SVOC		1 Mar 12 20:37
7	7	0301Y007.D 1		60 ug/mL SVOC		1 Mar 12 21:03
8	8	0301Y008.D 1		80 ug/mL SVOC		1 Mar 12 21:29
9	9	0301Y009.D 1		100 ug/mL SVOC		1 Mar 12 21:54
10	10	0301Y010.D 1		50 ug/mL SVOC SS 03-01-12		1 Mar 12 22:20
11	1	0302Y001.D 1		SV TUNE 02-28-12		2 Mar 12 17:44
12	2	0302Y002.D 1		50 ug/mL SVOC 03-01-12		2 Mar 12 18:02
13	5	0302Y005.D 33	3.3333	120302A BLK 1/30.00G		2 Mar 12 19:20
14	6	0302Y006.D 33	3.3333	120302A LCS-1 1/30,00G		2 Mar 12 19:45
15	12	0302Y012.D 29	9.9043	AY56027S02 1/33.44G		2 Mar 12 22:19

# AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: El	PA 8270C						
Lab Name: Al	PPL, Inc.	Contract #:	*G012				
Instrument ID: Yo	ODA	Compound: DFTPP		Injection Date/Time:	1 Mar 12	18:36	
Initial Calibration ID: Y	120301B						

Mass	Ion Abundance Criteria	% Relative Abundance	Q
51	30 - 60.04% of mass 198	37.4	PASS
68	0 - 2% of mass 69	0.0	PASS
70	0 - 2% of mass 69	0.5	PASS
127	40 - 60% of mass 198	46.9	PASS
197	0 - 1% of mass 198	0.0	PASS
198	100 - 100% of mass 198	100.0	PASS
199	5 - 9% of mass 198	6.6	PASS
275	10 - 30% of mass 198	22.6	PASS
365	1 - 100% of mass 198	2.2	PASS
441	0.01 - 100% of mass 443	79.9	PASS
442	40 - 150% of mass 198	74.3	PASS
443	17 - 23% of mass 442	18.9	PASS

AFCEE FORM O-11 Page ___ of ____

### AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: EPA 8270C		
Lab Name: APPL, Inc.	Contract #: *G012	
Instrument ID: YODA	Compound: DFTPP Injection Date/Time: 2 Mar 12 17:44	_
Initial Calibration ID: Y120301B		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
51	30 - 60.04% of mass 198	46.9	PASS
68	0 - 2% of mass 69	1.6	PASS
70	0 - 2% of mass 69	0.4	PASS
127	40 - 60% of mass 198	48.3	PASS
197	0 - 1% of mass 198	0.0	PASS
198	100 - 100% of mass 198	100.0	PASS
199	5 - 9% of mass 198	6.7	PASS
275	10 - 30% of mass 198	26.3	PASS
365	1 - 100% of mass 198	3.3	PASS
441	0.01 - 100% of mass 443	77.6	PASS
442	40 - 150% of mass 198	96.9	PASS
443	17 - 23% of mass 442	19.9	PASS

AFCEE FORM O-11 Page ___ of ____

# 8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: *6012			
Lab Code:		SDG No.:	67099		
Lab File ID (Standard): 0301Y006.D		Date Analyzed: 1 I	Mar 12 20:37		
Instrument ID: YODA		Time Analyzed: 1 I	Mar 12 20:37		
GC Column:	ID:	Heated Purge: (Y/N)			

	1,4-dich	nlorobenzene-	D4(IS)	Napthal	ene-D8(IS	S) A	ena	aphthene-D1	0(	IS)	
[		AREA ;	# RT	# A	REA #	RT	#	AREA	#	RT	#
	12 HOUR STD	377888	4.57	1	425320	5.95		790452		7.9	5
	UPPER LIMIT	755776	5.07		850640	6.45		1580904		8.4	5
l	LOWER LIMIT	188944	4.07		712660	5.45		395226		7.4	5
[	SAMPLE									-	
[	NO.										
	120302A BLK 1/30.00G	369900	4.56	1	403140	5.95	Т	784561		7.9	5
	120302A LCS-1 1/30.00	403529	4.57	1	518610	5.95		841049	$\Box$	7.9	5
	AY56027S02 1/33.44G	389068	4.57	1	493460	5.94		837198		7,9	5
04											
05									_		
06							_				
07			ļ				_		_		
08			-				4		4		
09			ļ				+		-		
10		<del> </del>	<del> </del>			<del> </del>	+		4		$\dashv$
11 12			<del> </del>			<u> </u>			4		
13			<del> </del>	+			╬	<u> </u>	$\dashv$		$-\!\!\!-\!\!\!\!-\!\!\!\!-$
14			<u></u>	-			+		┵	••	
15		<del></del>	<del>                                     </del>	<del>-  </del> .		····	-		$\dashv$		
16		•	1	+		<del></del>	┰┼	·	┪		一
17			1	+			+		7		$\dashv$
18			<u> </u>				+		┪		$\dashv$
19	•		<u>†                                     </u>	-				<u></u>	┪		
20				<del>                                     </del>			十				$\dashv$
21							十		寸		_
22							T		$\exists$		ᅦ

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

### 8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: *G012					
Lab Code:		SDG No.: _	67099				
Lab File ID (Standard): 0301Y006.D		Date Analyzed:	Mar 12 20:37				
Instrument ID: YODA		Time Analyzed:	Mar 12 20:37				
GC Column:	ID:	Heated Purge: (Y/N)_					

	Pher	nanthrene-D10(I	Perylene-D12(IS)				
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	1457150	9.68	1307990	12.76	1280470	14.33
	UPPER LIMIT	2914300	10.18	2615980	13.26	2560940	14.83
	LOWER LIMIT	728575	9.18	653995	12.26	640235	13.83
	SAMPLE						
	NO.						
	120302A BLK 1/30.00G	1393520	9.67	1315180	12.75	1178700	14.32
	120302A LCS-1 1/30.00		9.67	1394980	12.76	1343340	14.32
	AY56027S02 1/33.44G	1498270	9.66	1387990	12.75	1257190	14.31
04	···						
05							
06							
07							
08	· ····						
09							
10 11							
12							
13							
14					<del></del>	<del></del>	
15							
16							<del></del>
17					<del></del>		
18						· · · · · ·	
19							
20							
21							
22							

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

# EPA METHOD 8270C Semivolatile Organic Compounds Calibration Data



### Anguerencion vehore

Data File: M:\YODA\DATA\Y120301B\0301Y002.D Vial: 2 Acq On : 1 Mar 12 18:54 Operator: LF : 5.0 ug/mL SVOC 03-01-12 Sample

Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:44 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:37:15 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.Τ.	QIon	Response	Conc	Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	393082	40.0	00000 pp	b 0.00
20) Napthalene-D8(IS)	5.95	136	1506406	40.0	00000 pp	b 0.00
38) Acenaphthene-D10(IS)	7.95	164	824381	40.0	qq 00000	b 0.00
62) Phenanthrene-D10(IS)	9.67	188	1446785		qq 00000	
76) Chrysene-D12(IS)	12.75	240	1306076		qq 00000	
86) Perylene-D12(IS)	14.31	264	1288127	40.0	qq 00000	b -0.01
System Monitoring Compounds						
4) 2-Fluorophenol (S)	3.24	112	155640		37519_pp	
Spiked Amount 200.000			Recove		= 5.4	
5) Phenol-D6 (S)	4.23	99	180362		64318 pp	
Spiked Amount 200.000			Recove		5.3	
21) Nitrobenzene-D5(S)	5.17	82	77224		41080 pp	b -0.01
Spiked Amount 100.000		4.00	Recove		5.4	
44) 2-Fluorobiphenyl(S)	7.19	172	163854		58074 pp	
Spiked Amount 100.000			Recove		= 5.6	
61) 2,4,6-Tribromophenol(S)	8,87	330	35587		17573 pp1	
Spiked Amount 200.000	44 55	044	Recove	ry =	= 5.0	
78) Terphenyl-D14(S)	11.55	244	146441		36641 ppl = 5.3	b 0.00
Spiked Amount 100.000		_	Recove	ťУ -	= 5.31	008
Target Compounds	1					Qvalue
2) n-Nitrosodimethylamine	1.95	42	74938	8.6	52369 pp	
6) Phenol	4.24	94	121773	5.3	31509 pp	
7) Aniline	4.31	93	101768		71072 ppl	
8) Bis (2-chloroethyl) ether	4.31	63	64044		8672 ppl	
9) 2-Chlorophenol	4.36	128	89857	5.2	29842 ppl	o 96
10) 1,3-DCB	4.50	146	104166		17236 ppl	
11) 1,4-DCB	4.58	146	110414	5.6	4867 ppl	o 96
12) Benzyl alcohol	4.75	79	66800	5.1	[6989 pp]	o 99
13) 1,2-DCB	4.74	146	100661		1798 ppl	
14) 2-Methylphenol	4.88	108	85788		0767 ppl	
15) Bis (2-chloroisopropyl) et	4.88	45	148073		75130 ppl	
16) Acetophenone	5.01	105	121141		11755 ppl	
17) 3&4-Methylphenol	5.04	107	189500		73406 ppl	
18) n-Nitrosodi-n-propylamine	5.01	43	77230		.0226 ppl	
19) Hexachloroethane	5.09	117	36806		0446 pp)	
22) Nitrobenzene	5.19	77	91950		5411 pp)	
23) Isophorone	5.46	82	163333		2886 ppl	
24) 2-Nitrophenol	5,54	139	47673		0568 pph	
25) 2,4-Dimethylphenol	5.62	107	90735	5.5	0220 ppl	95
26) Benzoic acid	5.84	105	8850	1.3	2012 ppl	89
27) Bis (2-chloroethoxy) metha	5.71	93	101034		18534 ppl	
28) 2,4-Dichlorophenol	5.82	162	69818		0399 pph	
29) 1,2,4-Trichlorobenzene	589	180	80979		6878 ppl	
30) Naphthalene	5.97	128	287250		9536 ppk	
31) 4-Chloroaniline	6.06	127 162	91912 75518		.7773 ppk '5846 ppk	
32) 2,6-Dichlorophenol	6.06				4537 ppl	
33) Hexachloropropene	6.06 6.11	213 225	40681 41040		74537 ppi 7452 ppi	
34) Hexachlorobutadiene	6.46	113	28279		.9833 ppi	
35) Caprolactum	6.65	107	71881		3540 ppl	
36) 4-Chloro-3-methylphenol	6.76	142	183661		.5553 ppl	
37) 2-Methylnaphthalene 39) Hexachlorocyclopentadiene	6.93	237	14571		0921 ppk	
33) Meyacutorocactobenegatene		207	14011		PPr	

^{(#) =} qualifier out of range (m) = manual integration 0301Y002.D Y827AF.M Thu Mar 08 14:59:25 2012

Data File: M:\YODA\DATA\Y120301B\0301Y002.D

Vial: 2 Acq On : 1 Mar 12 18:54 Operator: LF Sample : 5.0 ug/mL SVOC 03-01-12 Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:44 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C Last Update : Mon Mar 05 08:37:15 2012 Response via : Initial Calibration DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue	
40)	1,2,4,5-Tetrachlorobenzene	6.95	216	76383	5.67391	daa		91
41)	2,4,6-Trichlorophenol	7.10	. 196	46662	5.08942			95
42)	2,4,5-Trichlorophenol	7.16	196	52564	5.36445	ppb		95
	2-Chloronaphthalene	7.31	162	170712	5.73721			98
	1,1'-Biphenyl	7.30	154	223595	5.83589	ppb		99
	2-Nitroaniline	7.46	138	56423	4.98761	ppb		99
47)	Dimethyl phthalate	7.68	163	185518	5.47105	ppb		95
	2,6-DNT	7.75	165	40590	5.08008		#	80
49)	Acenaphthylene	7.78	152	274925	5.55954	ppb		100
	3-Nitroaniline	7.95	65	59841	5.51041	dqq		95
	Acenaphthene	7.98	154	170151	5.80669	ppb		99
	2,4-Dinitrophenol	8.11	184	1274	7.29158	ppb	#	55
	4-Nitrophenol	8.18	109	688	0.24169		#	1
	Dibenzofuran	8.19	139	81160	4.04429			78
	2,4-DNT	8.21	165	54564	4.94419			84
	2,3,4,6-Tetrachlorophenol	8.36	232	34786	4.76173	ppb		99
	Diethyl phthalate	8.50	149	186438	5.53472	ppb		99
	4-Chlorophenyl phenyl ethe		204	93202	5.73780	ppb		92
	Fluorene	8.58	165	176861				<b>9</b> 9
-	4-Nitroaniline	8.65	138	46045	5.25589			99
	Diphenyl amine	8.75	168	187840	5.79140			99
	4,6-Dinitro-2-methylphenol	8.68	198	18478				87
	n-Nitrosodiphenylamine	8.75	167	100712	5.84981			100
66)	1,2-Diphenylhydrazine	8.78	182	56647	5.72893			79
67)	4-Bromophenyl phenyl ether	9.16	248	45954	5.56999	ppp		99
	Hexachlorobenzene	9.21	284	49919	5.59221	agg		98
	Atrazine	9.40	200	3624	2.47981	ppp		93
	Pentachlorophenol Phenanthrene	9.47 9.69	266	18890	3.86931	ppp		92
	Anthracene	9.69	178 178	288113	5.99120	ppp		100
	Carbazol	9.73	167	287873 247514	5.82163	ordd D		99
	Di-n-butylphthalate	10.40	149	280315	5.55861			97
	Fluoranthene	11.08	202	264603	5.35316 j 5.38801 j	ppp		99 99
	Pyrene	11.33	202	276314	5.37258	ppb ppb	#	82
	Butyl benzylphthalate	12.14	149	112254	4.92392	ppb	17	90
	3,3'-Dichlorobenzidine	12.74	252	68319	4.85585	იის ისი		96
	Benz (a) anthracene	12.74	228	223596	5.35256	րոր Արտ		98
	Bis (2-ethylhexyl) phthala	12.82	149	180009	5.34724			96
	Chrysene	12.77	228	254687	5.77786		Ħ	97
	Di-n-octylphthalate	13.54	149	265417	4.89182	nnh	и	99
	Indeno (1,2,3-cd) pyrene	15.67	276	217673	4.89840	onh		94
	Benzo (b) fluoranthene	13.90	252	242006	4.47210			99
	Benzo (k) fluoranthene	13.92	252	209292	4.06350	opb		97
	Benzo (a) pyrene	14.25	252	202723	4.98875			99
	Dibenz (a,h) anthracene	15.70	278	184534	4.85319			100
	Benzo (g,h,i) perylene	16.06	276	192051	5.13331	dqo		99
	<del>-</del> -					-		

Data File : M:\YODA\DATA\Y120301B\0301Y002.D

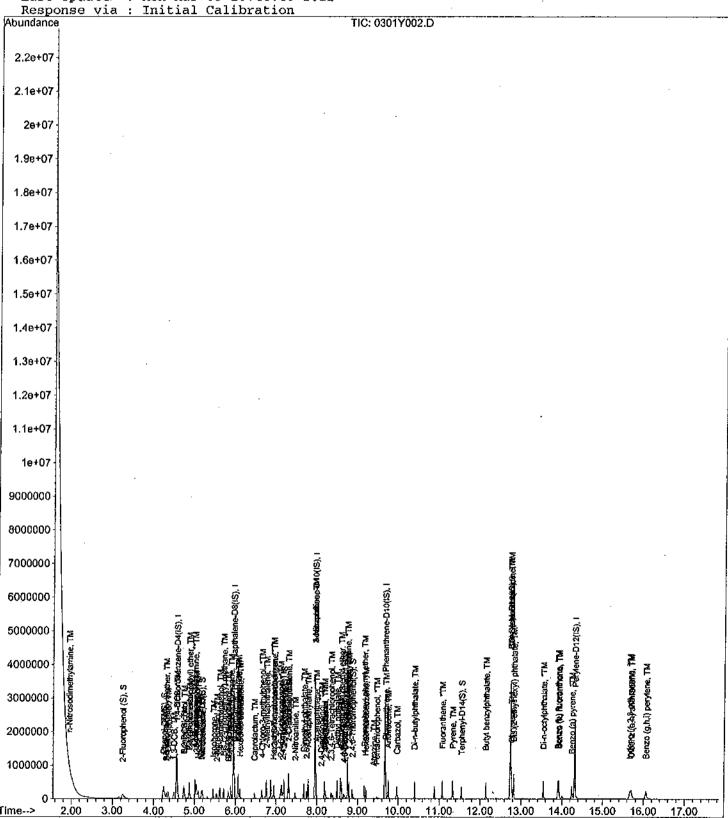
1 Mar 12 18:54 Acq On Sample

: 5.0 ug/mL SVOC 03-01-12

Operator: LF Inst : YODA Multiplr: 1.00

Vial: 2

Quant Time: Mar 5 8:44 2012


Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Method Title : EPA 8270C

Misc

Last Update : Mon Mar 05 10:46:48 2012



Vial: 3 Data File : M:\YODA\DATA\Y120301B\0301Y003.D Acq On : 1 Mar 12 19:20 Operator: LF Inst : YODA Multiplr: 1.00 Sample : 10 ug/mL SVOC Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:37:15 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	389044	40.00000 pp	ob 0.00
20) Napthalene-D8(IS)	5,95	136	1500970	40.00000 pp	
38) Acenaphthene-D10(IS)	7.95	164	845002	40,00000 pp	
62) Phenanthrene-D10(IS)	9.67	188	1480554	40.00000 pp	
76) Chrysene-D12(IS)	12.75	240	1357398	40.00000 pp	
86) Perylene-D12(IS)	14.32	264	1314752	40.00000 pp	ob 0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.24	112	310157	21,89686 pp	
Spiked Amount 200.000			Recove		
5) Phenol-D6 (S)	4.23	99	369810	22.04902 pp	
Spiked Amount 200,000	- 45		Recove		
21) Nitrobenzene-D5(S)	5.18	82	155572	10.93984 pp	
Spiked Amount 100.000		4.00	Recove		
44) 2-Fluorobipheny1(S)	7.19	172	341076	11,53638 pp	
Spiked Amount 100.000	A A	220	Recove		
61) 2,4,6-Tribromophenol(S)	8.87	330	77563	21,63709 pp	
Spiked Amount 200.000	11 64	244	Recove		
78) Terphenyl-D14(S)	11.54	244	315668	11.13045  pp erv = $11.1$	
Spiked Amount 100.000		•	Recove	ry = 11.1	30%
Target Compounds					Qvalue
<ol><li>n-Nitrosodimethylamine</li></ol>	1.95	42	113449	13.19095 pp	
<ol><li>Pyridine</li></ol>	1.97	52	101228	9.53362 pp	
6) Phenol	4.25	94	247370	10,90916 pp	
7) Aniline	4.31	93	195768	11.09957 pp	
<li>8) Bis (2-chloroethyl) ether</li>	4.31	63	125808	9.30216 pp	
9) 2-Chlorophenol	4.36	128	185213	11.03445 pp	
10) 1,3-DCB	4.50	146	209974	11.14547 pp	
11) 1,4-DCB	4.58	146	218579	11.29835 pp	
12) Benzyl alcohol	4.74	79	138669	10.84347 pp	
13) 1,2-DCB	4.74	146	200453	11,30359 pp	
14) 2-Methylphenol	4,87	108	172229	11.17203 pp	
15) Bis (2-chloroisopropyl) et	4.88	45	291071	11.42282 pp	
16) Acetophenone	5.02	105	252249	11.39793 pp	
17) 3&4-Methylphenol	5.05	107	401116	22.95668 pp	
18) n-Nitrosodi-n-propylamine	5.02	43	156590	12.50124 pp 11.12294 pp	
19) Hexachloroethane	5,09	117 77	72297 190089	11.12294 pp	
22) Nitrobenzene	5.19 5.45	82	334532	10.95389 pp	
23) Isophorone	5.54	139	99908	10.52836 pp	
24) 2-Nitrophenol	5.61	107	180694	10.32836 pp.	
25) 2,4-Dimethylphenol 26) Benzoic acid	5.81	105	65581	9.81790 pp	b 92
27) Bis (2-chloroethoxy) metha	5.71	93	199746	10.88389 pp	
28) 2,4-Dichlorophenol	5.82	162	149306	11.16906 pp	
29) 1,2,4-Dichiorophenor	5.89	180	163317	11.27170 pp	
30) Naphthalene	5.97	128	570252	11.34744 pp	
31) 4-Chloroaniline	6.06	127	195891	11.07520 pp	
32) 2,6-Dichlorophenol	6.06	162	147976	11.32445 pp	
33) Hexachloropropene	6.07	213	86731	10.79557 pp	
34) Hexachlorobutadiene	6.10	225	81293	11.08213 pp	
35) Caprolactum	6.48	113	60481	11.15807 pp	
36) 4-Chloro-3-methylphenol	6.64	107	152099	10.69342 ppl	
37) 2-Methylnaphthalene	6.75	142	378294	11,27767 ppl	

^{(#) =} qualifier out of range (m) = manual integration 0301Y003.D Y827AF.M Thu Mar 08 14:59:28 2012

Data File : M:\YODA\DATA\Y120301B\0301Y003.D Vial: 3 Acq On : 1 Mar 12 19:20 Sample : 10 ug/mL SVOC Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update: Mon Mar 05 08:37:15 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue	•
39)	Hexachlorocyclopentadiene	6.93	237	46058	8.04628	dqq		97
	1,2,4,5-Tetrachlorobenzene	6.95	216	154982	11.23149		#	89
	2,4,6-Trichlorophenol	7.11	196	100140	10.65572	ppb		93
42)	2,4,5~Trichlorophenol	7.15	196	107376	10.69090	ppb	#	94
	2-Chloronaphthalene	7.31	162	345172	11.31729			98
	1,1'-Biphenyl	7.30	154	449456	11.44464			99
	2-Nitroaniline	7.46	138	120663	10.40591			83
-	Dimethyl phthalate	7.68	163	380707	10.95332		u	91
	2,6-DNT	7.75	165	83176	10,15594		#	82
	Acenaphthylene	7.78 7.94	152	558467	11.01774			99
	3-Nitroaniline	7.99	65 154	115303 336010	10.35847 11.18707			95 100
	Acenaphthene 2,4-Dinitrophenol	8.08	184	20715	10.77872		#	18
	4-Nitrophenol	8.22	109	25127	8.61164		Π	93
	Dibenzofuran	8.18	139	170914	8.30899			98
	2,4-DNT	8,21	165	121471	10.73820	րթի		98
	2,3,4,6-Tetrachlorophenol	8.35	232	75633	10,10049			97
	Diethyl phthalate	8.50	149	377925	10.94553			98
	4-Chlorophenyl phenyl ethe	8,60	204	189210	11.36408			99
	Fluorene	8.58	165	365883	11.35008			100
,	4-Nitroaniline	8.66	138	91550	10.19511			95
	Diphenyl amine	8.75	168	374364	11.27897			100
64)	4,6-Dinitro-2-methylphenol	8.68	198	54333	8.90920	ppb		93
65)	n-Nitrosodiphenylamine	8.75	167	201963	11.46336	ppb		97
66)	1,2-Diphenylhydrazine	8.79	182	116377	11.50122	ppb		64
67)	4-Bromophenyl phenyl ether	9.17	248	95425	11.30246			. 99
-	Hexachlorobenzene	9.20	284	102644	11.23649	ppb	Ħ	78
	Atrazine	9.40	200	8538	5.70908			90
	Pentachlorophenol	9,46	266	44751	8.95745			99
	Phenanthrene	9.70	178	570541	11.59358			99
	Anthracene	9.75	178	579273	11.44739			99
	Carbazol	9.96	167	521286	11.43990 11.03017			$\frac{100}{100}$
	Di-n-buty1phthalate	10.40 11.07	149 202	591070 550715	10.95822		#	84
	Fluoranthene Pyrene	11.33	202	589160	11.02236		# #	87
•	Butyl benzylphthalate	12.15	149	240862	10.16574		π	97
	3,3'-Dichlorobenzidine	12.73	252	146559	10.02299			96
	Benz (a) anthracene	12.73	228	475529	10.95307	ppa		98
	Bis (2-ethylhexyl) phthala	12.82	149	385964	11,03172			99
	Chrysene	12,78	228	510857	11,15119	daa	#	97
	Di-n-octylphthalate	13,55	149	580944	10.30237			99
85)		15.67	276	468818	10.15115			95
•	Benzo (b) fluoranthene	13.90	252	510777	9.24765	ppb		98
	Benzo (k) fluoranthene	13.93	252	446076	8.48537			98
	Benzo (a) pyrene	14.25	252	455138	10.97354	ppb		98
	Dibenz (a,h) anthracene	15.70	278	403688	10,40188			98
91)	Benzo (g,h,i) perylene	16.07	276	410631	10.75343	ppb		97

## Quantitation report

Data File: M:\YODA\DATA\Y120301B\0301Y003.D

: 1 Mar 12 19:20

Vial: 3 Operator: LF

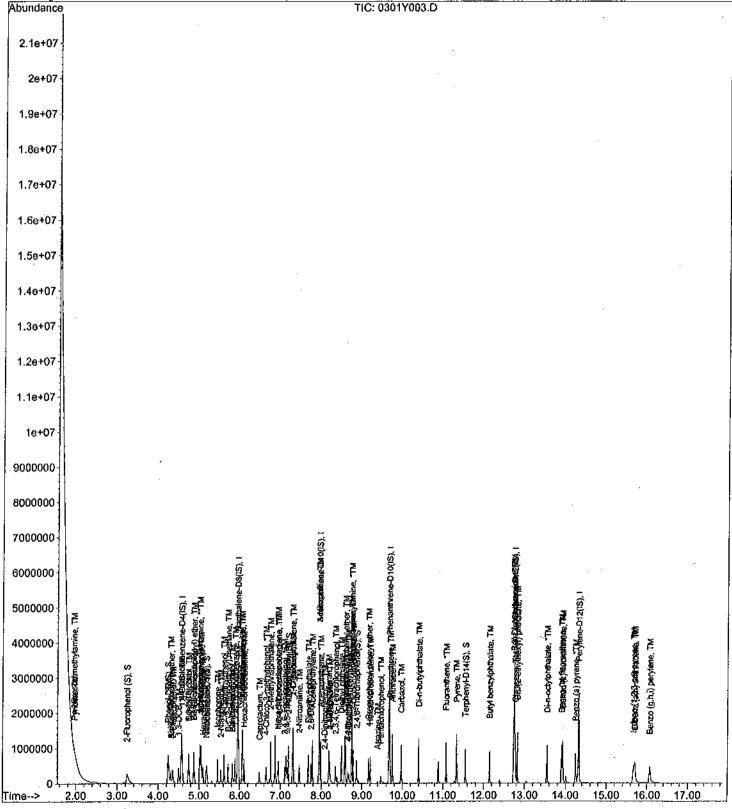
Sample : 10 ug/mL SVOC Misc

Inst : YODA Multiplr: 1.00

Quant Time: Mar 5 8:40 2012

Quant Results File: Y827AF.RES

Method


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

; EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012.

Response via : Initial Calibration



Data File: M:\YODA\DATA\Y120301B\0301Y004.D Vial: 4 Acq On : 1 Mar 12 19:46 Sample : 20 ug/mL SVOC Operator: LF Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:32:48 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Unit	s De	v(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.56	152	382365	40.00000	ppb	0.00
<pre>20) Napthalene-D8(IS)</pre>	5.95	136	1462702	40.00000	ppb	0.00
38) Acenaphthene-D10(IS)	7.95	164	814051	40.00000		0.00
62) Phenanthrene-D10(IS)	9.67	188	1454482	40.00000	ppb	0.00
76) Chrysene-D12(IS)	12.75	240	1328601	40.00000	ppb	0.00
86) Perylene-D12(IS)	14.32	264	1308060	40,00000	ppb	0.00
System Monitoring Compounds					_	
4) 2-Fluorophenol (S)	3.24	112	559368	40.18079		0.00
Spiked Amount 200.000			Recove		0.091%	
5) Phenol-D6 (S)	4.23	99	674063	40.89138		0.00
Spiked Amount 200.000	C 10		Recove	ery = 2	0.446%	0 00
21) Nitrobenzene-D5(S)	5.18	82	279510	20.16940	րըը 0.169%	0.00
Spiked Amount 100,000	7.19	172	Recove 585903	ry = 20 20.57076		0.00
44) 2-Fluorobiphenyl(S) Spiked Amount 100.000	7.13	1/2	Recove		0.571%	0.00
61) 2,4,6-Tribromophenol(S)	8.88	330	140905	40.80156		0.00
Spiked Amount 200.000	0.00	330	Recove		0.401%	0,00
78) Terphenyl-D14(S)	11.54	244	562480	20.26291		0.00
Spiked Amount 100.000	11.54	241	Recove		0.263%	0.00
Target Compounds					0	value
2) n-Nitrosodimethylamine	1.95	42	152067	21.77892		91
3) Pyridine	1.96	52	201527	19.31128	dqq	97
6) Phenol	4.24	94	458086	20.55473		<b>#</b> 69
7) Aniline	4.31	93	337366	19,46194	ppb	99
8) Bis (2-chloroethyl) ether	4.31	63	237928	17,89953	ppb	99
9) 2-Chlorophenol	4.35	128	338118	20.49595	ppb	99
10) 1,3-DCB	4.50	146	377414	20.38316		99
11) 1,4-DCB	4.58	146	386633	20.33415		99
12) Benzyl alcohol	4.74	79	255852	20.35627		98
13) 1,2-DCB	4.74	146	357184	20.49351		99
<pre>14) 2-Methylphenol</pre>	4.87	108	308671	20.37240		97
15) Bis (2-chloroisopropy1) et	4.87	45	523020	20.88398		98
16) Acetophenone	5.02	105	445408	20,47741		97
17) 3&4-Methylphenol	5.05	107	717015	41.75302		97
18) n-Nitrosodi-n-propylamine	5.02	43	277319	20.61743		
19) Hexachloroethane	5.09	117	131164	20.53215		93
22) Nitrobenzene	5.19	77	338787	20.31649		98
23) Isophorone	5.46	82	598728	20.11760		90
24) 2-Nitrophenol	5.54	139	190029	20.54927		97 100
25) 2,4-Dimethylphenol	5.61 5.78	107 105	328323 140686	20.50448	րըս	95
26) Benzoic acid 27) Bis (2-chloroethoxy) metha	-	93		19.55648	րըս	
•	5.71 5.82		369916 270523	20.68355 20.76633		100 99
28) 2,4-Dichlorophenol 29) 1,2,4-Trichlorobenzene	5.82	162 180	285393	20,70033		99
30) Naphthalene	5.97	128	1010762	20.63936		100
31) 4-Chloroaniline	6.06	127	374560	21.73074		99
32) 2,6-Dichlorophenol	6.06	162	267640	21.01808		99
33) Hexachloropropene	6.06	213	162568	20,76454	ppb	100
34) Hexachlorobutadiene	6.10	225	147389	20.61823		95
35) Caprolactum	6.50	113	110660	20.94965		98
36) 4-Chloro-3-methylphenol	6.64	107	279838	20.18892		94
37) 2-Methylnaphthalene	6.75	142	680396	20.81460		99
		<del>_</del>				

^{(#) =} qualifier out of range (m) = manual integration 0301Y004.D Y827AF.M Thu Mar 08 14:59:31 2012

Data File : M:\YODA\DATA\Y120301B\0301Y004.D Via1: 4 Acq On : 1 Mar 12 19:46 Sample : 20 ug/mL SVOC Operator: LF Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

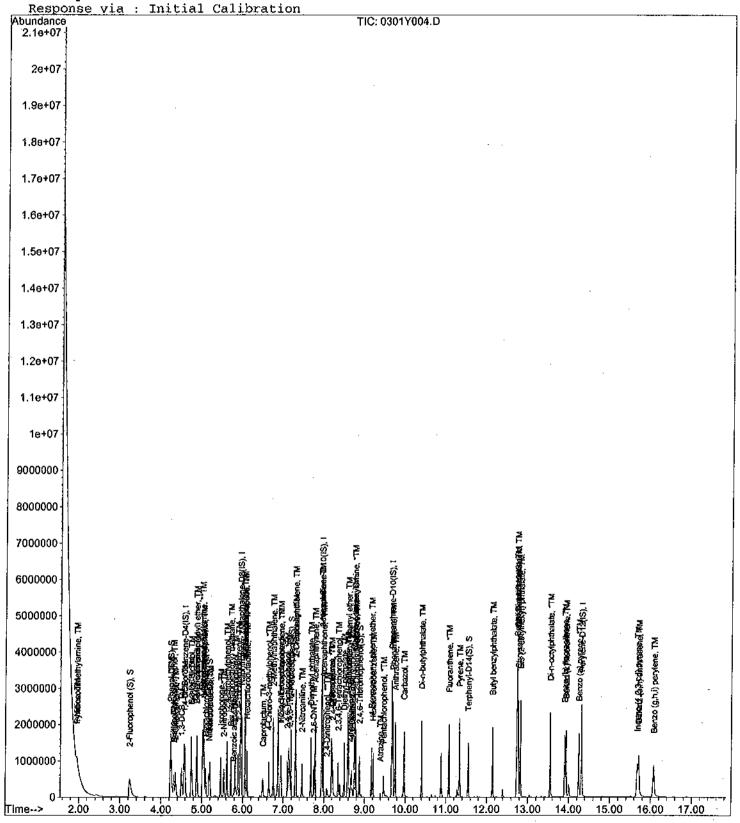
Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title ; EPA 8270C

Last Update: Mon Mar 05 08:32:48 2012 Response via: Initial Calibration DataAcq Meth: Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qva	1ue	
39)	Hexachlorocyclopentadiene	6.93	237	105332	17.87968	ppb		99
	1,2,4,5-Tetrachlorobenzene	6.95	216	274218	20.62805		#	89
41)	2,4,6-Trichlorophenol	7.10	196	182069	20.11025			98
42)	2,4,5-Trichlorophenol	7.15	196	197373	20,39863		#	97
	2-Chloronaphthalene	7.31	162	605807	20.61803			99
45)	1,1'-Biphenyl	7,30	154	801130	21.17504	ppb		99
	2-Nitroaniline	7.46	138	224610	20.10673		Ħ	77
47)	Dimethyl phthalate	7.68	163	689165	20.58184			95
48)	•	7.76	165	164675	20.87160			81
	Acenaphthylene	7.78	152	1029819	21.08929	ppb		99
50)	3-Nitroaniline	7.94	65	215485	20.09455			94
-	Acenaphthene	7.99	154	603069	20.84189			.99
-	2,4-Dinitrophenol	8.07	184	62053	19.51490		Ħ	21
	4-Nitrophenol	8.20	109	56029	17.54706			77
	Dibenzofuran	8.18	139	424049	21.39898			100
	2,4-DNT	8.21	165	223858	20.54176			85
	2,3,4,6-Tetrachlorophenol	8.35	232	146460	20.30281			98
	Diethyl phthalate	8.50	149	677128	20,35674			100
	4-Chlorophenyl phenyl ethe	8.60	204	332193	20.71032			97
-	Fluorene	8.58	165	641087	20.64333			99
	4-Nitroaniline	8.67	138	174492	20.17044			94
	Diphenyl amine	8.76	168	688421	21,11277	ppb		100
	4,6-Dinitro-2-methylphenol	8.68	198	122467	19.37956	ppb	#	79
	n-Nitrosodiphenylamine	8.76	167	368488	21.29018	ppb		98
	1,2-Diphenylhydrazine	8.79	182	207390	20.86317	ppb		87
	4-Bromophenyl phenyl ether	9.17	248	171833	20.71730			99
	Hexachlorobenzene	9.20	284	183748	20.47556	bbp	#	70
	Atrazine	9.40	200	14539	9.89602	agg		97
	Pentachlorophenol	9.46	266	96229	18.67533			99
	Phenanthrene	9.70	178	1000678	20.69860			100
	Anthracene	9.75	178	1036256	20.84521			99
	Carbazol Di-n-butylphthalate	$9.97 \\ 10.40$	$\frac{167}{149}$	923845	20.63770 20.56978			99 99
	Fluoranthene	11.08	202	1082855 1041387	21.09313			99
-	Pyrene	11.33	202	1089719	20.82901		Ħ	82
	Butyl benzylphthalate	12.15	149	470333	20.28098		If	95
	3,3'-Dichlorobenzidine	12.15 $12.74$	252	299254	20.20030			99
	Benz (a) anthracene	12.73	228	866074	20.38104			99
	Bis (2-ethylhexyl) phthala	12.82	149	698174	20.38792			97
	Chrysene	12.78	228	906963	20.22665		#	96
	Di-n-octylphthalate	13.55	149	1112049	20.14834		"	100
	Indeno (1,2,3-cd) pyrene	15.68	276	884997	19.57787			93
	Benzo (b) fluoranthene	13.90	252	861998	18.83623		#	95
	Benzo (k) fluoranthene	13.94	252	901824	21.35507		#	94
	Benzo (a) pyrene	14.25	252	838057	20.30922		••	98
_ :	Dibenz (a, h) anthracene	15.71	278	789053	20.43564			99
	Benzo (g,h,i) perylene	16.08	276	761218	20.03644			97
	197 1 1 P = 1 2 = 1 = 1	<del>-</del>			<del></del> .			-

Data File : M:\YODA\DATA\Y120301B\0301Y004.D


Vial: 4 : 1 Mar 12 19:46 Operator: LF Sample : 20 ug/mL SVOC : YODA Inst Misc Multiplr: 1.00

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012



Data File : M:\YODA\DATA\Y120301B\0301Y005.D Vial: 5 Acq On : 1 Mar 12 20:12 Operator: LF Sample : 40 ug/mL SVOC Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	4.57	152	392850	40.00000 pp	
20) Napthalene-D8(IS)	5.95		1483214	40.00000 pp	
38) Acenaphthene-D10(IS)	7.95	164	826552	40,00000 pp	
62) Phenanthrene-D10(IS)	9.67	188	1506673	40,00000 pp	
76) Chrysene-D12(IS)	12.76		1366661	40.00000 pp	
86) Perylene-D12(IS)	14.32	264	1338704	40.00000 pp	b 0.00
and the first make and the					
System Monitoring Compounds	2 04	110	1104074	50 F0056	
4) 2-Fluorophenol (S)	3.24	112	1124071		
Spiked Amount 200,000	4 00	0.0	Recove		
5) Phenol-D6 (S)	4.23	99		79.22141 pp	
Spiked Amount 200.000	C 10	0.0		xy = 39.6	
21) Nitrobenzene-D5(S)	5.18	82	555254	39.51294 pp	
Spiked Amount 100.000	7.20	172	Recove 1117443	xy = 39.5 38.63949 pp	
44) 2-Fluorobiphenyl(S)	7.20	172			
Spiked Amount 100.000	8.88	330	Recove	79.13264 pp	
61) 2,4,6-Tribromophenol(S)	0.00	330	Recove		
Spiked Amount 200,000	11.55	244	1119814	39.21701 pp	
78) Terphenyl-D14(S) Spiked Amount 100.000	11.55	244	Recove		
Spiked Amount 100.000			Kecove	ry - 33,2	1/6
Target Compounds					Qvalue
2) n-Nitrosodimethylamine	1.94	42	297622	41.48755 pp	
3) Pyridine	1.95	52	429624	40.06986 pp	
6) Phenol	4.25	94	881431	38.49502 pp	
7) Aniline	4.32	93	656968	36,88761 pp	
8) Bis (2-chloroethy1) ether	4.32	63	467820	34.25517 ppl	
9) 2-Chlorophenol	4.36	128	645929	38.10973 pp	
10) 1,3-DCB	4.50	146	722084	37.95706 ppl	
11) 1,4-DCB	4.59	146	73.0034	37.36987 ppl	
12) Benzyl alcohol	4.75	79	493847	38.24311 ppl	
13) 1,2-DCB	4.74	146	673315	37.60053 ppl	
14) 2-Methylphenol	4.88	108	592619	38.06916 ppl	
15) Bis (2-chloroisopropyl) et	4.88	45	970461	37.71590 ppl	
16) Acetophenone	5.02	105	843853	37.76028 ppl	98
17) 3&4-Methylphenol	5.05	107	1354856	76.78991 ppl	o 95
18) n-Nitrosodi-n-propylamine	5,03	43	519827	37.61535 ppl	o 99
19) Hexachloroethane	5.09	117	248894	37.92151 ppl	o 97
22) Nitrobenzene	5.20	77	646644	38.24188 pp	
23) Isophorone	5.47	82	1148009	38.04031 ppl	
	5.54	139	363960	38.81344 ppl	
<pre>25) 2,4-Dimethylphenol</pre>	5.62	107	013300	JO, I ILL PP.	
26) Benzoic acid	5.82	105	303460	41.60000 ppl	
27) Bis (2-chloroethoxy) metha	5.72	93	701744	38,69482 ppl	
28) 2,4-Dichlorophenol	5.82	162	512992	38,83454 ppl	
29) 1,2,4-Trichlorobenzene	5.89	180	542403	37.88334 ppl	
30) Naphthalene	5.98	128	1893392	38.12763 ppl	
31) 4-Chloroaniline	6.06	127	689238	39.43432 ppk	
32) 2,6-Dichlorophenol	6.06	162	491596	38,07172 ppk	
33) Hexachloropropene	6.06	213	306824	38.64815 ppl	
34) Hexachlorobutadiene	6.11	225	278206	38.37998 ppl	
35) Caprolactum	6.54	113	214787	40.10016 pph	
36) 4-Chloro-3-methylphenol	6.66	107	549249	39.07758 ppk	
37) 2-Methylnaphthalene	6.76	142	1258813	37,97690 ppk	צ פ

^{(#) =} qualifier out of range (m) = manual integration 0301Y005.D Y827AF.M Thu Mar 08 14:59:34 2012

Data File : M:\YODA\DATA\Y120301B\0301Y005.D

Vial: 5 Acq On : 1 Mar 12 20:12 Operator: LF Sample : 40 ug/mL SVOC Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:40 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	!
39)	Hexachlorocyclopentadiene	6.93	237	233865	39.09724	daa daa	99
-	1,2,4,5-Tetrachlorobenzene	6.94	216	515124	38.16413		98
-	2,4,6-Trichlorophenol	7.10	196	355404	38.66208		99
	2,4,5-Trichlorophenol	7.17	196	385615	39.25081		99
	2-Chloronaphthalene	7.32	162	1124851	37.70416		100
	1,1'-Biphenyl	7.31	154	1483738	38.62423		99
46)	2-Nitroaniline	7.47	138	441683	38.94076	ppb	98
47)	Dimethyl phthalate	7.69	163	1276403	37.54311	ppb	99
48)	2,6-DNT	7.76	165	318658	39,77721		95
49)	Acenaphthylene	7.79	152	1882182	37.96156		100
50}	3-Nitroaniline	7.96	65	427140	39.22950		95
	Acenaphthene	7.99	154	1115054	37.95312		100
	2,4-Dinitrophenol	8.08	184	158433	36.74132		81
53)	4-Nitrophenol	8.21	109	127942	39.46263		, 96
54)	Dibenzofuran	8.19	139	841390	41.81728		99
	2,4-DNT	8.23	165	432937	39.12651		94
56)	2,3,4,6-Tetrachlorophenol	8.36	232	288036	39.32468		98
	Diethyl phthalate	8.51	149	1275095	75387, 37		100
58)	4-Chlorophenyl phenyl ethe	8.61	204	616973	37.88295	ppb	100
59)	Fluorene	8.59	165	1190077	37.74150		100
	4-Nitroaniline	8,68	138	342203	38.95875		98
	Diphenyl amine	8.76	168	1237055	36.62431		100
	4,6-Dinitro-2-methylphenol	8.70	198	257780	39,37888		82
	n-Nitrosodiphenylamine	8.76	167	660833	36,85845	ppb	100
	1,2-Diphenylhydrazine	8.79	182	383135	37.20777		94
	4-Bromophenyl phenyl ether	9.17	248	327793	38.15185	ppb	99
	Hexachlorobenzene	9.22	284	352671	37.93780		99
	Atrazine	9.40	200	29742	19.54275	ppb	98
	Pentachlorophenol	9.47	266	210771	39.48775		100
-	Phenanthrene	9.70	178	1852653	36.99389	ppb	100
	Anthracene	9.77	178	1957613	38.01503	ppb	100
	Carbazol	9.97	167	1743714	37.60337		99
	Di-n-butylphthalate	10.41	149	2090352	38.33259		100
	Fluoranthene	11.08	202	1995775	39.02383	aqq	100
	Pyrene.	11.34	202	2064579	38,36360	ppp	98
	Butyl benzylphthalate	12.15	149	942427	39.50617		96
	3,3'-Dichlorobenzidine	12.75	252	603335	40.98166		100
	Benz (a) anthracene	12.74	228	1668959	38.18131		100
	Bis (2-ethylhexyl) phthala	12.83 12.78	$\frac{149}{228}$	1367118	38.81047 37.09588		98 95
	Chrysene	13.55	149	1711029 2227653	39.23708		100
85)	Di-n-octylphthalate Indeno (1,2,3-cd) pyrene	15.70	276	1778942	38.25772		97
	Benzo (b) fluoranthene	13.92	252	1687499	36.03083	nnp ÞÞn	99
	Benzo (k) fluoranthene	13.94	252	1697322	39.27232		98
	Benzo (a) pyrene	14.27	252	1658639	39.27486		98
	Dibenz (a,h) anthracene	15.73	278	1559762	39.47149		93
	Benzo (g,h,i) perylene	16,10	276	1516848	39.01187		98
J = ,	zerre (almir) berlrowe	,_,	2.0		55.51107	EP~	,,

Quantition neport

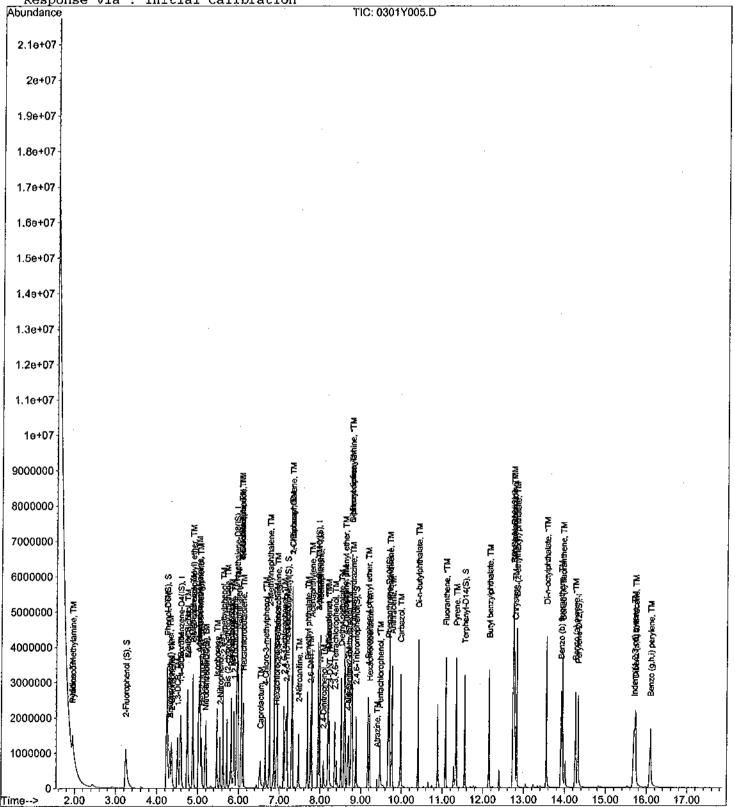
Data File : M:\YODA\DATA\Y120301B\0301Y005.D

Acq On : 1 Mar 12 20:12 Sample : 40 ug/mL SVOC Vial: 5
Operator: LF
Inst : YODA
Multiplr: 1.00

Quant Time: Mar 5 8:40 2012

Quant Results File: Y827AF.RES

~


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Method : M Title : E

Misc

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration



Data File : M:\YODA\DATA\Y120301B\0301Y006.D Vial: 6 : 1 Mar 12 20:37 Acq On Operator: LF Sample : 50 ug/mL SVOC Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:42 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:32:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min).
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	377888	40.00000 ppb	0.00
20) Napthalene-D8(IS)	5.95	136	1425320	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7 05	164	790452	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9,68	188		40.00000 ppb	0.00
76) Chrysene-D12(IS)	12.76	240	1307987	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.33	264	1280471	40,00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3,24	112	1308582	95.11233 ppb	0.00
Spiked Amount 200,000			Recove		
5) Phenol-D6 (S)	4.24	99	1558962	95.69336 ppb	0.00
Spiked Amount 200.000			Recove	xy = 47.847	
21) Nitrobenzene-D5(S)	5.18	82	640979	47.46602 ppb	0.00
Spiked Amount 100.000			Recove		
44) 2-Fluorobiphenyl(S)	7.20	172	1305557	47.20592 ppb	0.00
Spiked Amount 100.000	0.00	000	Recove		0.00
61) 2,4,6-Tribromophenol(S)	8.89	330	325309	97.01136 ppb erv = 48.506%	0.00
Spiked Amount 200.000	11.55	244	Recove 1288536	- 4	0.00
78) Terphenyl-D14(S) Spiked Amount 100.000	11.55	249		ry = 47.1508	0.00
•			ROCOVO		
Target Compounds		40	201024		alue
2) n-Nitrosodimethylamine	1.94	42	321014	46.52007 ppb	100
3) Pyridine	1.94 4.26	52 94	494399 1067264	47,93696 ppb 48,45646 ppb	100 100
6) Phenol 7) Aniline	4.32	93	800057	46.70043 ppb	100
8) Bis (2-chloroethyl) ether	4.32	63	589039	44.83891 ppb	100
9) 2-Chlorophenol	4.36	128	783645	48.06557 ppb	100
10) 1,3-DCB	4.51	146	874755	47.80297 ppb	100
11) 1,4-DCB	4.59	146	892845	47,51363 ppb	100
12) Benzyl alcohol	4.75	79	600262	48.32427 ppb	100
13) 1,2-DCB	4.74	146	824518	47.86736 ppb	100
<pre>14) 2-Methylphenol</pre>	4.88	108	716779	47.86815 ppb	100
15) Bis (2-chloroisopropyl) et	4.88	45	1169181	47.23803 ppb	100
16) Acetophenone	5.03	105	1021374	47.51348 ppb	100
17) 3&4-Methylphenol	5.06	107	1617123	95.28351 ppb	100
18) n-Nitrosodi-n-propylamine	5,03 5,09	43 117	62735 <b>4</b> 303691	47.19354 ppb 48.10241 ppb	$\begin{array}{c} 100 \\ 100 \end{array}$
19) Hexachloroethane 22) Nitrobenzene	5.20	77	781792	48.11235 ppb	100
23) Isophorone	5.47	82	1395866	48.13200 ppb	100
24) 2-Nitrophenol	5.55	139	441994	49.04970 ppb	100
25) 2,4-Dimethylphenol	5.62	107	739438	47,39065 ppb	100
.26) Benzoic acid	5.83	105	418697	59.72871 ppb	100
27) Bis (2-chloroethoxy) metha	5.72	93	833860	47.84744 ppb	100
28) 2,4-Dichlorophenol	5.82	162	621192	48.93559 ppb	100
29) 1,2,4-Trichlorobenzene	5.89	180	655033	47.60810 ppb	100
30) Naphthalene	5.98	128	2264393	47,45069 ppb	100
31) 4-Chloroaniline	6.06	127	831488	49.50540 ppb	100
32) 2,6-Dichlorophenol	6.06	162	587579	47.35347 ppb	100
33) Hexachloropropene	6.06	213	371986	48.75929 ppb 48.12994 ppb	100 100
34) Hexachlorobutadiene 35) Caprolactum	6.11 6.55	225 113	335263 259662	50,44731 ppb	100
36) 4-Chloro-3-methylphenol	6.66	107	660696	48.91607 ppb	100
37) 2-Methylnaphthalene	6.76	142	1520980	47.74998 ppb	100
• • •				<b></b>	

^{(#) =} qualifier out of range (m) = manual integration 0301Y006.D Y827AF.M Thu Mar 08 14:59:37 26612

Data File : M:\YODA\DATA\Y120301B\0301Y006.D Acq On : 1 Mar 12 20:37 Sample : 50 ug/mL SVOC

Operator: LF Inst : YODA Multiplr: 1.00

Vial: 6

Quant Time: Mar 5 8:42 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Misc

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
39)	Hexachlorocyclopentadiene	6.93	237	301752	52.75039	ppb	100
	1,2,4,5-Tetrachlorobenzene	6.95	216	612041	47.41533	ppb	100
	2,4,6-Trichlorophenol	7.10	196	429891	48.90080	ppb	100
	2,4,5-Trichlorophenol	7.17	196	468865	49.90422	ppb	100
43)	2-Chloronaphthalene	7.32	162	1347262	47.22164		100
45)	1,1'-Biphenyl	7.31	154	1755279	47.77971		100
	2-Nitroaniline	7.48	138	540829	49,85955		100
	Dimethyl phthalate	7.69	163	1532324	47.12895		100
	2,6-DNT	7.76	165	373004	48.68752		100
	Acenaphthylene	7.79	152	2266952	47.81008		100
	3-Nitroaniline	7.96	65	511632	49.13545		100
	Acenaphthene	8.00	154	1345858	47.90110		100
	2,4-Dinitrophenol	8.08	184	214270	48.58749		100
	4-Nitrophenol	8.21	109	160012	51.60837		100
	Dibenzofuran	8.19	139	1012680	52.62903		100
	2,4-DNT	8.23	165	512939	48.47378		100
	2,3,4,6-Tetrachlorophenol	8.36 8.52	232	352904	50.38134 47.51551		100 100
	Diethyl phthalate	8.61	149 204	1534694 745235	47.84820		100
	4-Chlorophenyl phenyl ethe	8.59	165	1419805	47.08337		100
•	Fluorene	8.69	138	412572	49.11517		100
	4-Nitroaniline Diphenyl amine	8.77	168	1485614	45.47786		100
	4,6-Dinitro-2-methylphenol	8.71	198	323569	51.10868		100
	n-Nitrosodiphenylamine	8.77	167	789807	45.54911		100
	1,2-Diphenylhydrazine	8.79	182	458446	46.03452		100
	4-Bromophenyl phenyl ether	9.17	248	390228	46.96214		100
	Hexachlorobenzene	9.22	284	428372	47.64716		100
	Atrazine	9.41	200	36803	25.00416		100
	Pentachlorophenol	9.47	266	256030	49.59706		100
	Phenanthrene	9.70	178	2203871	45.50254		100
-	Anthracene	9.77	178	2371312	47,61357		100
	Carbazol	9.97	167	2117266	47.21071	ppb	100
	Di-n-butylphthalate	10.41	149	2488818	47.19059		100
	Fluoranthene	11.09	202	2401099	48.54471	ppb	100
77)	Pyrene	11.35	202	2509566	48.72411		100
79)	Butyl benzylphthalate	12.15	149	1136367	49.77293	ppb	100
	3,3'-Dichlorobenzidine	12.75	252	727426	51,62704		100
	Benz (a) anthracene	12.74	228	2027007	48.45268		100
82)	Bis (2-ethylhexyl) phthala	12.83	149	1649423	48.92517		100
	Chrysene	12.79	228	2119416	48.01112		100
	Di-n-octylphthalate	13.55	149	2727031	50.18762		100
	Indeno (1,2,3-cd) pyrene	15.70	276	2196972	49.36728		100
	Benzo (b) fluoranthene	13.92	252	2054949	45.87189		100
	Benzo (k) fluoranthene	13,94	252	2041119	49.37482		100
	Benzo (a) pyrene	14.27	252	2004925	49.63359		100
	Dibenz (a,h) anthracene	15.74	278	1893880	50.10632		100
91)	Benzo (g,h,i) perylene	16.11	276	1818516	48,89750	a <b>q</b> q	100

Data File : M:\YODA\DATA\Y120301B\0301Y006.D

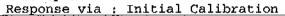
Acg On : 1 Mar 12 20:37 Operator: LF Inst : YODA

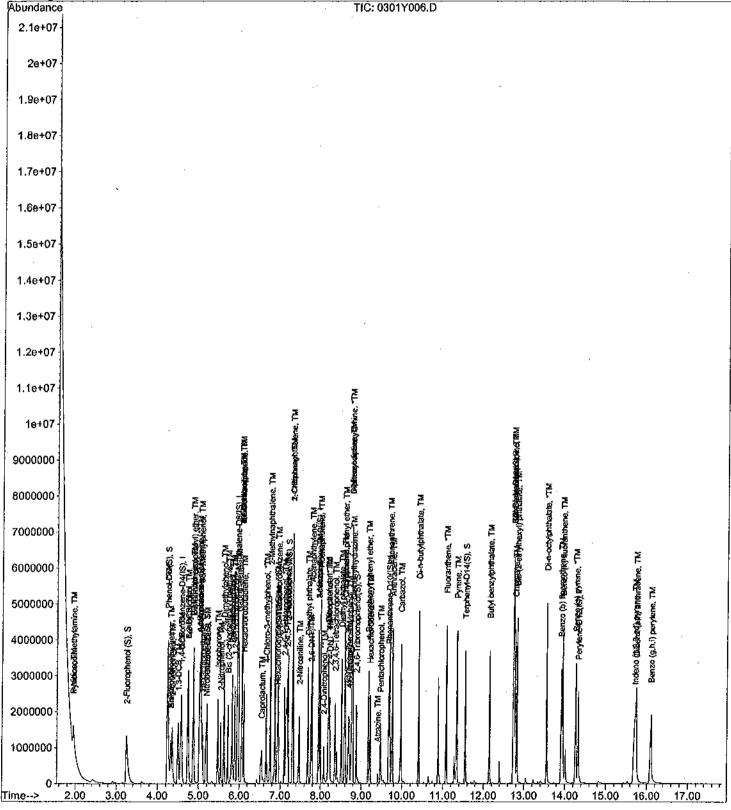
Vial: 6

Sample Misc

; 50 ug/mL SVOC

Multiplr: 1.00


Quant Time: Mar 5 8:42 2012 Quant Results File: Y827AF.RES


Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012





Vial: 7 Data File: M:\YODA\DATA\Y120301B\0301Y007.D Operator: LF Acq On : 1 Mar 12 21:03 Inst : YODA Multiplr: 1.00 Sample : 60 ug/mL SVOC Misc

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	378196	40.00000 pp	
20) Napthalene-D8(IS)	5.95	136	1444404	40.00000 pp	
38) Acenaphthene-D10(IS)	7.95	164	802058	40,00000 pp	
62) Phenanthrene-D10(IS)	9.68	188	1471589	40.00000 pp	
76) Chrysene-D12(IS)	12.76	240	1319788	40.00000 pp	
86) Perylene-D12(IS)	14.33	264	1322864	40.00000 pp	b 0.00
System Monitoring Compounds			4.55.404.0	110 05001	
4) 2-Fluorophenol (S) Spiked Amount 200,000	3.24	112	1650318 Recove	119.85321 pp ery = 59.9	
Spiked Amount 200.000 5) Phenol-D6 (S)	4.25	99	1954853	119.89651 pp	
Spiked Amount 200.000			Recove	ery = 59.9	49%
21) Nitrobenzene-D5(S)	5.18	82	807772	59.02711 pp 2rv = 59.0	
Spiked Amount 100.000		170	Recove		
44) 2-Fluorobiphenyl(S) Spiked Amount 100.000	7.20	172	1610180 Recove	57.37792 pp erv = 57.3	
61) 2,4,6-Tribromophenol(S)	8.89	330	400445	117.68987 pp	
Spiked Amount 200.000	0.05	550	Recove		
78) Terphenyl-D14(S)	11.55	244	1631496	59,16587 pp	b 0.00
Spiked Amount 100,000			Recove	ery = 59.1	66%
Target Compounds					Q <b>v</b> alue
<ol><li>n-Nitrosodimethylamine</li></ol>	1.94	42	428057	61.98180 pp	
3) Pyridine	1.94	52	675667	65.45937 pp	
6) Phenol	4.26	94	1327759	60.23 <b>449</b> pp	
7) Aniline	4.33	93	1003990	58.55655 pp	
<li>8) Bis (2-chloroethyl) ether</li>	4.33	63	955772	72.69616 pp	
9) 2-Chlorophenol	4.36	128	985663	60.40729 pp	
10) 1,3-DCB	4.51	146	1095223	59.80220 pp	
11) 1,4-DCB	4.59	146	1126644	59.90665 pp	
12) Benzyl alcohol	4.75	79	757618	60.94259 pp	
13) 1,2-DCB	4.74	146	1019287	59.12648 pp	
14) 2-Methylphenol	4.88	108	899199	60.00167 pp	
15) Bis (2-chloroisopropyl) et	4.88	45	1457502	58.83901 pp	
16) Acetophenone	5.03	105	1278035	59.40472 pp 119.26710 pp	
17) 3&4-Methylphenol	5.06	107	2025815	49.41908 pp	
18) n-Nitrosodi-n-propylamine	5.04	43	657474	59.95184 pp	
19) Hexachloroethane	5.09 5.20	117 77	378810 977367	59.35356 pp	
22) Nitrobenzene	5.48	82	1761305	59.93057 pp	
23) Isophorone	5.55	139	550135	60.24388 pp	
24) 2-Nitrophenol	5.63	107	953064	60.27493 pp	
25) 2,4-Dimethylphenol	5.86	105	541494	76.22556 pp	
26) Benzoic acid 27) Bis (2-chloroethoxy) metha	5.72	93	1034620	58.58280 pp	
28) 2,4-Dichlorophenol	5,82	162	764166	59.40327 pp	
29) 1,2,4-Drichlorobenzene	5.89	180	822201	58,96840 pp	
30) Naphthalene	5.98	128	2866909	59,28275 pp	
31) 4-Chloroaniline	6.07	127	1043138	61.28611 pp	
32) 2,6-Dichlorophenol	6.07	162	725358	57.68484 pp	
33) Hexachloropropene	6.07	213	466871	60.38810 pp	
34) Hexachlorobutadiene	6.11	225	414715	58.74936 pp	
35) Caprolactum	6.57	113	326906	62,67238 pp	
36) 4-Chloro-3-methylphenol	6.66	107	834826	60.99153 pp	
37) 2-Methylnaphthalene	6.76	142	1889124	58.52398 pp	

^{(#) =} qualifier out of range (m) = manual integration 0301Y007.D Y827AF.M Thu Mar 08 14:59:40 2012

Data File: M:\YODA\DATA\Y120301B\0301Y007.D Vial: 7 Acq On : 1 Mar 12 21:03 Operator: LF Sample : 60 ug/mL SVOC Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

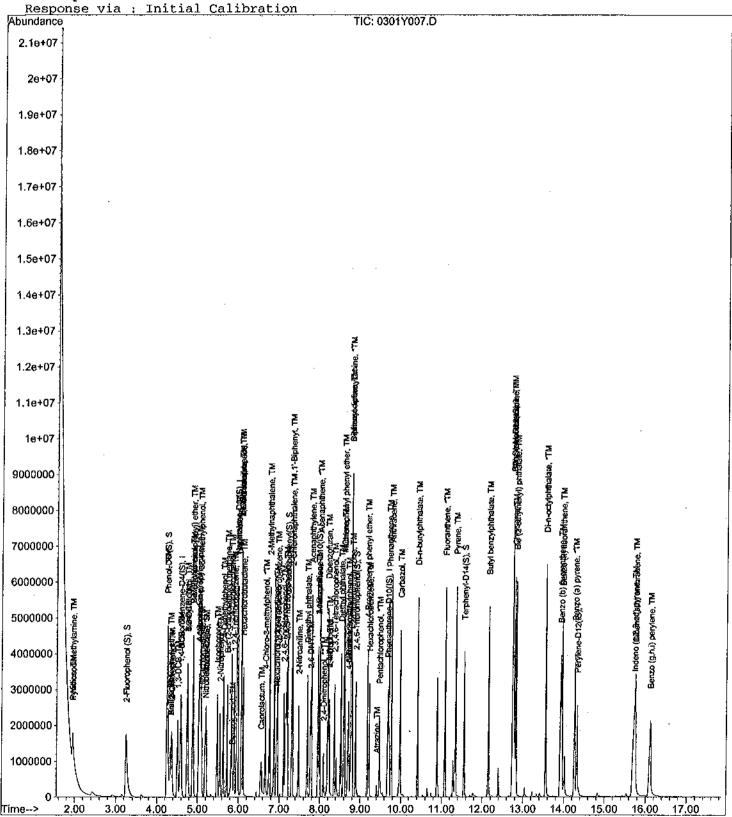
Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit (	value	<b>e</b>
39) Hexachlorocyclopentadiene	6.93	237	382485	65,89609 ppk	,	98
40) 1,2,4,5-Tetrachlorobenzene	6.96	216	767689	58.61292 pph		90
41) 2,4,6-Trichlorophenol	7.11	196	549026	61.54889 ppt		99
42) 2,4,5-Trichlorophenol	7.17	196	563803	59.14071 pph	#	96
43) 2-Chloronaphthalene	7.33	162	1699094	58.69162 ppb		94
45) 1,1'-Biphenyl	7.31	154	2085802	55.95516 pph		98
46) 2-Nitroaniline	7,48	138	653542	59.37883 pph		88
47) Dimethyl phthalate	7.69	163	1975690	59.88605 ppb		98
48) 2,6-DNT	7.76	165	480474	61.80787 pph		89
49) Acenaphthylene	7.79	152	2790808	58.00652 pph	ı	. 99
50) 3-Nitroaniline	7.96	65	622868	58.95260 pph		93
51) Acenaphthene	8.00	154	1601935	56.19024 pph		99
52) 2,4-Dinitrophenol	8.09	184	294265	62.88386 pph		75
53) 4-Nitrophenol	8.22	109	208643	66.31949 ppb		94
54) Dibenzofuran	8.20	139	1274828	65,29417 ppb		86
55) 2,4-DNT	8.23	165	669774	62.37910 ppb		90
56) 2,3,4,6-Tetrachlorophenol	8.36	232	437366	61.53581 ppb		95
57) Diethyl phthalate	8.53	149	1931468	58.93467 ppb		98
58) 4-Chlorophenyl phenyl ethe	8.61	204	900389	56,97342 ppb		95
59) Fluorene	8.59	165	1823947	59.61022 ppb		99
60) 4-Nitroaniline	8.70	138	517035	60.66044 ppb		97 100
63) Diphenyl amine	8.78 8.71	168 198	1872930 410286	56.77204 ppb 64.17019 ppb		71
64) 4,6-Dinitro-2-methylphenol 65) n-Nitrosodiphenylamine	8.78	167	1002223	57.23244 ppb		100
66) 1,2-Diphenylhydrazine	8.80	182	602084	59.86479 ppb		41
67) 4-Bromophenyl phenyl ether	9.17	248	485302	57,83096 ppb		99
68) Hexachlorobenzene	9.22	284	532342	58.63077 ppb		89
69) Atrazine	9,41	200	44186	29.72574 ppb		97
70) Pentachlorophenol	9,47	266	338325	64.89603 ppb		99
71) Phenanthrene	9.70	178	2843294	58.12864 ppb		100
72) Anthracene	9.77	178	2851877	56.70114 ppb		99
73) Carbazol	9.98		2679632	59.16423 ppb		98
74) Di-n-butylphthalate	10.41	149	3100539	58.21278 ppb		100
75) Fluoranthene	11,09	202	2880299	57.66182 ppb		91
77) Pyrene	11.35	202	3010737	57.93184 ppb	#	90
79) Butyl benzylphthalate	12.15	149	1421808	61.71842 ppb		90
80) 3,3'-Dichlorobenzidine	12.75	252	857650	60.32505 ppb		98
81) Benz (a) anthracene	12.74	228	2501865	59.26874 ppb		100
82) Bis (2-ethylhexyl) phthala	12.83	149	2011073	59.11 <b>904</b> ppb		99
83) Chrysene	12,79	228	2514798	56.45832 ppb	#	96
84) Di-n-octylphthalate	13.56	149	3272233	59.68291 ppb		100
85) Indeno (1,2,3-cd) pyrene	15.72	276	2800949	62.37624 ppb		93
87) Benzo (b) fluoranthene	13.92	252	2930954	63.32995 ppb		97
88) Benzo (k) fluoranthene	13.95	252	2320261	54.32861 ppb	ı,	96
89) Benzo (a) pyrene	14.27	252	2528795	60.59625 ppb	#	96
90) Dibenz (a,h) anthracene	15.75	278	2390470	61.21782 ppb		99
91) Benzo (g,h,i) perylene	16.12	276	2306594	60.03371 ppb		99

# Anglicicación vehore

: YODA


Data File : M:\YODA\DATA\Y120301B\0301Y007.D Vial: 7 1 Mar 12 21:03 Operator: LF : 60 ug/mL SVOC Sample Inst Misc Multiplr: 1.00

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012



Data File: M:\YODA\DATA\Y120301B\0301Y008.D

Vial: 8 Acq On : 1 Mar 12 21:29 Sample : 80 ug/mL SVOC Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	372401	40,00000 ppb	0.00
20) Napthalene-D8(IS)	5.95	136	1380350	40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	7.96	164	762909	40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.67	188	1388679	<b>40</b> .00000 ppb	0.00
76) Chrysene-D12(IS)	12.77	240	1276168	40.00000 ppb	0.00
86) Perylene-D12(IS)	14.33	264	1252423	40.00000 ppb	0.00
System Monitoring Compounds	_				
4) 2-Fluorophenol (S) Spiked Amount 200.000	3.25	112	2071334 Recov€	152.77006 ppb ery = 76.385	0.00
5) Phenol-D6 (S)	4.25	99	2432459	151.51096 ppb	0.02
Spiked Amount 200.000	- 40		Recove		
21) Nitrobenzene-D5(S) Spiked Amount 100.000	5.18	82	1019456 Recove	77.95262  ppb erv = $77.953$	0.00
Spiked Amount 100.000 44) 2-Fluorobiphenyl(S)	7,20	172	2014854	75.48263 ppb	0.00
Spiked Amount 100.000	7,20	112	Recove		
61) 2,4,6-Tribromophenol(S)	8.90	330	512481	158.34598 ppb	0.00
Spiked Amount 200.000	0.2.		Recove		
78) Terphenyl-D14(S)	11.56	244	2054402	77.04900 ppb	0.00
Spiked Amount 100.000			Recove	ery = 77.049	18
Target Compounds					Qvalue
2) n-Nitrosodimethylamine	1.94	42	5252 <b>82</b>	77.24336 ppb	96
<ol><li>Pyridine</li></ol>	1.94	52	837651	82.41539 ppb	98
6) Phenol	4.26	94	1646246	75.84498 ppb	92
7) Aniline	4.33	93	1295036	76.70683 ppb	100
<li>8) Bis (2-chloroethyl) ether</li>	4.33	63	1186508	91.65031 ppb	90
9) 2-Chlorophenol	4.37	128	1226575	76.34158 ppb	100
10) 1,3-DCB	4.50	146	1362428	75.54997 ppb	99 99
11) 1,4-DCB	4.59	146	1376502	74.33123 ppb	99
12) Benzyl alcohol	4.76	79	953511 1259779	77.89372 ppb 74.21403 ppb	98
13) 1,2-DCB	4.75 4.89	146 108	1108932	75.14820 ppb	100
14) 2-Methylphenol	4.88	45	1788159	73.31087 ppb	100
15) Bis (2-chloroisopropyl) et	5.03	105	1587098	74.91833 ppb	99
<pre>16) Acetophenone 17) 3&amp;4-Methylphenol</pre>	5.07	107	2493292	149,07338 ppb	97
18) n-Nitrosodi-n-propylamine	5.04	43	743601	56.76258 ppb	95
19) Hexachloroethane	5.09	117	469205	75.41362 ppb	94
22) Nitrobenzene	5.21	.77	1195969	75.99910 ppb	99
23) Isophorone	5.49	82	2199071	78,29834 ppb	97
24) 2-Nitrophenol	5.54	139	696616	79.82457 ppb	92
25) 2,4-Dimethylphenol	5.63	107	1147237	75.92193 ppb	99
26) Benzoic acid	5.88	105	703477	103.62304 ppb	97
27) Bis (2-chloroethoxy) metha	5.72	93	1319376	<b>78.17</b> 309 ppb	. 93
28) 2,4-Dichlorophenol	5.83	162	950716	77.33444 ppb	99
29) 1,2,4-Trichlorobenzene	5.90	180	1019898	76.54160 ppb	100
30) Naphthalene	5.98	128	3369528	72.90931 ppb	99
31) 4-Chloroaniline	6.07	127	1175934	72.29407 ppb	99
32) 2,6-Dichlorophenol	6.07	162	893114	74.32170 ppb	99
33) Hexachloropropene	6.06	213	577583	78.17508 ppb	98
34) Hexachlorobutadiene	6.11	225	502882	74.54507 ppb	97
35) Caprolactum	6.58	113	355487	71.31428 ppb	96
36) 4-Chloro-3-methylphenol	6.67	107	1023505	78.24615 ppb	100
37) 2-Methylnaphthalene	6.77	142	2406456	78.01009 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0301Y008.D Y827AF.M Thu Mar 08 14:59:43 2012

Data File : M:\YODA\DATA\Y120301B\0301Y008.D Vial: 8 Acq On : 1 Mar 12 21:29 Operator: LF : 80 ug/mL SVOC Sample Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit Q	value	
39) Hexachlorocyclopentadiene	6,93	237	494035	89.48206 ppb	9	8
40) 1,2,4,5-Tetrachlorobenzene	6.96	216	925879	74.31822 ppb		5
41) 2,4,6-Trichlorophenol	7,11	196	665678	78.45571 ppb	9	6
42) 2,4,5-Trichlorophenol	7.18	196	689171	76.00098 ppb		7
43) 2-Chloronaphthalene	7.33	162	2018498	73,30271 ppb	9	8
45) 1,1'-Biphenyl	7.32	154	2709823	76.42598 ppb	9	
46) 2-Nitroaniline	7.48	138	839684	80.20603 ppb	9	5
47) Dimethyl phthalate	7.70	163	2391933	76.22351 ppb	9	7
48) 2,6-DNT	7.77	165	566559	76.62174 ppb	9	4
49) Acenaphthylene	-7,80	152	3555617	77.69532 ppb	10	0
50) 3-Nitroaniline	7.97	65	782500	77.86179 ppb	9	_
51) Acenaphthene	7.99	154	2068945	76.29533 ppb	10	
52) 2,4-Dinitrophenol	8.10	184	374498	81.38485 ppb	# 3	
53) 4-Nitrophenol	8.23	109	270299	90.32642 ppb	9.	
54) Dibenzofuran	8.20	139	1558056	83,89555 ppb	9.	
55) 2,4-DNT	8.24	165	809318	79.24340 ppb	9:	
56) 2,3,4,6-Tetrachlorophenol	8.37	232	564307	83.47018 ppb	9,	
57) Diethyl phthalate	8.52	149	2418397	77.57896 ppb	10	
58) 4-Chlorophenyl phenyl ethe	8,62	204	1174119	78.10651 ppb	9:	
59) Fluorene	8.60	165	2165612	74.40844 ppb	100	
60) 4-Nitroaniline	8.72	138	663666	81.85933 ppb	94	
63) Diphenyl amine	8.78	168	2471851	79.39989 ppb	91	_
64) 4,6-Dinitro-2-methylphenol	8.73	198	525383	87.07778 ppb	9'	
65) n-Nitrosodiphenylamine	8.78	167	1278882	77,39145 ppb	99	
66) 1,2-Diphenylhydrazine	8.80	182	700905	73.85130 ppb	92	
67) 4-Bromophenyl phenyl ether	9.18	248	625522	78.99064 ppb	100	
68) Hexachlorobenzene	9.22	284	657301	76.71563 ppb	# 78	
69) Atrazine	9.41	200	54870	39.11719 ppb	94	
70) Pentachlorophenol	9.48	266	431554	87.72105 ppb	99	
71) Phenanthrene	9.71	178	3391357	73.47279 ppb	100	-
72) Anthracene	9.78	178	3626899	76,41544 ppb	10(	
73) Carbazol	9.98	167	3193391	74.71724 ppb	100	
74) Di-n-butylphthalate	10.42	149	4159024	82.74795 ppb	99	
75) Fluoranthene	11.09	202	3755700	79.67578 ppb	# 88	
77) Pyrene	11.35	202	3885947	77.32817 ppb	# 84	
79) Butyl benzylphthalate	12.15	149	1668227	74.89026 ppb	84	_
80) 3,3'-Dichlorobenzidine	12.76	252	1088299	79.16481 ppb	100	
81) Benz (a) anthracene	12.75	228	3060333	74.97679 ppb	99	
82) Bis (2-ethylhexyl) phthala	12.83	149	2391650	72.70989 ppb	95	
83) Chrysene	12.80	228	3364921	78.12609 ppb	99	
84) Di-n-octylphthalate	13.56 15.74	149	4324941	81.57973 ppb	100	
85) Indeno (1,2,3-cd) pyrene 87) Benzo (b) fluoranthene	13.74	276 252	3521995 6537172	81.11460 ppb 149.19498 ppb	# 09	
88) Benzo (k) fluoranthene	13.95	252 252	6537172	161.67609 ppb	# 95 99	
89) Benzo (a) pyrene	14.28	252	3112107	78.76818 ppb		
90) Dibenz (a,h) anthracene	15.76	278	3003390	81.24011 ppb	# 96 # 91	
91) Benzo (g,h,i) perylene	16.13	276	2882494	79.24222 ppb	99	
51, Benzo (g,n,1) perylene	10,13	270	2002434	udd aasester	23	,

## Anameteacton vebote

Data File: M:\YODA\DATA\Y120301B\0301Y008.D

Acq On : 1 Mar 12 21:29

Vial: 8 Operator: LF Inst : YODA Multiplr: 1.00

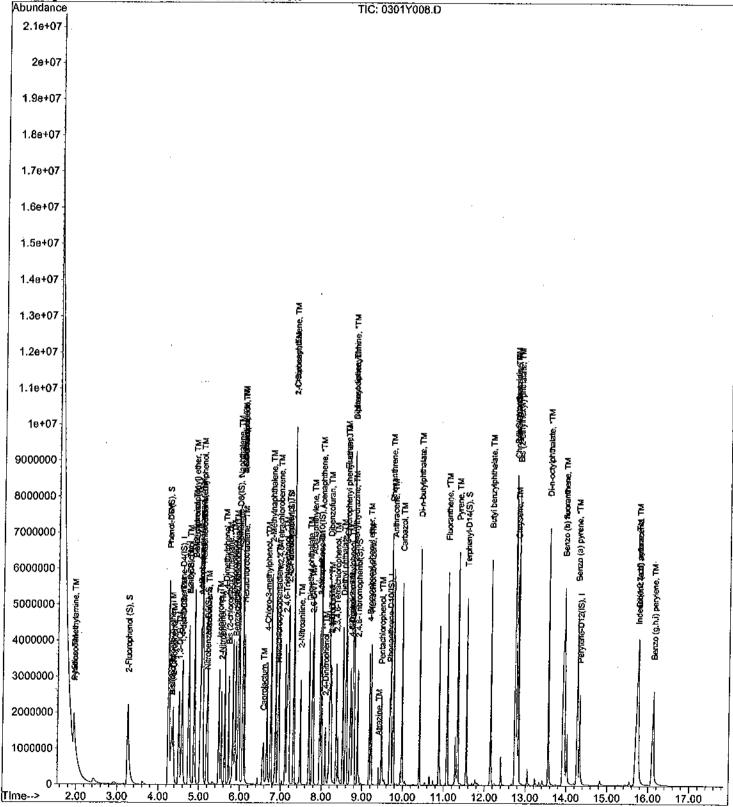
Sample Misc

: 80 ug/mL SVOC

Quant Results File: Y827AF.RES

Quant Time: Mar 5 8:33 2012

Method


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration



Data File : M:\YODA\DATA\Y120301B\0301Y009.D Vial: 9 Acq On : 1 Mar 12 21:54 Sample : 100 ug/mL SVOC Operator: LF Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 8:33 2012 Ouant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration

DataAcq Meth: Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	378100	40.00000 pp	b 0.00
20) Napthalene-D8(IS)	5.96	136	1408593	40.00000 pp	
38) Acenaphthene-D10(IS)	7.96	164	787447	40.00000 pp	
<pre>62) Phenanthrene-D10(IS)</pre>	9.68	188	1455434	40.00000 pp	
76) Chrysene-D12(IS)	12.77	240	1256364	40,00000 pp	
86) Perylene-D12(IS)	14.33	264	1313439	40.00000 pp	b 0.00
System Monitoring Compounds	_				
4) 2-Fluorophenol (S)	3,25	112	2549554	185.20662 pp	
Spiked Amount 200.000			Recove		
5) Phenol-D6 (S)	4.26	99	2991654	183,53295 pp	
Spiked Amount 200.000	- 10	0.0	Recove		
21) Nitrobenzene-D5(S)	5.19	82	1244154	93,22664 pp	
Spiked Amount 100.000	7 01	170	Recove		
44) 2-Fluorobiphenyl(S)	7.21	172	2401769	87.17382 pp	
Spiked Amount 100,000	.0.00	220	Recove		
61) 2,4,6-Tribromophenol(S)	8.89	330	635275	190.17019 pp erv = 95.0	
Spiked Amount 200.000	11 57	244	Recove	ery = 95.0 92.78903 pp	
78) Terphenyl-D14(S)	11.56	244	2435694		
Spiked Amount 100.000			Recove	ery = 92.7	0.2%
Target Compounds					Qvalue
2) n-Nitrosodimethylamine	1.94	42	652393	94.48919 pp	
3) Pyridine	1,94	52	1031318	99.94060 pp	
6) Phenol	4.27	94	2060191	93.48539 pp	
7) Aniline	4.34	93	1686404	98.38252 pp	
8) Bis (2-chloroethy1) ether	4.34	63	1481443	112,70739 pp	b 87
9) 2-Chlorophenol	4.37	128	1528446	93,69605 pp	
10) 1,3-DCB	4.50	146	1695015	92,57600 pp	b 99
11) 1,4-DCB	4.59	146	1714016	91.16192 pp	
12) Benzyl alcohol	4.76	79	1183092	95.19177 pp	
13) 1,2-DCB	4.75	146	1569896	91.08916 pp	
14) 2-Methylphenol	4.89	108	1369650	91.41709 pp	
15) Bis (2-chloroisopropyl) et	4.89	45	2175744	87.85656 pp	
16) Acetophenone	5.04	105	2004581	93.19918 pp	
17) 3&4-Methylphenol	5.08	107	3045156	179.32493 pp	
18) n-Nitrosodi-n-propylamine	5.04	43	814747	61.25606 pp	
19) Hexachloroethane	5.10	117	561107	88.82537 pp	
22) Nitrobenzene	5.22	77	1537218	95.72551 pp	
23) Isophorone	5.50	82	2733932	95.39041 pp	
24) 2-Nitrophenol	5.55	139	870521	97.75209 pp	
25) 2,4-Dimethylphenol	5.64	107	1437000	93.19112 pp	b 100
26) Benzoic acid	5.91	105	925906	133.65248 pp	
27) Bis (2-chloroethoxy) metha	5.73	93	1575534	91,47874 pp	
28) 2,4-Dichlorophenol	5.83	162	1141763	91.01266 pp	
29) 1,2,4-Trichlorobenzene	5.90	180	1253570	92.19197 pp	
30) Naphthalene	5.99	128	4268152	90.50186 pp	
31) 4-Chloroaniline	6.08	127	1464018	88.20025 pp	
32) 2,6-Dichlorophenol	6,07	162	1089115	88.81497 pp	
33) Hexachloropropene	6,07	213	724086	96.03904 pp	
34) Hexachlorobutadiene	6.12	225	636944	92.52472 pp	
35) Caprolactum	6.60	113	438597	86.22280 pp	
36) 4-Chloro-3-methylphenol	6.68	107	1303345	97.64187 pp	
37) 2-Methylnaphthalene	6.77	142	2826460	89.78823 pp	b 99

^{(#) =} qualifier out of range (m) = manual integration 0301Y009.D Y827AF.M Thu Mar 08 14:59:47 2612

Data File : M:\YODA\DATA\Y120301B\0301Y009.D

Acq On : 1 Mar 12 21:54 : 100 ug/mL SVOC Sample Misc

Vial: 9 Operator: LF Inst : YODA Multiplr: 1.00

Quant Time: Mar 5 8:33 2012 Quant Results File: Y827AF.RES

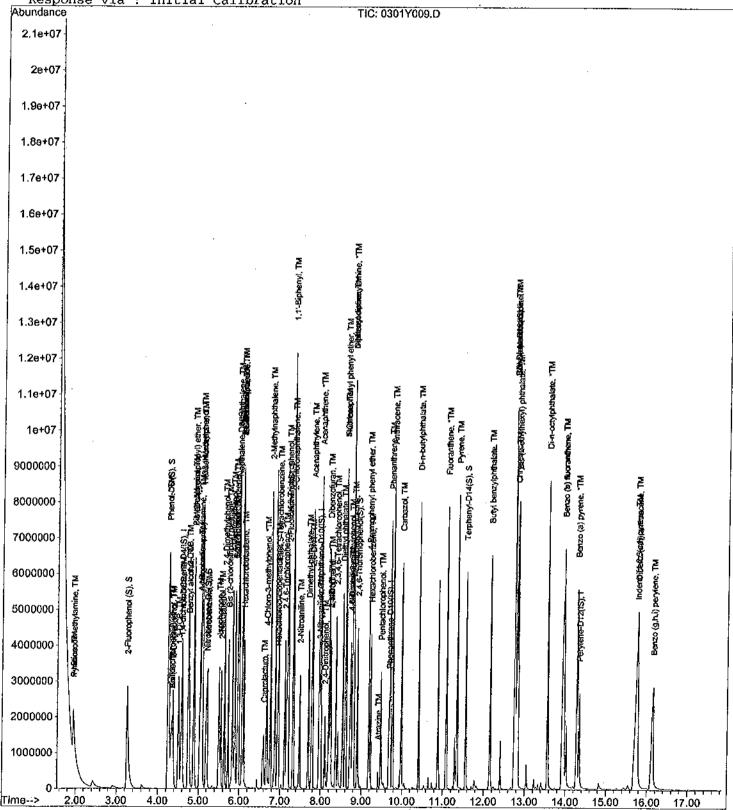
Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 08:32:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit	Qva1u	е
39) Hexachlorocyclopentadiene	6.94	237	628903	110.36042 pp	h	99
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	1160393	90.23968 pp		99
41) 2,4,6-Trichlorophenol	7.12	196	840693	95.99513 ppl		92
42) 2,4,5-Trichlorophenol	7.19	196	863929	92.30424 ppl		98
43) 2-Chloronaphthalene	7.34	162	2581908	90.84142 ppl		94
45) 1,1'-Biphenyl	7.32	154	3002788	82.04954 ppl		98
46) 2-Nitroaniline	7.48	138	1073686	99.36189 ppl		87
47) Dimethyl phthalate	7,71	163	3074812	94,93140 pp		91
48) 2,6-DNT	7.78	165	739338	96.87268 pp		94
49) Acenaphthylene	7.80	152	4197568	88.86465 ppl		100
50) 3-Nitroaniline	7.98	65	973082	93,80821 ppl		98
51) Acenaphthene	8,00	154	2465385	88.08160 ppl		99
52) 2,4-Dinitrophenol	8.10	184	479975	99.08866 ppl		75
53) 4-Nitrophenol	8.24	109	343283	111,14094 ppl		96
54) Dibenzofuran	8.21	139	2022969	105.53499 ppl	)	87
55) 2,4-DNT	8.24	165	982918	93,24222 ppl		91
56) 2,3,4,6-Tetrachlorophenol	8.37	232	671807	96.27463 ppl		93
57) Diethyl phthalate	8,53	149	3006936	93.45272 ppk		99
58) 4-Chlorophenyl phenyl ethe	8,62	204	1319758	85.05911 ppk		98
59) Fluorene	8.60	165	2701486	89.92816 ppl	)	99
60) 4-Nitroaniline	8.73	138	778464	93.02690 ppk		96
63) Diphenyl amine	8.78	168	2940299	90.11529 ppk	)	100
64) 4,6-Dinitro-2-methylphenol	8,74	198	646112	102.17590 ppk		77
65) n-Nitrosodiphenylamine	8.78	167	1510900	87.23838 ppk	)	99
66) 1,2-Diphenylhydrazine	8.81	182	891170	89.59194 pph		54
67) 4-Bromophenyl phenyl ether	9.18	248	732185	88.21922 ppk	)	99
68) Hexachlorobenzene	9.23	284	811078	90.32158 ppb		90
69) Atrazine	9.41	200	68833	46.82079 ppb	)	99
70) Pentachlorophenol	9.48	266	544376	105.57887 pph		99
71) Phenanthrene	9.71	178	4317259	89.24224 ppb		100
72) Anthracene	9.78	178	4241633	85.26839 pph		99
73) Carbazol	9.99	167	4096993	91.46255 ppb		98
74) Di-n-butylphthalate	10.42	149	4727743	89.74888 pph		100
75) Fluoranthene	11.09	202	4321840	87.48094 ppb		89
77) Pyrene	11.35	202	4532163	91.60913 ppb	· #	87
79) Butyl benzylphthalate	12.16	149	2273499	103.67101 ppb		98
80) 3,3'-Dichlorobenzidine	12.76	252	1257319	92.90130 ppb		98
81) Benz (a) anthracene	12.75	228	3883831	96.65200 ppb		100
82) Bis (2-ethylhexyl) phthala	12.84	149	3125013	96.50283 ppb		99
83) Chrysene	12,80	228	3870489	91.28079 ppb		96
84) Di-n-octylphthalate	13.56	149	5140104	98.48416 ppb		100
85) Indeno (1,2,3-cd) pyrene	15.75	276	4398524	102.89864 ppb		88
87) Benzo (b) fluoranthene	13.96	252	8002265	174,14795 ppb		96
88) Benzo (k) fluoranthene	13.96	252	8002265	188.71653 ppb		99
89) Benzo (a) pyrene	14.29	252	3813441	92.03530 ppb		96
90) Dibenz (a,h) anthracene	15.77	278	3654804	94.26793 ppb		99
91) Benzo (g,h,i) perylene	16.15	276	3631059	95.18371 ppb		95

Data File : M:\YODA\DATA\Y120301B\0301Y009.D

Acq On : 1 Mar 12 21:54 Sample : 100 ug/mL SVOC Misc : Vial: 9
Operator: LF
Inst : YODA
Multiplr: 1.00

Quant Time: Mar 5 8:33 2012


Quant Results File: Y827AF.RES

Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration



Vial: 10

Data File : M:\YODA\DATA\Y120301B\0301Y010.D

Acq On : 1 Mar 12 22:20

Operator: LF Sample : 50 ug/mL SVOC SS 03-01-12 Misc : Inst : YODA Misc Multiplr: 1.00

Quant Time: Mar 5 10:48 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 10:46:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	396037	40.00000 pp	b 0.00
<pre>20) Napthalene-D8(IS)</pre>	5.95	136	1457440	40.00000 pp	b 0.00
38) Acenaphthene-D10(IS)	7.95		812099	40.00000 pp	
62) Phenanthrene-D10(IS)	9.67		1480398	40.00000 pp	b 0.00
76) Chrysene-D12(IS)	12.76		1343179	40.00000 pp	b 0.00
86) Perylene-D12(IS)	14.32	264	131819 <b>8</b>	40.00000 pp	b 0.00
System Monitoring Compounds		440	^	0.0000	•
4) 2-Fluorophenol (S)	0.00	112	0	qq_00000.0	
Spiked Amount 200.000 5) Phenol-D6 (S)	0.00	99	Recove 0	-	
Spiked Amount 200.000	0.00	33	_	0.00000 pp 0.0 = ery	
21) Nitrobenzene-D5(S)	0.00	82	Recove 0d	0.00000 pp	
Spiked Amount 100.000	0.00	02	Recove		
44) 2-Fluorobiphenyl(S)	0.00	172	0d	0.00000 pp	
Spiked Amount 100.000			Recove		
61) 2,4,6-Tribromophenol(S)	0.00	330	0d	0.00000 pp	
Spiked Amount 200.000			Recove		
78) Terphenyl-D14(S)	0.00	244	0d	0.00000 pp	
Spiked Amount 100.000			Recove		
Target Compounds					Qvalue
<ol><li>n-Nitrosodimethylamine</li></ol>	1.94	42	358137	49.30914 pp	
3) Pyridine	1.94	52	526087	48.67185 pp	
6) Phenol	4.24	94	1096417	47.49883 pp	
7) Aniline	4.32	93	829026	46.17378 pp	
8) Bis (2-chloroethyl) ether	4.32	63	610505	44.34326 ppl	
9) 2-Chlorophenol	4.36	128 146	819551	47.96430 ppl	
10) 1,3-DCB 11) 1,4-DCB	4.59	146	9 <b>248</b> 72 933569	48.22558 ppl 47.40410 ppl	
12) Benzyl alcohol	4.75	79	628771	48.29969 ppl	
13) 1,2-DCB	4.74	146	855816	47.40751 ppl	
14) 2-Methylphenol	4.88	108	746404	47.56228 ppl	
15) Bis (2-chloroisopropyl) et	4.88	45	1224008	47.18692 pp	
16) Acetophenone	5.02	105	1082542	48.05119 ppl	
17) 3&4-Methylphenol	5.06	107	1691180	95.08059 ppl	
18) n-Nitrosodi-n-propylamine	5.03	43	660444	47.40599 ppl	
19) Hexachloroethane	5.09	117	320191	48,39175 ppl	100
22) Nitrobenzene	5.20	77	823685	49.49737 ppl	
23) Isophorone	5.48	82	1465139	49.33223 ppl	
24) 2-Nitrophenol	5.54		468421	50.75964 ppl	
25) 2,4-Dimethylphenol	5.62	107	786610	49.22748 ppl	
26) Benzoic acid	5.84		345828	40,36737 ppk	100
27) Bis (2-chloroethoxy) metha	5.72	93	894917	50.14223 pph	
28) 2,4-Dichlorophenol	5.82	162	645636	49.66296 ppl	
29) 1,2,4-Trichlorobenzene	5.89	180	694473	49.28652 ppl	
30) Naphthalene	5.98	128	2417012	49.45584 ppk	
31) 4-Chloroaniline 32) 2,6-Dichlorophenol	6.07 6.06	127 162	883098 617531	51.33804 ppk	
	6.06	213	393239	48.59466 ppt 50.33177 ppt	
33) Hexachloropropene 34) Hexachlorobutadiene	6.11	225	341087	47.81311 ppk	
35) Caprolactum	6.55	113	279030	52.93204 ppt	
36) 4-Chloro-3-methylpheno1	6.66	107	688653		99
37) 2-Methylnaphthalene	6.76	142	1587245	48.65651 ppb	

^{(#) =} qualifier out of range (m) = manual integration 0301Y010.D Y827AF.M Thu Mar 08 15:00:17 2@12

Vial: 10

Data File : M:\YODA\DATA\Y120301B\0301Y010.D

Acq On : 1 Mar 12 22:20 Operator: LF Sample : 50 ug/mL SVOC SS 03-01-12 Inst : YODA Multiplr: 1.00 Misc

Quant Time: Mar 5 10:48 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)
Title : EPA 8270C
Last Update : Mon Mar 05 10:46:48 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
39) Hexachlorocyclopentadiene	6.93	237	307839	52.38002	ppb	97
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	651315	49,11294		88
41) 2,4,6-Trichlorophenol	7.10	196	452259	50.07389	ppb	99
42) 2,4,5-Trichlorophenol	7.17	196	492789	51.05249	ppb	98
43) 2-Chloronaphthalene	7.32	162	1410718	48.12777		99
45) 1,1'-Biphenyl	7.31	154	1844696	48.87521		100
46) 2-Nitroaniline	7.47	138	564480	50.65280		93
47) Dimethyl phthalate	7.69	163	1611822	48.25261		97
48) 2,6-DNT	7.76	165	383648	48.74203		92
49) Acenaphthylene	7.79	152	2373164	48.71597		99
50) 3-Nitroaniline	7.96	65	530192	49.56064		. 98
51) Acenaphthene	7.99	154	1385242	47.98864		100
52) 2,4-Dinitrophenol	8.09	184	243133	52.81242		ŧ 67
53) 4-Nitrophenol	8.21 8.20	109	170072	53.39087		95
54) Dibenzofuran 55) 2,4-DNT	8.20	139	1078506	54.55596		91
56) 2,3,4,6-Tetrachlorophenol	8.36	165 232	536705	49.36775 51.22488		92
57) Diethyl phthalate	8.51	149	368639 1622533	48.89604		98 100
58) 4-Chlorophenyl phenyl ethe	8.61	204	758149	47.37982		98
59) Fluorene	8.59	165	1505527	48.59526		100
60) 4-Nitroaniline	8.69	138	441275	51,13187		98
63) Diphenyl amine	8.76	168	1624095	48.89469		100
64) 4,6-Dinitro-2-methylphenol	8,71	198	349551	54.34571		98
65) n-Nitrosodiphenylamine	8.76	167	865085	49.06482	ppb	99
66) 1,2-Diphenylhydrazine	8.79	182	493843	48.76908	daa	93
67) 4-Bromophenyl phenyl ether	9.17	248	407149	48.18958		99
68) Hexachlorobenzene	9.22	284	449667	49.18990	daa	98
69) Atrazine	9.41	200	37292	24.92035		99
70) Pentachlorophenol	9,47	266	286544	56.49304		100
71) Phenanthrene	9.70	178	2316037	47.02603	ppb	100
72) Anthracene	9.77	178	2466154	48.69861	ppb	99
73) Carbazol	9.98	167	2223777	48.76716		96
74) Di-n-butylphthalate	10.41	149	2610612	48.68429		100
75) Fluoranthene	11.09	202	2493281	49.57755		95
77) Pyrene	11.35	202	2561067	48.42122		93
79) Butyl benzylphthalate	12.15	149	1205019	51.39703		92
80) 3,3'-Dichlorobenzidine	12.75	252	760437	52.55586		100
81) Benz (a) anthracene	12.74	228	2118423	49.31111	ppb	100
82) Bis (2-ethylhexyl) phthala	12.83	149	1744020	50.37572		98
83) Chrysene	12.79	228	2206526	48.67480		
84) Di-n-octylphthalate 85) Indeno (1,2,3-cd) pyrene	13.55 15.70	149 276	2820358	50.54524		100
87) Benzo (b) fluoranthene	13.70		2349746	51.41682		100
88) Benzo (k) fluoranthene	13.92	252 252	2517860 1877833	54.59668 j 44.12485 j		98
89) Benzo (a) pyrene	14.27	252	2091183	50.28734		92 98
90) Dibenz (a,h) anthracene	15.74	278	2020934	51.93753		93
91) Benzo (g,h,i) perylene	16.11	276	1867209	48.76986	opp opp	93 98
, admar (g/m/r) porjicuo		2.0	2001203	20.70900 ]	r.F.M	90

Data File: M:\YODA\DATA\Y120301B\0301Y010.D

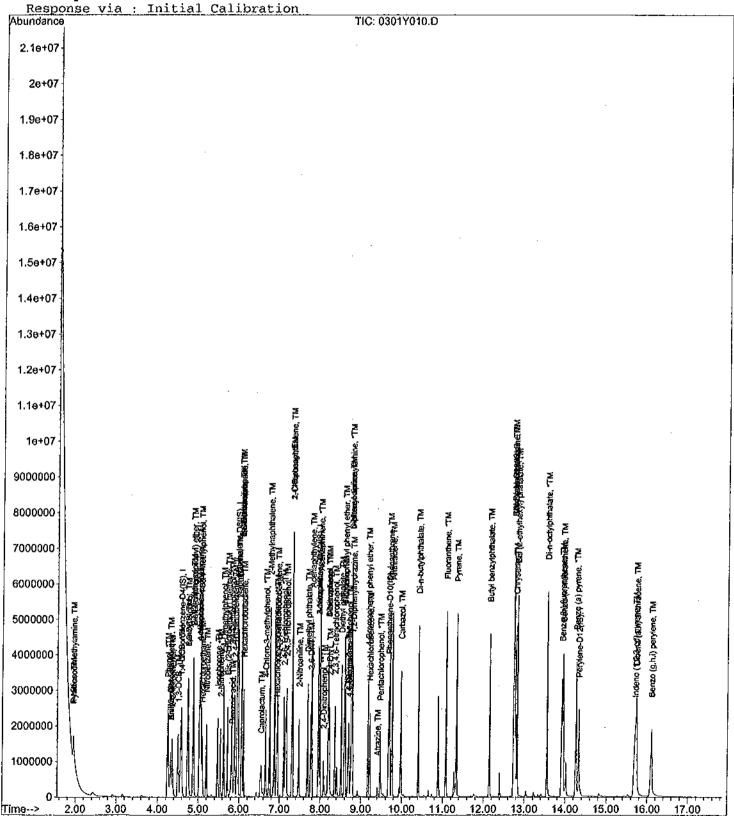
1 Mar 12 22:20 : 50 ug/mL SVOC SS 03-01-12 Operator: LF Inst : YODA Multiplr: 1.00

Vial: 10

Misc

Quant Results File: Y827AF.RES

Quant Time: Mar 5 10:48 2012


Method Title

Sample

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012



Data File : M:\YODA\DATA\Y120301B\0302Y002.D Vial: 2 Acq On : 2 Mar 12 18:02 Sample : 50 ug/mL SVOC 03-01-12 Operator: LF Inst : YODA Multiplr: 1.00

Quant Time: Mar 5 10:49 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) 1 4 dight					
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS)	4.57			40.00000 ppb	0.00
38) Acenaphthene-D10(IS)	5.95 7.95			40.00000 ppb 40.00000 ppb	0.00
62) Phenanthrene-D10(IS)	9.68			40.00000 ppb	0.00
	12.76			40.00000 ppb	0.00
86) Perylene-D12(IS)	14.33			40.00000 ppb	0.00
				20100000 ppp	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.24	112		90.61762 ppb	0.00
Spiked Amount 200,000	4 0 4		Recove	ery = 45.309%	
5) Phenol-D6 (S) Spiked Amount 200.000	4,24	99		90.59978 ppb	0.00
21) Nitrobenzene-D5(S)	5.18	82	Recove 645467	ery = 45.300% 46.46038 ppb	0 00
Spiked Amount 100.000	3.10	02		ery = 46,460%	0.00
44) 2-Fluorobiphenyl(S)	7.20	172	1292396	45.55185 ppb	0.00
Spiked Amount 100.000			Recove		0.00
61) 2,4,6-Tribromophenol(S)	8.89	330	315349	91.67011 ppb	0.00
Spiked Amount 200.000			Recove	xy = 45.835%	
78) Terphenyl-D14(S)	11.55	244	1247800	45.50047 ppb	0.00
Spiked Amount 100,000			Recove	xy = 45.500%	
Target Compounds					
2) n-Nitrosodimethylamine	1.94	42	361730	48.52333 ppb	alue 95
3) Pyridine	1.95	52	514934	46.49993 ppb	99
6) Phenol	4.26	94	1095752	46.33401 ppb	97
7) Aniline	4.32	93	855738	46.52094 ppb	100
<li>8) Bis (2-chloroethyl) ether</li>	4.32	63	608296	43.12546 ppb	98
9) 2-Chlorophenol	4.36	128	810224	46,28365 ppb	98
10) 1,3-DCB	4.51	146	910964	46.36363 ppb	99
11) 1,4-DCB	4.59	146	937061	46.44274 ppb	99
12) Benzyl alcohol	4.75	79	617854	46.32529 ppb	99
13) 1,2-DCB 14) 2-Methylphenol	4.74	146	856228	46.29527 ppb	99
15) Bis (2-chloroisopropyl) et	4.88 4.88	108 45	733938 1241207	45.64871 ppb 46.70485 ppb	99
16) Acetophenone	5.03	105	1057786	45.82871 ppb	99 <b>99</b>
17) 3&4-Methylphenol	5.06	107	1648205	90.44691 ppb	99
18) n-Nitrosodi-n-propylamine	5.04	43	653086	45.75600 ppb	97
19) Hexachloroethane	5.09	117	314866	46.44815 ppb	وَوَ
22) Nitrobenzene	5.20	77	812839	48.62239 ppb	100
23) Isophorone		82	1429699	47.91895 ppb	100
24) 2-Nitrophenol	5.55	139	445266		99
25) 2,4-Dimethylphenol	5.62	107		47.09396 ppb	99
26) Benzoic acid 27) Bis (2-chloroethoxy) metha	5.84	105	352024	40.82756 ppb	99
28) 2,4-Dichlorophenol	5.72	93	864854	48.23635 ppb	100
29) 1,2,4-Trichlorobenzene	5.82 5.89	162 180	626286 667575	47.95439 ppb 47.16106 ppb	100
30) Naphthalene	5.98	128	2333195	47.52264 ppb	100 100
31) 4-Chloroaniline	6.07	127	831032	48.09045 ppb	99
32) 2,6-Dichlorophenol	6.07	162	595825	46.67231 ppb	99
33) Hexachloropropene	6.07	213	373712	47.61386 ppb	99
34) Hexachlorobutadiene.	6.11	225	337383	47.07776 ppb	99
35) Caprolactum	6.56	113	257607	48.64477 ppb	99
36) 4-Chloro-3-methylphenol	6.66	107	670405	48.24590 ppb	99
37) 2-Methylnaphthalene	6.76	142	1537137	46.90512 ppb	99

^{(#) =} qualifier out of range (m) = manual integration. 0302Y002.D Y827AF.M Thu Mar 08 15:00:54 2012

Data File : M:\YODA\DATA\Y120301B\0302Y002.D Acq On : 2 Mar 12 18:02 Sample : 50 ug/mL SVOC 03-01-12 Vial: 2 Operator: LF Inst : YODA Multiplr: 1.00 Misc :

Quant Time: Mar 5 10:49 2012 Ouant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

Compound	R.T.	QIon	Response	Conc Unit	Qvalu	e .
39) Hexachlorocyclopentadiene	6.93	237	281400	47,95230	ppb	99
40) 1,2,4,5-Tetrachlorobenzene	6.95	216	614529	46,40775		98
41) 2,4,6-Trichlorophenol	7.11	196	428244	47.48525		99
42) 2,4,5-Trichlorophenol	7.17	196	464332	48.17568		99
43) 2-Chloronaphthalene	7,32	162	1363580	46.58857		99
45) 1,1'-Biphenyl	7.31	154	1806010	47.92116		99
46) 2-Nitroaniline	7.48	138	541185	48.63444		98
47) Dimethyl phthalate	7.69	163	1554944	46.61887		100
48) 2,6-DNT	7.76	165	375137	47.73136		99
49) Acenaphthylene	7.79	152	2280374	46.88058		100
50) 3-Nitroaniline	7.96	65	517185	48.41645		99
51) Acenaphthene	8.00	154	1349528	46.82071		100
52) 2,4-Dinitrophenol	8.09	184	176642	40.64401		71
53) 4-Nitrophenol	8.21	109	143897	45.24068		94
54) Dibenzofuran	8.19	139	1003467	50.83537		98
55) 2,4-DNT	8.23	165	510950	47.06839		99
56) 2,3,4,6-Tetrachlorophenol	8.36	232	350438	48.76791		98
57) Diethyl phthalate	8.52	149	1535783	46,35038		100 100
58) 4-Chlorophenyl phenyl ethe	8.61	204 165	742158 1434501	46.44923 46.37132		99
59) Fluorene	8.59 8.69	138	404014	46.88372		98
60) 4-Nitroaniline	8.77	168	1450821	43.63383		100
63) Diphenyl amine 64) 4,6-Dinitro-2-methylphenol	8.71	198	310540	48.23159		96
65) n-Nitrosodiphenylamine	8.77	167	776780	44.01176		99
66) 1,2-Diphenylhydrazine	8.79	182	465255	45.89929		99
67) 4-Bromophenyl phenyl ether	9.17	248	392644	46.42566		100
68) Hexachlorobenzene	9.22	284	433098	47.32933		98
69) Atrazine	9.41	200	35499	23.69812		98
70) Pentachlorophenol	9,47	266	267829	52.74977		98
71) Phenanthrene	9.70	178	2162897	43,87206		100
72) Anthracene	9.77	178	2352767	46.41246		100
73) Carbazol	9.97	167	2116984	46.37812	ppb	99
74) Di-n-butylphthalate	10.41	149	2564970	47.78461	ppb	100
75) Fluoranthene	11.09	202	2367970	47.03806		100
77) Pyrene	11.35	202	2495127	48.27506		100
79) Butyl benzylphthalate	12.15	149	1144998	49.97632		96
80) 3,3'-Dichlorobenzidine	12.75	252	713730	50.47859		99
81) Benz (a) anthracene	12.74	228	2002386	47.69747		100
82) Bis (2-ethylhexyl) phthala	12.82	149	1577645	46.63312		94
83) Chrysene	12.79	228	2090407	47.18907		95
84) Di-n-octylphthalate	13.56	149	2695533	49.43518		100
85) Indeno (1,2,3-cd) pyrene	15.70	276	2192917	49.10456		99
87) Benzo (b) fluoranthene	13.92	252	2006449	44.36227		99
88) Benzo (k) fluoranthene	13.95	252	2046094	49.02333		99
89) Benzo (a) pyrene	14.27	252	1977513	48.48830		99
90) Dibenz (a,h) anthracene	15,74	278	1864978	48.87129 49.07225		98 99
91) Benzo (g,h,i) perylene	16.11	276	1842580	49.07223	ըրս Մ	23

# Anameteacton vehore

Data File: M:\YODA\DATA\Y120301B\0302Y002.D

Acq On 2 Mar 12 18:02 Sample : 50 ug/mL SVOC 03-01-12

Operator: LF : YODA Inst

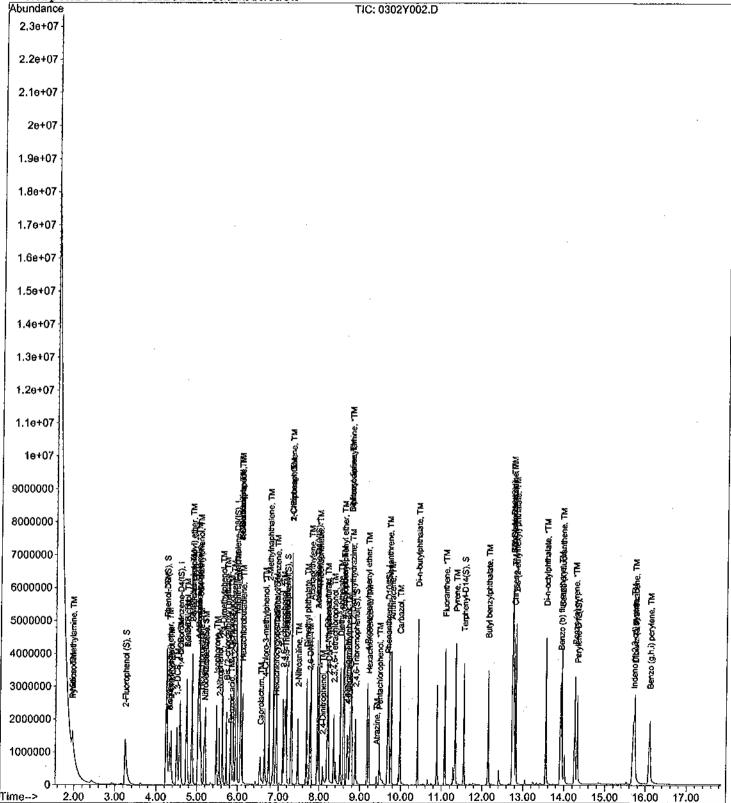
Vial: 2

Misc

Multiplr: 1.00

Quant Time: Mar 5 10:49 2012

Ouant Results File: Y827AF.RES


Method

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration



# EPA METHOD 8270C Semivolatile Organic Compounds Raw Data

Data File : M:\YODA\DATA\Y120301B\0302Y012.D Acq On : 2 Mar 12 22:19 Sample : AY56027S02 1/33.44G Vial: 12 Operator: LF Misc

Inst : YODA Multiplr: 29.90

Quant Time: Mar 5 9:02 2012 Quant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

Last Update : Mon Mar 05 08:45:16 2012

Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	389068	40.00000 ppl	b 0.00
20) Napthalene-D8(IS)	5.94	136	1493458	40.00000 ppl	b -0.01
38) Acenaphthene-D10(IS)	7.95	164	837198	40.00000 ppl	b 0.00
62) Phenanthrene-D10(IS)	9.66	188	1498269	40.00000 pp	-0.01
76) Chrysene-D12(IS)	12.75	240	1387987	40.00000 pp	
86) Perylene-D12(IS)	14.31	264	1257189	40.00000 pp	
System Monitoring Compounds					
4) 2-Fluorophenol (S)	3.23	112	1438006	3035.76347 pt	ob -0.01
Spiked Amount 5980.861				ry = 50.79	
5) Pheno1-D6 (S)	4.23	99		3549.57408 pr	
Spiked Amount 5980.861			Recove	ry = 59.34	19%
21) Nitrobenzene-D5(S)	5.17	82	769485		
Spiked Amount 2990.431				ry = 54.30	•
44) 2-Fluorobiphenyl(S)	7.19	172	1583740	1616.83478 pg	ob -0.01
Spiked Amount 2990.431			Recove	ry = 54.0€	578
61) 2,4,6-Tribromophenol(S)	8.88	330	431117	3629.96762 px	-0.01
Spiked Amount 5980.861			Recove	ry = 60.69	38
78) Terphenyl-D14(S)	11.56	244	2219368	2288.58534 pp	
Spiked Amount 2990.431			Recove		

Target Compounds

Qvalue

Data File: M:\YODA\DATA\Y120301B\0302Y012.D

Acq On 2 Mar 12 22:19 : AY56027S02 1/33.44G Sample

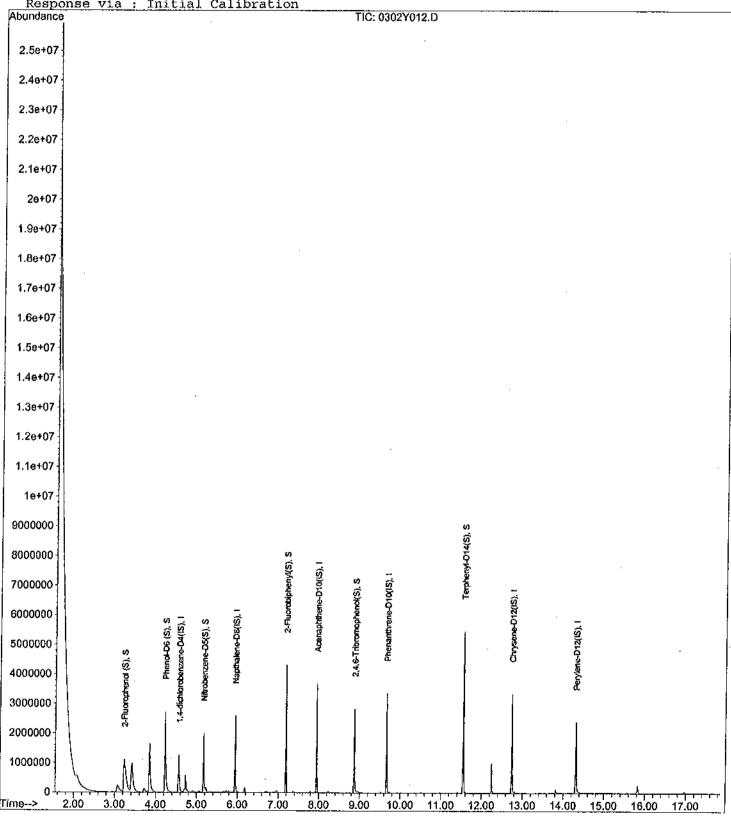
Vial: 12 Operator: LF : YODA Inst Multiplr: 29.90

Quant Time: Mar 5 9:02 2012

Quant Results File: Y827AF.RES

Method

Misc


: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title

: EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration



Data File : M:\YODA\DATA\Y120301B\0302Y005.D

Vial: 5 Acq On : 2 Mar 12 19:20 Operator: LF Sample : 120302A BLK 1/30,00G Inst : YODA Multiplr: 33.33

Quant Time: Mar 5 8:57 2012 Ouant Results File: Y827AF.RES

Quant Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 08:45:16 2012
Response via : Initial Calibration
DataAcq Meth : Y8270AQ

Misc

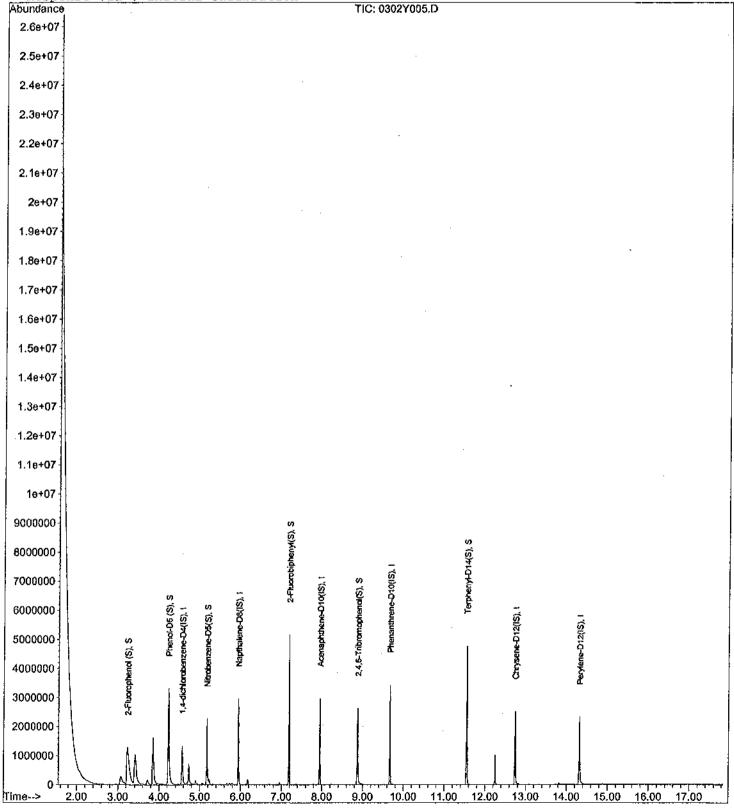
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-dichlorobenzene-D4(IS) 20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS)	4.56 5.95 7.95 9.67 12.75	152 136 164 188 240	369900 1403137 784561 1393519 1315181	40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb 40.00000 ppb	0.00 0.00 0.00 0.00
86) Perylene-D12(IS)	14.32	264	1178701	40.00000 ppb	0.00
System Monitoring Compounds					
4) 2-Fluorophenol (S) Spiked Amount 6666.667	3.24	112		4068.63916  pp ry = $61.030$	
5) Phenol-D6 (S) Spiked Amount 6666.667	4.23	99		4609.76614  pp ry = $69.146$	
21) Nitrobenzene-D5(S) Spiked Amount 3333.333	5.18	82	869905	2177.90608  ppl ry = 65.333	0.00
44) 2-Fluorobiphenyl(S) Spiked Amount 3333.333	7.19	172		2092.62324  ppl ry = $62.779$	0.00
61) 2,4,6-Tribromophenol(S) Spiked Amount 6666.667	8.88	330	456024	4567.11223 ppl ry = $68.507$	0.00
78) Terphenyl-D14(S) Spiked Amount 3333.333	11.56	244		2795.25123 ppl	0.01

Target Compounds Qvalue Data File : M:\YODA\DATA\Y120301B\0302Y005.D

: 2 Mar 12 19:20 Acq On : 120302A BLK 1/30.00G Sample

Vial: 5 Operator: LF : YODA Inst Multiplr: 33.33

Quant Time: Mar 5 8:57 2012


Quant Results File: Y827AF.RES

Method

Misc

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C
Last Update : Mon Mar 05 10:46:48 2012
Response via : Initial Calibration



Data File : M:\YODA\DATA\Y120301B\0302Y006.D Acq On : 2 Mar 12 19:45 : 120302A LCS-1 1/30.00G Sample

Operator: LF Inst : YODA Multiplr: 33.33

Vial: 6

Quant Time: Mar 5 10:57 2012 Quant Results File: Y827AF.RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Misc

Title : EPA 8270C Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration DataAcq Meth : Y8270AQ

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
1) 1,4-dichlorobenzene-D4(IS)	4.57	152	403529	40.00000 pp	b 0,00	
20) Napthalene-D8(IS) 38) Acenaphthene-D10(IS) 62) Phenanthrene-D10(IS) 76) Chrysene-D12(IS) 86) Pervlene-D12(IS)	5.95	136	1518610	40.00000 pp		·
38) Acenaphthene-D10(IS)	7.95	164	841049	40.00000 pp	b 0.00	
62) Phenanthrene-D10(IS)	9.67	188	1520865	40.00000 pp	b 0.00	
76) Chrysene-Dl2(IS)	12.76	240	1394977	40.00000 pp		
86) Perylene-D12(IS)	14.32	264	1343336	40.00000 pp	b 0.00	
System Monitoring Compounds						
4) 2-Fluoropheno1 (S)	3.23	112	1809731	4105.98100 pp		·
Spiked Amount 6666.667	4 04	•	Recove			
5) Phenol-D6 (S)	4.24	99	2385110	4570.05815 pp		
Spiked Amount 6666.667	<b>5</b> 10	0.2	Recove			
21) Nitrobenzene-D5(S)	5.18	82	975415	2256.37133 pr		
Spiked Amount 3333,333	7 20	170	Recove			
44) 2-Fluorobiphenyl(S) Spiked Amount 3333.333	7.20	172	1982067			
61) 2,4,6-Tribromophenol(S)	0 00	330	Recove			
	0.05	330	521612	4873,11854 pr		
	11 56	244	Recove		ታ/*5 -⊾ ለበለ	
78) Terphenyl-D14(S) Spiked Amount 3333.333	11.56	244				
Spiked Amound 3333.333			Recove	ery = 83.58	398	
Target Compounds					Qvalue	
2) n-Nitrosodimethylamine	1.95	42	204648	830.00145 ppl	b 98	200664 X40x33333 403529×1.092 = 607 4-8/9/12
3) Pyridine	1.98	52	200664	607.33659 ppl	b 97	70664 84083300
6) Phenol	4.25	94	709527	1005.57814 ppk	94	7-0-1
7) Aniline	4.32	93	562615	1025.12841 ppk	5 99	-ax1.092
8) Bis (2-chloroethyl) ether		63		1220.15063 ppk	91	4,35,000
9) 2-Chlorophenol	4.36	128	514594	985,25020 pph	5 99	- b07
9) 2-Chlorophenol 10) 1,3-DCB 11) 1,4-DCB	4.50	146	553412	944.02629 ppk	100	2
, -,	4.59	146	556702	924.76635 pph	99	2A12
	4.75	79	367036	922.35943 ppb		A. A
13) 1,2-DCB	4.74	146	521779	945.56854 pph	99	
<pre>14) 2-Methylphenol</pre>	4.88	108	474015	988.14463 pph		
15) Bis (2-chloroisopropyl) et	4.88	45		1025,76808 ppb		
16) Acetophenone	5.02	105	661056	959,92512 ppb	97	
17) 3&4-Methylphenol	5.05	107		2018.95485 pph		•
18) n-Nitrosodi-n-propylamine	5.03	43		1044.10808 ppb	99	
19) Hexachloroethane	5.09	117	188862	933.78422 ppb		
19) Hexachloroethane 22) Nitrobenzene 23) Isophorone	5.20	77	535039	1028.55981 ppb	100	
23) Isophorone			986009	1062.07691 ppb	96	·
24) 2-Nitrophenol	5.54	139		1043.47120 ppb		
25) 2,4-Dimethylphenol	5.62	107	494156	989.31681 ppb		
26) Benzoic acid	5.82			640.30501 ppb		
27) Bis (2-chloroethoxy) metha	5.71	93		1051.48682 ppb		
28) 2,4-Dichlorophenol 29) 1,2,4-Trichlorobenzene	5.82	162		1048.44075 ppb		
30) Naphthalene	5.89	180	440944	1001.10437 ppb	99	
31) 4-Chloroaniline	5.97 6.06	128		1022.15350 ppb		
32) 2,6-Dichlorophenol	6.06	127 162	528490	982.85688 ppb		
33) Hexachloropropene	6.06	213		1029.72907 ppb		
34) Hexachlorobutadiene	6.11	225	256203 222538	1049.04213 ppb 997.95086 ppb		•
35) Caprolactum	6.53	113		1116.70730 ppb		
36) 4-Chloro-3-methylphenol	6.65	107		1053.34016 ppb		
37) 2-Methylnaphthalene	6.76	142		1077.73269 ppb		·
37, E needy maphematene	0.70	142	1070703	10//./3209 ppn	22	

^{(#) =} qualifier out of range (m) = manual integration 0302Y006.D Y827AF.M Thu Mar 08 15:01:22 20012

Data File : M:\YODA\DATA\Y120301B\0302Y006.D Vial: 6 Acq On : 2 Mar 12 19:45 Sample : 120302A LCS-1 1/30.00G Operator: LF Inst : YODA Multiplr: 33.33 Misc

Quant Time: Mar 5 10:57 2012 Quant Results File: Y827AF, RES

Quant Method: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C

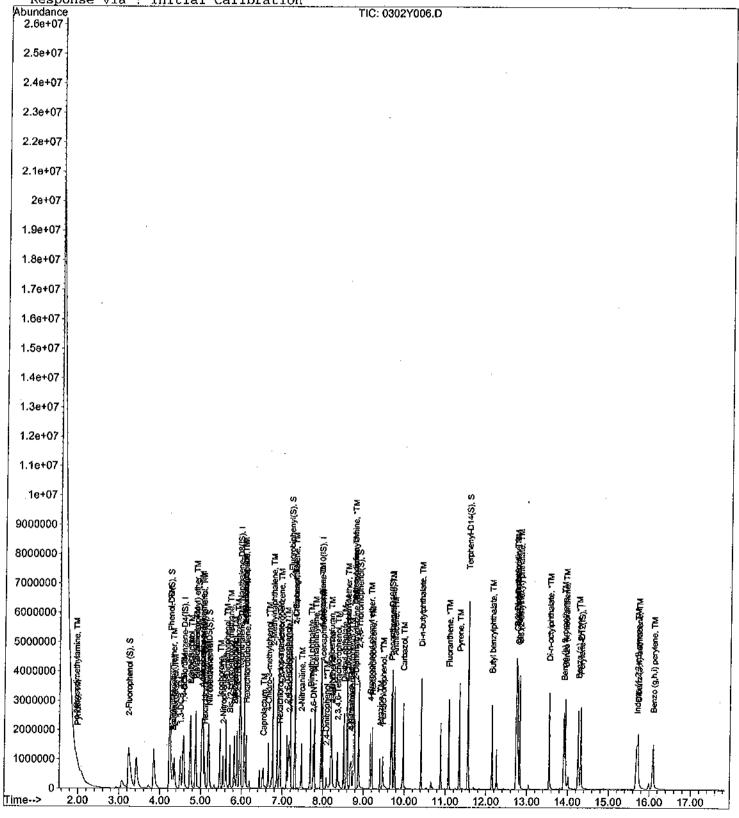
Last Update : Mon Mar 05 10:46:48 2012

Response via : Initial Calibration

DataAcq Meth : Y8270AQ

	Compound		QIon	Response	Conc Unit	Qv	alue	
39)	Hexachlorocyclopentadiene	6,93	237	161368	883.74267	nnh		98
	1,2,4,5-Tetrachlorobenzene	6.95	216	423998	1029.04651	ppb		97
41)	2,4,6-Trichlorophenol	7.10	196	296031	1054.93986			98
42)	2,4,5-Trichlorophenol	7.17	196	314538	1048.80667			98
	2-Chloronaphthalene	7.32	162	945736	1038.46483			98
45)	1,1'-Biphenyl	7.31	154	1278995	1090.68434			98
46)	2-Nitroaniline	7.47	138	372455	1075.70971	ppb		83
	Dimethyl phthalate	7.69	163	1124122	1083.13731	ppb		96
48)	2,6-DNT	7.76	165	266246	1088,72984	ppb	Ħ	79
49)	Acenaphthylene	7,79	152	1581489	1044.90354	ppb		100
50)	3-Nitroaniline	7.95	65	332325	999.84613			89
	Acenaphthene	7.98	154	943163	1051.63715	ppb		99
	2,4-Dinitrophenol	8.08	184	109703	920.10892		#	70
	4-Nitrophenol	8.21	109	103690	1047.70108			95
	Dibenzofuran	8.19	139	700956	1141,23940			98
	2,4-DNT	8,22	165	357895	1059.57002			86
	2,3,4,6-Tetrachlorophenol	8.36	232	240308	1074.76691			99
	Diethyl phthalate	8.51	149	1128323	1094.40974	ppb		98
	4-Chlorophenyl phenyl ethe	8.61	204	545587	1097.41090	ppb		95
•	Fluorene	8.59	165	1028158	1068.14834	ppb		100
	4-Nitroaniline	8.68	138	264516	986.50824			96
	Diphenyl amine	8.76	168	1091618	1066.31976			100
	4,6-Dinitro-2-methylphenol	8.70	198	206629	1042.34742			88
	n-Nitrosodiphenylamine	8.76	167	582965	1072.80410	ppb		98
	1,2-Diphenylhydrazine	8.79	182	335691	1075 62739	ppb	Ħ	59
	4-Bromophenyl phenyl ether	9.17	248	285492	1096.37791	ppb		98
	Hexachlorobenzene	9.21	284	297305	1055.24587	ppp	#	78
	Atrazine	9,40	200	122876	2664.23236			96
	Pentachlorophenol	9.47	266	189591	1212.79635			99
	Phenanthrene	9.70		1608135	1059.45347			100
	Anthracene	9.76	178	1628167	1043,18613			99
	Carbazol	9.97	167	1472537	1047.77726			99
	Di-n-butylphthalate Fluoranthene	10.41 11.08	$\frac{149}{202}$	1847050	1117.61357			100
	Pyrene	11.34	202	1702392 1726801	1098.34799		ш	96
	Butyl benzylphthalate	12.14	149	786970	1047.85853 1077.32783		#	84 76
	3,3'-Dichlorobenzidine	12.74	252	418409	928,12074		H	98
-	Benz (a) anthracene	12.74	228	1441252	1076.75671			100
	Bis (2-ethylhexyl) phthala	12.82	149	1150046	1066.18013	ըր Միր	#	93
	Chrysene	12.78	228	1450967	1027.30226		#	93 97
	Di-n-octylphthalate	13.54	149	1880732	1081.80383		н	100
	Indeno (1,2,3-cd) pyrene	15.69	276	1525815	1071,59748	DDP.		100
	Benzo (b) fluoranthene	13.91	252	1487295	1054.88837		#	97
	Benzo (k) fluoranthene	13.94	252	1441522	1107.95533		И.	95
	Benzo (a) pyrene	14.26	252		1092.34492	pph pph		97
	Dibenz (a,h) anthracene	15.73	278	1322698	1111.89695	ppb		98
	Benzo (g,h,i) perylene	16.10	276		1129.57142			100
-				<del></del>				

Data File : M:\YODA\DATA\Y120301B\0302Y006.D


Vial: 6 Acq On 2 Mar 12 19:45 Operator: LF Sample : 120302A LCS-1 1/30.00G Inst : YODA Misc Multiplr: 33.33

Quant Time: Mar 5 10:57 2012 Quant Results File: Y827AF.RES

: M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator) Method

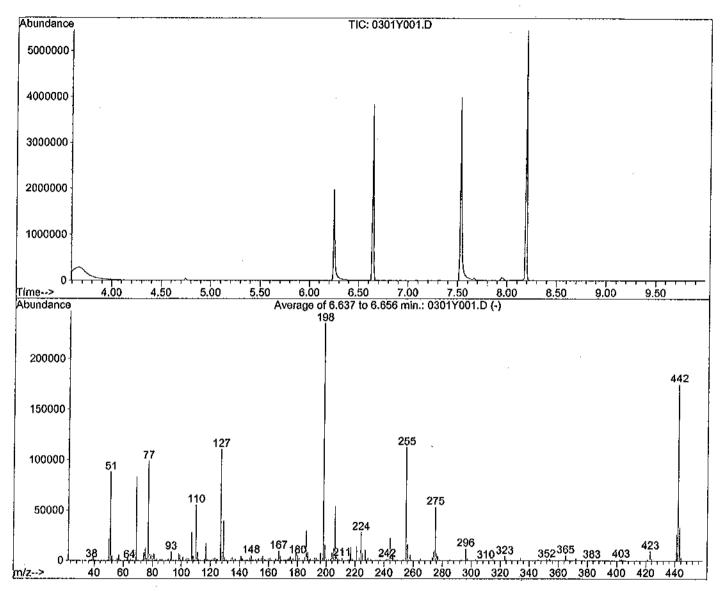
Title : EPA 8270C

Last Update : Mon Mar 05 10:46:48 2012 Response via : Initial Calibration



Data File: M:\YODA\DATA\Y120301B\0301Y001.D

: 1 Mar 12 18:36 : SV TUNE 02-28-12 Sample


Misc

Operator: LF ; YODA Inst Multiplr: 1.00

Vial: 1

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

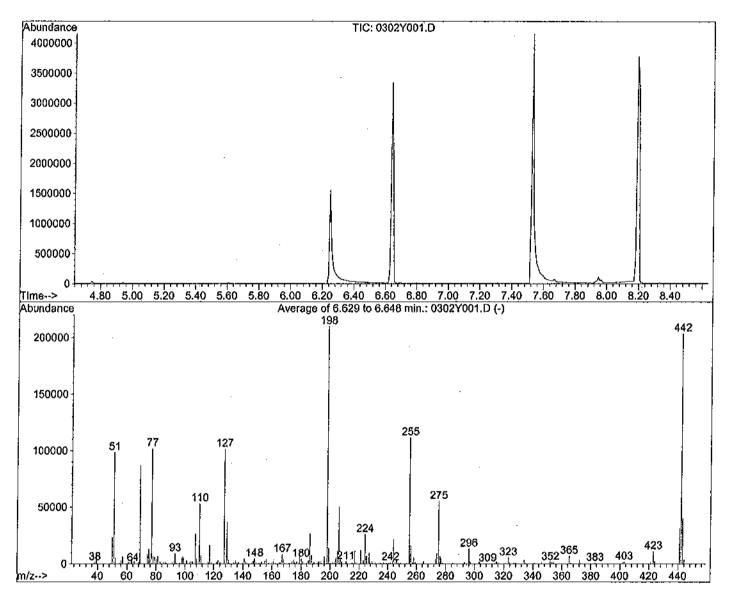
Title : EPA 8270C



Spectrum Information: Average of 6.637 to 6.656 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Re1. Abn%	Raw Abn	Result Pass/Fail
51	198	30	60	37.4	87963	PASS
68	69	0.00	2	0.0	0	PASS
70	69	0.00	2	0.5	444	PASS
127	198	40	60	46.9	110293	PASS
197	198	0.00	1.	0.0	l o	PASS
198	198	100	100	100.0	235262	PASS
199	198	5	9	6.6	15525	PASS
275	198	10	30	22.6	53203	PASS
365	198	1	100	2.2	5167	PASS
441	443	0.01	100	79.9	26397	PASS
442	198	40	150	74.3	174735	PASS
443	442	17	. 23	18.9	33049	PASS

Data File: M:\YODA\DATA\Y120301B\0302Y001.D


Acq On : 2 Mar 12 17:44 Sample : SV TUNE 02-28-12 Misc :

Operator: LF Inst : YODA Multiplr: 1.00

Vial: 1

Method : M:\YODA\DATA\Y120301B\Y827AF.M (RTE Integrator)

Title : EPA 8270C



Spectrum Information: Average of 6.629 to 6.648 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	51	198	30	60	46.9	98442	PASS
Ì	68	69	0.00	2	1.6	1427	PASS
- 1	70	69	0.00	2	0.4	350	PASS
- 1	127	198	40	60	48.3	101491	PASS
-	197	198	0.00	1	0.0	0	PASS
-	198	198	100	100	100.0	210083	PASS
	199	198	5	9	6.7	14130	PASS
١.	275	198	10	30	26.3	55148	PASS
-	365	198	1	100	3.3	6835	PASS
	441	443	0.01	100	77.6	31405	PASS
	442	198	40	150	96.9	203552	PASS
	443	442	17	23	19.9	40477	PASS

## GC/MS STANDARD PREPARATION BOOK # J PAGE # 84

VF117/11

PREP DATE:	01-17-11	1	]	]		
8270C Stoc	k/Spike Standard	1				
Exp:	05-29-11		1	1	1	
		Conc.		Date	CODE	2 1
Supplier	ID #	µд/mЪ	Lot #	Code	Exp.Date	μL
Absolute	10001	2000	032009-28092	01/17/11	03-20-12	1000
Absolute	10001	2000	032009-28091	01/17/11	03-20-12	1000
Absolute	10002	2000	073109-27974	01/17/11	07-31-12	1000
Absolute	10002	2000	073109-27973	01/17/11	07-31-12	1000
Absolute	10004	2000	101509-27979	01/17/11	10-15-14	1000
Absolute	10004	2000	101509-27978	01/17/11	10-15-14	1000
Absolute	10005	2000	061209-27984	01/17/11	06-12-14	1000
Absolute	10005	2000	061209-27983	01/17/11	06-12-14	1000
Absolute	10006	2000	120810-27989	01/17/11	12-08-13	1000
Absolute	10006	2000	120810-27988	01/17/11	12-08-13	1000
Absolute	10007	2000	100909-28010	01/17/11	10-09-14	1000
Absolute	10007	2000	100909-28013	01/17/11	10-09-14	1000
Absolute	10018	2000	073109-27994	01/17/11	07-31-14	1000
Absolute	10018	2000	073109-27993	01/17/11	07-31-14	1000
Absolute	70023	1000	080310-28008	01/17/11	08-03-15	1000
Absolute	70023	1000	080310-28009	01/17/11	08-03-15	1000
bsolute	82705	2000	121010-27999	01/17/11	12-10-13	1000
bsolute	82705	2000	121010-27998	01/17/11	12-10-13	1000
bsolute	94552	2000	052908-28004	01/17/11	05-29-11	1000
bsolute	94552	2000	052908-28003	01/17/11	05-29-11	1000
					Final Vol	20000

DDCD 0370	01-25-11	ſ	r		,	1			T .							
	MARD CURVE	<del>                                     </del>				<del> </del>	<del>                                     </del>	ļ <u>-</u>				<del> </del>	ļ .	<b>├/y</b>	<b>├</b> ─	Ļ <del></del>
Exp:	02-24-11		ļ <del>-</del>		··	2.1	0.2	1	5	10	20	40	50	60	80	100
		Conc.		Date	·			i		<del>-</del>					1 2	- AVV
Supplier	10 0	µg/mL	Lot #	Code	Exp.Date			дь	μL	μL	முட	րև	μί	шt	μL	μt
	8270T Stock	500		12/17/10	05-29-11	0	0	0	5	5	10	20	25	30	40	50
	5.0ug/mt			01/25/11		0	0	20	0	0	0	0	0	0	10	
.,	1-Oug/mL			01/25/11		10	20	-0	0		0	. 0	0	<u> </u>	<del></del>	Ö
<u> </u>	Surrogate Stock	VAR	160518-27570	11/11/10	11-11-11	0	0	0	5	5	10	20	25	30	40	50
M Science	Methylene Chlori	ide	47080			90	80	80	190	90	80	60	50	40	20	<del></del>
					Final Vol.			100	200	100	100	100	100	100	100	100
	<u> </u>				l i											

NE IDEIN

01-25-11					
d Source (SS)	50ug/mL			1 1	
	1				50
1.	Conc.		Date	CODE:	
ID #	µg/mL	Lot #	Code	Exp.Date	μĹ
8270C SS	8270C SS 200		10/06/10	10-06-11	25
Methylene Chic	oride	47080			75
				Final Vol.	100
	ID # 8270C SS	d source (SS) 50ug/mL Conc.	d Source (38) 50ug/mL  Conc.  ID #  #g/mL Lot #  8270C SS 200	d Source (38) 50ug/mL	Source (38) 50ug/mL

IF IDAN

Mghod 6170 Internal Slandard Scietton, 1,000

me/L, 1 ml 110001-02

167766 \$ 10 Degree C. 47031

of 1/2412

Solvi Mathylese (Tabride 8270 internal Standard

Lot #: 187766 - 28148 Rec: 1/20/11 MFR exp. 04/20/13

15-CIXIN

Method 8270 Internal Standard Solution, 1,000 வழிட்டியி 110001-01

167766 \$-10 Degree C 420/13 Solve Mathylene Chloride

8270 Internal Standard Lol #: 167768 - 28147 123 p3 4

Part #: 94552 052908 Laboratory Use Only-See MSDS

Lot #:

Exp: 052911

Semi-Voiatile Standard

11 components

Semi-Volatile Standard

Varied ug/mL in

Lot #: 052908 - 28001

ABSOLUTE STANDA

Rec: 12/16/10 MFR exp. 05/29/11

By 512114

153/23/11

Part #: 94552

Laboratory Use Only-See MSDS

052908 Exp: 052911

Semi-Volatile Standard
Semi-Volatile Standard

11 componente

Lot #: 052908 - 28002

Rec: 12/16/10 MFR exp. 05/29/11

Varied ug/mL in ABSOLUTE STANDAI

12/52/11

Part #: 82705

121010

Exp: 121013

Laboratory Use Only - See MSDS Storage 4 'C

Storage 4 'C

Lot #:

EPA Method 8270A

EPA Melhod 8270A-Mix#11

4 components

Lot #: 121010 - 27996

2000 ug/mL in ace Rec: 12/18/10 MFR exp. 12/10/13 ABSOLUTE STANDAKUS, 1140.

cose 50914

eya Spally

F3/23/11

Part #: Lot #:

82705

121010

Laboratory Use Only - See MSDS Exp: 121013

EPA Method 8270A - Mix #11

4 components EPA Method 8270A-Mix#11

2000 ug/mL in ace

Lot #: 121010 - 27997

ABSOLUTE STANDAF

Nac: 12/18/10 MFR exp. 12/10/13

COR ST29111

W3/11/1

PREP DATE:					<del></del>	p
8270C Sto	ok/Spike Standard	1	<del> </del>	<del></del>	<del></del>	<del></del>
Ехр:	05-29-11	† · · · ·	<del> </del>	<del></del>	<del></del> -	—
<u> </u>		Conc.		Date	CODE	<del>-</del>
Supplier	ID #	ug/mL	Lot #	Code	Exp. Date	<del></del>
Absolute	10001	2000	032009-28089	03/23/11		μL
Absolute	10001	2000	320009-28090	03/23/11		1000
Absolute	10002	2000	073109-27971	03/23/11		1000
Absolute	10002	2000	073109-27972	03/23/11		1000
Absolute	10004	2000	101509-27976	03/23/11	07-31-12	1000
Absolute	10004	2000	101509-27977		10-15-14	1000
bsolute	10005	2000	061209-27981	03/23/11	10-15-14	1000
bsolute	10005	2000	061209-27982	03/23/11	06-12-14	1000
bsolute	10006	2000	120810-27986	03/23/11	06-12-14	1000
bsolute	10006	2000	120810-27987	03/23/11	12-08-13	1000
bsolute	10007	2000	100909-28015	03/23/11	12-08-13	1000
bsolute	10007	2000		03/23/11	10-09-14	1000
bsolute	10018	2000	100909-28014	03/23/11	10-09-14	1000
bsolute	10018	2000	073109-27991	03/23/11	07-31-14	1000
bsolute	70023	1000	073109-27992	03/23/11	07-31-14	1000
osolute	70023		080310-28006	03/23/11	08-03-15	1000
solute	82705	1000	080310-28007	03/23/11	08-03-15	1000
solute	82705	2000	052908-28001	03/23/11	05-29-11	1000
solute	94552	2000	052908-28002	03/23/11	05-29-11	1000
solute	94552	2000	121010-27996	03/23/11	12-10-13	1000
-aorace	74004	2000	121010-27997	03/23/11	12-10-13	1000
	<u> </u>				Final Vol	20000

1K3 23 14

SIM IS

1500pt EM Suince MC let #47080 100 me 820 15 opened 1/25/11 are 1/25/12

# GC/MS STANDARD PREPARATION BOOK # J PAGE # 90

Mapslu

8270 NY:A (160:400) Surrogale Solution, 1 mil

6/10/2012

8270 BN:A (200:400) Surrogate Solution

Lot #: 160538 - 27574

Rec: 10/18/10 MFR exp. 06/10/12

Norden

70	<u> </u>															
REP DATE	03-28-11	T -	1		1		·	<del>,</del>	<del></del>		2					
270T 67A	TOURD CURVE		<del></del>		<del></del>	<del> </del>	<del> </del>	<del>-</del>	ļ		/1				T	Τ
xp:	04-27-11	_		<del>-</del>	<del> </del>			<u> </u>	<del> </del>	J	<b>i</b>				$\overline{}$	<del></del>
		Conc.	<u> </u>	Date	<del></del>	9.1	0.2	<del> </del>	5	76	20	40	50	60	80	100
pplier	ID #	μg/mL	Lot 1	Code	Exp.Date	<del> </del>	<del></del>	<del> </del>	<del>  -</del>	<u> </u>	ļ					
	82707 Stock	200		03/23/11	05-29-11	0	<del> </del>	μL	μL	μL	րև	μե	μL	иL	μĹ	μĻ
	5.Oug/mL			03/28/11	1 32 17 11	o o	0	- 0	5	5	10	20	25	30	40	50
	1.0ug/mL		Ī — —	03/28/11	<del></del>	10	20	. 20	0	0	0	0	0	0	0	0
	Surrogate Stock	VAR	160538-27574	03/28/11	03-28-12	0	0		- <u>-</u> -	D	0	0	0	0	0	0
Science	Rethylene Chier	ide	47080			90	80	80	3		10	20	25	30	60	50
·					Final Vol.				190	90	80	60	50	40	20	0
					103.		<u> </u>	100	200	100	100	100	100	100	100	100
					<del></del>			<u> </u>	<u></u>	[	]				1	

W3/28/4

	03-28-11	<del></del>		·	-	
6270 Secon	& Source (SS)	50ug/mL				11
	·				<u> </u>	50
		Conc.		Date	CODE	
Supplier	ID #	µg/mL	Lot #	Code	Exp.Date	μL
	8270C SS	200		10/06/10	10-05-11	25
EH Science	Methylens Chl	oride	47080			75
			• • •		Final Vol.	100

11- 4/18/11

GCM-160-1

**ULTRA** Semi-volatiles GC/MS Tuning Standard

Lot: CF-2995 Exp: 08/31/2011

Semi-Volatiles GC/MS Tuning Standard

4 analyte(s) at 1000 µg/ml, in dichloromethane

Lot#: CF-2995 - 26131

Rec: 2/17/10 MFR exp. 08/31/11

ey 8/31/1

ap 3/28/12

250,9 mich Bt, No Kingstown, RJ 02652 USA ^{v.}

VF पश्चिम

	W.W					
PREP DATE:	04-23-11	T		1	<del></del>	
SV Tune Mi	z 50ug/ml		·			· · · · · · · · · · · · · · · · · · ·
Exp:	08-31-11	-				<del>! (</del>
		Conc.		Date	CODE	В
Supplier	ID •	μg/mL	Lot #	Code	Exp.Date	μ
U. Scientifi	ic GCM-150	1000	CF-2995-26131	04/13/11	08-31-11	1000
EM Science	NeCl2		47080		<del> </del>	19000
					Final Vol	20000

UF 4PO U

8270D PAH SIM Solution, 700 mg/L, 1 ml

110700-01

exp 4/20/13

8270D PAH SIM Rylodu

Lot #: 170253 - 28485

Rec: 3/10/11 MFR exp. 3/3/2013

Bolvs Methylade Chlorida

8170D PAH SIM Salution, Second Source, 200 mg/1, 1

110780-51-81

exp 4/20/12

86

8270D PAH SIM (SS)

駅

Lot #: 170256 - 28487

## GC/MS STANDARD PREPARATION BOOK # 3 PAGE # 100

18/16/11

PREP DATE:	08/16/11	exp	08/23/11		i		
10ug/mL 1,	2,3-TCP						
·	50uL of 1000ug/m	L 1,2,3 TCP	into a final vol	ume of 5mL c	of P&T Meth	anol	
· <u>·</u>	1000ug/mL 1,2,3	05/27/11					
	P & T Methonal L	ot #		9077-02			
PREP DATE:	08/16/11	exp	: 08/23/11	-			
lug/mL 1,2	, 3-TCP	-		<b>1</b>			
	5uL of 1000ug/mL 1,2,3 TCP into a final volume of 5mL of Po						
	1000ug/mL 1,2,3 1			05/27/11			
···	P & T Methanol Lo	ot #	J1	Baker H46E	44		
PREP DATE:	08/16/11	exp:	08/23/11			· -	
lug/mL 1,2,	3-TCPd5						
	100L of 2000ug/ml	, 1,2,3 TCP i	nto a final volu	me of 10mL o	of P&T Meth	ianol	
	TOUD OF ZOOUSEY, RIL			<del></del>			
	2000ug/mL 1,2,3 T		ode:	05/27/11			

UF epolu

8170 BNIA (200:400) Springete Solution, 1 ml

110004-17 V

eup 8122/12

8617: Mathylace Caloride O BN:A (200:400) Surrogale Solution

Lot #: 187802 - 29313 Rec: 8/8/11 MFR exp. 01/09/13

WHIPHI

PREP DATE:	08-22-11				1	1	Y .	i —	T		1	T	<del></del>
8270 STANT	DARD CURVE				1	1	Y	†		<del> </del>	<del> </del>	<del>  -</del>	<del> </del> -
Ехр:	08-29-11					5	10	20	40	50	60	80	100
		Conc.		Date			T		<del></del> -		<del></del>		<del> **</del>
Supplier	ID I	μg/mL	Lot #	Code	Exp.Date	μL	μl	μL	иL	ջե	ыL	րե	<del> </del>
	8270T Stock	200		07/26/11	01-26-12	- 5	5	10	20	25	30	40	μL 50
	Surrogate Stock	VAR	167802-29313	08/22/11	08-22-12	5	5	10	20	25	30	40	50
EM Science	Sethylene Chlore	de	47186		1	190	90	80	60	50	40	20	0
					Final Vol.	200	100	100	100	100	100	100	100

148/29/11

PREP DATE:	08-22-11			· T · · · · · · · · · · ·	<del></del>	
8270 Escon	d Source (SS)	50ug/mL		1	<del></del> -	-
	·					50
	<u> </u>	Conc.		Date	CODE	
Supplier	ID #	μg/mL	Lot 1	Code	Exp.Date	μL
	8270C SS	500		10/06/10	10-06-11	25
EM Science	Methylene Chl	orida	47186			75
	ļ				Final Vol.	100
		l i				

Pedpyln

09-21-11			7.5.11	T 1		<del></del>	,					
TANDARD CURVE				<del> </del> -	<del></del> -	<del> </del>	<del> </del>	ļ	<del> </del>			
<del></del>					0.10	0.20	0.50	1.00	5.00	10.00	50.00	100.0
TD 4		ļ	Date	CODE:	λ	λ	c			*****		100.0
	μg/mL	Lot #	Code	8xp.Date	иL	nī.			<del> </del> -	<u> </u>	a	н_
8270D PAH SIM	200	170253-28485	04/20/11	04-20-12					μL	μL	μι	μL
5.0ug/mL	5			1	<del>-</del>			. 0	5	5	25	50
1.Oug/mL	1			<del> </del>			10	30	0	0	0	0
Surrogate Stock	TIAD .	149000 00000		<del> </del>	10	20	0	0	0	0	0	0
		·	08/22/11	08-23-11	0	0	0	0	5			50
Recultere Cutotide	· ———	47186		.07	90	80	90	80		<del></del>		
<del> </del>				Final Vol.	100	100						100
	ID \$ 82700 FAH SIM 5.0ug/mL 1.0ug/mL Surrogate Stock	Conc.   Conc.   ID #   μg/mL   8270D FAH SIM   200   5.0ug/mL   5   1.0ug/mL   1	Conc.  ID \$ µg/mL Lot \$ 8270D FAH SIM 200 170253-28485 5.0ug/mL 5 1.0ug/mL 1 Surrogate Stock VAR 167802-29313	Conc.   Date	Conc.   Date   CODE:	Conc.   Date   CoDE: A	Conc.   Date   CoDE: A   A	Conc.   Date   Cong.   A   A   C	TANDARD CURVE    Conc.   Date   Code: A   A   C   D	TANDARD CURVE    Conc.   Date   CoDe: A A C D E	TANDARD CURVE  Conc.  Date  CODE: A  A  C  D  F  82700 PAH SIM  200  170253-28485  04/20/11  04-20-12  0  0  0  0  0  0  0  0  0  0  0  0  0	TANDARD CURVE  Conc. Date CODE: A A C D E F Q  8270D PAH SIM 200 170253-28485 04/20/11 04-20-12 0 0 0 0 0 5 5 5  1.0ug/mL 5 09/21/11 00 0 10 20 0 0 0 0 0  Survogate Stock VAR 167802-29313 08/22/11 08-23-11 0 0 0 0 0 0 5 5 5 25  Methylene Chloride 47186 - 87 90 80 90 80 190 90 50

# GC/MS STANDARD PREPARATION BOOK #_____ PAGE # 101

upelari

PREP DATE:	09-21-11				1	
SIN 8270 E	econd Source (5µg/mL)				<del> </del>	
Екр:	10-05-11			<del>- </del>	<del>  </del>	i
			Conc.	Date	CODE:	
Supplier	ID #	Lot #	μg/mL	Code	Exp.Date	μЬ
	8270D PAH SIM (SS)	170256-28487	200	04/20/11	04-20-12	5
	ИвС12		Lot#47186	<del></del>		195
				Pinal Volu	me	200

V will

Wolulu

8270 BN Solution 14-4, 2,000 mg/L, 1 ml

Cat. No: 110391-01 Lot No: 158110 8270BN Solution 14-4

Exp: 4/17/2013 Storage: <= -10 Degrees C Solvent: Methylene Chloride

For Research Use Only

Cyriolill2

Lot #: 158119 - 28021

Rec: 12/18/10 MFR exp. 04/17/13

8270 BN Solution 14-3, 2,000 mg/L, 1 ml

Cat. No: 110392-01 Lot No: 158120

Exp: 4/17/2013

8270BN Solution 14-3

Storage: <= 10 Degrees C Solvent: Methylene Chloride

Lot #: 158120 - 28023

For Research Use Only

Rec: 12/18/10 MFR exp. 04/17/13

exp while

exp colulia

Mobile

8270 Acid Solution 4-6, 2,000 mg/L, 1 ml

8270B Acid Solution 4-6

Cat. No: 110393-01 Lot No: 158121

Exp: 4/17/2013

Storage: </a>-10 Degrees C Solvent: Methylene Chloride

For Research Use Only

Rec: 12/16/10 MFR exp. 04/17/13

Modell

TCL Hazardous Substances Solution 2, 2,000 mg/L, 1 ml

Cat. No: 110394-01

Exp. 4/17/2013

Lot No: 158122

Storage: <= -10 Degrees C

TCL Hzd. Soln. 2

Lot #: 158121 - 28025

Lot #: 158122 - 28018

Solvent: Methylene Chloride

Rec: 12/16/10 MFR exp. 04/17/13

For Research Use Only

Mojula

PAH Solution 17-3, 2,000 mg/L, 1 ml

Cat. No: 116070-02 Lot No: 158123

Exp: 4/17/2013

Solvent: Methylene Chloride

Lot #: 158123 - 28027

Lot #: 158124 - 28029 Rec: 12/18/10 MFR exp. 04/17/13

Rec: 12/16/10 MFR exp. 07/17/13

Storage: <- 10 Degrees C

For Research Use Only

Vhoju/u

8270 Acid Solution 13-4, 2,000 mg/L, 1 ml

Cat. No: 110396-01 Lot No: 158124

Exp: 4/17/2013

Storage: </= -10 Degrees C

Solvent: Methylene Chloride

For Research Use Only

88

VF

**V**-

eep while

exp colulis

Opp while

# GC/MS STANDARD PREPARATION BOOK # 5 PAGE #102

Molulu

8270 BN Solution 4-21, 2,000 mg/L, 1 ml

Cat. No: 110395-01 Lot No: 158125

8270BN Solution 4-21 Lot #: 158125 - 28031

Rec: 12/16/10 MFR exp. 04/17/13

Exp: 4/17/2013

Storage: </= -10 Degrees C

Solvent: Methylene Chloride For Research Use Only

Moulu

8270 11 Compound Custom Mix, 200:2,000 mg/L, 1 ml

Cat. No: 110397-01 Lot No. 158127

8270 11 Compound Mix Loi #: 158127 - 28033

Rec: 12/16/10 MFR exp. 04/12/12

Lot#: 158126 - 28019

Reb: 12/16/10 MFR exp. 04/12/12

Exp: 4/12/2012

Storage: <= 10 Degrees C Solvent: Methylene Chloride

For Research Use Only

K

V

ap 4/12/12

4/4/12/12

Manh

Atrazine Solution, 1,000 mg/L, 1 ml

Cat. No: 010337-01 Lot No: 158126

Exp: 4/12/2012

Storage: </≃ -10 Degrees C

Solvent: Methylene Chloride

For Research Use Only

ikolalu

PREP DATE:	10-11-11			<del>T</del>	·	1
8270C Seac	nd Bource Stoc	Standard		<del> </del>	<del> </del>	
Exp:	04-12-12		· · · · · · · · · · · · · · · · · · ·			
		Conc.		Date	CODE	
Supplier	ID #	μg/mL	Lot #	Code	Exp.Date	μħ
0251	110391-01	2000	158119-28021	10-11-11	04-17-13	1000
02SI	110392-01	2000	158120-28023	10-11-11	04-17-13	1000
22SI	110393-01	2000	158121-28025	10-11-11	04-17-13	1000
2251	110394-01	2000	158122-26018	10-11-11	04-17-13	1000
0281	116070-02	2000	158123-28027	10-11-11	04-17-13	1000
291	110395-01	2000	158125-28031	10-11-11	04-17-13	1000
)2SI	110395-01	2000	158124-28029	10-11-11	04-17-13	1000
251	110397-01	2000	158127-28033	10-11-11	04-12-12	1000
281	010337-01	1000	158126-28019	10-11-11	04-12-12	1000
M Science	MeC12		47185			1000
					Final Vol	1000

Mounth

PREP DATE:	10-11-11							T	T		· · · · · · · · · · · · · · · · · · ·		<del>i</del>
270 STAND	ARD CURVE						<del>-</del> -	<del> </del>	<del> </del>	<del> </del> -		<del> </del>	<del>                                    </del>
Sep:	10-18-11	-	1.		7-7-	5	10	20	40	50	60	80	100
		Conc.		Date				·		1		- <del></del> -	
Supplier	ID #	μg/mL	Lot #	Code	Exp.Date	րև	μL	بالا	uL	μb	μъ.	μL	μL
	8270T Stock	200		07/26/11	01-25-12	5	5	10	20	25	30	40	50
	Surrogate Stock	VAR	167802-29313	08/22/11	08-22-12	5	5	10	20	25	30	40	50
M Science	Mothylene Chlori	de	47186	•		190	90	80	60	50	40	20	0
· · · · · · · · · · · · · · · · · · ·					Final Vol.	200	100	100	100	100	100	100	100

1/4/03/

	10-11-11			1	1	
8270 Secon	d Source (88)	50ug/mL				
	<del>- </del> -					50
. <u> </u>		Conc.		Đate	CODE	4
Supplier	ID 6	μg/mL	Lot #	Code	Exp. Date	μL
	8270C SS	200		10/11/11	04-12-12	25
EM Science	Methylene Chl	oride	47186			75
	. <del> </del>				Final Vol.	100

12 wolden

GCM-150-1 Lot: CH-2137 Exp: 07/31/2013

Semi-Volaties GC/MS Tuning Standard

4 analyte(s) at 1000 µg/mL и dichloromethane

50 juglimb SV TUNE WIN

1 ml of 8 Bicm - 150% opened while with lands Em siènce MC Lot 49000 evo 10/4/18 10/11/12

Malara

Part #: 10001 042910

Laboratory Use Only - See MSDS Exp: 042913 Storage 0 'C

Lot #:

CLP Semi-Volatiles Base/Neutrale Mix #1

14 components 2000 ug/mL in methy

CLP Semi-Votatilas Base/Neutrals Mix #1

Lot#: 042910 - 28440 444

ABSOLUTE STANDARC

Rec: 3/8/11 MFR exp. 4/29/2013

ap collelin

eyp 10/18/12

OKA MI 7/31/12

exp 7/31/12

act 10/18/12

eys while

gip whillie

15 WIRIN

Part #: 10001 Lot #: 042910 Laboratory Use Only - See MSDS

Exp: 042913

Storage 0 'C



CLP Semi-Volatiles Base/Neutrale Mix & Jude 1986 F. 14 components

2000 ug/mL in m ABSOLUTE STANDA

Lot #: 042910 - 29085

Rec: 8/4/11 MFH exp. 04/29/13

mousta

10002 Part #: Lot #:

Laboratory Use Only - See MSDS,

073109 Exp: 073112

Storage 4 °C

CLP Semi-Volatiles Base/Neutrale Mix #2

14 components

CLP Semr-Volatiles Base/Neutrals Mix #2

2000 ug/mL in methyle

Lot#: 073109 - 28446

ABSOLUTE STANDARDS

Rec. 3/8/11 MFR exp. 7/31/2012 St

(RHIS) II

10002 Part #: 073109 Lot #:

Laboratory Use Only - See MSDS Exp: 073112 Storage 4 'C



CLP Semi-Volatiles Base/Neutrale Mix #2

CLP Semi-Volatiles Base Neutrals Mix #2

14 components 2000 ug/mL in met

Lot #: 073109 - 29090

ABSOLUTE STANDAF

Rec: 8/4/11 MFR exp. 07/31/12

Malda

Parl #: Lot #:

10004 101509

Laboratory Use Only - See MSDS

CLP Semi-Volatiles Toxic Substances #1

Exp: 101514

4 components

2000 ug/mL in methyli

CLP Sami-Voratiles Toxic Substances #1

ABSOLUTE STANDARD!

LOL#: 101509-28453 Lin Rec: 3/8/11 MFR exp. 10/15/201

Mals 16

10004

Laboratory Use Only - See MSDS Exp: 101514 Storage 4 'C



Part #:

101509

CLP Semi-Volatiles Toxic Substances #1 CLP Semi-Volatiles Toxic Substances #1

4 components

2000 ug/mL in meti

Lot #: 101509 - 29095

ABSOLUTÉ' STANDAR

Rec: 8/4/11 MFR exp. 10/15/14

Khalka

Part #: 10005 Laboratory Use Only - See MSDS ♥ →



Part #:

Lot #:

061209

Exp: 061214 Storage 4 'C

CLP Semi-Volatiles Torris Substances #2

8 components 2000 ug/mL in methy

CLP Sami-Volatiles Toxic Substances #2 Lot #: 081209 - 28458 Care

ABSOLUTE STANDARD.

Rec: 3/8/11 MER exp. 6/12/2014 31-

Molina

10005 121208

Laboratory Use Only - See MSDS Exp: 121213 Storage 4 'C

8 components

CLP Semi-Volatiles Toxic Substances #2 CLP Semi-Volatiles Toxic Substances #2

2000 ug/mL in met Lot #: 121208 - 29100 ABSOLUTE STANDAR Rec: 8/4/11 MFR exp. 12/12/13

exp 19/18/12

### GCAMS STANDARD PREPARATION BOOK # 5 PAGE # 104

Kidinu

10006 Part #: 120810 Lot #:

Laboratory Use Only - See MSDS EXD: 120813 Storage 4 'C

CLP Semi-Volatiles - Benzidines

2 componenté 2000 ug/mL in methal

CLP Semi-Volatiles - Benzicines

ABSOLUTE STANDARD

Lot #: 120810 - 28462 Cm Rec: 3/8/11 MFR exp. 12/8/2013 BK

Kidish

10006 Part #: Lot #: 071211 Laboratory Use Only - See MSDS Exp: 071214 Storage 4 'C

CLP Semi-Volatiles - Benzidines

2 components Lot #: 071211 - 29105

Rac: 8/4/11 MFR exp. 07/12/14

2000 ug/mL in met

ABSOLUTE STANDAF

\ Problem

10007 Part #:

Laboratory Use Only - See MSDS

100909 Exp: 100914 Lot #:

Storage 4 'C

CLP Semi-Volatiles - PAH Standard

17 componente

CLP Semi-Volatiles - PAH Mix

2000 ug/mL in methy

Lat #: 100909 - 28469 Cm

ABSOLUTE STANDAR

Rec: 3/8/11 MFR exp. 10/9/2014 (3)

Vholisin

10007 Part #: 100909 Laboratory Use Only - See MSDS Storage 4 'C

Lot #:

Exp: 100914 CLP Semi-Volatiles - PAH Standard

CLP Semi-Volatiles - PAH Mix

17 componente 2000 ug/mL in met

Lot #: 100909 - 29110

ABSOLUTE STANDAR

Rec: 8/4/11 MFR exp. 10/09/14

Part #: 073109

10018

Laboratory Use Only - See MSDS

Lot #:

EPA Method 8270A - Analytee Mix #8

Storage 4 'C Exp: 073114

13 components - Pher

CLP Semi-Volatiles Mix #8 - Phenois 3

2000 ug/mL in methyl

Lot#: 073109 - 28410

ABSOLUTE STANDARD

Rec: 3/8/11 MFR exp. 7/31/2014 874

**Leveller** 

ind fin

10018 Part #: 062111 Lot #:

Laboratory Use Only - See MSDS Storage 4 °C Exp: 062116



EPA Method 8270A - Analytes Mix #8

13 components - Ph 2000 ug/mL in meth EPA Method 8270A - Analytes Mix #8

Lot #: 062111 · 29115

ABSOLUTE STANDARI

Rec: 8/4/11 MFR exp. 06/21/16

Vholus

70023 080310 Laboratory Use Only - See MSDS

Lot #:

Part #:

Exp: 080315 Storage 4 'C

Atrazine

Atrazine

1000 ug/mL in aceto ABSOLUTE STANDARL

Lot #: 080310 - 28416 Rec: 3/6/11 MFR exp. 6/13/2015

Storage 4 'C

VEW 188111

Part #: 70023 Lot #: 031611 Laboratory Use Only - See MSDS



Atrazine

Exp: 031616

Lol#: 031611 - 29120

Rec: 8/4/11 MFR exp. 03/16/16 1000 ug/mL in ace ABSOLUTE' STANDADE

exp willship

egg William

eyp wish

eep wish

exp 20/18/12

eep wish

Wwirlin

epp wished

## Organic Extraction Worksheet

Method 8	270 Sonicat Ext. Methyl (GROSS) 3550B	Extractio	n Set   120302/	Extra	ction Method	SON009GROSS Units mL
Spiked ID 1	8270T Spike 02/13/12 BX 07/31/12		Surrogate ID 1	8270 Surroga	te 177982-29476	
Spiked ID 2			Surrogate 1D 2			
Spiked ID 3			Surrogate ID 3		* * * * *	
Spiked ID 4			Surrogate ID 4		•	
Spiked ID 5			Surrogate ID 5			
piked ID 6			Sufficient Vol fo	or Matrix QC:	no	
Spiked ID 7			Bxt. Start Time:			,
piked ID 8			Ext. End Time:		1	- 40.16
			GC Requires By	tract By:	03/05/12 0:00	
	+		pH1			Water Bath Temp Criteria 80 °C
			рН2		e ej e	
•	•		рН3			· ·

Spiked By: DL	54,	Date 03/02/1	2 '		Witness	ed By: G	H		Date 03/02/1	2
Sample	Sample Container	· -	レニ	Surrogate Amount		Extract Amount		рH	Extract Date/Time	Comments
1 120302A Blk		] 		1	•	30.00g B-S5 E-WE	<u> </u>	NA	03/02/12 12:10	
2120302A LCS-1		0.250	1	1	1 equip	30.00g E-S4 E-WB	<u> </u>	NA	03/02/12 12:10	•
3 AY56027	AY56027802			1	1 -	33.44g E-S3 E-WB	·	NA	03/02/12 12:10	67099-3 DAY RUSH 4oz Jar

3-212

Solvent and Lot#	
MC	EMD51306
Na2SO4	2351C512
Acidified Na2SO4	10/31/11
15-ip -	
•	

Extraction COC Transfer	
Extraction lab employee Initials	DRA
GC analyst's initials	
Date	3/2/12
Time	1700
Refrigerator	Hobart

	Technician's Initials
Scanned By	GH
Sample Preparation	GH
Extraction	IC
Concentration	IC

Modified	03/02/12 1:56:35 PM

Reviewed By: DRA

92

Date 03/02/12

03/02/12 1:56:41 PM

Ext_ID

35089

## EPA METHOD 8260B Volatile Organic Compounds



# EPA METHOD 8260B Volatile Organic Compounds AFCEE Forms



## AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8260B AAB #: 120302AS-164529 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID TB-1 AY56026 ARF: 67099 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Date:

Diane Anderson
Project Manager

#### **AFCEE** ORGANIC ANALYSES DATA PACKAGE

AAB #: 120305AN-164483

Analytical Method: EPA 8260B

Date:

Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-SW1 AY56027 ARF: 67099 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Diane Anderson Signature: Project Manager

Title:

Analytical Method: EPA 8260B

260B Preparatory Method:

5030B

AAB #: 120302AS-164529

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: TB-1

Lab Sample ID: AY56026

Matrix: Water

% Solids: NA

Initial Calibration ID: S120229

7111

Date Prepared: 02-Mar-12

Date Analyzed: 02-Mar-12

Date Received: 01-Mar-12 Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.09	0.5	0.09	1:		U
1,1,1-TCA	0.03	0.8	0.03	1		Ū
1,1,2,2-TETRACHLOROETHANE	0.07	0.4	0.07	1		U
1,1,2-TCA	0.06	1.0	0.06	1	· · · · · · · · · · · · · · · · · · ·	Ü
1,1-DCA	0.07	0.4	0.07	1		U
1,1-DCE	0.12	1.2	0.12	1		U
1,1-DICHLOROPROPENE	0.10	1.0	0.10	1		Ū
1,2,3-TRICHLOROBENZENE	0.24	0.3	0.24	1		U
1,2,3-TRICHLOROPROPANE	0.17	3.2	0.17	1		Ŭ
1,2,4-TRICHLOROBENZENE	0.16	0.4	0.16	1	-	U
1,2,4-TRIMETHYLBENZENE	0.04	1.3	0.04	1		U
1,2-DCA	0.05	0.6	0.05	1		U
1,2-DCB	0.02	0.3	0.02	1		U
1,2-DIBROMO-3-CHLOROPROPANE	0.76	2.6	0.76	1		Ü
1,2-DICHLOROPROPANE	0.06	0.4	0.06	1		U
1,2-EDB	0.06	0.6	0.06	1		Ū
1,3,5-TRIMETHYLBENZENE	0.04	0.5	0.04	1		U
1,3-DCB	0.03	1,2	0.03	1		<u>U</u>
1,3-DICHLOROPROPANE	0.05	0.4	0.05	1	•	- u
1,4-DCB	0.07	0.3	0.07	1		U
1-CHLOROHEXANE	0.04	0.5	0.04	1		U
2,2-DICHLOROPROPANE	0.10	3.5	0.10	1		U
2-CHLOROTOLUENE	0.04	0.4	0.04	1		<u></u>
4-CHLOROTOLUENE	0.04	0.6	0.04	1		Ū
BENZENE	0.07	0.4	0.07	1		U
BROMOBENZENE	0.06	0.3	0.06	1		Ū
BROMOCHLOROMETHANE	0.11	0.4	0.11	1	· ·	<u>_</u>
BROMODICHLOROMETHANE	0.06	0.8	0.06	1		U
BROMOFORM	0.13	1.2	0.13	1		U
BROMOMETHANE	0.08	1.1	0.08	1		U
CARBON TETRACHLORIDE	0.06	2,1	0.06	1		U
CHLOROBENZENE	0.04	0.4	0.04	1	†	T.
CHLOROETHANE	0.07	1.0	0.07	1		11
CHLOROFORM	0.06	0.3	0.06	1		D
CHLOROMETHANE	0.16	1.3	0.16	1		U

Comments:	Comments	:
-----------	----------	---

ARF: 67099

Analytical Method: EPA 8260B

Preparatory Method: 5030B

AAB #: 120302AS-164529

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: TB-1

Lab Sample ID: AY56026

Matrix: Water

% Solids: NA

Initial Calibration ID: S120229

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 02-Mar-12

Concentration Units: ug/L

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.07	1.2	0.07	1		ΰ
CIS-1,3-DICHLOROPROPENE	0.03	1.0	0.03	1		ΰ
DIBROMOCHLOROMETHANE	0.06	0.5	0.06	i		υ
DIBROMOMETHANE	0.06	2.4	0.06	1		U
DICHLORODIFLUOROMETHANE	0.11	1.0	0.11	1	•	U
ETHYLBENZENE	0.05	0.6	0.05	1		U
HEXACHLOROBUTADIENE	0.17	1.1	0.17	1	. •	U
ISOPROPYLBENZENE	0.04	0.5	0.04	1		U
M&P-XYLENE	0.07	0.5	0.07	1		U
METHYLENE CHLORIDE	0.35	1.0	0.35	1		U
N-BUTYLBENZENE	0.17	1.1	0.17	1		U
N-PROPYLBENZENE	0.03	0.4	0.03	1		U
NAPHTHALENE	0.07	0.4	0.07	1		U
O-XYLENE	0.06	1,1	0.06	1		U
P-ISOPROPYLTOLUENE	0.05	1.2	0.05	1	•	U
SEC-BUTYLBENZENE	0.05	1.3	0.05	1		U
STYRENE	0.08	0.4	0.08	1		Ŭ
TCE	0.05	1.0	0.05	1		U
TERT-BUTYLBENZENE	0.04	1.4	0.04	1		U
TETRACHLOROETHENE	0.06	1.4	0.06	1	···	U
TOLUENE	0.06	1.1	0.06	1		Ü
TRANS-1,2-DCE	0.08	0.6	0.08	1		U
TRANS-1,3-DICHLOROPROPENE	0.04	1.0	0.04	1		U
TRICHLOROFLUOROMETHANE	0.07	0.8	0.07	1		U
VINYL CHLORIDE	0.08	1.1	0.08	1		υ

Surrogate Recovery **Control Limits** Qualifier SURROGATE: 1,2-DICHLOROETHANE-97.9 69-139 SURROGATE: 4-BROMOFLUOROBENZE 94.8 75-125 SURROGATE: DIBROMOFLUOROMETH 95.9 75-125 SURROGATE: TOLUENE-D8 (S) 96.1 **75-125** 

70.7	
Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:		
ARF: 67099		

Analytical Method: EPA 8260B

Preparatory Method:

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

5035

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: N120305

Date Received: 01-Mar-12

Date Prepared: 05-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,1,1,2-TETRACHLOROETHANE	0.0008	0.003	0.0008	1		U
1,1,1-TCA	0.0009	0.004	0.0009	1		U
1,1,2,2-TETRACHLOROETHANE	0.0009	0.002	0.0009	1		Ü
1,1,2-TCA	0.0009	0.005	0.0009	1		Ū
1,1-DCA	0.0010	0.002	0.0010	1		U
1,1-DCE	0.0011	0.006	0.0011	1		U
1,1-DICHLOROPROPENE	0.0012	0.005	0.0012	1		U
1,2,3-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,3-TRICHLOROPROPANE	0.001	0.020	0.001	1		U
1,2,4-TRICHLOROBENZENE	0.0010	0.004	0.0010	1		U
1,2,4-TRIMETHYLBENZENE	0.0011	0.007	0.0011	1		U
1,2-DCA	0.0010	0.003	0.0010	1		U
1,2-DCB	0.0010	0.002	0.0010	1		Ŭ
1,2-DIBROMO-3-CHLOROPROPANE	0.002	0.010	0.002	1		U
1,2-DICHLOROPROPANE	0.0007	0.002	0.0007			U
1,2-EDB	0.0013	0.003	0.0013	1		U
1,3,5-TRIMETHYLBENZENE	0.0011	0.003	0.0011	1		Ū
1,3-DCB	0.0011	0.006	0.0011	1	· <del>-</del>	Ū
1,3-DICHLOROPROPANE	0.0007	0.002	0.0007	1		U
1,4-DCB	0.0008	0.002	0.0008	1		U
1-CHLOROHEXANE	0.0009	0.003	0.0009	1		U
2,2-DICHLOROPROPANE	0.001	0.020	0.001	1		U
2-CHLOROTOLUENE	0.0013	0.002	0.0013	i		U
4-CHLOROTOLUENE	0.0011	0.003	0.0011	1		U
BENZENE	0.0009	0.002	0.0009	1		Ü
BROMOBENZENE	0.0009	0.002	0.0009	1		U
BROMOCHLOROMETHANE	8000.0	0.002	0.0008	1		U
BROMODICHLOROMETHANE	0.0009	0.004	0.0009	t		U
BROMOFORM	0.0011	0.006	0.0011	1		U
BROMOMETHANE	0.0007	0.005	0.0007	1		Ü
CARBON TETRACHLORIDE	0.001	0.010	0.001	1		
CHLOROBENZENE	0.0007	0.002	0.0007	1		U
CHLOROETHANE	0.0015	0.005	0.0015	1		U
CHLOROFORM	0.0007	0.002	0.0007	1	·	U
CHLOROMETHANE	0.0015	0.007	0.0015	1		U

Comments	3:
----------	----

ARF: 67099

Analytical Method: EPA 8260B

OB Preparatory Method:

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

5035

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: N120305

Date Received: 01-Mar-12

Date Prepared: 05-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
CIS-1,2-DCE	0.0008	0.006	0.0008	ĩ		Ţ
CIS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		ŧ
DIBROMOCHLOROMETHANE	0.0009	_0.003	0.0009	1		ί
DIBROMOMETHANE	0.001	0.010	0.001	1		Ţ
DICHLORODIFLUOROMETHANE	0.0018	0.005	0.0018	1		Ţ
ETHYLBENZENE	0.0010	0.003	0.0010	1		ī
HEXACHLOROBUTADIENE	0.0011	0.005	0.0011	1		Ţ
ISOPROPYLBENZENE	0.0010	0.008	0.0010	1		ι
M&P-XYLENE	0.0018	0.007	0.0018	1		Į.
METHYLENE CHLORIDE	0.0013	0.005	0.0013	1		U
N-BUTYLBENZENE	0.0010	0.005	0.0010	1		τ
N-PROPYLBENZENE	0.0012	0.002	0.0012	1		τ
NAPHTHALENE	0.0010	0.020	0.0010	1		U
O-XYLENE	0.0007	0.005	0.0007	1		U
P-ISOPROPYLTOLUENE	0.0012	0.006	0.0012	1		U
SEC-BUTYLBENZENE	0.0011	0.007	0.0011	1		U
STYRENE	0.0009	0.002	0.0009	1		U
TCE	0.0012	0.010	0.0012	1		U
TERT-BUTYLBENZENE	0.0012	0.007	0.0012	1		υ
TETRACHLOROETHENE	0.0008	0.007	0.0008	1		U
TOLUENE	0.0010	0.005	0.0010	1		Ü
TRANS-1,2-DCE	0.0008	0.003	0.0008	1		Ü
TRANS-1,3-DICHLOROPROPENE	0.0009	0.005	0.0009	1		U
TRICHLOROFLUOROMETHANE	0.0013	0.004	0.0013	1		U
VINYL CHLORIDE	0.0013	0.009	0.0013	1		Ü
C		7		. 1	1 0 110	···

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	97.7	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	95.4	65-135	
SURROGATE: DIBROMOFLUOROMETH	94.2	65-135	
SURROGATE: TOLUENE-D8 (S)	109	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

ARF: 67099

#### AFCEE ORGANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

AFCEB FORM Q-3A Page ____ of ____

Anaty	tical Method:	метно	D 8260			_			AAB#	: 120302AS-164	529			-				
	Lab Name:	APPI, Ir	ic.			_			Contract #	*G012								
Ir	strument ID:	Sweetpea	ı			_	Date	of Initial	Calibration	29-Peb-12		· · · · · ·						
Initial Co	alibration ID:	<u>\$120229</u>				Conce	ntration U	niu (ug/L	ormg/kg):	ug/I.				-				
Analyte	Std	ŘF 1	84d 2	RF 2	Std 1	RP	Std	RJF 4	Std 5	RF S	S:4 6	RF 6	81d 7	RF	Std	RF 8	Std 9	RF 9
Chloromethane *	5.0	0.478	0.5	0.601	1.0	0.502	40,0	0.475	200.0	,	10.0	0.489	100.0	<del></del> -	0.3		,,,	<del></del> -
Vínyl chloride #	5.0	0.363	0.5	0.521	1.0	0.340	40.0	0.488	200.0		10.0	0.380	100.0	0.401	0.3	0.33		
1,1-DCR#	5.0	0.615	0.5	0.681	1.0	0.746	40.0	0.784	200.0	0.808	10.0	0.679	100.0	0.743	0.3	0.765		<b> </b>
1,1-DCA *	5.0	1.365	0.5	1.638	1.0	1.523	40,0	1.525	200.0	1,554	10.0	1.410	100.0	1.443	0.3	1.594		
Chloroform#	5.0	1.204	0.5	1.916	1.0	1.365	40.0	1.361	200.0	1.378	10.0	1.241	100.0	1,298	0.3	1.565		
1,2-Dichloropropane#	5,0	0.743	0.5	0.753	1.0	0.743	40.0	0.786	200.0	0.777	10.0	0.740	100,0	0.728	0.3	0.756		
Toluene #	5.0	2.869	0.5	3.268	1.0	3.020	40.0	3.279	200.0	3.488	10.0	2.996	100.0	3.369	0.3	3.228		
Chlorobenzene *	5.0	2.876	0.5	3.003	1.0	2.728	40.0	2.877	200.0	2.926	10.0	2.718	100.0	2.804	0.3	2.598		
Ethylbenzene#	5,0	4.520	0.5	4.544	1.0	4.817	40.0	4.944	200.0	5.315	10,0	4.746	100.0	6.317	0.3	4.934		
Bromoform *	5.0	0.413	0.5	0.438	1.0	0.399	40.0	0.459	200.0	0.426	10.0	0.420	100.0	0.43	0.3	0.303		
1,1,2,2-Tetrachloroethane *	5.0	0.680	0.5	0.766	1,0	0.753	40.0	0.704	200.0	0.523	10.0	0.711	100.0	0.685	0,3	0.719		
											<u></u>							
						<u> </u>												
* SPCCs	# CCCs																	
Commen	ıts:																	

#### AFCEE ORGANIC ANALYSES DATA SHEET JA INITIAL MULTIFOINT CALIBRATION-GC/MS ANALYSIS

		Contract #: *G012				<u> </u>
		Date of Initial Calibration: 29-Feb-12				
		Co	ncentration	Units (ug/I	or mg/kg): ug/L	
<u>.</u>						
Analyte	I	mean WRSD	ľ	COD	Q "	
nkoromethane *				╁		
				<del> </del>		
				<del>                                     </del>		
Jorobenzene *	4.9					
1,2,2-TCA *	10,8	-		<del> </del>		
1-DCE#	8.8			1		
alexoform:#	16.2					
2-DCP#	2.6					
luene #	6.4					
	6.2					
nyl chloride#	18.7					
			_			
	1,2,2-TCA * 1-DCE # alxroform # 2-DCP #	RSD	Analyte	Concentration	Concentration Units (ug/L   Analyse	Concentration Units (ug/L or mg/kg): ug/L

#### AFCEE ORGANIC ANALYSES DATA SHEET JA INITIAL MULTIPOINT CALIBRATION-GCMS ANALYSIS

Analytical Method: METHOD 8260B							AAB #: 120305AN-164483									
1	Lab Name:	APPL, b	ic.		<b>.</b>	_		c	Contract #:	•G012						
Instrument ID: Neo							Date of Initial Calibration: 5 Mar 12									
Initiat Calibration ID: N120305					Concent	ration Uni	ls (ug∕L o	or mg/kg):	mg/kg							
Analyte	Sid	RF 1	S1J 2	RF 2	Std.	RF 3	S13	RF 4	Sid 5	RF 5	S14 6	RF 6	Sid 7	RF 7	8 247	RF 8
Chloremethane *	0.005	2.460	0.002	2.520	0.020	1.937	0.100	1,666	0.050	1.641	0.200	1.554	0.010	1.987	<u> </u>	·
Vinyl chloride#	0.005	0.479	0.002	0.295	0.020	0.385	0.100	0.368	0.050	0.321	0.200	0.335	0.010	0.432		
t,1-DCE#	0,005	0.738	0.002	0.606	0.020	0.739	0.100	0.697	0.050	0.590	0,200	0.664	0.010	0.723		-
I,I-DCA *	0.005	2.148	0.002	1.957	0.020	1.910	0.100	1.928	0.050	1.887	0,200	1.797	0.010	1,92		
Chloroform #	0.005	1.874	0.002	1.790	0,020	1.627	0.100	1.736	0.050	1.690	0.200	1.545	0.010	1.65		
1,2-Dichioropropane#	0.005	1.226	0.002	1.162	0.020	1,110	0.100	1.157	0.050	1.138	0.200	1.014	0.010	1.02		
Foluene#	0.005	3.759	0.002	3.896	0.020	3.435	0.100	3.455	0.050	3.531	0.200	3,191	0.010	3.385		
Chtorobenzeno *	0.005	3.380	0.002	3.262	0.020	3,111	0.100	2.993	0.050	3.122	0.200	3.092	0.010	3.038		
Ethylbenzene #	0.005	6.459	0.002	5.492	0.020	5.687	0.100	5.584	0.050	5.404	0.200	5.834	0.010	5.623		
Bromoform *	0.005	0.873	0.002	0.857	0.020	0.773	0.100	0.798	0.050	0.781	0.200	0.803	0.010	0.717		
,1,2,2-Tetrachloroethane •	0.005	3.791	0.002	4.007	0.020	3.105	0.100	3.132	0.050	3.474	0.200	3.271	0.010	3.044		
SPCCs	# CCCs															
Comments:				AVC FF 1		3A Page										

# AFCEE OROANIC ANALYSES DATA SHEET 3A INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Lab Name: APPL, Inc.	<del></del>		_	Contract #: *G012						
Instrument ID: Neo				Da	te of Initial (	Calibration:	5 Mar 12			
Initial Calibration ID: N120305			<u> </u>			. or mg/kg): <u>r</u>				
	Analyte	%	mean	· ·	COD	Q				
		GZR	%RSD							
	Chloromethane *	20.8		0.9995						
	1,1-DCA *	5.5								
	Bromoform *	6.6								
	Chlorobenzene *	4.3								
	1,1,2,2-TCA *	10.9								
	1,1-DCE#	9.1								
	Chloroform#	6.4								
	1,2-DCP #	6.9								
	Toluene#	6.7				1				
	Ethylbenzene#	6.1								
	Vinyl chloride #	17.3								
Cs # CCCs	<del></del>									
Comments:										
<del></del>										

#### APCHE ORGANIC ANALYSIS DATA SHEET 3 DITIAL MILLTPONT CALDIRATION-GCAIS ANALYSIS

Arabited Method: MBTHOD 8260	AAB #: 120302AS-164529
Lab Name: APPL, Inc.	Crotract F: *G012
Instrument ID: Sweetpea	Date of Initial Calibratico: 29-Feb-12
hitial Calibratico ID: \$120229	Concentration Units food, or makely usil.

Analyse	Svi	II.	\$1.	RF 2	51J	RF 1	SM	RF.	r/z	RF (	SN	RF 4	SM 1	ar •	2/	NF	Sid	P.F
1,1,1,2-Tetrachkroethane	5.0	0.940	0.5	0.923	1.0	0.604	40.0	0.985	200.0	0.976	10.0	0.955	100.0	0.982	0.3	0.816	+ "	<del>  '</del>
I,I,I-TCA	5.0	0.989	0.5	1.153	1.0	1.131	40.0	1.571	200.0	1.213	10.0	1.037	100.0	1.137	0.3	1.099	1	<del>                                     </del>
I,I,2-TCA	5.0	0.363	0.5	0.461	1.0	0.430	40.0	0.369	200.0	0.359	10.0	0.856	100.0	0.344	0.3	0.334	· · · · ·	
I ₄ I-Dichkropropose	5.0	0.927	0.5	1.087	1.0	1,078	40.0	1,129	200.0	1.168	10.0	0.993	100.0	1,104	0.3	1.039	<del> </del>	-
1,2,3-Trichlorobenzene	5.0	1.683	0.5	1.639	1.0	1.850	40.0	1.905	200.0	1.854	10.0	1.764	100.0	1.845	0.3	2.115	<del> </del>	_
1,2,3-Trichloropopane	5.0	0.255	0.5	0.211	1.0	0.326	40.0	0.256	200.0	0.222	10.0	0.237	100.0	0.241	0.3		<del> </del>	<del>                                     </del>
1,2,4-Trichlorobenzene	5.0	1.938	0.5	2.004	1.0	2.195	40.0	2,183	200.0	2,191	10.0	2,135	100.0	2.174	0.3	1.723	<del> </del>	<del>                                     </del>
1,2,4-Trimethylbensene	5.0	6,412	0.5	8.528	1.0	7.158	40.0	7.317	200.0	7.865	10.0	6.762	100.0	7.613	0.3	8.007	1	<del>                                     </del>
I,2-DCA	5.0	0.595	0.5	0.745	1.0	0.664	40.0	0.833	200.0	0.642	10.0	0.816	100.0	0.592	0.3	0.716	†	<del></del>
1,2-DCB	5.0	3,458	0.5	3.171	1.0	3,505	40.0	3,841	200.0	3.599	10.0	3,500	100.0	3.541	0.3	3.319	!	<del> </del> -
1,2-Dibromo-3-chleropropane	5.0	0.158	0.5	0.193	1.0	0.185	40.0	0.124	200.0	0.192	10.0	0.203	100.0	0.194	0.3		<del>                                     </del>	<del> </del>
1,2-EDB	5.0	0.571	0.5	0.592	1.0	0.524	49.0	0.553	200.0	0,585	10.0	0.555	100.0	0.507	0.3	0.685	_	<del> </del>
1,3,5-Trimetholbenzene	5.0	6.471	0.5	7.166	1.0	7.439	40.0	7.228	200.0	7.675	10.0	0.907	100.0	7.598	0.3	7.010	_	<del> </del>
LJ4XB	5.0	4.063	0.5	3.999	1.0	4.377	40.0	4.243	200.0	4.287	10.0	4.231	100.0	4.332	0.3	4.347	-	+
1,) Dichlorogrepane	5.0	0.995	0.5	1.092	1.0	0.895	40.0	1.017	200.0	0.990	10.0	0.950	100.0	0.075	0.3	0.976	-	+
I,4-DCB	5.0	4.083	0.5	4.326	1.0	4.239	40.0	4.131	200.0	4 221	10.0	3.073	100.0	4.148	0.3	4.129	<del> </del>	<del>                                     </del>
I-Chlorohexane	5.0	1.283	0.5	1,434	1.0	1.548	40,0	1.519	200.0	1,639	10.0	1.446	100.0	1,644	_		<del> </del>	<del>                                     </del>
2,2-Dichierepropane	5,0	0.917	0.5	1.145	1.0	1.103	40.0	1.047	200.0	0.993	10.0	0.982	100.0	1.023	0.3	1.486	<del></del>	
2-Chlorotoluene	5.0	8.754	0.5		1.0	7.408	•			<del></del>	_				0.3	0.923		
1-Chlorotolyene	5.0	5.908	0.5	7.348 6.483	1.0	8.021	40.0	7.221 6.233	200.0	7.623 6.397	10.0	8.715	100.0	7.783	0.3	7.158		<del> </del>
Acetroe	5,0	0.016	0.5	0.400	1.0	6.021						8.014	100.0	6,451	0.3	5.649		<b>!</b>
			_				40,0	0,619	200.0	0.020	10.0	0.018	100.0	0.019	0.3			<u> </u>
Benzene	5.0	3 266	0.5	3.655	1.0	3,618	40.0	3.574	200.0	3,640	10.0	3.338	0,001	3.486	0.1	3,669	<b></b>	Ь
Bremobenzene	5.0	2.215	0.5	2.405	1.0	2.132	40.0	2.328	200.0	2 226	10.0	2 241	100,0	2.236	0.3	2.430		Ь—
Bremochloromethane	5.0	0.290	0.5	0.330	1.0	0.306	40,0	0.271	200.0	0.270	10.0	0.283	100.0	0.258	0.3	0.435		
Bremodichkreguethane	5.0	0.814	0.5	0.940	1.0	0.601	40.0	0.928	200.0	0.915	_10.0	0.884	100.0	0,552	0.3	0.955	<b></b> _	
Bromomethane	5.0	0.170	0.5	0.177	1.0	0.135	40.0	0.212	200.0		10.0	0,198	100,0		0.3	0.134	<b> </b> _	<u> </u>
Carbon Tetrachloride	5,0	0.751	0.5	0.817	1.0	0.763	40.0	0.951	200.0	1.014	10.0	0.881	100,0	0.953	0.3	0.803		
Chleroethane	5.0	0.814	0.5	0.487	1.0	0.550	40.0	0.653	200.0	0.648	10.0	0.635	100,0	0.499	0.3	0.669		
Cis-I,1-DCB	5.0	0.851	0.5	0.681	1.0	0.894	40.0	0.937	200.0	0.949	ID.O	0.837	160,0	0.876	0.3	0.868		
Cis-1,3-Dichlorreropeus	5,0	0.970	0.5	1,156	1.0	1.138	40.0	1.1D7	200.0	1.103	10.0	1.075	100.0	1.054	0.1	1.250		
Dibromochioromethane	5,0	0.752	0.5	0.765	1.0	0.533	40.0	0.803	200.0	0.775	10.0	0.809	100,0	0,780	0.3	0.822		L
Directorenethane	5.0	0.338	0.5	0.372	1.0	0.301	40,0	0.340	200.0	0.304	10.0	0.324	100,0	0.319	0.3	0.269		
Dichlerodiffuoromethane	5.0	0.341	0.5	0.313	1.0	0.417	40.0	0.434	200.0		10.0	0.373	100.0	0.319	0.3			·
ilesachlorobutsdiens	5.0	0.600	0.5	0.423	1.0	0.443	40.0	0.541	200.0	0.699	10.0	0.558	100,0	0,580	0.3	0.687		
<u>kopropylbenzene</u>	5.0	8,009	0.5	6,431	1.0	9.167	40,0	9.095	200.0	7.416	10.0	8.300	100,0	9.578	0.3	6,290		
n&p-Xylene	5.0	1.910	0.5	1.044	1.0	1.933	40.0	2,054	200.0	2.057	10.0	1.943	100,0	1.934	0.3			
Methylene elderide	50	0.656	0.5	0,658	1.0	0.861	40.0	0.786	200.0	0.770	10.0	0.732	100.0	0.731	0.3			
Methyl (-bulyl ether (ASTBB)	5.0	1.061	0.5	1.181	1.0	1.041	40.0	1,145	200.0	1,082	10.0	1.085	100,0	1.084	C.J	1.176		
SIEK (2-Butanone)	5.0	0.203	0.5	0.283	1.0	0.210	40.0	0.241	200.0	0.231	10.0	0.240	100.0	0.243	0.3			
n-Bulylbenzene	5.0	5.650	0.5	6.801	1.0	6.125	40.0	6 877	200.0	7.717	10.0	6.367	100.0	7.511	0.3	6,659		
-Propylbenzene	5.0	9.426	0.5	10.316	1,0	11.169	40.0	11.043	207.0	12.038	10.0	10.083	100.0	11.681	0.3	10.202		i .
Vaphihalene	5.0	1.028	0.5	1.194	1,0	1.028	40.0	1.297	200.0	1.344	10.0	1.093	100.0	1.264	0.3	0.785		_
-Xylena	5.0	1,877	0.5	1.881	1,0	1,768	40.0	1.985	200.0	1.066	10,0	1.928	100.0	1.855	0.3	1.984		
- Isoprepyltoluene	5.0	7,105	0.5	7.769	1,0	8.005	40.0	830.6	200.0	8.691	10.0	7.701	100,0	6.738	0.3	7.232		
ice-Butylbenzena	5.0	8.814	0.5	9.659	1.0	9,669	40.0	10,109	200.0	10.827	10.0	9,403	100.0	10,497	0.3	9,236		
Styrena	5.0	3.036	0.5	3.241	1.0	2.747	40.0	3.190	200.0	3.200	10.0	2.999	100.0	3.097	0.3	2.794		
ice	5.0	0.719	0.5	1.007	1.0	0.868	40.0	0.552	200.0	0.832	10.0	0.750	100.0	0.605	0.3	0.957		
Cert-Bulylbenzese	5.0	8,872	0.5	7.739	1.0	7.705	40.0	7.840	200.0	7.898	t0.0	7.177	100.0	7.920	0.3	7.323		
l'etrachloroetheoe	5.0	1.077	0.5	1.173	1.0	1.172	40.0	1.232	200.0	1.277	10.0	1.134	100.0	1,230	0.3	1.473		
Trans-1,2-DCE	5.0	0.804	0.5	0.868	1,0	0.888	49.0	0.927	200.0	0.019	10.0	0.838	100.0	0.884	0.3	0.918		· · · · · ·
Trans-1,3-Dichloropopene	5.0	0.655	0.5	0.747	1.0	0.698	40.0	0.753	200.0	0.770	10,0	0.727	100.0	0.743	0.3	0.577		
Tricklorofhoromethane	5.0	1,071	0.5	0.045	1.0	1,138	40.0	1,108	200.0	1.158	10,0	1,048	100.0	0.855	0.3	0.377		
,2-DCA-D4(S)	5.0	0.525	0.5	0.542	1,0	0.542	40.0	0.624	200.0	0.525	10.0	0.548	100.0					
Bromofloorobenzene(S)	5.0	1.142	0.5	1.930	1.0	1,519	40.0	1.137	200.0	1.154	10.0		100.0	0.601	0.3	0.448		
Pitromofluorymethane(8)	5.0	0.721	0.5	0.760	1.0							1,193		3.177	03	1.144		
olone-D\$(8)	5.0	3,441	0.5	3.631	1.0	0.785 3.193	40.0 40.0	0.752	200.0	0.765 3.798	10.0	0.768	100.0	0.743	0.3	0.721		
13(0)	<del>1 20</del>	0.741	0.5	3.031	1//	2.183	90.0	3,530	203.0	3.798	10.0	3.743	100.0	3,961	0.3	3.109		

Crosmoots:	<u> </u>	 	

#### APCEB ORDANC ANALYSIS DATA SHEET J DATAL MILITHORNY CALIBRATION-OCAIS ANALYSIS

Analytical Method: METHOD 8260	AAB #: 120302AS-164529
Lab Name APPL, Inc.	Chatract #: *G012
hastramora I IO: Swortpea	Date of failed Cultivation: 29-Feb-12
lužási Calibratica ID: <u>5120229</u>	Concentration blake (mgt or mg/kg): mgt

Analyte	KSD	MRSO	'	COD	Q
1,1,1,2-Tetrach (recthanc	7.7	1	-	<del>                                     </del>	<del>                                     </del>
F _i U,I-TCA	6.5	_		·	<del></del>
L.L.2-TCA	12		<del> </del>	<del>                                     </del>	<del></del>
J, t-Dichlerograpene	7.2	-	<del></del>	<del>                                     </del>	
1,2,3-Trich crobenzene	8.9	-	· · ·	<del>                                     </del>	-
1,2,3-Trickkropropase	1 13	-	_	1	
1,2,4-Trichlemorazene	6.2	<del></del>	-	┼──	
1,2,4-Trimethy/benzene	67	-	<del> </del>	<del>                                     </del>	
1,7-DCA	8.5		<del>-</del>	-	+
1.2-DCB	43	_	<del></del>		+
1,2-Dimmo-3-chicrogrogens		<del></del>		—	-
1.2-EDB	7.6		<u> </u>		
	8.0	<u> </u>		<u> </u>	<del> </del>
1,3,5-Trimethylicumes	5.5	<b>—</b>			<u> </u>
13-006	3.4				
1,3-Dichloreprogane	5.5			<u></u>	
1,4-008	7.6			L	
I-Chlorebause	8.5				
2,2-Dichleroprepase	1.9		-		
2-Chirotebase	5.2				1 -
4-Chicrotobene	41				1
Acricce	10				-
Benzene	5.3				
Bromobensine	5.0				
Bremochioremethane	19		1.0000		_
Seemoticklycouthing	6.7				
Bromomethage	18		0.9990		_
Curton Tetrachicode	l. ii		03370		
Chircoethrae	12				
Cis-1,7-DCE	1 44	-			·
Cis-1,3-Dicklerroropers	7,4	_			ļ
Directionethine	1 12	_			ļ. —
Discognosase	9.6				<u> </u>
Dick bredificorementants	32				
Heracklyrobotatiese					
	15	_		<u> </u>	<b>↓</b>
Isroropy Beazana	8.2				
md p-Xylene	3.1				
Mothykus chhyide	8.5				
Methyl Honyl educ (MTBE)	5.0			<u> </u>	
MEK (2-Belascoe)	11				
в-Висубскагов	10				
n-Propyfronzos	8.5				
Naphthalene	16		0.5980		1
o-Xykoe	3.9				$\overline{}$
p-Isogropy hobene	8.0				
Sec-Buty beauting	6.8				-
Styrope	6.1				$\overline{}$
TCB	11				_
Test-Suby Benning	3.1				<del></del> -
Tetrachiccocthene	9.7				
Zrus-1,2-DCE	10		_		
Trans-I 3-Dichloropropene	8.6	$\overline{}$	_	···	<del></del>
Trichlorothoroxethrae	100				
1,2-DCA-D4(S)	6.2				
4-BromoDocrobenzene(S)	5.2			· · · · · · · · · · · · · · · · · · ·	<u> </u>
DibromoOurconschang(S)	3.0				
	J.0		- 1		ı
Tolome-DS(5)	8.4				

(coments:		
	 	=
	 	_

# AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GCAIS ANALYSIS

Analytical Muhod: AGTHOD 12608	AAB#: 120J05AN-1644B3	
Lab Name: APPL, Inc.	Contract #: *G012	
lastrument ID; Noo	Date of Initial Calibration: 5 Mar 12	
nitial Calibration ID: 1120305	Concentration Units (us/L or me/ke); me/ke	

Analyte	SM	RF	Sid	RF	513	RF	51	RF	511	NF.	Suf	14	514	RF	\$14	RF
	+	+ +	2	2	. 3	3	. 1	4	3	5	6	. 6	7	7		1
1,1,1,2-Tetrechloroethane	0.005	1.216	0.002	1.231	0.020	1.115	0.100	1.117	0.050	1.106	0,200	1.116	0.010	1.105	<u> </u>	
I,I,I-TCA I,I,2-TCA	0.005	1.388	0.002	1.071	0.020	1.209	0.100	1.268	0,050	1.156	0.200	1,196	0.010	1.292	L	
		0.669	0.002	0.842	0.020	0.613	0.100	0.624	0.050	0.630	0.200	0.552	0.010	0.568	<u> </u>	
1,1-Dichloropeopene	0.005	1.323	0.002	1.073	0.020	1.209	0,100	1.190	0.050	1.044	0.200	1.130	0.010	1.256		<b>!</b>
1,2,3-Trichlorobenzene	0.003	3,238	0.002	3.986	0.020	2,360	0.100	2.403	0.050	2.640	0.200	2,400	0.010	2.343		İ
1,2,3-Trichforopropane 1,2,4-Trichforobenzene	0.005	0.884	0.002	1.003	0,020	0.636	0.100	0.709	0.050	0.778	0.200	0.723	0.010	0.714		L
1,2,4-Trimethylberrene	0.005	3.603 10.791	0.002	3.656	0.020	2.701	0.100	2.668	0.050	2.945	0.200	2.693	0.010	2.781		
I,2-DCA	$\overline{}$		0.002	10.395	0.020	9.373	0.100	9.011	0,050	10.090	0.200	9.554	0.010	8.898		
I,2-DCB	0.003	1.443 5.117	0.002	1.314	0.020	1.189	0,100	1.290	0.050	1.263	0.200	1.151	0.010	1.247		L
1,2-Dibromo-3-chloropropane	0.003	0.435	0.002	6.282 0.420	0.020	4.162	0.100	4.234	0.050	4.905	0.200	4.400	0.010	4.100		
1,2-EDB	0.005	1.238	0.002	1.134	0.020	0.358	0.100	0.385	0.050	0.460	0.200	0.411	0.010	0.317		
1,3,5-Trimethylbenzone	0.005	10,741	0.002	9,882	0.020	1.098 9.173	0.100	1.087	0,050	1.064	0.200	1,141	0.010	1.097		
1,3-DCB	0.005	6.765	0.002	5.224	0.020	4.765	0.100	9.027	0.050	9.743	0.200	9.457	0.010	8.723		
1,3-Dichleropropane	0.005	2.175	0.002	1.961	0.020	1.990	0.100	4.522	0.050	5.979	0.200	4.738	0.010	4.763		
I,4-DCB	0.005	5,766	0.002	8,267	0.020	4,728	0.100	1.942	0.050	1.799	0.200	1,966	0.010	1.883		<u> </u>
I-Chlorohexane	0.005	1.818	0.002	1.438	0.020	_		4.438	0.050	4.847	0,200	4.616	0.010	4.860		<b></b>
2,2-Dichloropeopang	0.005	1.526	0.002	1.438	0.020	1.829	0.100	1.564	0.050	1,454	0.200	1.889	0.010	1.729	_	<b>—</b>
2-Chlorotohuene	0.005	11.747	0.002	11.982	0.020	1.333 9.914	0.100	1.333 9.746	0.050	1.2(4	0.200	1.230	0.010	1.292		<u> </u>
4-Chforotofuene	0,005	10.596	0.002	10.290	0.020	_					0.200	9.996	0.010	9.367		
Acetone	0.005	0.737	0.002	1.343	0,020	8.704 0.490	0.100	8.083	0.050	9.586	0.200	8.610	0.010	8.729		
Bénzéné	0.005	4.283	0.002	3.924	0.020	3.602	0.100	0.321 3.685	0.050	0.345	0.200	0.280	0.010	0.571		
Bromobenzene	0.003	3.276	0.002	3.486	0.020	2.694	0.100	2.661	0,050	3.622	0,200	3.401	0.010	3.679		
Bromochloromethane	0.003	0.423	0.002	0.333	0.020	0.362	0.100	-		2.983	0.200	2.789	0.010	2.708		
Bromodichloromethane	0.005	1,476	0.002	1,311	0.020	1,288	8.100	0.326	0.050	0.332	0.200	0.287	0.010	0.361		
Bromomothane	0.005	0.611	0.002	0.763	0,020	0.483	001.0	1.973 0.574	0.050	1.300	0.200	1.197	0,010	1,185		
Carbon Tetrachkoride	0.005	0.988	0.002	0.783	0.020	0.463	0.100	1.000	0.050	0.441	0.200	0.553	0.010	0.444		
Chloroethang	0.005	0.009	0.002	0.651	0.020	0.713	0.100	0.709	0.050	0.664	0,200	0.632	0.010	0.922		
Cis-1,2-DCE	0.005	1.022	0.002	1.052	0.020	0.988	0.100		0,050 0.050	0.625	0.200	0.651	0.010	0.795		
Cis-1,3-Dichloropropene	0.003	1.769	0.002	1.871	0.020	1,543	0,100	1.008	0.050	0.999	0.200	0.903	0.010	0.977		
Dibromochloromethane	0.005	1.395	0.002	1.383	0.020	1.314	0.100	1.351	0.050	1.279	0.200	1.425	0.010	1.568		
Difrememethage	0.005	0.671	0.002	0.660	0,020	0.597	0.100	0.594	0.050	0.670	0.200	1.364	0,010	1.175		
Dichlocodifluoromethane	0.005	1.185	0.002	0.648	0.020	1.191	0.100	0.983	0.050	0.632	0.200	0.518 0.934	0.010	0.577		
Rexachlorobutadiene	0.005	1.974	0.002	1,762	0.020	1.754	0.100	1.797	0.050	1.777	0,200	1.839	_	1.154		
Jsopropyibeazene	0.005	12.992	0.002	11.350	0.020	\$1.101	0,100	10,390	0.050	11.682	0.200	11.957	0.010	1.747		
m&p-Xyleae	0.003	2.173	0.002	1.916	0.020	1.906	0.100	1.811	0.050	1.806	0.200	1.990	0.010	1,910		
Methylene chloride	0,005	0.800	0.002	0.602	0.020	0.628	0.100	0.814	0.050	0.622	0.200	1,000	0.010	0.603		
Methyl t-bulyl ether (MTBB)	0.005	2.828	0.002	2.643	0.020	2.316	0.100	2.492	0.050	2.427	0.200	2.184	0.010	2.288	-	
MEX (2-Butanous)	0.005	1.115	0.002	1.404	0.020	0.919	0.100	0.847	0.050	0.821	0.200	0.750	0.010	0.916		
MIBK (methyl isobulyl ketone)	0.005	5.079	0.002		0.020	4.126	0.100	3.604	0.050	4.141	0.200	3,717	0.010	4,049		
n-Butyfbenzene	0.005	11.949	0.002	10.202	0.020	9.184	0.100	9.292	0.050	10.045	0.200	10.064	0.010	9.836	<del></del>	
a-Propylbenzene	0.005	17.142	0.002	15.332	0.020	14.759	0.100	14.273	0.050	16.412	0.200	15,685	0.010	16.068	-	
Naphthalose	0.005	8.629	0.002	7.658	0.020	5.749	0.100	5.630	0.050	6.262	0.200	5.394	0.010	6.624		
o-Xylene	0.005	2.206	0.002	1.918	0.020	1.651	0.100	1.874	0.050	1.912	9,200	1.949	0.010	1.838	<del>  </del>	
p-fsopropylioluene	0.005	10.930	0.002	9.856	0,020	9.165	0.100	9.004	0.050	9.291	0.200	9.574	0.010	9.309		
Sec-Butylbonzone	0.005	13.915	0.002	11.668	0.020	12.154	0.100	11.605	0.050	12.467	0.200	13.034	0.010	11.914	$\overline{}$	
Styrene	0.005	2.236	0.002	2.159	0.020	1.982	0.100	2.017	0.050	2.022	0.200	2.040	0.010	1.961		-
TCE	0.003	0.931	0.002	0.832	0.020	0.877	0.100	0.891	0.050	0.837	0.200	0.790	0.010	0.849		
Fort-Bulyibenzene	0.005	10.227	0.002	0.534	0.020	8.587	0.100	8.191	0.050	9.088	0.200	9.013	0.010	8.749		-
Fetrachloroethene	0.005	0.929	0.002	0.899	0.020	0.891	0.100	0.784	0.050	0.737	0.200	0.881	0.010	0.833	<del></del>	
Trans-1,2-DCB	0.005	1.009	0.002	0.944	0.020	0.871	0.100	0.877	0.050	0.813	0.200	0.793	0.010	0.672	$\overline{}$	
Trans-1,3-Dichloropropene	0.005	1.467	0.002	1.512	0.020	1.323	0.100	1.373	0.050	1.245	0.200	1,184	0.010	1.358		<del> </del>
Trichlorofluoromethane	0.005	1.084	0.002	0,647	0.020	1.038	0.100	0.976	0.050	0,725	0.200	0.917	0.010	1.040	-+	-
,2-DCA-D4(S)	0.003	1.212	0.002	†	0.020	1.074	0,100	1.059	0.050	0.934	0.200	0.940	0.010	1.088		
-Bromofluorobenzent(S)	0.003	2.127	0.002		0.020	1.641	0.100	1.549	0.050	1.385	0.200	1.513	0.010	1.706	<del></del> +	
Dibromofluoromethane(S)	0.005	1.086	0.002	1.201	0,020	0.838	0.100	0.938	0.050	0.840	0.200	0.836	0.010	0.947	-	
olume-D8(S)	0.005	4.991	0.002		0.020	4.458	0.100	3.998	0.050	3,757	0.260	4,435	0.010	4.285	$\dashv$	
				一							77-77		5.510		$\dashv$	
												-		-	<del>+</del>	-

Comments:		
	 	····

#### AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CAUBRATION-GCASS ANALYSIS

Analytical Method: METHOD 82500	AAB #: 320305AN-164483	
Lab Name: APPL, Inc.	Contract#: *G012	
Instrument ID: Neo	Date of Initial Calibration: 5 Mar 12	
nitial Calibration ID: N120305	Concentration Units (ug/L or mg/kg): mg/kg	

1-1-1		_			
Analyte	1 %	mean	١ ،	COD	Q
	RSD	%RSD		.l .	
1,1,1,2-Tetrachloroethane	4.8		l -		
1,1,1-TCA	8.3			†	
1,1,2-TCA	6.4	-		<del>                                     </del>	<u> </u>
I, I-Dichloropropene	8.5	-		<del></del>	
1,2,3-Trichlorobenzene	22.5	_	0.9995	<del></del>	
1,2,3 Trichkropropane	16.1			ļ <u> </u>	<b></b>
1,2,4-Trichlorobonzene	14.5		0.9995		ļ <u>.</u>
1,2,4-Trimethy literature		_	<b>!</b>		
	7.3	<b>.</b>	<u> </u>		<u> </u>
I,2-DCA	7,4				
I,2-DCB	10.7		l		. —
1,2-Dibromo-3-chloropropane	12.2	L			
I,2-EDB	5.1				
1,3,5-Trimethylbenzene	7,0				
1,3-DCB	8.9				
1,3-Dichloropropane	5.9	-			
I.4-DCB	13.4				
1-Chlorobexane	10.8			ļ.——	
2,2-Dichleropropane	7.8			——·	
2-Chloroteluene	9.8	$\vdash$			
4-Chlorotolyane	10.2				
			<u> </u>		
Arctone	63.6		0.9930		
Benzene	7.6		i		
Bromobenzeno	11.0				
Bromochkromethane	12.2		_		
Bromodichloromethane	8.0				
Bromomethine	22,1		0.9985		
Carbon Tetrachleride	5.7				
Chlorosthane	44.5		0.9985		
Cis-1,2-DCE	43		0.2303		
Cis-1,3-Dichloropropeue	9.3				
Dibromochloromethane		——[			
	5.6				
Dibromomethane	9.2				-
Dichlorediffuoromethane	24.8		0.9950		
Hexachlorobutadisne	4.7				
Liopropylbenzene	7.0				
m&p-Xylme	6.5			$\overline{}$	
Methylene chloride	17.9		1.0000		
Methyl r-butyl ether (MTBE)	9.3				
MEK (2-Butanene)	23.1		0.9985		
MIBK (methyl isobutyl fetone)	12.6	$\neg \neg$	3.7797	<del></del>	
n-Butylbenzene	21			<del></del>	
n-Propyfbeazene	5.9	<del></del> -			
Naphthalene					
o-Xylene	13.0				
	6,5				
p-Isopropyliolome	6.7	!			
See Bulylbeazene	6.7				
Styrene	4.9	T			
1CE_	5.3				
Tert-Butylbenzene	7.4		$\neg \neg$		
Tetrachloroethene	10.4		$\neg$		
Trans-1,2-DCB	8.4		+	<del></del>	
Trans-1,1-Dichloropropose	8.5	$\overline{}$			
Trichloroflyoromethane	18.4	<del></del> +	0.9975		
1,2-DCA-D4(S)	9.8		U.9975		
4-Bromefluorobenzens(S)				i	
Promotronomizaci(S)	15.8		0.9995		
Divromofluoromethano(\$)	13.6				
Toluene-D8(S)	9.9				
			$\neg$		

Comments:	

#### AFCEB ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

Analytical Method: METHOD 8260	AAH J: 120102AS-164529
Lab Name: APPL, Inc.	Contract #: *G012
instrument ID: Svroetpea	Initial Calibration ID: \$120229
2nd Source ID: 120229A-1WS (SS)	Concentration Units (ug/L or mg/kg): ug/L

Analyte	Expected	Found	%D	<u></u>
1,1,1,2-Tetrachloroethane	10.00	10,61	6.1	
I,1,1-TCA	10.00	10.35	3.5	
1,1,22-Tetrachleroethane	10,00	9,83	1.7	
I,),2-TCA I,I-DCA	10.00	9.46	5.4	ļ
LI-DCB	10.00	10.22 11.11	2.2	<del> </del>
1,1-Dichloropropene	10.00	10.91	9,1	ļ
1,2,1-Trichlorobenzene	10.00	10.15	1.5	
1,2,3 Trichloropropane	10.00	10.01	0.1	
1,2,4-Trichlorobenzene	10.00	10.55	5.5	
1,2,4-Trimethyfrenzene	10,00	10.22	2.2	
1,2-DCA	10,00	9.53	4.7	
1,2 DCB	10.00	10,66	6.6	<u> </u>
1,2-Dibromo-3-chloropropa	10.00	9,40	6.0	
1,2-Dichloropropuse 1,2-EDB	10,00	10.26	2.6	_
1.3.5 Trimethylbenzene	10.00	10.22	22	-
1,3-DCB	10.00	10.37	3.7	-
1,3-Dichleropropane	10.00	10.29	2.9	
I_4-DCB	10.00	10.04	0.4	
1-Chlorobexane	10,00	11.35	14	
2,2-Dichloropropane	10.00	9.89	1.1	
2-Chlorotohiese	10.00	10.10	1.0	
4-Chioroteluene	10.00	10.08	0.8	<b></b>
Acctone Benzene	10.00	10.31	3.1	
Bromobenance	10.00	10.08	0.8	
Bromochlozomethane	10.00	10.68	6.8	
Brossodichkvomethane	10.00	9.96	0.4	
Bromokem	10.00	10.71	7.1	
Bromomethana	10.00	10.40	4.0	
Carbon Tetrachlorida	10.00	11.29	13	
Chlorobenzene	10.00	10.67	6.7	
Chloroethane Chloroform	10.00	10.62	6.2	
Chkyonethane	10.00	8.54	7.B	
Cis-1,2-DCB	10.00	10.49	4.9	
Cis-1,1-Dichleropeopene	10.00	9.83	1.7	
Dikromochkyromethane	10.00	10.51	5.1	
Dibnonomethane	10.00	10.35	3.5	
Dichlorodiffuoromethane	10.00	11.35	. 13	
Dhyllenzene	10.00	10.55	5.5	
Hexachlocobutadiane	10.00	11.10	11	
Isopoopylbeozene	10.00	10.63	6.3	
arkp-Xylena Methylena chkeide	20.00	21.16 9.82	1.8	
Methyl I-butyl other (MTB)	10.00	9.89	1.3	
MEX (2-Butanone)	10.00	9.43	5.7	
a-Butythenzene	10.00	10.25	2.6	
a-Propylhenzene	10.00	10.34	3.4	
Naphthalene	10.00	8.38	16	
o-Xylene	10.00	10.63	6.3	
p-Sopropysiolusne	10.00	10.20	2.0	
Sec-Butythenzene Styrene	10.00	10,49	4.0	
ICE	10.00	10.25	2.5	
Fort-Bulyillenzene	10.00	10.25	43 19	
Fetrachloroethane	10.00	10.71	7.1	-
Toluena	10.00	10.42	4.2	
Trans-1,2-DCE Trans-1,3-Dichleropropene	10.00	10.80	8.0	
Trans-1,3-Dichlerepropene	10.00	9.78	2.2	
Trichloroffuereroethane	10.00	10.57	5.7	
Vinyt chloride	10.00	B.79	12	
<del> </del>	<b></b>			

Comments:	
	APCFIE FORM 0.4 Page of

#### AICEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERB (CATION

Analytical Method: AUETHOD 8260B	AAB #: 120305AN:164483
1sb Name: APPL, foc.	Destract #: <u>**C012</u>
Instrument ID: Neo	Initial Calibration IIX N120305
2nd Source ID: 120305A LCS-18N (88)	Concentration Units (ug/L or mg/kg): mg/kg

Analyte	Expected	Found	VD.	T Q
1,1,1,2-Terachlorophine	0.050	0.051	1.4	1
1,1,1-TCA	0.050	0.058	17	1
1,1,2,2-Tetrachlocoethane	0.050	0.047	5.6	
1,1,2-TCA	0.050	0.052	4.3	
I,I DCA I.I DCE	0.050	0.053	6.0	
1,2-Dichletopropene	0.050	0.056	112	-
1,2,3 Trichkrobenzese	0.050	0.052	4.5	_
1,2,3-Trickleropropane	0.050	0.032	3.0	<del>                                     </del>
1,2,4-Trichlorobeazene	0.050	0.043	13	-
1,2.4 Trimethylbrazeac	0.050	0.050	0.5	
1,2-DCA	0.050	0.049	1.6	
1,2-DCB	0.050	0.049	1.7	
1,2 Dicromo-3 chloropropane	0.050	0.052	3.1	<u> </u>
1,2 Dictiloropropane 1,2 EDB	0.050	0.052	3.8	<b>_</b>
1,3,5-Trimehylbenzens	0.050	0.049	2.6 8.2	
1,3-DCB	0.050	0.034	4.3	<del> </del>
1,3-Dichloropropane	0.050	0.053	3.0	-
1,44C8	0.050	0.045	7.6	╀──┤
1 Chlorobexane	0.050	0,054	7.6	$\vdash$
2,2-Dichloropropane	0.050	0.053	6.7	$\vdash$
2-Chlorotoluene	0.050	0.054	7.2	
4-Chlorotoluene	0.050	0.045	9.1	
Agetone	0.050	0.047	5.1	
Benzene	0,050	0.032	3.3	1
Bromobenzene Bromochloromethage	0.050	0.047	. 5.4	<b>!</b>
Bromodichlorocethane	0.050	0.047	6.4	_
Bromofives	0.050	0.050	0.6	_
Bromoroethane	0.050	0.054	7.3	<del></del> !
Carbon Tetrachloride	0.050	0.058	16	—
Chlorohenzene	0.050	0.051	1.1	_
Chkrechane	0.050	0.058	17	-
Chloroform	0.050	0.052	3.9	
Chieremethane	0.050	0.056	11	
Cis-1,24XCE	0.050	0,054	8.0	L
Cis-I, J-Dichloropropene	0.050	0,031	2.1	<b> </b>
Difremechloromethane Difrememethane	0.050	0.052	0.6	
Dichlorediffueremethane	0.050	0.056	12	
Ethylbenzene	0.050	0.053	69	
Bezachkeobutadiene	0.050	0.054	8.6	
boycopyibenzene	0.050	0.053	6.0	
m&p-Xylene	0.100	0.107	7.3	
Methylene chloride	0.050	0.052	4.6	
Methyl I-butyl ether (MTBE)	0.050	0,047	5.7	
MEK (2-Bittacos)	0.050	0.049	1.5	
MBK (methyl isobulyl belone) a Butylbenzene	0.050	0.043	11	
п-Ргоруйскагос п-Ргоруйскагос	0.050	120.0	1.7	
Naphthalene	0.050	0.054	7.3 6.6	
o-Xylese	0.050	0.047	3.3	-
p-Isopropy (to hiero	0.050	0.049	1.1	···j
Sec-Butyleenzeze	0.050	0.053	7.0	-
Styrene	0.050	0.050	0.4	
тсв	0.050	0.053	5.9	
Tert-Butyfbenzene	0.030	0.052	3.7	
Tetrachlocoethene	0.050	0.055	9.2	
Tolorae Franci 2-DCE	0.650	0.053	6.5	
Trans-1,1-Dichleropropose	0.050	0.054	7.8	i
Tricklocofluctomethane	0.050	0.051 0.058	1,0	
Vioyi chloride	0.050	0.053	5.8	—
	7 777	. 5.055		
	<del>1  </del>			

Comments:	 · · · · · · · · · · · · · · · · · · ·		 
	 ATCER FORM 0-4	^ageof	 _

#### AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

rument ID: Sweetpea		CCV #1 ID:			atibration 1D;		
D: 10ug/L STD 3-02-12 (CCV)		.C.V #1 1D;				.CV #2 ID:	
	IC	V .	CCV	/ #1	CC	/ #2	
Analyte	RF	%D	RF	% D	RF	% D	Q
Chloromethane *	0.428011	15.8209			1		7
1,1-DCA *	1.61114	7.84741			1 1		
Bromoform *	0.454041	10.4689			1		
Chlorobenzene *	3.07397	10.1528			<del>                                     </del>		
1,1,2,2-Tetrachloroethane *	0.795921	14.9212			<del> </del>	-	
1,1-DCE#	0.835851	14.8722	Sant in		Bull auskir		
Chloroform #	1.44842	2.30937			基金基础		
1,2-Dichloropropane #	0.838494	11.3017	A) 14 (A) (B)				
Toluene #	3.51954	10.4396	fr waiths		VIII E		
Ethylbenzene #	5.24538	7.22047			Section 2		
Vinyl chloride #	0.332763	16.8516	Post ris		100 100 100		
•			14,5 - 144.5		A planty in		
	C. J. Harris		JAN SAN TA				

AFCEE FORM O-5A Page ____ of ____

#### AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION-GC/MS ANALYSIS

Instrument ID: <u>Neo</u> CV ID: 50ug/kg Vol Std 03-05-12 (Co	CV) (	CCV #1 ID:		Initial Ca	llibration ID:	N120305 CCV #2 1D:	
	l IC	ev -	ccy	/ #1	CC	7 #2	
Analyte	RF	%D	RF	% D	RF	%D	Q
Chloromethane *	1.82081	11.8646					
1,1-DCA *	1.96925	1.76308			1		
Bromoform *	0.789957	1.29138		•			
Chlorobenzene *	3.10623	1.15915			1 1		
1,1,2,2-Tetrachloroethane *	3.35742	1.35243					
1,1-DCE#	0.731614	7.68638			MANA DE		
Chloroform#	1.66262	2,29121			1,5 1,641.1.5		
1,2-Dichloropropane #	1.1203	0.177192	yr .c		12 off, 51		
Toluene #	3.76178	6.81454			La garrani		
Ethylbenzene #	5,90671	3.15191	10.74		915. LETT-16.E		
Vinyl chloride #	0.425635	14.0547			15.056		
					100	<del>-</del>	-
· · · · · · · · · · · · · · · · · · ·	12		Bashin Africa				
* SPCCs # CCCs							

AFCEE FORM O-5A Page ___ of ____

#### AFCEB ORGANIC ANALYSES DATA SHEET 5 CALIBRATION VERIFICATION

Analytical Method: METHOD 8260	AAB #: 120302AS-164529
Lab Name: APPL, Inc.	Contract #: *G0)2
Instrument ID: Sweetpea	Initial Calibration ID: S120229
ICV ID: 10ag/L 6TO 3-02-12 (CCV) CCV #1 ID:	CCV #2 ID:

Analyte	ICV %D or % drift	CCV#L %D or % drift	CCV#2 %D or % drift	o
1,1,1,2-Tetrachloroethane	9.6		AD CO / P CO III	<del>- ×</del>
1,1,1-TCA	9,5			-
1,1,2-TCA	9.4			<del> </del>
l_l-Dichloropropene	16			_
1,2,3-Trichlorobenzene	6.4			· ·
1,2,3-Trichloropropane	2.9			
1,2,4-Trichlorobenzene	13			<del></del>
1,2,4 Trimethylbenzene	8.4			
I,2-DCA	5.4			
1,2-DCB	7.8			
1,2-Dibrome-3-chloropropane	6.7			
1.2-EDB	4.7			$\vdash$
1,3,5-Trimethylomzene	4.2			
1,3-DCB	11			
1,3-Dichloropropane	9.0			
I,4-DCB	9.7			
-Chlorohexane	9.7	<del></del>		
L2-Dichloropropsue	20			
2-Chlorotoluene	. 6.4			
i-Chlorototuene	6,8		-	
Lostone	5.4			_
Knzenç	9,3			
Promobenzene	7.6			
romoch foromethane	17			
Promodical comethane	k1 "			
Sromomethane	4.5			
Carbon Totrechloride	15			
hioroethane	8.3			
is-1,2-DCB	11			
3s-1,3-Dichleropropene	5.2			_
Pibromochloromethane	9.7			
opposed suc	10			
Dichlorediffuoromethane	2.9			
lexachlorobutedione	14			
opropylbenzene	13			
&p-Xylme	14			
schylene chloride	11			
fethyl t-butyt other (MTBE)	6.7			
IEK (2-Bulanene)	5.4			
Butylbezzene	9.7			
Propribenzene	7.5			
aphthaleue	4.7			
Xylone	11			
Isopropyltolucie	10			
re-Butylbeazene	9.2		" ' -	
)YOLE	9,4			
СВ	4.1			
ert-Bulyibenzene	11			
trachlorocthene	7.9			
ans-1,2-DCB	12			
ans-1,1 Dichloropropene	15		_ <del></del>	
ichlerofluoremethane	2,3		<del></del>	
		· · · · · ·		

Comments:					
				 	 —
	_			 	 

#### APCEB ORGANIC ANALYSES DATA SHEET 5 CALIBBATION VERIFICATION

Analytical Muhod: METHOD 8160B	<del></del>	AAB 8: 120105AN-16448J
Lab Name: APPE, Inc.		Contract #: *G012
Instrument ID: Noo	<u> </u>	Initial Califeration ID: N120005
ICV ID: 50ag kg Val Std 03-05-12 (CCV)	CCV #1 ID:	CCV #2 ID:

Anahte	ΓÇV %Der%,ahif)	CCVIII	CCV#2 %Dor % drift	_ [
I.I.1.2-Tetrachioroethane		%D or % drift	74 D OF 74 CHII	Q
I,I,I-TCA	7.6			
1.1.2-TCA	- 1 1.5 0.7			ļ
I,1-Dichloropropene	6.8			⊢
1,2,3-Trichloroberzene				Ь—
1,2,3 Trichloropropane	8.6			
1,2,4-Triculocopropane	0.6		· <u> </u>	
1,2,4-1 remorascine 1,2,4-Trimethylbenzene	3.2			
	5.5			
),2-DCA	1.4			
,2-DCB	2.2			
,2-Dibrono-3-chloropropane	8.9			
2-EDB	7.1			Ĺ
1,3,5-TrimeOylbenzene	3.7			
1,3-DCB	2.0			
3-Dichlecopropans	7,0			
I,4-DCB	6.2			
-Chlorobecane	1.0			
2-Dichloropropane	2.4			
I-Chlorotolisene	3.9			
-Chkrotolueue	1.5			
Acetoce	0.7			
Banzane	0.3			
Bromobenzene	2.2			
Bromochloromethane	0.0			
Bromodichloromethane	0,6			
3romomethane	1.7			
arbon Tetrachloride	10.1			
hierochane	12.5			
Sis-1,2-DCB	2.4			
S-1,3-Dichloropropene	1.9		· · · · · · · · · · · · · · · · · · ·	
Zibromechleromethane	4.8			
Difremonethane	5.0			
Nichlorodi (luoromethane	12.3			
fexachlorobutadiene	10.8			
sopropylbenzene	8.6			
-&p-X)tene	1.4			
fethylene thloride	45			
(ethyl 1-butyl ether (ATTBE)	5.3			
/BK (2-Butanooe)	5.2			
fileK (methyl isobutyl ketone)	6.5	<del>i</del>		
-Butylbenzene	73		· · · · · · · · · · · · · · · · · · ·	
-Propylbenzene	6.7			
/aphthalene	0.9			
-Xylese				
	7.5			
-Isopropyltolume				
co-Butylbanzana	9.7			
tyrene	0.4	[.	<b></b>	
CB	4.0			
ert-Butylbenzene	1.7			
etrachloroethene	3.9			
rans-1,2-DCB	3.9			
rans-1,3-Dicaloropcopcoe	1.5			
richlorofhoromethane	18.6			

Comments;	 		

#### AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 120302AS-164529

Lab Name: APPL, Inc

Concentration Units; ug/L

Contract #: *G012

Method Blank ID: 120302A8-BLK - I W S

Initial Calibration ID: S120229

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.5	U
1,1,1-TCA	< RL	0.8	U
1,1,2,2-TETRACHLOROETHANE	< RL	0.4	U
1,1,2-TCA	< RL	1.0	U
1,1-DCA	< RL	0.4	U
1,1-DCE	< RL	1.2	U
1,1-DICHLOROPROPENE	< RL	1.0	Ü
1,2,3-TRICHLOROBENZENE	< RL	0.3	U
1,2,3-TRICHLOROPROPANE	< RL	3.2	U
1,2,4-TRICHLOROBENZENE	< RL	0.4	U
1,2,4-TRIMETHYLBENZENE	< RL	1.3	Ū
1,2-DCA	< RL	0.6	U
1,2-DCB	< RL	0.3	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	2.6	υ
1,2-DICHLOROPROPANE	< RL	0.4	υ
1,2-EDB	< RL	0.6	U
1,3,5-TRIMETHYLBENZENE	< RL	0.5	U
1,3-DCB	< RL	1.2	U
1,3-DICHLOROPROPANE	< RL	0.4	U
I,4-DCB	< RL	0.3	U
1-CHLOROHEXANE	< RL	0.5	U,
2,2-DICHLOROPROPANE	< RL	3.5	U
2-CHLOROTOLUENE	< RL	0.4	Ū
4-CHLOROTOLUENE	< RL	0.6	U
BENZENE	< RL	0.4	U
BROMOBENZENE	< RL	0.3	Ü
BROMOCHLOROMETHANE	< RL	0.4	U,
BROMODICHLOROMETHANE	< RL	0.8	U
BROMOFORM	< RL	1.2	U
BROMOMETHANE	< RL	1.1	U
CARBON TETRACHLORIDE	< RL	2.1	U
CHLOROBENZENE	< RL	0.4	U
CHLOROETHANE	< RL	1.0	U
CHLOROFORM	< RL	0.3	υ
CHLOROMETHANE	< RL	1.3	U
CIS-1,2-DCE	< RL	1.2	U
CIS-1,3-DICHLOROPROPENE	< RL	1.0	U
DIBROMOCHLOROMETHANE	< RL	0.5	U
DIBROMOMETHANE	< RL	2.4	U
DICHLORODIFLUOROMETHANE	< RL	1.0	U
ETHYLBENZENE	< RL	0.6	U

Comments:

ARF: 67099, Sample: AY56026

#### AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 120302AS-164529

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: ug/L

Method Blank ID: 120302AS-BLK-IWS

Initial Calibration ID: S120229

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	1,1	Ü
ISOPROPYLBENZENE	< RL	0.5	Ū
M&P-XYLENE	< RL	0.5	U
METHYLENE CHLORIDE	< RL	1.0	U
N-BUTYLBENZENE	< RL	1.1	Ū
N-PROPYLBENZENE	< RL	0.4	U
NAPHTHALENE	< RL	0.4	Ū
O-XYLENE	< RL	1.1	U
P-ISOPROPYLTOLUENE	< RL	1.2	U
SEC-BUTYLBENZENE	< RL	1.3	Ū
STYRENE	< RL	0.4	Ű
TCE	< RL	1.0	υ
TERT-BUTYLBENZENE	< RL	1.4	U
TETRACHLOROETHENE	< RL	1.4	U
TOLUENE	< RL	1.1	Ü
TRANS-1,2-DCE	< RL	0.6	U
TRANS-1,3-DICHLOROPROPENE	< RL	1.0	U
TRICHLOROFLUOROMETHANE	< RL	0.8	U
VINYL CHLORIDE	< RL	1.1	Ū

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	97.2	69-139	
SURROGATE: 4-BROMOFLUOROBE	94.5	75-125	
SURROGATE: DIBROMOFLUOROME	97.6	75-125	
SURROGATE: TOLUENE-D8 (S)	98.3	75-125	,

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	-
FLUOROBENZENE (IS)	

Comments:

ARF: 67099, Sample: AY56026

### AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Lab Name: APPL, Inc

Concentration Units: mg/kg

Contract #: *G012 Minhi
Method Blank ID: 120305AN-BLK - | SN

Initial Calibration ID: N120305

Analyte	Method Blank	RL	Q
1,1,1,2-TETRACHLOROETHANE	< RL	0.003	U
1,1,1-TCA	< RL	0.004	υ
1,1,2,2-TETRACHLOROETHANE	< RL	0.002	U
1,1,2-TCA	< RL	0.005	U
1,1-DCA	< RL	0.002	U
1,1-DCE	< RL	0.006	U
1,1-DICHLOROPROPENE	< RL	0.005	U
1,2,3-TRICHLOROBENZENE	< RL	0.004	Ū
1,2,3-TRICHLOROPROPANE	< RL	0.020	Ų
1,2,4-TRICHLOROBENZENE	< RL	0.004	Ū
1,2,4-TRIMETHYLBENZENE	< RL	0.007	Ū
1,2-DCA	< RL	0.003	Ü
1,2-DCB	< RL	0.002	U
1,2-DIBROMO-3-CHLOROPROPANE	< RL	0.010	Ų
1,2-DICHLOROPROPANE	< RL	0.002	U
1,2-EDB	< RL	0.003	U
1,3,5-TRIMETHYLBENZENE	< RL	0.003	Ū
1,3-DCB	< RL	0.006	Ū
1,3-DICHLOROPROPANE	< RL	0.002	Ū
1,4-DCB	< RL	0.002	Ū
1-CHLOROHEXANE	< RL	0.003	Ū
2,2-DICHLOROPROPANE	< RL	0.020	U
2-CHLOROTOLUENE	< RL	0.002	Ū
4-CHLOROTOLUENE	< RL	0.003	Ū
BENZENE	< RL	0.002	Ū
BROMOBENZENE	< RL	0.002	U
BROMOCHLOROMETHANE	< RL	0.002	Ū
BROMODICHLOROMETHANE	< RL	0.004	Ū
BROMOFORM	< RL	0.006	U
BROMOMETHANE	< RL	0.005	Ü
CARBON TETRACHLORIDE	< RL	0.010	Ū
CHLOROBENZENE	< RL	0.002	Ū
CHLOROETHANE	< RL	0.005	Ü
CHLOROFORM	< RL	0.002	Ū
CHLOROMETHANE	< RL	0.007	Ü
CIS-1,2-DCE	< RL	0.006	ŭ
CIS-1,3-DICHLOROPROPENE	< RL	0.005	Ü
DIBROMOCHLOROMETHANE	< RL	0.003	ŭ
DIBROMOMETHANE	< RL	0.010	ŭ
DICHLORODIFLUOROMETHANE	< RL	0.005	ŭ
ETHYLBENZENE	< RL	0.003	Ū

Comments:

ARF: 67099, Sample: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Lab Name: APPL, Inc.

Contract #: *G012

Concentration Units: mg/kg

Contract #: *G012 Method Blank ID: 120305AN-BLK-ISN

Initial Calibration ID: N120305

Analyte	Method Blank	RL	Q
HEXACHLOROBUTADIENE	< RL	0.005	U
ISOPROPYLBENZENE	< RL	0.008	U
M&P-XYLENE	< RL	0.007	U
METHYLENE CHLORIDE	< RU	0.005	U
N-BUTYLBENZENE	< RL	0.005	Ü
N-PROPYLBENZENE	< RL	0.002	U
NAPHTHALENE	< RL	0.020	U
O-XYLENE	< RL	0.005	U
P-ISOPROPYLTOLUENE	< RL	0.006	Ü
SEC-BUTYLBENZENE	< RL	0.007	U
STYRENE	< RL	0.002	U
TCE	< RL	0.010	U
TERT-BUTYLBENZENE	< RL	0.007	U
TETRACHLOROETHENE	< RL	0.007	Ü
TOLUENE	< RL	0.005	ับ
TRANS-1,2-DCE	< RL	0.003	U
TRANS-1,3-DICHLOROPROPENE	< RL	0.005	U
TRICHLOROFLUOROMETHANE	< RL	0.004	U
VINYL CHLORIDE	< RL	0.009	U

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHAN	91.2	52-149	
SURROGATE: 4-BROMOFLUOROBE	103	65-135	-
SURROGATE: DIBROMOFLUOROME	91.1	65-135	
SURROGATE: TOLUENE-D8 (S)	107	65-135	

Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

$\sim$	 	 	ts:

ARF: 67099, Sample: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 120302AS-164529

Contract #: *G012

Lab Name: APPL, Inc.

Initial Calibration ID: S120229

Concentration Units: ug/L

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	10.00	10.76	108	72-125	
1,1,1-TCA	10.00	10.84	108	75-125	
1,1,2,2-TETRACHLOROETHANE	10.00	10.84	108	74-125	
1,1,2-TCA	10.00	10.18	102	75-127	
1,1-DCA	10.00	10,70	107	75-125	
1,1-DCE	10.00	11.20	112	75-125	
1,1-DICHLOROPROPENE	10.00	11.15	112	75-125	
1,2,3-TRICHLOROBENZENE	10.00	10.45	105	75-137	
1,2,3-TRICHLOROPROPANE	10.00	10.43	104	75-125	
1,2,4-TRICHLOROBENZENE	10.00	11.10	111	75-135	
1,2,4-TRIMETHYLBENZENE	10.00	10.41	104	75-125	
1,2-DCA	10.00	10.24	102	68-127	
1,2-DCB	10.00	10.76	108	75-125	
1,2-DIBROMO-3-CHLOROPROPANE	10.00	10.70	107	59-125	
1,2-DICHLOROPROPANE	10.00	10.53	105	70-125	
1,2-EDB	10.00	10.00	100	75-125	
1,3,5-TRIMETHYLBENZENE	10.00	10.20	102	72-125	
1,3-DCB	10.00	10.74	107	75-125	
1,3-DICHLOROPROPANE	10.00	10.69	107	75-125	
1,4-DCB	10.00	10.33	103	75-125	
1-CHLOROHEXANE	10.00	11.07	111	75-125	
2,2-DICHLOROPROPANE	10.00	11.81	118	75-125	
2-CHLOROTOLUENE	10.00	10.41	104	73-125	
4-CHLOROTOLUENE	10.00	10.55	106	74-125	
BENZENE	10.00	10.63	106	75-125	
BROMOBENZENE	10.00	10.45	105	75-125	
BROMOCHLOROMETHANE	10.00	11.42	114	73-125	
BROMODICHLOROMETHANE	10.00	10.67	107	75-125	
BROMOFORM	10.00	10.71	107	75-125	
BROMOMETHANE	10.00	9.80	98.0	72-125	
CARBON TETRACHLORIDE	10.00	11.28	113	62-125	
CHLOROBENZENE	10.00	10.66	107	75-125	
CHLOROETHANE	10.00	10.24	102	65-125	
CHLOROFORM	10.00	9.97	99.7	74-125	
CHLOROMETHANE	10.00	8.06	80.6	75-125	
CIS-1,2-DCE	10.00	11.19	112	75-125	
CIS-1,3-DICHLOROPROPENE	10.00	10.62	106	74-125	
DIBROMOCHLOROMETHANE	10.00	10.83	108	73-125	
DIBROMOMETHANE	10.00	10.15	102	69-127	
DICHLORODIFLUOROMETHANE	10.00	10.25	103	72-125	

Comments:

ARF: 67099, QC Sample ID: AY56026

#### AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Contract #: *G012

Lab Name: APPL, Ing 3/14/12 LCS ID: 120305AN LCS - 15N(55)

Initial Calibration ID: N120305

Concentration Units; mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
1,1,1,2-TETRACHLOROETHANE	0.0500	0.0507	101	62-125	
1,1,1-TCA	0.0500	0.0584	117	65-135	
1,1,2,2-TETRACHLOROETHANE	0.0500	0.0472	94.4	64-135	
1,1,2-TCA	0.0500	0.0521	104	65-135	
1,1-DCA	0.0500	0.0530		62-135	
1,1-DCE	0.0500	0.0562	112	65-135	_
1,1-DICHLOROPROPENE	0.0500	0.0555	111	65-135	
1,2,3-TRICHLOROBENZENE	0.0500	0.0522	104	65-147	
1,2,3-TRICHLOROPROPANE	0.050	0.048	96.0	65-135	
1,2,4-TRICHLOROBENZENE	0.0500	0.0435	87.0	65-145	
1,2,4-TRIMETHYLBENZENE	0.0500	0.0497	99.4	65-135	
1,2-DCA	0.0500	0.0492	98.4	58-137	
1,2-DCB	0.0500	0.0491	98.2	65-135	
1,2-DIBROMO-3-CHLOROPROPANE	0.050	0.052	104	49-135	
1,2-DICHLOROPROPANE	0.0500	0.0519	104	60-135	
1,2-EDB	0.0500	0.0487	97.4	65-135	
1,3,5-TRIMETHYLBENZENE	0.0500	0.0541	108	62-135	
1,3-DCB	0.0500	0.0479	95.8	65-135	
1,3-DICHLOROPROPANE	0.0500	0.0515	103	65-135	
1,4-DCB	0.0500	0.0462	92.4	65-135	
1-CHLOROHEXANE	0.0500	0.0538	108	65-135	
2,2-DICHLOROPROPANE	0.050	0.053	106	65-135	
2-CHLOROTOLUENE	0.0500	0.0536	107	63-135	
4-CHLOROTOLUENE	0.0500	0.0455	91.0	64-135	
BENZENE	0.0500	0.0517	103	65-135	
BROMOBENZENE	0.0500	0.0473	94.6	65-135	
BROMOCHLOROMETHANE	0.0500	0.0468	93.6	63-135	
BROMODICHLOROMETHANE	0.0500	0.0523	105	65-135	
BROMOFORM	0.0500	0.0497	99.4	65-135	
BROMOMETHANE	0.0500	0.0537	107	62-135	_
CARBON TETRACHLORIDE	0.050	0.058	116	52-135	
CHLOROBENZENE	0.0500	0.0505	101	65-135	
CHLOROETHANE	0.0500	0.0585	117	55-135	
CHLOROFORM	0.0500	0.0520	104	64-135	
CHLOROMETHANE	0.0500	0.0564	113	65-135	
CIS-1,2-DCE	0.0500	0.0540	108	65-135	
CIS-1,3-DICHLOROPROPENE	0.0500	0.0510	102	64-135	
DIBROMOCHLOROMETHANE	0.0500	0.0522	104	63-135	
DIBROMOMETHANE	0.050	0.050	100	59-137	
DICHLORODIFLUOROMETHANE	0.0500	0.0562	112	65-135	

Comments:

ARF: 67099, QC Sample ID: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8260B

AAB #: 120305AN-164483

Contract #: *G012

Lab Name: APPL, Inchia

Initial Calibration ID: N120305

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ETHYLBENZENE	0.0500	0.0534	107	65-135	
HEXACHLOROBUTADIENE	0.0500	0.0543		65-135	
ISOPROPYLBENZENE	0.0500	0.0530		65-135	
M&P-XYLENE	0.1000	0,1073	107	65-135	
METHYLENE CHLORIDE	0.0500	0.0523	<del></del>	65-135	
N-BUTYLBENZENE	0.0500	0.0508	102	65-135	••••
N-PROPYLBENZENE	0.0500	0.0536	107	65-135	
NAPHTHALENE	0.0500	0.0467	93.4	65-135	
O-XYLENE	0.0500	0.0516	103	65-135	
P-ISOPROPYLTOLUENE	0.0500	0.0494	98.8	65-135	
SEC-BUTYLBENZENE	0.0500	0.0535	107	65-135	
STYRENE	0,0500	0.0502	100	65-135	
TCE	0.0500	0.0535	107	61-135	
TERT-BUTYLBENZENE	0.0500	0.0519	104	65-135	一
TETRACHLOROETHENE	0.0500	0.0546	109	61-135	
TOLUENE	0.0500	0.0533	107	64-135	
TRANS-1,2-DCE	0.0500	0.0539	108	65-135	
TRANS-1,3-DICHLOROPROPENE	0.0500	0.0505	101	56-135	
TRICHLOROFLUOROMETHANE	0.0500	0.0577	115	57-135	
VINYL CHLORIDE	0.0500	0.0529		36-144	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DICHLOROETHANE-	85.7	52-149	
SURROGATE: 4-BROMOFLUOROBENZE	100	65-135	
SURROGATE: DIBROMOFLUOROMETH	87.8	65-135	
SURROGATE: TOLUENE-D8 (S)	106	65-135	

·	
Internal Std	Qualifier
1,4-DICHLOROBENZENE-D4 (IS)	
CHLOROBENZENE-D5 (IS)	
FLUOROBENZENE (IS)	

Comments:

ARF: 67099, QC Sample ID: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8260B

AAB#: 120302AS-164529

Lab Name: APPL, Inc

Contract #: *G012

			Extracted		Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
TB-1	29-Fcb-12	01-Mar-12	02-Mar-12		02-Mar-12	14	2	

Comments:

ARF: 67099

## AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8260B

AAB#: 120305AN-164483

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID			Extracted	Max, Holding Time Ext	Time Held Ext	Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
B4-NTI-SWI	29-Feb-12	01-Mar-12	05-Mar-12		•	05-Mar-12	14	5	

Comments:

ARF: 67099

Analytical Method: METHOD 8260	
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID #: Sweetpea	ICAL ID: S120229

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
25ug/mL BFB Std 11-16-11	29-Feb-12	16:31	29-Feb-12	16:40
0.3ug/L Std@2-29-12SV	29-Feb-12	18:16	29-Feb-12	18:44
0.5ug/L Std@2-29-12SV	29-Feb-12	18:53	29-Feb-12	19:21
1.0ug/L Std@2-29-12SV	29-Feb-12	19:30	29-Feb-12	19:58
5.0ug/L Std@2-29-12SV	29-Feb-12	20:07	29-Feb-12	20:35
10ug/L Std@2-29-12SV	29-Feb-12	20:44	29-Feb-12	21:12
40ug/L Std@2-29-12SV	29-Feb-12	21:21	29-Feb-12	21:49
100ug/L Std@2-29-12SV	29-Feb-12	21:58	29-Feb-12	22:26
200ug/L Std@2-29-12SV	29-Feb-12	22:35	29-Feb-12	23:03

Comments:	,	-		-	
	AFCEE FORM	[O-10 Page_	of		

Analytical Method: METHOD 8260						
Lab Nam	e: APPL, Inc.	Contract #:	*G012	_		
Instrument ID	ICAL ID:					
Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed		
5ug/mL BFB Std 11-16-11	01-Mar-12	2:04	01-Mar-12	2:32		
20229A LCS-1WS (SS)	01-Mar-12	2:47	01-Mar-12	3:15		
	· · · · · · · · · · · · · · · · · · ·			<u> </u>		
comments:		,				

AFCEE FORM O-10 Page ___ of ___

Analytical Method: METHOD 8260	
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID #: Sweetpea	ICAL ID: S120229

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
25ug/mL BFB Std 2-13-12	02-Mar-12	9:21	02-Mar-12	9:30
10ug/L STD 3-02-12	02-Mar-12	10:30	02-Mar-12	10:58
120302A LCS-1WS	02-Mar-12	11:07	02-Mar-12	11:35
120302A BLK-1WS	02-Mar-12	12:58	02-Mar-12	13:27
AY56026W02	02-Mar-12	13:35	02-Mar-12	14:04

Comments:	***			
	AFCEE I	FORM O-10 Page	_of	

### Injection Log

Directory: M:\SWEETPEA\DATA\S120229\

Line	e Vial	FileName	Multiplie	r SampleName	Misc Info	Injected
1	1	0229S00T.D	1	25ug/mL BFB Std 11-16-11	2uL	29 Feb 12 16:31
2	3	0229S03W.D	1	0.3ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 18:16
3	4	0229S04W.D	1	0.5ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 18:53
4	5	0229S05W.D	1	1.0ug/L Std@2-29-12\$V	Water 10mL w/IS:02-17-12	29 Feb 12 19:30
5	6	0229S06W.D	1	5.0ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 20:07
6	7	0229S07W.D	1	10ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 20:44
7	8	0229S08W.D	1	40ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 21:21
8	9	0229S09W.D	1	100ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 21:58
9	10	0229S10W.D	1	200ug/L Std@2-29-12SV	Water 10mL w/IS:02-17-12	29 Feb 12 22:35
10	15	0229S15W.D	1	25ug/mL BFB Std 11-16-11	Water 10mL w/IS:02-17-12	1 Mar 12 2:04
11	16	0229S16W.D	1	120229A LCS-1WS (SS)	Water 10mL w/IS:02-17-12	1 Mar 12 2:47
12	1	0302S00T.D	1	25ug/mL BFB Std 2-13-12	2uL	2 Mar 12 9:21
13	2	0302S02W.D	1	10ug/L STD 3-02-12	Water 10mL w/IS:02-17-12	2 Mar 12 10:30
14	3	0302S03W.D	1	120302A LCS-1WS	Water 10mL w/IS:02-17-12	2 Mar 12 11:07
15	7	0302S06W.D	1	120302A BLK-1WS	Water 10mL w/IS:02-17-12	2 Mar 12 12:58
16	8	0302S07W.D	1	AY56026W02	Water 10mL w/IS:02-17-12	2 Mar 12 13:35

Analytical Method	d: METHOD 8260B	-		
Lab Name	e: APPL, Inc.	Contract #:	*G012	
Instrument ID	ICAL ID:	N120305		
Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID 25ug/mL BFB Std 2-13-12	Started 05-Mar-12	Started 10:17	Completed 05-Mar-12	Completed 10:28
2ug/kg Vol Std 03-05-12	05-Mar-12	12:46	05-Mar-12	13:18
5ug/kg Vol Std 03-05-12	05-Mar-12	13:24	05-Mar-12	13:56
10ug/kg Vol Std 03-05-12 20ug/kg Vol Std 03-05-12	05-Mar-12 05-Mar-12	14:03 14:41	05-Mar-12 05-Mar-12	14:34 15:13
50ug/kg Vol Std 03-05-12	05-Mar-12	15:19	05-Mar-12	15:51
100ug/kg Vol Std 03-05-12	05-Mar-12	15:57	05-Mar-12	16:29

16:35

17:51

19:08

20:24

22:19

22:57

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

05-Mar-12

200ug/kg Vol Std 03-05-12

25ug/mL BFB Std 2-13-12

50ug/kg Vol Std 03-05-12

120305A LCS-1SN (ss)

120305A BLK-1SN

AY56027S01 5.039

17:07

18:23

19:39

20:56

22:51

23:29

0		
Comments:		
		 · · · · · · · · · · · · · · · · · · ·

AFCEE FORM O-10 Page ___ of ____

#### **AFCEE** ORGANIC ANALYSES DATA SHEET 10 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: METHOD 8260B	
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID #: Neo	ICAL ID: N120305

### Injection Log

M:\NEO\DATA\N120305\

Directory:

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0305N00T.D	1	25ug/mL BFB Std 2-13-12	2uL	5 Mar 12 10:17
2	1	0305N04S.D	1	2ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 12:46
3	1	0305N05S.D	1	5ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 13:24
4	1	0305N06S.D	1	10ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 14:03
5	1	0305N07S.D	1	20ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 14:41
6	1	0305N08S.D	1	50ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 15:19
7	1	0305N09S.D	1	100ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 15:57
8	1	0305N10S.D	1	200ug/kg Vol Std 03-05-12	Soil 5mL w/IS:10-20-11	5 Mar 12 16:35
9	1	0305N12S.D	1	25ug/mL BFB Std 2-13-12	Soil 5mL w/IS&S:10-20-11	5 Mar 12 17:51
10	1	0305N14S.D	1	50ug/kg Vol Std 03-05-12	Soil 5mL w/IS&S:10-20-11	5 Mar 12 19:08
11	1	0305N16S.D	1	120305A LCS-1SN (ss)	Soil 5mL w/IS&S:10-20-11	5 Mar 12 20:24
12	1	0305N19S.D	1	120305A BLK-1SN	Soil 5mL w/IS&S:10-20-11	5 Mar 12 22:19
13	1	0305N20S.D	0.99226	AY56027S01 5.039	Soil 5mL w/IS&S:10-20-11	5 Mar 12 22:57

129

# AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260	_	
Lab Name: APPL, Inc.	Contract#: *G012	<del></del>
Instrument ID: Sweetpea	Compound: BFB	Injection Date/Time: 29-Feb-12 16:31
Initial Calibration ID: \$120229		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	14.9 - 40% of mass 95	15.8	PA\$\$
75	30 - 60% of mass 95	40.9	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.5	PASS
173	0 - 2% of mass 174	0.0	PASS
174	50 - 100% of mass 95	94.5	PASS
175	5 - 9% of mass 174	5.0	PASS
176	95 - 101% of mass 174	96.4	PASS
177	5 - 9% of mass 176	6.6	PASS
		<u> </u>	

AFCEE FORM O-11 Page ___ of ___

# APCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260	•		
Lab Name; APPL, Inc.	Contract #:	*G012	
Instrument ID: Sweetpea	Compound: BFB	Injection Date/Time: 1 Mar 12 2:04	
Initial Calibration ID: S120229			

75	Mass	Ion Abundance Criteria	% Relative Abundance	Q
95     100 - 100% of mass 95     100,0     P/       96     5 - 9% of mass 95     6.0     P/       173     0 - 2% of mass 174     0.0     P/       174     50 - 100% of mass 95     93.3     P/       175     5 - 9% of mass 174     5.5     P/       176     95 - 101% of mass 174     98.3     P/	50	14.9 - 40% of mass 95	15.6	PASS
96 5 - 9% of mass 95 5.0 P/ 173 0 - 2% of mass 174 0.0 P/ 174 50 - 100% of mass 95 93.3 P/ 175 5 - 9% of mass 174 5.5 P/ 176 95 - 101% of mass 174 98.3 P/	75	30 - 60% of mass 95	40.5	PASS
173 0 - 2% of mass 174 0.0 P/ 174 50 - 100% of mass 95 93.3 P/ 175 5 - 9% of mass 174 5.5 P/ 176 95 - 101% of mass 174 98.3 P/	95	100 - 100% of mass 95	100,0	PASS
174     50 - 100% of mass 95     93.3     P/       175     5 - 9% of mass 174     5.5     P/       176     95 - 101% of mass 174     98.3     P/	96	5 - 9% of mass 95	6.0	PASS
175 5 - 9% of mass 174 5.5 P/ 176 95 - 101% of mass 174 98.3 P/	173	0 - 2% of mass 174	0,0	PASS
176 95 - 101% of mass 174 98.3 PA	174	50 - 100% of mass 95	93.3	PASS
100	175	5 - 9% of mass 174	5.5	PASS
	176	95 - 101% of mass 174	98.3	PASS
177   5 - 9% of mass 176   6.0   PA	177	5 - 9% of mass 176	6.0	PASS

AFCEE FORM O-11 Page ___ of ___

## AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260		
Lab Name: APPL, Inc.	Contract#: *G012	
Instrument ID: Sweetpea	Compound; BFB	Injection Date/Time: 2 Mar 12 9:21
Initial Calibration ID; S120229		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	14.9 - 40% of mass 95	14.9	PASS
75	30 - 60% of mass 95	41.5	PASS
95	100 - 100% of mass 95	0.001	PASS
96	5 - 9% of mass 95	6.4	PASS
173	0 - 2% of mass 174	0.0	PASS
174	50 - 100% of mass 95	91.5	PASS
175	5 - 9% of mass 174	7.7	PASS
176	95 - 101% of mass 174	96.7	PASS
177	5 - 9% of mass 176	6.4	PASS

APCEE FORM O-11 Page ___ of ____

# AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

Analytical Method: METHOD 8260B		
Lab Name: APPL, Inc.	Contract#: *G012	<del></del>
Instrument ID: Neo	Compound: BFB	Injection Date/Time: 5 Mar 12 10:17
Initial Calibration ID: N120305		

Mass	Ion Abundance Criteria	% Relative Abundance	Q
50	15 - 40% of mass 95	22.4	PASS
75	30 - 60% of mass 95	47.7	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	6.9	PASS
173	0 - 2% of mass 174	0.4	PASS
174	50 - 100% of mass 95	74.1	PASS
175	5 - 9% of mass 174	7.1	PASS
176	95 - 101% of mass 174	98,1	PASS
177	5 - 9% of mass 176	7.2	PASS
	<u> </u>		

AFCEE FORM O-11 Page ___ of ____

# AFCBE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT PERFORMANCE CHECK (DFB or OFTPP)

Analytical Method: METHOD 8260B		
Lab Name: APPL, Inc.	Construct #; *G012	
Instrument ID: Neo	Compound; BFB Injection Date/Time: 5 Mar 12 17:51	_
Initial Calibration ID: N120305		

75	15 - 40% of mass 95	24.2	PÁSS
	20 (00) 0 00		1 1100
	30 - 60% of mass 95	48.9	PASS
95	100 - 100% of mass 95	100.0	PASS
96	5 - 9% of mass 95	5.9	PASS
173	0 - 2% of mass 174	0.4	PASS
174	50 - 100% of mass 95	71.9	PASS
175	5 - 9% of mass 174	6.9	PASS
176 9	95 - 101% of mass 174	96.5	PASS
177	5 - 9% of mass 176	6.8	PASS

AFCEE FORM 0-11 Page ___ of ___

#### Form 5 Tune Summary

Lab Name: APPL Inc. SDG No: 67099

Case No: 67099 Date Analyzed: 03/02/12

Matrix: Water Instrument: Sweetpea

ID: 2g/ug/mL BFB Std 2-13-12 Time Analyzed: 9:21

	Client Sample No.	APPL ID.	File ID.	Date Analyzed
1		10ug/L STD 3-02-12	0302S02W,D	03/02/12 10:30
2	Lab Control Spike	120302A LCS-1WS	0302\$03W.D	03/02/12 11:07
	Blank	120302A BLK-1WS	0302S06W.D	03/02/12 12:58
	TB-1	AY56026W02	0302S07W.D	03/02/12 13:35
5				
6				
7				,
8				
9		·		
10				
11				
12				
13				
14				
15				<u> </u>
16				·
17				
18				
19	· · · · · · · · · · · · · · · · · · ·			
20				
21		<u> </u>		
22		<b></b>	<del></del>	

m/e	
50 14.9 - 40% of mass 95	14.9
75 30 - 60% of mass 95	41.5
95 100 - 100% of mass 95	100.0
96 5 - 9% of mass 95	6.4
173 0 - 2% of mass 174	0.0
174 50 - 100% of mass 95	91.5
175 5 - 9% of mass 174	7.7
176 95 - 101% of mass 174	96.7
177 5 - 9% of mass 176	6.4

### Form 5 Tune Summary

SDG No: 67099
Date Analyzed: 03/05/12
Instrument: Neo
Time Analyzed: 17:51

Client Sample No.	APPL ID.	File ID.	Date Analyzed
1	25ug/mL BFB Std 2-13	0305N12S.D	03/05/12 17:51
2	50ug/kg Vol Std 03-	0305N14S.D	03/05/12 19:08
3 Lab Control Spike	120305A LCS-1SN (ss)	0305N16S.D	03/05/12 20:24
4 Blank	120305A BLK-1SN	0305N19S.D	03/05/12 22:19
5 B4-NT1-SW1	AY56027S01 5.039	0305N20S.D	03/05/12 22:57
6			
7			
8			
9			<u>,</u>
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			

24.2
48.9
100.0
5.9
0.4
71.9
6.9
96.5
6.8

## 8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: APPL Inc.		Contract: *G012		
Lab Code:		SDG No.: _	67099	
Lab File ID (Standard): 0229S07W.D		Date Analyzed: _	02/29/12	
Instrument ID: Sweetpea		Time Analyzed: _	20:44	
GC Column:	ID:	Heated Purge: (Y/N)_		

Fi		\ Ol-1		10) 4 4 5:-1	LI	7/0
Fill	iorobenzene (IS AREA #	RT #			hlorobenzene-D AREA #	RT #
12 HOUR STD	263104	9.76	190016		97000	18.89
UPPER LIMIT			380032	14.81		
LOWER LIMIT	526208 131552	10.26 9.26	95008	15.31 14.31	194000 48500	19.39 18.39
	131332	9.20	90000	14.31	40000	10.39
SAMPLE						
NO.						
01 10ug/L STD 3-02-12	271424	9.75	196992	14.78	100368	18.87
02 120302A LCS-1WS	274816	9.75	200768	14.78	101808	18.87
03 120302A BLK-1WS	267712	9.75	191040	14.79	99384	18.88
04 AY56026W02	269120	9.75	196672	14.79	94960	18.88
05						
06						
07		·				
08						
09						
10						·
11		·			·	
12						
13						
14						
15						
16						
17						
18						
19						
20	.					
21						
22	İ					

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

## 8A INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>APPL Inc.                                    </u>	Contract: *G012				
Lab Code:		SDG No.: 67099			
Lab File ID (Standard): 0305N08S.D		Date Analyzed: 5 Mar 12 15:19			
Instrument ID: Neo		Time Analyzed: 5 Mar 12 15:19			
GC Column:	ID:	Heated Purge: (Y/N)			

Fluorobenzene (IS) Chlorobenzene-D5 (IS) 1,4-Dichlorobenzene-I  AREA # RT # AREA # RT # AREA #  12 HOUR STD 309248 13.29 209344 18.46 79952  UPPER LIMIT 618496 13.79 418688 18.96 159904	RT # 22.65 23.15
12 HOUR STD 309248 13.29 209344 18.46 79952 UPPER LIMIT 618496 13.79 418688 18.96 159904	22.65 23.15
UPPER LIMIT 618496 13.79 418688 18.96 159904	23.15
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
LOWER LIMIT 154624 12.79 104672 17.96 39976	22.15
SAMPLE	
NO.	<u> </u>
01 50ug/kg Vol Std 03-05-1 297344 13.29 206720 18.47 81512	22.66
02 120305A LCS-1SN (ss) 321344 13.29 209408 18.46 87496	22.65
03 120305A BLK-1SN 326784 13.29 216448 18.45 97616	22.65
04 AY56027S01 5.039 263104 13.28 180416 18.46 68280	22.64
05	
06	
07	
08	
09	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

## EPA METHOD 8260B Volatile Organic Compounds Calibration Data



#### Quantitation Report (Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S03W.D Vial: 3

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response (	Conc Unit	s De	ev(Min)
1) Fluorobenzene (IS)	9.76	96	256128	25.00000		0.00
55) Chlorobenzene-D5 (IS)			182272	25.00000		0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	91456	25,00000	ppb	0.00
System Monitoring Compounds						
31) Dibromofluoromethane(S) Spiked Amount 20.857	8.40	111	4431 Recovery	0.57525 / =	ppb 2,7579	0.00 ł
36) 1,2-DCA-D4(S)	9.18	65	2756	0.51815	ppb	0.00
Spiked Amount 20.981	40 25		Recovery		2.4699	
56) Toluene-D8(S) Spiked Amount 21.584	12.35	98	13602 Recovery	0.52448	рро 2.4289	0.00
Spiked Amount 21.584 64) 4-Bromofluorobenzene(S)	16.85	95	5006	0.58456		0.00
Spiked Amount 21.472	10.05	93	Recovery		2.7248	
Target Compounds					(	value
2) Dichlorodifluoromethane	2.46	85	794	0.21447		# 82
3) Freon 114	2.62	85	1373	1.01177		81
4) Chloromethane	2.73	50	2045	0.39258		84
5) Vinyl chloride	2.89	<b>62</b>	1013	0.24706		# 82
6) Bromomethane	3.45	94	<b>41</b> 3	0.64268		81
7) Chloroethane	3.57	64	2055	0.33553		# 65
8) Dichlorofluoromethane	3.65	67	4855	0.29272		# 81
9) Trichlorofluoromethane		101	973	0.09082	ppb	77
10) Acrolein	4.54	56	1619	13.43327		# 76 # 49
11) Acetone	4.62	43 101	196 1633	1.03110 0.25026		# 49 # 69
12) Freon-113	4.81 4.95	96	2351	0.23020		# 74
13) 1,1-DCE 14) t-Butanol	5.06	59		22.33277		# 85
15) Methyl Acetate	5.42	43	2634	2.40131		90
16) Iodomethane	5.34	142	233	1.63175		# 50
17) Acrylonitrile	5.77	53	238	0.24252	daa	# 5
18) Methylene chloride	5.65	84	3169	0.39937		# 75
19) Carbon disulfide	5.67	76	2066	0.27538	ppb	# 91
20) Methyl t-butyl ether (MtBE	6.07	73	3614	0.31943	ppb	# 92
21) Trans-1,2-DCE	6.21	96	2814	0.31297		# 71
22) Diisopropyl Ether	6.87	45	7413	0.29955	ppb	# 93
23) 1,1-DCA	6.86	63	4899	0.32009		95
24) Vinyl Acetate	6.88	43	3328	0.28539	ppb	# 91
25) Ethyl tert Butyl Ether	7.54	59	4765	0.30040	ppp	# 84
26) MEK (2-Butanone)	7.51 7.82	43 96	528 2667	0.21854 0.29360	ppb	# 69 76
27) Cis-1,2-DCE	7.82	77	2836	0.27230	ppb	90
28) 2,2-Dichloropropane 29) Chloroform	8.09	83	4809	0.33156	nnh	
30) Bromochloromethane	8.27	128	1346	0.51957	daa	72
32) 1,1,1-TCA	8.76	97	3379	0.29548		# 62
33) Cyclohexane	8.90	56	2845	0.23120	daa	92
34) 1,1-Dichloropropene	9.04	75	3192	0.29317		95
35) 2,2,4-Trimethylpentane	9.16	57	4703	0.22518		# 78
37) Carbon Tetrachloride	9.21	117	2467	0.27786	ppb	91
38) Tert Amyl Methyl Ether	9.33	73	4282	0.30679		# 88
39) 1,2-DCA	9.31	62	2200	0.33014		# 74
40) Benzene	9.40	78	11864	0.32577		90
41) TCE	10.44	95	2941	0.33927		# 66
42) 2-Pentanone	10.20	43	29486	14.10483	agg	96

^{(#) =} qualifier out of range (m) = manual integration 0229S03W.D SALLRW.M Wed Mar 07 08:29:55 2012

Data File: M:\SWEETPEA\DATA\S120229\0229S03W.D

Vial: 3 Acq On : 29 Feb 12 18:16 Operator: DG, SV, RS Sample : 0.3ug/L Std@2-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Results File: SALLRW.RES Quant Time: Mar 7 8:26 2012

Quant Method: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration

DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue	
43)	1,2-Dichloropropane	10.66	63	2324	0.30111	pph	#	91
	Bromodichloromethane	11.00	83	2934	0.32416	daa	Ä	68
	Methyl Cyclohexane	10.68	83	2858	0.25725		#	42
	Dibromomethane	11.01	93	828	0.25180		#	77
	MIBK (methyl isobutyl ket	11.63	43	913	0.32068		#	85
	1-Bromo-2-chloroethane	11.74	63	2261	0.32132		"	90
	Cis-1,3-Dichloropropene	11.90	75	3843	0.33893			95
	Toluene	12.48	91	9920	0.30383			93
	Trans-1,3-Dichloropropene	12,70	75	1772	0.24267		#	50
-	1,1,2-TCA	12,94	83	1028	0.26605			88
-	2-Hexanone	13.05	43	327	0.20878		#	22
	1,2-EDB	14.09	107	1498	0.35253		#	59
	Tetrachloroethene	13.58	166	3222	0.36165	daa		91
	1-Chlorohexane	14,59	91	3206	0.29245			95
	1,1,1,2-Tetrachloroethane	14.93	131	1785	0.26607			89
	m&p-Xylene	15.16	106	8443	0.58847			95
	o-Xylene	15.87	106	4296	0.31003			98
	Styrene	15.90	104	6111	0.27580			93
	1,3-Dichloropropane	13.35	76	2134	0.29525		Ħ	70
	Dibromochloromethane	13.75	129	1799	0.32677		•"	86
	Chlorobenzene	14.87	112	5683	0.27931		#	80
	Ethylbenzene	15.02	91	10791	0.30254			99
	Bromoform	16,33	173	663	0.22125			97
•	Isopropylbenzene	16.51	105	9098	0.29137			92
72)		16.67	85	789	0.31141		Ħ	36
	1,2,3-Trichloropropane	16.93	110	155	0.16971		Ħ	22
	t-1,4-Dichloro-2-Butene	17.20	53	123	1.18592		#	22
	Bromobenzene	17.15	156	2667	0.31917		Ĥ	68
	n-Propylbenzene	17.20	91	11196	0,28412		-	91
	4-Ethyltoluene	17.40	105	6617	0.30086		#	74
	2-Chlorotoluene	17.44	91	7856	0.29616	daa	-	99
	1,3,5-Trimethylbenzene	17.48	105	7693	0.29261	daa		91
	4-Chlorotoluene	17.52	91	6419	0.28441			93
	Tert-Butylbenzene	18.09	119	8037	0.29063			92
	1,2,4-Trimethylbenzene	18.14	105	7679	0.29753			84
	Sec-Butylbenzene	18.47	105	10136	0.28189			94
	p-Isopropyltoluene	18.71	119	7937	0.27321			98
	Benzyl Chloride	19.10	91	591	0,23390		Ħ	38
-	1,3-DCB	18.77	146	4661	0.30170			88
	1,4-DCB	18.96	146	4532	0.29824			95
-	n-Butylbenzene	19.42	91	7341	0.29874			91
89)	1,2-DCB	19.56	146	3675	0.28917			94
	Hexachloroethane	20.24	117	1585	0.23764			86
	1,2-Dibromo-3-chloropropan	20.85	157	449	0.65142		Ħ	65
921	1,2,4-Trichlorobenzene	22.52	180	1891	0.24999		#	74
	Hexachlorobutadiene	22.84	225	732	0.37136		#	78
	Naphthalene	22.87	128	862	0.20001		#	40
95)		23.30	180	2321	0.35150		#	53

#### Quantitation Report

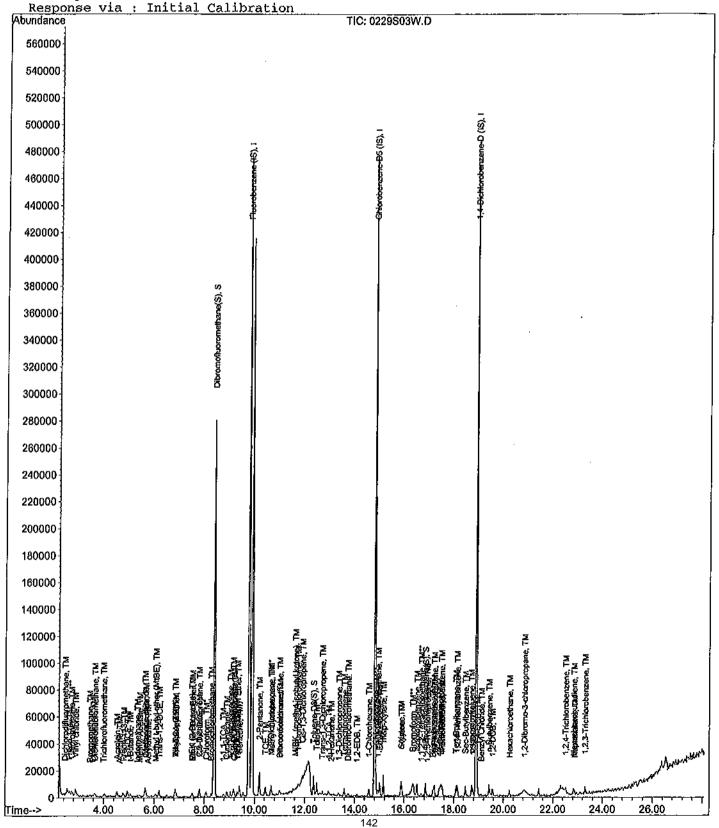
Data File: M:\SWEETPEA\DATA\S120229\0229S03W.D

Vial: 3 : 29 Feb 12 18:16 Operator: DG, SV, RS : 0.3ug/L Std@2-29-12SV Inst : Sweetpea : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012

Quant Results File: SALLRW.RES

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)


Title : METHOD 8260

Acq On

Sample

Misc

Last Update : Mon Mar 05 11:31:09 2012



#### Quantitation Report

(Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S04W.D

Acq On : 29 Feb 12 18:53 Operator: DG, SV, RS Sample : 0.5ug/L Std02-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	R.T,	QIon	Response Conc Units	Dev	(Min)
1) Fluorobenzene (IS)	9.77	96	248064 25.00000	daa	0.01
55) Chlorobenzene-D5 (IS)	14.80	117	248064 25.00000 1 180544 25.00000 1	ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	93880 25.00000	ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	8.39	111	7541 1.01084	ppb	0.00
Spiked Amount 20.857				.847%	
36) 1,2-DCA-D4(S)	9.18	65	5375 1.04339		0.00
Spiked Amount 20.981				.971%	
56) Toluene-D8(S)	12.35	98	26581 1.03475 _]	ppb	0.00
Spiked Amount 21.584	46.05		Recovery = 4	.795%	
64) 4-Bromofluorobenzene(S) Spiked Amount 21.472	16.85	95	9605 1.13232 PRecovery = 5	ppb ,272%	0.00
-			recovery - J		_
Target Compounds	2 46	0.5	1554 0 40044	Qva	lue
2) Dichlorodifluoromethane	2.46	85	1554 0.43341 r	ppb	97
3) Freon 114	2.61	85	2824 1.23360 p	ppb #	73
4) Chloromethane	2.74 2.89	50 62	2983 0.59126 p 2585 0.65096 p		72
5) Vinyl chloride 6) Bromomethane	2.89 3.46	94	2585 0.65096 p 879 0.86859 p		77 96
7) Chloroethane	3.59	64	2414 0.40696 g		95
8) Dichlorofluoromethane	3.65	67	8288 0.51594 g	nnh	88
9) Trichlorofluoromethane	4.03	101	4688 0.45182 g	b dac	68
10) Acrolein	4.54	56	3500 29.98446 p		88
11) Acetone	4.63	43	307 1.66754 p		49
12) Freon-113	4.80	101	3136 0.49622 p		67
13) 1,1-DCE	4.96	96	3381 0.46828 p	pb	88
14) t-Butanol	5.08	59	1139 25.79953 r		76
14) t-Butanol 15) Methyl Acetate 16) Todomethane	5.44	43	2802 2.47912 p	# dag	86
10, Rodolikoondiio	5.33	142	426 1.65036 p		50
17) Acrylonitrile	5.76	53	342 0.35983 p		5
18) Methylene chloride	5.66	84	4255 0.55366 p	ago	100
19) Carbon disulfide	5.64	76 73	3780 0.52022 p 5861 0.53488 p		95
20) Methyl t-butyl ether (MtBE 21) Trans-1,2-DCE	6.19	96	5861 0.53488 p 4297 0.49344 p		99 91
22) Diisopropyl Ether		45	12644 0.52754 p	mpb DDD	91 89
23) 1,1-DCA	6.85	63	7630 0 51472 %	pb #	88
24) Vinyl Acetate	6.87	43	5385 0.47680 p	# da	91
25) Ethyl tert Butyl Ether		59	7418 0.48285 p	nda "	100
0.61 Appre (0 Book and a)		43	1402 0.59915 p	pb #	69
27) Cis-1,2-DCE	7.81	96	1402 0.59915 p 4373 0.49706 p	pb #	83
28) 2,2-Dichioropropane	7.00	77	5680 0,56310 p	# da	66
29) Chlorotorm	8.08	83	9506 0.67670 p	dq	98
30) Bromochloromethane	8.27	128	1637 0.64485 p	pb	90
32) 1,1,1-TCA	8.78	97	5721 0.51654 p		69
33) Cyclohexane	8.91	56	5865 0.49211 p		86
34) 1,1-Dichloropropene	9.04	75	5293 0.50195 p	pb #	82
35) 2,2,4-Trimethylpentane	9.14	57	9694 0.47925 p	pp	96
37) Carbon Tetrachloride	9.20	117	4054 0.47145 p 7303 0.54025 p	pb #	74
38) Tert Amyl Methyl Ether	9.35	73 62	- · F	νη π αq	94 91
39) 1,2-DCA 40) Benzene	9,33 9,41	78	3694 0.57235 p 18131 0.51404 p		81 95
41) TCE	10.43	95	4996 0.59506 p		95 76
42) 2-Pentanone	10.19	43	52190 25.77701 pj		97
,					

^{(#) =} qualifier out of range (m) = manual inte∰ation

#### Quantitation Report (Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S04W.D Vial: 4

Acq On : 29 Feb 12 18:53 Operator: DG, SV, RS Sample : 0.5ug/L Std@2-29-12SV Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration

DataAcq Meth : V8260

1,2-Dichloropropane		Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
44) Bromodichloromethane 45) Methyl Cyclohexane 46) Dibromomethane 47) Methyl Cyclohexane 48) MIBK (methyl isobutyl ket 48) MIBK (methyl isobutyl ket 48) Inspection 1.64 48) MIBK (methyl isobutyl ket 49) 1-Bromo-2-chloroethane 41.74 40) 1-Bromo-2-chloropethane 41.74 40) 1-Bromo-2-chloropropene 41.74 41) 1-Bromo-2-chloropropene 41.74 42) 1-Bromo-2-chloropropene 41.74 43) 1-Bromo-2-chloropropene 41.74 45) 1-Bromo-2-chloropropene 41.74 46) 1-Bromo-2-chloropropene 41.74 47) 1-Bromo-2-chloropropene 41.74 48) MIBK (methyl isobutyl ket 41.74 49) 1-Bromo-2-chloropropene 41.74 40) 1-Bromo-2-chloropropene 41.74 40) 1-Bromo-2-chloropropene 41.74 40) 1-Bromo-2-chloropropene 41.74 40) 1-Bromo-2-chloropropene 41.74 40) 1-Bromo-2-chloropropene 41.74 41) 1-Bromo-2-chloropropene 41.74 42 43 43 43 43 43 43 43 43 43 43 43 43 43	43	1,2-Dichloropropane	10.66	63	3736	0.49979	daa	# 91
A5   Methyl Cyclohexane			10.99		-	0.53216	daa	
46) Dibromomethane	45	Methyl Cyclohexane		83	5570			
47) 2-Chloroethyl vinyl ether	46	Dibromomethane	11.02	93	1845	0.57932	daa	
48) MTBK (methyl isobutyl ket 91.64 43 1718 0.62305 ppb # 71 91 1-Bromo-2-chloroethane 11.74 63 3593 0.52722 ppb # 80 50) Cis-1,3-Dichloropropene 11.90 75 5737 0.52241 ppb 85 51) Toluene 12.49 91 16211 0.51265 ppb 97 52) Trans-1,3-Dichloropropene 12.71 75 3706 0.52242 ppb 97 53) 1,1,2-TCA 12.95 83 2286 0.61086 ppb # 71 54) 2-Hexamone 13.05 43 647 0.42652 ppb # 88 57) 1,2-EDB 14.09 107 2139 0.50819 ppb 98 58) Tetrachloroethene 13.59 166 4237 0.48013 ppb 88 57) 1,2-EDB 14.09 107 2139 0.50819 ppb 98 58) Tetrachloroethane 14.58 91 5179 0.47694 ppb 82 60) 1,1,1,2-Tetrachloroethane 14.94 131 3334 0.50173 ppb 83 61) mkp-xylene 15.86 106 6721 0.48068 ppb # 52 63) Styrene 15.91 104 11704 0.53328 ppb 81 63) Styrene 15.91 104 11704 0.53328 ppb 83 64) Dibromochloromethane 13.77 129 2766 0.50723 ppb # 65 65) 1,3-Dichloropropane 13.75 729 2766 0.50723 ppb 86 68) Ethylbenzene 15.01 91 16407 0.46439 ppb 98 69) Bromoform 16.33 173 1582 0.53298 ppb 98 69) Bromoform 16.51 105 15830 0.49387 ppb 98 61) 1,1,2,2-Tetrachloroethane 16.68 85 1438 0.55291 ppb 88 69) Bromoform 16.51 105 15830 0.49387 ppb 98 61) 1,1,2,2-Tetrachloropane 17.01 53 115 1.15287 ppb 82 71) 1,2,2-Tetrachloropane 17.01 53 115 1.15287 ppb 82 72) 1,1,2,2-Tetrachloropane 17.01 53 115 1.15287 ppb 82 73) 1,2,3-Trichloropane 17.44 91 13793 0.52542 ppb 88 74) 1,2,3-Trichloropane 17.46 105 13464 0.49853 ppb 94 75) 1,3-5-Trimethylbenzene 17.48 105 13464 0.49853 ppb 94 78) 2-Chlorotoluene 17.49 91 19369 0.47483 ppb 94 78) 1,3-5-Trimethylbenzene 18.71 119 14587 0.48915 ppb 88 78) 1,2-3-Trimethylbenzene 18.71 119 14587 0.48915 ppb 88 78) 1,2-CB 18.77 146 7599 0.47350 ppb 89 79) 1,3-DCB 18.77 146 7599 0.47350 ppb 89 79) 1,3-DCB 18.77 146 7599 0.47350 ppb 89 79) 1,2-DCB 18.75 146 8122 0.50070 ppb 82 79) 1,2-DCB 19.56 146 5554 0.45641 ppb 93 79) 1,2-DCB 19.56 146 5554 0.45641 ppb 93 79) 1,2-DCB 19.56 146 5554 0.45641 ppb 93 79) 1,2-DCB 19.56 146 5554 0.45651 ppb 85 79) 1,2-DCB 19.56 146 5554 0.45651 ppb 85 79) 1,2-DCB 19.56 146 5554 0.45651 ppb 85 79) 1,2-DCB 19.56 146 5554 0.45	47	2-Chloroethyl vinyl ether		106	72	0.16629	daa	
500   Cis-1,3-Dichloropropene   11.90   75   5737   0.52241 ppb   97   57   Toluene   12.49   91   16211   0.51265 ppb   97   57   77   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   3706   0.52402 ppb   97   57   57   57   57   57   57   57	48)	MIBK (methyl isobutyl ket	11,64	43	1718			
50  Cis-1,3-Dichloropropene	49	1-Bromo-2-chloroethane	11.74	63	3593	0.52722	ppb	# 80
520   Trans-1,3-Dichloropropene   12,71   75   3706   0.52402 ppb   91   531   1,1,2-TCA   12.95   83   2286   0.61086 ppb   71   71   75   3706   0.42652 ppb   71   71   72   73   74   75   75   75   75   75   75   75	50)	Cis-1,3-Dichloropropene	11.90	75	5737	0.52241	ppb	85
1, 2-PCA				91	16211	0.51265	ppb	97
54   2-Hexanone				75	3706	0.52402 j	ppb	91
57   1,2-EDB	53)		12.95	83	2286	0.61086 յ	ppb †	† 71
58)       Tetrachloroethene       13.59       166       4237       0.48013 ppb       # 87         60)       1,1,1,2-Tetrachloroethane       14.58       91       5179       0.47694 ppb       82         61)       m&p-Xylene       15.15       106       14042       0.98808 ppb       98         62)       o-Xylene       15.86       106       6721       0.48968 ppb       # 52         63)       Styrene       15.91       104       11704       0.53328 ppb       81         65)       1,3-Dichloropropane       13.35       76       3943       0.55076 ppb       # 75         66)       Dibromochloromethane       13.77       129       2766       0.50723 ppb       # 65         67)       Chlorobenzene       14.87       112       10843       0.55076 ppb       # 75         68)       Ethylbenzene       15.01       91       16407       0.46439 ppb       98         68)       Bromoform       16.51       105       15830       0.49387 ppb       98         71)       Isopropylbenzene       16.91       105       15830       0.49387 ppb       98         72)       1,1,2,2-Tetrachloroethane       16.92       110       <	54)	2-Hexanone	13.05	43	647			# <b>8</b> 8
591   1-Chlorohexane		•		107	2139	0.50819 լ	ppb	98
60) 1,1,1,2-Tetrachloroethane					4237			¥ 87
61) m&p-Xylene	-					0.47694	ppb	82
62) o-Xylene								83
63) Styrene				106		0.98808	gpb	98
65) 1,3-Dichloropropane		<del>-</del>				0.48968 r	dqç	<b>∮</b> 52
66) Dibromochloromethane						0.53328 1	dqç	81
68) Ethylbenzene						0.55076 բ	t dag	
68) Ethylbenzene 15.01 91 16407 0.46439 ppb 98 69) Bromoform 16.33 173 1582 0.53298 ppb 99 71) Isopropylbenzene 16.51 105 15830 0.49387 ppb 98 72) 1,1,2,2-Tetrachloroethane 16.68 85 1438 0.55291 ppb 84 73) 1,2,3-Trichloropropane 16.92 110 396 0.42240 ppb # 29 74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb # 22 76) Bromobenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 82) 1,2,4-Trimethylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 89 88) 1,2-DCB 19.56 146 8122 0.52070 ppb 89 89) 1,2-DCB 19.56 146 85954 0.45541 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 32 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 35 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 93 93) Hexachloroethane 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.50723 g	¢ dqc	
69) Bromoform 16.33 173 1582 0.53298 ppb 99 71) Isopropylbenzene 16.51 105 15830 0.49387 ppb 98 72) 1,1,2,2-Tetrachloroethane 16.68 85 1438 0.55291 ppb 84 73) 1,2,3-Trichloropropane 16.92 110 396 0.42240 ppb # 29 74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 95 79) 1,3,5-Trimethylbenzene 17.53 91 12173 0.52542 pph # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 96 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) 1,2-DCB 19.56 146 7594 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-DCB 19.56 146 5954 0.46550 ppb # 39 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-DCB 19.56 146 5954 0.46450 ppb 93 90) Hexachloroethane 22.85 157 363 0.51305 ppb # 81 92) 1,2-Trichlorobenzene 22.51 180 3762 0.48450 ppb 93 91) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69					-	0.53802 r	dqc	
71) Isopropylbenzene 16.51 105 15830 0.49387 ppb 88 72) 1,1,2,2-Tetrachloroethane 16.68 85 1438 0.55291 ppb 84 73) 1,2,3-Trichloropropane 16.92 110 396 0.42240 ppb # 29 74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.5000 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-DIbromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2-Trichlorobenzene 22.51 180 3762 0.48450 ppb 93 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.46439 r	ggc	_
72) 1,1,2,2-Tetrachloroethane 16.68 85 1438 0.55291 ppb 84 73) 1,2,3-Trichloropropane 16.92 110 396 0.42240 ppb # 29 74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.42 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 98 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 89 88) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69								
73) 1,2,3-Trichloropropane 16.92 110 396 0.42240 ppb # 29 74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb # 89 83) Sec-Butylbenzene 18.14 105 12254 0.46253 ppb # 89 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.77 146 7509 0.47350 ppb 89 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 93 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene								
74) t-1,4-Dichloro-2-Butene 17.01 53 115 1.15287 ppb # 22 75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 89 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene						0.55291 p	) da	
75) Bromobenzene 17.16 156 4629 0.53966 ppb 88 76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.42 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene	-	· ·				0.42240 p	t dat	
76) n-Propylbenzene 17.20 91 19369 0.47883 ppb 91 77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						1.15287 p	)pb #	
77) 4-Ethyltoluene 17.41 105 11208 0.49644 ppb # 81 78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb # 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 88) n-Butylbenzene 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.53966 p	pb	_
78) 2-Chlorotoluene 17.44 91 13793 0.50656 ppb 95 79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.47883 p	pb	
79) 1,3,5-Trimethylbenzene 17.48 105 13454 0.49853 ppb 94 80) 4-Chlorotoluene 17.53 91 12173 0.52542 ppb # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 89 1,2-DCB 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene						0.49644 p	# age	
80) 4-Chlorotoluene 17.53 91 12173 0.52542 pph # 79 81) Tert-Butylbenzene 18.09 119 14531 0.51189 pph # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 pph 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 pph 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 pph # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 pph 89 87) 1,4-DCB 18.95 146 8122 0.52070 pph 82 88) n-Butylbenzene 19.42 91 12770 0.50626 pph # 92 89) 1,2-DCB 19.56 146 5954 0.45641 pph 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 pph # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 pph 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.50656 p	gp	
81) Tert-Butylbenzene 18.09 119 14531 0.51189 ppb # 88 82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 89 1,2-DCB 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 81 92) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69								
82) 1,2,4-Trimethylbenzene 18.14 105 12254 0.46253 ppb 89 83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69	•				· ·			
83) Sec-Butylbenzene 18.47 105 18512 0.50154 ppb 96 84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.31189 b	p. ⊪	
84) p-Isopropyltoluene 18.71 119 14587 0.48915 ppb # 86 85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.40233 p	ibn adi	
85) Benzyl Chloride 19.10 91 1224 0.47192 ppb # 89 86) 1,3-DCB 18.77 146 7509 0.47350 ppb 89 87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0,50154 p	ibn T	
86) 1,3-DCB						0.40913 p	po #	
87) 1,4-DCB 18.95 146 8122 0.52070 ppb 82 88) n-Butylbenzene 19.42 91 12770 0.50626 ppb # 92 89) 1,2-DCB 19.56 146 5954 0.45641 ppb 93 90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.47152 p	.bn ⊪	
88) n-Butylbenzene       19.42       91       12770       0.50626 ppb # 92         89) 1,2-DCB       19.56       146       5954       0.45641 ppb 93         90) Hexachloroethane       20.23       117       3135       0.45790 ppb # 55         91) 1,2-Dibromo-3-chloropropan       20.85       157       363       0.51305 ppb # 81         92) 1,2,4-Trichlorobenzene       22.51       180       3762       0.48450 ppb 82         93) Hexachlorobutadiene       22.85       225       795       0.39290 ppb # 61         94) Naphthalene       22.86       128       2241       0.50655 ppb # 69	-					0.47330 p	pb mb	
89) 1,2-DCB       19.56       146       5954       0.45641 ppb       93         90) Hexachloroethane       20.23       117       3135       0.45790 ppb       #       55         91) 1,2-Dibromo-3-chloropropan       20.85       157       363       0.51305 ppb       #       81         92) 1,2,4-Trichlorobenzene       22.51       180       3762       0.48450 ppb       82         93) Hexachlorobutadiene       22.85       225       795       0.39290 ppb       #       61         94) Naphthalene       22.86       128       2241       0.50655 ppb       #       69	•	•						
90) Hexachloroethane 20.23 117 3135 0.45790 ppb # 55 91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69	•	_				0.30020 p	pp #	
91) 1,2-Dibromo-3-chloropropan 20.85 157 363 0.51305 ppb # 81 92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69		•				0.45041 p	pb #	
92) 1,2,4-Trichlorobenzene 22.51 180 3762 0.48450 ppb 82 93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.43790 p	pb #	
93) Hexachlorobutadiene 22.85 225 795 0.39290 ppb # 61 94) Naphthalene 22.86 128 2241 0.50655 ppb # 69						0.31303 p	np ⊾n ti	
94) Naphthalene 22.86 128 2241 0.50655 ppb # 69	-					0.40430 p	nh #	
						0.50655 p	p~ #	
	:							

^{(#) =} qualifier out of range (m) = manual integration 0229S04W.D SALLRW.M Wed Mar 07 08:30:02 2012

#### Quantitation Report

Data File: M:\SWEETPEA\DATA\S120229\0229S04W,D

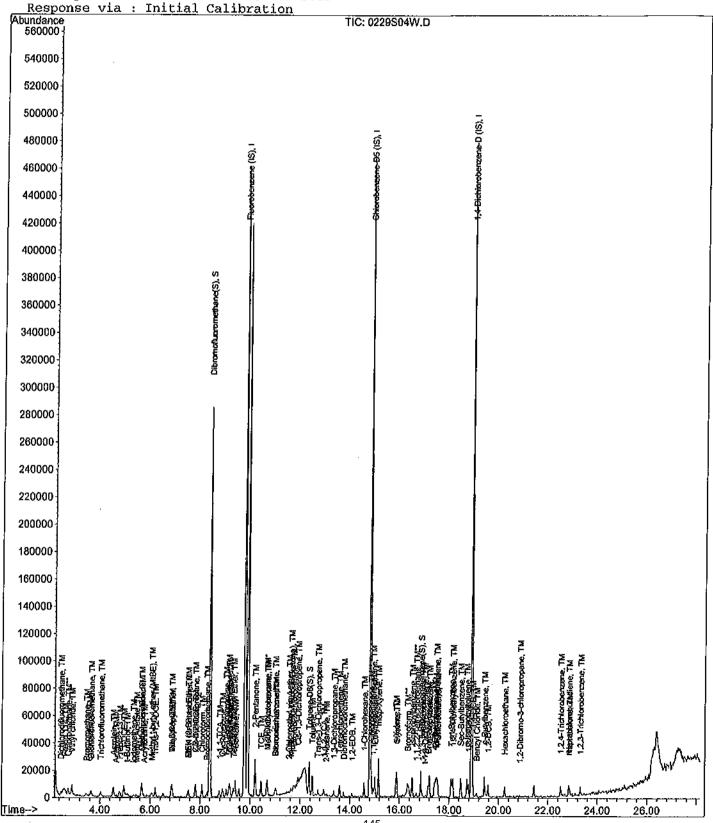
Vial: 4 : 29 Feb 12 18:53 Operator: DG,SV,RS : 0.5ug/L Std@2-29-12SV : Sweetpea : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012

Quant Results File: SALLRW.RES

: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260


Acq On

Sample

Method

Misc

Last Update : Mon Mar 05 11:31:09 2012



#### Quantitation Report (Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S05W.D

Vial: 5 Acq On : 29 Feb 12 19:30 Sample : 1.0ug/L Std@2-29-12SV Operator: DG, SV, RS Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
1) Fluorobenzene (IS)	9.76	96	250816	25.00000 pp	 h	0.00
55) Chlorobenzene-D5 (IS)	14.81	117	192256	25.00000 pp	b	0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152		25,00000 pp		0.00
System Monitoring Compounds						
31) Dibromofluoromethane(S)	8.39	111	15743		b	0.00
Spiked Amount 20.857 36) 1,2-DCA-D4(S)	9.17	65		exy = 10.0		
Spiked Amount 20.981	5.17	63		$\begin{array}{rcl} 2.08749 & ppl\\ xy & = & 9.96 \end{array}$		0.00
56) Toluene-D8(S)	12.35	98	49115	1.79548 pp	19 / TO	0.00
Spiked Amount 21.584				xy = 8.3	16%	0.00
64) 4-Bromofluorobenzene(S)	16.85	95	17217	xy = 8.33 1.90605 ppl	)	0.00
Spiked Amount 21.472			Recove	ry = 8.8	77%	
Margat Compounds					_	_
Target Compounds 2) Dichlorodifluoromethane	2 46	O.E.	4100	1.15384 ppl	Qva	lue
3) Frenn 114	2.46	85 85	4183 6203	1.15384 ppi 1.72513 ppi	)	89
3) Freon 114 4) Chloromethane 5) Vinyl chloride	2.02	50	5036	0.98723 ppi	,	90 99
5) Vinvl chloride	2.88	62	3415	0.85054 ppk	,	87
6) Bromomethane	3.45	94	1356	1.08654 ppk	, , #	64
<ul><li>6) Bromomethane</li><li>7) Chloroethane</li></ul>	3,57	64	5817	0.96988 ppl		81
8) Dichlorofluoromethane	3.64	67	17107	1.05326 ppk	)	95
<ol><li>9) Trichlorofluoromethane</li></ol>	4.02	101	11402	1.08685 pph	) #	64
10) Acrolein	4.53	56	5799	49.13488 pph 2.91170 pph 1.00627 pph	)	93
11) Acetone	4.64	43	542	2.91170 pph	) #	86
12) Freon-113	4.78	101	6430	1.00627 ppb	) #	86
10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol	4.95	96 50	7485	1.02533 ppb 47.91896 ppb	) ,,	87
15) Methyl Acetate	5.05	59 43	4947	47.91896 ppb 3.12746 ppb	#	76 94
15) Methyl Acetate 16) Iodomethane 17) Acrylonitrile	5.34	142	2761	1.86446 ppb		94 81
17) Acrylonitrile	5.75	53	1087	1.13112 ppb		84
18) Methylene chloride 19) Carbon disulfide	5.64	84	8635	1.11126 ppb		92
19) Carbon disulfide	5.66	76	8693 10440	1,18325 ppb		93
20) Methyl t-butyl ether (MtBE	6.06	73	10440	0.94231 ppb		95
21) Trans-1,2-DCE	6.20	96	8913	1.01228 ppb	#	90
22) 1 1 DCA	6.87	45	24811 15277	1.02383 ppb	n	95
21) Trans-1,2-DCE 22) Diisopropyl Ether 23) 1,1-DCA 24) Vinyl Acetate 25) Ethyl test Butyl Ether	6 87	63 <b>4</b> 3	152//	1.01929 ppb	Ħ	93
25) Ethyl tert Rutyl Ether	7 52	59	11634 16578 2110	1.01881 ppb 1.06726 ppb	Ħ	91 95
25) Ethyl tert Butyl Ether 26) MEK (2-Butanone)	7.53	43	2110	0.89182 ppb	Ħ	69
27) Cis-1,2-DCE	7.81	96	8966	1.00795 ppb	п	93
28) 2,2~Dichloropropane	7.81	77	11061	1.08453 ppb		89
29) Chloroform	8.09	83	13698	0.96441 ppb		88
30) Bromochloromethane	8.27	128	3074	1.17215 ppb		70
32) 1,1,1-TCA	8.78	97	11344	1.01299 ppb		99
33) Cyclohexane 34) 1,1-Dichloropropene	8.91	56	13108	1.08777 ppb	Ħ	75
35) 2,2,4-Trimethylpentane	9,04 9.14	75 57	10793 21880	1.01229 ppb		98
37) Carbon Tetrachloride	9.19	117	7656	1.06982 ppb 0.88057 ppb		97 01
38) Tert Amyl Methyl Ether	9.33	73	12587	0.92092 ppb		91 95
39) 1,2-DCA	9.33	62	6664	1.02120 ppb	#	74
40) Benzene	9.41	78	36294	1.01770 ppb	Ä	95
41) TCE	10.44	95	8710	1.02605 ppb		84
42) 2-Pentanone	10.19	43	98826	48.27530 ppb		96

^{(#) =} qualifier out of range (m) = manual integration 0229S05W.D SALLRW.M Wed Mar 07 08:30:08 2012

#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S05W.D Vial: 5

Acq On : 29 Feb 12 19:30 Operator: DG, SV, RS : 1.0ug/L Std02-29-12SV Sample Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Ouant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

DataAcq Meth: V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
43)	1,2-Dichloropropane	10,66	63	7454	0.98622	daa	# 91
	Bromodichloromethane	11.00	83	8033	0.90631		# 98
45)	Methyl Cyclohexane	10.68	83	10958	1.00724		88
	Dibromomethane	11.02	93	3016	0.93662	ppb	# 55
	2-Chloroethyl vinyl ether	11.54	106	81	0.28397	ppb	# 1
	MIBK (methyl isobutyl ket	11.64	43	2984	1.07030		# 84
	1-Bromo-2-chloroethane	11.73	63	7012	1.01761	ppb	97
-	Cis-1,3-Dichloropropene	11.91	. 75	11415	1.02805		100
	Toluene	12.48	91	30296	0.94756	ppb	89
	Trans-1,3-Dichloropropene	12.71	75	6999	0.97878		# 55
	1,1,2-TCA	12.94	83	4315	1.14039		# 81
	2-Hexanone	13.04	43	1578	1.02884		# 77
	1,2~EDB	14.09	107	4032	0.89958		98
	Tetrachloroethene	13.59	166	9069	0.96508		92
	1-Chlorohexane	14.58	91	11903	1.02939		94
	1,1,1,2-Tetrachloroethane	14.94	131 106	6182 29727	0.87364		100
	m&p-Xylene o-Xylene	15.16 15.86	106	13597	1.96434 0.93030		92 99
	Styrene	15.89	104	21125	0.90390		93
	1,3-Dichloropropane	13.36	76	6885	0.90312		
	Dibromochloromethane	13.76	129	4098	0.70571		
	Chlorobenzene	14.87	112	20964	0.97686	ppb .	86
	Ethylbenzene	15.01	91	37046	0.98470		96
	Bromoform	16.33	173	3071	0.97159		98
	Isopropylbenzene	16,51	105	33569	1.07393		95
72)	1,1,2,2-Tetrachloroethane	16.67	85	2758	1.08742		54
73)	1,2,3-Trichloropropane	16.92	110	1194	1.30598	ppb #	40
74)	t-1,4-Dichloro-2-Butene	17.03	53	206	1.43533	ppb #	22
	Bromobenzene	17.16	156	7807	0.93331		93
	n-Propylbenzene	17.20	91	40975	1.03872		98
	4-Ethyltoluene	17.39	105	21023	0.95487		90
	2-Chlorotoluene	17.44	91	27129	1.02166		100
	1,3,5-Trimethylbenzene	17,48	105	27244	1.03518	ppb	98
	4-Chlorotoluene	17.53	91	22049	0.97590		95
81)		18.09	119	28217	1.01930		90
	1,2,4-Trimethylbenzene	18.15	105	26214	1.01461		96
	Sec-Butylbenzene	18.46	105 119	36213 29315	1.00605	ppp 4	91
	p-Isopropyltoluene	18.71 19.09	91	2097	1.00802 0.82907	ppb #	
86)	Benzyl Chloride 1,3-DCB	18.77	146	16030	1.03651		82
87)	1,4-DCB	18.94	146	15524	1.02054		94
	n-Butylbenzene	19.43	91	22432	0.91192		98
89)	1,2-DCB	19.56	146	12836	1.00897		90
-	Hexachloroethane	20.24	117	6220	0.93160		79
91)	1,2-Dibromo-3-chloropropan		157	678	0.98263		
	1,2,4-Trichlorobenzene	22.51	180	8037	1.06138		92
93)	Hexachlorobutadiene	22.84	225	1622	0.82200	ppb	88
94)		22.87	128	3766	0.87291	ppb	. 95
95)	1,2,3-Trichlorobenzene	23.30	180	6041	0.91392		96

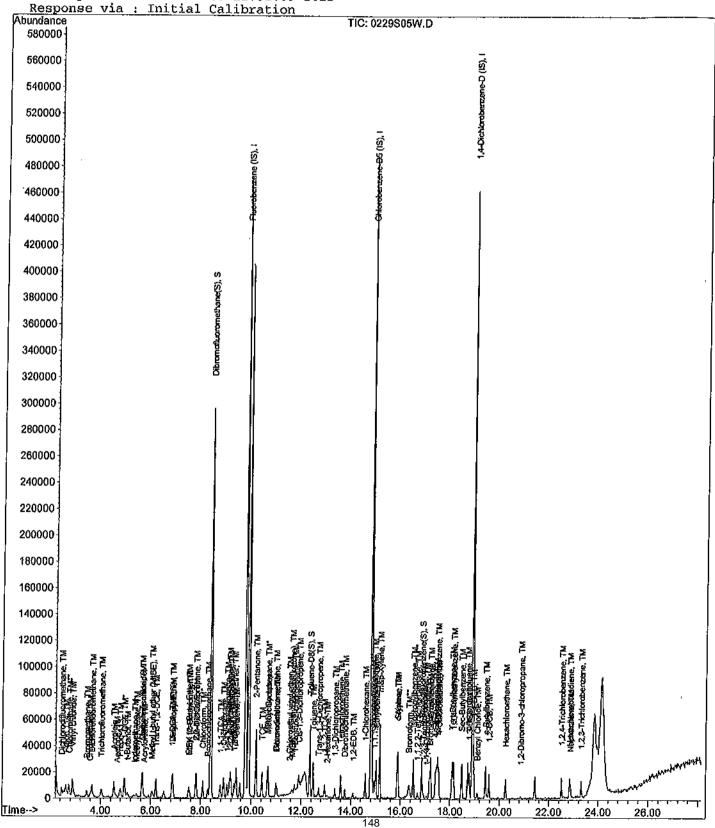
^{(#) =} qualifier out of range (m) = manual integration 0229S05W.D SALLRW.M Wed Mar 07 08:30:09 2012

#### Quantitation Report

Data File : M:\SWEETPEA\DATA\S120229\0229S05W.D Acq On

Vial: 5 : 29 Feb 12 19:30 Operator: DG, SV, RS : 1.0ug/L Std@2-29-12SV : Sweetpea Inst : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES


Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Sample

Misc

Last Update : Mon Mar 05 11:31:09 2012



#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S06W.D

Vial: 6 Acq On : 29 Feb 12 20:07 Operator: DG, SV, RS Sample : 5.0ug/L Std@2-29-12SV Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Min)
1) Fluorobenzene (IS)	9.76	96	264448	25.00000 ppb	0.00
55) Chlorobenzene~D5 (IS)	14.81	117		25.00000 ppb	
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	94400	25.00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S)	8.40	111	76284	9.59198 ppb	0.00
Spiked Amount 20.857	0.10	~		exy = 45.989	
36) 1,2-DCA-D4(S)	9.17	65	55486	10.10356 ppb	0.00
Spiked Amount 20.981			Recove	xy = 48.1589	ક
56) Toluene-D8(S)	12.35	98		9.67396 ppb	0.00
Spiked Amount 21.584	16 00	0.5		exy = 44.8219	
64) 4-Bromofluorobenzene(S) Spiked Amount 21.472	16.85	95	85036	9.72488 ppb	0.00
bpixed Amount 21.4/2			Recove	$\mathbf{ry} = 45.2928$	8
Target Compounds					Qvalue
2) Dichlorodifluoromethane	2.46	85	18056	4.72382 ppb	93
3) Freon 114	2.62	85	20747	3.70359 ppb	89
4) Chloromethane	2.75	50	25152	4.67651 ppb	84
5) Vinyl chloride 6) Bromomethane	2.89 3.45	62 94	19224	4.54110 ppb	97
7) Chloroethane	3.58	64	8993 32466	4.43262 ppb 5.13409 ppb	97 98
8) Dichlorofluoromethane	3.65	67	78525	4.58547 ppb	97
9) Trichlorofluoromethane	4.04	101	56638	5.12050 ppb	94
10) Acrolein	4.53	56	12742	102.39749 ppb	97
11) Acetone	4.63	43	829	4.22393 ppb	
12) Freon-113	4.79	101	2 <b>6872</b>	3.98860 ppb	95
13) 1,1-DCE	4.96	96	32528		97
14) t-Butanol	5.06 5.41	59	4369	92.83111 ppb	100
15) Methyl Acetate	5.41	43	14008	5.68499 ppb	96
16) Iodomethane 17) Acrylonitrile	5.35 5.74	142	33273	4.51030 ppb	94
18) Methylene chloride	5.64	53 84	4895 36265	4.83111 ppb 4.42647 ppb	84 93
19) Carbon disulfide	5,66	76	33664	4.34597 ppb	95
20) Methyl t-butyl ether (MtBE		73	56117		# 92
21) Trans-1,2-DCE	6.20	96	42533	4.58160 ppb	98
22) Diisopropyl Ether	6.87	45	121068	4.73834 ppb	97
23) 1,1-DCA	6.85	63	72215	4.56986 ppb	97
24) Vinyl Acetate	6.88	43	58179	4.83219 ppb	99
25) Ethyl tert Butyl Ether	7.53	59 43	80075	4.88934 ppb	96
26) MEK (2-Butanone) 27) Cis-1,2-DCE	7.81	43 96	10743 45022	4.30662 ppb	# 62
28) 2,2-Dichloropropane	7.81	77	48483	4.80041 ppb 4.50871 ppb	89 97
29) Chloroform	8.08	83	63692	4.25311 ppb	91
30) Bromochloromethane	8.28	128	15360		# 73
32) 1,1,1-TCA	8.77	97	52290	4.42865 ppb	97
33) Cyclohexane	8.90	56	51617	4.06266 ppb	93
34) 1,1-Dichloropropene	9.04	75	49030	4.36154 ppb	94
35) 2,2,4-Trimethylpentane	9.14	57	79876	3.70420 ppb	84
37) Carbon Tetrachloride	9.21	117	39714	4.33233 ppb	98
38) Tert Amyl Methyl Ether 39) 1,2-DCA	9.33 9.32	73 62	70291 31470	4.87770 ppb	96 05
40) Benzene	9.41	78	172750	4.57391 ppb 4.59428 ppb	95 96
41) TCE	10.43	95	38004	4.24614 ppb	94
42) 2-Pentanone	10.19	43	211177	97.83975 ppb	95

^{(#) =} qualifier out of range (m) = manual integration 0229S06W.D SALLRW.M Wed Mar 07 08:30:14 2012

#### (Not Reviewed) Quantitation Report

Data File : M:\SWEETPEA\DATA\S120229\0229S06W.D Vial: 6

Operator: DG, SV, RS Acq On : 29 Feb 12 20:07 : Sweetpea Sample ; 5.0ug/L Std@2-29-12SV Inst Multiplr: 1.00 : Water 10mL w/IS:02-17-12 Misc

Ouant Time: Mar 7 8:26 2012 Ouant Results File: SALLRW.RES

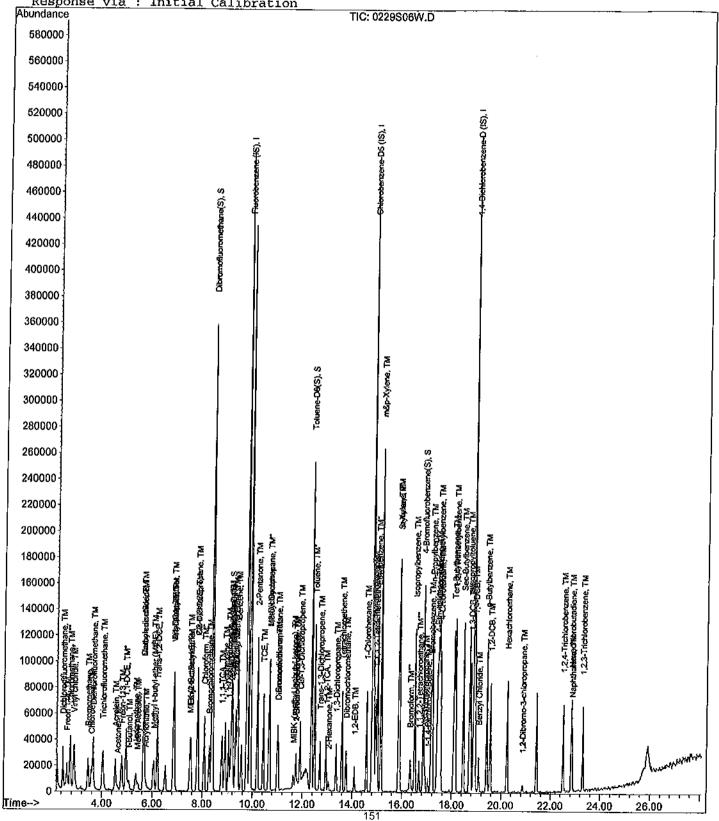
Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration
DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	!
43)	1,2-Dichloropropane	10.66	63	39277	4.92878	ppb #	96
	Bromodichloromethane	11.00	83	43072	4.60903	ppb	100
45)	Methyl Cyclohexane	10.68	.83	46858	4.08508		97
46)	Dibromomethane	11.02	93	17892	5.26994		97
	2-Chloroethyl vinyl ether	11.74	106	334	3.66721		8
	MIBK (methyl isobutyl ket	11.63	43	12773	4.34525		92
49)	1-Bromo-2-chloroethane	11.74	6 <b>3</b>	33927	4.66982		97
50)	Cis-1,3-Dichloropropene	11.90	75	51316	4.38335		99
51)	Toluene	12.48	91	151757	4.50181		91
52)	Trans-1,3-Dichloropropene	12.70	75	36390	4.82666		93
53)	1,1,2-TCA	12,95	83	19220	4.81772		85
54)	2-Hexanone	13.04	43	6841	4.23033		85
	1,2-EDB	14.10	107	21236	4.89440		92
	Tetrachloroethene	13.59	166	40070	4.40481		96
	1-Chlorohexane	14.58	91	47757	4.26645		96
	1,1,1,2-Tetrachloroethane	14.94	131	34985	5.10731		90
	m&p-Xylene	15,15	106	142203	9.70687		97
	o-Xy1ene	15.87	106	69872	4,93842		99
	Styrene	15.90	104	113017	4.99541		96
	1,3-Dichloropropane	13.35	76	37021	5.01643		96
	Dibromochloromethane	13.76	129	28008	4.98244		97
	Chlorobenzene	14.87	112	99590	4.79377		92
	Ethylbenzene	15.01	91	168239	4.61948		94
	Bromoform	16.33	173	15369	5.02292		90
	Isopropylbenzene	16.51	105	151205	4.69138		96
	1,1,2,2-Tetrachloroethane	16.67	85	12839	4.90941		93
	1,2,3-Trichloropropane	16.93	110	4805	5.09709		70
•	t-1,4-Dichloro-2-Butene	17.04	53	1752	5.92916		67
-	Bromobenzene	17.16	156	41819	4.84855		95
	n-Propylbenzene	17.19	91	177958	4.37517		97
	4-Ethyltoluene	17.40	105	103841	4.57417		92 99
	2-Chlorotoluene	17.44	91	127509	4.65704		98
	1,3,5-Trimethylbenzene	17.48	105	122169	4,50195		97
	4-Chlorotoluene	17.53	91	111551	4.78835 4.54554		92
	Tert-Butylbenzene	18.09	119	129748	4.54433		94
•	1,2,4-Trimethylbenzene	18.14	105	121062 166400	4.48336		98
	Sec-Butylbenzene	18.47	119	134148	4,47360		99
	p-Isopropyltoluene	18.72 19.09	91	14139	5,42132		92
	Benzyl Chloride	18.77	146	76712	4,81061		94
86)	1,3-DCB		146	76715	4,89105		96
	1,4-DCB	18.95 19.42	91	106663	4.20532		95
	n-Butylbenzene		146	65807	5.01667		97
	1,2-DCB	19.56 20.24	117	36448	5,29428		98
	Hexachloroethane	20.24	157	2986	4,19708		67
91)	1,2-Dibromo-3-chloropropan 1,2,4-Trichlorobenzene	22.51	180	36594	4.68687		99
	Hexachlorobutadiene	22.84	225	9435	4.63725		97
94)	Naphthalene	22.87	128	19400	4.36101		94
	1,2,3-Trichlorobenzene	23.30	180	31774	4.66195		90
73)	1,2,3-IIICHIOIODGHBCHC	20.50	-55		50225	F-E	

#### Quantitation Report

Data File : M:\SWEETPEA\DATA\S120229\0229S06W.D


Vial: 6 Acq On : 29 Feb 12 20:07 Operator: DG,SV,RS Sample : 5.0ug/L Std@2-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration



#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S07W.D Vial: 7

Operator: DG, SV, RS Acq On : 29 Feb 12 20:44 Sample : 10ug/L Std@2-29-12SV : Sweetpea Multiplr: 1.00 : Water 10mL w/IS:02-17-12 Misc

Quant Results File: SALLRW.RES Quant Time: Mar 7 8:26 2012

Quant Method: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	К.Т.	QIon	Response	Conc	Unit	9 D	ev(Min)
1) Fluorobenzene (IS)	9.76	96	263104	25.	00000	ppb	0.00
55) Chlorobenzene-D5 (IS)	14.81	117	190016	25.	00000	ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	97000	25.	00000	ppb	0.00
System Monitoring Compounds							
31) Dibromofluoromethane(S) Spiked Amount 20.857	8.39	111	202129 Recove		54562 = 122		0.00
36) 1,2-DCA-D4(S)	9.17	65 .					0.00
Spiked Amount 20.981	3.17	<b>.</b>	Recove	rv :	= 129	5.428	
56) Toluene-D8(S)	12.35	98	711171	26.	30454	daa	0.00
Spiked Amount 21.584		• -	Recove				8
64) 4-Bromofluorobenzene(S)	16,85	95		25.			0.00
Spiked Amount 21.472	-		Recove				8
Target Compounds						(	Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	2.46	85	39296		33315		100
3) Freon 114	2,61	85	56066		66200		100
<ul> <li>3) Freon 114</li> <li>4) Chloromethane</li> <li>5) Vinyl chloride</li> <li>6) Bromomethane</li> <li>7) Chloroethane</li> </ul>	2.74	50	51456		61608		100
5) Vinyl chloride	2.88	62	37920		00324		100
6) Bromomethane	3.45	94	20592		61066		100
7) Chloroethane	3.58		66779		61421		100
8) Dichlorofluoromethane	3.65	67	168423		88532		100
9) Trichlorofluoromethane	4.02	101	110045		99972		100 100
10) Acrolein	4.53	56	15893 1882		37204 63816		100
11) Acetone	4.63 4.79	43 101	62828		37316		100
12) Freon-113	4.79	96	71453	9	33080	ըրտ որի	100
13) 1,1-DCE 14) t-Butano1	5.06	59	5885	125 6	58134		100
15) Methyl Acetate	5.43	43	27377	9.6	51456		100
16) Iodomethane	5.33	142	88614		37234		100
17) Acrylonitrile	5.75	53	9951		37129		100
18) Methylene chloride	5.64	84	76997		44619		100
19) Carbon disulfide	5.66	76	72456	9.4	10175	ppb	100
20) Methyl t-butyl ether (MtBE	6.05	73	114159	9.8	32268	ppb	100
21) Trans-1,2-DCE	6.20	96	87982		52571		100
22) Diisopropyl Ether	6.86	45	243519	9.5	57949	ppb	100
23) 1,1-DCA	6.85	63	148372		13714		100
24) Vinyl Acetate	6.87	43	116578		73212		100
25) Ethyl tert Butyl Ether	7.53	59	156427	9.6	50014		100
26) MEK (2-Bucanone)	7.49	43	25247	10.1	17263	ppb	100
27) Cis-1,2-DCE	7.82	96	88044	9.4	13552	agg	100
28) 2,2-Dichloropropane	7.80	77	103385	9.6	6348	agg	100
29) Chloroform	8.08	83	130557	10.6	0403	ppp	100 100
30) Bromochloromethane	8.29	128	29826 109163	10.5	9671 29267	րբս սզգ	100
32) 1,1,1-TCA	8.78	97 56	123938	9.4	30471	ppb	100
33) Cyclohexane	8.90 9.04	75	104498		34326		100
34) 1,1-Dichloropropene 35) 2,2,4-Trimethy1pentane	9.14	57	200414	g 7	4155	րրի	100
37) Carbon Tetrachloride	9.20	117	92714	10.1	16568	ggg	100
38) Tert Amyl Methyl Ether	9.33	73	141156		34527		100
39) 1,2-DCA	9.32	62	64876		7737		100
40) Benzene	9.41	78	351333		9142		100
41) TCE	10.43	95	78908		36134		100
42) 2-Pentanone	10.19	43	265282		3481		100

^{(#) =} qualifier out of range (m) = manual intespration 0229S07W.D SALLRW.M Wed Mar 07 08:30:21 2012

#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S07W.D Vial: 7

Acq On : 29 Feb 12 20:44 Operator: DG, SV, RS Sample : 10ug/L Std@2~29-12SV : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Ouant Results File: SALLRW.RES

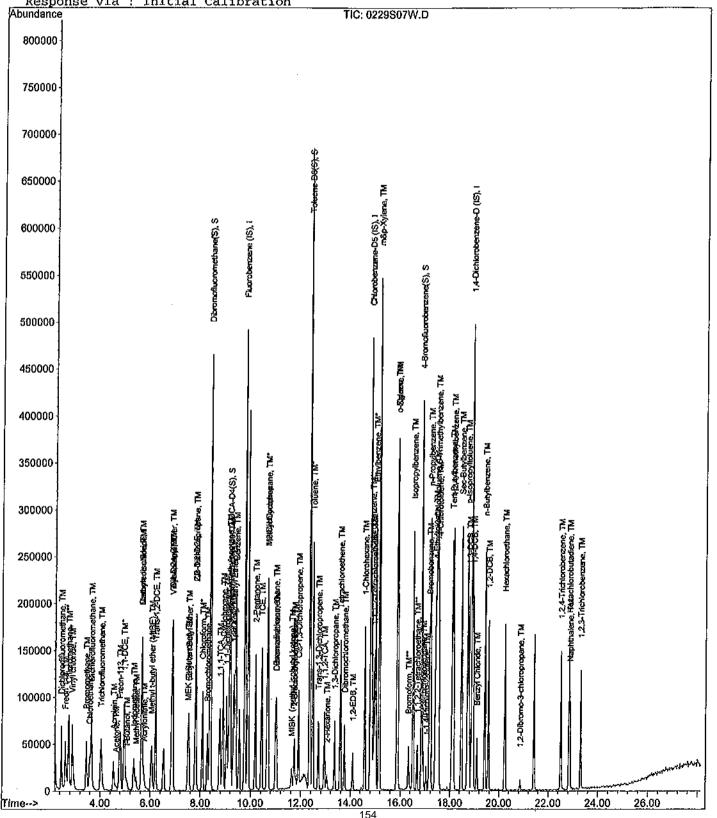
Quant Method: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration

	Compound	R. <b>T.</b>	QIon	Response	Conc Unit	Qvalue	
43)	1,2-Dichloropropane	10.66	63	77898	9.82518	ppb	100
44)	Bromodichloromethane	10.99	83	90964	9.78356	ppb	100
45)	Methyl Cyclohexane	10.68	83	111069	9.73247	ppb	100
	Dibromomethane	11.02	93	34132	10.10465	ppb	100
	2-Chloroethyl vinyl ether	11.73	106	697	8.65583		100
	MIBK (methyl isobutyl ket	11.63	43	26564	9.08297		100
	1-Bromo-2-chloroethane	11.73	63	69471	9,61105		100
,	Cis-1,3-Dichloropropene	11.90	75	113172	9.71640		100
•	Toluene	12.48	91	315303	9.40112		100
	Trans-1,3-Dichloropropene	12.70 12.94	75 83	76540 37459	10.20390 9.43751		100 100
	1,1,2-TCA 2-Hexanone	13.03	43	15397	9.56982		100
	1,2-EDB	14.09	107	42204	9.52718		100
	Tetrachloroethene	13.58	166	86204	9.28153		100
	1-Chlorohexane	14.57	91	109871	9.61385		100
	1,1,1,2-Tetrachloroethane	14.94	131	72618	10.38338		100
	m&p-Xylene	15.15	106	295372	19.74804		100
	o-Xylene	15.86	106	146573	10.14665		100
	Styrene	15.89	104	227908	9.86669	ppb	100
	1,3-Dichloropropane	13,35	76	75265	9.98904		100
	Dibromochloromethane	13,76	129	61486	10.71324		100
	Chlorobenzene	14.86	112	206442	9.73293		100
	Ethylbenzene	15.01	91	360761	9.70220		100
-	Bromoform	16.33	173	31894	10,20948		100
-	Isopropylbenzene	16.51	105 85	322026 27571	9.72356		100 100
	1,1,2,2-Tetrachloroethane	16.67 16.91	110	9212	10.26008 9.51005		100
	1,2,3-Trichloropropane t-1,4-Dichloro-2-Butene	17.03	53	3201	9.90813		100
	Bromobenzene	17.15	156	86939	9.80963		100
	n-Propylbenzene	17.19	91	391206	9.36015		100
77)		17.39	105	222562	9.54101	daa	100
	2-Chlorotoluene	17.43	91	260545	9.26088		100
79)	1,3,5-Trimethy1benzene	17,48	105	268008	9.61142		100
80)	4-Chlorotoluene	17,53	91	233354	9.74829	ppb	100
81)	Tert-Butylbenzene	18.09	119	278481	9.49470		100
	1,2,4-Trimethylbenzene	18.14	105	261979	9.57036	ppb	100
	Sec-Butylbenzene	18.46	105	364843	9.56657	ppb	100
	p-Isopropyltoluene	18.71	119	298793	9.69714		100
85)		19.10	91	28192	10.51992		100
86)	•	$18.77 \\ 18.94$	146 146	164151 154133	10.01799		$\frac{100}{100}$
87)	•	19.42	91	247051	9.56353 9.47920	T- T	100
89)	n-Butylbenzene 1,2~DCB	19.56	146	135815	10.07607	ppb	100
-	Hexachloroethane	20,23	117	74595	10.54492		100
91)		20.86	157	7869	10.76410		100
92)		22.51	180	82830	10.32431		100
	Hexachlorobutadiene	22.83	225	21648	10.35469		100
94)	Naphthalene	22.87	128	42400	9.27579		100
95)	1,2,3-Trichlorobenzene	23.30	180	68064	9.71883	ppb	100

Data File: M:\SWEETPEA\DATA\S120229\0229S07W.D

Vial: 7 : 29 Feb 12 20:44 Operator: DG, SV, RS Sample : 10ug/L Std@2-29-12SV Inst : Sweetpea : Water 10mL w/IS:02-17-12 Multiplr: 1.00


Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Method . : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Misc

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration



### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S08W.D

Acq On : 29 Feb 12 21:21 Operator: DG, SV, RS Sample : 40ug/L Std@2-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Ťitle

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

1   Fluorobemzene (IS)	Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spice   Spic	1) Fluorobenzene (IS)	9.77	96	270144	25.00000 pp	b 0.00
System Monitoring Compounds   31   11   11   649820   79.98581 ppb   0.00   8591ked Amount   20.857   361 1,2-DCA-D4 (\$3)   5931ked Amount   21.584   4-84068   50.00   8600very   = 383.4938   3831ked Amount   21.584   4-8400   4-8400   4-8400   79.98581 ppb   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very   = 385.0538   0.00   8000very	55) Chlorobenzene-D5 (IS)	14.80	117	196992	25.00000 pp	
31   Dibromofluoromethane (S)   Spiked Amount   20.857   Spiked Amount   20.857   Spiked Amount   20.981   Spiked Amount   20.981   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amoun	70) 1,4-Dichlorobenzene-D (IS)	18.89	152	99368	25.00000 pp	b 0.00
31   Dibromofluoromethane (S)   Spiked Amount   20.857   Spiked Amount   20.857   Spiked Amount   20.981   Spiked Amount   20.981   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amoun	Overhan March Laudens Ocean A					
Spiked Amount   20.857		0.20	111	640000	TO BOTO1	
36) 1,2-DCA-D4(S)		0,39	111			
Spiked Amount   20.981   Recovery   385.5538		9 17	65		±y = 363.4 80 78766 nn	936 h 0.00
Spiked Amount		3.1.	0.5			
Spiked Amount   21.584		12.35	98	2225414		
Target Compounds 2) Dichlorodifluoromethane 2) A6 85 174720 44.74651 ppb 100 3) Freon 114 2.62 85 290848 40.46391 ppb 92 4) Chloromethane 2.74 50 205118 37.33343 ppb 95 5) Vinyl chloride 2.87 62 210048 43.57147 ppb 98 6) Bromomethane 3.44 94 91680 40.15892 ppb 91 7) Chloroethane 3.58 64 282033 43.65962 ppb 92 8) Dichlorofluoromethane 3.65 67 769721 44.00020 ppb 98 9) Trichlorofluoromethane 4.02 101 479097 42.40069 ppb 92 10) Acrolein 4.53 56 21208 166.83854 ppb 97 11) Acetone 4.63 43 8336 41.57809 ppb 99 12) Freon-113 4.79 101 303228 44.05898 ppb 95 13) 1,1-DCE 4.94 96 338779 43.08710 ppb 93 14) t-Butanol 5.05 59 9052 188.27862 ppb 100 15) Methyl Acetate 5.42 43 12422 37.0158 ppb 97 16) Iodomethane 5.34 142 437686 38.94793 ppb 97 17) Acrylonitrile 5.74 53 44789 43.27239 ppb 97 18) Carbon disulfide 5.66 76 312064 39.43755 ppb 97 22) Diisopropyl Ether 6.05 73 49483 41.47196 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.0600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb 98 27) Cis-1,2-DCE 7.81 96 400878 42.25931 ppb 97 35) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.94374 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb 99 39) TCE 40060 ppb 99 30) TCE 40060 ppb 99 30) TCE 40060 ppb 99 31) TCE 40060 ppb 99 32) 2-Pentanone 9.05 75 487974 42.49320 ppb 99 33) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 34) TCE 40060 ppb 99 34) 2-Pentanone 9.04 78 1544906 40.2039 ppb 99 341) TCE 40060 ppb 99 342) 2-Pentanone 9.04 78 1544906 40.2039 ppb 99 343) 2-Pentanone 9.05 75 487974 42.49320 ppb 99 344) TCE 40060 ppb 99 345 Pertanone 9.05 75 487974 42.49320 ppb 99 346) TCE 40060 ppb 99 347 CEPTANONE 9.06 90 348 TERTANONE 9.06 90 349 TEPTANONE 9.06 90 340 TCEPTANONE 9.06 90 341 TCE 40060 ppb 99 341 TCE 40060 ppb				Recove	ry = 367.8	60%
Target Compounds		16.84	95	716599	77.42536 ppl	b 0.00
2	Spiked Amount 21.472			Recove	ry = 360.5	86%
2	Target Compounds					0 1
3) Freon 114		2 46	95	17/720	44 74651 pp	
Chloromethane						
5) Vinyl chloride  6) Bromomethane  3. 44 94 91680 40.15892 ppb 91  7) Chloroethane  3. 58 64 222033 43.65962 ppb 92  8) Dichlorofluoromethane  4. 65 67 769721 44.00020 ppb 98  9) Trichlorofluoromethane  4. 62 101 479097 42.40069 ppb 92  10) Acrolein  4. 63 43 8336 41.57809 ppb 97  11) Acetone  4. 63 43 8336 41.57809 ppb 95  12) Freon-113 4.79 101 303228 44.05898 ppb 95  13) 1,1-DCE  4. 94 96 338779 43.08710 ppb 93  14) t-Butanol  5. 05 59 9052 188.27862 ppb 100  15) Methyl Acetate  5. 42 43 124322 37.01158 ppb 97  16) Iodomethane  5. 34 142 437686 38.94793 ppb 97  17) Acrylonitrile  5. 74 53 44789 43.27239 ppb 93  18) Methylene chloride  5. 64 84 339559 40.57237 ppb 97  19) Carbon disulfide  5. 66 76 312064 39.43755 ppb 97  20) Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96  21) Disopropyl Ether  6. 86 45 1073903 41.14401 ppb 95  22) Diisopropyl Ether  6. 86 43 514370 41.82141 ppb 97  25) Ethyl tert Butyl Ether  7. 49 43 103997 40.82912 ppb 99  24) Vinyl Acetate  6. 86 43 514370 41.82141 ppb 97  25) Ethyl tert Butyl Ether  7. 49 43 103997 40.82912 ppb 99  26) Metk (2-Butanone)  7. 49 43 103997 40.81094 ppb 88  27) Cis-1,2-DCE  7. 81 96 404878 42.25931 ppb 97  28) 2,2-Dichloropropane  7. 80 77 452642 41.20624 ppb 96  29) Chloroform  8. 80 83 588352 ppb 87  30) Bromochloromethane  8. 27 128 116975 40.39255 ppb 87  32) 1,1-TCA  8. 78 97 505951 41.94747 ppb 94  33) Cyclohexane  8. 90 56 575034 44.30534 ppb 97  34) 1,1-Dichloropropene  9. 05 75 487974 42.49320 ppb 97  35) 2,2,4-Trimethylpentane  9. 14 57 924810 41.98321 ppb 97  37) Carbon Tetrachloride  9. 20 177 411241 43.91567 ppb 99  38) Tert Amyl Methyl Ether  9. 24 77 11 124 143.91567 ppb 99  40) Benzene  9. 40 78 1544906 40.22039 ppb 99  41) TCE  10. 43 95 359413 39.31009 ppb 96  42) 2-Pentanone	· · · · · · · · · · · · · · · · · · ·				37 33343 nn	b 95
6) Bromomethane 3.44 94 91680 40.15892 ppb 91 7) Chloroethane 3.58 64 282033 43.65962 ppb 92 8) Dichlorofluoromethane 3.65 67 769721 44.00020 ppb 98 9) Trichlorofluoromethane 4.02 101 479097 42.40069 ppb 92 10) Acrolein 4.53 56 21208 166.83854 ppb 97 11) Acetone 4.63 43 8336 41.57809 ppb 99 12) Freon-113 4.79 101 303228 44.05898 ppb 95 13) 1,1-DCE 4.94 96 338779 43.08710 ppb 93 14) t-Butanol 5.05 59 9052 188.27862 ppb 100 15) Methyl Acetate 5.42 43 124322 37.01158 ppb 97 16) Iodomethane 5.34 142 437686 38.94793 ppb 97 17) Acrylonitrile 5.74 53 44789 43.27239 ppb 93 18) Methylene chloride 5.64 84 339559 40.57237 ppb 87 19) Carbon disulfide 5.66 76 312064 39.43755 ppb 97 20) Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96 21) Trans-1,2-DCE 6.20 96 400669 42.24949 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81914 ppb 96 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 97 31,1-TCA 8.78 97 505951 41.94747 ppb 94 32) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 97 38) Tert Amyl Methyl Ether 9.32 73 610110 41.4464 ppb 99 38) Tert Amyl Methyl Ether 9.34 78 1544906 40.22039 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone	•					
7) Chloroethane 3.58 64 282033 43.65962 ppb 92 8) Dichlorofluoromethane 4.02 101 479097 42.40069 ppb 98 98 17 ichlorofluoromethane 4.02 101 479097 42.40069 ppb 92 100 Acrolein 4.53 56 21208 166.83854 ppb 97 111 Acetone 4.63 43 8336 41.57809 ppb 99 122 Freon-113 4.79 101 303228 44.05898 ppb 95 131 1.1-DCE 4.94 96 338779 43.08710 ppb 93 14) t-Butanol 5.05 59 9052 188.27862 ppb 100 150 Methyl Acetate 5.42 43 124322 37.01158 ppb 97 161 Iodomethane 5.34 142 437686 38.94793 ppb 97 170 Acrylonitrile 5.74 53 44789 43.27239 ppb 93 181 Methylene chloride 5.64 84 339559 40.57237 ppb 97 190 Carbon disulfide 5.66 76 312064 39.43755 ppb 97 190 Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96 21) Diisopropyl Ether 6.86 45 1073903 41.14011 ppb 95 231 1.1-DCA 6.84 63 659097 40.82912 ppb 99 240 Vinyl Acetate 6.86 43 514370 41.82141 ppb 97 25 Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26 MEK (2-Butanone) 7.49 43 103997 40.81212 ppb 96 29 Chloroform 8.08 83 588352 38.45952 ppb 98 30 Bromochloromethane 8.27 128 116975 40.39255 ppb 97 31 (2.7-DCE 7.81 96 404878 42.25931 ppb 96 37 31.1-DCA 8.08 83 588352 38.45952 ppb 98 39 30 Bromochloromethane 8.27 128 116975 40.39255 ppb 97 31 (2.7-DCA 8.78 97 505951 41.94747 ppb 96 39 1.1.1-DCA 8.78 97 505951 41.94747 ppb 97 31 (2.7-DCA 8.78 97 505951 41.94747 ppb 97 31 (2.7-DCA 8.78 97 505951 41.94747 ppb 97 31 (2.7-DCA 9.31 62 273772 38.95157 ppb 97 31 (2.7-DCA 9.31 62 273772 38.95157 ppb 99 31 1.2-DCA 9.31 62 273772 38.95157 ppb 99 31 10.4						
9) Trichlorofluoromethane			64	282033		
10) Acrolein			67	769721		
11) Acetone						
12) Freon-113						
13) 1,1-DCE						
14) t-Butanol						
15) Methyl Acetate 5.42 43 124322 37.01158 ppb 97 16) Iodomethane 5.34 142 437686 38.94793 ppb 97 17) Acrylonitrile 5.74 53 44789 43.27239 ppb 97 18) Methylene chloride 5.64 84 339559 40.57237 ppb 87 19) Carbon disulfide 5.66 76 312064 39.43755 ppb 97 20) Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96 21) Trans-1,2-DCE 6.20 96 400669 42.24949 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 88 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38 Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99						
16) Iodomethane					37 01158 pp	97
17) Acrylonitrile 5.74 53 44789 43.27239 ppb 93 18) Methylene chloride 5.64 84 339559 40.57237 ppb 87 19) Carbon disulfide 5.66 76 312064 39.43755 ppb 97 20) Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96 21) Trans-1,2-DCE 6.20 96 400669 42.24949 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99						
18) Methylene chloride	17) Acrylonitrile				43.27239 ppk	93
20) Methyl t-butyl ether (MtBE 6.05 73 494883 41.47196 ppb 96 21) Trans-1,2-DCE 6.20 96 400669 42.24949 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Text Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99		5.64	84	339559	40.57237 ppt	87
21) Trans-1,2-DCE 6.20 96 400669 42.24949 ppb 96 22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99 49 42 2-Pentanone					39.43755 ppb	97
22) Diisopropyl Ether 6.86 45 1073903 41.14401 ppb 95 23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					41.47196 ppb	96
23) 1,1-DCA 6.84 63 659097 40.82912 ppb 99 24) Vinyl Acetate 6.86 43 514370 41.82141 ppb # 97 25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					42.24949 ppb	96
24) Vinyl Acetate       6.86       43       514370       41.82141 ppb # 97         25) Ethyl tert Butyl Ether       7.51       59       686040       41.00600 ppb 98         26) MEK (2-Butanone)       7.49       43       103997       40.81094 ppb # 88         27) Cis-1,2-DCE       7.81       96       404878       42.25931 ppb 91         28) 2,2-Dichloropropane       7.80       77       452642       41.20624 ppb 96         29) Chloroform       8.08       83       588352       38.45952 ppb 98         30) Bromochloromethane       8.27       128       116975       40.39255 ppb 87         32) 1,1,1-TCA       8.78       97       505951       41.94747 ppb 94         33) Cyclohexane       8.90       56       575034       44.30534 ppb 93         34) 1,1-Dichloropropene       9.05       75       487974       42.49320 ppb 97         35) 2,2,4-Trimethylpentane       9.14       57       924810       41.98321 ppb 97         37) Carbon Tetrachloride       9.20       117       411241       43.91567 ppb 99         38) Tert Amyl Methyl Ether       9.32       73       610110       41.44464 ppb # 96         39) 1,2-DCA       9.31       62       273772       38.95157 ppb 99 <td>22) Disopropyi Ether</td> <td></td> <td></td> <td></td> <td></td> <td></td>	22) Disopropyi Ether					
25) Ethyl tert Butyl Ether 7.51 59 686040 41.00600 ppb 98 26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					40.02312 ppd	) <u>4</u> 99
26) MEK (2-Butanone) 7.49 43 103997 40.81094 ppb # 88 27) Cis-1,2-DCE 7.81 96 404878 42.25931 ppb 91 28) 2,2-Dichloropropane 7.80 77 452642 41.20624 ppb 96 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					41.00600 ppb	98
27) Cis-1,2-DCE       7.81       96       404878       42.25931 ppb       91         28) 2,2-Dichloropropane       7.80       77       452642       41.20624 ppb       96         29) Chloroform       8.08       83       588352       38.45952 ppb       98         30) Bromochloromethane       8.27       128       116975       40.39255 ppb       87         32) 1,1,1-TCA       8.78       97       505951       41.94747 ppb       94         33) Cyclohexane       8.90       56       575034       44.30534 ppb       93         34) 1,1-Dichloropropene       9.05       75       487974       42.49320 ppb       97         35) 2,2,4-Trimethylpentane       9.14       57       924810       41.98321 ppb       97         37) Carbon Tetrachloride       9.20       117       411241       43.91567 ppb       99         38) Tert Amyl Methyl Ether       9.32       73       610110       41.44464 ppb       #         39) 1,2-DCA       9.31       62       273772       38.95157 ppb       99         40) Benzene       9.40       78       1544906       40.22039 ppb       99         41) TCE       10.43       95       359413       39.31009 ppb </td <td>26) MEK (2-Butanone)</td> <td>7.49</td> <td></td> <td></td> <td>40.81094 ppb</td> <td># 88</td>	26) MEK (2-Butanone)	7.49			40.81094 ppb	# 88
28) 2,2~Dichloropropane 29) Chloroform 8.08 83 588352 38.45952 ppb 98 30) Bromochloromethane 8.27 128 116975 40.39255 ppb 87 32) 1,1,1~TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4~Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 99 42) 2~Pentanone 10.18 43 394321 178.83956 ppb	27) Cis-1,2-DCE	7.81	96	404878	42.25931 ppb	91
30) Bromochloromethane 3.27 128 116975 40.39255 ppb 87 32) 1,1,1-TCA 8.78 97 505951 41.94747 ppb 94 33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99	28) 2,2~Dichloropropane	7.80			41.20624 ppb	96
32) 1,1,1-TCA					38,45952 ppb	98
33) Cyclohexane 8.90 56 575034 44.30534 ppb 93 34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					40.39255 ppb	87
34) 1,1-Dichloropropene 9.05 75 487974 42.49320 ppb 97 35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					41.94747 ppb	94
35) 2,2,4-Trimethylpentane 9.14 57 924810 41.98321 ppb 97 37) Carbon Tetrachloride 9.20 117 411241 43.91567 ppb 99 38) Tert Amyl Methyl Ether 9.32 73 610110 41.44464 ppb # 96 39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99					44.30534 ppp	93
37) Carbon Tetrachloride       9.20       117       411241       43.91567 ppb       99         38) Tert Amyl Methyl Ether       9.32       73       610110       41.44464 ppb       # 96         39) 1,2-DCA       9.31       62       273772       38.95157 ppb       99         40) Benzene       9.40       78       1544906       40.22039 ppb       99         41) TCE       10.43       95       359413       39.31009 ppb       96         42) 2-Pentanone       10.18       43       394321       178.83956 ppb       99					44.45340 ppp	9 / 07
38) Tert Amyl Methyl Ether       9.32       73       610110       41.44464 ppb # 96       96         39) 1,2-DCA       9.31       62       273772       38.95157 ppb       99         40) Benzene       9.40       78       1544906       40.22039 ppb       99         41) TCE       10.43       95       359413       39.31009 ppb       96         42) 2~Pentanone       10.18       43       394321       178.83956 ppb       99					43.91567 ppb	99
39) 1,2-DCA 9.31 62 273772 38.95157 ppb 99 40) Benzene 9.40 78 1544906 40.22039 ppb 99 41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2-Pentanone 10.18 43 394321 178.83956 ppb 99						
40) Benzene       9.40       78       1544906       40.22039 ppb       99         41) TCE       10.43       95       359413       39.31009 ppb       96         42) 2~Pentanone       10.18       43       394321       178.83956 ppb       99	39) 1,2-DCA	9,31	62		38,95157 ppb	99
41) TCE 10.43 95 359413 39.31009 ppb 96 42) 2~Pentanone 10.18 43 394321 178.83956 ppb 99	· · · · · · · · · · · · · · · · · · ·				40.22039 ppb	99
42) Z~Pentanone 10.18 43 394321 178.83956 ppb 99					39.31009 ppb	96
	42) Z-Pentanone	10.18	43	394321	178.83956 ppb	99

^{(#) =} qualifier out of range (m) = manual inte@fation 0229S08W.D SALLRW.M Wed Mar 07 08:30:27 2012

# Quantitation Report (Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S08W.D Vial: 8

Acq On : 29 Feb 12 21:21 Operator: DG, SV, RS Sample : 40ug/L Std@2-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

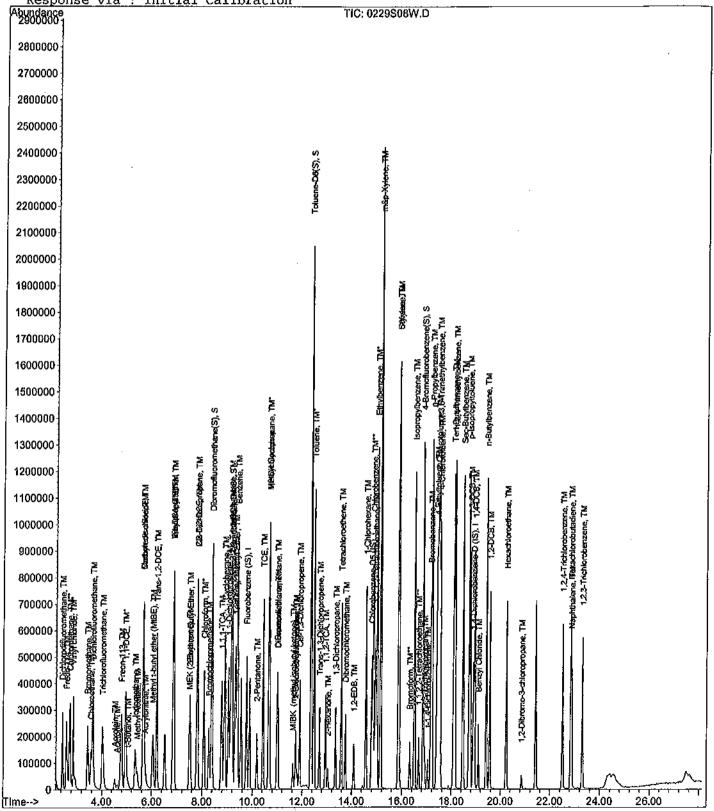
Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	<b>.</b>
43)	1,2-Dichloropropane	10.65	63	339768	41.73774 p	ob #	96
44)	Bromodichloromethane	10.99	83	400396	41.94200 pj		92
45)	Methyl Cyclohexane	10.67	83	510256	43.54621 pj		98
-	Dibromomethane	11.02	93	146905	42.35731 p	)b	97
	2-Chloroethyl vinyl ether	11.73	106	3107	40.51421 pr		1
-	MIBK (methyl isobutyl ket	11.62	43	113978	37.95663 pr	_	99
	1-Bromo-2-chloroethane	11.73	63	300504	40.49019 pr		97
	Cis-1,3-Dichloropropene	11.89	75	478292	39.99369 pr		96
51)		12.47	91	1417286	41.15674 pr		99
52)	· _ · _ · _ · _ · _ · _ · _ · _ · _	12.70	75	325445	42.25589 pp		97
	1,1,2-TCA	12.94	83	159646	39.17341 pr		91
	2-Hexanone	13.04	43	75053	45.43262 pg		81
	1,2-EDB	14.09	107	183661	39.99164 pr		90 95
	Tetrachloroethene	13.59	166	388416	40.33952 pr		95 97
	1-Chlorohexane	14.58	91	478919	40.42201 pr		96
	1,1,1,2-Tetrachloroethane	14.95	131	310313	42.79922 pr 83.49369 pr	ab.	100
-	m&p-Xylene	15.16 15.87	106	1294665			99
-	o~Xylene		106	625647	41.77725 pg		98
63)		15.89	104	1005302 320680	41.98073 pg 41.05291 pg		97
	1,3-Dichloropropane	13.36 13.75	76 129	252980	42.51794 pr		93
	Dibromochloromethane	14.86	112	906723	41.23462 pr		98
	Chlorobenzene Ethylbenzene	15.01	91	1558208	40.42200 pr		94
	Bromoform	16.32	173	144580	44,64208 pr		100
	Isopropylbenzene	16.50	105	1446060	42.62318 pp		98
-	1,1,2,2-Tetrachloroethane	16.67	85	111935	40.66206 pr		91
	1,2,3~Trichloropropane	16.91	110	40699	41.01452 pr		90
	t-1,4-Dichloro-2-Butene	17.03	53	13665	38.70724 pp		97
	Bromobenzene	17.15	156	370202	40.77576 pp		89
	n-Propylbenzene	17.20	91	1755708	41.00671 pp	b	99
	4-Ethyltoluene	17.39	105	976724	40.87337 pp		99
	2-Chlorotoluene	17.44	91	1148027	39.83335 pp		98
	1,3,5-Trimethylbenzene	17.48	105	1149107	40.22771 pp		98
	4-Chlorotoluene	17.53	91	990945	40.40990 pp		100
81)		18.08	119	1246494	41,48593 pp	b	99
82)		18.14	105	1163373	41.48643 pp		96
83)		18.47	105	1607278	41.14022 pp	b	99
84)	p-Isopropyltoluene	18.71	119	1286106	40.74509 pp	b	96
85)	Benzyl Chloride	19.09	91	120402	43.85764 pp	b	97
86)	1,3-DCB	18.77	146	675421	40.23806 pp		97
87)	1,4~DCB	18.94	146	656843	39.78407 pp		98
88)	n-Butylbenzene	19.41	91	1093308	40.94990 pp		97
89)	1,2-DCB	19.56	146	578878	41,92333 pp		98
90)	Hexachloroethane	20.24	117	312470	43.11882 pp	р "	98
91)	· · · · · · · · · · · · · · · · · · ·	20.86	157	30851	41.19575 pp	b #	74
	1,2,4-Trichlorobenzene	22.51	180	346995	42.22036 pp		98
	Hexachlorobutadiene	22.83	225	85976	40.14409 pp		90
	Naphthalene	22.87	128	206144	44.02315 pp		99
95)	1,2,3-Trichlorobenzene	23.30	180	302934	42.22499 pp	D	94

Data File: M:\SWEETPEA\DATA\S120229\0229S08W.D


Vial: 8 Acq On : 29 Feb 12 21:21 Operator: DG, SV, RS Sample : 40ug/L Std@2~29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration



#### Quantitation Report (Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S09W,D

Vial: 9 Acq On : 29 Feb 12 21:58
Sample : 100ug/L Std@2-29-12SV Operator: DG, SV, RS Inst : Sweetpea Multiplr: 1.00 : Water 10mL w/IS:02-17-12 Misc

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Mon Mar 05 11:31:09 2012

Response via : Initial Calibration

Internal Standards		QIon	Response	Conc	Unit	s :	Dev (	(Min)
1) Fluorobenzene (IS)	9.77	96	368384	25.	00000	ppb		0.00
55) Chlorobenzene-D5 (IS)	14.80	117	255168	25.	00000	ppb		0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	127784	25.	00000	ppb		0.00
System Monitoring Compounds	0.40		1004066	00	01 500	1-		0 00
31) Dibromofluoromethane(S) Spiked Amount 20.857	8.40	111	1094756 Recove		81703 = 47			0.00
36) 1,2-DCA-D4(S)	9.17	65	738203	96.				0.00
Spiked Amount 20.981	10 26		Recove		= 45		8.0	0 00
56) Toluene-D8(S)	12.36	98		111.	ანზშნ = 51		1 a	0.00
Spiked Amount 21.584 64) 4-Bromofluorobenzene(S)	16.84	95	Recove 1201409				470	0.00
Spiked Amount 21.472	10.04	93	Recove				)%	0.00
Target Compounds							Ova	lue
2) Dichlorodifluoromethane	2.45	85	469952	88.	26014	dqq	2	99
3) Freon 114	2.61	85	753744		16565			97
4) Chloromethane 5) Vinyl chloride 6) Bromomethane 7) Chloroethane	2.74	- 50	541851	72.3	32169	ppb		96
5) Vinyl chloride	2.87	62	590400	100.	11603	ppb		97
6) Bromomethane	3.44	94	248000		21583			94
7) Chloroethane	3.57	64	734956	83.4	43263	ppb		92
8) Dichlorofluoromethane		67	1990721	83 .	14999	ppb		96
9) Trichlorofluoromethane		101	1260266		79114			93
10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate	4.52	56	31344		81966		н	93
11) Acetone	4.63	43	28720		34752		Ħ	89
12) Freon-113	4.79	101	1086722		79189			94 88
13) 1,1-DCE	4.94 5.00	96 59	1095028 10920		L2935 56114		#	92
14) t-Butanol 15) Methyl Acetate	5.00	43	452002		99607		ΤΓ	99
16) Iodomethane	5.33	142	1569855		31556			92
17) Acrylonitrile	5.74	53	143014	101.3	32407	nnb		98
18) Methylene chloride		84	1076562	94.3	32977			86
19) Carbon disulfide	5,66	76	1064960	98.6	9478			99
20) Methyl t-butyl ether (MtBE	6.04	73	1076562 1064960 1568219	96.3	37254			96
21) Trans-1,2-DCE	6.21	96	1273606	98.4	18393			91
22) Diisopropyl Ether	6.87	45	3479934	97.7	77033	ppb		91
23) 1,1-DCA	6.85	63	2125942		7543			98
24) Vinyl Acetate	6.87	43	1738244		64022			98
25) Ethyl tert Butyl Ether	7.52 7.50	59	2265834 358568	99.3	31632	ppb		98
			358568	103.1	8625	ppb	#	89
27) Cis-1,2-DCE	7.81	96		98.8	35124	ggg		99
28) 2,2-Dichloropropane	7.80	77						96
29) Chloroform			1909863	91.5	5106	aqq		99
30) Bromochloromethane	8.28	128	380470	90.3	0250	agg		87
32) 1,1,1-TCA	8.78	97 56	1675650		37678			97
33) Cyclohexane	8.90	56	1894124 1626524		2013			98 96
34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane	$9.04 \\ 9.14$	75 57	3240138		36705 36517			96 100
37) Carbon Tetrachloride	9.14	117	1403623		1783			97
38) Tert Amyl Methyl Ether	9.33	73	1944228		5053			99
39) 1,2-DCA	9.31	62	871969		7699			97
40) Benzene	9.40	78			7871			99
41) TCE	10,43	95	1185959		2058			97
42) 2-Pentanone	10.19	43	549710		2766			99
						. <del></del>		

^{(#) =} qualifier out of range (m) = manual integration 0229S09W.D SALLRW.M Wed Mar 07 08:30:34 2012

#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S09W.D Acq On : 29 Feb 12 21:58 Sample : 100ug/L Std@2-29-12SV Vial: 9 Operator: DG,SV,RS Inst : Sweetpea Multiplr: 1.00 : Water 10mL w/IS:02-17-12 Misc

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012

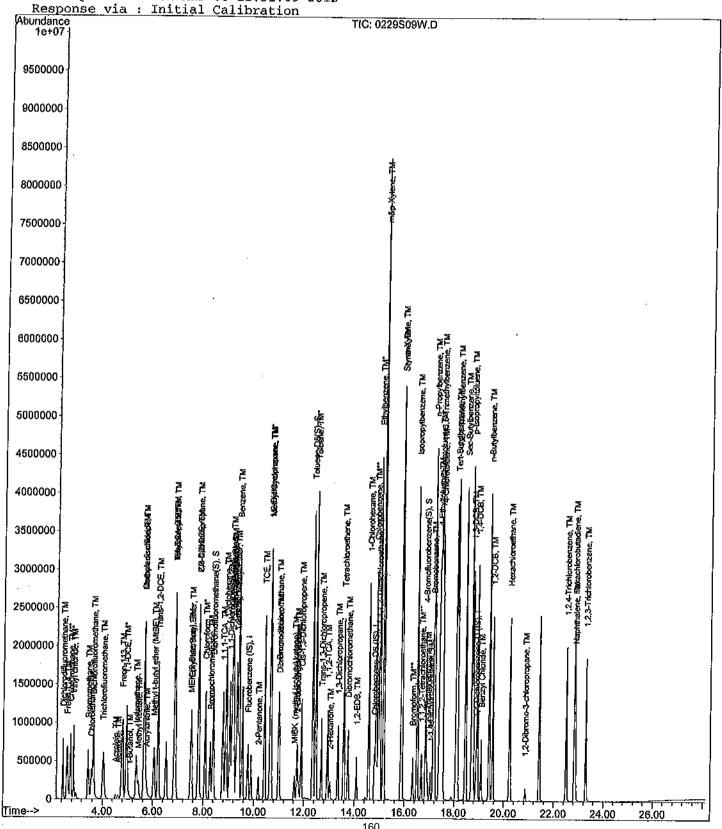
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qval	lue
43)	1,2-Dichloropropane	10.65	63	1073291	96.68487	dqq	95
	Bromodichloromethane	10.99	83	1254773	96.38715		96
45)	Methyl Cyclohexane	10.68	83	1686743	105.56153	ppb	94
46)	Dibromomethane	11.03	93	469972	99.37071		91
47)	2-Chloroethyl vinyl ether	11,74	106	10983	106.42079		1
-	MTBK (methyl isobutyl ket	11.62	43	392403	95.82824		
-	1-Bromo-2-chloroethane	11.73	63	960235	94.87933		99
	Cis-1,3-Dichloropropene	11.90	75	1553212	95.24093		99
	Toluene	12.48	91	4964624	105.72177		94
	Trans-1,3-Dichloropropene	12.70	75	1094253	104.18903		99
	1,1,2-TCA	12.94	83	507586	91.33507		92
-	2-Hexanone	13.04	43	248162	110.16143		\$ 82 95
-	1,2-EDB	14.09 13.59	107 166	579131 1255193	97.35348 100.63905		94
-	Tetrachloroethene 1-Chlorohexane	14.58	91	1678162	109.34831		98
	1,1,1,2-Tetrachloroethane	14.95	131	981477	104.50532		94
	m&p-Xylene	15.16	106	3947642	196.54246		82
-	o-Xylene	15.87	106	1892865	97.57813		81
	Styrene	15.90	104	3160624	101.89401		99
	1,3-Dichloropropane	13.36	76	995239	98.36076		94
	Dibromochloromethane	13.75	129	796159	103.30188		97
,	Chlorobenzene	14.87	112	2861570	100,46484		98
,	Ethylbenzene	15.01	91	5426950	108.68523		98
	Bromoform	16,32	173	438910	104.62465	ppb	99
71)	Isopropylbenzene	16.50	105	4895515	112.20908	ppb	93
	1,1,2,2-Tetrachloroethane	16.68	85	350280	98.94843	ppb	90
73)	1,2,3-Trichloropropane	16.92	110	123070	96.44422		93
74)	t-1,4-Dichloro-2-Butene	17.03	53	45192	98.26230		91
	Bromobenzene	17.15	156	1143029	97.90178		93
	n-Propylbenzene	17,20	91	6072908	110.29845		93
	4-Ethyltoluene	17.40	105	3304861	107.54542		97
	2-Chlorotoluene	17.44	91	3978140	107.33587		91
	1,3,5-Trimethylbenzene	17.48	105	3883370	105.71673		87
	4-Chlorotoluene	17.52	91	3297419	104.56406		95 99
81)		18.09	119 105	4048075 3891440	104.76815 ; 107.91143 ;		99 95
	1,2,4-Trimethylbenzene	18.14 18.47	105	5365374	106.79370	იის ისე	95 97
83)	Sec-Butylbenzene p-Isopropyltoluene	18.71	119	4466475	110.03568		92
85)	Benzyl Chloride	19.09	91	391108	110.78434		97
86)	1,3-DCB	18.77	146	2214472	102.58945		96
87)	1,4-DCB	18.94	146	2120235	99.86233		97
-	n-Butylbenzene	19.42	91	3838975	111.81386		92
89)	1,2-DCB	19.56	146	1809968	101.93179		96
-	Hexachloroethane	20.24	117	1006779	108.03458		99
	1,2-Dibromo-3-chloropropan	20.87	157	99023	102.82278	ppb #	75
92)	1,2,4-Trichlorobenzene	22.51	180	1111054	105.12449	gpb	98
93)	Hexachlorobutadiene	22.84	225	296640	107.70705	dqq	89
	Naphthalene	22.87	128	646016	107.28123		99
95)	1,2,3-Trichlorobenzene	23,30	180	943062	102.21905	dqq	94

^{(#) =} qualifier out of range (m) = manual integration 0229S09W.D SALLRW.M Wed Mar 07 08:30:35 2012

Quant Results File: SALLRW.RES

Data File : M:\SWEETPEA\DATA\S120229\0229S09W.D Acq On : 29 Feb 12 21:58 Vial: 9 Operator: DG, SV, RS : 100ug/L Std@2-29-12sv Inst : Sweetpea : Water 10mL w/IS:02-17-12


Misc Multiplr: 1.00 Quant Time: Mar 7 8:26 2012

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Sample

Last Update : Mon Mar 05 11:31:09 2012



### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0229S10W.D

Vial: 10 Acq On : 29 Feb 12 22:35 Operator: DG,SV,RS Sample : 200ug/L Std@2-29-12SV Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012

Response via : Initial Calibration

DataAcq Meth : V8260

Thermal Standards	Internal Chandards	D 40	<b>0.T</b>	_		_	
1   Fluorobenzene (TS)	incernar planuarus	к.т. 	Oton	Response	Conc Units	Dev	(Min)
System Monitoring Compounds   18.80   117   192960   25.00000 ppb   0.00	<ol> <li>Fluorobenzene (IS)</li> </ol>	9.77	96	268096	25,00000 pr	b	0.00
System Monitoring Compounds   31   Dibromofluoromethane(S)   8.40   111   1025796   127.22893   ppb   0.00	55) Chlorobenzene-D5 (IS)	14.80	117	192960	25.00000 pr	ob	
System Monitoring Compounds   31)   Dibromofluoromethane(S)   50;   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.000   12.00	70) 1,4-Dichlorobenzene-D (IS)	18.89	152	129096	25.00000 pp	b	
31   Dibromofluoromethane   S)   Spiked Amount   20.857   Spiked Amount   20.981   Spiked Amount   21.584   12.35   98   3664086   133.45818 ppb   0.00   Recovery   602.6318   133.45818 ppb   0.00   Recovery   618.3278   0.00   Spiked Amount   21.584   16.84   95   1664086   133.45818 ppb   0.00   Recovery   618.3278   0.00   Spiked Amount   21.472   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.84   18.							
Spiked Amount	System Monitoring Compounds						
Spiked Amount   21.584   16.84   95   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   2	SI) Dibromoffuoromethane(S)	8,40	111				0.00
Spiked Amount   21.584   16.84   95   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   2	36) 1 2-DCA-D4/C)	0 17					
Spiked Amount   21.584   16.84   95   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   1113379   122.80933 ppb   0.00   Recovery   = 571.9508   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   2	Spiked Amount 20 981	9.17	63				0.00
Spiked Amount	56) Toluene-D8(S)	12 35	QΩ		ery = 602.6	1518 h	0.00
Spiked Amount		12.33	50				0.00
Target Compounds 2) Dichlorodifluoromethane 2) Preon 114 2) Compounds 2) Dichlorodifluoromethane 3) Freon 114 2) Compounds 3) Freon 114 2) Compounds 4) Chloromethane 2) Compounds 4) Chloromethane 2) Compounds 3) Freon 114 2) Compounds 4) Chloromethane 2) Compounds 4) Chloromethane 2) Compounds 2) Compounds 4) Chloromethane 2) Compounds 4) Chloromethane 3) Compounds 4) Chloromethane 3) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compounds 4) Compoun	64) 4-Bromofluorobenzene(S)	16.84	95				0.00
Target Compounds		-0.01	23				0.00
2)   Dichlorodifluoromethane   2.45				-1.55571	, 0,,,,,	300	
3) Freon 114						Qva	alue
9 Trichlorofluoromethane 9 10 Acrolein 9 Trichlorofluoromethane 10 Acrolein 11 Acetone 14 .52 56 25816 204.64004 ppb 98 11 Acetone 14 .63 43 43832 220.29420 ppb # 85 12 Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 14 .94 96 1732423 222.01877 ppb 93 14) t-Butanol 15 Methyl Acetate 15 .42 43 70034 202.58621 ppb 98 16) Iodomethane 15 .33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 15 .74 53 226152 220.16330 ppb 98 18) Methylene chloride 15 .64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 15 .65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis+1,2-DCE 7.81 96 2035947 214.12613 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 31) (1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 32) 1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.335248 pbb 98	2) Dichlorodifluoromethane	2.45			260.86819 pp	b	
9 Trichlorofluoromethane 9 10 Acrolein 9 Trichlorofluoromethane 10 Acrolein 11 Acetone 14 .52 56 25816 204.64004 ppb 98 11 Acetone 14 .63 43 43832 220.29420 ppb # 85 12 Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 14 .94 96 1732423 222.01877 ppb 93 14) t-Butanol 15 Methyl Acetate 15 .42 43 70034 202.58621 ppb 98 16) Iodomethane 15 .33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 15 .74 53 226152 220.16330 ppb 98 18) Methylene chloride 15 .64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 15 .65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis+1,2-DCE 7.81 96 2035947 214.12613 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 31) (1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 32) 1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.335248 pbb 98	3) Freon 114	2.60		1465644	202.14311 pp	b	98
9 Trichlorofluoromethane 9 10 Acrolein 9 Acrolein 4 .52 56 25816 204.64004 ppb 98 11) Acetone 4 .63 4.63 43 43832 220.29420 ppb # 85 12) Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 4 .94 96 1732423 222.01877 ppb 93 14) t-Butanol 5 .13 59 7333 153.68913 ppb # 87 150 Methyl Acetate 5 .42 43 700434 202.58621 ppb 98 16) Iodomethane 5 .33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 5 .74 53 226152 220.16330 ppb 98 18) Methylene chloride 5 .64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 5 .65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 22) Diisopropyl Ether 6 .87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6 .84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6 .87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6 .84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6 .87 43 574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7 .53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7 .50 43 495246 195.83112 ppb 94 27) Cis+1,2-DCE 7 .81 96 2035947 214.12613 ppb 98 29 Chloroform 8 .08 83 2954742 194.62166 ppb 99 20 Chloroform 8 .08 83 2954742 194.62166 ppb 99 30 Bromochloromethane 8 .28 128 580107 201.72775 ppb 83 32) 1,1-DCA 8 .78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8 .90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9 .05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9 .04 77 2129189 195.31130 ppb 98 35) 2,2,4-Trimethylpentane 9 .05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9 .04 77 78 7807085 204.80386 ppb 97 34) 1.2-DCA 9 .04 8enzene 9 .04 0 78 7807085 204.80386 ppb 97 39 1,2-DCA 9 .04 20 2-Pentanone 9 .05 75 2504823 219.78841 ppb 98 39 1,2-DCA 9 .04 20 2-Pentanone 9 .05 75 2504823 219.78841 ppb 98 39 1,2-DCA 9 .04 20 2-Pentanone	4) Chloromethane	2.74		1120151	205.43559 pp	b	96
9 Trichlorofluoromethane 9 10 Acrolein 9 Trichlorofluoromethane 10 Acrolein 11 Acetone 14 .52 56 25816 204.64004 ppb 98 11 Acetone 14 .63 43 43832 220.29420 ppb # 85 12 Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 14 .94 96 1732423 222.01877 ppb 93 14) t-Butanol 15 Methyl Acetate 15 .42 43 70034 202.58621 ppb 98 16) Iodomethane 15 .33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 15 .74 53 226152 220.16330 ppb 98 18) Methylene chloride 15 .64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 15 .65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis+1,2-DCE 7.81 96 2035947 214.12613 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 31) (1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 32) 1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.335248 pbb 98	5) Vinyl chloride	2.86				b	98
9 Trichlorofluoromethane 9 10 Acrolein 9 Trichlorofluoromethane 10 Acrolein 11 Acetone 14 .52 56 25816 204.64004 ppb 98 11 Acetone 14 .63 43 43832 220.29420 ppb # 85 12 Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 14 .94 96 1732423 222.01877 ppb 93 14) t-Butanol 15 Methyl Acetate 15 .42 43 70034 202.58621 ppb 98 16) Iodomethane 15 .33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 15 .74 53 226152 220.16330 ppb 98 18) Methylene chloride 15 .64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 15 .65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis+1,2-DCE 7.81 96 2035947 214.12613 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 31) (1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 32) 1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.335248 pbb 98	6) Bromomethane	3.43		498048	217.79699 pp		
9 Trichlorofluoromethane 9 10 Acrolein 9 Acrolein 4 .52 56 25816 204.64004 ppb 98 11) Acetone 4 .63 4.63 43 43832 220.29420 ppb # 85 12) Freon-113 4.78 101 1601893 234.53281 ppb 95 13) 1,1-DCE 4.94 96 1732423 222.01877 ppb 93 14) t-Butanol 5.13 59 7333 153.68913 ppb # 87 15) Methyl Acetate 5.42 43 700434 202.58621 ppb 98 16) Iodomethane 5.33 142 2311938 200.33906 ppb 97 17) Acrylonitrile 5.74 53 226152 220.16330 ppb 98 18) Methylene chloride 5.64 84 1650998 198.777725 ppb 88 19) Carbon disulfide 5.65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 5274683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 20) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 31) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 98 42) 2-Pentanone 10.19 43 458040 209.352548 ppb 99	7) Chloroethane	3.56		1389505	216.74304 pp	b	
10   Acrolein	0) Dichiologidane	3.04				b	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	9) Trichlorofluoromethane	4.01	101		221.50008 pp	b	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	10) Acrolein	4.52	56		204.64004 pp	b	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	11) Acecone	4.63	43		220.29420 pp	b #	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	12) 1 1 DOE	4.78	101				
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	13) 1,1-DCE 14) t-Dutamol	4.94	96		222.01877 pp	b "	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	15) Mothyl Agetete	5.13	59		153.68913 pp	b #	
18) Methylene chloride	16) Todomethano	2.42	143		202.58621 pp	b	
18) Methylene chloride       5.64       84       1650998       198.77725 ppb       88         19) Carbon disulfide       5.65       76       1690112       215.22206 ppb       99         20) Methyl t-butyl ether (MtBE       6.04       73       2320115       195.91448 ppb       96         21) Trans-1,2-DCE       6.20       96       1972007       209.53142 ppb       93         22) Diisopropyl Ether       6.87       45       5235864       202.13191 ppb       93         23) 1,1-DCA       6.84       63       3332674       208.02643 ppb       100         24) Vinyl Acetate       6.87       43       2574683       210.93652 ppb       99         25) Ethyl tert Butyl Ether       7.53       59       3352243       201.90099 ppb       100         26) MEK (2-Butanone)       7.50       43       495246       195.83112 ppb       94         27) Cis-1,2-DCE       7.81       96       2035947       214.12613 ppb       96         28) 2,2-Dichloropropane       7.80       77       2129189       195.31130 ppb       98         29) Chloroform       8.08       83       2954742       194.62166 ppb       99         30) Bromochloromethane       8.28       128<	17) Acrylonitrile	5.33 5.74			200.33906 pp	D .	
19) Carbon disulfide 5.65 76 1690112 215.22206 ppb 99 20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	18) Methylene chloride	5.74			240.16330 pp	0	
20) Methyl t-butyl ether (MtBE 6.04 73 2320115 195.91448 ppb 96 21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 22) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 98 39 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 39 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 39 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	19) Carbon digulfide	5.65			215 22206 mm	•	
21) Trans-1,2-DCE 6.20 96 1972007 209.53142 ppb 93 22) Diisopropyl Ether 6.87 45 5235864 202.13191 ppb 93 23) 1,1-DCA 6.84 63 3332674 208.02643 ppb 100 24) Vinyl Acetate 6.87 43 2574683 210.93652 ppb 99 25) Ethyl tert Butyl Ether 7.53 59 3352243 201.90099 ppb 100 26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98			_		195 91449 ppi	,	
26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	21) Trans-1.2-DCE	6.20			200 53142 ppi	3	
26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	22) Diisopropv1 Ether	6.87			202 13191 pp	,	
26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	23) 1,1-DCA .	6.84		3332674	208.02643 pp		
26) MEK (2-Butanone) 7.50 43 495246 195.83112 ppb 94 27) Cis-1,2-DCE 7.81 96 2035947 214.12613 ppb 96 28) 2,2-Dichloropropane 7.80 77 2129189 195.31130 ppb 98 29) Chloroform 8.08 83 2954742 194.62166 ppb 99 30) Bromochloromethane 8.28 128 580107 201.72775 ppb 83 32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	24) Vinyl Acetate	6.87				- 1	
27) Cis-1,2-DCE 28) 2,2-Dichloropropane 29) Chloroform 30) Bromochloromethane 32) 1,1,1-TCA 33) Cyclohexane 34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether 39) 1,2-DCA 40) Benzene 40) Benzene 41) TCE 42) 2-Pentanone 47.81 96 2035947 214.12613 ppb 96 2035947 2129189 195.31130 ppb 98 219.31130 ppb 99 214.57 2129189 195.31130 ppb 99 215.31130 ppb 99 220.1727775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 99 240.22504823 219.78841 ppb 98 250473 202.25039 ppb 96 2601.261 217.31327 ppb 96 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 83 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.727775 ppb 99 2701.727775 ppb 99 2701.72777777777777777777777777777777777	25) Ethyl tert Butyl Ether	7.53		3352243	201.90099 ppl	, )	
27) Cis-1,2-DCE 28) 2,2-Dichloropropane 29) Chloroform 30) Bromochloromethane 32) 1,1,1-TCA 33) Cyclohexane 34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether 39) 1,2-DCA 40) Benzene 40) Benzene 41) TCE 42) 2-Pentanone 47.81 96 2035947 214.12613 ppb 96 2035947 2129189 195.31130 ppb 98 219.31130 ppb 99 214.57 2129189 195.31130 ppb 99 215.31130 ppb 99 220.1727775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 83 2201.72775 ppb 99 240.22504823 219.78841 ppb 98 250473 202.25039 ppb 96 2601.261 217.31327 ppb 96 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 83 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 83 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.72775 ppb 99 2701.727775 ppb 99 2701.727775 ppb 99 2701.72777777777777777777777777777777777	26) MEK (2-Butanone)	7.50	43	495246	195.83112 ppl	)	
30) Bromochloromethane 30) Bromochloromethane 31) 1,1,1-TCA 31) Cyclohexane 32) 1,1,1-Dichloropropene 33) 1,1-Dichloropropene 34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 2 62 1377680 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30	27) Cis-1,2-DCE	7.81		2035947	214.12613 ppk	·	
30) Bromochloromethane 30) Bromochloromethane 31) 1,1,1-TCA 31) Cyclohexane 32) 1,1,1-Dichloropropene 33) 1,1-Dichloropropene 34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 1,2-DCA 39) 2 62 1377680 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 1,2-DCA 39) 30 78 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 39) 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30 7807085 30	28) 2,2-Dichloropropane	7.80	77			•	
30) Bromochloromethane 32) 1,1,1-TCA 33) Cyclohexane 34) 1,1-Dichloropropene 35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride 38) Tert Amyl Methyl Ether 39) 1,2-DCA 40) Benzene 40) Benzene 41) TCE 42) 2-Pentanone  8.28 128 580107 201.72775 ppb 83 8.78 97 2601261 217.31327 ppb 94 3056565 237.30186 ppb 97 3056565 237.30186 ppb 97 3056565 237.30186 ppb 98 310,2-DCA 9.05 75 2504823 219.78841 ppb 98 320,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 98	,	8.08	83	2954742	194.62166 pph	)	
32) 1,1,1-TCA 8.78 97 2601261 217.31327 ppb 94 33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98		8.28	128		201.72775 ppt	)	
33) Cyclohexane 8.90 56 3056565 237.30186 ppb 97 34) 1,1-Dichloropropene 9.05 75 2504823 219.78841 ppb 98 35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98		8.78	97	2601261	217.31327 pph	)	
35) 2,2,4-Trimethylpentane 9.14 57 5108774 233.69253 ppb 96 37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98			56	3056565	237.30186 ppt	•	97
37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98					219.78841 ppb	)	98
37) Carbon Tetrachloride 9.20 117 2175028 234.04154 ppb 96 38) Tert Amyl Methyl Ether 9.33 73 2954773 202.25039 ppb 96 39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98					233.69253 pph	•	96
39) 1,2-DCA 9.32 62 1377680 197.51009 ppb 98 40) Benzene 9.40 78 7807085 204.80386 ppb 97 41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98	,				234.04154 pph	•	96
40) Benzene       9.40       78       7807085       204.80386 ppb       97         41) TCE       10.43       95       1784989       196.72103 ppb       97         42) 2-Pentanone       10.19       43       458040       209.32548 ppb       98					202.25039 ppb	)	96
41) TCE 10.43 95 1784989 196.72103 ppb 97 42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98					197,51009 ppb	)	
42) 2-Pentanone 10.19 43 458040 209.32548 ppb 98					204.80386 ppb		
		10.19		456040			98

^{(#) =} qualifier out of range (m) = manual integration 0229S10W.D SALLRW.M Wed Mar 07 08:30:40 2012

Data File : M:\SWEETPEA\DATA\S120229\0229S10W.D

Vial: 10 Acq On : 29 Feb 12 22:35 Sample : 200ug/L Std@2-29-12SV Operator: DG, SV, RS Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012

Response via : Initial Calibration

DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue	
43)	1,2-Dichloropropane	10.65	63	1667380	206.38876	dqq	#	97
	Bromodichloromethane	10.99	83	1963507	207.25110			95
45)	Methyl Cyclohexane	10.67	83	2710380	233,07591	ppb		99
46)	Dibromomethane	11.02	93	652799	189.66024			98
47)	2-Chloroethyl vinyl ether	11.73	106	14725	196.79171		#	1
48)	MIBK (methyl isobutyl ket	11.64	43	554365	186.02333	ppb	#	97
49)	1-Bromo-2-chloroethane	11.73	63	1474216	200.15463	ppb		97
50)	Cis-1,3-Dichloropropene	11.90	75	2366114	199.36044			97
51)	Toluene	12.48	91	7434771	217.54850			99
52)	Trans-1,3-Dichloropropene	12.70	75	1651398	216.05605			99
53)	1,1,2-TCA	12.94	83	769316	190.21428	ppb		94
54)	2-Hexanone	13.04	43	353349	215.53042	ppb	#	76
57)	1,2-EDB	14.09	107	903311	200.80332			92
58)	Tetrachloroethene	13.59	166		209.03498			94
	1-Chlorohexane	14.58	91		224,63718			97
60)	1,1,1,2-Tetrachloroethane	14.95	131	1507276	212.23157			93
61)	m&p~Xylene	15.16	106		418.11281			92
62)	o-Xylene	15.87	106		206.87056			87
	Styrene	15.90	104	4954059	211,20097			96
	1,3-Dichloropropane	13.36	76	1528859	199.81167			93
	Dibromochloromethane	13.76	129	1196886	205.36202			96
•	Chlorobenzene	14.87	112	4516724	209.69699			98
	Echylbenzene	15.01	91	8205367	217.30596			99
	Bromoform	16.33	173	658031	207.42631			99
		16.51	105	7658739	173.76031			96
	1,1,2,2-Tetrachloroethane	16.68	85	539885	150.95882			92
	1,2,3-Trichloropropane	16.92	110	229214	177.79881	ppb		90
,	t-1,4-Dichloro-2-Butene	17.04	53	93840	201.10496	ppb		94
	Bromobenzene	17.15	156	2298589	194.87599			94
	n-Propylbenzene	17.20		12430314	223.46961			93
-	4-Ethyltoluene	17.40	105	6725419	216.63157			94
-	2-Chlorotoluene	17.44	91	7872996	210.26575	agg		91
	1,3,5-Trimethylbenzene	17.49	105	7926856	213,59919			88
-	4-Chlorotoluene	17.53	91	6606488	207.36843			94
	Tert-Butylbenzene	18.08	119	8156353	208.94907			97
-	1,2,4-Trimethylbenzene	18,14	105	7915886	217.28029			96 94
	Sec-Butylbenzene	18.47		11181439	220,29622			
	p-Isopropyltoluene	18.71	119	9182411	223.91803			92
85)	Benzyl Chloride	19.10	91	789565	221.37738			98
86)	1,3-DCB	18.77	146 146	4427143 4359122	203.01109 203.22654			96 98
87)	1,4-DCB	18,94	91		229.77458			92
:	n-Butylbenzene	19.42 $19.56$	146	7969993 3716824	207.19271	ppp		97
89)	1,2-DCB			2050158	217.76079	ppn	-	100
	Hexachloroethane	20.24 20.87	117 157	197955	203.46205		#	77
91)		22.50	180	2263111	211.95238		n	97
	1,2,4-Trichlorobenzene Hexachlorobutadiene	22.83	225	618112	222.14947			91
	Naphthalene	22.87	128	1388032	228.16216		1	100
	1,2,3-Trichlorobenzene	23.30	180	1915067	205.46566		_	95
73)	1,2,3-111chiotobenzene	£3.30	100	7777001	~00.40000 j	2P2		,,

Data File : M:\SWEETPEA\DATA\S120229\0229S10W.D

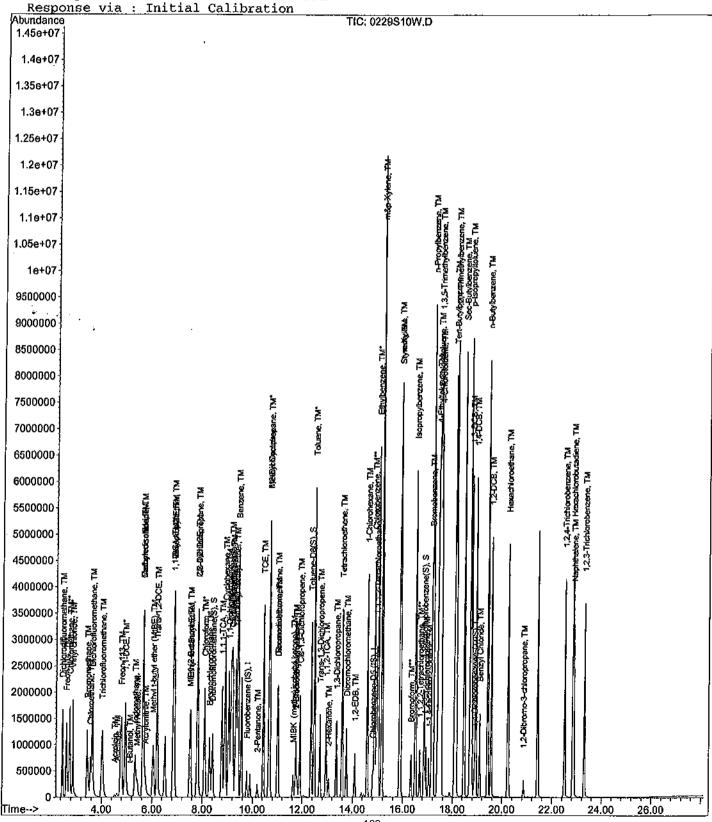
Vial: 10

Acq On : 29 Feb 12 22:35 Sample : 200ug/L Std@2-29-12SV

Operator: DG, SV, RS Inst : Sweetpea

Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:26 2012


Quant Results File: SALLRW.RES

Method

: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012



Data File : M:\SWEETPEA\DATA\S120229\0229S16W.D

Vial: 16 Acq On : 1 Mar 12 2:47 Sample : 120229A LCS-1WS (SS) Operator: DG, SV, RS Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 9:03 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Wed Mar 07 09:02:48 2012
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units De	ev(Min)
1) Fluorobenzene (IS)	9.76	96	275904	25.00000 ppb	0,00
55) Chlorobenzene-D5 (IS)	14.80	117	197504	25.00000 ppb	0.00
70) 1,4-Dichlorobenzene-D (IS)	18.89	152	102376	25.00000 ppb	0.00
System Monitoring Compounds					
31) Dibromofluoromethane(S) Spiked Amount 20.857	8.39	111	167766 Recove		0.00
36) 1,2-DCA-D4(S)	9.16	65	114407	19.96760 ppb	-0.01
Spiked Amount 20.981 56) Toluene-D8(S)	10 25	0.0	Recove	ery = 95.1728	
Spiked Amount 21.584	12.35	98		21.33148  ppb ery = 98.829%	0.00
64) 4-Bromofluorobenzene(S)	16,84	95	192488	20.74356 ppb	0.00
Spiked Amount 21.472				ery = 96.610%	
Target Compounds				0	value
<ol><li>Dichlorodifluoromethane</li></ol>	2.45	85	45256	11.34828 ppb	99
3) Freon 114 4) Chloromethane 5) Vinyl chloride 6) Bromomethane	2.61	85	78293	11.26474 ppb	89
4) Chloromethane	2,74	50	47912	8.53839 ppb	92
5) Vinyl chloride	2.88	62	38840	8.79385 ppb	96
o) Bromomethane	3.45	94	23464	10.40370 ppb	95
6) Bromomethane 7) Chloroethane 8) Dichlorofluoromethane	3.57	64	70085	10.62288 ppb	94
9) Trichlorofluoromethane	3,65	67	194848	10.90573 ppb	97
10) Acrolein	4.03 4.51	101 56	121979 15862	10.56992 ppb	97
11) Acetone	4.62	43	2454	122.17770 ppb = 11.98447 ppb	# 82 91
12) Freon-113	4.78	101	80212	11.41148 ppb	92
13) 1,1-DCE	4.95	96	89215	11.10979 ppb	93
14) t-Butanol	F 07	59	5919	120.54304 ppb	97
14) t-Butanoi 15) Methyl Acetate	5.42	43	27257	9.20976 ppb	96
16) Iodomethane	5.34	142	103925	10.29110 ppb	96
17) Acrylonitrile	5.75	53	11212	10.60620 ppb	96
18) Methylene chloride	5.63	84	83897	9.81519 ppb	94
19) Carbon disulfide	5.66	76	87216	10.79195 ppb	99
20) Methyl t-butyl ether (MtBE		73	120545	9.89096 ppb	91
21) Trans-1,2-DCE	6.20	96 45	104590	10.79849 ppb	94
22) Diisopropyl Ether 23) 1,1-DCA	6.86 6.84	45 63	270648 168534		97
24) Vinyl Acetate	6.86	43	122154	10.22223 ppb 9.72452 ppb #	98 97
25) Ethyl tert Butyl Ether	7.52	59	172546	10.09811 ppb	98
761 MDV /7-Dutananal	7 60	43			96
27) Cis-1,2-DCE	7.82	96	24541 102655 110972	10.49097 ppb	83
20) 2,2-Dichtoropropane	7.79	7 <b>7</b>	110972	3.03143 DDD	99
(9) Chloroform	8.08	.83	168424	10.77973 ppb	97
30) Bromochloromethane	8.28	128	31512	10.67609 ppb	96
32) 1,1,1-TCA	8.78	97	127491	10.34938 ppb	92
33) Cyclohexane	8.90	56	148139	11.17556 ppb	97
34) 1,1-Dichloropropene	9.04	75	127999	10.91357 ppb	97
35) 2,2,4-Trimethylpentane	9.14	57	264016	11.73521 ppb	98
37) Carbon Tetrachloride	9.20	117	107977	11.28994 ppb	99
38) Tert Amyl Methyl Ether 39) 1,2-DCA	9.33 9.32	73 62	146957	9.77435 ppb #	96
10) Benzene	9.32	62 78	68391	9.52735 ppb	99
41) TCE	10.42		404637 95731	10.31448 ppb 10.25180 ppb	98 04
10) 0 Dambarra	10 10		0.50000		94 96
42) 2-Pencanone				ppp	90 

^{(#) =} qualifier out of range (m) = manual integgration 0229S16W.D SALLRW.M Wed Mar 07 09:05:47 2012

(Not Reviewed)

Data File: M:\SWEETPEA\DATA\S120229\0229S16W.D

Vial: 16 Acq On : 1 Mar 12 2:47 Sample : 120229A LCS-1WS (SS) Operator: DG, SV, RS Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 9:03 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Wed Mar 07 09:02:48 2012
Response via : Initial Calibration
DataAcq Meth : V8260

51) Toluene 12.47 91 366622 10.42412 ppb 52) Trans-1,3-Dichloropropene 12.70 75 76933 9.78047 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	
44) Bromodichloromethane       10.99       83       97134       9.96249 ppb         45) Methyl Cyclohexane       10.67       83       132278       11.05318 ppb         46) Dibromomethane       11.01       93       36654       10.34786 ppb         47) 2-Chloroethyl vinyl ether       11.72       106       794       9.47881 ppb         48) MIBK (methyl isobutyl ket       11.63       43       28707       9.36034 ppb       #         49) 1-Bromo-2-chloroethane       11.73       63       74673       9.85146 ppb       pb         50) Cis-1,3-Dichloropropene       11.90       75       120017       9.82604 ppb       1         51) Toluene       12.47       91       366622       10.42412 ppb       1         52) Trans-1,3-Dichloropropene       12.70       75       76933       9.78047 ppb       1         53) 1,1,2-TCA       12.94       83       39388       9.46313 ppb       4         54) 2-Hexanone       13.04       43       17236       10.21583 ppb       #         57) 1,2-EDB       14.08       107       47236       10.25884 ppb       10.71279 ppb         58) Tetrachloroethene       13.58       166       103418       10.71279 ppb       10.61261 ppb <td>97</td>	97
45) Methyl Cyclohexane 46) Dibromomethane 11.01 93 36654 10.34786 ppb 47) 2-Chloroethyl vinyl ether 48) MIBK (methyl isobutyl ket 11.63 43 28707 9.36034 ppb # 49) 1~Bromo-2-chloroethane 50) Cis-1,3-Dichloropropene 11.90 75 120017 9.82604 ppb 51) Toluene 12.47 91 366622 10.42412 ppb 52) Trans-1,3-Dichloropropene 12.47 91 366622 10.42412 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 40.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	93
46) Dibromomethane 47) 2-Chloroethyl vinyl ether 48) MIBK (methyl isobutyl ket 11.63 43 28707 9.36034 ppb 49) 1-Bromo-2-chloroethane 50) Cis-1,3-Dichloropropene 51) Toluene 52) Trans-1,3-Dichloropropene 53) 1,1,2-TCA 54) 2-Hexanone 55) 1,2-EDB 56) Tetrachloroethene 57) 1,2-EDB 58) Tetrachloroethene 59) 1-Chlorohexane 60) 1,1,1,2-Tetrachloroethane 61) m&p-Xylene 11.01 93 36654 10.34786 ppb 9.47881 ppb 9.36034 ppb # 9.85146 ppb 9.82604 ppb 12.00 75 76933 9.82604 ppb 13.66622 10.42412 ppb 9.86622 10.42412 ppb 9.87673 9.78047 ppb 13.04 43 39388 9.46313 ppb 43.04 43 17236 10.21583 ppb # 14.08 107 47236 10.21583 ppb # 15.15 106 328979 21.16105 ppb 13.61 ppb 13.61 328979 21.16105 ppb	95
48) MIBK (methyl isobutyl ket 11.63 43 28707 9.36034 ppb # 49) 1-Bromo-2-chloroethane 11.73 63 74673 9.85146 ppb 50) Cis-1,3-Dichloropropene 11.90 75 120017 9.82604 ppb 1 51) Toluene 12.47 91 366622 10.42412 ppb 52) Trans-1,3-Dichloropropene 12.70 75 76933 9.78047 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	93
## ABY MIBK (methyl isobutyl ket 11.63	63
50) Cis-1,3-Dichloropropene 11.90 75 120017 9.82604 ppb 151) Toluene 12.47 91 366622 10.42412 ppb 52) Trans-1,3-Dichloropropene 12.70 75 76933 9.78047 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb #57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	90
51) Toluene 12.47 91 366622 10.42412 ppb 52) Trans-1,3-Dichloropropene 12.70 75 76933 9.78047 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	96
52) Trans-1,3-Dichloropropene 12.70 75 76933 9.78047 ppb 53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	100
53) 1,1,2-TCA 12.94 83 39388 9.46313 ppb 54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	96
54) 2-Hexanone 13.04 43 17236 10.21583 ppb # 57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	97
57) 1,2-EDB 14.08 107 47236 10.25884 ppb 58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	96
58) Tetrachloroethene 13.58 166 103418 10.71279 ppb 59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	94
59) 1-Chlorohexane 14.57 91 134836 11.35101 ppb 60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	98
60) 1,1,1,2-Tetrachloroethane 14.94 131 77146 10.61261 ppb 61) m&p-Xylene 15.15 106 328979 21.16105 ppb	94
61) m&p-Xylene 15.15 106 328979 21.16105 ppb	96
	87
69\ a_Vilana	97
62) o-Xylene 15.86 106 159645 10.63258 ppb	93
	94
	98
	99
	98
	95
	97
	98
F2) 4 0 2 model 3	92
74) + 1 4 04 11 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92
GET Described to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	68 93
76) - Provide the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the	99
771 4 71 7 7	97
MOV 0 01.1	96
70\ 4 0 F multiple 1\ 1\ 1\	98
00) 4 01-14-3	99
01) Manual Dual-11 and and 30 00 440 004648 44	94
003 4 0 4 million 33 40 40 40 40 40 40 40 40 40 40 40 40 40	97
001 0 5	99
04) - T	95
	97
	98
87) 1,4-DCB 18.94 146 170714 10.03610 ppb 10	00
88) n-Butylbenzene 19.41 91 282268 10.26172 ppb 9	97
89) 1,2-DCB 19.56 146 151632 10.65879 ppb 9	97
90) Hexachloroethane 20.23 117 76426 10.23642 ppb · 9	₹5
	57
92) 1,2,4-Trichlorobenzene 22.50 180 89352 10.55240 ppb 9	96
	90
	4
95) 1,2,3-Trichlorobenzene 23.29 180 75037 10.15185 ppb 9	4

^{(#) =} qualifier out of range (m) = manual integaration 0229S16W.D SALLRW.M Wed Mar 07 09:05:48 2012

Data File : M:\SWEETPEA\DATA\S120229\0229S16W.D

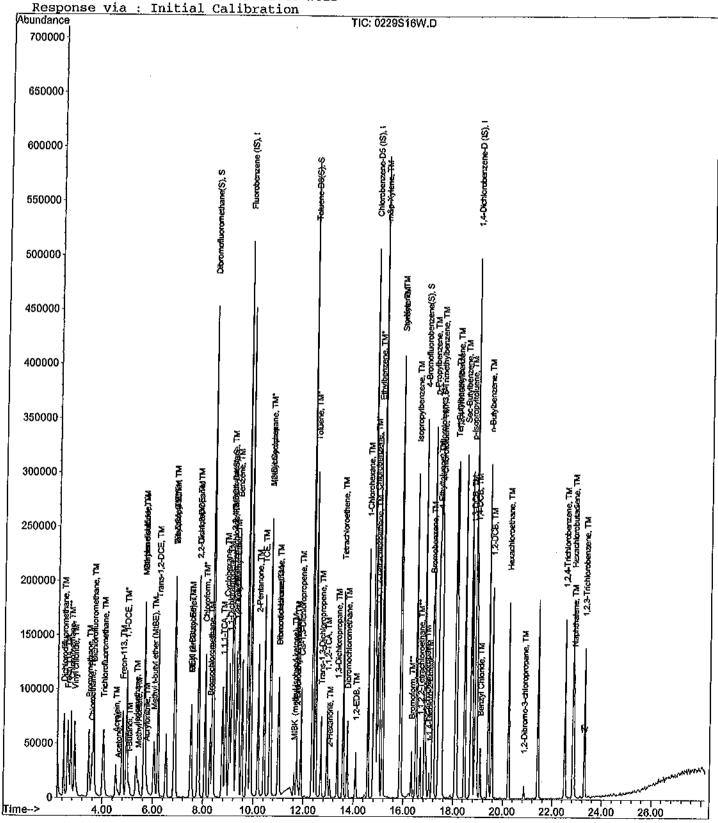
Acq On : 1 Mar 12 2:47
Sample : 120229A LCS-1WS (SS)

Vial: 16 Operator: DG,SV,RS Inst : Sweetpea

: Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 9:03 2012

Quant Results File: SALLRW.RES


Method

Misc

: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Wed Mar 07 09:02:48 2012



Data File : M:\SWEETPEA\DATA\S120229\0302S02W.D

Vial: 2 Acq On : 2 Mar 12 10:30 Operator: DG, SV, RS : 10ug/L STD 3-02-12 Sample Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 9:04 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Wed Mar 07 09:02:48 2012
Response via : Initial Calibration
DataAcq Meth : V8260

1)   Fluorobenzene (IS)	Internal Standards	R.Τ.	QIon	Response	Conc Units	Dev	(Min)
System Monitoring Compounds   31) Dibromofluoromethane (S)			06	271121	25 00000 001		0.01
System Monitoring Compounds   31, Dibromofluoromethane (S)	55) Chlorobenzene-D5 (TS)	14.78	117	196992	25.00000 ppi	) ^	
System Monitoring Compounds   31) Dibromofluoromethane (S)	70) 1.4-Dichlorobenzene-D (IS)	18.87	152				
31   Dibromofluoromethane (S)   Spiked Amount   20.857   Spiked Amount   20.857   Spiked Amount   20.981   12.34   98   Recovery   95.1535   12.531   19.96435 ppb   -0.02   Recovery   95.1535   12.534   12.531   19.96435 ppb   -0.01   Recovery   98.6348   -0.01   Spiked Amount   21.847   12.34   98   Spiked Amount   21.847   18.692   20.19826 ppb   -0.01   Recovery   98.6348   -0.01   Spiked Amount   21.472   18.692   20.19826 ppb   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Recovery   94.0678   -0.01   Reco	, , , , , , , , , , , , , , , , , , , ,	10.07	104	100300	as. occor pp	,	0.01
Spiked Amount   20.857							
Spiked Amount   20.857   36   12-DCA-Dd(S)   56   12531   19.95435 ppb   -0.02   Spiked Amount   20.981   56   Toluene-Dd(S)   55   Toluene-Dd(S)   59   56699   21.28892 ppb   -0.01   Spiked Amount   21.472   72   73   74   74   74   74   74   74   74	<li>31) Dibromofluoromethane(S)</li>	8.37	111	164943	20.20695 ppl	)	~0.02
Spiked Amount				Recov	ery = 96.88	32%	
Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.584   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.		9.15	65	112531	19.96435 ppl	)	-0.02
Spiked Amount   21.584   Chromofluorobenzene(S)   16.83   95   186942   20.19826 ppb   -0.01				Recov	ery = 95.15	53%	
Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.472   Spiked Amount   21.		12.34	98				-0.01
Target Compounds 2) Dichlorodifluoromethane 2) Jichlorodifluoromethane 3) Freon 114 4) Chloromethane 2) 2.45 85 74428 10.91283 ppb 86 4) Chloromethane 2) 2.73 50 46469 8.41791 ppb 99 5) Vinyl chloride 2) 88 62 36128 8.31484 ppb 99 6) Bromomethane 3) 2.43 94 23200 10.45413 ppb 94 7) Chloroethane 3) 2.66 64 70283 10.82873 ppb 85 8) Dichlorofluoromethane 3) 2.66 64 70283 10.82873 ppb 85 8) Dichlorofluoromethane 4) 101 101 116095 10.22610 ppb 99 9) Trichlorofluoromethane 4,01 101 116095 10.22610 ppb 95 10) Acrolein 4,51 56 17312 135,54734 ppb 97 11) Acetone 4,62 43 2124 10.54407 ppb 100 12) Freon-113 4,76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4,94 96 90748 11.48722 ppb 87 14) t-Butanol 5,04 59 6656 137,78973 ppb # 92 15) Methyl Acetate 5,40 43 29221 9.89182 ppb 97 16) Idomethane 5,32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5,72 53 11593 11,14763 ppb 95 18) Carbon disulfide 5,63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5,63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5,64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6,85 45 288654 11.00693 ppb 99 24) Vinyl Acetate 6,85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7,50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7,78 77 132992 12.04983 ppb 99 27) Cis-1,2-DCE 7,79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7,78 77 132992 12.04983 ppb 99 29) Chloroform 8,06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8,27 128 33968 11.69527 ppb 99 31,1-Dichloropropene 9,03 75 134177 11.76481 ppb 99 33 1,1-Tichloropropene 9,03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9,03 75 134177 11.62915 ppb 99 34) 1,2-DCA 9,30 62 74414 10.53750 ppb 99 340 Benzene 9,33 78 421735 10.9276 ppb 97 341 CeBarane 9,33 78 421735 10.9276 ppb 97 340 Benzene 9,38 78 421735 10.9276 ppb 97		16 00	0.5				0.01
Target Compounds  2) Dichlorodifluoromethane 2) Dichlorodifluoromethane 2) Dichlorodifluoromethane 3) Freon 114 2) Color St. Add St. Add St. Add St. Both St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St. Add St.		10,03	. 95				~0.01
2)   Dichlorodifluoromethane   2.45	DETROG INIONIC NI. 17.2			Necovi	ery ~ 34,00	7/10	
2)   Dichlorodifluoromethane   2.45	Target Compounds					Ov	alue
3   Freon 114	<ol><li>Dichlorodifluoromethane</li></ol>		85	40368	10.28966 pph		
8) Dichlorofluoromethane 3.63 67 204003 11.60660 ppb 99 9) Trichlorofluoromethane 4.01 101 116095 10.22610 ppb 95 10) Acrolein 4.51 56 17312 135.54734 ppb 97 11) Acetone 4.62 43 2124 10.54407 ppb 100 12) Freon-113 4.76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4.94 96 90748 11.48722 ppb 87 14) t-Butanol 5.04 59 6656 137.78973 ppb # 92 15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288854 11.00639 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 16517 11.06512 ppb 98 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 10.4983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 99 32) 1,1,1-DCA 8.76 97 132690 10.94921 ppb 93 33) (2clohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 99 36) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 37) Carbon Tetrachloride 9.18 117 108487 11.50349 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99	3) Freon 114	2.61	85	74428	10.91283 pph	)	
8) Dichlorofluoromethane 3.63 67 204003 11.60660 ppb 99 9) Trichlorofluoromethane 4.01 101 116095 10.22610 ppb 95 10) Acrolein 4.51 56 17312 135.54734 ppb 97 11) Acetone 4.62 43 2124 10.54407 ppb 100 12) Freon-113 4.76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4.94 96 90748 11.48722 ppb 87 14) t-Butanol 5.04 59 6656 137.78973 ppb # 92 15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288854 11.00639 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 16517 11.06512 ppb 98 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 10.4983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 99 32) 1,1,1-DCA 8.76 97 132690 10.94921 ppb 93 33) (2clohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 99 36) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 37) Carbon Tetrachloride 9.18 117 108487 11.50349 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99	4) Chloromethane	2.73		46469	8.41791 pph	)	99
8) Dichlorofluoromethane 3.63 67 204003 11.60660 ppb 99 9) Trichlorofluoromethane 4.01 101 116095 10.22610 ppb 95 10) Acrolein 4.51 56 17312 135.54734 ppb 97 11) Acetone 4.62 43 2124 10.54407 ppb 100 12) Freon-113 4.76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4.94 96 90748 11.48722 ppb 87 14) t-Butanol 5.04 59 6656 137.78973 ppb # 92 15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288854 11.00639 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 16517 11.06512 ppb 98 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 10.4983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 99 32) 1,1,1-DCA 8.76 97 132690 10.94921 ppb 93 33) (2clohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 99 36) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 37) Carbon Tetrachloride 9.18 117 108487 11.50349 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99	5) Vinyl chloride	2.88		36128	8.31484 ppb	)	99
8) Dichlorofluoromethane 3.63 67 204003 11.60660 ppb 99 9) Trichlorofluoromethane 4.01 101 116095 10.22610 ppb 95 10) Acrolein 4.51 56 17312 135.54734 ppb 97 11) Acetone 4.62 43 2124 10.54407 ppb 100 12) Freon-113 4.76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4.94 96 90748 11.48722 ppb 87 14) t-Butanol 5.04 59 6656 137.78973 ppb # 92 15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288854 11.00639 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 16517 11.06512 ppb 98 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 10.4983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 99 32) 1,1,1-DCA 8.76 97 132690 10.94921 ppb 93 33) (2clohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 99 36) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 37) Carbon Tetrachloride 9.18 117 108487 11.50349 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99	6) Bromomethane	3.43		23200	10.45413 ppb	)	
9) Trichlorofiluoromethane 4.01 101 116095 10.22610 ppb 95 100 Accrolein 4.51 56 17312 135.54734 ppb 97 11) Accetone 4.62 43 2124 10.54407 ppb 100 12) Freon-113 4.76 101 82046 11.86505 ppb 95 13) 1,1-DCE 4.94 96 90748 11.48722 ppb 87 14) t-Butanol 5.04 59 6656 137.78973 ppb # 92 15) Methyl Acetate 5.40 43 22221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00633 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 29) Chloroform 8.06 83 157254 10.23094 ppb 98 29) Chloroform 8.06 83 157254 10.23094 ppb 98 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 99 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74414 10.53750 ppb 99 30 1,2-DCA 9.30 62 74	// Chloroethane	3.56		70283	10.82873 ppb	1	
10) Acrolein	9) Trightoroffuoromethane	3.63		204003	11.60660 ppb	•	
11) Acetone	10) Acrolein	4 . U I				'	
15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 390 1,2-DCA 9.30 62 74414 10.53750 ppb 99 41) TCE 10.41 95 95620 10.40893 ppb 96	11) Acetone	4 62	43	2124	10 54407 pph		
15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 390 1,2-DCA 9.30 62 74414 10.53750 ppb 99 41) TCE 10.41 95 95620 10.40893 ppb 96	12) Freon-113	4.76	101	82046	11.86505 nnh		
15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 390 1,2-DCA 9.30 62 74414 10.53750 ppb 99 41) TCE 10.41 95 95620 10.40893 ppb 96	13) 1,1-DCE	4.94	96	90748	11.48722 ppb		
15) Methyl Acetate 5.40 43 29221 9.89182 ppb 97 16) Iodomethane 5.32 142 99638 10.07040 ppb 94 17) Acrylonitrile 5.72 53 11593 11.14763 ppb 75 18) Methylene chloride 5.63 84 93014 11.06141 ppb 85 19) Carbon disulfide 5.64 76 86536 10.88454 ppb 96 20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 390 1,2-DCA 9.30 62 74414 10.53750 ppb 99 41) TCE 10.41 95 95620 10.40893 ppb 96	14) t-Butanol	5.04	59	6656	137.78973 ppb	#	
16) Iodomethane       5.32       142       99638       10.07040 ppb       94         17) Acrylonitrile       5.72       53       11593       11.14763 ppb       75         18) Methylene chloride       5.63       84       93014       11.06141 ppb       85         19) Carbon disulfide       5.64       76       86536       10.88454 ppb       96         20) Methyl t-butyl ether (MtBE       6.03       73       127894       10.66717 ppb       #         21) Trans-1,2-DCE       6.19       96       106567       11.18422 ppb       96         22) Diisopropyl Ether       6.85       45       288654       11.00693 ppb       #       90         23) 1,1-DCA       6.82       63       174921       10.78474 ppb       99       24       Vinyl Acetate       6.85       43       145177       11.74811 ppb       99       25       Ethyl tert Butyl Ether       7.50       59       186513       11.09569 ppb       #       83         27) Cis-1,2-DCE       7.79       96       106515       11.06512 ppb       98         28) 2,2-Dichloropropane       7.78       77       132992       12.04983 ppb       99         30) Bromochloromethane       8.27       128	15) Methyl Acetate	5.40	43	Z9ZZ1	g.89182 ppp		
18) Methylene chloride	16) Iodomethane	5.32		99638	10.07040 ppb		94
19) Carbon disulfide	17) Acrylonitrile	5,72		11593			
20) Methyl t-butyl ether (MtBE 6.03 73 127894 10.66717 ppb # 92 21) Trans-1,2-DCE 6.19 96 106567 11.18422 ppb 96 22) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 39 1,2-DCA 9.30 62 74414 10.53750 ppb 99 37 41) TCE	18) Methylene chloride	5.63					
21) Diisopropyl Ether 6.85 45 288654 11.00693 ppb # 90 23) 1,1-DCA 6.82 63 174921 10.78474 ppb 99 24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 34) 1,1-Dichloropropene 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96			_	86536	10.88454 ppb		
22) Diisopropyl Ether       6.85       45       288654       11.00693 ppb       # 90         23) 1,1-DCA       6.82       63       174921       10.78474 ppb       99         24) Vinyl Acetate       6.85       43       145177       11.74811 ppb       99         25) Ethyl tert Butyl Ether       7.50       59       186513       11.09569 ppb       97         26) MEK (2-Butanone)       7.48       43       26982       10.53846 ppb       # 83         27) Cis-1,2-DCE       7.79       96       106515       11.06512 ppb       98         28) 2,2-Dichloropropane       7.78       77       132992       12.04983 ppb       99         29) Chloroform       8.06       83       157254       10.23094 ppb       98         30) Bromochloromethane       8.27       128       33968       11.69527 ppb       90         32) 1,1,1-TCA       8.76       97       132690       10.94921 ppb       92         33) Cyclohexane       8.88       56       156292       11.98523 ppb       99         34) 1,1-Dichloropropene       9.03       75       134177       11.62915 ppb       95         37) Carbon Tetrachloride       9.18       117       108487 <td< td=""><td>20) Methyl tabulyl ether (MtBE 21) Trang-1 2-DCR</td><td>6.03</td><td></td><td>12/894</td><td>10.66/1/ ppp</td><td>#</td><td></td></td<>	20) Methyl tabulyl ether (MtBE 21) Trang-1 2-DCR	6.03		12/894	10.66/1/ ppp	#	
24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96	22) Diigopropyl Ether	6 85				н	
24) Vinyl Acetate 6.85 43 145177 11.74811 ppb 99 25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96	23) 1.1-DCA	6.82		174921	10.78474 ppb	H	
25) Ethyl tert Butyl Ether 7.50 59 186513 11.09569 ppb 97 26) MEK (2-Butanone) 7.48 43 26982 10.53846 ppb # 83 27) Cis-1,2-DCE 7.79 96 106515 11.06512 ppb 98 28) 2,2-Dichloropropane 7.78 77 132992 12.04983 ppb 99 29) Chloroform 8.06 83 157254 10.23094 ppb 98 30) Bromochloromethane 8.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96	24) Vinyl Acetate	6.85		145177	11.74811 ppb		
27) Cis-1,2-DCE       7.79       96       106515       11.06512       ppb       98         28) 2,2-Dichloropropane       7.78       77       132992       12.04983       ppb       99         29) Chloroform       8.06       83       157254       10.23094       ppb       98         30) Bromochloromethane       8.27       128       33968       11.69527       ppb       90         32) 1,1,1-TCA       8.76       97       132690       10.94921       ppb       92         33) Cyclohexane       8.88       56       156292       11.98523       ppb       99         34) 1,1-Dichloropropene       9.03       75       134177       11.62915       ppb       99         35) 2,2,4-Trimethylpentane       9.13       57       259057       11.70484       ppb       95         37) Carbon Tetrachloride       9.18       117       108487       11.53049       ppb       99         38) Tert Amyl Methyl Ether       9.31       73       161600       10.92569       ppb       99         39) 1,2-DCA       9.30       62       74414       10.53750       ppb       99         40) Benzene       9.38       78       421735	25) Ethyl tert Butyl Ether	7.50		186513	11.09569 ppb		
27) Cis-1,2-DCE       7.79       96       106515       11.06512 ppb       98         28) 2,2-Dichloropropane       7.78       77       132992       12.04983 ppb       99         29) Chloroform       8.06       83       157254       10.23094 ppb       98         30) Bromochloromethane       8.27       128       33968       11.69527 ppb       90         32) 1,1,1-TCA       8.76       97       132690       10.94921 ppb       92         33) Cyclohexane       8.88       56       156292       11.98523 ppb       99         34) 1,1-Dichloropropene       9.03       75       134177       11.62915 ppb       99         35) 2,2,4-Trimethylpentane       9.13       57       259057       11.70484 ppb       95         37) Carbon Tetrachloride       9.18       117       108487       11.53049 ppb       99         38) Tert Amyl Methyl Ether       9.31       73       161600       10.92569 ppb       99         39) 1,2-DCA       9.30       62       74414       10.53750 ppb       99         40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb	26) MEK (2-Butanone)	7.48	43	26982	10.53846 ppb	#	
29) Chloroform       8.06       83       157254       10.23094 ppb       98         30) Bromochloromethane       8.27       128       33968       11.69527 ppb       90         32) 1,1,1-TCA       8.76       97       132690       10.94921 ppb       92         33) Cyclohexane       8.88       56       156292       11.98523 ppb       99         34) 1,1-Dichloropropene       9.03       75       134177       11.62915 ppb       99         35) 2,2,4-Trimethylpentane       9.13       57       259057       11.70484 ppb       95         37) Carbon Tetrachloride       9.18       117       108487       11.53049 ppb       99         38) Tert Amyl Methyl Ether       9.31       73       161600       10.92569 ppb       99         39) 1,2-DCA       9.30       62       74414       10.53750 ppb       99         40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb       96	27) Cis-1,2-DCE			106515	11.06512 ppb		
30) Bromochloromethane 3.27 128 33968 11.69527 ppb 90 32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96							
32) 1,1,1-TCA 8.76 97 132690 10.94921 ppb 92 33) Cyclohexane 8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96					10.23094 ppb		
33) Cyclohexane  8.88 56 156292 11.98523 ppb 99 34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96					11,69527 ppb		
34) 1,1-Dichloropropene 9.03 75 134177 11.62915 ppb 99 35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96							
35) 2,2,4-Trimethylpentane 9.13 57 259057 11.70484 ppb 95 37) Carbon Tetrachloride 9.18 117 108487 11.53049 ppb 99 38) Tert Amyl Methyl Ether 9.31 73 161600 10.92569 ppb 99 39) 1,2-DCA 9.30 62 74414 10.53750 ppb 99 40) Benzene 9.38 78 421735 10.92776 ppb 97 41) TCE 10.41 95 95620 10.40893 ppb 96					11.90023 ppp		
37) Carbon Tetrachloride       9.18       117       108487       11.53049 ppb       99         38) Tert Amyl Methyl Ether       9.31       73       161600       10.92569 ppb       99         39) 1,2-DCA       9.30       62       74414       10.53750 ppb       99         40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb       96							
38) Tert Amyl Methyl Ether       9.31       73       161600       10.92569 ppb       99         39) 1,2-DCA       9.30       62       74414       10.53750 ppb       99         40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb       96					11.53049 ppb		
39) 1,2-DCA       9.30       62       74414       10.53750 ppb       99         40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb       96					10,92569 pph		
40) Benzene       9.38       78       421735       10.92776 ppb       97         41) TCE       10.41       95       95620       10.40893 ppb       96	39) 1,2-DCA	9.30			10.53750 ppb		
10 DOGE 2012000 PPD 30	•				10.92776 ppb		
42) 2-Pentanone 10.16 43 283855 128.13192 ppb 97							
	42) 2-Pentanone	10.16	43	283855	128.13192 ppb		97

^{(#) =} qualifier out of range (m) = manual integration 0302S02W.D SALLRW.M Wed Mar 07 09:05:54 2012

(Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0302S02W.D

Vial: 2 Operator: DG,SV,RS Inst : Sweetpea Multiplr: 1.00 Acq On : 2 Mar 12 10:30 Sample : 10ug/L STD 3-02-12 Misc : Water 10mL w/IS:02-17-12

Quant Time: Mar 7 9:04 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

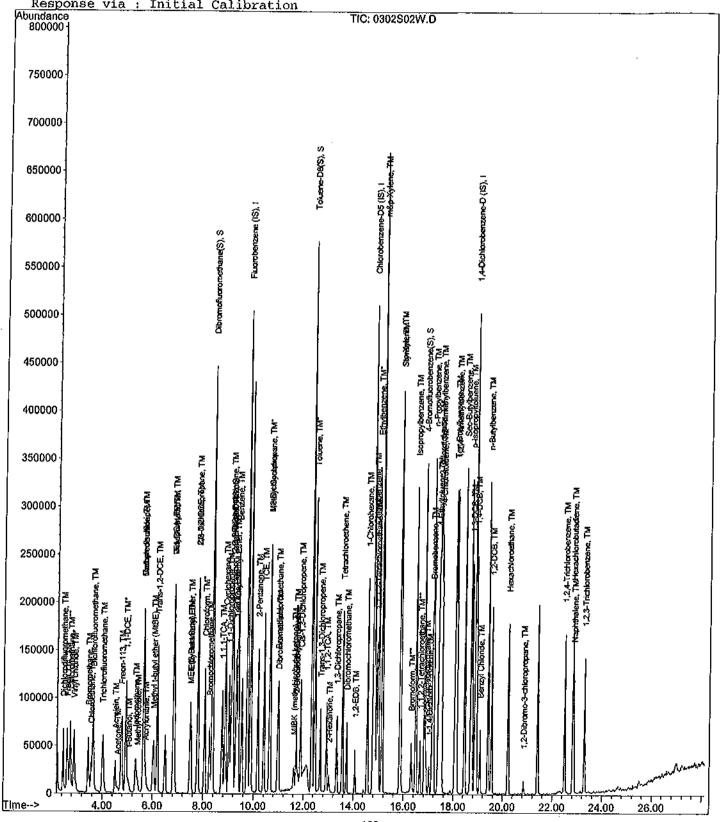
Title : METHOD 8260
Last Update : Wed Mar 07 09:02:48 2012
Response via : Initial Calibration
DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalu	ıe
	) 1,2-Dichloropropane	10.63	63	91035	11.13017 r	 ppb #	 95
	) Bromodichloromethane	10.97		106411	11.09412 r	pb	94
	Methyl Cyclohexane	10.66		134888	11.45731 g		95
	) Dibromomethane	11.01	93	38457	11.03607 p		89
	2-Chloroethyl vinyl ether	11.70		824	10.04754 r	_	96
	MIBK (methyl isobutyl ket	11.62	43	29511	9.78132 g		84
	1-Bromo-2-chloroethane	11.71	63	80627	10.81252 g		94
	Cis-1,3-Dichloropropene Toluene	11.88	75	126367	10.51669 p		95
	Trans-1,3-Dichloropropene	12.46	91	382115	11.04396 p		99
	1,1,2-TCA	12.68 12.92	75	89051	11.50789 p		99
	2-Hexanone	13.03	83 43	44783 17026	10.93688 p	ogo age	93
	1,2-EDB	14.07	107	48071	10.25792 p 10.46732 p	pb #	82
	Tetrachloroethene	13.57	166	103884	10.78903 p		93 92
	1-Chlorohexane	14.56	91	129975	10.76903 p		98
	1,1,1,2-Tetrachloroethane	14.93	131	79491	10.96362 p		94
	m&p-Xylene	15.14	106	354185	22.84159 p	mh	9 <b>7</b>
	o-Xylene	15.85	106	166771	11.13605 p		94
	Styrene	15.88	104	261917	10.93748 p	-	96
	1,3-Dichloropropane	13.34	76	85148	10.90050 p		87
	Dibromochloromethane	13,73	129	65256	10.96747 p	pb do	96
	Chlorobenzene	14.85	112	242219	11.01528 p		98
68)	Ethylbenzene	14.99	91	413319	10.72205 p		94
	Bromoform	16.31	173	35777	11.04689 p		97
	Isopropylbenzene	16.49	105	385765	11.25728 p		100
	1,1,2,2-Tetrachloroethane	16.66	85	31954	11.49212 p	pb	86
	1,2,3-Trichloropropane	16.90	110	10311	10.28741 p	pb	96
	t-1,4-Dichloro-2-Butene	17.02	53	4588	13.41073 p	pb	89
	Bromobenzene	17.14	156	98692	10.76209 p		95
	n-Propylbenzene	17.18	91	464849	10.74894 p		98
	4-Ethyltoluene	17.38	105	260361	10.78688 p		96
	2-Chlorotoluene	17.42	91	309858	10.64409 p		98
	1,3,5~Trimethylbenzene	17.46	105	300655	10.42040 p		95
-	4-Chlorotoluene	17.51	91	264564	10.68121 p		99
	Tert-Butylbenzene 1,2,4-Trimethylbenzene	18.07	119	336931	11.10204 pp	op -1-	95
831	Sec-Butylbenzene	$18.12 \\ 18.45$	105 105	307162 430821	10.84441 p		92
841	p-Isopropyltoluene	18.69	119	351067	10.91751 pp		100
	Benzyl Chloride	19.08	91	32424	11.69309 pr		98
86)		18.76	146	188902	11.14167 pp		98 98
-	1,4-DCB	18.93	146	182914	10.96847 pg		99
-	n-Butylbenzene	19.40	91	295955	10.97456 pr		96
	1,2-DCB	19.55	146	150401	10.78377 pg	h h	97
	Hexachloroethane	20.22	117	76446	10.44395 pp		98
91)	1,2-Dibromo-3-chloropropan	20.86	157	8068	10.66597 pp	ob #	88
92)	1,2,4-Trichlorobenzene	22.49	180	95610	11.51737 pp		99
93)	Hexachlorobutadiene	22.82	225	24712	11.42361 pp	ob	98
	Naphthalene	22.86	128	49192	9.53173 pp		99
95)	1,2,3-Trichlorobenzene	23.29	180	77085	10.63758 pp		95

^{(#) =} qualifier out of range (m) = manual integgation 0302S02W.D SALLRW.M Wed Mar 07 09:05:55 2012

Data File : M:\SWEETPEA\DATA\S120229\0302S02W.D

Vial: 2 : 2 Mar 12 10:30


Acq On Operator: DG, SV, RS : 10ug/L STD 3-02-12 Sample Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 9:04 2012 Quant Results File: SALLRW, RES

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Wed Mar 07 09:02:48 2012 Response via : Initial Calibration



(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N04S.D

Vial: 1 Operator: SV,DG,RS

Acq On : 5 Mar 12 12:46 Sample : 2ug/kg Vol Std 03-05-12 Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Ouant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Inhornal Chandarde	R.T.	OTon	Poenonea	Conc Units	Dev	(Min)
Internal Standards		QTOIL				
<ol> <li>Fluorobenzene (IS)</li> </ol>	13.28	96	314752	50.00000 pr		-0.01
51) Chlorobenzene-D5 (IS)	18.45	117		50.00000 pr		-0.01
67) 1,4-Dichlorobenzene-D (IS)	22.64	152	82 <b>68</b> 8	50.00000 pr	)b	0.00
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.86	111	15121	2.47923 pg	b	-0.02
Spiked Amount 41.312			Recover		01%	
34) 1,2-DCA-D4(S)	12.66	65	18521	2.79961 pp		-0.01
Spiked Amount 41.649			Recover		23%	
52) Toluene-D8(S)	15.92	98	51599	2.82237 pp		-0.01
Spiked Amount 35.274	00.53	٥.	Recover		100%	0 00
60) 4-Bromofluorobenzene(S)	20.53	95		2.64446 pg	30%	0.00
Spiked Amount 35.584			Kecover	y = 7.4	300	
Target Compounds						alue
<ol><li>Dichlorodifluoromethane</li></ol>	4.53	85	8153	1.71399 pp		98
<ol><li>Chloromethane</li></ol>	5.04	50	31728	0.24540 pr		99
<ol><li>4) Vinyl chloride</li></ol>	5.28	62	3709	1.57883 pr		100
5) Bromomethane	6.21	94	9982	4.73839 pp		43
6) Chloroethane	6.42	64	8190	1.94704 pr		74
7) Dichlorofluoromethane	6.50	67	25453	1.86845 pp 1.64299 pp		83 64
8) Trichlorofluoromethane	7.05 7.67	101 56	8150 43692	54.70002 pp		97
9) Acrolein	7.79	43	16913	-2.23211 pp		79
10) Acetone 11) Freon-113	7.96	101	5901	2.99706 pp		84
11) F1601-113 12) 1,1-DCE	8.19	96	7630	1.78404 pp		63
14) Methyl Acetate	8.67	43	35416	-4.81575 pp		98
15) Iodomethane	8.66	142	4485	2.27269 pp		94
16) Acrylonitrile	9.05	53	4963	2.33741 pp		42
17) Methylene chloride	8.96	86	11356	2.13232 pp	b	77
18) Carbon disulfide	9.08	76	43013	2.23013 pp		96
19) Methyl t-butyl ether (MtBE	9.38	73	33 <b>281</b>	2.15677 pp		90
20) Trans-1,2~DCE	9.56	96	11884	2.13887 pp		85
21) Diisopropyl Ether	10.21	45	56681	1.99358 pp	b #	89
22) 1,1-DCA	10.27	63	24633	2.02212 pp		93
23) Vinyl Acetate	10.21	43	46830	2.07941 pp 2.19055 pp		98
24) Ethyl tert Butyl Ether	$10.90 \\ 10.89$	59 43	45851 17671	-0.19559 pp		<b>89</b> 95
25) MEK (2-Butanone) 26) Cis-1,2-DCE	11.27	96	13241	2.11916 pp		77
27) 2,2-Dichloropropane	11.27	77	16914	2.02865 pp		88
28) Chloroform	11.55	83	22533	2.10359 pp		92
29) Bromochloromethane	11.78	128	4188	1.92218 pp		80
31) 1,1,1-TCA	12.29	97	13478	1.74745 pp	b #	85
32) Cyclohexane	12.45	56	14420	1.62765 pp	b #	88
33) 1,1-Dichloropropene	12.56	75	13511	1.82677 pp	b #	86
35) Carbon Tetrachloride	12.73	117	8370	1.42527 pp	b #	90
36) Tert Amyl Methyl Ether	12.78	73	37161	2.25497 pp		86
37) 1,2-DCA	12.81	62	16540	2.06726 pp		99
38) Benzene	12.95	78	49409	2.09733 pp	b #	89 60
39) TCE	13.97	95 43	10475	1.93877 pp		69
40) 2-Pentanone	13.62	43 63	317981 14632	56.14887 pp 2.07845 pp		98 92
41) 1,2-Dichloropropane	$14.19 \\ 14.54$	63 83	16508	2.02210 pp		96
42) Bromodichloromethane 43) Dibromomethane	14.54	93	8308	2.22274 pp		80
44) Methyl Cyclohexane	14.26	83	9456	2.81790 pp		99
45) 2-Chloroethyl vinyl ether	14.99	63	7,119	2.06483 pp	b	98
						·

# Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N04S.D

Vial: 1

Acq On : 5 Mar 12 12:46 Operator: SV,DG,RS : 2ug/kg Vol Std 03-05-12 Sample Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qva	alue	<u>!</u>
46) 1-Bromo-2-chloroethane	15.30	63	16738	2.06581	ppb		91
47) Cis-1,3-Dichloropropene	15.41	75	23558	2,31551			90
48) Toluene	16.05	91	49057	2.21279	ppb		96
49) Trans-1,3-Dichloropropene	16.20	75	19039	2.23732	ppb		85
50) 1,1,2-TCA	16.49	83	8087	2.09845	ppb		83
53) 1,2-EDB	17.74	107	9598	2.02069		#	64
54) Tetrachloroethene	17.19	129	5917	1.70107		#	83
55) 1-Chlorohexane	18.11	91	12168	1.70454			82
56) 1,1,1,2-Tetrachloroethane	18.57	1 <b>31</b>	10418	2.15350			80
57) m&p-Xylene	18.77	106	32414	3.96995			88
58) o-Xylene	19.51	106	16229	1.98212			86
59) Styrene	19.52	78	18265	2.09728			96
61) 2-Hexanone	16.50	43	11078	2,19006			94
62) 1,3-Dichloropropane	16.91	76	16592	2.00325			90
63) Dibromochloromethane	17.39	129	11536	2.06557			90
64) Chlorobenzene	18.51	112	27602	2.07617			87
65) Ethylbenzene	18.63	91	46468	1.91825			91
66) Bromoform	20.08	173	7250	2.14145	ppb		98
68) MIBK (methyl isobutyl keto	15.08	43	17791	2,61179	ppb	#	77
69) Isopropylbenzene	20.14	105	37540	1.96747			100
70) 1,1,2,2-Tetrachloroethane	20.30	<b>8</b> 3	13253	2.35463	ppb		97
71) 1,2,3-Trichloropropane	20.56	110	3319	2.41057			78
72) t-1,4-Dichloro-2-Butene	20.62	53	3623	2.08596			88
73) Bromobenzene	20.90	156	11538	2.36985			92
74) n-Propylbenzene	20.85	91	50712	1.99343			99
75) 2-Chlorotoluene	21.16	91	39630	2.27878			94
76) 1,3,5-Trimethylbenzene	21.12	105	32685	2.07282			94
77) 4-Chlorotoluene	21.23	91	34033	2.21974		,,	90
78) Tert-Butylbenzene	21.78	119	28227	1.91575		Ħ	96
79) 1,2,4-Trimethylbenzene	21.84	105	34381	2.13626	ppb		96
80) Sec-Butylbenzene	22.17	105	38592	1.88289		ш	94
81) p-Isopropyltoluene	22.40	119	31604	2.00202		#	84
82) Benzyl Chloride	22.82	91	23183	2.54157			90
83) 1,3-DCB	22.55	146	17279	2.08101			97
84) 1,4-DCB	22.70	146	20796	2.47670			91 95
85) n-Butylbenzene	23.10	91	33744 17470	2.02331			90
86) 1,2-DCB	23.33	146	1390	2.29653		#	67
87) 1,2-Dibromo-3-chloropropan	24.53 25.97	155 180	12089	2.11117 2.43139		π	91
88) 1,2,4-Trichlorobenzene	26.23	225	5 <b>82</b> 9	1.95980			79
89) Hexachlorobutadiene	26.23	128	25328	2.49636			100
90) Naphthalene	26.70	180	13183	1.96691		Ħ	70
91) 1,2,3-Trichlorobenzene	40.70	T00	12103	1.30031	թբո	ti.	, 0

Data File : M:\NEO\DATA\N120305\0305N04S.D

: 5 Mar 12 12:46

: 2ug/kg Vol Std 03-05-12

: 2dg/kg vol Std 03-05-12 : Soil 5mL w/IS:10-20-11 Vial: 1

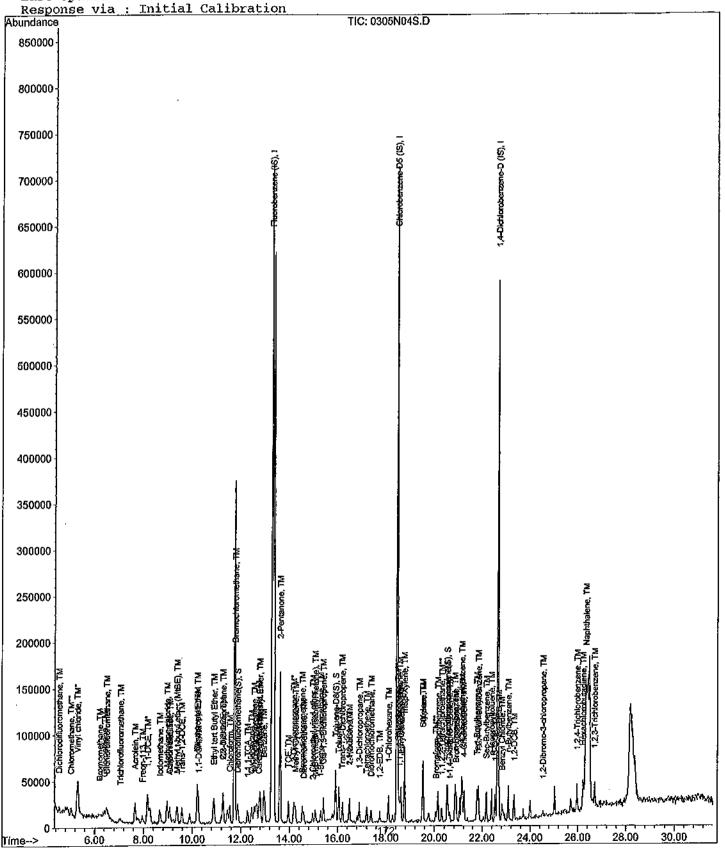
Multiplr: 1.00

Operator: SV,DG,RS Inst : Neo

Quant Time: Mar 7 14:17 2012

Quant Results File: NALLS.RES

Method : M


Sample

Misc

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012



(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N05S.D

Vial: 1 Operator: SV,DG,RS : 5 Mar 12 13:24

: 5ug/kg Vol Std 03-05-12 Sample Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

1) Pluorobenzene (IS)	Internal Standards	κ.т.	QIon	Response	Conc Units	Dev(Min)
System   Monitoring Compounds   300   Dibromofluoromethane (S)   11.88   111   31903   5.60214 ppb   0.00   System   Monitoring Compounds   300   Dibromofluoromethane (S)   11.88   111   31903   5.60214 ppb   0.00   Spiked   Amount   41.312   Recovery   13.550%   13.500   Recovery   13.550%   13.500   Recovery   13.550%   15.92   98   96492   5.77410 ppb   0.00   Recovery   15.50%   15.92   98   96492   5.77411 ppb   0.00   Recovery   16.359%   15.92   98   96492   5.77411 ppb   0.00   Recovery   16.359%   15.92   98   86492   5.77411 ppb   0.00   Recovery   16.359%   11.88   111   31903   5.60214 ppb   0.00   Recovery   16.359%   16.000   Recovery   16.359%   16.000   Recovery   16.359%   16.000   Recovery   16.359%   16.000   Recovery   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.991%   17.99						
System Monitoring Compounds   30) Dibromofiluoromethane (S)						
System Monitoring Compounds   30   Dibromofluoromethane (S)   11.88   111   31903   5.60214 ppb   0.00						
300   Dibromofluoromethane (S)   11.88   111   31903   5.60214 ppb   0.00	67) 1,4-Dichioropenzene-D (IS)	22.65	152	78008	50.00000 pp	B 0.00
Spiked Amount   41.312   12.67   65   35610   5.76490 ppb   0.00						
12.67   55   35610   5.76490 ppb   0.00		11.88	111			
Spiked Amount   41.649		10 (0	<b>6</b> F			
Spiked Amount   35.274		12.67	65			
Spiked Amount   35.274   20.52   95   41128   6.40193   pbb   0.00		15 02	0.8			
Spiked Amount   35.584   20.52   95	· · · · · · · · · · · · · · · · · · ·	17.72	90			
Target Compounds		20.52	95			
23						
23	Warget Compounds					Ovalue
3		4.55	85	34231	6.56582 ppl	
4   Vinyl chloride						
5) Bromomethane 6. Cloroethane 7. Old 101 31865 6.11884 ppb 97 8) Trichlorofluoromethane 7. Old 101 31865 6.11884 ppb 93 9. Acrolein 7. Cloroethane 7. Cloroethane 7. Cloroethane 7. Cloroethane 7. Cloroethane 7. Cloroethane 7. Cloroethane 7. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloroethane 8. Cloro						
6) Chloroethane 7) Dichlorofluoromethane 8) Trichlorofluoromethane 8) Trichlorofluoromethane 8) Acrolein 9) Acrolein 10, Acetone 11) Freon-113 12) 1, 1-DCE 12) 1, 1-DCE 13) 6, 43 109, 43 21664 14, 47582 ppb 15) Methyl Acetate 16) Acrylonitrile 17, 66 13 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		6.22	94	17943		
8 Trichlorofluoromethane 7.04 101 31865 6.11884 ppb 93 9) Acrolein 7.66 56 81945 109.87394 ppb 97 10) Acetone 7.79 43 21664 1.47582 ppb 90 11) Freon-113 7.97 101 22009 6.94218 ppb # 85 12) 1.1-DCE 8.17 96 21675 5.42783 ppb 76 14) Methyl Acetate 8.66 43 69762 2.09497 ppb 97 15) Iodomethane 8.68 142 14851 5.56726 ppb # 77 16) Acrylonitrile 9.05 53 9566 4.82511 ppb 89 17) Methylene chloride 8.97 86 23520 5.73894 ppb 82 18) Carbon disulfide 9.09 76 111556 6.19456 ppb 98 19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb 98 24) Ethyl tert Butyl Ether 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28 Chloroform 11.56 83 55069 5.50599 ppb 91 29 Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32 Cyclohexane 12.46 56 46369 5.60546 ppb 98 31 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32 Cyclohexane 12.46 56 46369 5.60546 ppb 93 31 1,1-Dichloropropane 12.55 75 38871 5.62871 ppb 92 35 Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 94 36 Dert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38 Benzene 12.96 78 125878 5.72265 ppb 91 7CE 13.97 95 27348 5.42166 ppb 98 41 1,2-Dichloropropane 14.60 93 19729 5.65307 ppb 98 41 1,2-Dichloropropane 14.60 93 19729 5.65307 ppb 98 41 1,2-Dichloropropane 14.60 93 19729 5.65307 ppb 99 44) Methyl Cyclohexane 14.60 93 19729 5.65307 ppb 99 44 Methyl Cyclohexane 14.60 93 19729 5.65307 ppb 99 45 2-Chloroethyl vinyl ether 14.98 63 17490 5.31187 ppb 97		6.57	64			
9) Acrolein 7.66 56 81945 109.87394 ppb 97 10) Acetone 7.79 43 21664 1.47582 ppb 90 11) Freon-113 7.97 101 22009 6.94218 ppb 885 12) 1,1-DCE 8.17 96 21675 5.42783 ppb 76 14) Methyl Acetate 8.66 43 69762 2.09497 ppb 97 15) Iodomethane 8.68 142 14851 5.6726 ppb # 77 16) Acrylonitrile 9.05 53 9566 4.82511 ppb 89 17) Methylene chloride 8.97 86 23520 5.73894 ppb 82 18) Carbon disulfide 9.09 76 111556 6.19456 ppb 98 19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb 95 23) Vinyl Acetate 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.66214 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.66214 ppb 95 33) 1,2-DCA 12.80 67 48658 5.72265 ppb 94 36) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 94 39) TCE 13.97 95 27348 5.42106 ppb 98 40) 2-Pentanone 14.60 93 19729 5.65307 ppb 98 41) 1,2-Dchloropropane 14.19 63 36039 5.48272 ppb 98 42) Ehromodichloromethane 14.60 93 19729 5.65307 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 99 44) Methyl Cyclohexane 14.65 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17490 5.31187 ppb		6.50	67			
10) Acetone 7.79 43 21664 1.47582 ppb 90 11) Freon-113 7.97 101 22009 6.94218 ppb # 85 122 1.1-DCE 8.17 96 21675 5.42783 ppb 76 14) Methyl Acetate 8.66 43 69762 2.09497 ppb 97 15) Iodomethane 8.68 142 14851 5.56726 ppb # 77 16) Acrylonitrile 9.05 53 9566 4.82511 ppb 89 17) Methylene chloride 8.97 86 23520 5.73894 ppb 82 18) Carbon disulfide 9.09 76 111556 6.19455 ppb 98 19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.4937 ppb 95 22) 1,1-DCA 10.23 43 115649 5.4937 ppb 98 24 Ethyl tert Butyl Ether 10.23 43 115649 5.4937 ppb 98 24 Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MBK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26 Cifs-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29 Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 22 Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.622871 ppb 92 33 1,1-Dichloropropene 12.55 75 38871 5.622871 ppb 94 36) Tert amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37 1,2-DCA 12.82 62 42422 5.67855 ppb 100 40 2-Pentanone 13.62 43 591281 111.82024 ppb 94 31 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42 Bromodichloromethane 14.60 93 19729 5.68964 ppb 98 43 Dibromomethane 14.60 93 19729 5.68964 ppb 98 43 Dibromomethane 14.60 93 19729 5.68964 ppb 98 43 Dibromomethane 14.55 83 43370 5.68964 ppb 98 43 Dibromomethane 14.60 93 19729 5.68964 ppb 99 45 2-Chloroethyl vinyl ether 14.98 63 17490 5.31187 ppb	<ol><li>Trichlorofluoromethane</li></ol>					
Treon-113						
12						
Methyl Acetate						
15   Todomethane						
16) Acrylonitrile 9.05 53 9566 4.82511 ppb 89 17) Methylene chloride 8.97 86 23520 5.73894 ppb 82 18) Carbon disulfide 9.09 76 111556 6.19456 ppb 98 19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb # 97 23) Vinyl Acetate 10.23 43 115649 5.4937 ppb # 97 23) Vinyl Acetate 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35468 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 33205 6.49799 ppb 98 43) Dibromomethane 14.55 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17430 5.31187 ppb 97						
17  Methylene chloride					7.20720 pp.	) # // - 90
18) Carbon disulfide 9.09 76 111556 6.19456 ppb 98 19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb # 97 23) Vinyl Acetate 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.55 83 43370 5.68964 ppb 98 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17490 5.31187 ppb						
19) Methyl t-butyl ether (MtBE 9.38 73 83123 5.76919 ppb 93 20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb # 97 23) Vinyl Acetate 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17490 5.31187 ppb 97						
20) Trans-1,2-DCE 9.57 96 29654 5.71598 ppb 73 21) Diisopropyl Ether 10.22 45 151138 5.69320 ppb 95 22) 1,1-DCA 10.26 63 63120 5.54937 ppb # 97 23) Vinyl Acetate 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 555069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.6894 ppb 98 43) Dibromomethane 14.55 83 43370 5.6894 ppb 98 44) Methyl Cyclohexane 14.55 83 43370 5.6894 ppb 98 45) 2-Chloroethyl vinyl ether 14.98 63 17430 5.31187 ppb 97						
21) Diisopropyl Ether       10.22       45       151138       5.69320 ppb       95         22) 1,1-DCA       10.26       63       63120       5.54937 ppb       # 97         23) Vinyl Acetate       10.23       43       115649       5.49978 ppb       98         24) Ethyl tert Butyl Ether       10.90       59       107941       5.52303 ppb       95         25) MEK (2-Butanone)       10.89       43       32766       3.48387 ppb       97         26) Cis-1,2-DCE       11.28       96       30041       5.14926 ppb       84         27) 2,2-Dichloropropane       11.56       83       55069       5.50599 ppb       90         28) Chloroform       11.56       83       55069       5.50599 ppb       91         29) Bromochloromethane       11.78       128       12426       6.10809 ppb       88         31) 1,1-TCA       12.30       97       40777       5.66214 ppb       90         32) Cyclohexane       12.46       56       46369       5.60546 ppb       95         33) 1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35) Carbon Tetrachloride       12.75       117       29039       5.29591 pp						
10.26   63   63120   5.54937 ppb   # 97   97   98   97   98   98   98   98			45			
23) Vinyl Acetate 10.23 43 115649 5.49978 ppb 98 24) Ethyl tert Butyl Ether 10.90 59 107941 5.52303 ppb 95 25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17430 5.31187 ppb 97		10.26	63	63120	5.54937 ppk	o # 97
25) MEK (2-Butanone) 10.89 43 32766 3.48387 ppb 97 26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 174300 5.31187 ppb						
26) Cis-1,2-DCE 11.28 96 30041 5.14926 ppb 84 27) 2,2-Dichloropropane 11.26 77 44858 5.76219 ppb 90 28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 17130 5.31187 ppb 97						
27)       2,2-Dichloropropane       11.26       77       44858       5.76219 ppb       90         28)       Chloroform       11.56       83       55069       5.50599 ppb       91         29)       Bromochloromethane       11.78       128       12426       6.10809 ppb       88         31)       1,1,1-TCA       12.30       97       40777       5.66214 ppb       90         32)       Cyclohexane       12.46       56       46369       5.60546 ppb       95         33)       1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35)       Carbon Tetrachloride       12.75       117       29039       5.29591 ppb       84         36)       Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37)       1,2-DCA       12.82       62       42422       5.67855 ppb       100         38)       Benzene       12.96       78       125878       5.72265 ppb       91         39)       TCE       13.97       95       27348       5.42106 ppb       98         41)       1,2-Dichloropropane       14.19       63       36039       5.4						
28) Chloroform 11.56 83 55069 5.50599 ppb 91 29) Bromochloromethane 11.78 128 12426 6.10809 ppb 88 31) 1,1,1-TCA 12.30 97 40777 5.66214 ppb 90 32) Cyclohexane 12.46 56 46369 5.60546 ppb 95 33) 1,1-Dichloropropene 12.55 75 38871 5.62871 ppb 92 35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 174300 5.31187 ppb 97						
29) Bromochloromethane       11.78       128       12426       6.10809 ppb       88         31) 1,1,1-TCA       12.30       97       40777       5.66214 ppb       90         32) Cyclohexane       12.46       56       46369       5.60546 ppb       95         33) 1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35) Carbon Tetrachloride       12.75       117       29039       5.29591 ppb       84         36) Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37) 1,2-DCA       12.82       62       42422       5.67855 ppb       100         38) Benzene       12.96       78       125878       5.72265 ppb       91         39) TCE       13.97       95       27348       5.42106 ppb       90         40) 2-Pentanone       13.62       43       591281       111.82024 ppb       98         41) 1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb	27) 2,2-Dichloropropane					
31)       1,1,1-TCA       12.30       97       40777       5.66214 ppb       90         32)       Cyclohexane       12.46       56       46369       5.60546 ppb       95         33)       1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35)       Carbon Tetrachloride       12.75       117       29039       5.29591 ppb       84         36)       Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37)       1,2-DCA       12.82       62       42422       5.67855 ppb       100         38)       Benzene       12.96       78       125878       5.72265 ppb       91         39)       TCE       13.97       95       27348       5.42106 ppb       90         40)       2-Pentanone       13.62       43       591281       111.82024 ppb       98         41)       1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42)       Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43)       Dibromomethane       14.60       93       19729       5.				-		
32) Cyclohexane       12.46       56       46369       5.60546 ppb       95         33) 1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35) Carbon Tetrachloride       12.75       117       29039       5.29591 ppb       84         36) Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37) 1,2-DCA       12.82       62       42422       5.67855 ppb       100         38) Benzene       12.96       78       125878       5.72265 ppb       91         39) TCE       13.97       95       27348       5.42106 ppb       90         40) 2-Pentanone       13.62       43       591281       111.82024 ppb       98         41) 1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       1740       5.311						
33)       1,1-Dichloropropene       12.55       75       38871       5.62871 ppb       92         35)       Carbon Tetrachloride       12.75       117       29039       5.29591 ppb       84         36)       Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37)       1,2-DCA       12.82       62       42422       5.67855 ppb       100         38)       Benzene       12.96       78       125878       5.72265 ppb       91         39)       TCE       13.97       95       27348       5.42106 ppb       90         40)       2-Pentanone       13.62       43       591281       111.82024 ppb       98         41)       1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42)       Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43)       Dibromomethane       14.60       93       19729       5.65307 ppb       90         44)       Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45)       2-Chloroethyl vinyl ether       14.98       63						
35) Carbon Tetrachloride 12.75 117 29039 5.29591 ppb 84 36) Tert Amyl Methyl Ether 12.79 73 82392 5.35458 ppb 94 37) 1,2-DCA 12.82 62 42422 5.67855 ppb 100 38) Benzene 12.96 78 125878 5.72265 ppb 91 39) TCE 13.97 95 27348 5.42106 ppb 90 40) 2-Pentanone 13.62 43 591281 111.82024 ppb 98 41) 1,2-Dichloropropane 14.19 63 36039 5.48272 ppb 100 42) Bromodichloromethane 14.55 83 43370 5.68964 ppb 98 43) Dibromomethane 14.60 93 19729 5.65307 ppb 90 44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 174300 5.31187 ppb 97						
36) Tert Amyl Methyl Ether       12.79       73       82392       5.35458 ppb       94         37) 1,2-DCA       12.82       62       42422       5.67855 ppb       100         38) Benzene       12.96       78       125878       5.72265 ppb       91         39) TCE       13.97       95       27348       5.42106 ppb       90         40) 2-Pentanone       13.62       43       591281       111.82024 ppb       98         41) 1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       1740       5.31187 ppb       97						
37)       1,2-DCA       12.82       62       42422       5.67855 ppb       100         38)       Benzene       12.96       78       125878       5.72265 ppb       91         39)       TCE       13.97       95       27348       5.42106 ppb       90         40)       2-Pentanone       13.62       43       591281       111.82024 ppb       98         41)       1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42)       Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43)       Dibromomethane       14.60       93       19729       5.65307 ppb       90         44)       Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45)       2-Chloroethyl vinyl ether       14.98       63       1740       5.31187 ppb       97					5.35458 pph	94
38) Benzene       12.96       78       125878       5.72265 ppb       91         39) TCE       13.97       95       27348       5.42106 ppb       90         40) 2-Pentanone       13.62       43       591281       111.82024 ppb       98         41) 1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       1740       5.31187 ppb       97						
39) TCE       13.97       95       27348       5.42106 ppb       90         40) 2-Pentanone       13.62       43       591281       111.82024 ppb       98         41) 1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       17100       5.31187 ppb       97					5.72265 ppb	91
40)       2-Pentanone       13.62       43       591281       111.82024 ppb       98         41)       1,2-Dichloropropane       14.19       63       36039       5.48272 ppb       100         42)       Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43)       Dibromomethane       14.60       93       19729       5.65307 ppb       90         44)       Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45)       2-Chloroethyl vinyl ether       14.98       63       1710       5.31187 ppb       97					5.42106 pph	90
42) Bromodichloromethane       14.55       83       43370       5.68964 ppb       98         43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       1710       5.31187 ppb       97		13.62	43	591281	111.82024 ppb	98
43) Dibromomethane       14.60       93       19729       5.65307 ppb       90         44) Methyl Cyclohexane       14.25       83       33205       6.49799 ppb       99         45) 2-Chloroethyl vinyl ether       14.98       63       1710       5.31187 ppb       97						
44) Methyl Cyclohexane 14.25 83 33205 6.49799 ppb 99 45) 2-Chloroethyl vinyl ether 14.98 63 171300 5.31187 ppb 97	42) Bromodichloromethane					
45) 2-Chloroethyl vinyl ether 14.98 63 17730 5.31187 ppb 97						
· 110	44) Methyl Cyclohexane					
				⊥ 4 <b>≯</b> 3 [™]	add /arre.e	9/

Data File : M:\NEO\DATA\N120305\0305N05S.D Acq On : 5 Mar 12 13:24 Sample : 5ug/kg Vol Std 03-05-12 Misc : Soil 5mL w/IS:10-20-11 Vial: 1 Operator: SV,DG,RS Inst : Neo Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

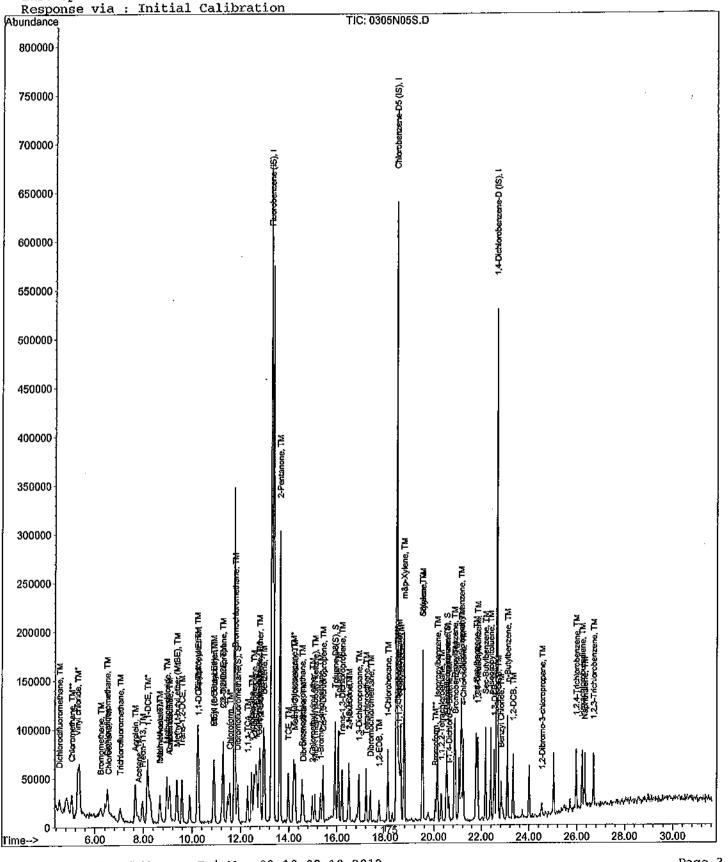
Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
46) 1-Bromo-2-chloroethane	15.32	63	41561	5.49364	daa	97
47) Cis-1,3-Dichloropropene	15.42	75	51700	5.44234		97
48) Toluene	16.06	91	110479	5,33709	ppb	99
49) Trans-1,3-Dichloropropene	16.21	75	43100	5.42435		84
50) 1,1,2-TCA	16.50	83	19364	5.38138		91
53) 1,2-EDB	17.75	107	23944	5.51490		79
54) Tetrachloroethene	17.21	129	17967	5.65091		95
55) 1-Chlorohexane	18.11	91	35152	5.38716		91
56) 1,1,1,2-Tetrachloroethane	18.57		23518	5.31841		92
57) m&p-Xylene	18.76	106	84018	11.25759		99
58) o-Xylene	19.52	106	42659	5.69994		96
59) Styrene	19.53	78	43238	5.43155		94
61) 2-Hexanone	16.50	43	25204	5.45110		84
62) 1,3-Dichloropropane	16.91	76	42055	5.55488		93
63) Dibromochloromethane	17.39		26978	5.28463		93
64) Chlorobenzene	18,52	112	65347	5.37735		95
65) Ethylbenzene	18,62	91	124890	5.64025	ppp	95
66) Bromoform	20.06	173	16879	5.45428		84
68) MIBK (methyl isobutyl keto		43	39617	6.16486		96
69) Isopropylbenzene	20.15	105	101350	5.63041		94
70) 1,1,2,2-Tetrachloroethane	20.31	83	29575	5.56976		86
71) 1,2,3-Trichloropropane	20.55	110	6893	5.75787		88
72) t-1,4-Dichloro-2-Butene	20.63	53	8933	5.45177		82
73) Bromobenzene	20.90	156	25551	5.56290		92
74) n-Propylbenzene	20.86	91	133722	5.57182		93
75) 2-Chlorotoluene	21.16	91	91633	5.58513		99
76) 1,3,5-Trimethylbenzene	21.12	105	83785	5.63225		93
77) 4-Chlorotoluene	21.24	91	83434	5.76831 )		88
78) Tert-Butylbenzene	21.77	119	79775	5.73909 j		96
79) 1,2,4-Trimethylbenzene	21.84	105 105	84181 108546	5.54439 j 5.61364 j		93 99
80) Sec-Butylbenzene	22.17	119	85262	5.72514		97
81) p-Isopropyltoluene	22.39 22.83	91	49919	5.80098		94
82) Benzyl Chloride	22.54	146	44969	5.74080		91
83) 1,3-DCB		146	44978	5.67802		94
84) 1,4-DCB	22.71 23.09	91	93212	5.92436		90
85) n-Butylbenzene	23.33	146	39916	5.56198		98
86) 1,2-DCB 87) 1,2-Dibromo-3-chloropropan		155	3393	5.46256 p		82
88) 1,2,4-Trichlorobenzene	25.97	180	28107	5.99215 p		95
89) Hexachlorobutadiene	26.21	225	15396	5.48692 r	onh	91
90) Naphthalene	26.32	128	51708	5.40012 p		97
	26.69	180	25256	5.40786 p		84
91) 1,2,3-Trichlorobenzene	20.03	100	23230	5.40100 L	22.0	

Data File: M:\NEO\DATA\N120305\0305N05S.D

Vial: 1 Operator: SV,DG,RS : 5 Mar 12 13:24


Acq On Sample : Neo : 5ug/kg Vol Std 03-05-12 Inst Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

: Tue Mar 06 09:31:20 2012 Last Update



Vial: 1 Operator: SV,DG,RS Inst : Neo

Data File : M:\NEO\DATA\N120305\0305N06S.D
Acq On : 5 Mar 12 14:03
Sample : 10ug/kg Vol Std 03-05-12
Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
1) Fluorobenzene (IS)	13.28	96	316288	50.00000 1		0.00
51) Chlorobenzene-D5 (IS)	18.46	117		50.00000 1	opb 1-	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	85936	50.00000	agg	0.00
System Monitoring Compounds						
30) Dibromofluoromethane(S)	11.87	111	59896	9.77281	ppb	0.00
Spiked Amount 41.312			Recove	ery = 23	.657%	
34) 1,2-DCA-D4(S)	12.67	65	687 <b>1</b> 6	10.33658		0.00
Spiked Amount 41.649					.820%	
52) Toluene-D8(S)	15.93	98		9.91644		0.00
Spiked Amount 35.274	20 52	٥٠	Recove	exy = 28	.111%	0 00
60) 4-Bromofluorobenzene(S) Spiked Amount 35.584	20.52	95	70627 Recove	10.66461 perv = 29		0.00
Spiked Amount 35.584			VECOAG	:Ly - 25	. 5 / 2 0	
Target Compounds						lue
<ol><li>Dichlorodifluoromethane</li></ol>	4,53	85	72988	12.68798	opb	98
<ol><li>Chloromethane</li></ol>	5.04	50	125676	9.84628		97
<ol><li>Vinyl chloride</li></ol>	5.28	62	27296	11.56278 ]		99
5) Bromomethane	6.22	94	28075	9.84364 )		83
6) Chloroethane	6.41	64	50283	12.01003 ]		99
7) Dichlorofluoromethane	6.50	67	144096	10.52642 p 11.51773 p		92 80
8) Trichlorofluoromethane	7.04 7.67	101 56	65781 116601	145.26924		97
9) Acrolein	7.79	43	36117	8.98697		76
10) Acetone 11) Freon-113	7.97	101	49628	12.70577		90
11, Freom-113 12) 1,1-DCE	8.18	96	45732	10.64109		87
14) Methyl Acetate	8.67	43	123103	10.49900 1		94
15) Iodomethane	8.67	142	22346	7.39398		88
16) Acrylonitrile	9.07	53	20485	9.60090		98
17) Methylene chloride	8.97	86	38461	9.15020 p		87
18) Carbon disulfide	9.08	76	196486	10.13791 r		96
19) Methyl t-butyl ether (MtBE	9.39	73	144734	9.33391 r		95
20) Trans-1,2-DCE	9.59	96	55139	9.87564 r		87
21) Diisopropyl Ether	10.22	45	263062	9.20747 r		98
22) 1,1-DCA	10.27	63	121454 207045	9.92173 g 9.14886 g		98 97
23) Vinyl Acetate	10.22 10.91	43 59	190174	9.04152 p		97
24) Ethyl tert Butyl Ether 25) MEK (2-Butanone)	10.89	43	57936	8.24920 p		85
26) Cis-1,2-DCE	11.28		61779	9.83944 p		93
27) 2,2-Dichloropropane	11.27	77	81699	9.75132		92
28) Chloroform	11.55	83	104379	9.69706 g	dgo	88
29) Bromochloromethane	11.79	128	22823	10.42427 g	# dq	58
31) 1,1,1-TCA	12.30	97	81709	10.54228 g	dqo	97
32) Cyclohexane	12.45	56	100055	11.23884 p		92
33) 1,1-Dichloropropene	12.56	75	79450	10.68996 r	ppb #	87
35) Carbon Tetrachloride	12.75	117	58344	9.88676 g		95
36) Tert Amyl Methyl Ether	12.79	73	157735	9.52505 p		97
37) 1,2-DCA	12.83	62 78	78860 232715	9.80850 p 9.83039 p		99 96
38) Benzene	12.95 13.97	95	53725	9.89542 p		96
39) TCE 40) 2-Pentanone	13.62	43	877789	154.24665 p		100
41) 1,2-Dichloropropane	14.19	63	64521	9.12060 p		96
42) Bromodichloromethane	14.55	83	74975	9.13925 p		85
43) Dibromomethane	14.60	93	36511	9.72080 p		79
44) Methyl Cyclohexane	14.26	.83	72984	11.72320 p		98
45) 2-Chloroethyl vinyl ether		63	35 <b>402</b> 176	10.21830 p	dq	94
			'4			

(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N06S.D

Vial: 1 Acq On : 5 Mar 12 14:03 Operator: SV,DG,RS

: 10ug/kg Vol Std 03-05-12 Sample Inst : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

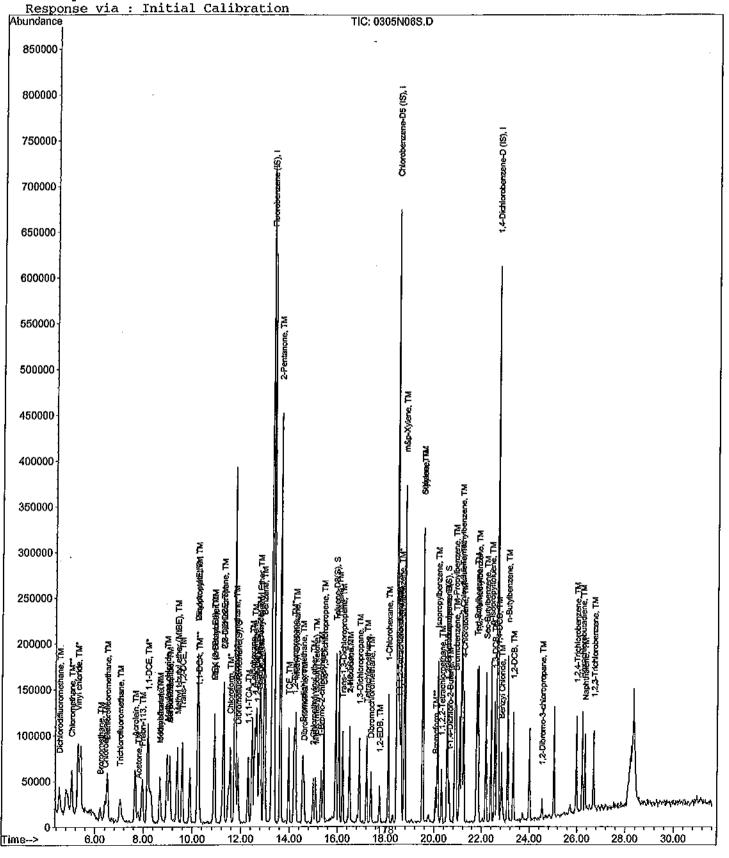
Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Con	mpound	R.T.	QIon	Response	Conc Unit	Qv	alue	!
46) 1-F	Bromo-2-chloroethane	15.31	63	81491	10.00882	daa		92
	s-1,3-Dichloropropene	15.43	75	99037	9.68706			97
48) Tol		16.06	91	214151	9.61268			100
	nns-1,3-Dichloropropene	16.21	75	85932	10.04903			94
50) 1,1		16.49	83	35774	9.23773			88
53) 1,2		17.75	107	45402	9.76846		#	90
	rachloroethene	17.21	129	34501	10.13643			87
	hlorohexane	18.10	91	71585	10.24808	ppb		91
	,1,2-Tetrachloroethane	18.57	131	45751	9.66479			95
57) m&p	-Xylene	18.77	106	158106	19.78937			97
58) o-X		19.52	106	76072	9.49501	ppb		83
59) Sty	rene	19.53	78	81164	9.52429			84
61) 2-H	lexanone	16.51	43	51632	10.43144		#	94
62) 1,3	-Dichloropropane	16.90	76	77932	9.61576			99
63) Dib	oromochloromethane	17.39	129	48635	8.89948			92
64) Chl	orobenzene	18.53	112	125748	9.66617			98
65) Eth	ylbenzene	18.63	91	232773	9.82006			99
66) Bro		20.05	173	29685	8.96063			92
	K (methyl isobutyl keto	15.09	43	69584	9.82913			97
69) Iso	propylbenzene	20.14	105	194064	9.78645			99
70) 1,1	,2,2-Tetrachloroethane	20.31	83	52324	8.94492			98
	,3-Trichloropropane	20.55	110	12280	9.54319			91
	,4-Dichloro-2-Butene	20.63	53	16976	9.40459			96
	mobenzene	20.90	156	46541	9.19800			88
74) n-P	ropylbenzene	20.86	91	258946	9.79416			99
	h1orotoluene	21.16	91	160990	8.90727			90
	,5-Trimethylbenzene	21.12	1 <b>0</b> 5	149920	9.14828			98
	hlorotoluene	21.24	91	150025	9.41528			99
	t-Butylbenzene	21.78	119	150374	9.82004			88
	,4-Trimethylbenzene	21.84	105	152936	9.14352			99
	-Butylbenzene	22.18	105	204768	9.61295			94
	sopropyltoluene	22.39	119	159998	9.75234			96
	zyl Chloride	22.83	91	90416	9.53773			93
83) 1,3		22.54	146	81859	9.48614			97
84) 1,4		22.70	146	83531	9.57213			95
	utylbenzene	23.09	91	169912	9.80296			99
86) 1,2		23.33	146	70467	8.91317			88
87) 1,2	-Dibromo-3-chloropropan	24.54	155	5452	7.96768			91
	,4-Trichlorobenzene	25.98	180	47797	9.24982			94
	achlorobutadiene	26.21	225	30027	9.71396			100
	hthalene	26.32	128	96657	9.16659			98
91) 1,2	,3-Trichlorobenzene	26.69	180	40274	8.44172	aqq		99

Data File: M:\NEO\DATA\N120305\0305N06S.D

Vial: 1


Acq On : 5 Mar 12 14:03 Operator: SV,DG,RS Sample : 10ug/kg Vol Std 03-05-12 : Neo Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012



Data File: M:\NEO\DATA\N120305\0305N07S.D

Vial: 1 Operator: SV,DG,RS Acq On : 5 Mar 12 14:41

: 20ug/kg Vol Std 03-05-12 Inst : Neo Sample Multiplr: 1.00 : Soil 5mL w/IS:10-20-11 Misc

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration DataAcq Meth : V8260

1) Fluorobenzene (IS)	Internal Standards	R.T.	Olon	Response	Conc Units	Dev (Min)
System Monitoring Compounds   30) Dibromofiluoromethane (S)   11.87   111   118774   19.31308 ppb   0.00   Recovery						
System Monitoring Compounds   30) Dibromofiluoromethane (S)   11.87   111   118774   19.31308 ppb   0.00   Recovery	1) Fluorobenzene (IS)	13.28	96	317376	50.00000 pp	
300   Dibromofluoromethane(S)   11.87   111   118774   19.31308 ppb   0.00	51) Chlorobenzene-D5 (IS)	18.46	117	199168	50.00000 pp	
300   Dibromofluoromethane (S)   11.87   11   118774   19.31308 ppb   0.00	67) 1,4-Dichlorobenzene-D (IS)	22.66	152	83864	50.00000 pp	υυ.υ α
300   Dibromofluoromethane (S)   11.87   11   118774   19.31308 ppb   0.00	System Monitoring Compounds					
Spiked Amount   41.312   12.67   65   136303   20.43305 ppb   0.00		11.87	111	118774	19.31308 pp	b 0.00
34) 1,2-DCA-D4(S) Spiked Amount 41.649 52) Toluene-D8(S) Spiked Amount 35.274 60) 4-Bromofluorobenzene(S) Spiked Amount 35.584  Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) Chloromethane 4) C				Recove		
S2) Toluene-D8(S)   S2) Toluene-D8(S)   S2) Toluene-D8(S)   S2) Toluene-D8(S)   S3)   S4   S5   S6   S7   S8   S8   S8   S8   S8   S8   S8		12.67	65	136303		
Spiked Amount   35.274   Recovery						
Target Compounds		15.93	98			
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) 52 85 151229 25.85140 ppb 95 3) Chloromethane 5 .04 50 245891 22.06548 ppb 98 4) Vinyl chloride 6 .20 94 61281 19.17915 ppb 97 6) Chlorosthane 6 .20 94 61281 19.17915 ppb 98 6) Chlorofluoromethane 6 .40 64 90525 21.56538 ppb 96 7) Dichlorofluoromethane 7 .03 101 131787 22.75781 ppb 98 9) Acrolein 7 .66 56 158233 196.46133 ppb 95 10) Acetone 7 .78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8 8.18 96 93832 21.75834 ppb 86 14) Methyl Acetate 8 .67 43 228050 28.72764 ppb 94 15) Iodomethane 8 .65 142 68610 20.6803 ppb 97 17) Methylene chloride 8 .95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9 .90 6 53 44281 20.68246 ppb 79 19) Methyl t-butyl ether (MtBE 9 .38 73 294007 18.89555 ppb 97 19) Methyl L-butyl ether (MtBE 9 .38 73 294007 18.89555 ppb 97 19) Methyl L-butyl ether (MtBE 9 .38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9 .58 96 110626 19.74569 ppb 92 21) Dilsopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242488 19.74206 ppb 99 22) 1,1-DCA 10.26 43 418801 18.48648 ppb 99 22) 1,1-DCA 10.26 43 418801 18.48648 ppb 99 22) 1,1-DCA 10.26 63 242488 19.74206 ppb 99 23) Vinyl Acetate 10.22 45 572911 19.98379 ppb 99 24) Ethyl text Butyl Ether 10.91 59 412418 19.5405 ppb 98 25) Mek (2-Butanone) 11.27 77 169204 20.12640 ppb 99 26) Methyl crack Butyl Ether 10.91 59 412418 19.5405 ppb 98 27) Bromochloromethane 11.78 128 45925 20.90046 ppb 99 28) Bromochloromethane 11.78 128 45925 20.90046 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90046 ppb 99 31) 1,1-DCA 12.29 77 15387 ppb 96 32) Cyclohexane 12.46 78 143732 19.1810 ppb 97 33) Grabon Tetrachloride 12.76 117 113099 19.09964 pb 99 34) Benzene 12.94 78 487237 19.24848 pb 99 35) Carbon Tetrachloride 12.76 117 113099 19.09964 pb 99 36) Tert Amyl Methyl Ether 12.80 73 318732 19.1810 ppb 97 39) TCE 13.97 95 111395 20.404712 ppb 97 30) TCE 13.97 95 111395 20.404712 ppb 97 31) Dibromomethane 14.61 93 70255 19.1042 ppb 98 34) Bibromomethane 14.55 83 155		00 53	0.5	Recove	ery = 58.5	8/8 ኤ ሳሳሳ
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 5) 04 50 248891 22.06548 ppb 95 4) Vinyl chloride 5.28 62 48840 20.61805 ppb 95 5) Bromomethane 6.20 94 61281 19.17915 ppb 98 6) Chloroethane 6.40 64 9052 21.56538 ppb 96 7) Dichlorofluoromethane 7.03 101 131787 22.75781 ppb 98 8) Acrolein 7.66 56 158233 196.66133 ppb 95 10) Acetone 7.78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 98 12) 1,1-DCE 8.18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Idomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 12) 1,1-DCR 10) Tarms-1,2-DCE 11.1-DCR 10.26 63 242498 19.74206 ppb 92 21) Diisopropyl Ether 10.22 43 419801 18.48648 ppb 99 22) 1,1-DCA 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.27 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.27 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 20.27 57291 19.98379 ppb 99 24) Ethyl tert Butyl Ether 20.28 63 242498 19.74206 ppb 97 23) Vinyl Acetate 20.29 11.28 96 125471 19.98579 ppb 99 24) Ethyl tert Butyl Ether 20.29 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 20.29 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 20.29 56 57 513491 19.73587 ppb 96 25) MEK (2-Butanone) 11.55 83 206499 19.11850 ppb 98 26) Cis-1,2-DCE 20.20 11.28 96 125471 19.91506 ppb 94 27) 2.20 11.0000000000000000000000000000000		20.53	95	130/51	ZI.1Z1Z9 PP	D 0.00
2) Dichlorodifluoromethane 3. Chloromethane 5. 04 50 245891 22.06548 ppb 98 4) Vinyl chloride 5. 28 62 48840 20.61805 ppb 97 5) Bromomethane 6. 20 94 61281 19.17915 ppb 98 6) Chloroethane 6. 40 64 90525 21.56538 ppb 96 7) Dichlorofluoromethane 7. 03 101 131787 22.75781 ppb 98 8) Acrolein 7. 66 56 158233 196.46133 ppb 95 10) Acetone 7. 7. 8 43 62197 24.16371 ppb 95 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8. 18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8. 67 43 228050 28.72764 ppb 94 15) Iodomethane 8. 65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9. 06 53 44281 20.68246 ppb 79 17) Methylene chloride 8. 95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9. 07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 21) Diisopropyl Ether 10. 22 43 419801 18.48648 ppb 99 22) 1,1-DCA 10. 26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10. 22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10. 22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10. 22 43 419801 18.48648 ppb 99 25) MEK (2-Butanone) 26) Cis-1,2-DCE 27. 2-Dichloropropane 28. Chloroform 29. 8 62 125471 19.91506 ppb 98 29. 8 63 11.6629 20.50128 ppb 96 20. Bromomethane 20. 8 94 11.58 22 42.541 19.91506 ppb 98 21) 1,1-DCA 22 43 419801 18.48648 ppb 99 23) 1,1-Dichloropropane 24. Ethyl tert Butyl Ether 25. MEK (2-Butanone) 26. Cis-1,2-DCE 27. 2-Dichloropropane 28. Chloroform 29. 8 65 153485 20.58053 ppb 96 29. 8 70 77 77 169204 20.12840 ppb 95 28. Chloroform 29. 8 70 78 79 79 79 79 79 79 79 79 79 79 79 79 79	Spiked Amount 35.584			Recove	:Ly = 33.3	J04
2) Dichlorodifluoromethane 3) Chloromethane 4) Chloromethane 5) Chloromethane 5) Chloromethane 5) Chloromethane 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 6) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7) Chlorodide 7)	Target Compounds					
Vinyl chloride	2) Dichlorodifluoromethane		85			
Stromomethane	<ol><li>Chloromethane</li></ol>					
6 Chloroethane 6 .40 64 90525 21.56538 ppb 96 7) Dichlorofluoromethane 6 .49 67 274883 20.01176 ppb 95 8) Trichlorofluoromethane 7 .03 101 131787 22.75781 ppb 98 9) Acrolein 7 .66 56 158233 196.46133 ppb 95 10) Acetone 7 .78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8.18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8.67 43 228050 22.872764 ppb 94 15) Iodomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtbE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether (MtbE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 90 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 90 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 33) 1,1-Dichloropropene 12.56 75 153491 19.73587 ppb 96 34) Cyclohexane 12.45 56 201187 22.52119 ppb 94 35) Carbon Tetrarchloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.80 73 318732 19.18110 ppb 97 38) Benzene 12.94 78 457237 19.24048 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.65794 ppb 98 43) Dibromomethane 14.55 83 156882 19.65794 ppb 98 44) Methyl Cyclohexane 14.55 83 15134 22.61348 ppb 98 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	<ol><li>4) Vinyl chloride</li></ol>					
7) Dichlorofluoromethane 7) Dichlorofluoromethane 7) Oi 101 131787 22.75781 ppb 98 8) Trichlorofluoromethane 7, 03 101 131787 22.75781 ppb 98 9) Acrolein 7, 66 56 158233 196.46133 ppb 95 10) Acetone 7, 78 43 62197 24.16371 ppb 98 11) Freon-113 7, 95 101 91970 22.04311 ppb 98 11) Freon-113 7, 95 101 91970 22.04311 ppb 98 11) Freon-113 7, 95 101 91970 22.04311 ppb 98 11) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Iodomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 11.6629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-pichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 96 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 93 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 96 31) 1,1-TCA 12.29 97 153491 19.73587 ppb 96 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 34) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 95 37) 1,2-DCA 13.97 95 111395 20.44712 ppb 97 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.59 63 154082 19.85423 ppb 99 41) Bromodichloromethane 14.55 83 156882 19.85794 ppb 98 42) Bromodichloromethane 14.55 83 156882 19.85794 ppb 98 43) Bromodichloromethane 14.55 83 156882 19.85794 ppb 98 44) Methyl Cyclohexane 14.55 83 151134 22.61348 ppb 99 45) Bromodichloromethane 14.55 83 151134 22.61348 pp						
8) Trichlorofluoromethane 7.03 101 131787 22.75781 ppb 98 9) Acrolein 7.66 56 158233 196.46133 ppb 95 10) Acetone 7.78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8.18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Iodomethane 8.65 142 68610 20.66083 ppb 92 16) Acrylonitrile 9.06 53 44281 20.66246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl terbutyl ether (MtBE 9.38 73 224007 18.89555 pb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 92 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb #82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 90 29 29 Bromochloromethane 11.78 128 45925 20.90406 ppb 90 31 1,1-DCA 12.29 97 153491 97.33587 ppb 96 32 Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153495 20.58053 ppb #96 35) Carbon Tetrachloride 12.76 117 113099 19.9964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37 1,2-DCA 12.29 47 8457237 19.24848 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37 1,2-DCA 12.94 78 457237 19.24848 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37 1,2-DCA 12.94 78 457237 19.24848 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37 1,2-DCA 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 94 30 Dibromomethane 14.55 83 156882 19.95794 ppb 98 40 11.02-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42 11.02-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42 11.02-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42 11.02-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42 11.02-Dichloropropane 14.19 63 140936 19.85423 ppb	6) Chloroethane					
9) Acrolein 7.66 56 158233 196.46133 ppb 95 10) Acetone 7.78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8.18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Iodomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74266 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb #82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 96 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.90406 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.1810 ppb 95 37) TCE 13.97 95 111399 20.44712 ppb 95 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 95 39) TCE 13.97 95 111395 20.44712						
10) Acetone 7.78 43 62197 24.16371 ppb 98 11) Freon-113 7.95 101 91970 22.04311 ppb 92 12) 1,1-DCE 8.18 96 93832 21.75834 ppb 84 14) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Iodomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 224007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 224298 19.98379 ppb 99 22) 1,1-DCA 10.22 45 572911 19.98379 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb 96 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 95 21) 1,1-TCA 12.29 97 153491 19.73587 ppb 96 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 2.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb 96 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 96 38) Benzene 12.94 78 457237 19.8484 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 30 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.95794 ppb 98 43) Dibromomethane 14.55 83 15134 22.61348 ppb 98 44) Methyl Cyclohexane 14.55 83 151134 22.61348 ppb 98 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
Treon-113	•					
12						
14) Methyl Acetate 8.67 43 228050 28.72764 ppb 94 15) Iodomethane 8.65 142 68610 20.60803 ppb 92 16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 19) Methyl t-butyl ether 10.22 45 572911 19.98379 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 99 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1-Dichloropropene 12.56 75 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153495 20.58053 ppb 94 33) 1,1-Dichloropropene 12.56 75 153495 20.58053 ppb 95 35) Carbon Tetrachloride 12.76 117 113099 19.9964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.55 83 156882 19.05794 ppb 98 41) 1,2-Dichloropropane 14.61 93 72025 19.11042 ppb 98 42) Bromodichloromethane 14.61 93 72025 19.11042 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 98 44) Methyl Cyclohexane 14.25 83 151334 22.61348 ppb 98 45) 2-Cchloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
15) Iodomethane						
16) Acrylonitrile 9.06 53 44281 20.68246 ppb 79 17) Methylene chloride 8.95 86 79787 19.80105 ppb 88 18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.55 83 156882 19.05794 ppb 98 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 98 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
Methylene chloride						
18) Carbon disulfide 9.07 76 388344 19.96835 ppb 97 19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 98 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 89 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 88	17) Methylene chloride				19.80105 pp	b 88
19) Methyl t-butyl ether (MtBE 9.38 73 294007 18.89555 ppb 97 20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153495 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 39 Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.19 63 140936 19.85423 ppb 99 42 Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 98 440 Methyl Cyclohexane 14.99 63 70427 20.25809 ppb 98 440 Methyl Cyclohexane 14.99 63 70427 20.25809 ppb 98 440 Methyl Cyclohexane 14.99 63 70427 20.25809 ppb 98 59 20.25809 ppb 98 59 20.25809 ppb 98 59 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98 20.25809 ppb 98	18) Carbon disulfide		76	388344		
20) Trans-1,2-DCE 9.58 96 110626 19.74569 ppb 92 21) Diisopropyl Ether 10.22 45 572911 19.98379 ppb 99 22) 1,1-DCA 10.26 63 242498 19.74206 ppb 97 23) Vinyl Acetate 10.22 43 419801 18.48648 ppb 99 24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 98 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	19) Methyl t-butyl ether (MtBE	9.38				
22) 1,1-DCA	20) Trans-1,2-DCE	9.58				
23) Vinyl Acetate						
24) Ethyl tert Butyl Ether 10.91 59 412418 19.54053 ppb 96 25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.55 83 15134 22.61348 ppb 99 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
25) MEK (2-Butanone) 10.89 43 116629 20.50128 ppb # 82 26) Cis-1,2-DCE 11.28 96 125471 19.91506 ppb 94 27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
26) Cis-1,2-DCE						
27) 2,2-Dichloropropane 11.27 77 169204 20.12640 ppb 95 28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
28) Chloroform 11.55 83 206499 19.11850 ppb 99 29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.55 83 151134 22.61348 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	20) CIS-1, Z-DCB					•
29) Bromochloromethane 11.78 128 45925 20.90406 ppb 80 31) 1,1,1-TCA 12.29 97 153491 19.73587 ppb 96 32) Cyclohexane 12.45 56 201187 22.52119 ppb 94 33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
31)       1,1,1-TCA       12.29       97       153491       19.73587 ppb       96         32)       Cyclohexane       12.45       56       201187       22.52119 ppb       94         33)       1,1-Dichloropropene       12.56       75       153485       20.58053 ppb       # 90         35)       Carbon Tetrachloride       12.76       117       113099       19.09964 ppb       95         36)       Tert Amyl Methyl Ether       12.80       73       318732       19.18110 ppb       96         37)       1,2-DCA       12.82       62       150908       18.70538 ppb       99         38)       Benzene       12.94       78       457237       19.24848 ppb       95         39)       TCE       13.97       95       111395       20.44712 ppb       97         40)       2-Pentanone       13.62       43       1073322       187.95950 ppb       100         41)       1,2-Dichloropropane       14.19       63       140936       19.85423 ppb       99         42)       Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43)       Dibromomethane       14.61       93       72	29) Bromochloromethane			45925	20.90406 pp	b 80
32) Cyclohexane 33) 1,1-Dichloropropene 34) 12.45 56 201187 22.52119 ppb 34 35) Carbon Tetrachloride 35) Carbon Tetrachloride 36) Tert Amyl Methyl Ether 37) 1,2-DCA 38) Benzene 39) TCE 39) TCE 39) TCE 300 2-Pentanone 31.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 42) Bromodichloromethane 43.61 49.63 140936 19.85423 ppb 99 44) Methyl Cyclohexane 45) 2-Chloroethyl vinyl ether 46) 2-Chloroethyl vinyl ether 47,5 67,5 153485 20.58053 ppb # 90 48,5 2-Chloroethyl vinyl ether 40,2-184 56 20.58053 ppb # 90 41,2-56 75 153485 20.58053 ppb # 90 42,5 150908 18.70538 ppb 99 43,0 150908 18.70538 ppb 99 44,6 19.95794 ppb 99 45,2 2-Chloroethyl vinyl ether 46,2 83 151134 22.61348 ppb 86				153491	19.73587 pp	b 96
33) 1,1-Dichloropropene 12.56 75 153485 20.58053 ppb # 90 35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98		12,45	56	201187		
35) Carbon Tetrachloride 12.76 117 113099 19.09964 ppb 95 36) Tert Amyl Methyl Ether 12.80 73 318732 19.18110 ppb 96 37) 1,2-DCA 12.82 62 150908 18.70538 ppb 99 38) Benzene 12.94 78 457237 19.24848 ppb 95 39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98		12,56	75			
37)       1,2-DCA       12.82       62       150908       18.70538 ppb       99         38)       Benzene       12.94       78       457237       19.24848 ppb       95         39)       TCE       13.97       95       111395       20.44712 ppb       97         40)       2-Pentanone       13.62       43       1073322       187.95950 ppb       100         41)       1,2-Dichloropropane       14.19       63       140936       19.85423 ppb       99         42)       Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43)       Dibromomethane       14.61       93       72025       19.11042 ppb       89         44)       Methyl Cyclohexane       14.25       83       151134       22.61348 ppb       86         45)       2-Chloroethyl vinyl ether       14.99       63       70427       20.25809 ppb       98						
38) Benzene       12.94       78       457237       19.24848 ppb       95         39) TCE       13.97       95       111395       20.44712 ppb       97         40) 2-Pentanone       13.62       43       1073322       187.95950 ppb       100         41) 1,2-Dichloropropane       14.19       63       140936       19.85423 ppb       99         42) Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43) Dibromomethane       14.61       93       72025       19.11042 ppb       89         44) Methyl Cyclohexane       14.25       83       151134       22.61348 ppb       86         45) 2-Chloroethyl vinyl ether       14.99       63       70427       20.25809 ppb       98					19.18110 pp	b 96
39) TCE 13.97 95 111395 20.44712 ppb 97 40) 2-Pentanone 13.62 43 1073322 187.95950 ppb 100 41) 1,2-Dichloropropane 14.19 63 140936 19.85423 ppb 99 42) Bromodichloromethane 14.55 83 156882 19.05794 ppb 98 43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	37) 1,2-DCA					
40)       2-Pentanone       13.62       43       1073322       187.95950 ppb       100         41)       1,2-Dichloropropane       14.19       63       140936       19.85423 ppb       99         42)       Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43)       Dibromomethane       14.61       93       72025       19.11042 ppb       89         44)       Methyl Cyclohexane       14.25       83       151134       22.61348 ppb       86         45)       2-Chloroethyl vinyl ether       14.99       63       70427       20.25809 ppb       98						
41) 1,2-Dichloropropane       14.19       63       140936       19.85423 ppb       99         42) Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43) Dibromomethane       14.61       93       72025       19.11042 ppb       89         44) Methyl Cyclohexane       14.25       83       151134       22.61348 ppb       86         45) 2-Chloroethyl vinyl ether       14.99       63       70427       20.25809 ppb       98						
42) Bromodichloromethane       14.55       83       156882       19.05794 ppb       98         43) Dibromomethane       14.61       93       72025       19.11042 ppb       89         44) Methyl Cyclohexane       14.25       83       151134       22.61348 ppb       86         45) 2-Chloroethyl vinyl ether       14.99       63       70427       20.25809 ppb       98						
43) Dibromomethane 14.61 93 72025 19.11042 ppb 89 44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98						
44) Methyl Cyclohexane 14.25 83 151134 22.61348 ppb 86 45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	_ ·					
45) 2-Chloroethyl vinyl ether 14.99 63 70427 20.25809 ppb 98	•		_			
4						
	4					

^{(#) =} qualifier out of range (m) = manual integration 0305N07S.D NALLS.M Fri Mar 09 10:08:22 2012

#### Quantitation Report (Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N07S.D Acq On : 5 Mar 12 14:41 Sample : 20ug/kg Vol Std 03-05-12 Misc : Soil 5mL w/IS:10-20-11 Vial: 1 Operator: SV,DG,RS Inst : Neo Multiplr: 1.00

Quant Time: Mar 7 14:17 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qva	alue	
46) 1-Bromo-2-chloroethane	15.31	63	157575	19.28720	daa		96
47) Cis-1,3-Dichloropropene	15.42	75	195824	19.08838			98
48) Toluene	16.06	91	436067	19.50680			95
49) Trans-1,3-Dichloropropene	16.21	75	168010	19.58002	ppb		94
50) 1,1,2-TCA	16.51	83	77790	20.01844			98
53) 1,2-EDB	17.76	107	87494	19.56275		#	84
54) Tetrachloroethene	17.21	129	71015	21.68222			96
55) 1-Chlorohexane	18.11	91	145737	21.68158			91
56) 1,1,1,2-Tetrachloroethane	18.57	131	88807	19.49574			85
57) m&p~Xylene	18.77	106	303495	39.47622			97
58) o-Xylene	19.53	106	147443	19.12472			93
59) Styrene	19.54	78	157879	19.25280			100
61) 2-Hexanone	16.53	43	98882	20.76074			96
62) 1,3-Dichloropropane	16.91	76	158499	20.32333	ppb		99
63) Dibromochloromethane	17.39	129	104679	19.90561			89
64) Chlorobenzene	18.52	112	247871	19.80066			93
65) Ethylbenzene	18.63	91	453056	19.86250			94
66) Bromoform	20.07	, 173	61585	19.31865			93
68) MIBK (methyl isobutyl keto	15.09	43	138394	20.03191			93
69) Isopropylbenzene	20.15	105	372387	19.24306			96
70) 1,1,2,2-Tetrachloroethane	20.30	83	104149	18.24443			97
71) 1,2,3-Trichloropropane	20.58	110	21342	17.28861	ppp		91
72) t-1,4-Dichloro-2-Butene	20.63	53	32355	18.36731	ppp		81
73) Bromobenzene	20.91	156	90383	18.30391	ppp		90
74) n-Propylbenzene	20.86	91	495441	19.20214			99
75) 2-Chlorotoluene	21.16	91	332583	18.85582			100 97
76) 1,3,5-Trimethylbenzene	21.13	105	307705	19.24040			99
77) 4-Chlorotoluene	21.24	91	291972	18.77631			
78) Tert-Butylbenzene	21.79	119	287375	19.23043 19.26309	daa		98 99
79) 1,2,4-Trimethylbenzene	21.85	105 105	314429 407703	19.61272			100
80) Sec-Butylbenzene	22.17	119	307109	19.18167	ppb		99
81) p-Isopropyltoluene	22.40 22.83	91	172768	18.67508			97
82) Benzyl Chloride	22.55	146	159522	18.94277			94
83) 1,3-DCB	22.71	146	158611	18.62490			92
84) 1,4-DCB	23.09	91	307405	18.17372			97
85) n-Butylbenzene 86) 1,2-DCB	23.34	146	139615	18.09580			100
86) 1,2-DCB 87) 1,2-Dibromo-3-chloropropan	24.54	155	12017	17.99583		#	69
88) 1,2,4-Trichlorobenzene	25.97	180	90595	17.96537			97
89) Hexachlorobutadiene	26.21	225	58841	19.50582			82
90) Naphthalene	26.32	128	192848	18.74084			99
91) 1,2,3-Trichlorobenzene	26.69	180	79167	18.39496			95
JI, IIII IIIIIIIII							_

Data File: M:\NEO\DATA\N120305\0305N07S.D

Vial: 1

Acq On : 5 Mar 12 14:41 Sample : 20ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Inst : Neo

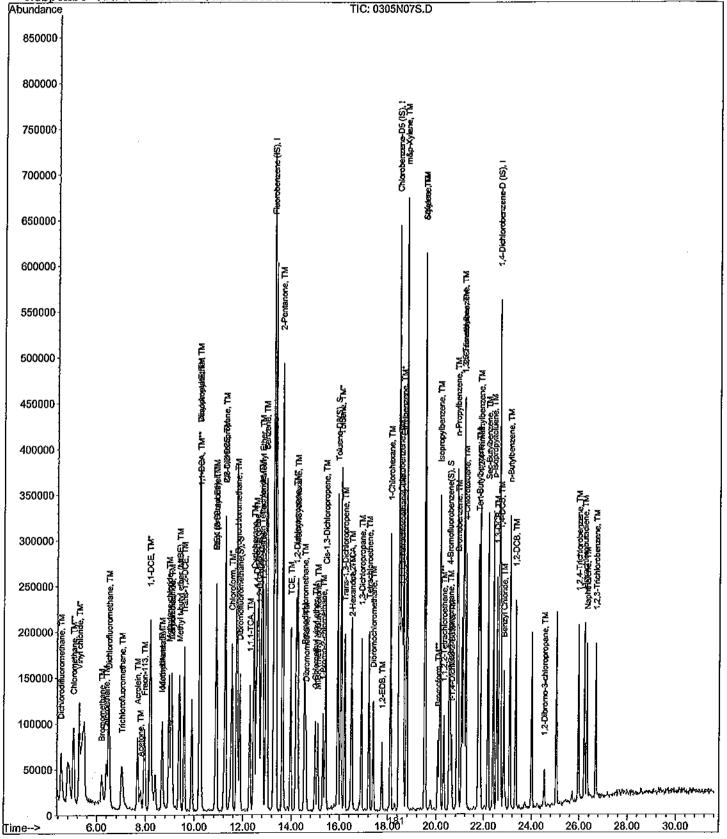
Misc : Soil 5mL w/IS:10-20-11

Multiplr: 1.00

Quant Time: Mar 7 14:17 2012

Quant Results File: NALLS.RES

Method


: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title

: METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration



Data File : M:\NEO\DATA\N120305\0305N08S.D

Vial: 1 : 5 Mar 12 15:19 : 50ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Acq On Inst : Neo Sample Multiplr: 1.00 : Soil 5mL w/IS:10-20-11 Misc

Quant Results File: NALLS.RES Quant Time: Mar 7 14:18 2012

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

: METHOD 8260B Title

Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS)	13.29	96	309248	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.46			50.00000 ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)			79952	50.00000 ppb	0.00
System Monitoring Compounds	11.88	111	259757	43.34755 ppb	0.00
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.00	1.1.1	Recove		
34) 1,2-DCA-D4(S)	12,68	65	288832	44.43654 ppb	0.00
Spiked Amount 41.649	45 04		Recove		0.00
52) Toluene-D8(S) Spiked Amount 35.274	15.94	98	786463 Recove	43.46529 ppb erv = 123.220%	
Spiked Amount 35.274 60) 4-Bromofluorobenzene(S)	20.53	95		44.60902 ppb	0.00
Spiked Amount 35.584			Recove	ery = 125.364%	
Target Compounds					value
<ol><li>Dichlorodifluoromethane</li></ol>	4.53	85	195394	34.17252 ppb	100
<ol><li>Chloromethane</li></ol>	5.04	50	476574	46.87555 ppb	100
<ol><li>Vinyl chloride</li></ol>	. 5.29	62	99368	43.05125 ppb	100
5) Bromomethane	6.22	94	136472	41.39130 ppb	100
6) Chloroethane	6.42	64	193180	47.25658 ppb	100 100
7) Dichlorofluoromethane	6.51	67	672430	50.24023 ppb 39.57926 ppb	100
8) Trichlorofluoromethane	7.04 7.67	101 56	224334 195424	249.01476 ppb	100
9) Acrolein	7.79	43	106704	51.82748 ppb	100
10) Acetone	7.96	101	155511	37.01702 ppb	100
11) Freon-113	8.19	96	182313	43.38699 ppb	100
12) 1,1-DCE 14) Methyl Acetate	8.67	43	337579	49.37658 ppb	100
15) Iodomethane	8.67	142	163137	48.87872 ppb	100
16) Acrylonitrile	9.06	53	109150	52.32096 ppb	100
17) Methylene chloride	8.97	86	192247	50.18463 ppb	100
18) Carbon disulfide	9.09	76	806879	<b>42.57956</b> ppb	100
19) Methyl t-butyl ether (MtBE	9.38	73	750556	49.50534 ppb	100
20) Trans-1,2-DCE	9.59	96	251409	46.05356 ppb	100
21) Diisopropyl Ether	10.23	45	1360694	48.71003 ppb	100
22) 1,1-DCA	10.27	63	583591	48.75960 ppb	100
23) Viny1 Acetate	10.23	43	1115589	50.41761 ppb	100 100
24) Ethyl tert Butyl Ether	10.91	59	986714 254035	47.97967 ppb 50.68085 ppb	100
25) MEK (2-Butanone)	10.89 11.28	43 96		50.30756 ppb	100
26) Cis-1,2-DCE	11.27	77	308836 375527	45.84202 ppb	100
27) 2,2-Dichloropropane 28) Chloroform	11.56	83	522687	49.66434 ppb	100
29) Bromochloromethane	11.78	128	102742	47.99509 ppb	100
31) 1,1,1-TCA	12.29	97	357344	47.15492 ppb	100
32) Cyclohexane	12.46	56	336646	38.67516 ppb	100
33) 1,1-Dichloropropene	12.56	75	322797	44.42090 ppb	100
35) Carbon Tetrachloride	12.76	117	267118	46.29528 ppb	100
36) Tert Amyl Methyl Ether	12.79	73	797254	49.23928 ppb	100
37) 1,2-DCA	12.83	62	390694	49.70020 ppb	100
38) Benzene	12.95	78	1120106	48.39288 ppb	100
39) TCE	13.98	95	258943	48.77956 ppb	100
40) 2-Pentanone	13.62	43	1374111	246.95809 ppb	100
41) 1,2-Dichloropropane	14.20	63	351929	50.88073 ppb	100
42) Bromodichloromethane	14.55	83	402089	50.12937 ppb	100 100
43) Dibromomethane	14.61	93	176388	48.03116 ppb	100
44) Methyl Cyclohexane 45) 2-Chloroethyl vinyl ether	14.20	63 03	164534	48,57158 ppb	100
**			182		

(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N08S.D

Vial: 1 Operator: SV,DG,RS : 5 Mar 12 15:19 : 50ug/kg Vol Std 03-05-12 Acq On Inst : Neo Sample : Soil 5mL w/IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

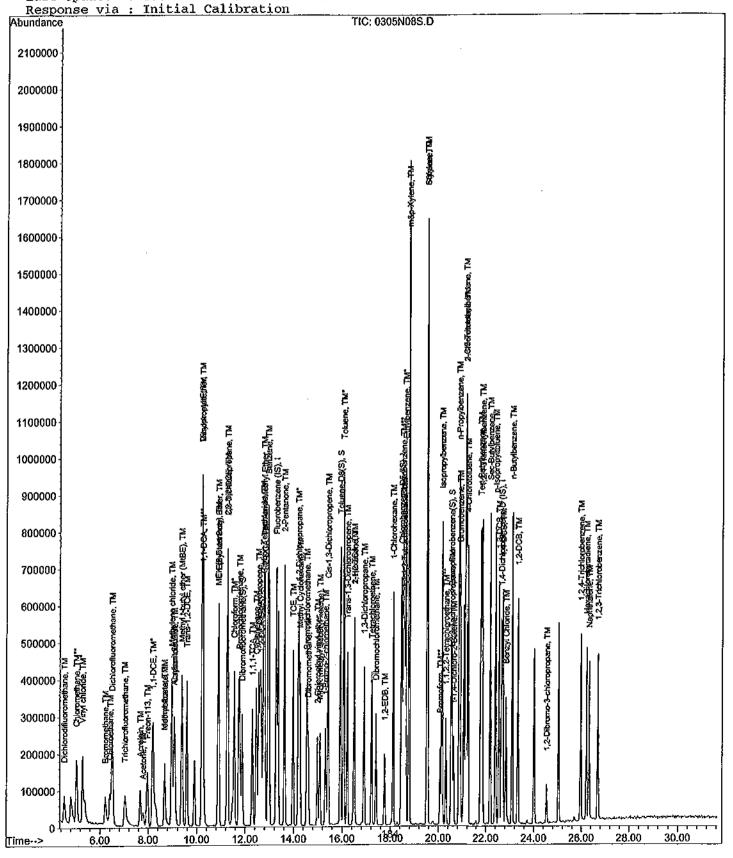
Last Update: Tue Mar 06 09:31:20 2012 Response via: Initial Calibration DataAcq Meth: V8260

47) Cis-1,3-Dichloropropene 15.42 75 475462 47.56485 ppb 16.48) Toluene 16.06 91 1091879 50.12732 ppb 16.49) Trans-1,3-Dichloropropene 16.21 75 384962 46.04295 ppb 16.50) 1,1,2-TCA 16.50 83 194758 51.43622 ppb 16.53) 1,2-EDB 17.76 107 222670 47.36662 ppb 16.54) Tetrachloroethene 17.21 129 154379 44.84365 ppb 16.55	100 100 100 100 100 100 100
47) Cis-1,3-Dichloropropene       15.42       75       475462       47.56485 ppb       16.6485 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06 ppb       16.06	100 100 100 100 100 100
48) Toluene       16.06       91       1091879       50.12732 ppb       10         49) Trans-1,3-Dichloropropene       16.21       75       384962       46.04295 ppb       10         50) 1,1,2-TCA       16.50       83       194758       51.43622 ppb       10         53) 1,2-EDB       17.76       107       222670       47.36662 ppb       10         54) Tetrachloroethene       17.21       129       154379       44.84365 ppb       10	00 00 00 00 00
49) Trans-1,3-Dichloropropene       16.21       75       384962       46.04295 ppb       10         50) 1,1,2-TCA       16.50       83       194758       51.43622 ppb       10         53) 1,2-EDB       17.76       107       222670       47.36662 ppb       10         54) Tetrachloroethene       17.21       129       154379       44.84365 ppb       10	00 00 00 00 00
53) 1,2-EDB 17.76 107 222670 47.36662 ppb 10 54) Tetrachloroethene 17.21 129 154379 44.84365 ppb 10	00 00 00 00 00
54) Tetrachloroethene 17.21 129 154379 44.84365 ppb 10	00
	00
	00
00, 1 011-01-011-11-1-1-1-1-1-1-1-1-1-1-1-1	.00
56) 1,1,1,2-Tetrachloroethane 18.57 131 231485 48.34754 ppb 10	
	.00
	.00
	.00
01) 1/0 pione 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 of 01 o	.00
	.00
64) Chlorobenzene 18.52 112 653626 49.67550 ppb 10	.00
vo, bong and an extra re extra extra extra extra	.00
	.00
	.00
	.00
	.00
	.00
	.00
, , ,	00
	00
	00
	00
	00
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	00
12/ 2/2/4 2	00
80) Sec-Butylbenzene 22.17 105 996762 50.29580 ppb 10	
81) p-Isopropyltoluene 22.40 119 742872 48.66919 ppb 10	
82) Benzyl Chloride 22.83 91 404453 45.85783 ppb 10	
83) 1,3-DCB 22.54 146 430029 53.56323 ppb 10	
84) 1,4-DCB 22.71 146 387554 47.73524 ppb 10	
85) n-Butylbenzene 23.09 91 803141 49.80476 ppb 10	
86) 1,2-DCB 23.34 146 392147 53.31395 ppb 10	
87) 1,2-Dibromo-3-chloropropan 24.53 155 36765 57.75062 ppb 10	
88) 1,2,4-Trichlorobenzene 25.96 180 235436 48.97237 ppb 10	
89) Hexachlorobutadiene 26.22 225 142065 49.39891 ppb 10	
90) Naphthalene 26.33 128 500677 51.03614 ppb 10	
91) 1,2,3-Trichlorobenzene 26.69 180 211058 53.90387 ppb 10	υO

Data File: M:\NEO\DATA\N120305\0305N08S.D

Vial: 1 5 Mar 12 15:19 Operator: SV,DG,RS : Neo

: 50ug/kg Vol Std 03-05-12 Inst Sample : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc


Ouant Results File: NALLS.RES Quant Time: Mar 7 14:18 2012

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Acq On

Last Update : Tue Mar 06 09:31:20 2012



Data File: M:\NEO\DATA\N120305\0305N09S.D

Vial: 1 Operator: SV,DG,RS Acq On : 5 Mar 12 15:57

: 100ug/kg Vol Std 03-05-12 Inst : Neo Sample Misc : Soil 5mL w/IS:10~20-11 Multiplr: 1.00

Ouant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

T. 1	<b>.</b>	OT	D	Constinite	Dow/Min)
Internal Standards	к.т.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene (IS)	13.28	96	321792	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.46	117	214592	50.00000 ppb	
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	92080	50,00000 ppb	0.00
System Monitoring Compounds 30) Dibromofluoromethane(S)	11.88	111	603696	96.81603 ppb	0.00
Spiked Amount 41.312	11,00	T 1, I	Recove		
34) 1,2-DCA-D4(S)	12.67	65	681851	100.81289 ppb	
Spiked Amount 41.649			Recove	xy = 242.05	7%
52) Toluene-D8(S)	15.93	98	1715000	92.46458 ppb	
Spiked Amount 35.274	00 53	0.5	Recove	ry = 262.13	
60) 4-Bromofluorobenzene(S)	20.53	95		102.07162 ppb ry = 286.85	
Spiked Amount 35.584			Kecove	ry = 260.00	1.0
Target Compounds					Qvalue
2) Dichlorodifluoromethane	4.53	85	632485	105.61450 ppb	
<ol><li>Chloromethane</li></ol>	5.05	50	1072021	104.83940 ppb	
4) Vinyl chloride	5.28	62	235648	98.11482 ppb	
<ol><li>5) Bromomethane</li></ol>	6.22	94	369505	104.65598 ppb	
6) Chloroethane	6.40	64	456087	107.24923 ppb	
<ol><li>7) Dichlorofluoromethane</li></ol>	6.50	67	1419861	101.94877 ppb	
8) Trichlorofluoromethane	7.03	101	629383	106.30849 ppb	
9) Acrolein	7.66	56	237350	290,64850 ppb	
10) Acetone	7.79 7.96	43 101	206600 472647	106.94059 ppb 104.89449 ppb	
11) Freon-113	8.19	96	448402	102.55129 ppb	
12) 1,1-DCE 14) Methyl Acetate	8.69	43	665571	103.43728 ppb	
14) Methyl Acetate 15) Iodomethane	8.68	142	364721	103.89282 ppb	
16) Acrylonitrile	9.06	53	209899	96.69276 ppb	
17) Methylene chloride	8.96	86	395366	99.99286 ppb	
18) Carbon disulfide	9.08	76	1825025	92.55357 ppb	
19) Methyl t-butyl ether (MtBE	9.39	73	1604071	101.67734 ppb	
20) Trans-1,2-DCE	9.58	96	564381	99.35424 ppb	
21) Diisopropyl Ether	10.22	45	3004059	103.34703 ppb	
22) 1,1-DCA	10.27	63	1240544	99.60826 ppb	
23) Vinyl Acetate	10.23	43	2433268	105.68166 ppb	
24) Ethyl tert Butyl Ether	10.90	59	2208905	103.22256 ppb	
25) MEK (2-Butanone)	10.90 11.29	43 96	545220 648506	108.70667 ppb 101.51986 ppb	
26) Cis-1,2-DCE 27) 2,2-Dichloropropane	11.28	77	857927	100.64786 ppb	
28) Chloroform	11.56	83	1117173	102.01289 ppb	
29) Bromochloromethane	11.78	128	209645	94.11632 ppb	
31) 1,1,1-TCA	12.30	97	815087	103.36564 ppb	95
32) Cyclohexane	12.47	56	938831	103.65202 ppb	98
33) 1,1-Dichloropropene	12.56	75	765985	101.30008 ppb	
35) Carbon Tetrachloride	12.75	117	643713	107.21548 ppb	
36) Tert Amyl Methyl Ether	12,79	73	1723251	102.28105 ppb	
37) 1,2-DCA	12.82	62	829922	101.45895 ppb	99
38) Benzene	12.96	78	2371578	98.46716 ppb	96
39) TCE	13.97	95 42	573480	103.82061 ppb	96
40) 2-Pentanone	13.63	43	1683240 744850	290.72283 ppb 103.49008 ppb	98 99
41) 1,2-Dichloropropane 42) Bromodichloromethane	14.20 14.55	63 83	883681	105.87592 ppb	98
43) Dibromomethane	14.61	93	382453	100.08380 ppb	98
44) Methyl Cyclohexane	14.26	83	746869	104.46441 ppb	92
45) 2-Chloroethyl vinyl ether	14.99	63	365049	103.56414 ppb	94
45) & Chioloconii vanja const			185		

(Not Reviewed)

Vial: 1

Inst : Neo

Operator: SV,DG,RS

Data File: M:\NEO\DATA\N120305\0305N09S.D

Acq On : 5 Mar 12 15:57 : 100ug/kg Vol Std 03-05-12 Sample Misc : Soil 5mL w/IS:10-20-11

Multiplr: 1.00 Ouant Time: Mar 7 14:18 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

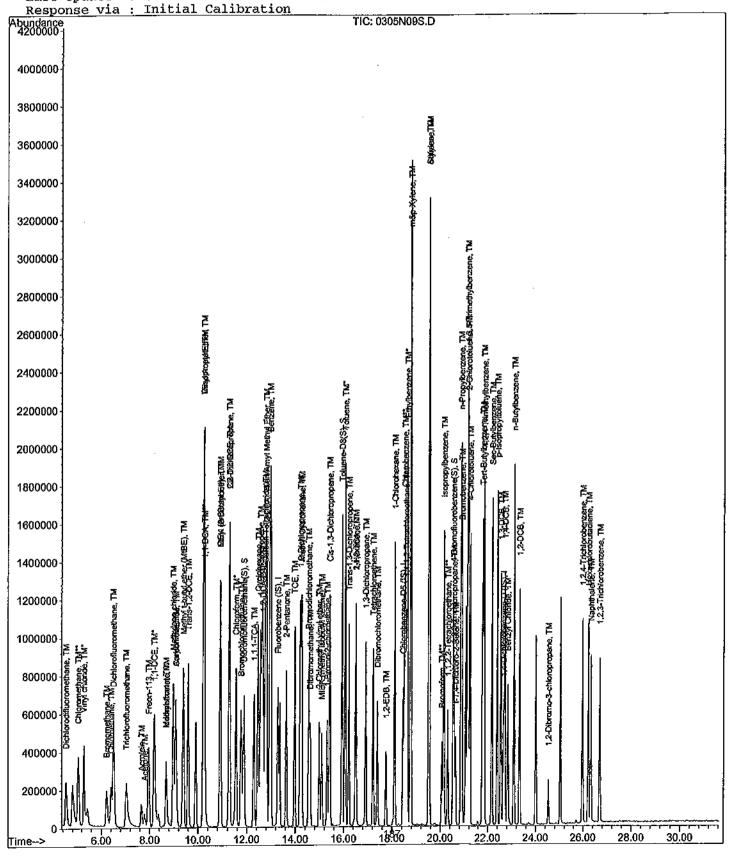
Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Compound	R.T.	QIon	Response	Conc Unit	Qvalu	e -
46) 1-Bromo-2-chloroethane	15.32	63	832261	100.47088	daa	98
47) Cis-1,3-Dichloropropene	15.43	75	1037415	99.73658		98
48) Toluene	16.06	91	2223553	98.10229		98
49) Trans-1,3-Dichloropropene	16.22	75	883515	101.55255		96
50) 1,1,2-TCA	16.50	83	401337	101.86256		95
53) 1,2-EDB	17.75	107	466606	96.82958		86
54) Tetrachloroethene	17.22	129	336309	95.30116		94
55) 1-Chlorohexane	18.12	91	709803	98.00875	ppb	92
56) 1,1,1,2-Tetrachloroethane	18.58	131	479288	97.65512		98
57) m&p-Xylene	18.77	106	1554818	187.70232		99
58) o-Xylene	19.52	106	804358	96.83364		96
59) Styrene	19.53	78	863122	97.68948		94
61) 2-Hexanone	16.51	43	458564	89.35761 j		91
62) 1,3-Dichloropropane	16.90	76	833642	99.20966		95
63) Dibromochloromethane	17.40	129	579745	102.31964		97
64) Chlorobenzene	18.53	112	1284632	95.24422		97
65) Ethylbenzene	18.64	91	2396630	97.51898 լ		94
66) Bromoform	20.06	173	342663	99.76428		99
68) MIBK (methyl isobutyl keto	15.08	43	663656	87.49000 j		92
69) Isopropylbenzene	20.15	105	1913492	90.05682	ppb	98
70) 1,1,2,2-Tetrachloroethane	20.31	83	576788	92.02411		98
71) 1,2,3-Trichloropropane	20.58	110	130539	98.02741 )		89
72) t-1,4-Dichloro-2-Butene	20.63	53	177743	91.89816		95
73) Bromobenzene	20.90	156	489986	90.37558		96
74) n-Propylbenzene	20.86	91	2628587	92.78768		99
75) 2-Chlorotoluene	21.17	91	1794902	92.68219		98
76) 1,3,5-Trimethylbenzene	21.13	105	1662390	94.67224 1		95
77) 4-Chlorotoluene	21.25	91	1488501	87.18233 <u>1</u>		99
78) Tert-Butylbenzene	21.80	119	<b>15084</b> 79	91.93685 1		95
79) 1,2,4-Trimethylbenzene	21.85	105	1659391	92.58963		100
80) Sec-Butylbenzene	22.18	105	2137117	93.63378		98
81) p-Isopropyltoluene	22.40	119	1658200	94.32809 p		96
82) Benzyl Chloride	22.83	91	896384	88.24773 p		97
83) 1,3-DCB	22.54	146	832725	90.06056 p		94
84) 1,4-DCB	22.71	146	817240	87.40183 g		98
85) n-Butylbenzene	23.10	91	1711209	92.13956 g	ppb	98
86) 1,2-DCB	23.33	146	779751	92.04749 r		98
87) 1,2-Dibromo-3-chloropropan	24.53	155	70880	96.67402 r		81
88) 1,2,4-Trichlorobenzene	25.97	180	491315	88.73650 p		99
89) Hexachlorobutadiene	26.22	225	319809	96.55728 p		97
90) Naphthalene	26.32	128	1036853	91.77014 g		100
91) 1,2,3-Trichlorobenzene	26.70	180	442546	99.26419 p	dqc	100

Data File : M:\NEO\DATA\N120305\0305N09S.D

Vial: 1 : 5 Mar 12 15:57 : 100ug/kg Vol Std 03-05-12 Operator: SV,DG,RS : Neo Inst

Sample : Soil 5mL w/IS:10-20-11 Multiplr: 1.00 Misc


Quant Results File: NALLS.RES Quant Time: Mar 7 14:18 2012

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Acq On

Last Update : Tue Mar 06 09:31:20 2012



Data File: M:\NEO\DATA\N120305\0305N10S.D

Vial: 1 Operator: SV,DG,RS Acq On : 5 Mar 12 16:35 : 200ug/kg Vol Std 03-05-12 Inst : Neo Sample Misc : Soil 5mL w/IS:10-20-11 Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) Fluorobenzene (IS)	13.29	96	311360	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)	18.46	117	174144	50.00000 ppb	0.00
67) 1,4-Dichlorobenzene-D (IS)	22.66	152	73280	50.00000 ppb	0.01
System Monitoring Compounds					
30) Dibromofluoromethane(S)	11.88	111	1040045	172.38263 ppb	0.00
Spiked Amount 41.312			Recove		
34) 1,2~DCA~D4(S)	12.68	65	1171226	178.96979 ppb	0.00
Spiked Amount 41.649			Recove		
52) Toluene-D8(S)	15.94	98	3089451		0.00
Spiked Amount 35.274	20 52	0.5	Recove		
60) 4-Bromofluorobenzene(S) Spiked Amount 35.584	20.53	95	1054159	200.13153  ppb erv = $562.428$	0.00
Spiked Amount 35.584			Recove	12y = 562.426	) 6
Target Compounds					Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	4.52	85	1162880	200.39380 ppb	90
3) Chloromethane	5.04	50	1934939	198.18143 ppb	98
4) Vinyl chloride	5.28	62	417024	179.45035 ppb	99
5) Bromomethane	6.20	94	688665	199.82761 ppb	100
6) Chloroethane	6.39	64	810231	196.92866 ppb	93
7) Dichlorofluoromethane 8) Trichlorofluoromethane	6.50 7.03	67 101	2531706	187.87192 ppb	99 95
9) Acrolein	7.66	56	1141580 246575	199.07487 ppb 312.06159 ppb	95 97
10) Acetone	7.80	43	349055	195.83754 ppb	93
11) Freon-113	7.95	101	880492	200.40038 ppb	96
12) 1,1-DCE	8.18	96	826796	195.42692 ppb	95
14) Methyl Acetate	8.68	43	1174143	197.68029 ppb	96
15) Iodomethane	8.67	142	676921	198.38650 ppb	<b>#</b> 91
16) Acrylonitrile	9.06	53	360730	171.74270 ppb	92
17) Methylene chloride	8.97	86	689361	180.85354 ppb	96
18) Carbon disulfide	9.08	76	3268996	171.33701 ppb	95
19) Methyl t-butyl ether (MtBE	9.39	73	2694907	176.54556 ppb	98
20) Trans-1,2-DCE	9.59	96	987042	179.58171 ppb	96
21) Diisopropyl Ether	10.22	45	5270479	187.39244 ppb	100
22) 1,1-DCA	10.27	63	2237810	185.70295 ppb	99
23) Vinyl Acetate 24) Ethyl tert Butyl Ether	10.23 10.91	43 59	4259392 3839343	191.19200 ppb 185.42441 ppb	99 97
25) MEK (2-Butanone)	10.90	43	934403	195.57372 ppb	# 88
26) Cis-1,2-DCE	11.28	96	1124327	181.90392 ppb	π 98
27) 2,2-Dichloropropane	11.27		1531543	185.69314 ppb	99
28) Chloroform	11.56	83		181.59250 ppb	98
29) Bromochloromethane	11.79	128	357175	165.71961 ppb	93
31) 1,1,1-TCA	12.29	97	1489452	195.21408 ppb	96
32) Cyclohexane	12.46	56	1761740	201.02246 ppb	100
33) 1,1-Dichloropropene	12.56	75	1406847	192.28651 ppb	94
35) Carbon Tetrachloride	12.76	117	1160811	199.82010 ppb	99
36) Tert Amyl Methyl Ether	12.79	73	2877120	176.48876 ppb	97
37) 1,2-DCA	12.83	62	1434060	181.18942 ppb	99
38) Benzene	12.95	78 95	4235821	181.76239 ppb	95
39) TCE	13.98 13.64	43	984179	184.14157 ppb 291.83116 ppb	90
40) 2-Pentanone 41) 1,2-Dichloropropane	14.20	63	1634881 1263186	181.38845 ppb	100 99
42) Bromodichloromethane	14.55	83	1490557	184.57067 ppb	99
43) Dibromomethane	14.61	93	642582	173.79076 ppb	94
44) Methyl Cyclohexane	14.26	83	1394516	200.20521 ppb	96
45) 2-Chloroethyl vinyl ether	14.99	63	588943	172.68074 ppb	93
			188		

(Not Reviewed)

Data File : M:\NEO\DATA\N120305\0305N10S.D

Vial: 1 Operator: SV,DG,RS Acq On : 5 Mar 12 16:35 : 200ug/kg Vol Std 03-05-12 : Soil 5mL w/IS:10-20-11 Sample Inst : Neo Multiplr: 1.00 Misc

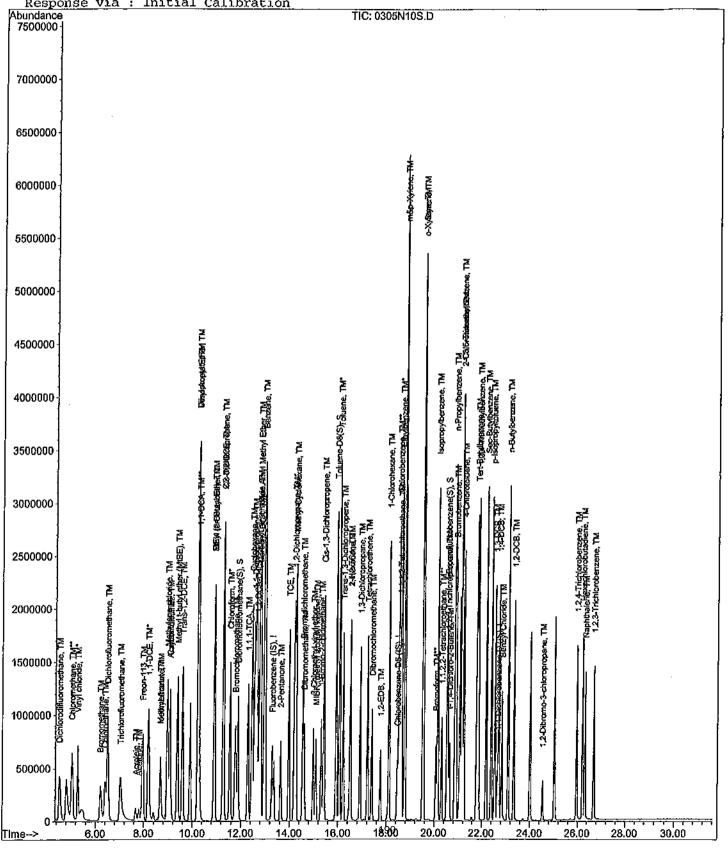
Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Compound	R.T.	QIon	Response	Conc Unit Q	value
46) 1-Bromo-2-chloroethane	15.32	63	1447443	180.59036 ppb	98
47) Cis-1,3-Dichloropropene	15.42	75	1775326	176.39753 ppb	
48) Toluene	16.06	91	3973925	181.20232 ppb	
49) Trans-1,3-Dichloropropene	16.21	75	1475146	175.23641 ppb	
50) 1,1,2-TCA	16.51	83	688075	180.49018 ppb	
53) 1,2-EDB	17.76	107	794671	203.21235 ppb	
54) Tetrachloroethene	17.22	129	613784	214.32867 ppb	
55) 1-Chlorohexane	18.12	91	1316133	223.94008 ppb	
56) 1,1,1,2-Tetrachloroethane	18.58	131	776501	194,96000 ppb	96
57) m&p-Xylene	18.77	106	2772634	412,46551 ppb	97
58) o-Xylene	19.52	106	1357907	201.44287 ppb	100
59) Styrene	19.54	78	1420928	198.17675 ppb	. 99
61) 2-Hexanone	16.52	43	754973	181.28756 ppb	92
62) 1,3-Dichloropropane	16.91	76	1361743	199,69838 ppb	98
63) Dibromochloromethane	17.40	129	950232	206.66010 ppb	99
64) Chlorobenzene	18.53	112	2153729	196.76868 ppb	98
65) Ethylbenzene	18,63	91	4063566	203.75134 ppb	97
66) Bromoform	20.07	173	5591 <b>1</b> 6	200.59256 ppb	
68) MIBK (methyl isobutyl keto	15,10	43	1089430	180.46566 ppb	
69) Isopropylbenzene	20.15	105	3504693	207.26205 ppb	97
70) 1,1,2,2-Tetrachloroethane	20.32	83	958814	192.22047 ppb	96
71) 1,2,3-Trichloropropane	20.57	110	211914	200.35218 ppb	89
72) t-1,4-Dichloro-2-Butene	20.63	53	293860	190.91262 ppb	95
73) Bromobenzene	20.91	156	820363	190.13117 ppb	98
74) n-Propylbenzene	20.86	91	4597630	203.93033 ppb	99
75) 2-Chlorotoluene	21.16	91	2930149	190.11882 ppb	99
76) 1,3,5-Trimethylbenzene	21.13	105	2771899	198.35675 ppb	97
77) 4-Chlorotoluene	21.24	91	2582460	190.06090 ppb	100
78) Tert-Butylbenzene	21.79	119	2641816	202.31719 ppb	100
79) 1,2,4-Trimethylbenzene	21.85	105	2803437	196.55508 ppb	100
80) Sec-Butylbenzene	22,18	105	3820453	210.32891 ppb	100
<pre>81) p-Isopropyltoluene</pre>	22.40	119	2806324	200.59579 ppb	98
82) Benzyl Chloride	22.83	91	1425738	176.37174 ppb	95
83) 1,3-DCB	22.55	146	1388853	188.74227 ppb	94
84) 1,4-DCB	22.72	146	1352626	181.77263 ppb	97
85) n-Butylbenzene	23.10	91	2947153	199.40021 ppb	98
86) 1,2~DCB	23.34	146	1289645	191.29606 ppb	99
87) 1,2-Dibromo-3-chloropropan	24.54	155	120618	206.71789 ppb	91
88) 1,2,4-Trichlorobenzene	25.97	180	789448	179.16189 ppb	97
89) Hexachlorobutadiene	26.22	225	539027	204.49594 ppb	89
90) Naphthalene	26.32	128	1581186	175.85188 ppb	98
91) 1,2,3-Trichlorobenzene	26.69	180	703405	199.62049 ppb	97

Data File : M:\NEO\DATA\N120305\0305N10S.D


Vial: 1 Acq On 5 Mar 12 16:35 Operator: SV,DG,RS : 200ug/kg Vol Std 03-05-12 Sample Inst : Neo : Soil 5mL w/IS:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 7 14:18 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration



Data File : M:\NEO\DATA\N120305\0305N16S.D Acq On : 5 Mar 12 20:24 Sample : 120305A LCS-1SN (ss) Vial: 1 Operator: SV,DG,RS

Inst : Neo Multiplr: 1.00 : Soil 5mL w/IS&S:10-20-11 Misc

Ouant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

Response via : Initial Calibration

DataAcq Meth : V8260

Target Compounds   13	Internal Standards	R.T.	QIon	Response	Conc Units Dev	v(Min)
State   Monitoring Compounds   30   Dibromofluoromethane   11   88   11   224234   36   01102 ppb   0.00	1) Fluorobenzene (IS)	13.29	96	321344	50.00000 ppb	0.00
System Monitoring Compounds   30   Dibromofluoromethane (S)   11.88   111   224234   36.01102   ppb   0.00   Spiked Amount   41.312   Recovery   = 87.169%   30.000   Spiked Amount   41.312   Recovery   = 87.169%   30.01   Spiked Amount   41.649   Recovery   = 87.169%   30.01   Spiked Amount   41.649   Spiked Amount   35.524   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 105.811%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   0.00   Recovery   = 100.60%   0.00   Recovery   = 100.60%   0.00   0.00   Recovery   = 100.60%   0.00   0.00   Recovery   = 100.60%   0.00   0.00   Recovery   = 100.60%   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.0	51) Chlorobenzene-D5 (IS)	18.46	117	209408	50.00000 ppb	
300   Dibromofluoromethane(s)   Spiked Amount   41.312   Recovery   = 87.1698			152		50.00000 ppb	0.00
300   Dibromofluoromethane(s)   Spiked Amount   41.312   Recovery   = 87.1698	System Monitoring Compounds					
Spiked Amount   41.312		11.88	111	224234	36.01102 ppb	0.00
Spiked Amount   41.649						
Spiked Amount   35.274		12.67	65			0.00
Spiked Amount   35.274   20.53   95   230123   35.79651 ppb   0.00		15 02	0.0	Recove		0.00
Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.584   Spiked Amount   35.		15.93	90	0/3334 Pecore	ა/.ა⊿4ას ppu ლა ≃ 105.911%.	0.00
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) 54 85 335455 56.24657 ppb 3) Chloromethane 5, 55 50 589631 56.38814 ppb 97 4) Vinyl chloride 5, 29 62 126912 52.31447 ppb 100 5) Bromomethane 6, 21 94 186170, 53.74456 ppb 90 6) Chloroethane 6, 22 64 248444 58.49311 ppb 93 7) Dichlorofluoromethane 7, 55 101 340253 57.66144 ppb 100 9) Arrolein 7, 67 56 175240 214.89046 ppb 94 10) Acetone 7, 79 43 103272 47.43526 ppb 89 11) Freon-113 7, 97 101 243228 54.86887 ppb 97 12) 1, 1-DCE 8, 19 96 245234 56.16417 ppb 93 15) Iodomethane 8, 69 142 203038 58.35031 ppb 93 16) Acrylonitrile 9, 06 53 976677 45.05894 ppb 17) Methylacetale 8, 69 142 203038 58.35031 ppb 98 18) Carbon disulfide 9, 08 76 983525 49.94762 pb 96 18) Carbon disulfide 9, 08 76 983525 49.94762 pb 96 19) Methyl t-butyl ether (MtBE 9, 39 73 742651 47.14009 ppb 97 20) Trans-1, 2-DCE 9, 59 96 305791 53.90633 ppb 97 21) Diisopropyl Ether 10, 22 45 1474089 50.7829 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 10, 27 63 658936 52.98238 ppb 99 22) 1, 1-DCA 23 64 64 64 64 64 64 64 64 64 64 64 64 64		20.53	95	230123	35.79651 ppb	0.00
2		50.55	,,			
2	Maranah Compounds				O	zalue
Schloromethane		4.54	85	335455		
Vinyl chloride						
Stromomethane						100
6) Chloroethane 7) Dichlorofluoromethane 8) Trichlorofluoromethane 8) Trichlorofluoromethane 7) Dichlorofluoromethane 7) Dichloropropane 7) Dichloromethane 7) Dichloropropane 10, Acetone 7) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8) Dichloromethane 8		6.21	94	186170		
Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note	<ol><li>6) Chloroethane</li></ol>					
9) Acrolein 7.67 56 175240 214.89046 ppb 94 10) Acetone 7.79 43 103272 47.43526 ppb 89 11) Freon-113 7.97 101 243228 54.86887 ppb 97 12) 1,1-DCE 8.19 96 245234 56.16417 ppb 92 14) Methyl Acetate 8.68 43 324525 44.85377 ppb 99 15) Todomethane 8.69 142 203038 58.35031 ppb 93 16) Acrylonitrile 9.06 53 97677 45.05894 ppb 81 17) Methylene chloride 8.97 86 208087 52.30935 ppb 98 18) Carbon disulfide 9.08 76 983525 49.94762 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 742651 47.14009 ppb 97 20) Trans-1,2-DCE 9.59 96 305791 53.90683 ppb 93 21) Diisopropyl Ether 10.22 45 1474089 50.78299 ppb 99 22) 1,1-DCA 10.27 63 658936 52.98238 ppb 99 23) Vinyl Acetate 10.22 45 1474089 50.78299 ppb 99 23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 93 31) 1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 448844 55.46856 ppb 93 33) Cyclohexane 12.46 56 515446 56.98736 ppb 97 34) Benzene 12.96 78 1242802 51.67268 ppb 98 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 14.61 93 191968 50.30598 ppb 97 41) Dibromomethane 14.61 93 191968 50.30598 ppb 97 42) Bromodichloromethane 14.62 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb				766843	55.13758 ppb	
10   Acetone   7.79   43   103272   47.43526 ppb   89     11   Freon-113   7.97   101   243228   54.86887 ppb   97     12   1,1-DCE   8.19   96   245234   56.16417 ppb   92     14   Methyl Acetate   8.68   43   324525   44.85377 ppb   99     15   Todomethane   8.69   142   203038   58.35031 ppb   # 93     16   Acrylonitrile   9.06   53   97677   45.05894 ppb   81     17   Methylene chloride   8.97   86   208087   52.30935 ppb   98     18   Carbon disulfide   9.08   76   983525   49.94762 ppb   96     19   Methyl t-butyl ether (MtBE   9.39   73   742651   47.14009 ppb   97     20   Trans-1,2-DCE   9.59   96   305791   53.90683 ppb   93     21   Diisopropyl Ether   10.22   45   1474089   50.78299 ppb   99     22   1,1-DCA   10.27   63   658936   52.98238 ppb   99     23   Vinyl Acetate   10.22   43   1115657   48.52275 ppb   97     24   Ethyl tert Butyl Ether   10.91   59   1066830   49.92267 ppb   95     25   MEK (2-Butanone)   10.90   43   257024   49.24362 ppb   100     26   Cis-1,2-DCE   11.28   96   344420   53.99212 ppb   97     27   2,2-Dichloropropane   11.27   77   454070   53.34357 ppb   100     28   Chloroform   11.56   83   568244   51.95064 ppb   97     29   Bromochloromethane   11.79   128   104068   46.78457 ppb   93     30   1,1-Dichloropropane   12.56   75   418844   51.9664 ppb   97     33   1,1-Dichloropropane   12.56   75   418844   57.86661 ppb   93     35   Carbon Tetrachloride   12.76   117   346583   57.80661 ppb   98   36   Tert Amyl Methyl Ether   12.79   73   816710   48.54221 ppb   96   97   12.2-Dichloropropane   12.56   75   418844   57.46661 ppb   97   12.2-DCA   12.90   67   67   1242802   51.67268 ppb   97   12.2-DCA   12.90   67   67   1242802   51.67268 ppb   97   12.2-DCA   12.90   67   67   1242802   51.67268 ppb   97   12.2-DCA   12.90   67   67   1242802   51.67268 ppb   97   12.2-DCA   12.90   67   67   1242802   51.67268 ppb   97   12.2-DCA   12.90   67   67   122802   51.67268 ppb   97   12.2-DCA   12.90   67   67   122802   51.67268 ppb   97   12.2-DCA   12.90   67   6						
Treon-113						
12						
Methyl Acetate						
15						
16) Acrylonitrile 9.06 53 97677 45.05894 ppb 81 17) Methylene chloride 8.97 86 208087 52.30935 ppb 98 18) Carbon disulfide 9.08 76 983525 49.94762 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 742651 47.14009 ppb 97 20) Trans-1,2-DCE 9.59 96 305791 53.90683 ppb 93 21) Diisopropyl Ether 10.22 45 1474089 50.78299 ppb 99 22) 1,1-DCA 10.27 63 658936 52.98238 ppb 99 23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167488 47.52565 ppb 98			142	203038		
18) Carbon disulfide 9.08 76 983525 49.94762 ppb 96 19) Methyl t-butyl ether (MtBE 9.39 73 742651 47.14009 ppb 97 20) Trans-1,2-DCE 9.59 96 305791 53.90683 ppb 93 21) Diisopropyl Ether 10.22 45 1474089 50.78299 ppb 99 22) 1,1-DCA 10.27 63 658936 52.98238 ppb 99 23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chlorocethyl vinyl ether 14.98 63 167268 47.52565 ppb 98						
19) Methyl t-butyl ether (MtBE 9.39 73 742651 47.14009 ppb 97 20) Trans-1,2-DCE 9.59 96 305791 53.90683 ppb 93 21) Diisopropyl Ether 10.22 45 1474089 50.78299 ppb 99 22) 1,1-DCA 10.27 63 658936 52.98238 ppb 99 23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 92 39 TCE 13.98 95 294836 53.45039 ppb 92 39 39 DTCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.98 95 294836 53.45039 ppb 97 39 TCE 13.9	17) Methylene chloride					
20) Trans-1,2-DCE 9.59 96 305791 53.90683 ppb 93 21) Diisopropyl Ether 10.22 45 1474089 50.78299 ppb 99 22) 1,1-DCA 10.27 63 658936 52.98238 ppb 99 23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 14.20 63 373089 51.90957 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167368 47.52565 ppb 98	18) Carbon disulfide					
21) Diisopropyl Ether		9.39				
22) 1,1-DCA						
23) Vinyl Acetate 10.22 43 1115657 48.52275 ppb 97 24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167288 47.52565 ppb 98						
24) Ethyl tert Butyl Ether 10.91 59 1066830 49.92267 ppb 95 25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.9212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167268 47.52565 ppb 98					48.52275 ppb	
25) MEK (2-Butanone) 10.90 43 257024 49.24362 ppb 100 26) Cis-1,2-DCE 11.28 96 344420 53.99212 ppb 97 27) 2,2-Dichloropropane 11.27 77 454070 53.34357 ppb 100 28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 41) 1,2-Dichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167288 47.52565 ppb 98						
28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167268 47.52565 ppb 98			43	257024		
28) Chloroform 11.56 83 568244 51.96064 ppb 97 29) Bromochloromethane 11.79 128 104068 46.78457 ppb 92 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167268 47.52565 ppb 98			96	344420		
29) Bromochloromethane 11.79 128 104068 46.78457 ppb 31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 45) 2-Chloroethyl vinyl ether 14.98 63 167268 47.52565 ppb 98			77	454070	53.3435/ ppp 51.9606/ ppb	
31) 1,1,1-TCA 12.30 97 459913 58.40539 ppb 93 32) Cyclohexane 12.46 56 515446 56.98736 ppb 97 33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167288 47.52565 ppb 98	28) Chloroform				46.78457 ppb	
32) Cyclohexane 32) Cyclohexane 33) 1,1-Dichloropropene 34) 1,1-Dichloropropene 35) Carbon Tetrachloride 36) Tert Amyl Methyl Ether 37) 1,2-DCA 38) Benzene 39) TCE 39) TCE 39) TCE 39) TCE 39 TCE 30 2-Pentanone 31 3,63 43 1296770 31,2-Dichloropropane 32 401913 33 435736 34 435736 35 52.27935 ppb 36 294836 37 37 38 435736 38 38 38 38 38 38 38 38 38 38 38 38 38 3						
33) 1,1-Dichloropropene 12.56 75 418844 55.46856 ppb 93 35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167288 47.52565 ppb 98						
35) Carbon Tetrachloride 12.76 117 346583 57.80661 ppb 98 36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167268 47.52565 ppb 98	33) 1.1-Dichloropropene				55.46856 ppb	93
36) Tert Amyl Methyl Ether 12.79 73 816710 48.54221 ppb 96 37) 1,2-DCA 12.83 62 401913 49.20284 ppb 99 38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167288 47.52565 ppb 98	35) Carbon Tetrachloride					
38) Benzene 12.96 78 1242802 51.67268 ppb 97 39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98						
39) TCE 13.98 95 294836 53.45039 ppb 92 40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98	37) 1,2-DCA					
40) 2-Pentanone 13.63 43 1296770 224.28545 ppb 100 41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98	•					
41) 1,2-Dichloropropane 14.20 63 373089 51.90957 ppb 100 42) Bromodichloromethane 14.55 83 435736 52.27935 ppb 97 43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98						
42) Bromodichloromethane       14.55       83       435736       52.27935 ppb       97         43) Dibromomethane       14.61       93       191968       50.30598 ppb       97         44) Methyl Cyclohexane       14.27       83       389031       55.19992 ppb       92         45) 2-Chloroethyl vinyl ether       14.98       63       167388       47.52565 ppb       98	- · · · · · · · · · · · · · · · · · · ·					
43) Dibromomethane 14.61 93 191968 50.30598 ppb 97 44) Methyl Cyclohexane 14.27 83 389031 55.19992 ppb 92 45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98						
44) Methyl Cyclohexane       14.27       83       389031       55.19992 ppb       92         45) 2-Chloroethyl vinyl ether       14.98       63       167388       47.52565 ppb       98					50.30598 ppb	97
45) 2-Chloroethyl vinyl ether 14.98 63 167388 47.52565 ppb 98	44) Methyl Cyclohexane	14.27		389031		
	45) 2-Chloroethyl vinyl ether		63	167388	47.52565 ppb	98 

^{(#) =} qualifier out of range (m) = manual integration 0305N16S D NATUS M Fri Mar 09 10:08:34 2012

(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 : 5 Mar 12 20:24 Operator: SV,DG,RS Acq On : 120305A LCS-1SN (ss) Sample Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012

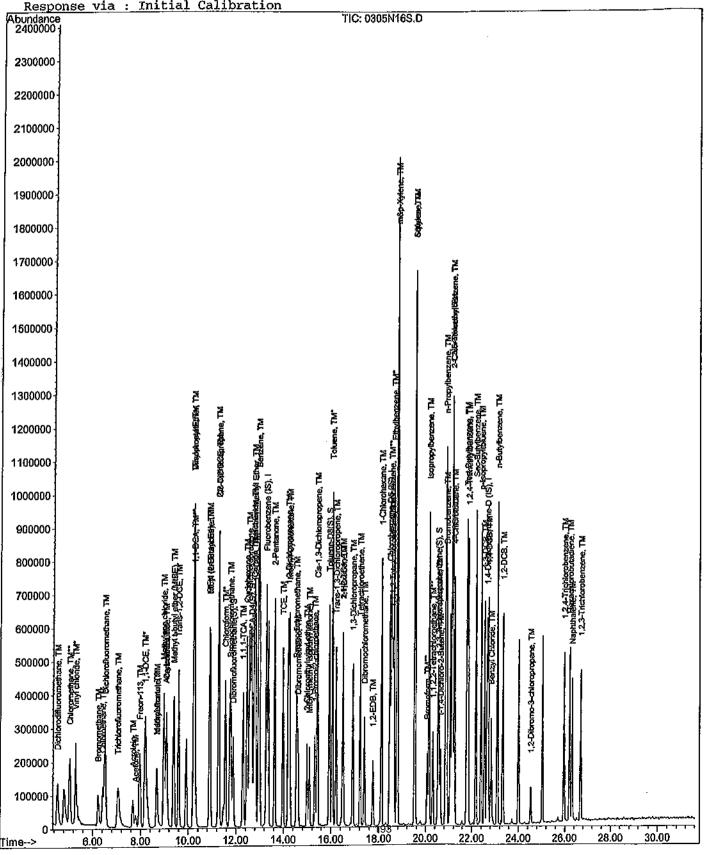
Response via : Initial Calibration

DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	e
46)	1-Bromo-2-chloroethane	15.32	63	411148	49.70315	ppb	100
47)	Cis-1,3-Dichloropropene	15.43	75	530236	51.04770	ppb	97
48)		16.06	91	1205585	53.26409		99
49)	Trans-1,3-Dichloropropene	16.21	75	438758	50.50182	ppb	96
50)	1,1,2-TCA	16.50	83	205180	52.14894		92
53)		17.76	107	229023	48.70315		92
	Tetrachloroethene	17.22	129	187966	54.58323		93
	1-Chlorohexane	18.11	91	380392	53.82433		96
	1,1,1,2-Tetrachloroethane	18.58	131	242905	50.71719		96
	m&p-Xylene	18.77	106	867143	107.27563		98
	o-Xylene	19.52	106	418565	51.63688		93
	Styrene	19.53	78	432895	50.20864		93
	2-Hexanone	16.51	43	212617	42.45705		87
	1,3-Dichloropropane	16.91	76	422181	51.48649		99
	Dibromochloromethane	17.40	129	288454	52.16976 p		95
	Chlorobenzene	18.53	112	665282	50.54590		95
	Ethylbenzene	18.64	91	1281539	53.43677		96
	Bromoform	20.06	173	166539	49.68715		98
	MIBK (methyl isobutyl keto	15.08	43	321677	44.62852		98
69)		20.15	105	1069912	52.99259		98
70)	1,1,2,2-Tetrachloroethane	20.31	83	281012	47.18320		97
	1,2,3-Trichloropropane	20.56	110	61600	48.49258		97
	t-1,4-Dichloro-2-Butene	20.63	53	85409	46.47239 )		99
	Bromobenzene	20.90	156	243621	47.28890		91
	n-Propylbenzene	20.86	91	1444105	53.64680 )		98
	2-Chlorotoluene	21.15	91	986065	53.58438		99
	1,3,5-Trimethylbenzene	21.13	105	902568	54.09371		99
	4-Chlorotoluene	21.23	91	737425	45.45423		97
78)	Tert-Butylbenzene	21.78	119	808680	51.86856		98
	1,2,4-Trimethylbenzene	21.84	105	847006	49.73673 p		98
	Sec-Buty1benzene	22.18	105	1160049	53.48817		97 100
	p-Isopropyltoluene	22.39	119	825975	49.44794 1		96
	Benzyl Chloride	22.83	91	376690	39.02749 p		96 96
83)	1,3-DCB	22.54	146	420416 410437	47.85082 p 46.19495 p		98
84)	1,4-DCB	22.71	146	897160	50.83819 p		98
85)	n-Butylbenzene	23.09	91		49.13930 r		
86)	1,2-DCB	23.33	146	395545			100 75
87)	1,2-Dibromo-3-chloropropan	24.53	155	35921 228769	51.55985 r 43.48270 r		98
	1,2,4-Trichlorobenzene	25.97	180 225	170824	54.27756 g		90 91
	Hexachlorobutadiene	26.21		501145	46.67934 p		100
90)	Naphthalene	26.31	128 180	224049	52.24692 g		96
91)	1,2,3-Trichlorobenzene	26,69	100	A44043	J ACUPA. AC	նիո	90

Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 Operator: SV,DG,RS


: 5 Mar 12 20:24 : 120305A LCS-1SN (ss) Acq On Sample ; Neo Inst : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration



Vial: 1

Data File: M:\NEO\DATA\N120305\0305N14S.D

Acq On : 5 Mar 12 19:08 Operator: SV,DG,RS : 50ug/kg Vol Std 03-05-12 Inst : Neo Sample Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Ouant Time: Mar 6 9:20 2012 Quant Results File: NALLS.RES

Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:19:39 2012

Response via : Initial Calibration DataAcq Meth : V8260

Tubarnal Chandonda	D M	OTon	Domongo	Conc Units D	ev(Min)
Internal Standards	K.T.	QIon	Response	Cone onics i	ev (MIII)
1) Fluorobenzene (IS)	13.29	96	297344	50.00000 ppb	0.00
51) Chlorobenzene-D5 (IS)			206720		0.00
67) 1,4-Dichlorobenzene-D (IS)	22.66	152	81512	50.00000 ppb	0.01
Good on Marit and an Games and An					
System Monitoring Compounds 30) Dibromofluoromethane(S)	11.88	111	211479	36.70390 ppb	0.00
Spiked Amount 41.312	11.00	<b>-</b> ++	Recove		
34) 1,2-DCA-D4(S)	12.68	65	233251	37.32211 ppb	0.00
Spiked Amount 41.649			Recove		
- ,	15.94	98	641414	35.89887 ppb	0.00
Spiked Amount 35.274			Recove		
· •	20.53	95		38.14667 ppb ry = 107.204	0.00
Spiked Amount 35.584			Recove.	ry = 107.204	ъ
Target Compounds					Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	4.54	85	309898	56.15593 ppb	87
3) Chloromethane	5.04	50	541407	55.93229 ppb	94
4) Vinyl chloride	5.29	62	126560	57.02737 ppb	97
5) Bromomethane	6.23	94	157075	49.17286 ppb	97
6) Chloroethane	6.42	64	220988	56.22756 ppb	96
7) Dichlorofluoromethane	6.51	67	690320	53.64172 ppb	99
8) Trichlorofluoromethane	7.04	101	323841	59.30296 ppb	90
9) Acrolein	7.67	56	173280	229.63779 ppb	98
10) Acetone 11) Freon-113	7.79 7.97	43 101	99077 213826	49.63087 ppb	100 92
#±, 1100H 110	8.19	96	217541	52.21340 ppb 53.84319 ppb	100
12) 1,1-DCE	8.68	43	303132	45.38328 ppb	95
14) Methyl Acetate 15) Iodomethane	8.68	142	173539	53.97285 ppb	93
16) Acrylonitrile	9.06	53	95988	47.85382 ppb	100
17) Methylene chloride	8.98	86	192407	52.27106 ppb	94
18) Carbon disulfide	9.09	76	905872	49.71727 ppb	94
19) Methyl t-butyl ether (MtBE		73	690420	47.36200 ppb	97
20) Trans-1,2-DCE	9.59	96	272807	51.97394 ppb	91
	10.22	45	1304007	48.54959 ppb	99
	10.27	63	585546	50.88154 ppb	99
,	10.23	43	1038862	48.82965 ppb	98
	10.91	59	950630	48.07565 ppb	100
· · · · · · · · · · · · · · ·	10.89		229638	47.41261 ppb	# 88
	$\frac{11.28}{11.28}$		302224 403175	51.20142 ppb 51.18750 ppb	97 95
	11.56	83	494371	48.85440 ppb	100
= · • = ·	11.79	128	102888	49.98748 ppb	94
	12.30	97	391858	53.77953 ppb	95
	12.46	56	449523	53.71039 ppb	99
	12.56	75	373010	53.38584 ppb	97
	12.76	117	305489	57.42247 ppb	98
	12.79	73	765918	49.19772 ppb	98
37) 1,2-DCA	12.83	62	372713	49.31099 ppb	98
38) Benzene	12.96	78	1116456	50.16626 ppb	96
	13.98	95	265435	52.00434 ppb	94
	13.63	43	1280399	239.32853 ppb	99
, , , , , , , , , , , , , , , , , , , ,	14.21	63	333114	50.08860 ppb	99
	14.55	83	383448	49.71921 ppb	99 06
	14.62	93 83	167734 359552	47.50320 ppb 55.13670 ppb	96 . 89
44) Methyl Cyclohexane 45) 2-Chloroethyl vinyl ether	14.20 14 98	63	359552 162674	49.94505 ppb	95
45) 2-Chrotoethyr vanyr echer			194		

^{(#) =} qualifier out of range (m) = manual integration 0305N14S.D NALLS.M Fri Mar 09 10:08:32 2012

(Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N14S.D

Vial: 1 : 5 Mar 12 19:08 : 50ug/kg Vol Std 03-05-12 Operator: SV,DG,RS Inst : Neo Aca On Sample : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00 Misc

Quant Time: Mar 6 9:20 2012 Quant Results File: NALLS.RES

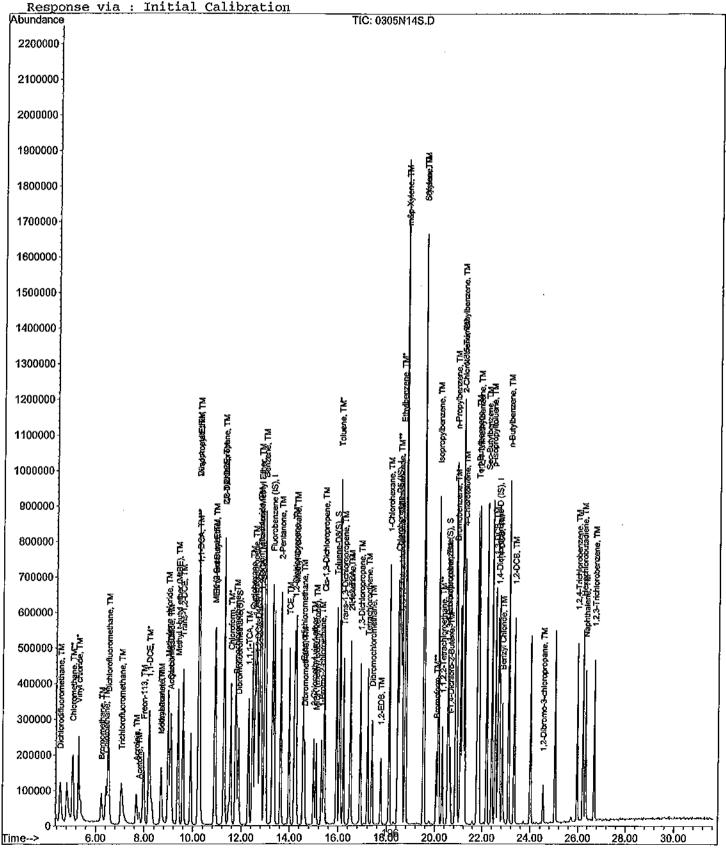
Quant Method: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

: METHOD 8260B Title

Last Update: Tue Mar 06 09:19:39 2012 Response via: Initial Calibration DataAcq Meth: V8260

C	ompound	R.T.	QIon	Response	Conc Unit	Qval	ue
46) 1	-Bromo-2-chloroethane	15.32	63	375229	49.02224	daa	97
	is-1,3-Dichloropropene	15.43	75	471465	49.05321		96
	oluene	16.07	91	1118543	53.40727		96
49) T	rans-1,3-Dichloropropene	16.22	75	396003	49.25966		97
50) 1,	,1,2-TCA	16.50	83	183305	, 50.34957		98
53) 1,	, 2-EDB	17.76	107	215600	46,44484	ppb #	91
54) Te	etrachloro <b>ethene</b>	17.22	129	163331	48.04623		98
	-Chlorohexane	18.11	91	352290	50.49616	ppb	96
56) 1,	,1,1,2-Tetrachloroethane	18.59	131	228867	48.40750	ppb	87
	&p-Xylene	18.77	106	809260	101.41663		99
	-Xylene	19.52	106	404123	50.50350		94
	tyrene	19.54	78	427062	50.17618		96
	-Hexanone	16.52	43	217171	43.93033		94
	,3-Dichloropropane	16.91	76	376540	46.51752		95
	ibromochloromethane	17.39	129	259926	47.62146		99
	nlorobenzene	18.53	112	642119	49.42042		98
	thylbenzene	18.63	91	1221035	51.57596		96
	romoform	20.07	173	163300	49.35431		94
	IBK (methyl isobutyl keto	15.09	43	313917	46.74918		96
	sopropylbenzene	20.15	105	1021182	54.29213		99
	1,2,2-Tetrachloroethane	20.31	83	273670	49.32378		95
	2,3-Trichloropropane	20.56	110	58806	49.70088	ppb	81
	-1,4-Dichloro-2-Butene	20.63	53	84570	49.39402		91
	comobenzene	20.90	156	245181	51.08554	ppp	91
	-Propylbenzene	20.86	91	1337504	53.33433		100
	-Chlorotoluene	21.16 21.13	91 105	890930 805914	51.96882 51.84683		95 100
	3,5-Trimethylbenzene	21.13	91	744504	49.25951	ppb	96
	-Chlorotoluene ert-Butylbenzene	21.78	119	782210	53.85394	ppb	97
	2,4-Trimethylbenzene	21.76	105	836613	52.73294	ըրը որի	97
	ec-Butylbenzene	22.18	105	1108668	54.87184	nnh	99
	·Isopropyltoluene	22.39	119	836445	53.75085	nnh	97
	enzyl Chloride	22.83	91	401113	44.60874		96
83) 1,		22.54	146	417245	50.97626	ppb	95
84) 1,		22.71	146	388005	46.87616		98
	Butylbenzene	23.09	91	885526	53.86271		100
86) 1,		23.33	146	383200	51.10051	daa	96
	2-Dibromo-3-chloropropan	24.54	155	35327	54.42978	daa	83
	2,4-Trichlorobenzene	25.97	180	237319	48.41930		97
	exachlorobutadiene	26.21	225	162398	55.38839		90
	phthalene	26.32	128	495426	49.53438		97
	2,3-Trichlorobenzene	26.68	180	216798	54.32051		98

Data File: M:\NEO\DATA\N120305\0305N14S.D


Vial: 1 5 Mar 12 19:08 Acq On Operator: SV,DG,RS Sample : 50ug/kg Vol Std 03-05-12 : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

6 9:20 2012 Ouant Time: Mar Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Last Update : Tue Mar 06 09:31:20 2012



## EPA METHOD 8260B Volatile Organic Compounds Raw Data



Quantitation Report (QT Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0302S06W.D

Vial: 7 Acq On : 2 Mar 12 12:58 Operator: DG, SV, RS Sample : 120302A BLK-1WS

Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:02 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Mon Mar 05 11:31:09 2012
Response via : Initial Calibration

DataAcq Meth : V8260

Internal Standards	R.T.				ev(Min)
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	9.75 14.79 18.88	96 117 152	267712 191040 99384	25.00000 ppb 25.00000 ppb 25.00000 ppb	0.00 -0.02 0.00
System Monitoring Compounds 31) Dibromofluoromethane(S) Spiked Amount 20.857	8.38	111	163826 Recove	20.34840 ppb ry = 97.558	~0.02
36) 1,2-DCA-D4(S) Spiked Amount 20,981	9.16	65	113359	20.39010 ppb ry = 97.1839	-0.02
56) Toluene-D8(S) Spiked Amount 21.584	12.34	98	576918 Recove	21.22446 ppb ry = $98.3338$	0.00
64) 4-Bromofluorobenzene(S) Spiked Amount 21.472	16.84	95	182189 Recove	20.29801 ppb	0.00

Target Compounds

Qvalue

Data File : M:\SWEETPEA\DATA\S120229\0302S06W.D

: 2 Mar 12 12:58

Vial: 7

Acq On Sample : 120302A BLK-1WS

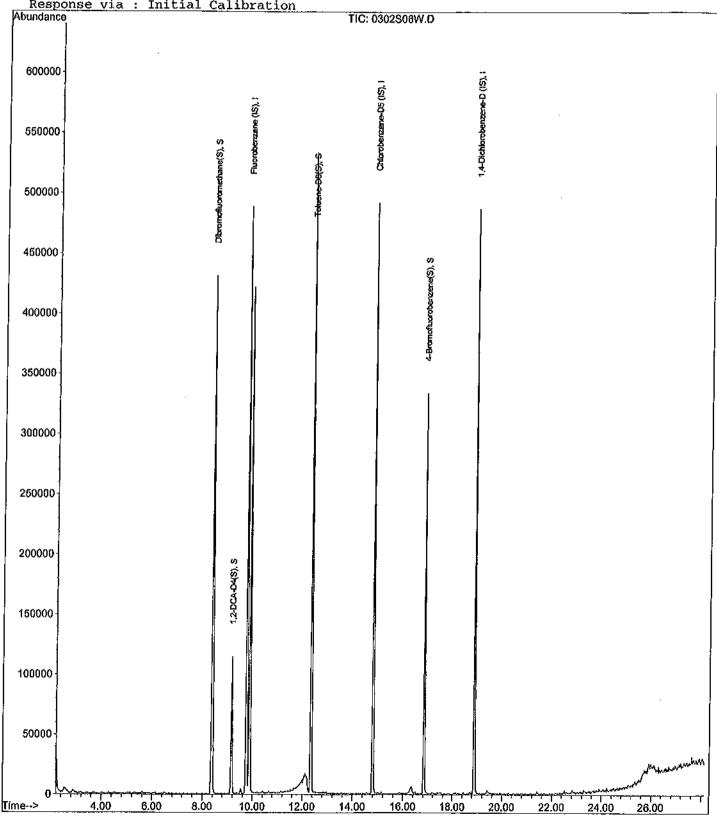
Operator: DG, SV, RS Inst : Sweetpea

: Water 10mL w/IS:02-17-12

Multiplr: 1.00

Quant Time: Mar 7 8:02 2012

Quant Results File: SALLRW.RES


Method

: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012

Response via : Initial Calibration



(QT Reviewed)

Data File : M:\NEO\DATA\N120305\0305N19S.D

Vial: 1 Acq On : 5 Mar 12 22:19 Operator: SV, DG, RS : 120305A BLK-1SN Sample Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Quant Time: Mar 6 10:06 2012 Ouant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)
Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

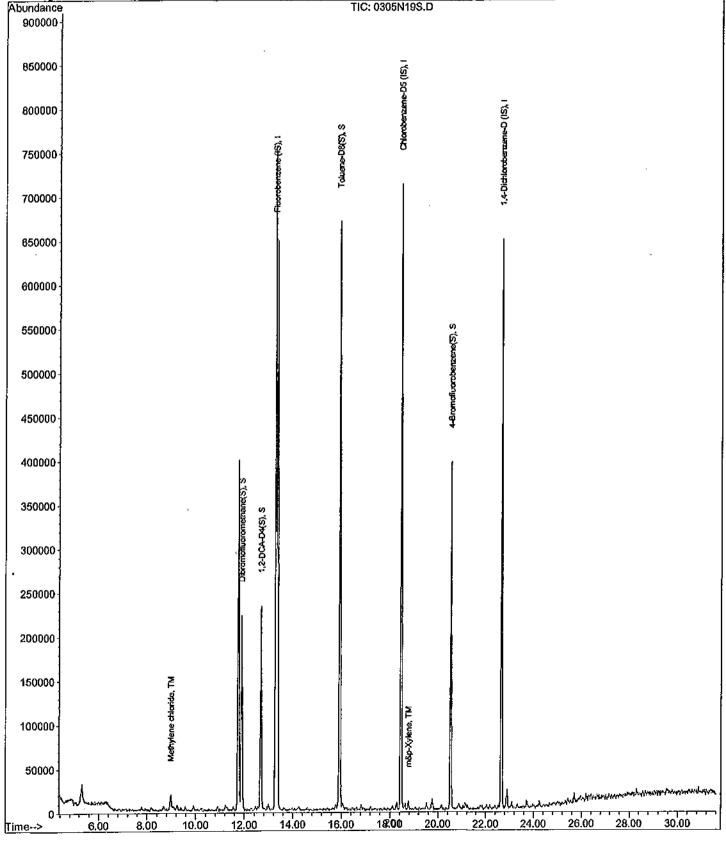
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
1) Fluorobenzene (IS) 51) Chlorobenzene-D5 (IS)			326784			
67) 1,4-Dichlorobenzene-D (IS)		117 152	216448 97616	50.00000 ppb 50.00000 ppb		
System Monitoring Compounds						
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.88	111		37.64536  ppb $rv = 91.12.$		
34) 1,2-DCA-D4(S) Spiked Amount 41.649	12.68	65	260844	37.97711 ppb	0.00	
52) Toluene-D8(S)	15.93	98	707482	ry = 91.18 37.81696_ppb	0.00	
Spiked Amount 35.274 60) 4-Bromofluorobenzene(S)	20.52	95		xy = 107.20 36.78762 ppb		
Spiked Amount 35.584			Recove			
Target Compounds					Qvalue	ساس
17) Methylene chloride 57) m&p-Xylene	8.98 18.77	86 106	9258 3656	1.49648 ppb 0.43758 ppb		LRL WAR
311 map Aylone	10.77	100	2020	0.40730 ppn	, 13	rllpk cutt

Data File : M:\NEO\DATA\N120305\0305N19S.D

6 10:06 2012

Vial: 1 : 5 Mar 12 22:19 Operator: SV,DG,RS Acq On Sample : 120305A BLK-1SN Inst : Neo Multiplr: 1.00

Misc : Soil 5mL w/IS&S:10-20-11


Quant Results File: NALLS.RES

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

: METHOD 8260B Title

Quant Time: Mar

Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration



Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 : 5 Mar 12 20:24 Operator: SV,DG,RS Acq On : 120305A LCS-1SN (ss) Sample Inst : Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

Ouant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B
Last Update : Tue Mar 06 09:31:20 2012
Response via : Initial Calibration
DataAcq Meth : V8260

Internal Standards	D. m	OTon	Bognanga	Conc Units	Dev(Min)
Incernal Standards		QIon	Response		Dev (MIII)
<ol> <li>Fluorobenzene (IS)</li> </ol>	13.29	96		50.00000 pp	
51) Chlorobenzene-D5 (IS)	18.46	117		50.00000 pp	
67) 1,4-Dichlorobenzene-D (IS)	22.65	152	87496	50.00000 pp	b 0.00
Good or Vordenston Common As					
System Monitoring Compounds	11 00	111	224224	26 01102	
30) Dibromofluoromethane(S) Spiked Amount 41.312	11.88	111	224234	36.01102 pp rv = 87.1	
34) 1,2-DCA-D4(S)	12.67	65	Recove 245270	36.31417  pp	
Spiked Amount 41.649	12.07	0.5	Recove		
52) Toluene-D8(S)	15.93	98	675554	37.32430 pp	
Spiked Amount 35.274			Recove		
60) 4-Bromofluorobenzene(S)	20.53	95	230123	35.79651 pp	
Spiked Amount 35.584	1 126912	XSD	Recove	ry = 100.6	
2/	7121111	0 21	32 = 52.91	i _	
					Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	4.54	85	335455	56.24657 pp	
3) Chloromethane	5.05	50	589631	56.38814 pp	
4) Vinyl chloride	5.29		¥ 126912	52.91497 pp	
5) Bromomethane	6.21	94	186170	53.74456 pp	
6) Chloroethane	6.42	64	248444	58.49311 pp	
7) Dichlorofluoromethane	6.51	67	766843	55.13758 pp	
8) Trichlorofluoromethane	7.05	101	340253	57.66144 pp	
9) Acrolein	7.67	56	175240	214.89046 pp	
10) Acetone	7.79	43	103272	47,43526 pp	
11) Freon-113	$7.97 \\ 8.19$	101 96	243228 245234	54.86887 pp. 56.16417 pp.	
12) 1,1-DCE	8.68	43	324525	44.85377 pp	
14) Methyl Acetate 15) Iodomethane	8.69	142	203038	58.35031 ppl	
16) Acrylonitrile	9.06	53	97677	45.05894 pp	
17) Methylene chloride	8.97	86	208087	52.30935 ppl	
18) Carbon disulfide	9.08	76	983525	49.94762 ppl	
19) Methyl t-butyl ether (MtBE		73	742651	47.14009 ppl	
20) Trans-1,2-DCE	9.59	96	305791	53.90683 ppl	
21) Diisopropyl Ether	10.22	45	1474089	50.78299 ppl	
22) 1,1-DCA	10.27	63	658936	52.98238 ppl	
23) Viny1 Acetate	10.22	43	1115657	48.52275 ppl	97
24) Ethyl tert Butyl Ether	10.91	59	1066830	49.92267 ppl	95
25) MEK (2-Butanone)	10.90	43	257024	49.24362 ppl	
26) Cis-1,2-DCE	11.28	96	344420	53.99212 ppl	97
27) 2,2-Dichloropropane	11.27		454070	53.34357 ppl	100
28) Chloroform	11.56	83	568244	51.96064 ppl	97
29) Bromochloromethane	11.79		104068	46.78457 ppl	92
31) 1,1,1-TCA	12.30	97	459913	58.40539 ppl	93
32) Cyclohexane	12.46 12.56	5 <b>6</b> 75	515446 418844	56.98736 ppk 55.46856 ppk	97
33) 1,1-Dichloropropene 35) Carbon Tetrachloride	12.76		346583	57.80661 ppl	
36) Tert Amyl Methyl Ether	12.79	73	816710	48.54221 ppl	96
37) 1,2-DCA	12.83	62	401913	49.20284 ppk	99
38) Benzene	12.96	78	1242802	51.67268 pph	
39) TCE	13.98	95	294836	53.45039 pph	92
40) 2-Pentanone	13.63	43	1296770	224.28545 pph	100
41) 1,2-Dichloropropane	14.20	63	373089	51.90957 pph	100
42) Bromodichloromethane	14.55			52.27935 ppb	97
43) Dibromomethane	14.61	93	435736 191968	50.30598 pph	
44) Methyl Cyclohexane	14.27	83	389031	55.19992 pph	92
45) 2-Chloroethyl vinyl ether	14.98	63	167288 202	47.52565 ppb	98

#### Quantitation Report (Not Reviewed)

Data File: M:\NEO\DATA\N120305\0305N16S.D

Vial: 1 Acq On : 5 Mar 12 20:24 Operator: SV,DG,RS Acq On : 5 Mar 12 20:24
Sample : 120305A LCS-1SN (ss) Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 1.00

Ouant Time: Mar 6 9:32 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
461	1-Bromo-2-chloroethane	15.32	63	411148	49.70315	daa	100
	Cis-1,3-Dichloropropene	15.43	75	530236	51.04770		97
	Toluene	16.06		1205585	53.26409		99
	Trans-1,3-Dichloropropene	16.21	75	438758	50.50182		96
50)	1,1,2-TCA	16.50	83	205180	52.14894		92
	1,2-EDB	17.76	107	229023	48,70315		92
	Tetrachloroethene	17.22	129	187966	54.58323		93
	1-Chlorohexane	18.11	91	380392	53.82433		96
	1,1,1,2-Tetrachloroethane	18.58	131	242905	50.71719	ppb	96
	m&p-Xylene	18.77	106	867143	107.27563		98
58)	o-Xylene	19.52	106	418565	51.63688		93
59)	Styrene	19.53	78	432895	50.20864		93
61)	2-Hexanone	16.51	43	212617	42.45705		87
62)	1,3-Dichloropropane	16.91	76	422181	51.48649		99
63)	Dibromochloromethane	17.40	129	288454	52.16976		95
64)	Chlorobenzene	18.53	112	665282	50.54590		95
65)	Ethylbenzene	18.64	91	1281539	53.43677		96
66)	Bromoform	20.06	173	166539	49.68715		98
68)	MIBK (methyl isobutyl keto	15.08	43	321677	44.62852		98
69)	Isopropylbenzene	20.15	105	1069912	52.99259	ppb	98
70)	1,1,2,2-Tetrachloroethane	20.31	83	2 <b>81012</b>	47.18320		97
71)	1,2,3-Trichloropropane	20.56	110	61600	48.49258		97
72)	t-1,4-Dichloro-2-Butene	20.63	53	85409	46.47239		99
73)	Bromobenzene	20.90	156	243621	47.28890		91
	n-Propylbenzene	20.86	91	1444105	53.64680	ppb	98
	2-Chlorotoluene	21.15	91	986065	53.58438		99
	1,3,5-Trimethylbenzene	21.13	105	902568	54.09371		99
	4-Chlorotoluene	21.23	91	737425	45.45423		97
	Tert-Butylbenzene	21.78	119	808680	51.86856		98
	1,2,4-Trimethylbenzene	21.84	105	847006	49.73673		98
	Sec-Butylbenzene	22.18	105	1160049	53.48817		97
	p-Isopropyltoluene	22.39	119	825975	49.44794		100
	<del>-</del>	22.83	91	376690	39.02749	agg	96
	1,3-DCB	22.54	146	420416	47.85082	agg	96
	1,4-DCB	22.71	146	410437	46.19495		98
		23.09	91	897160	50.83819	ppo	98 100
	1,2-DCB	23.33	146	395545	49.13930	ppp	
	1,2-Dibromo-3-chloropropan	24.53	155	35921	51.55985	ppo	75 98
	1,2,4-Trichlorobenzene	25.97	180	228769	43.48270 54.27756		98 91
	Hexachlorobutadiene	26.21	225	170824			100
	Naphthalene	26.31	128	501145 224049	46.67934 52.24692		96
91)	1,2,3-Trichlorobenzene	26.69	180	ZZ4043	26.24032	րիո	90

Data File: M:\NEO\DATA\N120305\0305N16S.D

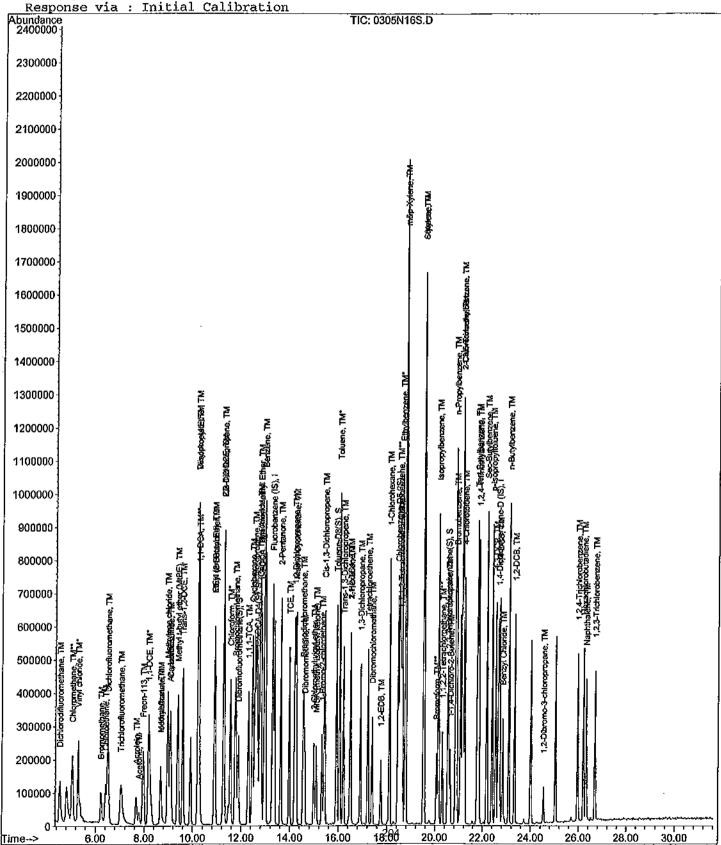
5 Mar 12 20:24

Operator: SV,DG,RS : 120305A LCS-1SN (ss) : Neo : Soil 5mL w/IS&S:10-20-11 Multiplr: 1.00

6 9:32 2012 Ouant Time: Mar

Quant Results File: NALLS.RES

Vial: 1


: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

Title : METHOD 8260B

Acq On Sample

Misc

Last Update : Tue Mar 06 09:31:20 2012



Data File : M:\SWEETPEA\DATA\S120229\0302S03W.D

Vial: 3 Acq On : 2 Mar 12 11:07 Operator: DG, SV, RS Sample : 120302A LCS-1WS Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 9:04 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260
Last Update : Wed Mar 07 09:02:48 2012
Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) Fluorobenzene (IS)	9.75	96	274816	25.00000 ppb	-0.01
55) Chlorobenzene-D5 (IS)	14.78	117	200768	25.00000 ppb	-0.02
70) 1,4-Dichlorobenzene-D (IS)	18.87	152	200768 101808	25.00000 ppb	-0.01
and the second					
System Monitoring Compounds	0.25		4.5.4804	40.00404	
31) Dibromofluoromethane(S) Spiked Amount 20.857	8.37	111	164731		-0.02
36) 1,2-DCA-D4(S)	9.15	65	Recove 113582		0 02
Spiked Amount 20.981	5,15	0.5	Recove		-0.02
56) Toluene-D8(S)	12.34	98	591204		-0.01
Spiked Amount 21.584			Recove	ery = 95.887%	
64) 4-Bromofluorobenzene(S)		_95		20.38703 ppb	-0,01
Spiked Amount 21.472 🚜 30	6552 X	25	Recove	ery = 94.947%	
Target Compounds 274	8/6 X 0 2.45	4002	Recove = 9.30868	0	. 1
2) Dichlorodifluoromethane	2.45		40696		alue 95
3) Freon 114	2.60	85	74246	10.76379 ppb	95
<ul> <li>2) Dichlorodifluoromethane</li> <li>3) Freon 114</li> <li>4) Chloromethane</li> <li>5) Vinyl chloride</li> <li>6) Bromomethane</li> <li>7) Chloroethane</li> <li>8) Dichlorofluoromethane</li> </ul>	2.73	50	74246 45040	8.05834 ppb	94
<ol><li>Vinyl chloride</li></ol>	2.88	62		8.30859 ppb	96
6) Bromomethane	3,44	94	21944	9.79600 ppb	97
7) Chloroethane	3.56	64	67271		90
01 - 1 1 1 7 7			206867	11.62427 ppb	97
9) Trichlorofluoromethane	4.02 4.50	101	115947 16984	10.08701 ppb	98
11) Acetone	4.62	56	16984	131.33787 ppb 12.53202 ppb	90
12) Freon-113	4.77	101	2556 74989 89598	10.71065 ppb	93 93
13) 1,1-DCE	4.93	96	89598	11.20166 ppb	92
9) Trichlorofluoromethane 10) Acrolein 11) Acetone 12) Freon-113 13) 1,1-DCE 14) t-Butanol 15) Methyl Acetate 16) Iodomethane	5.04	59	6703	137.04999 ppb	95
15) Methyl Acetate	5.41	43	6703 28012	9.45118 ppb	88
16) Iodomethane	5.32	142		10.63028 ppb	95
1/) Acrytonitrile	5.73	53	12537	11.90656 ppb	96
18) Methylene chloride 19) Carbon disulfide	5.63 5.64	84	97638 89664	11.46799 ppb	97 0.6
20) Methyl t-butyl ether (MtBE	6.02	73	126469	11.13878 ppb 10.41812 ppb	96 95
21) Trans-1,2-DCE	6.19	96	102985	10.41612 ppb	97
22) Diisopropyl Ether	6.84	45	285133	10.73847 ppb	95
23) 1,1-DCA	6,82	63	175654	10.69626 ppb	98
24) Vinyl Acetate	6.86	43	142866	11.41840 ppb	98
25) Ethyl tert Butyl Ether 26) MEK (2-Butanone)	7.51	59		10.87877 ppb	93
27) Cis-1,2-DCE	7.48	4.3	26784 109029	10.33200 ppb	93
28) 2,2-Dichloropropane	7.79	77	131961	11.18648 ppb 11.80884 ppb	95 98
29) Chloroform	8.05	83	155215	9.97364 ppb	99
30) Bromochloromethane	8,27	128	33594	11.42443 ppb	94
32) 1,1,1-TCA	8.76	97	133063	10.84446 ppb	91
33) Cyclohexane	8.89	56	150454	11.39514 ppb	98
34) 1,1-Dichloropropene	9.03	75	130300	11,15374 ppb	96
35) 2,2,4-Trimethylpentane 37) Carbon Tetrachloride	9.12	57	247351	11.03799 ppb	100
38) Tert Amyl Methyl Ether	9.18 9.31	117 73	107496 158250	11.28415 ppb 10.56714 ppb #	96 06
39) 1,2-DCA	9.30	62	73205	10.56714 ppb # 10.23835 ppb	96 94
40) Benzene	9.38	78	415484	10.23635 ppb 10.63290 ppb	94 97
41) TCE	10.41	95	93767	10.08123 ppb	96
42) 2-Pentanone	10.16	43	288268	128.51785 ppb	99

^{(#) =} qualifier out of range (m) = manual integration 0302S03W.D SALLRW.M Wed Mar 07 09:06:01 2012

#### Quantitation Report (Not Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0302S03W.D Vial: 3

Acq On : 2 Mar 12 11:07 Operator: DG, SV, RS Sample : 120302A LCS-1WS Inst : Sweetpea Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 9:04 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260 Last Update : Wed Mar 07 09:02:48 2012

Response via : Initial Calibration

DataAcq Meth: V8260

Compound	R.T.	QIon	Response	Conc Unit Q	value	е
43) 1,2-Dichloropropane	10.63	63	87230	10.53333 ppb	#	94
44) Bromodichloromethane	10.97		103601	10.66784 ppb		94
45) Methyl Cyclohexane	10.66	83	128815	10.80642 ppb		97
46) Dibromomethane	11.01	93	35806	10.14848 ppb		79
47) 2-Chloroethyl vinyl ether	11.72	106	914	11.09131 ppb		32
48) MIBK (methyl isobutyl ket		43	28924	9.46844 ppb		96
49) 1-Bromo-2-chloroethane	11.71	63	82094	10.87337 ppb		98
50) Cis-1,3~Dichloropropene	11.88	75	129258	10.62451 ppb		99
51) Toluene	12.46	91	374140	10.67999 ppb		99
52) Trans-1,3-Dichloropropene	12.68	75	89204	11.38537 ppb		99
53) 1,1,2-TCA	12.93	83	42205	10.18007 ppb		92
54) 2-Hexanone 57) 1,2-EDB	13.03 14.07	43	18704	11.12980 ppb		74
58) Tetrachloroethene	13.57	107 166	46810	10.00104 ppb	#	80
59) 1-Chlorohexane	14.56	91	103728 133665	10.57021 ppb		93 99
60) 1,1,1,2-Tetrachloroethane	14.93	131	79504	11.06949 ppb 10.75918 ppb		
61) m&p-Xylene	15.14	106	340490	21.54541 ppb		88 100
62) o-Xylene	15.85	106	163768	10.72985 ppb		93
63) Styrene	15.88	104	256785	10.52149 ppb		98
65) 1,3-Dichloropropane	13,34	76	85124	10.69247 ppb		95
66) Dibromochloromethane	13.73	129	65659	10.82765 ppb		95
67) Chlorobenzene	14.85	112	238875	10.65889 ppb		99
68) Ethylbenzene	14.99	91	423160	10.77088 ppb		93
69) Bromoform	16.31	173	35339	10.70643 ppb		99
71) Isopropylbenzene	16.50	105	384273	11.05514 ppb		97
72) 1,1,2,2-Tetrachloroethane	16.66	85	30586	10.84453 ppb		96
73) 1,2,3-Trichloropropane	16.91	110	10602	10.42813 ppb		87
74) t-1,4-Dichloro-2-Butene	17.01	53	3475	10.22029 ppb		89
75) Bromobenzene	17.13	156	97228	10.45248 ppb		94
76) n-Propylbenzene	17.18	91	472790	10.77793 ppb		99
77) 4-Ethyltoluene	17.38	105	254979	10.41448 ppb		99
78) 2-Chlorotoluene	17.42	91	307402	10.41037 ppb		98
79) 1,3,5-Trimethylbenzene	17.46	105	298440	10.19733 ppb		90
80) 4-Chlorotoluene 81) Tert-Butylbenzene	17.51 18.07	91	265149	10.55341 ppb		98
82) 1,2,4-Trimethylbenzene	18.12	119 105	32422 <b>9</b> 299199	10.53240 ppb		97
83) Sec-Butylbenzene	18.45	105	420295	10.41386 ppb 10.50012 ppb		95 98
84) p-Isopropyltoluene	18.69	119	341320	10.55012 ppb 10.55419 ppb		94
85) Benzyl Chloride	19.08	91	30984	11.01574 ppb		96
86) 1,3-DCB	18.75	146	184676	10.73835 ppb		98
87) 1,4-DCB	18.93	146	174752	10.33081 ppb		96
88) n-Butylbenzene	19.40	91	294015	10.74841 ppb		93
89) 1,2-DCB	19.55	146	152208	10.75897 ppb		94
90) Hexachloroethane	20.22	117	80184	10.79968 ppb		9ô
91) 1,2-Dibromo-3-chloropropan		157	8209	10.69887 ppb	#	77
92) 1,2,4-Trichlorobenzene	22.49	180	93431	11.09569 ppb		98
93) Hexachlorobutadiene	22.82	225	23736	10.81724 ppb		88
94) Naphthalene	22.86	128	48488	9.26706 ppb		100
95) 1,2,3-Trichlorobenzene	23.29	180	76846	10.45460 ppb		95

^{(#) =} qualifier out of range (m) = manual integration 0302S03W.D SALLRW.M Wed Mar 07 09:06:02 2012

Data File : M:\SWEETPEA\DATA\S120229\0302S03W.D

: 2 Mar 12 11:07

Vial: 3

Acq On Sample

Operator: DG, SV, RS Inst : Sweetpea

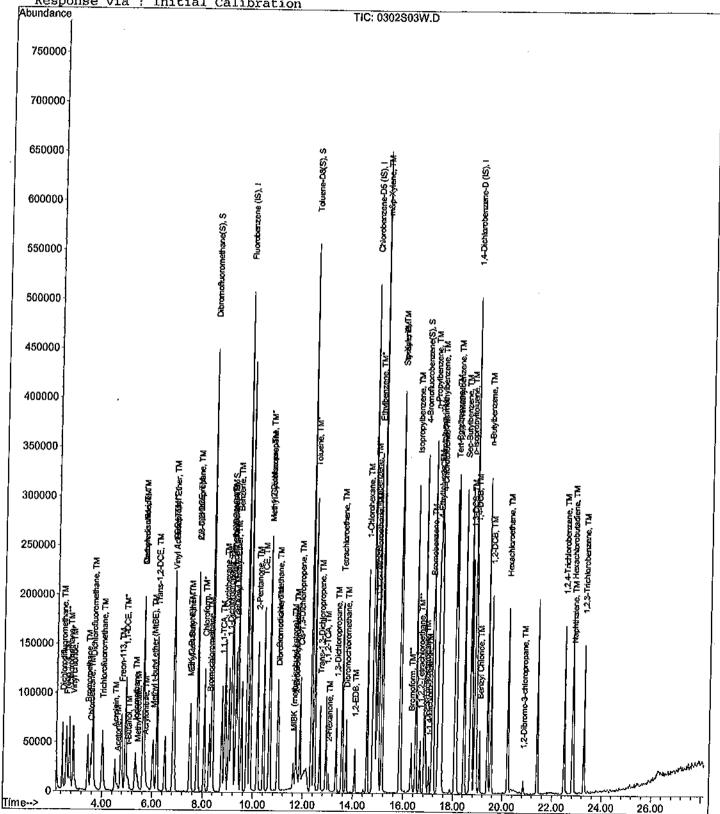
: 120302A LCS-1WS : Water 10mL w/IS:02-17-12 Misc

Multiplr: 1.00

Quant Time: Mar 7 9:04 2012

Quant Results File: SALLRW.RES

Method


: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title

: METHOD 8260

Last Update : Wed Mar 07 09:02:48 2012

Response via : Initial Calibration



#### Quantitation Report (QT Reviewed)

Data File : M:\SWEETPEA\DATA\S120229\0302S07W.D
Acq On : 2 Mar 12 13:35
Sample : AY56026W02 Vial: 8 Operator: DG, SV, RS Inst : Sweetpea : Water 10mL w/IS:02-17-12 Misc Multiplr: 1.00

Quant Time: Mar 7 8:04 2012 Quant Results File: SALLRW.RES

Quant Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012 Response via : Initial Calibration

DataAcq Meth: V8260

Internal Standards	R.T.	QIon	Response	Conc Units Dev	/(Min)
1) Fluorobenzene (IS) 55) Chlorobenzene-D5 (IS) 70) 1,4-Dichlorobenzene-D (IS)	9.75 14.79 18.88	96 117 152	269120 196672 94960	25.00000 ppb 25.00000 ppb 25.00000 ppb	-0.01 -0.01 0.00
System Monitoring Compounds 31) Dibromofluoromethane(S) Spiked Amount 20.857	8.38	111	161868 Recove	20.00001 ppb rv = 95.890%	-0.01
36) 1,2-DCA-D4(S) Spiked Amount 20.981	9.15	65		20.53608 ppb	-0.02
56) Toluene-D8(S) Spiked Amount 21.584	12.34	98	580584 Recove	20.74767 ppb ry = 96.128%	-0.01
64) 4-Bromofluorobenzene(S) Spiked Amount 21.472	16.83	95	188076 Recove	20.35385 ppb ry = 94.793%	-0.01

Target Compounds

Qvalue

Data File : M:\SWEETPEA\DATA\S120229\0302S07W.D

: 2 Mar 12 13:35

Vial: 8

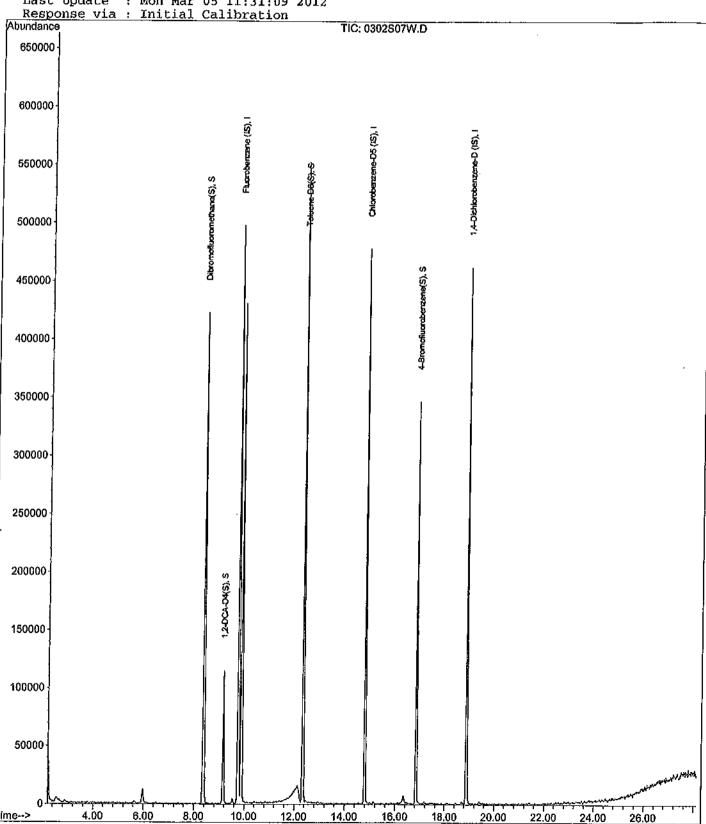
Acq On Sample

: AY56026W02

Operator: DG, SV, RS Inst : Sweetpea

Misc : Water 10mL w/IS:02-17-12 Multiplr: 1.00

Quant Time: Mar 7 8:04 2012


Quant Results File: SALLRW.RES

Method

: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

Title : METHOD 8260

Last Update : Mon Mar 05 11:31:09 2012



(QT KeViewed)

Data File: M:\NEO\DATA\N120305\0305N20S.D

Vial: 1 Acq On : 5 Mar 12 22:57 Sample : AY56027S01 5.039 Operator: SV,DG,RS Inst : Neo : Soil 5mL w/IS&S:10-20-11 Misc Multiplr: 0.99

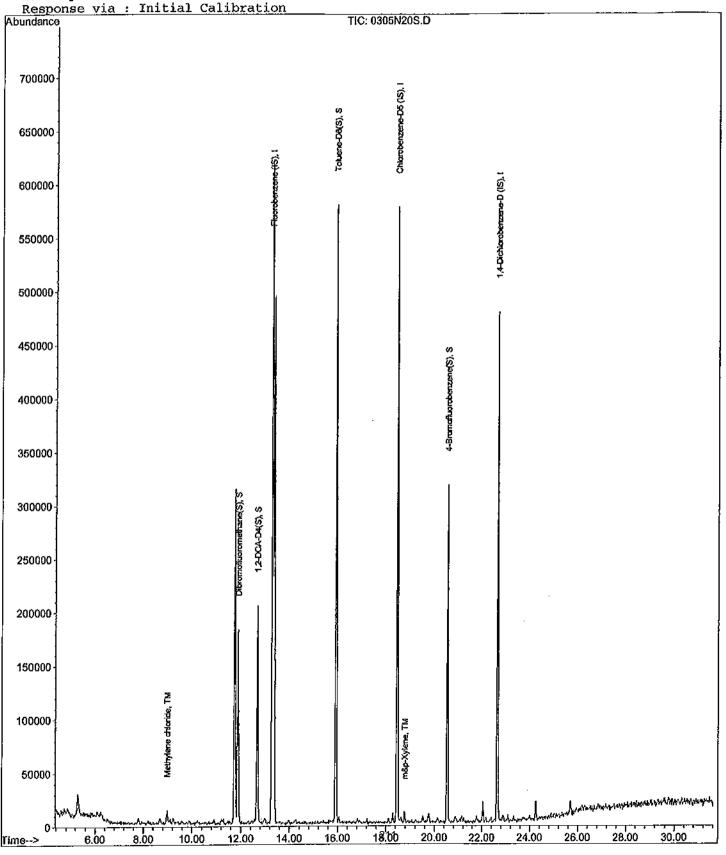
Quant Time: Mar 6 10:17 2012 Quant Results File: NALLS.RES

Quant Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B Last Update : Tue Mar 06 09:31:20 2012 Response via : Initial Calibration DataAcq Meth : V8260

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) Fluorobenzene (IS) 51) Chlorobenzene-D5 (IS) 67) 1,4-Dichlorobenzene-D (IS)	13.28 18.46 22.64	117	263104 180416 68280	50.00000 ppb 50.00000 ppb 50.00000 ppb	0.00 0.00 0.00
System Monitoring Compounds 30) Dibromofluoromethane(S)	11.89	111		38.92454 ppb	0.00
Spiked Amount 41.312 34) 1,2-DCA-D4(S) Spiked Amount 41.649	12.67	65	Recove	¹ 40.68929 ppb ry = 97.696%	0.00
52) Toluene-D8(S) Spiked Amount 35.274	15.93	98	598272 Recove	38.36617 ppb xy = 108.765%	0.00
60) 4-Bromofluorobenzene(S) Spiked Amount 35.584	20.53	95	188209 Recove	33.94809 ppb ry = 95.404%	0.00
Target Compounds	0.05	0.5	584.4		value
17) Methylene chloride 57) m&p-Xylene	8.97 18.79	86 106	5714 4765	0.94644 ppb 0.67892 ppb	# / 49 # / 42
					Hw Glalro

Data File: M:\NEO\DATA\N120305\0305N20S.D


Vial: 1 5 Mar 12 22:57 Operator: SV, DG, RS Acq On : : AY56027S01 5.039 Sample Inst ; Neo Misc : Soil 5mL w/IS&S:10-20-11 Multiplr: 0.99

6 10:17 2012 Quant Results File: NALLS.RES Ouant Time: Mar

: M:\NEO\DATA\N120305\NALLS.M (RTE Integrator) Method

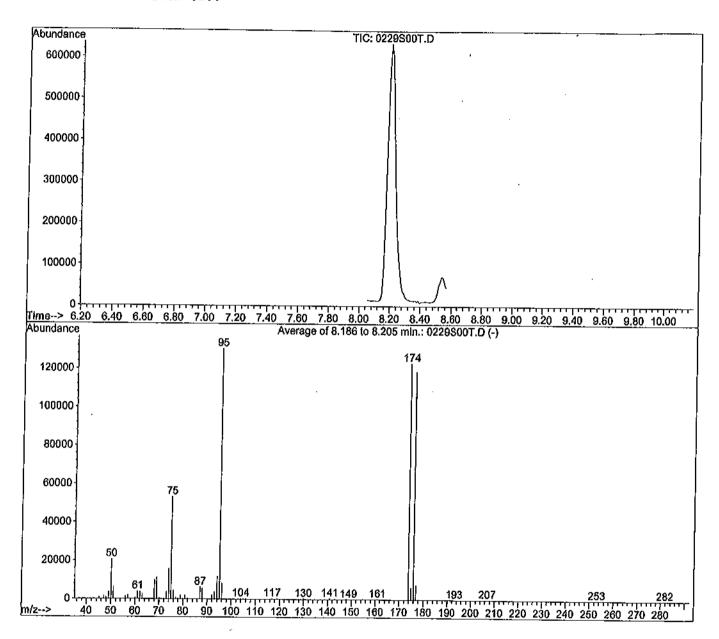
: METHOD 8260B Title

Last Update : Tue Mar 06 09:31:20 2012



Vial: 1

Data File : M:\SWEETPEA\DATA\S120229\0229S00T.D Acq On : 29 Feb 12 16:31


Sample

Operator: DG, SV, RS : 25ug/mL BFB Std 11-16-11 : Sweetpea : 2uL Multiplr: 1.00

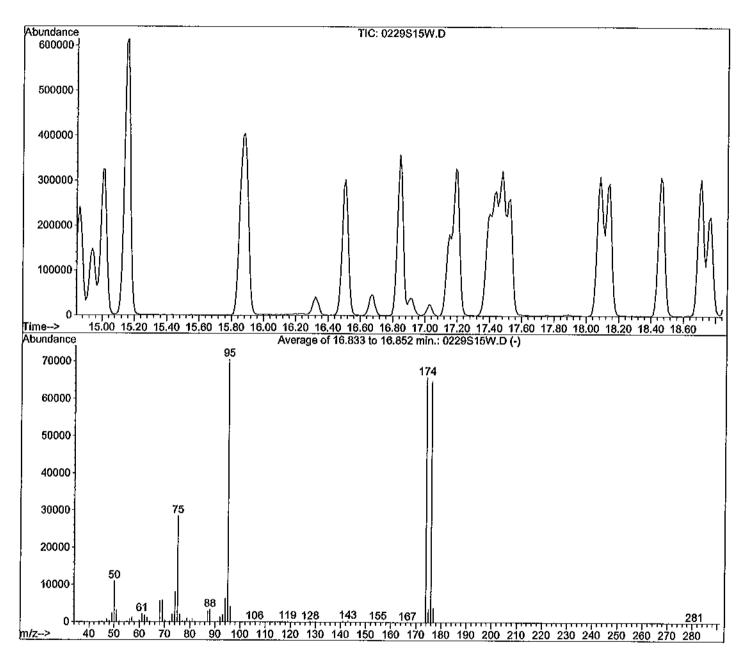
: M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator) Method

Title : METHOD 8260

Misc



Spectrum Information: Average of 8.186 to 8.205 min.


Target	Rel. to	Lower	Upper	Rel.	Raw	Result   Pass/Fail
Mass	Mass	Limit%	Limit%	Abn%	Abn	
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101 9	15.8 40.9 100.0 6.5 0.0 94.5 5.0 96.4 6.6	20643 53304 130403 8516 0 123235 6200 118768 7807	PASS PASS PASS PASS PASS PASS PASS PASS

Data File : M:\SWEETPEA\DATA\S120229\0229S15W.D

Acq On : 1 Mar 12 2:04 Sample : 25ug/mL BFB Std 11-16-11 Misc : Water 10mL w/IS:02-17-12 Vial: 15
Operator: DG,SV,RS
Inst : Sweetpea
Multiplr: 1.00

Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator)

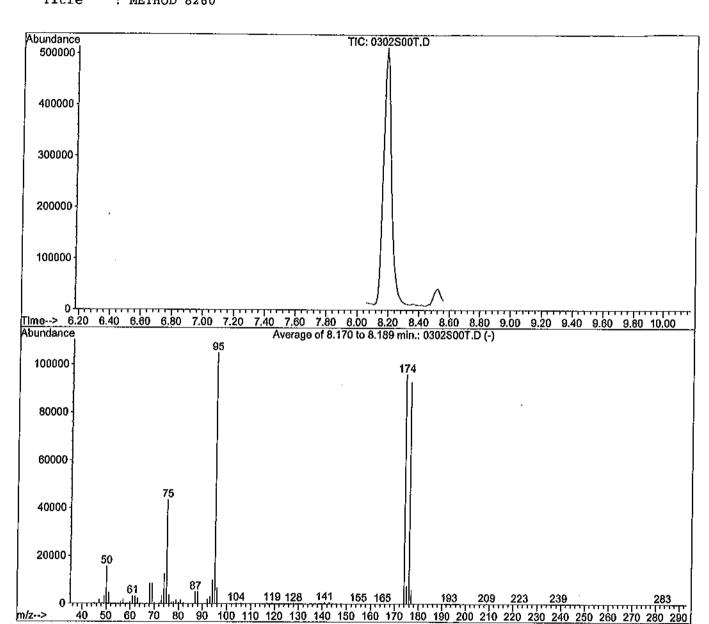
Title : METHOD 8260



AutoFind: Scans 1521, 1522, 1523; Background Corrected with Scan 1513

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101	15.6 40.5 100.0 6.0 0.0 93.3 5.5 98.3 6.0	11030 28608 70611 4234 0 65899 3651 64811 3901	PASS PASS PASS PASS PASS PASS PASS PASS
					:13	

Data File: M:\SWEETPEA\DATA\S120229\0302S00T.D


Acq On Sample

: 2 Mar 12 9:21 : 200g/mL BFB Std 2-13-12 : 20L H#39N3 Operator: DG, SV, RS : Sweetpea

Vial: 1

Misc

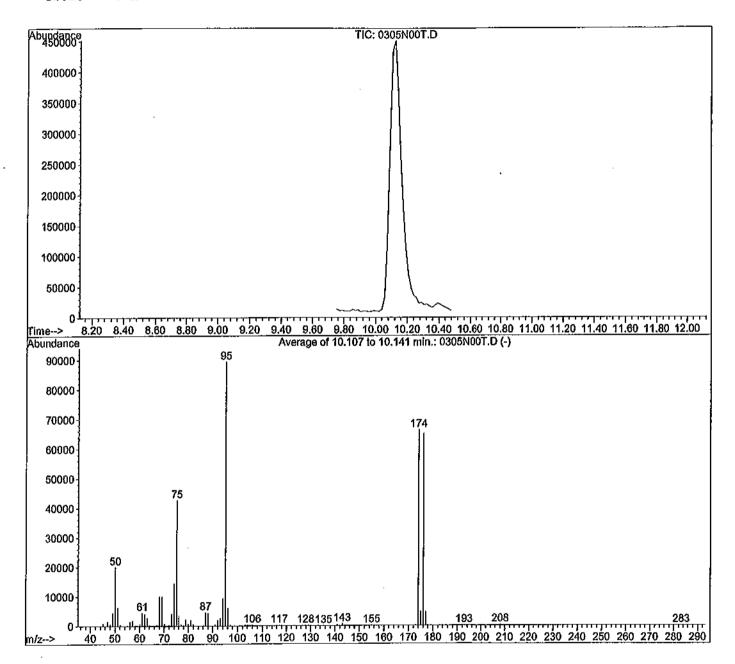
Method : M:\SWEETPEA\DATA\S120229\SALLRW.M (RTE Integrator) Title : METHOD 8260



Spectrum Information: Average of 8.170 to 8.189 min.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 55 95	40 60 100 9 2 100 9 101	14.9 41.5 100.0 6.4 0.0 91.5 7.7 96.7 6.4	15658 43537 105011 6753 0 96099 7425 92883 5982	PASS PASS PASS PASS PASS PASS PASS PASS

Vial: 1


Data File: M:\NEO\DATA\N120305\0305N00T.D

Acq On : 5 Mar 12 10:17 Operator: SV,DG,RS

Sample : 25ug/mL BFB Std 2-13-12 Inst : Neo Misc : 2uL Multiplr: 1.00

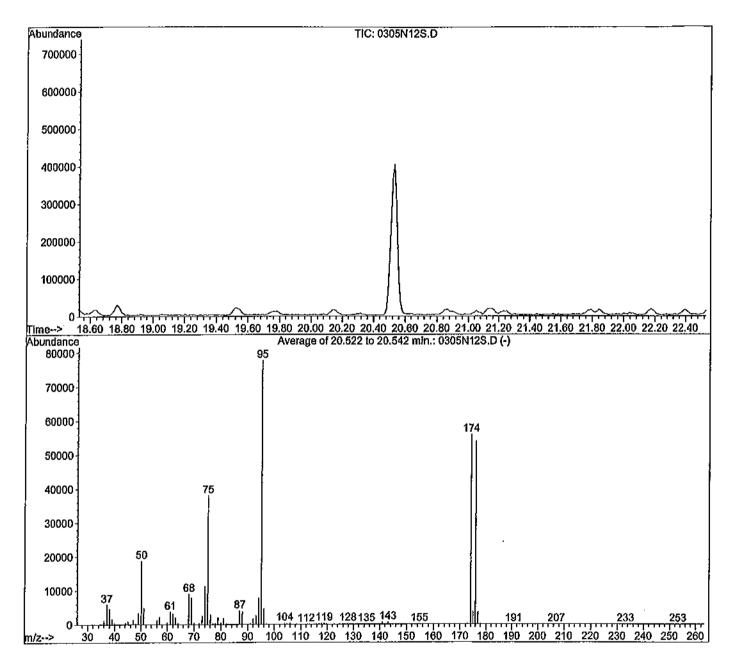
Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B



AutoFind: Scans 22, 23, 24; Background Corrected with Scan 14

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw   Abn	Result     Pass/Fail
50	95	15	40	22.4	20048	PASS
75	. 95	30	60	47.7	42704	PASS
95	95	100	100	100.0	89456	PASS
96	95	5	9	6.9	6137	PASS
173	174	0.00	2	0.4	275	PASS
174	95	50	100	74.1	66323	PASS
175	174	5	9	7.1	4686	PASS
176	174	95	101	98.1	65061	PASS
177	176	5	9	7.2	4660   215	PASS


Vial: 1

Data File: M:\NEO\DATA\N120305\0305N12S.D

Acq On : 5 Mar 12 17:51 Operator: SV,DG,RS

Method : M:\NEO\DATA\N120305\NALLS.M (RTE Integrator)

Title : METHOD 8260B



AutoFind: Scans 1644, 1645, 1646; Background Corrected with Scan 1635

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 174 95 174 174	15 30 100 5 0.00 50 595	40 60 100 9 2 100 9	24.2 48.9 100.0 5.9 0.4 71.9 6.9 96.5 6.8	18855 38101 77843 4604 205 55965 3848 54021 3654	PASS PASS PASS PASS PASS PASS PASS PASS

Date:	Time	Initial	Sample ID		Weight (g)	Volume (ml)	Method	Balance
03/05/12	2:42	RS	AY56027	S01	5.039	5 ml of P&T H2O	8260 \	V-BALANCE

#### GC/MS STANDARD PREPARATION BOOK #_____PAGE #___ 063 Rezachloroghane (Second Source) Solution, 1000 mg/I., Lad 020049-02-68 Lot # Storage 183795 ≤-10 Degree C (A/14 Sofri 7/T Methanal Hexachloroethane (SS) Lot #: 183795 - 30198 Rec: 1/10/12 MFR exp. 01/03/14 VOC Mix 4-3 (second source), 2,000 mg/L, 1 m1 120166-01-53 Storage Expliy </= 6 Degrees 9/9/12 63 163778 Solv: P/T Methanol VOC Mix 4-3 (SS) Lot #: 163778 - 29838 Rec: 10/24/11 MFR exp. 09/09/12 02-02-12M 50ug/ml Vol Work Std #7 Exp:02/08/12 Conc Date Exp. Supplier ug/ml Lot I Code Date ul 02\$1 120016-03 Gas Mix 5000 167931-28287 02-02-12A 02/08/12 100 0251 020049-02 HEXACHLOROETHANE 1000 164816-29160 02-02-12B 04/07/12 200 02SI 020228-02 Benzyl Chloride 1000 176701-29774 02-02-12C 04/07/12 200 J&T Brand Purge & Trap MeOH K07834-00574 02/02/12 06/08/12 3500 02-02-12N 50ug/ml Vol Work Std #1 Exp:02/08/12 Supplier ID ug/ml Lot # Code Date ալ 020145-02-02 02ST 2-CEVE 2000 160092-26641 01-25-12K 04/07/12 50 J&T Brand Purge & Trap MeOH K07E34-00574 02/02/12 06/08/12 1950 02-02-120 50ug/ml Vol Work Std #8 Exp:02/08/12 Conc. Date Exp. ID à Supplier τD ug/ml Lot I Code Date ա 0251 122039-02 Volatile Mix, 20-29 02-02-12D 2000 176771-29198 04/07/12 100 0251 120023-03 VOC'S-54 COMP 2000 164454-27876 02-02-12E 04/07/12 100 0251 020232-02 Vinyl Acetate 2000 182701-30110 01-18-12C 03/11/12 100 0251 020620-02 n-Hexane 1000 163378-29232 01-25-12L 04/07/12 200 02\$I 020546-02 Heptane 1000 169174-28326 01-25-12N 04/07/12 200 J&T Brand Purge & Trap MeOH X07834-00574 02/02/12 06/08/12 3300 02-02-12P 50ug/ml Vol Work Std #2 Exp:02/08/12 Supplier ID I ug/ml 02ST 121020-05 HSL'S-Ketone Solution 169173-29214 2000 02-02-12F 02/08/12 100 J&T Brand Purge & Trap MeOH K07B34-00574 02/02/12 06/08/12 3900 02-02-120 Exp: 02/08/12 Sug/ml Vol Work Std #9 Lot APPL Code APPL Exp Date

Exp:

Lot

02-02-12M

02-02-120

02/02/12

APPL Code

02-02-12N

02/02/12

02/08/12

02/08/12

02/08/12

06/08/12

APPL Exp Date

02/08/12

06/08/12

200

200

1600

σl

200

1800

50ug/ml Vol Work Std #7

50ug/ml Vol Work Std #8

5ug/ml Vol Work Std #10

50ug/ml Vol Work Std #1

J&T Brand

02-02-12R

BOURCES

J&T Brand

Volaille Standard C	urve Preparation for 10mL Purge (ion Oale 02/18/12 5/pg/mL Vol Std #9 5/pg/mL			BOOK#		E#	073	
0g/e Cons 0g/17/12/ 0.3 0g/17/12/ 0.3 0g/17/12/ 0.5 0g/17/12/		12C 92-09-12G 16-12 Exp.02-16-12 Exp.02-16-12 N/a N/a N/a N/a N/a N/a N/a N/a N/a N/a	02-09-121 Exp 02-16-12 n/2 n/2 n/2 n/3 n/4 0/4 5 10 20 40 100 200	02.09-12N Exp 82-16-12 n/s n/s n/s n/s 10 25 40 80 100 125	95/9/10 (00 38) #(7) (02 -05 +12) (02 -05 +12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (15 -12) (	3-9-9-00, vol Sto #1 02-99-12H Exp:02-16-12 n/9 n/9 n/4 n/4 c/4 5 10 20 40 100 200	50yg/mt, Vol Sul V2 5y 02-09-12-1 Exp 02-16-12 r/a r/a r/a r/a r/a r/a r/a r/a r/a r/a	02-09-12M Exp.02-16-12 1 3 5 10 10 N/a N/a N/a N/a
2/20/16 188	2 A -	Method 8260 Case  10016-03  10016-03  10016-03  10013 \$ 10 Degrees C  3 Solv: PT Methanol  Method 8260 Gases  Lot #: 180013 - 29758  Rec: 10/24/11 MFR exp. 1	Exptry 100.170.4	25			3 5 10, 20 23 30 35 40	50 50 50 50 50 50 50 50 50 50 50
2/20/19 RS	He	1 176100 ≤ 10 Degrees C 1	Supply 191011 —	)				
2/20/12 RS	Benzyl Lol #:	Berzyk Chloride Solution 1000 mg/l., 1 ml 070723-02 Lot# Sturage Exp 136701 < 10 Orgred C 2731 Solv: PYT Methanol Chloride 176701 - 29780 10/24/11 MFR exp. 07/31/13						
2/20/12 RS	Lot #: 18	Vinyt A cetate Solution, 2,000 mg/L, trail 070712-02 NN Stotage Explay 101 5-10 Degrees C 201/12 1010: PT Methanol 1010: 2701 - 30111 15/11 MFR exp. 03/11/12						
				219				

y de transita Liji Albert

# SC/MS STANDARD PREPARATION BOOK # PAGE # _____

	1		·	· ·			e day in the co		- :
		<u> </u>	02-09-12X	Бхр:	02/16/12	T	i	T	T .
		<u> </u>	5ug/ml Vol Work 8td #9				<del> </del>		1
_			SOURCES	Lot	APPL Code	APPL Exp Date	u1	_	<del> </del>
			50ug/ml Vol Work Std #7		02-09-127	02/16/12	200		1
			50ug/ml Vol Work Std #8	)	02-09-12V	02/16/12	200		<u> </u>
			J&T Brand	,	02/04/12	06/08/12	1600		1
	ff :	1	02-09-12Y	gxp:	02/16/12				1
			Sug/ml Vol Work 8td #10	,					1 :
	<del> </del>		SOURCES	Lot	APPL Code	APPL Exp Date	ul		1
	<u> </u>		50ug/ml Vol Work Std #1		02-09-12V	02/16/12	200		1 !
	4	· ·	J&T Brand		02/04/12	06/08/12	1800	····	<b>`</b> '
	(		02-09-122	Вир:	02/16/12	1			lok
	1		Sug/ml Vol Work Std #12		1	1			<b>JX</b> U
1	( ·		SOURCES	Lot	APPL Code	APPL Exp Date	ul		10
	4		50ug/ml Vol Work Std #2		02-09-12W	02/16/12	200		<u> </u>
			J&T Brand	Ĺ	02/04/12	06/08/12	1800		1
	02-09-12AA								
- 1	50ug/ml 8260 8	Surrogate		Conc.	]	Date	Вжр.		
	Exp:02/16/12		•	ug/ml	Lot #	Code	Date	սև	l
	ossi	120002-01	8260B Surr Solution	2000	178653-29564	02-09-12R	04/16/12	100	
	J&T Brand A 2	De alad	Purge & Trap MeOH		K07E34-00579	02/04/12	06/26/12	3900	1 !
$\neg$	02-09-120	40.00		Exp:	02/16/12				
- 1	5.0ug/ml 8260	Surrogate		Lot	APPL Code	APPL Exp Date	ul		1
一			50ug/ml 8260 Surrogate		02-09-12AA	02/16/12	200		
- 1	J&T Brand	4. 86.3/4/	Purge & Trap MeON		02/04/12	06/08/12	1800		i
	02-09-12AB	C to s.							$\vdash$
	250ug/ml TBA/7	BA/Acetonitri	lle/Cyclohexanone/Acrolei	n/2-P				_	1 1
$\dashv$	Bxp:02/16/12			Conc.		Date	Ехр.	•	
H	Supplier	ID #		ug/ml	Lot #	Code	Date	uL	i i
	0281	120166-01	Volatila Mix 4-3	2000	178651-29803	02-09-12C	04/07/12	500	<u> </u>
	0251	020229-09	Acrolein	10000	184364-30245	02-02-121	02/25/12	100	į
	J&T Brand		Purge & Trap MeOH		K07E34-00579	02/04/12	06/08/12	3400	<u> </u>
ľ						<del></del>			' I

Volatile Standard Curve Preparation fo	6mL Purge (8260 soil)-NEC	J
Expiration Date:	02/11/12	

10000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	anta oa	Tre I Lepais Holl ICF	OHIE 1 GIGS (DEOR SON) 11E.	<u> </u>							
4 (4)	,	Expirati	in Date:	02/11/12								_
Date	-		6μg/ml, Vol Std #9	5µg/mL Surr	50 pg/mL Vol Std #7	50µg/mL Vol Std #8	50µg/mL Sun	5µg/mL Vol Std #10	60µg/mL Vol Std #1		60µg/mL Vol Std #12	
Date		Conc.	02-09-12K	02-09-120	02-09-12G	02-09-121	02-09-12N	02-09-12L	02-09-12H	02-09-12.1	02-09-12/4	
Code	4.54	μg	Exp:02-18-12	Exp:02+16-12	Exp.02-16-12	Exp:02-16-12	Exp:02-18-12	Exp:02-16-12	Exp:02-18-12	Exp:02-18-12	Exp:02-16-12	-
02-10-1		2	2	2	n/a	r√a	ιVa	2	<u>n/a</u>	2	n∕a	
02-10-1		5	5	5	n/a	n/a	n/a	5	n/a	5	ΝB	
02-10-1	2Ç_	10	10	10	ı√a	n/a	n/a	10	n/a	. 10	€/A	-
02-10-1		20	_ 20 .	20	n/a	rVa	n/a	20	r/a	20	n/a	
02 10		50	n/a	r/a	5	5	5	n/a	5	r/a	5	
02-10-1		100	n/a	r/a	10	10	10	C/B	10	n/a	. 10	ζ
02 10 1	20	200	n/a	n/a	20	20	20	n/a	20	r/a	20 1	1

260µg/mL TBA	Final Vol /
02-09-12P	W/PAT H2O
Exp:02-16-12	mL.
1	5
2	5
3	5
4	. 5
. 5	. 5
6	5

	02-13-12A	,		<u></u>			T	1	<u> </u>
	25ug/ml sys sto			Conc.		Date	BXP:		1
	EXF:03-13-12			ug/ml	Lot#	CODE	Date	սի	]
288767 T	028Z	020135-03	4-Brosofluorobenzene	2500	163173-29053	01-12-12A	12/11/12	20	<u> </u>
2113/12	J&T Saker		Purgs & Trap HeOH	1	K07834-00574	02/02/12	09/28/12	1980	JVJ.
2 <u>113   12 -</u> RX ,	02-13-12B					<u> </u>			NO.
2000	25ug/ml B7B 870	25ug/ml BFB 8T0		Cono.		Date	SXPt		}
	BXP:03-13-12			ug/ni	LotJ	CODE	Date	иì	]
\$1.	0281	020135-03	4-Sronofluorobensene	2500	163173-29053	01-12-12A	12/11/12	20	
	J&T Baker		Purge & Trap ReON		K07834-00574	02/02/12	09/28/12	1980	1

				4
	60/	MS STANDARD PREPARATION BO	OOK#PAGE#	081
		· · · · · · · · · · · · · · · · · · ·	- TOL II	34 9 OO I
	F-	Kelones Solution, 2,000 mg/L, 1 ml		
<u> 28 12                                     </u>	T	171020-05		
98		Lots Storage Expliy		
		Boh: P/T MaOH:Water 9:1		<del></del>
		Ketones Lot#: 169173 - 29215	<del>28</del>	
ener	<del></del>	Rec: 8/5/11 MFR exp. 02/13/13		<del></del>
	<del>-</del>		·	
		<del></del>		· ·
		8260B Surrogate Sokillon,		
128/12	19-	2,000 mg/L, 5 x 1 ml		
PS.	-	Lots Storage Explry		
	<del></del>	1 I I I I I I I I I I I I I I I I I I I	<del></del>	<del></del>
E		8260B Surrogate Solution		
	<del></del>	Lot #: 178653 - 29561	<u> </u>	
		Rec: 9/22/11 MFR exp. 09/11/13		<u></u>
			<del></del>	<u> </u>
lant.	- 11	VOC Min 4-3, 1,000 mg/L, 1	<u> </u>	<del></del>
28/12	71	120155-01		
irs	<u>-</u> ,	Lol# Shenge Endry		······································
		VUCTIX 4-3, 2000000		
	1	Lot#: 178651 - 29810	#S	<del></del>
	<del></del>	Rec: 10/24/11 MFR exp. 09/11/13	10	<del></del>
	<del></del>		·	<u></u> _
, ,				<u>.                                    </u>
08/12	1-	A crolein Solution, 10,000		······································
S.		mg/L, 2 x 0.6 ml, —	<del></del>	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	185699 St Demon C		
	<del> </del>	Solvi Water, HPLC Gude	<del></del>	
<del>:                                    </del>	<del> </del> -	Acrolein	@\$	
<del>"</del> ———	- <b> </b>	Lot #: 185699 - 30346 	/P=	
				<u></u>
<u>;</u>				<del></del> .
		Method 8260 Gases (Second Smirce), 2,000 mg/L, 2 X.0.6		<del>_</del>
110	17		<del></del>	<del></del>
1/2	10-	Lot & Storage Explry		· .
·	ļ	1 16801\$ ≤ 10 Degrees C 1/1/1/4		
<b></b>	<u>L</u>	8260 Gases (SS) Lot #: 168038 - 28747	£5.	<del></del>
. <u> </u>	1	Hec: 4/20/11 MFR exp. 01/21/14	<del>1</del>	
<del></del> -	<del>                                     </del>			<del></del>
	<del> </del>	<del></del>	223	<del></del>
	1			

082	GC/N	AS STANDA	ARD PREPARATION	ВООК	(#PA	3E#3		· ·		
		é Acro	lein Sointian (Second		<del>- ,</del>	-	******			
alanl.	<del> </del>	· •	12), 10,000 mg/L, 2 x							
2/28/12	大-	Йá	0.6 ml					, V		
1 20	<u> </u>		020219-09-02-68		<del></del>	<del></del>	<del></del>	<u> </u>		
<u>                                     </u>										
11			stor, HPLC Orace			<del></del>				
]}	<del> </del> ,	Acrolein Solution SS								
	1	Actorein Solution SS Lot #: 185700 - 30348								
<b></b>	<del>                                     </del>	Rec: 2/20/12 MFR exp. 03/24/12								
	·	THE LEWIS MITTERN, USESTIZ								
	02-28-12L	7								
\	50ug/ml Vol 9	Hork Std #7		<del> </del>	<del>+ · '</del>	<del></del>	<del>- </del>	/		
	Exp:03/06/12			1	<del>                                     </del>	<del></del>		<del> </del> -		
<del></del>	<del></del>			Conc.		Date	Bxp.	<del> </del> -		
	Supplier	ID #	ID	ug/ml	Lot #	Code	Date	ul		
	02SI 02SI	120016-03	Gas Nix	2000	180013-29757	02-28-12A	03/06/12	100		
	02SI	020049-02 020228-02	HEXACHLOROSTHANE Benzyl Chloride	1000	176700-29155	02-20-12B	04/07/12	200		
·	J&T Brand	3000000	Purge & Trap MeOH	1000	176701-29780 K07834-00603	02-20-12C 02/26/12	04/07/12	200		
	02-28-12M		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	† · · · ·	200003	78/20/12	06/08/12	3500		
,	50ug/ml Vol N	fork Std #1				<del></del>	<del> </del>	1-5		
	Exp:03/06/12	<u> </u>				ļ. <u></u>				
	Supplier 0281	ID # 020145-02-03	ID 2 2-CEVB	ug/ml	Lot #	Code	Date	นา		
	J&T Brand	020149-02-02	Purge & Trap MeOH	2000	176770-29813	02-28-12B	07/27/12	50		
	02-28-12N	1	- asa a rrab tisou	<del> </del>	K07E34-00603	02/26/12	06/08/12	1950 🧃		
<del></del>	50ug/ml Vol W	ork Std #8		<u> </u>	<del> </del>	<del>                                     </del>	<del> </del>	<del>  - 4</del>		
	Exp: 03/06/12					1	<b>+</b>	- 38		
		ļ		Conc.		Date	Вхр			
	Supplier 02SI	TD #	ID	ug/ml	Lot #	Code	Date	ul .		
·	0251	120023-02	Volatile Mix, 20-29 VOC'S-54 COMP	2000	176771-29199 164454-27877	02-28-120	04/07/12	100		
	0381	020232-02	Vinyl Acetate	2000	182701-30111	02-28-12C 02-20-12D	04/07/12	100 (1		
0/28/10	0251	020620-02	n-Hexane	1000	176773-29792	02-20-12E	04/07/12	200 %		
JO40 12	0251	020546-02	Heptane	1000	169174-29251	02-28-12E	04/07/12	200 🖇		
RS.	J&T Brand 02-28-120	<del> </del>	Purge & Trap MeOH	<u> </u>	K07E34-00603	02/26/12	06/08/12	3300		
140	50ug/m1 Vol W	ork Std #2	<del> </del> -			<del> </del>	·			
	Exp:03/06/12		<del> </del>	<u> </u>	<del> </del>	<del> </del>	<del> </del>	3		
	Supplier	ID #	10	ug/ml		<del></del>	$\vdash$			
	0281	121020-05	HSL'S-Ketone Solution	2000	169173-29215	02-28-12F	02/08/12	100		
	J&T Brand		Purge & Trap MeON		02/26/12	02/26/13	05/08/12	3900		
		<del> </del>	02-28-129		02/05/12			3		
		<del></del>	02-28-129 5ug/ml Vol Work Std #9	EXO	03/06/12	ļ <u> </u>	<b> </b>	- 23		
			SOURCES	Lot	APPL Code	APPL Exp Date	ul			
			50ug/ml Vol Work Std #7		02-28-12L	02/27/12	200			
<del></del>			50ug/ml Vol Work Std #8		02-28-12ท	02/27/12	200	uc 3		
	<del></del>	·	J&T Brand		02/26/12	06/08/12	1600	- 3		
~	<del></del>		02-28-12Q 5ug/ml Vol Work 8td #10		03/06/12	<del></del> -	ļ <b>.</b>	<u></u> #		
	ļ	···	BOURCES	Lot	APPL Code	APPL Exp Date	u1 ·			
			50ug/ml Vol Work Std #1		02-28-12M	02/27/12	200			
			J&T Brand		02/26/12	06/08/12	1800			
	ļ		02-28-12R	Бхр:	03/06/12					
<del></del>	_	······	Sug/ml Vol Work Std #12 SOURCES	7.00	tone and					
			SOug/ml Vol Work Std #2	Lot	APPL Code 02-28-120	APPL Exp Date 02/27/12	200	B		
<del></del>		<u> </u>	J&T Brand		02/26/12	06/08/12	1800	——— <b>—</b>		
	02-28-125									
***	50ug/ml 8260 g	urrogate		Conc.		Date	Exp.			
	Exp:03/06/12	120002-01	9260B Suran #=1.00	ug/ml	Lot	Code	Date	uc 👪		
	J&T Brand	100004-01	8260B Surr Solution Purge & Trap MeOH	2000	178653-29561 K07834-00603	02-28-129	04/16/12	100 3900		
	02-28-12T		410V GEON	Exp:	03/06/12	02/26/12	06/26/12	3700		
	5.0ug/ml 8260	Surrogate		Lot	APPL Code	APPL Exp Date	ul ·			
			50ug/ml 8260 Surrogate		02-28-128	02/27/12	200			
	J&T Brand		Purge & Trap MeCH		02/26/12	05/08/12	1800			
		<del></del> .								

	CH.	OMS STANI	DARD PREPARATIO	ON BOO!	<#P/	IGE#	083	}
	02-28-120	<del>-</del>				- Western x	-   -   -	h.
		/IBA/Acetonitri	le/Cyclohexanone/Acrole	1012 7				
03119	Exp:03/06/12			Conc.	<del></del>			
a	Supplier 0251	ID		ug/ml	Lot	Code	Bxp. Date	u _L
ישיו	0281	120166-01	Volatile Mix 4-3 Acrolein	2000	178651-29810	02-28-12н	04/07/12	500
	J&T Brand	020223-09	Purge & Trap MeOH	10000	185699-30346	02-28-121	03/24/12	100
8000		<u> </u>	raige w Hap Meon	<u> </u>	X07834-00603	02/26/12	06/08/12	3400
								•
	02-28-12V				T	<del></del>	<del> </del>	<del></del>
<b>3</b> 860/4 85000	50ug/ml VO Exp:03/06/							_
	Exp. 03/00/		<del></del>	Conn	ļ			
	Supplier	ID #	ro	Conc.	Lot #	Date	Вхр.	
	0281	120016-03-8		2000	169038-28747	02-28-12J	Date 02/27/12	1 ul
<u> </u>	02SI J&T Brand	020145-02-0		2000	181404-30009	02-20-121	02/14/12	
ES.	02-28-12W	<del></del>	Purge & Trap MeOH	<del></del> -	K07E34-00603	02/26/12	06/08/12	
	50ug/ml VO		<u> </u>	+	<del>                                     </del>	<del> </del>		
<u>کا ۔                                     </u>	Вхр (03/06/1				<u> </u>	<del> </del>	<del>                                     </del>	<del> </del>
18/112	02SI	ID #	ID	ug/ml	Lot #	Code	Date	ul
0	0251	120023-03-S 120296-01	S VOC'S 54 COMP. Custom 8260 Solution	2000	163271-27775	01-09-121	05/14/12	
<u>o</u>	0281		S Vinyl Acetate(SS)	2000	166038-27771 178905-29558	01-09-12J 01-25-12D	05/18/12	
	0251	020620-02-S	S n-HEXANE	1000	179199-29612	01-25-12D 01-25-12P	04/05/11	
	0251		S HEXACHLOROETHANE	1000	183795-30198	02-02-12K	03/29/12	
97 22	02SI J&T Brand	020546-02-5	S Heptane (SS)	1000	142276-23578	01-25-120	05/19/12	100
4 · 7 ·	02-28-12W		Purge & Trap MeOH	<del> </del>	K07E34-00603	02/26/12	06/08/12	1550
	250ug/ml TB	A/IBA/Acetonit	rile/Cyclohexanone/Acro	lein/2-P		<del> </del>	·	<del> </del>
	Exp: 03/06/1	2		Cone.		Date	Exp.	<del> </del>
en en en en en en en en en en en en en e	Supplier 	ID #	a wan w	ug/ml	Lot #	Code	Date	սն
조~1 왕조	0251	020229-09-0	S VOC Mix 4-3 (SS) S Acrolein SOLUTION (SS	2000	163778-29836	02-02-12L	06/14/12	250
erse e	J&T Brand		Purge & Trap MeOH	10000	185700-30348 R07E34-00603	02-28-12K	03/24/12	50
<u>.                                    </u>				<u> </u>	,,	02/26/12	06/08/12	1700
3	02-28-12X	T	<u> </u>	<del>T 7</del>		<del>r</del>		
<u> </u>	50ng/ml 15-1	Work Std #7	<u> </u>	<del>  </del>		<del> </del>	· ·	<b>-</b>
. — <del>—</del>				<del></del>			+	<b> /</b>
·	Exp:03/06/12		<del></del>	<u> </u>			1 .	
	Ехр:03/06/12		Typ.	Conc.		Date	Exp.	
		10 \$	ID Gas Mix	ug/ml	Lot #	Code	Date	ul
	Supplier 0281 0281		ID Gas Mix HEXACHLOROETHANE		180013-29757	Code 02-28-12A	Date 03/06/12	100
A	Supplier 0281 0281	ID # 120016-03	Ges Mix HEXACHLOROETHANE Benzyl Chloride	ug/ml 2000		Code	Date 03/06/12 04/07/12	100 200
	Supplier 02sI 02sI 02sI 04M Brand	1D # 120016-03 020049-02	Gas Mix HEXACHLOROETHANE	ug/ml 2000 1000	180013-29757 176700-29155	Code 02-28-12A 02-20-12B	Date 03/06/12	100
	Supplier 0281 0281	1D \$ 120016-03 020049-02 020228-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride	ug/ml 2000 1000	180013-29757 176700-29155 176701-29780	Code 02-28-12A 02-20-12B 02-20-12C	Date 03/06/12 04/07/12 04/07/12	100 200 200
	Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02-38-12Y 50ug/ml Vol 1 Exp:03/06/12	ID \$ 120016-03 020049-02 020228-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride	ug/ml 2000 1000	180013-29757 176700-29155 176701-29780	Code 02-28-12A 02-20-12B 02-20-12C	Date 03/06/12 04/07/12 04/07/12	100 200 200
alio -	Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI 50U/M brand 02-28-12Y 50Ug/ml Vol (Exp:03/06/12 Supplier	ID \$ 120016-03 020049-02 020228-02 Work Std #1	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH	ug/m1 2000 1000 1000 ug/m1	180013-29757 176700-29155 176701-29780	Code 02-28-12A 02-20-12B 02-20-12C	Date 03/06/12 04/07/12 04/07/12 05/08/12	100 200 200 3500
1/12	Exp:03/06/12  Supplier 02SI 02SI 02SI 02SI 02SI 50SI 02SI 02SI UNIT Brand 02-28-12Y 50Ug/ml Vol 1 Exp:03/06/12 Supplier 02SI	ID \$ 120016-03 020049-02 020228-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVE	ug/m1 2000 1000 1000	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Cods 02-28-12B	Date 03/06/12 04/07/12 04/07/12	100 200 200
10	Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI 50U/M brand 02-28-12Y 50Ug/ml Vol (Exp:03/06/12 Supplier	ID \$ 120016-03 020049-02 020228-02 Work Std #1	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH	ug/m1 2000 1000 1000 ug/m1	180013-29757 176700-29155 176701-29780 K07B34-00603	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12	Date 03/06/12 04/07/12 04/07/12 05/08/12 Date	100 200 200 3500
illa S	Supplier 02s1 02s1 02s1 02s1 02s1 50ug/ml Vol 9 Exp:03/06/12 Supplier 02s3 50ug/ml Vol 9 Exp:03/06/12 Supplier 02s1 7&T Brand 02-28-122 50ug/ml Vol 9	ID \$ 120016-03 020049-02 020228-02 Work Std #1 ID # 020145-02-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVE	ug/m1 2000 1000 1000 ug/m1	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Cods 02-28-12B	Date 03/06/12 04/07/12 04/07/12 05/08/12 Date 07/27/12	100 200 200 3500 u1 50
1/10-	Supplier 0281 0281 0281 0281 0281 0281 5087 0281 02-28-129 5009/m1 Vol 1 Exp:03/06/12 Supplier 0281 02-28-122	ID \$ 120016-03 020049-02 020228-02 Work Std #1 ID # 020145-02-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVE	ug/m1 2000 1000 1000 ug/m1	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Cods 02-28-12B	Date 03/06/12 04/07/12 04/07/12 05/08/12 Date 07/27/12	100 200 200 3500 u1 50
2/10-	Exp:03/06/12  Supplier 02SI 02SI 02SI 02SI 02SI Exp:03/06/12  Supplier 02SI Supplier 02SI 02SI Supplier 02SI 02CI Supplier 02SI 02CI Supplier 02SI 02CI Supplier 02SI 02CI Supplier 02SI 02CI Supplier 02SI 02CI Supplier 02SI	ID # 120016-03 020049-02 020228-02 Work Std #1 ID # 020145-02-02	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH	ug/ml 2000 1000 1000 1000 Conc.	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813 K07B34-00603	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Code 02-28-12B 02/26/12	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12	100 200 200 3500 u1 50
112	Supplier 02s1 02s1 02s1 02s1 02s1 50ug/ml Vol 9 Exp:03/06/12 Supplier 02s3 50ug/ml Vol 9 Exp:03/06/12 Supplier 02s1 7&T Brand 02-28-122 50ug/ml Vol 9	ID \$ 120016-03 020049-02 020228-02 Work Std #1 ID # 020145-02-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CEVE Purge & Trap MeOH	ug/ml 2000 1000 1000 1000	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813 K07B34-00603	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Code 02-28-12B 02/26/12 Date Code	Date 03/06/12 04/07/12 04/07/12 05/08/12 05/08/12 Date 07/27/12 05/08/12	100 200 200 3500 3500 u1 50 1950
10	Exp:03/06/12  Supplier 02s1 02s1 02s1 02s1 50ug/ml Vol v Exp:03/06/12 Supplier 02s1  J&T Brand 02-28-12y 50ug/ml Vol v Exp:03/06/12 Supplier 02s1  Supplier 02s1 Supplier 02s1 02s1 Supplier 02s1	ID # 120016-03 020049-02 020228-02 020228-02 020145-02-02 020145-02-02 020145-02-02 120023-03	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH	ug/ml 2000 1000 1000 1000 Conc.	180013-29757 176700-29155 176701-29780 K07B34-00603  Lot # 176770-29813 K07B34-00603  Lot # 176771-29199	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D	Date 03/06/12 04/07/12 04/07/12 05/08/12 Date 07/27/12 05/08/12 Exp. Date 04/07/12	100 200 200 3500 3500 ul 50 1950
10	Exp:03/06/12  Supplier 02sI 02sI 02sI 02sI 02sI 50ug/ml Vol v Exp:03/06/12  Supplier 02sI  J&T Brand 02-28-12y 50ug/ml Vol v Exp:03/06/12  Supplier 02sI  Supplier 02sI  Supplier 02sI  Supplier 02sI  Supplier 02sI  Supplier 02sI	ID # 120016-03   020049-02   020228-02   020228-02   020145-02-02   020145-02-02   02023-03   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020232-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-02   020222-0	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP	ug/ml 2000 1000 1000 1000 Cone. ug/ml 2000 2000 2000 2000	180013-29757 176700-29155 176701-29780 K07B34-00603 Lot # 176770-29813 K07B34-00603	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12 Code 02-28-12B 02/26/12 Date Code	Date 03/06/12 04/07/12 04/07/12 05/08/12 05/08/12 Date 07/27/12 05/08/12	100 200 200 3500 u1 50 1950
10	Exp:03/06/12  Supplier 02sI 02sI 02sI 02sI J&T Brand 02-28-12Y 50ug/ml Vol ( Exp:03/06/12 Supplier 02sI  J&T Brand 02-28-12Y 50ug/ml Vol ( Exp:03/06/12 Supplier 02sI  Supplier 02sI Supplier 02sI 02sI 02sI 02sI 02sI	ID \$ 120016-03 020049-02 020228-02 Work Std #1 ID # 020145-02-02 Work Std #8 ID # 122039-02 120023-03 020232-02	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  LD 2-CBVB Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetate n-Hexane	ug/ml 2000 1000 1000  ug/ml 2000  Cone. ug/ml 2000 2000 1000	180013-29757 176700-29155 176701-29780 K07B34-00603  Lot \$ 176770-29813 K07B34-00603  Lot \$ 176771-29199 164454-27877 182701-30111 176773-29792	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12D 02-28-12D 02-28-12C	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12	100 200 200 3500 3500 ul 50 1950
10	Exp:03/06/12  Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI	ID # 120016-03 020049-02 020228-02 020228-02 020145-02-02 020145-02-02 120023-03 020232-02 020546-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetate n-Hexane Heptane	ug/ml 2000 1000 1000 1000 Cone. ug/ml 2000 2000 2000 2000	Lot # 176770-29813 K07834-00603  Lot # 176770-29813 K07834-00603  Lot # 176770-29813 176771-29199 164454-27877 182701-30111 176773-29792 169174-29251	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12C 02-20-12D 02-20-12B	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 03/11/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 200 200
2/12-	Exp:03/06/12  Supplier 02sI 02sI 02sI 02sI J&T Brand 02-28-12Y 50ug/ml Vol ( Exp:03/06/12 Supplier 02sI  J&T Brand 02-28-12Y 50ug/ml Vol ( Exp:03/06/12 Supplier 02sI  Supplier 02sI Supplier 02sI 02sI 02sI 02sI 02sI	ID # 120016-03 020049-02 020228-02 020228-02 020145-02-02 020145-02-02 120023-03 020232-02 020546-02	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  LD 2-CBVB Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetate n-Hexane	ug/ml 2000 1000 1000  ug/ml 2000  Cone. ug/ml 2000 2000 1000	180013-29757 176700-29155 176701-29780 K07B34-00603  Lot \$ 176770-29813 K07B34-00603  Lot \$ 176771-29199 164454-27877 182701-30111 176773-29792	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12D 02-28-12D 02-28-12C	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 100 200
112	Exp:03/06/12  Supplier 02SI 02SI 02SI 02SI 02SI J&T Brand 02-28-12Y 50ug/ml Vol v Exp:03/06/12 Supplier 02SI 02-28-12Z 50ug/ml Vol v Exp:03/06/12 Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI	ID # 120016-03   020049-02   020228-02   020228-02   020145-02-02   020145-02-02   02023-03   020232-02   020546-02   020546-02	Ges Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetate n-Hexane Heptane	ug/ml 2000 1000 1000  ug/ml 2000  Cone. ug/ml 2000 2000 1000	Lot # 176770-29813 K07834-00603  Lot # 176770-29813 K07834-00603  Lot # 176770-29813 176771-29199 164454-27877 182701-30111 176773-29792 169174-29251	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12C 02-20-12D 02-20-12B	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 03/11/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 200 200
112	Exp:03/06/12  Supplier 02sI 02sI 02sI 02sI 02sI 50ug/ml Vol v Exp:03/06/12  Supplier 02sI  J&T Brand 02-28-12z 50ug/ml Vol v Exp:03/05/12  Supplier 02sI 02sI 02sI 02sI 02sI 02sI 02sI 02sI	ID # 120016-03   020049-02   020228-02   020228-02   020145-02-02   020145-02-02   02023-03   020232-02   020566-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   020546-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   02054666-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   0205466-02   02054666-02   02054666-02   02054666-02   02054666-02   02054666-02   020546666-02   020546666-02   0205466666-02   02054666666-02   0205466666666666666666666666666666666666	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVE Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetata n-Hexane Heptane Purge & Trap MeOH	ug/ml 2000 1000 1000  ug/ml 2000  Cone. ug/ml 2000 2000 1000	Lot # 176770-29813 K07834-00603  Lot # 176770-29813 K07834-00603  Lot # 176770-29813 176771-29199 164454-27877 182701-30111 176773-29792 169174-29251	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12C 02-20-12D 02-20-12B	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 03/11/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 200 200
110	Exp:03/06/12  Supplier 02SI 02SI 02SI 02SI 02SI 02SI 02SI 02SI	ID \$ 120016-03 020049-02 020228-02 Work Std #1  ID \$ 020145-02-02  Work Std #8  ID \$ 122039-02 120023-03 020232-02 020526-02  ork Std #2	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVB Purge & Trap MeOH  ID  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetate n-Hexane Heptane Purge & Trap MeOH	ug/ml 2000 1000 1000 1000  ug/ml 2000 2000 1000 1000 ug/ml	180013-29757 176700-29155 176701-29780 K07B34-00603  Lot # 176770-29813 K07B34-00603  Lot # 176771-29199 164454-27877 182701-30111 176773-29792 169174-29251 K07E34-00603	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12C 02-20-12D 02-20-12B 02-28-12B 02/26/12	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 03/11/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 200 200
<i>Ia</i>	Exp:03/06/12  Supplier 02sI 02sI 02sI 02sI 02sI 50ug/ml Vol v Exp:03/06/12  Supplier 02sI  J&T Brand 02-28-12z 50ug/ml Vol v Exp:03/05/12  Supplier 02sI 02sI 02sI 02sI 02sI 02sI 02sI 02sI	ID # 120016-03   020049-02   020028-02   020028-02   0200145-02-02   0200145-02-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02   0200145-02	Gas Mix HEXACHLOROETHANE Benzyl Chloride Purge & Trap MeOH  ID 2-CBVE Purge & Trap MeOH  ID Volatile Mix, 20-29 VOC'S-54 COMP Vinyl Acetata n-Hexane Heptane Purge & Trap MeOH	ug/ml 2000 1000 1000  ug/ml 2000  Conc. ug/ml 2000 2000 1000	Lot # 176770-29813 K07834-00603  Lot # 176770-29813 K07834-00603  Lot # 176770-29813 176771-29199 164454-27877 182701-30111 176773-29792 169174-29251	Code 02-28-12A 02-20-12B 02-20-12C 02/26/12  Code 02-28-12B 02/26/12  Date Code 02-28-12D 02-28-12C 02-20-12D 02-20-12B	Date 03/06/12 04/07/12 04/07/12 06/08/12 Date 07/27/12 06/08/12 Exp. Date 04/07/12 04/07/12 03/11/12 04/07/12 04/07/12	100 200 200 3500 3500 u1 50 1950 u1 100 100 200 200

					:						
	084	4 G	C/MS STAI	NDARD P	REPARATIO	N BO	OK	#PA	GE#	c.	
		<del></del>	<del></del>						· · · · · · · · · · · · · · · · · · ·		
		<del> </del>	·   ··	02-28-	Vol Work Std #	8 B	i qxi	03/06/12			<u> </u>
	}	<del> </del>	<del></del>	BOURCE					<del> </del>		/
IIHE I II			<del>-</del> -		1 Vol Work Std		ot	APPL Code 02-28-12X	APPL Exp Date		ļ <u> </u>
					l Vol Work Std			02-28-123	02/27/12	200	- <b> </b>
				J&T Bra		<del>``</del>		02/26/12	06/08/12	200 1600	┼──
	-			02-28-1	L2AC	B:	хp;	03/06/12	00700712	1800	<del> </del> -
		<b>I</b>		5ug/ml	Vol Work Std #	10			<del></del> -		<del>                                       </del>
Wil			<u> </u>	SOURCE		Lo	ot	APPL Code	APPL Exp Date	u1	<del> </del>
					Vol Work Std	<u> </u>		02-28-12Y	02/27/12	200	<del> </del>
		<b>─</b> ऻ	<del></del> -	J&T Bra				02/26/12	06/08/12	1800	
			<del></del> -	02-28-1			xp:	03/06/12			
			<del> </del>	BOURCES	Vol Work Std #		_		<u> </u>	<u> </u>	
			<del></del>		Vol Work Std	Lo 12	15	APPL Code	APPL Exp Date		
Ш	•	<u> </u>		J&T Bra		<u>*</u>		02-28-12AA 02/26/12	02/27/12	200	
		02-28-12AB		7	·	┪	-	04/20/12	06/08/12	1800	<b> </b>
	abolin		60 Surrogate			Con	c.	<del></del> .	Date	Exp.	<del> </del>
M	2/328/122	Exp: 03/06/	12			ug/i	$\overline{}$	Lot #	Code	Date	սե
M	EDC.	0251	120002-	01 8260B S	urr Solution	200	_	178653-29561	02-28-12G	04/16/12	100
W	NO.	J&T Brand		Purge &	Ттар МеОН			K07834-00603	02/26/12	06/26/12	3900
Ш		02-28-12AF	ا			Bx	goi (	03/06/12		1	
W		2. AUGANT B	260 Surrogate			lod	t	APPL Code	APPL Exp Date	ul	
		J&T Brand			8260 Surrogate	<u>'\</u>		02-28-12AB	02/27/12	200	
₩.		OGT BIBIIG	<del></del>	Furge &	Trap MeOH	+		02/26/12	06/08/12	1800	
	•	02-28-12AG	<del></del>	<del> </del>		+-		· · · · · · · · · · · · · · · · · · ·			
H	<del></del>		A/IBA/Aceton	itrile/Cvalo	hexanone/Aorole	3 n /2 - E	<del>-</del>		<del> </del>	ļ	
H		Exp: 03/06/1	2	1	**************************************	Conc			Daha .		
h		Supplier	ID I			ug/n		Lot #	Date Code	Bxp.	
1		0281	120166-01	Volatile	Mix 4-3	200	_	178651-29810	02-28-12H	Date 04/07/12	սև 500
┞		0281	020229-09	Acrolein		1000	10	185699-30346	02-28-12I	03/24/12	100
		J&T Brand	<u> </u>	Purge &	Trap MeOH			K07E34-00603	02/26/12	06/08/12	3400
₽		<del> </del> -								بلبج <del>ت نیست</del>	गःस <b>र्थ</b>
											20
T	0/20/- 1			T		<del></del>					130
Į.		02-29-12A	<u></u>	<del>- </del> -					ļ. <u></u>		/3
Γ	ADC "	50ug/ml 82608 8u	rrogate- Neo	<u> </u>			Соле	c	Date	Exp.	-3 -0
L	760	Supplier	ID #	<u> </u>			ug/s	nl Lot 4	Code	Date	սեն
٢		02\$1	8260B Surr	Surre	ogate Standards		200		01-28-12C	06/14/12	500
÷		J.T Baker			ge & Trap MeOK			K07B34-00603	02/26/12	10/10/12	195003
1	<b>λ</b> Λ								25/24/25	20/10/12	29500S
L	Volatile Standard Curve	Preparation for 6mL Pre	irge (8280 soin-NEO		<b>1</b>						
	Expiration D	ate:	03/01/12								
Н≕	Date Conc.	rg/mL Vol Sid #8 02-28-12P	5µg/mt, Surr 5 02-28-12T	50µg/mL Vol Std #7 02-28-12L	50,rg/mL Vol SM #8 02-28-12N	50µg/m 02-28		5µg/ml. Vol \$td #10 02-28-12Q	50µg/mL Vol Std #1 5, 02-28-12M	g/ml. Vol Std #2 02-28-120	50µg/mL Vot St 02-28:128
	Code µg/L	Еφ:03-06-12	Exp:03-08-12	Exp.03-06-12	Exp:03-06-12	Exp:03-	06-12	Exp:03-06-12	Exp.03-06-12	Екр:03-06-12	Exp.03-06-1
Ľ	02-29-12B 2 02-29-12G 5	5	5	n/a n/a	rVa rVa	n/i		2 5	r/a r/a	5	Na 25
<i>:</i> :	2 0 02-29-120 10	10	10	n√a	Na Na	rVa	a	10	r/a	10	n/a ¹ 壁
-	02-29-12E 20 02-29-12F 50	20 n/a	20 n/a	n/a 5	n/a .	. N₃ 5		20 n/a	<u>r/a</u> 5	20 n/a	nya¥X€
	0 02-29-126 100	n/a	n/a	10	10	10	, -	n/a	10	n/a	10.92
6. 180	02-29-12H 200	n/a	n/a	20	20	20	2	n/s	20	n/a	20.27 Final Vol7/
8		1						•	-	250µg/mL TBA 02-28-12U	Fhal Vol?/
8	····	<del> </del>							***	Exp:03-06-12	wP&TH20
(A)		1								1 2	5 % 38 5 % 38
ř	<del> </del>	<del>                                     </del>				<del></del>				3	5 3
L.		1 '								4	5 32

#### GCMS STANDARD PREPARATION BOOK #____PAGE #___ 085 ne Standard Curve Preparation for 10ml. Purge (6250 water)-Sweetpea 03/01/12 5/g/ml. Surr 02-28-12AF Exp.03-06-12 Expiration Date: 5µg/mL Vol 8(d #9 02-28-12AB Exp:03-06-12 50pg/mL Vol Sid #7 02-28-12X Exp:03-08-12 5μg/mL Voi Sid <u>#10</u> 02-28-12AC Ετρ:03-06-12 50µg/mL Vol Std #8 50µg/mL Surr 02-28-12Z Exp:03-06-12 02-28-12A1 Ехр.03-96-1 02-28-12AA Ехф.03-08-12 02-28-12AD Exp:03-06-12 Conc. Exp.03-08-12 03 n/a n/a n/a 0.5 n/a 20 rva n/a 10 25 80 100 10 n/a r/a n/a η'a n/a 5 10 10 . 40 100 200 n/a 10 η/a 40 100 n/a n/a n/a Νa 100 100 n/a n/8 200 NO: 250µg/ml, TAPD 02-28-12AG Exp:03-08-12 Final Vol w/PAT H20 25 35 50 50 Neo 03-02-12A 50ug/ml 8260 Internal Standard Conc Date Ехр. Supplier ug/ml Lot # Code Date вL 02SI 120302-03 Internal Standard Mix 2000 166255-29842 02-23-12A 06/14/12 500 02SI 020132-02 Fluorobenzene Standard 2000 169170-28866 02-23-128 05/14/12 500 J.T Baker Purge & Trap KeOH K07E34-00603 02/26/12 10/10/12 19000 CHICO Date 50ug/ml 524 Internal Standard W/ Surrogate Conc. Exp. ug/ml Code Date Lot # սՆ 524 Portification Sol 1000 176776-29297 01-31-12A 03/10/12 )2SI 122450-02 K14E06-00603 02/26/11 10/22/12 3800 Purge & Trap KeOK J&T Baker Volatila Standard Curve Preparation for 5mL Purge (8260 soil)-NEO 50pg/ml. Vol Std #1 Spg/ml. Vol Std #2 50pg/ml. Vol Std #2 50pg/ml. Vol Std #12 02:28-12M 62:28-12O 02:28-12R Exp:03:08-12 Exp:03:08-12 Exp:03:08-12 Expiration Date: 5µg/mL Vot Std #10 50µg/mL Vol Sid #8 92-28-12N 50pg/ml, Surr 50µg/ml. Vol Ski #7 02-28-12L 5µg/ml. Vol Sid #9 5µg/ml. Sun 02-28-121 02-28-128 Exp:03-08-12 02-28-12Q Ехр:03-08-12 Conc. 02-28-12P Date Exp:03-06-12 Еф:03-06-12 Еф:03-06-12 Code 03-02-12C 03-02-12D 03-02-12E Exp:03-05-12 Exp:03-06-12 μοL n/a 2 5 10 20 50 100 200 n/a r/a r/a r/a ηVa rva rva r/a rv/a n/a 20 n/a n/a n/a n/a n/a n/a n/a r√a ιVa 3-02-12H 20 260µg/mL TBA Final Vol w/P&T H2O 02-28-12U Exp.03-06-12 Expration Date: Volatile Standard Curve Preparation for 10ml. Purge (\$260 water) MAX 03/06/12 5µg/mL Vol SM #9 02-28-12AB 50µg/mL Vol Sid #7 | 50µg/mL Vol Sid #8 | 62-28-12X | 02-28-12Z Spg/ml, Vol Sid #10 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 Sugg/ml, Vol Sid #1 50/g/mL Surr 02-28-12AE 5µg/ml. Vol Skl #12 02-28-12AD 02-28-12AF μο/L 0.3 0.5 Екр.03-06-12 Ехр:03-06-12 Exp.03-06-12 Ех<del>р:03-</del>06-12 Exp:03-06-12 15-12A n/a n/a n/a n/a 1 5 10 20 40 r/e n/a r/a Na 10 n/a Ŋθ riv a 75-12E n/a 10 10 20 πa rva r/a 20 40 100 ηſĐ 40 100 200 n/a rva 40 80 100 n/a n/a <u>₁√a</u> 100 rı/a 200 250/rg/mL TAPO 02-28-12AG Exp:03-06-12 Final Vol WP&T H2O

227

## EPA METHOD 8330B Explosives



### EPA METHOD 8330B Explosives

**Summary Forms** 



### AFCEE ORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 8330 AAB #: 120302A-164472 Lab Name: APPL, Inc Contract #: *G012 Base/Command; CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-SW1 AY56027 Comments: ARF: 67099 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date:

Diane Anderson

Project Manager

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8330

Preparatory Method: 8330

AAB #: 120302A-164472

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: 120130

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Confirm	Qualifier
1,3,5-TNB	0.075	0.25	0.075	1		Ú
1,3-DNB	0.075	0.25	0.075	1		U
2,4,6-TNT	0.075	0.25	0.075	1		U
2,4-DNT	0.08	0.50	0.08	1		υ
2,6-DNT	0.075	0.26	0.075	1		υ
НМХ	0.08	2.2	0.08	1		U
M-NITROTOLUENE	0.08	0.60	0.08	1		U
METHYL-2,4,6-TRINITROPHENYLNIT	0.075	0.65	0.075	Ĭ		Ü
NITROBENZENE	0.075	0.26	0.075	1		U
O-NITROTOLUENE	0.075	0.25	0.075	1		U
P-NITROTOLUENE	0.08	0.50	0.08	1		U
RDX	0.08	1.0	0.08	1		U
Surrogate		Dog	OVORV Con	tral Y imite	Qualific	

SurrogateRecoveryControl LimitsQualifierSURROGATE: 1,2-DINITROBENZENE (S10065-135

Сс	١m	1111	e	ni	o	•
$\sim$	,11	ш		щ	o	•

ARF: 67099

7:2

. ٤

Initial Calibration Form 6

Lab Name: APPL, Inc.

Case No:

NITROGLYCERIN

TML

Signal #2 LINE TO ROX #2

> TM Ž

Instrument: Waldorf

TM ž

23 23 24 32 32

4 5 5 5 S

178 129 153

F 5 2 2 4

2,6-DINITROTOLUENE #2 2,4-DINITROTOLUENE #2

TETRYL #2

₽

10

₽ ž ₽ ž ĭ MI Ž

Σ

2-NITROTOLUENE #2
4-NITROTOLUENE #2
3-NITROTOLUENE #2

T M ξ

16

67099 SDG No: GTO' Initial Cal. Date: 01/30/12

%RSD 3.8 7 919 9.5 1.6 4 <u>4</u>. 릙 ₹ 128 128 Initials: 11 0130_0000011.D 0130_000013.D 82 114 708 708 348 745 609 609 310 310 318 5 2 0130_0000010.D 용 112 0130_000008.D 0130_000000.D 802 802 760 760 129 106 736 347 φ 5 131 0130_000006.D 0130_000007.D 145 홄 344 320 320 320 320 320 320 1122 1132 144 746 476 789 349 648 <u>က</u> <u>အ</u> 117 G130_00000_0810 G14000000_0810 78,4 256 356 356 7788 334 304 191 191 130 138 749 2.4.6-TRINITROTOLUENE #2 2.4MINO 4.6-DINITROTOLUENE 4.4MINO 2.6-DINITROTOLUENE Matrix 1,3,5-TRINITROBENZENE #2 1,2-DINITROBENZENE #2 1,3-DINITROBENZENE #2 3,5-DINITROANILINE #2 NITROBENZENE #2

## Form 7 Second Source Calibration

Lab Name: APPL, Inc.	SDG No: <u>১7০৭৭                                    </u>
Case No:	Date Analyzed: 30-Jan-2012, 17:57:25
Matrix:	Instrument: Waldorf
	Initial Cal, Date: 01/30/12
	Data File: 0130_0000014.D

	· · · · · · · · · · · · · · · · · · ·	Compound	MEAN	CCRF	%D	(	%Drift
1	TML	NITROGLYCERIN	128	138	8.0	TML	7.4
2	TM	PETN	111	111	0.51	TM	
	Signal	#2					
1	TM	HMX	731	737	0.79	TM	
2	TM	RDX	470	460	2.2	TM	
3	TM	1,3,5-TRINITROBENZENE	788	758	3.8	TM	
4	S	1,2-DINITROBENZENE	350	352	0.50	S	
5	TM	1,3-DINITROBENZENE	753	764	1.4	ТМ	
6	TM	3,5-DINITROANILINE	641	658	2.6	ТМ	
7	TM	NITROBENZENE	349	348	0.14	ТМ	
8	ŤΜ	TETRYL	254	221	13	ТМ	
	TM	2,4,6-TRINITROTOLUENE	326	318	2.5	ТМ	
10	TM	2-AMINO-4,6-DINITROTOLUEN	304	317	4.5	TM	
11	TM	4-AMINO-2,6-DINITROTOLUEN	239	261	9.1	TM	,,
12	TM	2,4-DINITROTOLUENE	314	333	6.1	ТМ	
13	TM	2,6-DINITROTOLUENE	177	176	0.39	TM	
14	TM	2-NITROTOLUENE	125	129	3.9	TM	
15	TM	4-NITROTOLUENE	122	126	3.2	TM	
16	TM	3-NITROTOLUENE	147	157	6.7	TM	
17							
18							
19							
20							
21							
22	-						
23							
24							
25							
26							
27							
28							
29							
30							
31							

## Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 67099
Case No:	Date Analyzed: 05-Mar-2012, 20:51:44
Matrix:	Instrument: Waldorf
	Initial Cal. Date: 01/30/12
	Data File: 0305_0000018.D

		Compound	MEAN	CCRF	%D		%Drift
1	TML	NITROGLYCERIN	128	126	1.6	TML	2.1
2	TM	PETN	111	113	2.2	TM	
	Signa	l #2					
1	TM	HMX	731	705	3.6	TM	
2	TM	RDX	470	449	4.4	TM,	
3	TM	1,3,5-TRINITROBENZENE	788	766	2.8	TM	
4	S	1,2-DINITROBENZENE	350	345	1.6	S	
5	TM	1,3-DINITROBENZENE	753	739	1.9	TM	
	TM	3,5-DINITROANILINE	641	600	6.4	TM	
7	TM	NITROBENZENE	349	344	1.4	TM	
8	TM	TETRYL	254	284	12	TM	
9	TM	2,4,6-TRINITROTOLUENE	326	328	0.65	TM	
10	TM	2-AMINO-4,6-DINITROTOLUEN	304	320	5.3	ТМ	
11	TM	4-AMINO-2,6-DINITROTOLUEN	239	250	4.6	ТМ	
12	TM	2,4-DINITROTOLUENE	314	317	0.89	TM	
13	TM	2,6-DINITROTOLUENE	177	178	0.80	TM	
14	TM	2-NITROTOLUENE	125	128	3.0	MT	
15	TM	4-NITROTOLUENE	122	127	3.9	TM	
16	TM	3-NITROTOLUENE	147	153	3.9	TM	
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							

## Form 7 Continuing Calibration

Lab Name: APPL, Inc.	SDG No: 67099
Case No:	Date Analyzed: 06-Mar-2012, 04:56:16
Matrix:	Instrument: Waldorf
	Initial Cal. Date: 01/30/12
	Data File: 0305, 0000032 D

		Compound	MEAN	CCRF	%D		%Drift
1	TML	NITROGLYCERIN	128	127	0.74	TML	1.3
2	TM	PETN	111	113	2.2	TM	
	Signal	#2					
1	TM	HMX	731	707	3.3	TM	
2	TM	RDX	470	447	4.9	TM	
3	TM	1,3,5-TRINITROBENZENE	788	764	3.0	TM	
	S	1,2-DINITROBENZENE	350	348	0.73	S	
5	ТМ	1,3-DINITROBENZENE	753	745	1.1	TM	
		3,5-DINITROANILINE	641	599	6.6	TM	
	TM	NITROBENZENE	349	338	3.0	ТМ	
8	TM	TETRYL	254	281	10	TM	
9		2,4,6-TRINITROTOLUENE	326	329	0.87	TM	
10		2-AMINO-4,6-DINITROTOLUEN	304	319	5.2	MT	
		4-AMINO-2,6-DINITROTOLUEN	239	249	4.2	TM	
12		2,4-DINITROTOLUENE	314	320	1.8	TM	
13		2,6-DINITROTOLUENE	177	180	1.7	TM	
14		2-NITROTOLUENE	125	126	0.98	TM	
		4-NITROTOLUENE	122	125	2.4	TM	
	TM	3-NITROTOLUENE	147	150	2.3	TM	
17							
18			<u> </u>				
19							
20			ļi				
21							
22			<u> </u>				
23							
24	]		_[				
25			<u> </u>				
26							
27			ļ				
28							
29			<u> </u>				
30							_
31			ļ				

#### AFCEE ORGANIC ANALYSES DATA SHEET 6 BLANK

Analytical Method: EPA 8330

AAB #: 120302A-164472

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120302 K-BLK 14

p 3-12-12

Initial Calibration ID: 120130

Analyte	Method Blank	RL	Q
1,3,5-TNB	< RL	0.25	U
1,3-DNB	< RL	0.25	U
2,4,6-TNT	< RL	0.25	U
2,4-DNT	< RL	0.50	U
2,6-DNT	< RL	0.26	U
НМХ	< RL	2.2	Ų
M-NITROTOLUENE	< RL	0.60	U
METHYL-2,4,6-TRINITROPHENYLNITRAMINE	< RL	0.65	U
NITROBENZENE	< RL	0.26	U
O-NITROTOLUENE	< RL	0.25	· U
P-NITROTOLUENE	< RL	0.50	U
RDX	< RL	1.0	Ŭ

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DINITROBENZENE	103	65-135	

Comments:

ARF: 67099, Sample: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 7 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 8330

AAB #: 120302A-164472

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120130

LCS ID: 120302 LCS IA

Analyte	Expected	Found	% R	Control Limits	Q
1,3,5-TNB	2.000	2.012	101	65-152	
1,3-DNB	2.000	1.974	98.7	65-135	
2,4,6-TNT	2.000	2.087	104	65-138	
2,4-DNT	2.00	2,06	103	65-135	
2,6-DNT	2.000	2.049	102	65-139	
НМХ	2.00	2.11	106	64-147	
M-NITROTOLUENE	2.00	2.11	106	50-144	
METHYL-2,4,6-TRINITROPHENYLNIT	2.000	2.378	119	34-152	
NITROBENZENE	2.000	1.936	96.8	25-144	
O-NITROTOLUENE	2.000	2.066	103	65-139	
P-NITROTOLUENE	2.00	2.10	105	32-160	
RDX	2.00	1.87	93.5	65-142	

Surrogate	Recovery	Control Limits	Qualifier
SURROGATE: 1,2-DINITROBENZENE (S	100	65-135	

Comments:

ARF: 67099, QC Sample ID: AY56027

#### AFCEE ORGANIC ANALYSES DATA SHEET 9 HOLDING TIMES

Analytical Method: EPA 8330

AAB#: 120302A-164472

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Extracted	Max, Holding Time Ext		Date Analyzed	Max. Holding Time A	Time Held Anal.	Q
B4-NT1-SWI	29-Feb-12	01-Mar-12	02-Mar-12	14	2	05-Mar-12	40	3	

Comments: ARF: 67099

## Injection Log

Directory: H:\WALDORF\CHEM32\I\DATA\120130

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	0	0130_0000004.D		8830B_CB 0.005 PPM 01/30/12		01/30/2012 11:43
2	0	0130_000005.D		8830B_CB 0.01 PPM 01/30/12		01/30/2012 12:20
3	0	0130_0000006.D		8830B_CB 0.02 PPM 01/30/12		01/30/2012 12:57
4	0	0130_0000007.D		8830B_CB 0.05 PPM 01/30/12		01/30/2012 13:35
5	0	0130_000008.D		8830B_CB 0.1 PPM 01/30/12		01/30/2012 14:12
6	0	0130_0000009.D		8830B_CB 0.2 PPM 01/30/12		01/30/2012 14:50
7	0	0130_000010.D		8830B_CB 0.5 PPM 01/30/12		01/30/2012 15:27
8	0	0130_0000011.D		8830B_CB 1.0 PPM 01/30/12		01/30/2012 16:05
9	0	0130_0000012.D		8830B_MX-A 2.0 PPM 01/30/12		01/30/2012 16:42
01	0	0130_0000013.D		8830B_MX-B 2.0 PPM 01/30/12		01/30/2012 17:19
[1	0	0130_0000014.D		8830B_SS 1.0 PPM 01/30/12		01/30/2012 17:57
12	0	0305_0000018.D		8330_CCV 1.0 PPM 03/05/12		03/05/2012 20:51
13	0	0305_0000020.D	7.99201	120302SLCS1A 7.992 DF 03/02/12	soil	03/05/2012 21:56
14	0	0305_0000021.D	7.98403	120302SBLK1A 7.984 DF 03/02/12	soil	03/05/2012 22:24
15	0	0305_0000022.D	7.94439	AY56027S03 7.944 DF 03/02/12	soil	03/05/2012 22:51
16	0	0305_0000032.D		8330_CCV 1.0 PPM 03/05/12		03/06/2012 04:56

## EPA METHOD 8330B Explosives

**Calibration Data** 



Data File : 0130_0000004.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 11:43:00 Acq On

Operator : mp

: 8830B_CB 0.005 PPM 01/30/12 Sample

Misc

ALS Vial : 4096 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:10 2012 Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb
4) S	tem Monitoring ( 1,2-DINIT ed Amount 62.	0.000	3.748	0 Recovery	71209 =	N.D. 0.00%	5.981 # 9.57%
Tar	get Compounds						
1) TM	-	0.000	0.949	0	149898	N.D.	6.203 #
2) TM		0.000	1.801	0	95658	N.D.	5.999 #
3) TM	1,3,5-TRI	0.000	2.913	0	162972	N.D.	5.952 #
5) TM		0.000	3.885	0	153184	N.D.	5.906 #
6) TM		0.000	4.144	0	159607	N.D.	8.138 #
7) TM	NITROBENZENE	0.000	5.273	0	71653	N.D.	5.956 #
8) TM	NITROGLYC	6.100	0.000	40040	0	8.476	N.D. #
9) TM	TETRYL	6.650	6.643	115206	51363	NoCal	5.877 #
10) TM	2,4,6-TRI	7.108	7.104	82684	66880	NoCal	5.989 #
11) TM	2-AMINO-4	7.504	7.500	108410	60749	NoCal	6.239 #
12) TM	4-AMINO-2	7.790	7.790	102045	47503	NoCal	6.038 #
13) TM	2,4-DINIT	8.964	8.977	52864	65596	NoCal	6.204 #
14) TM	2,6-DINIT	9.301	9.309	54314	38163	NoCa1	6.253 #
15) TM	2-NITROTO	0.000	12.704	0	23922	N.D.	5.650 #
16) TM	4-NITROTO	0.000	13.311	0	23981	N.D.	5.750 #
17) TM	3-NITROTO	0.000	14.175	0	27687	N.D.	5.574 #
18) TM	PETN	0.000	0.000	0	0	พ.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(Or Reviewed)

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

Signal #2: DAD1A.ch 0130_0000004.D Signal #1: DADIB.ch 8 30-Jan-2012, 11:43:00 Signal(s)

Operator Acg On

щр 8830в_CB 0.005 РРМ 01/30/12 Sample Misc

Sample Multiplier: 1 4096 ALS Vial Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:10 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBAX Extend-C18 Signal

% % # #

Phase: 254nm Info: ZORBAX Extend-C18 100x3.0mm 1.8-micron TIC: 0130_0000004.D **а**лжірояти Response 3e+07 1e+07 2e+07 242

17.00

16.00

15.00

8

13.00

12.00

17.00

10.00

900

8,00

9.

.8

9.00

9.00

300

8

8

3000000

Response

Eme

2000000

IC: 0130 0000004.D

TOE.ENDTORTIM-5 8 8 807.SQOTORTIN-S 12.00 1.00 10.00 еос.е∮ЯТІМЮ-а,з 9.00 **₽**76.8 (βΗΤΙΝΙΩ-**₽**,Ω 8.00 281.1 (S-ONIMA-# 9.0 £01.7 ( NIST-8,4, 9.00 NITROBENZE 272 2.00 3.00 4.00 5.00 07:53:21 2012 WALDORF 887.€ ATINIG-8;¦ 888.€ < ATINIG-8;¦ 841.4 < ATINIG-8,6 E19.2 < NIST-8,6,8 FRDX #2 W110907.M Tue Jan 31 3.00 RWX #S ige ige

0091

848.0

100000

17.00

16.00

15.00

а**тты**ңотоятиға

Page:

Data File : 0130_0000005.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 12:20:27 Acq On

Operator : mp

: 8830B CB 0.01 PPM 01/30/12 Sample

Misc

ALS Vial : 4097 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:12 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

dag

dag

Resp#1

									_
4)	Ŝ	em Monitoring 1,2-DINIT d Amount 62.		3.750	0 Recovery	140918	N.D. 0.00%	11.837 18.94%	#
	Taro	et Compounds							
1)	TM	НМХ	0.000	0.949	0	301606	Ŋ,D.	12.481	Ħ
2)	TM	RDX	0.000	1.801	0	193163	N.D.	12.115	Ħ
3)	TM	1,3,5-TRI	0.000	2.914	0	320678	N.D.	11,711	#
5)	TM	1,3-DINIT	0.000	3.886	0	303142	N.D.	11.687	#
6)	TM	3.5-DINIT	0.000	4.145	0	245821	N.D.	12.534	#
7)	TM	NITROBENZENE	0.000	5.275	0	139226	N.D.	11.573	#
8)	TM	NITROGLYC	6.126	0.000	31348	0	6.636	N.D.	Ħ
9)	TM	TETRYL	6,649	6.648	182753	103086	NoCal	11.796	#
10)	TM	2,4,6-TRI	7.108	7.108	185164	128609	NoCal	11.516	
11)	TM	2-AMINO-4	7.503	7.505	215636	118897	NoCal	12.211	#
12)	TM	4-AMINO-2	7.796	7.795	197591	95447	NoCal	12.132	
13)	TM	2,4-DINIT	8.976	8,981	84481	123174	NoCal	11.650	
14)	TM	2,6-DINIT	9.318	9.314	113243	70115	NoCal	11.489	
15)	TM	2-NITROTO	0.000	12.706	0	50185	N.D.	11,854	
16)	TM	4-NITROTO	0.000	13.316	0	48175	N.D.	11.550	-
17)	TM	3-NITROTO	0.000	14.175	0	58409	N.D.	11.759	#
18)	TM	PETN	0.000	0.000	0	0	N.D.	Ŋ.D.	_
4									-

RT#2

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ 0130_0000005.D Signal #1: DADIB.ch Signal #2: DADIA.ch 30-Jan-2012, 12:20:27

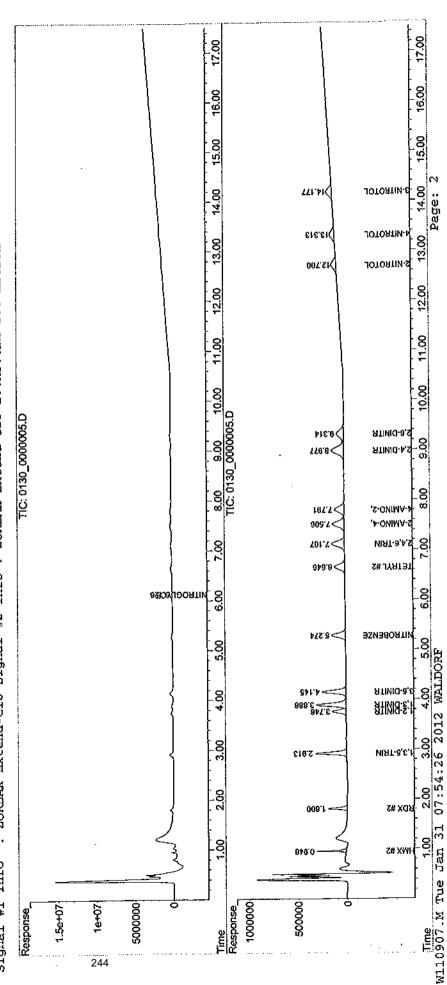
Data Path Data File Signal(s) Acq On

Operator

MP 8830B_CB 0.01 PPM 01/30/12 Sample Misc

Sample Multiplier: 1 4097 ALS Vial

File signal 1: Waldorf_Signal_1_110721.e File signal 2: Waldorf_Signal_2_110803.e _1_110721.e Time: Jan 31 07:52:12 2012 Integration Integration Quant


Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

40uL Volume Inj. Signal #1 Phase Signal #1 Info

#2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron : 214nm : ZORBAX Extend-C18 Signal



Data File: 0130_000006.D

Signal(s) : Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 12:57:53 Acq On

Operator : mp

Sample : 8830B_CB 0.02 PPM 01/30/12

Misc ALS Vial: 4098 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:14 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppo	_
4) S	em Monitoring ( 1,2-DINIT d Amount 62.	0.000	3.749	0 Recovery	279070 =	N.D. 0.00%	23.442 37.51%	#
Targ	et Compounds			_			04 600	
1) TM	HMX	0.00 <b>0</b>	0.949	0	596801	Ŋ.D.	24.697	
2) TM	RDX	0,000	1,801	0	380739	N.D.	23.879	
3) TM	1,3,5-TRI	0.000	2.914	0	631470	Ŋ,D.	23,061	
5) TM	1,3-DINIT	0.000	3.886	0	600521	N.D.	23.153	
6) TM	3,5-DINIT	0.000	4.145	0	518340	N.D.	26.429	
7) TM	NITROBENZENE	0.000	5.273	0	275313	N.D.	22.885	
8) TM	NITROGLYC	6,130	0.000	122485	0	25,928		#
9) TM	TETRYL	6.645	6.645	340045	199123	NoCal	22.785	
10) TM	2.4.6-TRI	7.105	7.105	336670	256284	NoCal	22.948	#
11) TM	2-AMINO-4	7.502	7.502	375202	238771	NoCal	24.522	#
12) TM	4-AMINO-2	7.793	7.793	366649	188074	NoCal	23.906	#
13) TM	2,4-DINIT	8.970	8,979	163706	244455	NoCal	23.122	Ħ
14) TM	2,6-DINIT	9.313	9.311	211367	138600	NoCal	22.711	#
15) TM	2-NITROTO	0.000	12.702	0	97207	N.D.	22.961	#
16) TM	4-NITROTO	0.000	13.311	Ó	95057	N.D.	22,791	#
10) TM	3-NITROTO	0.000	14.171	Ō	115073	N.D.	23,167	#
18) TM	PETN	16,008	0.000	93499	0	24.179	N.D.	#
101 111								-

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

16.00 16,00 800.81 NT34 15.00 15.00 14.00 оть мфтоя пи-ф 14.00 Page: FFE.EKQTORTIN-4 13.88 13.00 Phase: 254nm Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron ева.≲цфтоятии-**द** 12.00 12.00 28 11.00 10.00 10.00 ric: 0130 0000006.D TIC: 0130_0000006.D SIE.8 (PIINIO-8, 9.00 87**9.8 <∤**711N!O∙**⊅**,S 8.0 8.00 \$87.7 **﴿\$**-ONIMA-; Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M 2.00 9.0 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:14 2012 0130_0000006.D Signal #1: DAD1B.ch Signal #2: DAD1A.ch 30-Jan-2012, 12:57:53 848.8 **(**# 1787∃Tj -00 9 **з**емарояти∤ # # # # H:\WALDORF\CHEM32\1\DATA\120130\ Signal Signal SYS. 253 (1380 RTIM) 2.00 3.00 4.00 5.00 07:55:36 2012 WALDORF 8 Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration Sample Multiplier: 1 8830B_CB 0.02 PPM 01/30/12 261.6 € ATHNIG-2,C 20RBAX Extend-C18 8 818 SHINE 3788.6 300 -- 5°84¢ ‡/I/βT-∂,¢./f 214nm Integrator: ChemStation 2.00 008,r KOX #2 1.00 Jan 31 કુ 4098 Volume Inj. Signal #1 Phase Signal #1 Info WX #S 846.0 W110907.M The 10000001 Data Path Data File 3e+07 1e+07 3000000 2000000 2e+07 4000000 Signal(s) Response Response Misc ALS Vial Operator Acq On Sample <u>i</u>ne 246

(CI Keviewed)

Quantitation Report

17.00

17,00

Data File : 0130_0000007.D

Signal(s) : Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 13:35:20 Aca On

Operator : mp

: 8830B_CB 0.05 PPM 01/30/12 Sample Misc : 4099 Sample Multiplier: 1 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:16 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

: 40uL

Signal #2 Phase: 254nm Signal #1 Phase : 214nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	dqq 	
4)	s	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.747	0 Recovery	698329	N.D. 0.00%	58.659 93.85%	#
-	rarq	et Compounds							
1)	TM	HMX	0.000	0.949	0	1491883	N.D.	61.738	
2)	TM	RDX	0.000	1.800	0	961454	N.D.	60.300	
3)	TM	1,3,5-TRI	0.000	2.912	0	1589883	N.D.		
5)	TM	1,3-DINIT	0.000	3.884	0	1511468	N.D.		
6)	TM	3,5-DINIT	0.000	4.143	0	1245058	N.D.		
7)	TM	NITROBENZENE	0.000	5.270	0	699618	N.D.	58.155	
8)	TM	NITROGLYC	6.125	0.000	289762	Ō	61.337	·-	Ħ
9)	TM	TETRYL	6.643	6.643	849283	507538	NoCal		
.0)	TM	2,4,6-TRI	7.103	7.103	847679	648090	NoCal		
.1)	TM	2-AMINO-4	7.498	7.498	926970	606794	NoCal		
2)	TM	4-AMINO-2	7.789	7.788	907539	481877	NoCal	61.250	
3)	TM	2,4-DINIT	8.970	8.974	450562	622938	NoCal	<b>.</b>	Ħ
4)	TM	2,6-DINIT	9.306	9.306	493266	350689	NoCal	57.465	
5)	TM	2-NITROTO	0.000	12,692	0	250448	N.D.	59.158	
6)	TM	4-NITROTO	0.000	13.299	0	243523	N.D.	58.387	
7)	TM	3-NITROTO	0.000	14.160	0	294798	N.D.	59.351	Ħ
8)	TM	PETN	15.994	0.000	216730	0	56.048	N.D.	#

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

325

DAD1A.ch

H:\WALDORF\CHEM32\1\DATA\120130\ 0.130_0000007.0 Data Path Data File

Signal #1: DAD1B.ch Signal #2: 30-Jan-2012, 13:35:20 Signal(s)

Acq On

MP 88305_CB 0.05 PPM 01/30/12 Operator Sample Misc

Sample Multiplier: 1 4099 ALS Vial Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:16 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal #1 Phase Signal #1 Info

#2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron : 40uL : 214nm : ZORBAX Extend-C18 Signal

17.00 17.00 16.00 9.8 \$66'SI NEBd 15.00 14.00 Page: 8.4 891.414 долоятим-ф >13,302 10ТОЯТІИ∙4 13.00 13.00 лотоятіи-а́ 715,690 12.00 12.00 58 5.8 10.00 10.00 8.00 9.00 1 TIC: 0130_0000007.D TIC: 0130 0000007.D ATINIC-8,4 908'6 90 ATINIO-4,2 8.00 S-ONIMA-1 2,00 2.00 TETRYL#2 29'9< 6.00 SELECTION SELECTION SE NITROBENZ = 9.210W110907.M Tue Jan 31 07:56:40 2012 WALDORF 5.00 ятию. г. ф 60.4 4,142 \$HN18:8:4 89 NIRT-6,6,1 2167 8. 1.00 Z# XWH 846.0 10000001 1.5e+07 1e+07 500000 5000000 2000000 1500000 2.5e+07 2e+07 Response Response Ē 248

Data File : 0130_0000008.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 14:12:46 Acq On

: mp Operator

: 8830B_CB 0.1 PPM 01/30/12 Sample

Misc

: 4100 Sample Multiplier: 1

ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Jan 31 07:52:18 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

: 40uL

Signal #1 Phase : 214nm

Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron Resp#1

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	-
4)	S	em Monitoring ( 1,2-DINIT d Amount 62.5	0.000	3.747	0 Recovery		N.D. 0.00%	119.038 190.46%	#
		et Compounds		0.050	^	2020022	NI D	124.979	¥
1)	TM	HMX	0.000	0.950	0	3020082	N.D. N.D.	121.363	
2)	TM	RDX	0.000	1,801	0	1935079 3208656	N.D.		#
3)	TM	1,3,5-TRI	0.000	2.913	0		N.D.		Ħ
5)	ТM	1,3-DINIT	0.000	3.884	0	3063543	N.D.	127.291	"
6)	ТM	3,5-DINIT	0.000	4.142	0	2496522		117.526	
7)	TM	NITROBENZENE	0.000	5,269	0	1413859	N.D. 111.138		#
8)	ТM	NITROGLYC	6.125	0.000	525028	0		-*	#
9)	TM	$\mathtt{TETRYL}$	6.640	6.640	1668109	1021061	NoCal		•
10)	TM	2,4,6-TRI	7.102	7.102	1654609	1314563	NoCal	117.709	
11)	TM	2-AMINO-4	7.495	7.494	1824013	1231831	NoCal	126.512	
12)	TM	4-AMINO-2	7,786	7.786	1772002	971854	NoCal	123,530	
13)	TM	2,4-DINIT	8.971	8.972	880676	1258388	NoCal	119.024	
14)	TM	2,6-DINIT	9.306	9.305	959379	704858	NoCal	440.222	#
15)	TM	2-NITROTO	0.000	12.693	0	503647	Ŋ.D.	118.965	
16)	TM	4-NITROTO	0.000	13.301	0	491719	Ŋ.D.		#
17)	TM	3-NITROTO	0.000	14,163	0	592330	N.D.	119.252	
18)	тM	PETN	15.996	0.000	419179	0	108.403	N.D.	#

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(QT Reviewed)

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

DAD1A.ch 0130_0000008.D Signal #1: DAD1B.ch Signal #2: 30-Jan-2012, 14:12:46 Signal (s) Acq On

Operator Sample

8830B_CB 0.1 PPM 01/30/12 Misc

Sample Multiplier: 1 4100 ALS Vial

Integration File signal 1: Waldorf_Signal_1110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:18 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBAX Extend-C18 Signal

17.00 17.00 16.00 16.00 NT3q 46.984 15.00 3.8 Page: 2 ea≀.ме́фятинф 8 14.00 SOE. BEET DRIIN-4 13.00 13.00 #2 Phase: 254nm #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron Sea.SREDATIN-S 12.00 12,00 17.00 11.00 10.00 10.00 8.00 9.00 1 TIC: 0130 0000008.D TIC: 0130 0000008.D 2,4-DINITR 9.304 2,6-DINITR 9.304 9.0 287.7 <**₹-**ØNIMA-1 8 7.00 8£8.8 <**ऽ**∰JYЯТЭТ 009 9.00 асткофияса NITRO8<u>ÈMZE</u> 6.269 W110907.M Tue Jan 31 07:57:33 2012 WALDORF 5.00 8 3.0 . 70 70 008,1 1.08 ö 2e+07 1e+07 8000000 0000009 4000000 2000000 5e+07 4e+07 3e+07 Response Response Time 250

Data File: 0130_000009.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 14:50:12

Operator : mp

Sample : 8830B_CB 0.2 PPM 01/30/12

Misc

ALS Vial : 4101 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Ouant Time: Jan 31 07:52:20 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

	<b></b> -	Compound	RT#1	RT#2	Resp#1	Resp#2	ррь	ppb	-
4)	s	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.741	0 Recovery	2790873 =	N.D. 0.00%	234.432 375.09%	Ħ
	Targ	et Compounds							
1)	TM	НМХ	0.000	0.948	0	5888471	N.D.	243,681	#
2)	TM	RDX	0.000	1.799	0	3884260	Ŋ.D.	243.611	#
3)	TM	1,3,5-TRI	0.000	2.909	0	6416516	N.D.	234.325	#
5)	TM	1,3-DINIT	0.000	3.879	0	6080171	N.D.	234.418	#
6)	TM	3,5-DINIT	0.000	4.136	0	5125781	N.D.	261.350	#
7)	TM	NITROBENZENE	0.000	5.266	0	2772476	Ŋ.D.	230.460	#
8)	TM	NITROGLYC	6.107	0.000	1028470	0	217.707	-,	Ħ
9)	TM	TETRYL	6.626	6.626	3221537	1972419	NoCal	225.698	#
10)	TM	2,4,6-TRI	7.087	7.087	3224359	2549952	NoCal		#
11)	TM	2-AMINO-4	7.482	7.482	3513966	2386952	NoCal		#
12)	TM	4-AMINO-2	7.772	7.772	3413125	1881007	· NoCal	,	Ħ
13)	TM	2,4-DINIT	8.957	8.957	1764865	2453692	NoCal		Ħ
14)	TM	2,6-DINIT	9,289	9.289	1886480	1370289	NoCal		#
15)	TM	2-NITROTO	0.000	12.683	0	968566	N.D.		#
16)	TM	4-NITROTO	0.000	13.291	0	946299	N.D.		#
17)	TM	3-NITROTO	0.000	14.155	0	1139786	N.D.		#
18)	TM	PETN	15.981	0.000	848667	0	219.471	N.D.	#

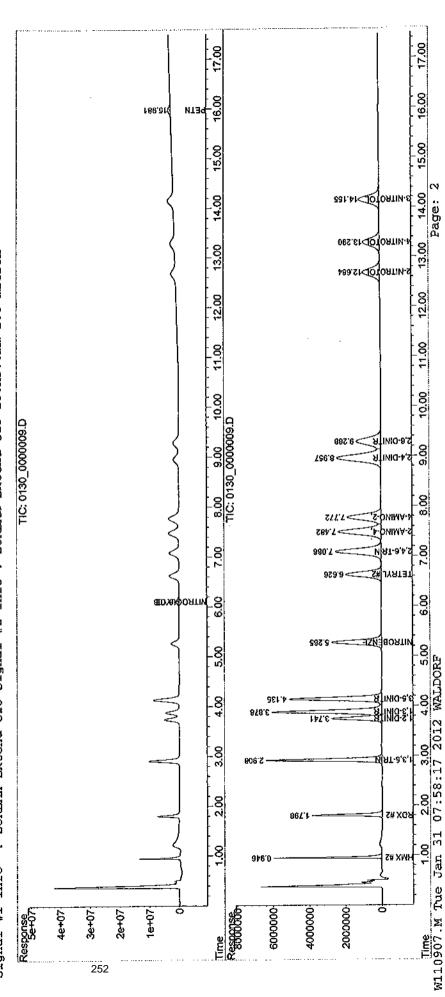
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

#2: DAD1A.ch 0130_0000009.D Signal #1: DAD1B.ch Signal Signal(s)

30-Jan-2012, 14:50:12 Operator Acq On

8830B_CB 0.2 PPM 01/30/12 Sample Misc


Sample Multiplier: 4101 ALS Vial Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:20 2012 Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : ZORBAX Extend-C18 Signal

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron 7 4 4



Data File : 0130_0000010.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 15:27:39 Acq On

Operator ; mp

: 8830B_CB 0.5 PPM 01/30/12 Sample

Misc

: 4102 Sample Multiplier: 1

ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 07:52:22 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

: 40uL Volume Inj.

Signal #2 Phase: 254nm Signal #1 Phase : 214nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	-
4)	s	em Monitoring C 1,2-DINIT d Amount 62.5	0.000	3.743	0 Recovery	6940646 ' =	N.D. 0.00%	583.011 932.82%	#
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)	TM TM TM TM TM TM TM TM TM TM TM TM TM T	et Compounds HMX RDX 1,3,5-TRI 1,3-DINIT 3,5-DINIT NITROBENZENE NITROGLYC TETRYL 2,4,6-TRI 2-AMINO-4 4-AMINO-2 2,4-DINIT 2,6-DINIT 2-NITROTO	0.000 0.000 0.000 0.000 0.000 6.126 6.643 7.103 7.495 7.787 8.971 9.305	0.948 1.797 2.909 3.879 4.139 5.264 0.000 6.643 7.103 7.495 7.787 8.971 9.305	0	14217365 8996618 15346795 14895805 12208006 6934531 0 5105934 6606213 6187316 4870448 6361186 3549893 2553602 2502848	N.D. N.D. N.D. N.D. S49.338 NoCal NoCal NoCal NoCal NoCal NoCal NoCal	588.355 564.245 560.451 574.300 622.454 576.428 N.D. 584.258 591.535 635.452 619.069 601.670 581.691 603.180 600.082	***
16) 17) 18)	TM TM TM	4-NITROTO 3-NITROTO PETN	0,000 0.000 15.996	13.295 14.160 0.000	0 0 2249019	3028315 0	N.D. 581.612	609.680 N.D.	•••

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(Or Reviewed)

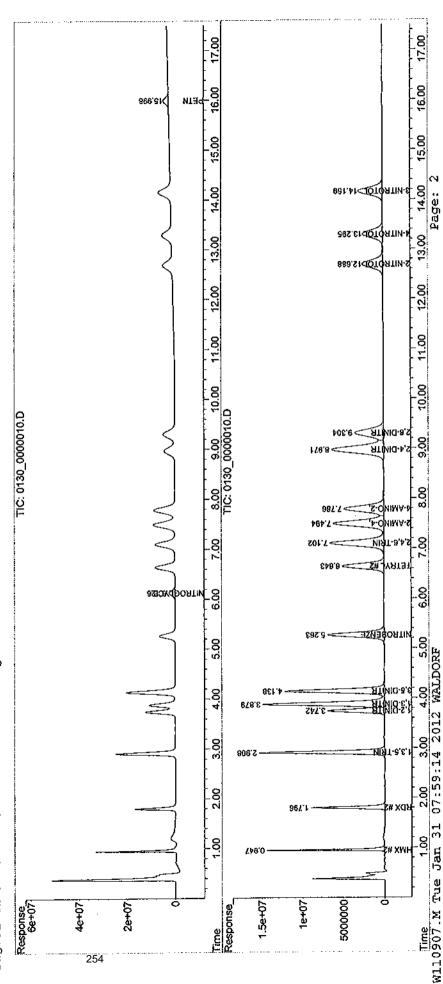
H:\WALDORF\CHEM32\1\DATA\120130\ 130_0000010.D Data Path Data File

Signal #1: DADIB.ch Signal #2: DADIA.ch 30-Jan-2012, 15:27:39 Signal(s)

Acq On

Operator Sample

Sample Multiplier: 1 8830B_CB 0.5 PPM 01/30/12 4102 ALS Vial Misc


Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:22 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBA

Phase: 254nm Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron : 214nm : 20RBAX Extend-C18 Signal #2



Data File : 0130_0000011.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

: 30-Jan-2012, 16:05:06 Acq On

cçm : Operator

: 8830B_CB 1.0 PPM 01/30/12 Sample

Misc

ALS Via1 : 4103

Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:24 2012

RT#1

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

; 40uL

Signal #1 Phase : 214nm

Compound

Signal #2 Phase: 254nm

RT#2

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#1

Resp#2

ppb

ppb

									-
4)	Ŝ	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.752	0 Recovery	13933702 , =	N.D. 0.00%	1170.425 1872.68%	#
,	Tarq	et Compounds							
1)	TM	HMX	0.000	0.949	0	28319958	N.D.	1171.959	
2}	TM	RDX	0.000	1.800	0	17990471	N.D.	1128.316	
3)	TM	1,3,5-TRI	0,000	2.917	0	30614228	N.D.	1118.004	
5}	TM	1,3-DINIT	0.000	3.889	0	29817153	N.D.	1149.585	
6)	TM	3,5-DINIT	0.000	4.149	0	24351428	N.D.	1241,615	
7)	TM	NITROBENZENE	0.000	5.278	0	13910609	N.D.	1156.309	#
8)	TM	NITROGLYC	6.145	6.143	5157923	106270	1091.834	****	Ħ
9)	TM	TETRYL	6.671	6.671	16762076	10268073	NoCal	1174.946	
10)	TM	2,4,6-TRI	7.133	7.133	16607140	13173668	NoCa1	1179.600	
11)	TM	2-AMINO-4	7.520	7.520	18209141	12380128	NoCa1	1271.469	#
12)	TM	4-AMINO-2	7.815	7.815	17630086	9697138	NoCal	1232.576	
13)	TM	2,4-DINIT	9.006	9.005	9156912	12737799	NoCal	1204.800	
14)	TM	2,6-DINIT	9.341	9.341	9784688	7111957	NoCal	1165.377	#
15)	TM	2-NITROTO	0.000	12.728	0	5159271	N.D.	1218.660	
16)	TM	4-NITROTO	0.000	13.334	0	5061551	N.D.		Ħ
17)	TM	3-NITROTO	0.000	14,197	0	6118470	N.D.		#
18)	TM	PETN	16.033	0.000	4551781	0	1177.123	N.D.	Ħ

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

#2: DADIA.ch H:\WALDORF\CHEM32\1\DATA\120130\ Signal 0130_0000011.D Signal #1: DADIB.ch Data Path Data File Signal(s)

30-Jan-2012, 16:05:06

Operator Acq On

Sample

Sample Multiplier: 1 mp 8830B_CB 1.0 PPM 01/30/12 4103 Misc ALS Vial Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 07:52:24 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : ZORBAX Extend-C18 Signal

#2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

17.00 17.08 16.00 16.00 MISq €£0.8₹< 15.00 15.00 13.00 14.00 Page: 2 Yet.41<20TQATIN-6 8.4 ACC.CIADICATIN-A 13.00 827.S1400TQRTIM-9 12.00 2.8 17.00 5 10.00 10.00 8.00 9.00 1 TIC: 0130_0000011.D TIC: 0130 0000011.D 9.00 9.0 2.00 9 а<del>вож</del>⊈ई\ояти 00.9 NITROBENZE ----- 6.278 W110907.M Tue Jan 31 08:00:27 2012 WALDORF 5.00 新加品之 (1) 9.00 841.4 688.6 3.752 3.0 5.00 9. 848.0 2e+07 Time Response_ 3e+07 2e+07 1e+07 4e+07 6e+07 Response 256

Data File : 0130_0000012.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch Acq On : 30-Jan-2012, 16:42:32

Operator : mp

: 8830B_MX-A 2.0 PPM 01/30/12 Sample Misc

: 4104 Sample Multiplier: 1 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:00:35 2012

Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration Integrator: ChemStation

: 40uL Volume Inj.

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#2

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

Resp#1

dqq

dqq

		001120							
4)	S	em Monitoring 1,2-DINIT d Amount 62.	Compounds 0.000 500	3.753	0 Recovery	27650957 / =	N.D. 0.00%	2322.669 # 3716.27%	ŧ
	Targ	et Compounds			_			0022 063 1	ш
1)	_	HMX	0.000	0.950		53966062	N.D.	2233.267	
2)	TM	RDX	0.000	1,801		35237652	N.D.	2210.015	
3)	TM	1,3,5-TRI	0.000	2,919		60179768	N.D.	2197.711	
5)	TM	1,3-DINIT	0.000	3.891	0	58810916	N.D.	2267.424 t	ŧ
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.	
7)	TM	NITROBENZENE	0.000	5.278	0	27371528	N.D.	2275.237 #	À
8)	TM	NITROGLYC	0.000	6.243	0	66577	N.D.		
9)	TM	TETRYL	6.673	6.673	33726477	20667366	NoCal	2364.908 #	
LO)	TM	2,4,6-TRI	7.137	7,137		25937519	${\tt NoCal}$	2322.504	#
	TM	2-AMINO-4	7.517	7.517		24412298	NoCal	2507.202	#
L1)	TM	4-AMINO-2	7.814	7.814		19016229	NoCal	2417.100	
L2)		2,4-DINIT	9.006	9.006		25138453	NoCal	2377.710	Ħ
L3)	TM	2,6-DINIT	9.343	9.343		13887490	NoCal	2275.627	Ħ
L4)	TM	2-NITROTO	0.000	12.727	0		N.D.	2385.641	#
L5)	TM		0.000	13.332	Ŏ	9960450	N.D.	2388,116	#
L6}	TM	4-NITROTO	0.000	14.196	ŏ	12039075	N.D.	2423.783	
17)		3-NITROTO		0.000	ŏ	0	N.D.	N.D.	
18)	TM	PETN	0.000	0.000	·				

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15,00 14.00 Page: 2 8e1.43<⊒QTQRTIN-6 4.00 SEE. E I SOT OPT IN-N 13.00 13.00 Signal #2 Phase: 254nm Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron TST.SNJQTOPTIN-S 12.00 12,00 11.00 11.00 10.00 10.00 TIC: 0130_0000012.D 8.00 9.00 TIC: 0130 0000012.D ₹11/10-4,5 €46.8 ₹11/10-8,5 8 Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M 8 2.00 Signal #1: DAD1B.ch Signal #2: DAD1A.ch 30-Jan-2012, 16:42:32 Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 08:00:35 2012 雅 NST3. 9 9.00 H:\WALDORF\CHEM32\1\DATA\120130\ MITROBENZE: 922'9-200 9.00 W110907.M Tue Jan 31 08:01:12 2012 WALDORF : 8330B - Soil - Waldorf : Fri Jan 06 08:13:57 2012 : Initial Calibration 8830B_MX-A 2.0 PPM 01/30/12 Sample Multiplier: Extend-C18 8 野州8:8州 3.00 0130_000012.D : ZORBAX Volume Inj. : 40uL Signal #1 Phase : 214nm Signal #1 Info : 20RBA) Integrator: ChemStation 2.00 4104 8 QLast Update Response via Quant Title Data Path Data File Signal(s) Response 1.5e+08 5e+07 1e+08 4e+07 2e+07 Ö Response 6e+07 Operator ALS Vial Sample Misc 258

(OT Reviewed)

Quantitation Report

Data File: 0130_0000013.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 17:19:58

Operator : mp

Sample : 8830B_MX-B 2.0 PPM 01/30/12 Misc : ALS Vial : 4160 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:01:50 2012

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Fri Jan 06 08:13:57 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

dag

daa

Resp#1

5) TM 1,3-DINIT 0.000 0.000 0 0 N.D. N.D. 0 6) TM 3,5-DINIT 0.000 4.150 0 48267489 N.D. 2461.031 7) TM NITROBENZENE 0.000 0.000 0 N.D. N.D. 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0.000 0 0 N.D. N.D.		_ <b></b>		1/1 1/1				<del></del>	
1) TM HMX	4)	s	1,2-DINIT	0.000	0.000	•	•	•	
1) TM HMX	,	Tarq	et Compounds						
3) TM 1,3,5-TRI 0.000 0.000 0 0 N.D. N.D. 0 5) TM 1,3-DINIT 0.000 0.000 0 0 N.D. N.D. 0 6) TM 3,5-DINIT 0.000 4.150 0 48267489 N.D. 2461.031 7) TM NITROBENZENE 0.000 0.000 0 N.D. N.D. 0 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 8.915 0.000 31430 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0.000 0 N.D. N.D. 0.000 15) TM 2-NITROTO 0.000 0.000 0.000 0 N.D. N.D. 0.000 0.000 0.000 0 N.D. N.D.				0.000	0,000	0	0	Ŋ,D.	N.D.
3) TM 1,3,5-TRI 0.000 0.000 0 0 N.D. N.D. 0 5) TM 1,3-DINIT 0.000 0.000 0 0 N.D. N.D. 0 6) TM 3,5-DINIT 0.000 4.150 0 48267489 N.D. 2461.031 7) TM NITROBENZENE 0.000 0.000 0 N.D. N.D. 0 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 13) TM 2,6-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 0.000 17) TM 3-NITROTO 0.000 0.000 0 0 0 N.D. N.D. 0.000 0.000 0 0 0 N.D. N.D.			RDX	0.000	0.000	0	0	Ŋ.D.	N.D.
5) TM 1,3-DINIT 0.000 0.000 0 0 N.D. N.D. 0 6) TM 3,5-DINIT 0.000 4.150 0 48267489 N.D. 2461.031 7) TM NITROBENZENE 0.000 0.000 0 N.D. N.D. 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0.000 0 0 N.D. N.D.	-	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D. d
6) TM 3,5-DINIT 0.000 4.150 0 48267489 N.D. 2461.031 7) TM NITROBENZENE 0.000 0.000 0 N.D. N.D. 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D.		TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N.D. d
7) TM NITROBENZENE 0.000 0.000 0 0 N.D. N.D. 8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2.4.6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2.4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2.6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D.		TM	3,5-DINIT	0.000	4.150	0	48267489	N.D.	2461.031 #
8) TM NITROGLYC 6.148 6.149 10264447 185815 2172.787 NoCal 9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2.4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2.4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2.6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 0 N.D. N.D.	. ,	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	
9) TM TETRYL 6.699 0.000 17554 0 NoCal N.D. 10) TM 2,4,6-TRI 7.056 0.000 41082 0 NoCal N.D. 11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 0 N.D. N.D.	,	TM	NITROGLYC	6.148	6.149	10264447	185815	2172.787	NoCal #
11) TM 2-AMINO-4 7.500 0.000 34133 0 NoCal N.D. 12) TM 4-AMINO-2 7.822 0.000 44265 0 NoCal N.D. 13) TM 2,4-DINIT 8.915 0.000 31430 0 NoCal N.D. 14) TM 2,6-DINIT 9.344 0.000 223500 0 NoCal N.D. 15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D.		TM	TETRYL	6.699	0.000	17554	0	NoCal	N.D.
11) TM 2-AMINO-4       7.500       0.000       34133       0 NoCal       N.D.         12) TM 4-AMINO-2       7.822       0.000       44265       0 NoCal       N.D.         13) TM 2,4-DINIT       8.915       0.000       31430       0 NoCal       N.D.         14) TM 2,6-DINIT       9.344       0.000       223500       0 NoCal       N.D.         15) TM 2-NITROTO       0.000       0.000       0 N.D.       N.D.         16) TM 4-NITROTO       0.000       0.000       0 N.D.       N.D.         17) TM 3-NITROTO       0.000       0.000       0 N.D.       N.D.	10)	TM	2,4,6-TRI	7.056	0.000	41082	0	NoCal	N,D.
12) TM 4-AMINO-2       7.822       0.000       44265       0 NoCal       N.D.         13) TM 2,4-DINIT       8.915       0.000       31430       0 NoCal       N.D.         14) TM 2,6-DINIT       9.344       0.000       223500       0 NoCal       N.D.         15) TM 2-NITROTO       0.000       0.000       0 N.D.       N.D.         16) TM 4-NITROTO       0.000       0.000       0 N.D.       N.D.         17) TM 3-NITROTO       0.000       0.000       0 N.D.       N.D.		TM	2-AMINO-4	7.500	0.000	34133	0	NoCal	
13) TM 2,4-DINIT       8.915       0.000       31430       0 NoCal       N.D.         14) TM 2,6-DINIT       9.344       0.000       223500       0 NoCal       N.D.         15) TM 2-NITROTO       0.000       0.000       0 N.D.       N.D.         16) TM 4-NITROTO       0.000       0.000       0 N.D.       N.D.         17) TM 3-NITROTO       0.000       0.000       0 N.D.       N.D.		TM	4-AMINO-2	7.822	0.000	44265	_		
15) TM 2-NITROTO 0.000 0.000 0 0 N.D. N.D. 0 16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D. 0		TM	2,4-DINIT	8,915	0.000	31430			
16) TM 4-NITROTO 0.000 0.000 0 0 N.D. N.D. 17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D. 0	14)	TM	2,6-DINIT	9.344	0.000	223500			N.D. d
17) TM 3-NITROTO 0.000 0.000 0 0 N.D. N.D. o	15)	TM	2-NITROTO	0.000	0.000	0			
II) IN SWITKOIO	16)	TM	4-NITROTO	0.000	0.000	0			
110 mm pron 16 037 0.000 9104187 0 2354.407 N.D.	17)	TM	3-NITROTO	0.000	0.000	0	-		N.D. d
10) IN PEIN 10:00.	18)	TM	PETN	16.037	0.000	9104187	0	2354.407	N.D. #

RT#2

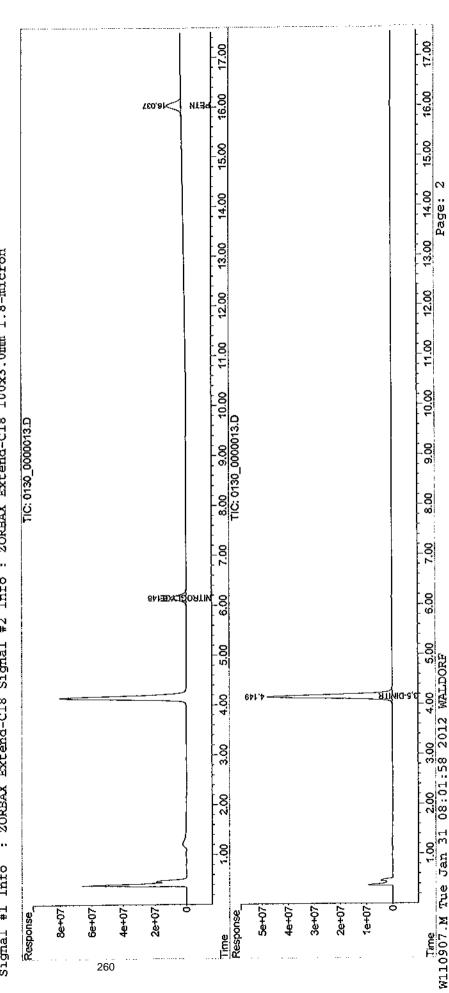
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

H:\WALDORF\CHEM32\1\DATA\120130\ 0130_0000013.D Data Path Data File

Signal #1: DAD1B.ch Signal #2: DAD1A.ch 30-Jan-2012, 17:19:58 Signal(s)

Operator Acg On

Sample Misc


MD 8830B_MX-B 2.0 PPM 01/30/12 Sample Multiplier: 1 4160 ALS Vial

Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Fri Jan 06 08:13:57 2012 Response via: Initial Calibration Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Jan 31 08:01:50 2012

Integrator: ChemStation

Volume Inj. Signal #1 Phase Signal #1 Info

Phase: 254nm Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron : 40uL : 214nm : 20RBAX Extend-C18 Signal #2



Data Path : H:\WALDORF\CHEM32\1\DATA\120130\

Data File : 0130_0000014.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 30-Jan-2012, 17:57:25

Operator : mp

: 8830B SS 1.0 PPM 01/30/12 Sample

Misc

Sample Multiplier: 1 ALS Vial : 4161

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Jan 31 08:12:57 2012 Quant Method: H:\WALDORF\CHEM32\1\DATA\120130\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #2 Phase: 254nm Signal #1 Phase : 214nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

ppb

ppb

Resp#1

									_
4)	S	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.756	0 Recovery	14072144 / =	N.D. 0.00%	1004.996 1607.99%	#
	Tarq	et Compounds							
1)	TM	HMX	0.000	0,952	0	29476143	N.D.	1007.927	#
2)	TM	RDX	0.000	1.803	0	18380279	N.D.	978.319	#
3 i	TM	1,3,5-TRI	0.000	2.921	0	30304728	N.D.	961.715	#
5)	TM	1,3-DINIT	0.000	3.893	0	30551565	N.D.	1013.666	#
6)	TM	3.5-DINIT	0.000	4.153	0	26323499	N.D.	1026.404	#
7)	TM	NITROBENZENE	0.000	5.281	0	13922535	N.D.	998,607	#
8)	TM	NITROGLYC	6.148	6,145	5522927	117796	1073.842	NoCal	#
9)	TM	TETRYL	6.676	6.676	14430548	8845938	NoCal	869.385	#
10)	TM	2,4,6-TRI	7,138	7.138	16006768	12700385	NoCal	974.760	#
11)	TM	2-AMINO-4	7.524	7.524	18660616	12690628	NoCal	1044.707	Ħ
12)	TM	4-AMINO-2	7.819	7.819	18986754	10443669	NoCal	1090.959	Ħ
13)	TM	2,4-DINIT	9.010	9.010	9563215	13319976	NoCal	1060.884	Ħ
14)	TM	2,6-DINIT	9.347	9.347	9656064	7043586	${\tt NoCal}$	996.054	#
15)	TM	2-NITROTO	0.000	12,731	0	5178966	N.D.	1038.845	#
16)	TM	4-NITROTO	0.000	13,336	0	5037825	N.D.	1032.033	#
17)	TM	3-NITROTO	0.000	14.198	0	6263188	N.D.	1066.683	#
18)	TM	PETN	16.035	0.000	4457865	0	1005.104	N.D.	#

RT#2

et:

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

0130_0000014.D Signal #1: DADIB.ch Signal #2: DADIA.ch H:\WALDORF\CHEM32\1\DATA\120130\ Data Path Data File

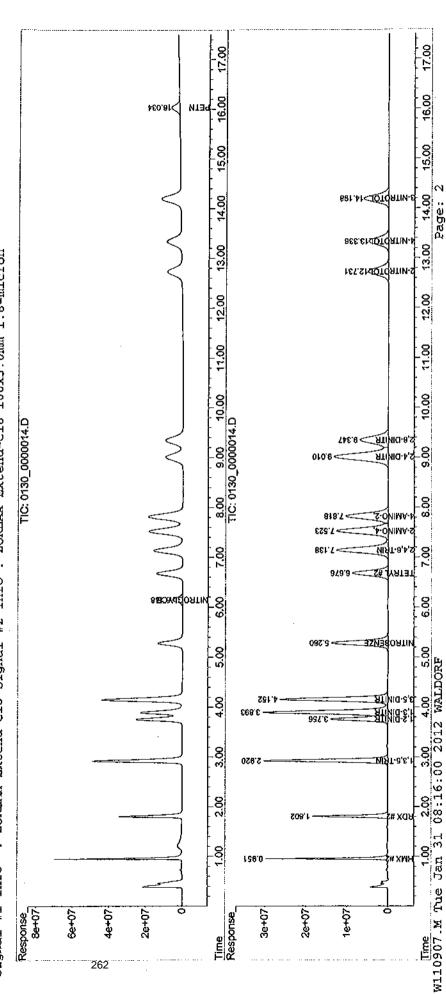
Signal(s)

30-Jan-2012, 17:57:25 Operator Acq On

Sample

8830B_SS 1.0 PPM 01/30/12 4161 Misc ALS Vial Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Sample Multiplier: 1


Quant Method : H:\WALDORF\CHEM32\1\DATA\120130\W110907.M Integration File signal 2: Waldon Quant Time: Jan 31 08:12:57 2012

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL Signal #1 Phase : 214mm Signal #1 Info : ZORBAX

Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron Signal #2 | Signal #2 | : ZORBAX Extend-C18



Data Path: Y:\CHEM32\WALDORF\DATA\120130\120305\

Data File: 0305_0000018.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 05-Mar-2012, 20:51:44

Operator : mp

Sample : 8330_CCV 1.0 PPM 03/05/12

Misc

ALS Vial: 4424 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 06 08:14:05 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

dqq

dqq

Resp#1

					<del>_</del>				
4)	S	em Monitoring 1,2-DINIT d Amount 62.	Compounds 0.000	3.767		13784380			
,	Tarq	et Compounds							
1)	TM	НМХ	0.000	0.954	0	28197065	N.D.	964.190	#
2)	TM	RDX	0.000	1.810	-	17955416	N.D.	955.705	
3)	TM	1,3,5-TRI	0.000	2.938	0	30623137	N.D.	971.820	#
5)	TM	1,3-DINIT	0.000	3,911	0	29574820	N.D.	981.259	#
6)	TM	3,5-DINIT	0.000	4.159	0	24015573	N.D.	936.414	#
7)	TM	NITROBENZENE	0.000	5.293	0	13744960	N.D.	985.870	#
8)	TM	NITROGLYC	6.198	6.198	5036405	112012	979.014	NoCa1	#
9)	TM	TETRYL	6.704	6.704		11360296	NoCal	1116.498	
.0)	TM	2,4,6-TRI	7.180	7,180		13114354	NoCal	1006.532	
.1)	TM	2-AMINO-4	7.532	7,532		12796031	NoCal	1053.384	#
.2)	TM	4-AMINO-2	7.820	7.820		10009487	NoCa1	1045.604	
.3)	TM	2,4-DINIT,	9.051	9.051		12667339	NoCal	1008.904	
.4)	TM	2,6-DINIT	9.386	9.386	9809175		NoCal	1008,007	
.5)	TM	2-NITROTO	0.000	12,752	0	5137215	N.D.	1030.470	
.6)	TM	4-NITROTO	0.000	13.353	0	5071510	N.D.	1038.933	**
.7)	TM	3-NITROTO	0.000	14.215	0	6103197	N.D.	1039.435	**
.8)	TM	PETN	16.132	0.000	4534707	0	1022.430	N.D.	#

RT#2

==

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Y:\CHEM32\WALDORF\DATA\120130\120305 Data File Data Path

#2: DAD1A.ch Signal 05-Mar-2012, 20:51:44 0305_0000018.D Signal #1: DAD1B.ch Signal(s)

Operator Acq On

mp 8330_CCV 1.0 PPM 03/05/12 Sample

Misc

Sample Multiplier: 4424 ALS Vial

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e Quant Time: Mar 06 08:14:05 2012

: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M : 8330B - Soil - Waldorf : Tue Jan 31 08:12:41 2012 : Initial Calibration Quant Method Title Quant

QLast Update Response via

Integrator: ChemStation

0 0 # # Signal Signal 214nm ZORBAX Inj. #1 Phase Signal #1 Signal #1 Volume

17,00 17.00 91 16.00 16.00 итва 15.00 15.00 Page: 2 ютояли.ф 14,00 5.8 отоятіи-и 13.00 13.8 Phase: 254nm Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron отоятім-я 12.00 128 11.00 £ 8 10.00 0.00 0000018.D IC: 0305 0000018.D STINIG-8,S 9.00 9.00 FIC: 0305 8.00 S-ONIMA-I P-ONIMA-S ИІЯТ-8,4,5 9. 7.00 1818XC#3 EX. эоятиф 9.00 9.00 э‡извояти**ў** 2.00 8 Time 1.00 2.00 3.00 4.00 5.0 W110907.M Tue Mar 06 08:53:23 2012 WALDORF ятипа-в,ф Extend-C18 8 RING E, I 300 NIAT-8,6,1 200 Z# XQX 8 Z# XWI Info 1000000 2000000 1000000 2000002 Time Response Response 264

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120305\

Data File : 0305_0000032.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 06-Mar-2012, 04:56:16

: mp Operator

: 8330_CCV 1.0 PPM 03/05/12 Sample

Misc

ALS Vial: 4424 Sample Multiplier: 1

Integration File signal 1: Waldorf_Signal_1_110721.e Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 06 08:14:07 2012

Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	dqq	dqq	_
4)	S	em Monitoring 1,2-DINIT d Amount 62.	0.000	3.762	0 Recovery	13900188 / =		992.715 1588.34%	Ħ
	Targ	et Compounds							
1)	_	HMX	0.000	0.952	0	28266217	N.D.	966.554	#
2)	TM	RDX	0.000	1.807	0	17862123	N.D.	950.739	#
3)	TM	1,3,5-TRI	0.000	2.933	0	30563496	N.D.	969.927	Ħ
5)	TM	1,3~DINIT	0.000	3.906	0	29797433	N.D.	988.645	Ħ
6)	TM	3,5-DINIT	0.000	4.156	0	23940913	N.D.	933.503	#
7)	MΤ	NITROBENZENE	0.000	5.286	0	13528061	N.D.	970.313	#
8)	TΜ	NITROGLYC	6.187	6.187	5078222	112279	987,165	NoCal	#
9)	TM	TETRYL	6.696	6.696	18297671		NoCal		Ħ
10)	TM	2,4,6-TRI	7.169	7.169	16523986	13143071	NoCal	1008.736	#
11)	TM	2-AMINO-4	7.528	7.528	18799997	12777123	NoCal		Ħ
12)	TM	4-AMINO-2	7.815	7.815	18167582	9978746	NoCal		#
13)	TM	2,4-DINIT	9.041	9.041	9194147	12780335	NoCal	1017.904	
14)	TM	2,6-DINIT	9.375	9.375	9867070	7191778	NoCal	1017,010	
15)	TM	2-NITROTO	0.000	12.743	0	5034317	N.D.	1009.830	•
16)	TM	4-NITROTO	0.000	13.345	0	5000248	N.D.		Ħ
17)	TM		0.000	14.208	0	6007493	N.D.		#
18)	TM	PETN	16.116	0.000	4533128	0	1022.074	N.D.	#

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 PETN 15.00 15,00 Page: 2 14.00 лотоятии-ф 14.00 OTORTIN-4 13.00 13.00 Phase: 254nm Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron ютоятич 12,00 12.00 17.8 10,00 10.00 IC: 0305_0000032.D 0000032 D ATIMIG-8, 000 9.00 ATIMIG-N 8.00 TIC: 0305 Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M S-ONIMA-P P-ONIMA-S 17 .0. 9 Phase: Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e #2: DAD1A.ch ETRYL #2 Y:\CHEM32\WALDORF\DATA\120130\120305\ 00.9 9 Signal #2 Signal #2 В кизвоятии 8 8 2.00 3.00 4.00 5.00 08:53:35 2012 WALDORF Signal : 8330B - Soil - Waldorf : Tue Jan 31 08:12:41 2012 : Initial Calibration Sample Multiplier: mp 8330_CCV 1.0 PPM 03/05/12 ATINIO-S,I ATINIO-2,6 9.09 : ZORBAX Extend-C18 06-Mar-2012, 04:56:16 Quant Time: Mar 06 08:14:07 2012 Signal #1: DAD1B.ch 8 NIAT-8,6,1 305_0000032.D : 214nm Integrator: ChemStation 2.00 SW XOR Time 1.00 W110907.M Tue Mar 06 Inj. #1 Phase: #1 Info .8 8 4424 R# XWH Qlast Update Response via Quant Title Data File Data Path Signal(s) Response 2000000 1000001 2000000 1000000 Time Response_ Operator ALS Vial Volume Signal Signal Acg On Sample Misc 266

(OT Reviewed)

Quantitation Report

#### EPA METHOD 8330B Explosives

**Raw Data** 



#### Quantitation Report (QT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120305\

Data File: 0305_0000022.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 05-Mar-2012, 22:51:42

Operator : mp

Sample : AY56027S03 7.944 DF 03/02/12

Misc : soil

ALS Vial: 8514 Sample Multiplier: 7.94439

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 06 08:54:48 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Signal #1 Phase: 214nm Signal #2 Phase: 254nm

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

		Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb	
4)	S	em Monitoring 1,2-DINIT d Amount 595	0.000	3.766	0 Recovery	1054294	N.D. 0.00%	598,172 # 100,39%	
	_				<b>-</b>				
		et Compounds HMX	0.000	0.000	0	0	M D	N D	
1) 2)		RDX	0.000	0.000	0	0	Ŋ,D,	N.D. demou 3/61	
21	40M	1,3,5-TRI			•		N.D.		
3)	TM	, ,	0.000	0.000	0 0	0	N.D.	N.D.	
5)	TM	1,3-DINIT		0.000		0	N.D.	N.D.	
6)		3,5-DINIT		0.000	0	0	N.D.	N.D.	
7)		NITROBENZENE		0.000	0	0	N.D.	N.D.	
8)	TM		6.130	0.000	9275	0	N.D.	N.D.	
9}			6.686	0.000	16589	0	NoCal	N.D.	
0)		2,4,6-TRI		0.000	10611	0	NoCal	N.D.	
1)	TM	2-AMINO-4	7.520	0.000	11879	0	NoCal	N.D.	
2)		4-AMINO-2		0.000	12032	0	NoCal	N.D.	
.3)	TM	2,4-DINIT	9.041	0.000	15728	0	NoCal	N.D.	
4)	TM	2,6-DINIT	9.408	0.000	11856	0	NoCal	N.D.	
5)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.	
6)	TM	4-NITROTO	0.000	0.000	0	0	N.D.	N.D.	
7)	TM	3-NITROTO	0.000	0.000	0	0	N.D.	N,D,	
8)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.	

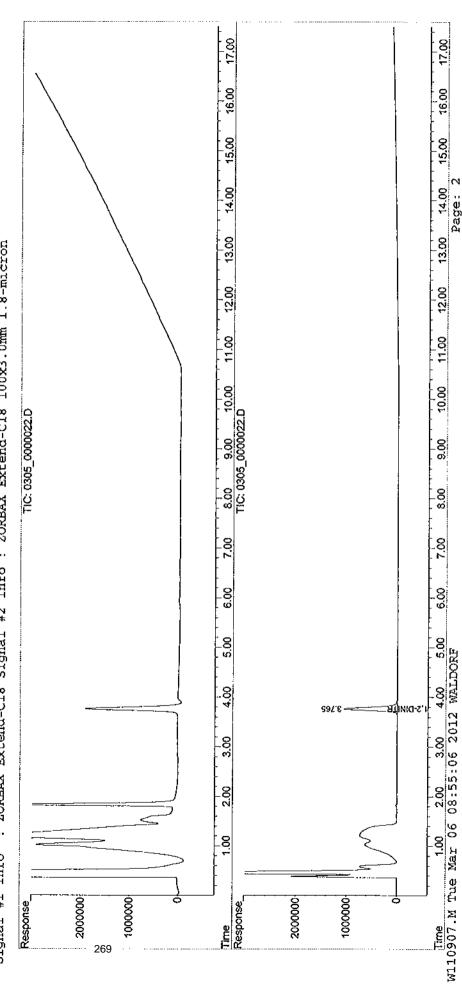
⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(QT Reviewed) Quantitation Report

Signal #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120305\ 0305_0000022.D Signal #1: DADIE.ch 05-Mar-2012, 22:51:42 Data Path Data File Signal(s)

Acq On

MP AYS6027S03 7.944 DF 03/02/12 Operator Sample


Sample Multiplier: 7.94439 8514 soil ALS Vial Misc

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 06 08:54:48 2012
Quant Method : Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M
Quant Title : 8330B - Soil - Waldorf
QLast Update : Tue Jan 31 08:12:41 2012
Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal #1 Phase : Signal #1 Info :

#2 Phase: 254nm #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron : 40uL : 214nm : ZORBAX Extend-C18 Signal



Data Path: Y:\CHEM32\WALDORF\DATA\120130\120305\

Data File: 0305_0000021.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 05-Mar-2012, 22:24:11

Operator : mp

Sample : 120302SBLK1A 7.984 DF 03/02/12

Misc : soil

ALS Vial: 8513 Sample Multiplier: 7.98403

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 06 08:54:08 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#2

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

dqq

daa

Resp#1

		-			-	-		
4)	S	em Monitoring ( 1,2-DINIT d Amount 598,	0.000	3.767	0 108 Recovery	315 <b>8</b> 3	N.D. 0.00%	616.717 # 102.99%
	Taro	et Compounds						
1)	TM	НМХ	0.000	0.000	0	0	N.D.	N.D.
2)	TM	RDX	0.000	0.000	0	0	N.D.	N.D. demol mm
3)	TM	1,3,5-TRI	0.000	0.000	0	0	N.D.	N.D. 3/4(12
5)	TM	1,3-DINIT	0.000	0.000	0	0	N.D.	N,D.
6)	TM	3,5-DINIT	0.000	0.000	0	0	N.D.	N.D.
7)	TM	NITROBENZENE	0.000	0.000	0	0	N.D.	N,D,
8)	TM	NITROGLYC	0.000	0.000	0	0	N.D.	N.D.
9)	TM	TETRYL	0.000	0.000	0	0	N.D.	N.D.
10)	TM	2,4,6-TRI	0.000	0.000	0	0	N.D.	N.D.
11)	TM	2-AMINO-4	7.515	0.000	5096	0	NoCal	N.D.
12)	TM	4-AMINO-2	7.760	0.000	4810	0	NoCal	N.D.
13)	TM	2,4-DINIT	9.097	0.000	12824	0	NoCal	N.D.
14)	TM	2,6-DINIT	9.401	0.000	10688	0	NoCa1	N.D.
15)	TM	2-NITROTO	0.000	0.000	0	0	N.D.	N.D.
16)	TM	4-NITROTO	0.000	0.000	0	0	Ŋ.D.	N.D.
17)	TM	3-NITROTO	0.000	0.000	0	0	Ŋ.D.	N.D.
18)	TM	PETN	0.000	0.000	0	0	N.D.	N.D.

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 16.00 15.00 15.00 Page: 2 14.00 4.00 13.00 13.00 : 40uL : 214nm : 20RBAX Extend-C18 Signal #2 Info : 20RBAX Extend-C18 100x3.0mm 1.8-micron 12.00 12.00 11.00 1.00 10.00 10.00 TIC: 0305_0000021.D 8.00 9.00 TIC: 0305_0000021.D 900 Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via: Initial Calibration 8.00 7.00 9 Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 06 08:54:08 2012 Signal #2: DAD1A.ch Y:\CHEM32\WALDORF\DATA\120130\120305\ 0305_0000021.D 9.00 8.8 Sample Multiplier: 7.98403 mp 120302SBLK1A 7.984 DF 03/02/12 200 200 Time 1.00 2.00 3.00 4.00 5.0 W110907.M Tue Mar 06 08:54:28 2012 WALDORF 4.00 Signal #1: DADIB.ch 05-Mar-2012, 22:24:11 19L'E 900 Integrator: ChemStation 2.00 soil 8513 <del>6</del> Volume Inj. Signal #1 Phase Signal #1 Info Signal(s) Acq On Data Path Data File ò 2000000 10000001 2000000 1000000 Response Time Response_ Operator ALS Vial Sample Misc

(QT Reviewed)

Quantitation Report

#### Quantitation Report (QT Reviewed)

Data Path: Y:\CHEM32\WALDORF\DATA\120130\120305\

Data File: 0305_0000020.D

Signal(s): Signal #1: DAD1B.ch Signal #2: DAD1A.ch

Acq On : 05-Mar-2012, 21:56:44

Operator : mp

Sample : 120302SLCS1A 7.992 DF 03/02/12

Misc : soil

ALS Vial: 8512 Sample Multiplier: 7.99201

Integration File signal 1: Waldorf_Signal_1_110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e

Quant Time: Mar 06 08:49:22 2012

Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M

Quant Title : 8330B - Soil - Waldorf QLast Update : Tue Jan 31 08:12:41 2012 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 40uL

Compound

Signal #1 Phase : 214nm Signal #2 Phase: 254nm

RT#2

RT#1

Signal #1 Info : ZORBAX Extend-C18 Signal #2 Info : ZORBAX Extend-C18 100x3.0mm 1.8-micron

Resp#2

daa

dqq

Resp#1

							pp	ppb	
4)	S	em Monitoring 1,2-DINIT d Amount 599	0.000	3.768	0 Recover	3504923 V =	N.D. 0.00%	2000.499 # 333.75%	ţ
	_					_			
	_	et Compounds		0.050		DD4 60 46		0400 855 #	
1)		HMX	0.000	0.958	0	7716345	N.D.	2108.755 #	
2}		RDX	0.000	1.810	0	4394304	N.D.	1869.281 #	
3)	TM	1,3,5-TRI	0.000	2.939	0 ~	<b>→</b> 7932667	N.D.	2011.923 #	Ė
5)	TM	1,3-DINIT	0.000	3.911	0	7443512	N,D,	1973,766 #	Ė
6)	TM	3,5-DINIT	0.000	0.000	0	0	Ŋ.D.	N.D.	
7)	TM	NITROBENZENE	0.000	5.291	0	3377617	N.D.	1936.166 #	ŀ
8)	TM	NITROGLYC	6,189	6,023	5648	18841	Ŋ,D,	NoCal	
9)	TM	TETRYL	6.704	6.704	4959176	3026987	NoCal	2377.579 #	ł
10)	TM	2,4,6-TRI	7.176	7.176	4308873	3403009	NoCal	2087.372 #	ı
11)	тM	2-AMINO-4	7.526	7.526	4784845	3232702	NoCal	2126.831 #	į
12)	TM	4-AMINO-2	7,813	7.813	4653211	2543935	NoCal	2123,818 #	į
13)	TM	2,4-DINIT	9,045	9.045	2338721	3235444	NoCa1	2059.465 #	į
14)	TM	2,6-DINIT	9.378	9.378	2485344	1812836	NoCa1	2048,818 #	
15)	TM	2-NITROTO	0.000	12.751	0	1288514	N.D.	2065.630 #	
16)	TM	4-NITROTO	0.000	13.355	ŏ	1280397	N.D.	2096.289 #	
L7)	TM	3-NITROTO	0.000	14.216	ő	1548084	N.D.	2107.127 #	
				•	ŏ	1249004			
L8)	TM	PETN	0.000	0.000			N.D.	N.D.	

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

17.00 17.00 16.00 8 15.00 15,00 Page: 2 B-NITROTOL 8 14.00 214,216 лотояти. 13.00 Phase: 254nm Info: 20RBAX Extend-C18 100x3.0mm 1.8-micron 13.00 2-NITROTOL 12.00 12.00 11.00 11.00 10.00 10.00 _00000020.D IC: 0305 0000020.D P,6-DINITR 8 8 8 9.00 24-סומון צ Quant Method: Y:\CHEM32\WALDORF\DATA\120130\120305\W110907.M Quant Title: 8330B - Soil - Waldorf QLast Update: Tue Jan 31 08:12:41 2012 Response via: Initial Calibration 8.00 2.00 90. Integration File signal 1: Waldorf_Signal_1110721.e
Integration File signal 2: Waldorf_Signal_2_110803.e
Quant Time: Mar 06 08:49:22 2012 Signal #2: DAD1A.ch צארו#<u>ז</u> Y:\CHEM32\WALDORF\DATA\120130\120305\
0305_0000020.D
Signal #1: DAD1B.ch Signal #2: DAD1A
05-Mar-2012, 21:56:44 9.00 8 7 7 # # Sample Multiplier: 7.99201 Signal Signal **ENTROBENZE** mp 120302SLCS1A 7.992 DF 03/02/12 8 8 W110907.M Tue Mar 06 08:52:40 2012 WALDORF 40uL 214nm 20RBAX Extend-C18 8 HIS BINIE 3.00 Integrator: ChemStation 8. .8 8512 Inj. #1 Phase #1 Info soil Path Data File Signal(s) 2000000 1000000 Acq On Operator 2000005 100000 Response Response ALS Vial Signal Signal Sample Volume <u>H</u> Misc

(QT Reviewed)

Whantitation Report

123 Markel Gircel New Haven, OT 09513

## AccuStandard, Inc. CERTIFICATE OF ANALYSIS

Before by HALO 15788-BINNIE 4591 RIN MARS HER STA 1259/(0 TIBUSHA VIANA

OATALOG NO: M-9930B-R-10X

DESCRIPTION: Explosive by HPLC

EXPIRATION: Dec 9, 2010

LOT: 88120095 ·

See reverse for additional cartification information.

Telegraphic company programming a copyright.

SOLVENT: MOOHACON (1:1)			,	દુર્વામાં ભાગ માટે કરવા છે. તા દુષ્યાન સામાન સામાન સામાન છે. તા દુષ્યાન સામાન સામાન સામાન છે. જે જે જે જે જે જે જે જે જે જે જે જે જે
Component	GAS#	Purity %	Prepared Concentration	Certifled Analyte Concentration
	•	(HPLO)	(µg/mL)	(halar)
styl 6 Dialicologous Micologous Micologous Micologous Amino 46-dialicologous Amino 46-dialicologous Amino 46-dialicologous	479-48-8 60620-2. 88-72-2 97-98-1 93-97-0 93-87-2-78-2 19406-31-0	99.4 150 49.0 98.7 99.2 97.8 98.5	1002 1005 1002 1003 1010 1027 * 1005	996 1095 992 990 1093
		•		
			·	
	•			
7 Company				•

a Allenighu metrumki ikang hitot, Terka - Givining or

Weight componented to 100% purity

Oronganogi Riaga

125 Market Street New Haven, OT 08519 USA

UNITED TO A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY LIN ENEMAING-MAIN Rich grans HPR sty. (ON/As

Watality Account land to see

# OAccustandard; Inc. CERTIFICATE OF ANALYSIS

CATALOG NO: M-8330A-10X

EXPIRATION: Oct 24, 2009

DESCRIPTION: Method 8380 - Mix A

LOT: B2120217-80

· See reverse for additional certification Information.

Afribulatifi Britightegerentri 189 b'ill es

solvent: M	MOH:AOON (1:1)	t .	. gi	Person der ein gebrerger Caulter generalen auf gen praat pro
Component		CAS# Purity % (GO/M9)	Prepared Concentration (yg/mL)	Certified Analyte Concentration* (ug/ml.)
i.3 Dinikobarena 2 A Dinikotoluena HMK Nitrobenzena RDX i.3.5 Trinikrobenzena TAT	.··	99-65-0 \$7.0 121-142 100 2691-41-0 98-7 \$8-95-3 99-8 121-82-4 98-0 99-33-4 99-8 118-98-7 99-9	1091 * 1001 1001 1002 1000 1001 1000	250 250 250 1001 1001
· · · · · · · · · · · · · · · · · · ·				

l. All अर्थी के स्वरंत कर्या है कि स्वरंत है कि स्वरंत है कि स्वरंत है कि स्वरंत है कि स्वरंत है कि स्वरंत है

2. Critical Analyse Cosminules in Prigy a Propert Cosminies. This Vermining colorised for the product in 1846 which is the Combined Unional Supply). In presence a sufficient could describe a sufficient for distributions of the product of the product of the principal colorised for the Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosminal Cosmin

Walght compansated to 100% purity

Certified by:

Accustandard is gooradited to ISD/IEO 17025/2005 and cartified to ISO 9001:2000

orosomomi Etapa

128 Market Street New Haven, CT 08519 USA

# AccuStandard; Inc.

MIN 67103163-86494 RINI TAKK KEROP, INCHYO

# CERTIFICATE OF ANALYSIS

CATALOG NO. M-8330-ADD-2-10X

DESCRIPTION:

Component

individual Explosives Spiulion

BXPIRATION:

Oct 19, 2009

LOTI

87100188

SOLVENT:

MaOH

ના પ્રાપ્ત કરવાની કરવાની ત્યાર કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કર આ પ્રાપ્ત કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કરવાની કર

See reverse for additional cartification information.

Certified Analyte Concentration

Purity % (HPLO)

Prepared Concentration (vg/mL)

(ug/mL)

PATN

78-11-5

CA9#

69,8

1009

086

Please note: Accustrigist dividure the U.S. conventions in reporting numerical values, on both confiltrates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (,) is used as a declinal place marker.

Acquellandard is appredited to ISO/IEC 17028/2008

orongunodi Brand

185 Merkel Street New Haven, OT 08513 USA

## AccuStandard; inc. CERTIFICATE OF ANALYSIS

folt: 9(0)(886/19-89418 Rest Titales HER sup. 1011409

CATALOG NO. M-8990-ADD-1-10X

DESCRIPTION:

individual Explosives Solution

LOTE

86040088-1A

SOLVENT: .

EIOH : MEOH (07:19)

See reverse for additional certification information.

**EXPIRATION** 

Oàt 18, 2009

Tiln gradekti gurralı di gunda (ə 40 SM olda) Craffind Aralı'd caparaktırı direyli ilə Bişləriyi Dire ondo Liddi

Component

0A8#

Purity %

Prepared Concentration¹

Gertified Analyte Concentration

(HPLO)

(ug/mL)

(ugint)

56-53-0

100

1000

Niirģglycerin

1000

Please note: Assubing the follows the U.S. conventions in reporting numerical values, on both certificates and tabels.

A comma () is used to separate units of case thousand or greater. A period () is used as a decimal piece marker.

Acoustandard is accredited to (80/160 17028:2008

ю оходую сер Макан



2030 Savage Road Charleston, South Carollog 29407 Phone (866) 272-0932 Faz (845) 766-9182 WWW.oZal.com

irswikedemale Laifi 148188-18188 Nasi Brico Meraup, appulie

Quality System Audited & Registered by NSF-ISR to ISO 9001:2009

Dale Received:	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	_
----------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---

	i		Certifi	cate of A	palysis	Pagé (
Catalog No.: I 010086-01 1		Storage: <10 Degraes C	Solvent: Acetonitrile	Exp. Date: 3-Feb-2012	Descrip 1,2-Dinitrobenzana Solution	
(	Сопро	•	CASINO	. Purity	(95) Neat Material Lot No.	Concentration, most.
t o disimbersano		•	SIRAGA	. 9	. 861.3P	1002 +/- 14,021

All weighte are traceable through N. L. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimentally.

Mndsay Edwards





				,				•	がは と と と と と と と と と と と と と と と と と と と
CHATTER VANDERAT REPORT					ŧ				THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P
Part Ministree	8	G-2009.28				ACTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART			
Leaf Stundings	10	OSTATA			37818	Accounting			
Descriptions		8830 Mix A				•			
1		9 Controppents	4					V. Spender	T W W
Engirentine Date:	١	0512H	, 			ı	1	Commission By	051208
Wombazi Generatzation (englady:		ğ						1	ENTE
Volume(s) shawn being were economed and clinied to:	अंत्राप्तं शिक्ष	ag go	40	SE-OS Outbr	Rathers Opensially Frate Oppnessions			Residenced By: Rosa	Pedal, Bars
Company	Past. Mamber	Log Nameder		Estate (Market	Vinenzing Fixens		Ī	Empended Emperod Marcollogy	MSDS Information
1. 4-Autimo-2,6-dinarototasese	07057	ORSSON.				3	Core (see/ent)	(++)	CASE CHARLE OF ACCEPTED PR.)
2. 3.5-Distrocateline	71772	10/1807	5	3 5	0000	1001.6	100.2	O.00444 00000.no.n	
3, 1,3-Directorate pro-	7207	Critos	930	5		Tiongra	1004	Ł	NA.
4. 24-Dirikotolinene	79072	110206	0,10	Ę		1001	100.1	OTTOBER	
5. HMX	73074	Octobe	0.10	19	0000	1012.8	100.3	CD121-14.9	ð
6. Матарелення	79075	1009DE	o.to	8	0000	, 300,00	1921	02591-41-0	Contract (Sant) Colerat Statution
7. 3-Witchplacke	79097	10050G	0.10	9	0.000	Trees.	1004		MAN
S. HDX.	79079	205090	0:10		0.002	1000.7	199 1-091	O.00417 - 00085/08-4 2 pm	OXES OB 4 2 per (Templicate Printer) and at 720 metro
10.		1000	2	8	2000	1000.3	1001	1	RUA
14.									AN CASTORING (company)
2									
15.									
16.									
17.									
<b>18</b>									
19.									
88									

uen enera era en erien Pour eries era en erien Pour

Lot # 051208

Í	The second second
	F.
	-
7	
	-
	ă.
- 1	
	in the
í.	F.
	-
de allega Part	•
	1

ļ	ř.	
شنها فيقائد نافسانا عقادب	THE RESERVE OF	
ļ	E	١.
Ŀ		
£		
ŧ	ř	

4	
- 7	
Ē	
-	
	- 1
-	- '.
*	
-	

÷	1	
•	į.	
2		
والقراقة والمسافية والمسافية والمرا	The second in the second	
Ŀ	-	
í	-	- 1
ł	ħ	
ŀ	-	
£	F-	

CENTERD WEIGHT REPORT

<b>\$</b>
-----------

Bestfation Pestion Bater	,	OSTATE SECONDO B SCUMPONENTS OSTETT	<b>a</b>		-	Acctualities	1	Formstated By-		051208	
Montinal Concentration (payint):		00£						J			9
Vokane(s) stroms below were combined and distinct in	1 and dilute	Ä	20.0	<b>9 5</b>	Referenting			Revened By		Person, Person	DATE
Compound	Prant Memokee	Starting.	Parties	V6.(m)	Uncortainty Pipette	beith Conclusions	Final Controllegents	Expanded .  Final Massishing Cotts (142) (142) (142)	(Soperation)	MSDS information (Solvent Saliety Info. On Attached po.)	1
1. 2-Aminio-4.5-diminostuene	73089	COEZADZ	0.10	97	2000	- Consti			5	CERTAR CTEAN LIFE	11
2, 1,2-Distroberrates	75404	051208	0:10	9	2000	126			355782		
3. 2.5-Unitratelmene	75073	1005006	0.40	亨	0000	1000		OCHOESE	00528-29-0	Tempfortille Legion	ł
4. 2. William Market Str.	75007E	<b>HEREBS</b>	0.50	9	0.000	- HOURS		OCCUPATION	- 20290900	7-merical Section of merical	J
5, 4-Nitratotrene	73078	100906	0.10	400	2000	1001		STEER	00088-72-C	CORB-72-C 2470 (Vendolek Mil of more	g) .
S. Tetrof	73080	120802	Q.10	8	2000	40007		) Library	0-66-66000	0003969-0-2 Strin (110minster February)	el.
7. 1.8.5-Totalenterzene	75081	- 010405	0.70	9	2000			- October	00679-45-B	COA.	밹
8. 24.6-Transcolutere	75082	CH-1008	0,10	9	O LEGIC	C CALLE		77000	0009B-85-4		1

urk ektob wheed outer! Total origis-slost stouxe

1 of 1

Part# 95094

Lot # 051208



2030 Savage Road Charleston, South Caroline 29407 Phone (666) 272-0932 Fax (643) 766-9162 www.ozel.com Laber 1600g 20124

Real 1200g 20124

Cundity System

Audited & Registered

by NSF-ISR to ISO 900112000

Date Received: ....

		Certificate	of Analy	sla	Page 1
•	Catalog No.1 Lot No.1 Storages '010614-04 140802 <=6 Dagrees	Solvents Exp. Acetonitrile 31-0a	Datei 2000 Petns	Descripi folution, 1000 mg/L, 1	
•	Compound	CAS No.		et Malerial Lot No.	Concentration, mg/L
	PUTN	78-11-5	99,9	6149.2P	1000 +/-14

Certified By:

Die Potter

All resignis are traveable intough N. I. S. T. Test No. 822/264157-40. Consentration (correct for purity) and uncertainty (95% confidence) values — Heldd are delermined gravimetriolly.



2030 Sayage Road Charleston, South Carolina 29407 Phone (866) 272-0932 Fax (843) 766-9182 www.o2sf.com

Quality System Audited & Registered by NSF-ISR to ISO 9001:2000

Dale Received:

·	Certific	Certificate of Analysis						
Catalog No.: Lot No.: Storage: 010612-04 140434 <=-10	- Solvenite Acetonitelle	Exp. Dale: 3-Wov-2011	Descrip 3,5-Dinitroanline (3,5-DNA	ptions i) Bolution, 1009 mg/L, 1				
Degrees C Compound	CAS No.		oil 16) Neat Material Lot No.	Concentration, mg/L				
3.5-disityenilibe	618-57-1	97	612.1.1	1000 +/- 14				

Certified By: .. Mike Wrigley

Ali welghts are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimentally.

# LCHESTANDARD PREP LOG# 98 PAGE# 18

1	018	INITIAL SOURCE FINAL FINAL JULIAN DATE ALIQUOT VOLUME ONC LOTH INSTIALS
,		RO GONG DATE ALIQUOT VALUE AND TOTAL TOTAL STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF THE STATEMENT OF T
	<u>ئىلىنى ئىلىنى</u>	NOTE: MEE FOLLOWING DOCUMENTATION SI
( 		WAS PERFORMED AS DATED FOR 10-24-11 10-24-11
1		
		- AND AND THE MAINTENANT OF INCIDENT
v		man land her to Ma ML 10-13-11
, 		
·		0.095 ML 1668 FCL 100 molar 10.13:11
<b> </b>		
ļ		PCB-130142/10 50 malmal 10-16-11
II		man 12 at Marina 1800 Marina
<b> </b>		A DIA MALL AND SANDER
ļ		0.090 MIL 1668-TCL 100 mg (ml 10-13-11
ļ,	<u> </u>	0.040.11.1
<b> </b>	1	PCB-1301+ -/W-100 mg/ml 10-16-11
Ĵ		PCB-13014-/W 500 Mg/ml 10-13-11
 	فالمستناب المسائد	708-1301
ľ		TOOK 0.020 ML SUD SUDED TO
		0.080 MIL 1668 - ICH 100 molane 10.13.)1
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
		permanage, 1000 mar. the wal tabelled to
		wie friends for the left and trensteries to an array
		son responsibilities 1.8 ml investion incl
<b>#</b>		PETN 17778-29395 - PETN 1000 mole 10/24111
		Rec: 828/11 MFR exp. 10/31/15
<b></b>		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
<b> </b>		1957N 100 walnut
<b> </b>		1 / low low low low low
<b>  </b>		PETN 1000 with 10(24111) 1m2 1000 1000 1000 1000 1000 1000 1000
		HM 10127
	سسنست	950.41
		- Personal Control of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State
		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
	PA 1924AII	

COME STANDARD PREP LOGH 98 HAGEN 19

	,	LOMS STAN	IDARD PREI	P LOG#_ 9	1412/16/15/1 8 Page#	51	
	.≯	INITIAL	T-SOURCE	SUPPLIES	FINAL	FINAL OSL	UNIE
<b>B</b> TA	VDARD	CONC		ALIQUOT	AZTOWE	ONC LOT#	INITIALS
	ulo territeri	Nitroglycerin Lot ≢: 211041387 - 2946	9	LABORATORY US	E UNIT :	ئىلىنىلىدىدىدىنى ئىلىنىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلى	
M-8330-ADI Näroglycerin		Reo: 9/19/11 MFR exp.	E E		<u> </u>		
1000 µg/mL:	in EtOH:MeOH (9 1387	7:3)	STO	RAGE Refrig (04	5°C)	<del></del>	
Ехр. Арт 19	, 2013 нт	HLY FLAMMABLE				·····	
	I b	nike waen 3	te vial	. labelle	d above		រា
	to an	comber 1.	8ml inje	tim was	<u>l&gt; 1</u>	اللسطمام المال عاد 1000 المال	2/
		<u> 12 -14 _</u>	<u></u>		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
<u> </u>	NG - 100			<u> </u>	<u> </u>		Hars
	NO 1	200 yelan	11/17/11	_1 mil	10ml	100 yearness Design Just	111711
	·				<u> ئوم د دوده يې د پېور د</u>	175.16-14	
	<u> </u>		<u>.                                      </u>	<u>- , </u>			
<u> </u>			· <u></u>	<u> </u>	<del> </del>		
— РЕТИ	l Solution, 1000 mg/L _{ij}		<u> </u>	<u></u>			
_ 4	1 ml	<u> </u>				labelled to the	
	Degrees C 10/31/15		booke of	1	erred to	an autour like	Ť /
PEIN PEIN		1et	icction:	- 1	PETA	1 1000 relact . Ulc	21.4
Lot#: 18004 Rec: 10/24/1	2 · 29745 1 MFR exp. 10/31/15	10	ection.	VIEA			
	<u> </u>						إسمستند
<u> </u>				<del></del>			
<u> </u>		1000-19/ml	ululu	i lar	10ml	100 solar 1:1	11/1/11
····	PE7N	1000-LAIME			<u></u>	AFR MEUN DESUL 11074	
· · · · · · · · · · · · · · · · · · ·	<u> </u>						
	12 Philtrobeazens		<del></del>		•		
<b>3</b> ou	110466-01	т	bake	grea th	e vial	labelled to the	
	State Equa	1cf4	- act	transfer	red to	an outer 18	24
a Som /	SOULILIONS®		ctour v	ial 🗕	1,2-10/12	: 1000 glat 11/1	7/H
Lole: 17552		<del>- "}"</del>			<u> </u>		<u> </u>
Hee: 11/10/1	( MED SAP. SACIONAL	<u></u>		X 1	<del></del>		<u></u>
		100-19/NL		<u> </u>	<u> </u>		hps. s
	1,2-0NB=	1000 unglent	1117	ly bort	- 285 <i>l</i> omb	100 year 121 DESMESSE DESMESSE	11-111

#### LOMS STANDARD PREP LOGE 18 PAGES 81 081 INITIAL SOURCE **FINAL** FINAL STEWN DATE ! STANDARD CONC DATE ALIQUOT VOLUMS ONC initials_{ia} LOT# 1.2-Diditrobenzene labelled Boto Hog, 1,000 mg/L, 1 ml broke \$1H66-01 41# Solv: Actions III Colors 179524 1,2-Dinthobenzene Lot #: 175526 - 29928 Rec: 11/10/11 MFR exp. 07/10/14 AccuStandar 3.5-Dintroanline OR LABORATORY USE ONLY 3,5-Dinitroaniline Lot#: 210111284 - 30017 M-8330-ADD-4-10X Rec: 11/16/11 MFR exp. 11/19/13 3.5-Dinitroaniline 1000 µg/mL in AcCN:MeOh STORAGE Amblent Lot: 210111284 Exp. Nov 19, 2013 **POISON** 1000 per 11130 111 MM 8330 -MIX-19 1000--8330 -13 11/30/11 <u>voogualmb</u> 10.0 ug/ml 8330_ MIX-13 11-30-11 9-20-11 Fre Hillelin 4-7-11 PETN 7368.4 DF 11-01-11-11/30: AV49289 WOL

286

The ampoule above was created open 12-1-11 and transferred DD PPH opered 12-1-11 Exp 12-1-12 Absolute

Laboratory Use Only - See MSDS Part #: 95094 Lot #: 092410 Storage 0 'C Exp: 092413 8330 Mix B B components 8330 Mix 9 100 ug/mL in aceton Lote: 092410 - 27369 ABSOLUTE STANDARE Rec: 9/30/10 MFR exp. 09/24/13

082

STANDARD

95093

111009

Pad #:

Lol#:

The amporter to the left was creked spen 12-1-11 onl transferred to an amour injustion bbelled:

83310- HUK-B- 35 100 PPM

Opened 12-1-11

	Absolute  D Laboratory Use Only - See MSDS  D9 Exp: 071414 Storage 0 'C  Hethod 8330 Analyte  Brythritol tetrant  Lot: 071409-28213  Rec 2711/11 MFR exp. 0774/14  STANDARDS  The Grownle above was cacked open 12-1-11 of tousings  FETN - 95 - 3TC  [COD PPM  Opend 12-1-12  Absolute  FOR LABORATORY USE ONLY  Assolute  FOR 12-1-12  Absolute  FOR LABORATORY USE ONLY  Lot 8: 211/11 MFR exp. 11/19/13	
STAN		
	ANITIAL SOURCE FINAL FINAL SILENAL DIALES  FORD GONC DATE ALIQUOT VOLUME ONC LIGHT INTIALS  FINAL FINAL SILENAL DIALES  FOR 12-1-12  Absolute  The dropale chave are creeked open 12-1-11 of transfered  FETU 25-5TIC  [ODD PPM  Opened 12-1-12  Absolute  Standary S. Britishing Market (1984) 1983  ACCINEON  FOR 11/10/11 MFR exp. 11/19/13  ACCINEON  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient  TORAGE Ambient	
<del></del>	INITIAL SOURCE FINAL FINAL SCH. 2011. JUNES.  CONC DATE ALIQUOT VSLUME ONC LOT# INMIALS  E. 12-1-12  Absolute  Laboratory Use Only - See MSDS  Exp. 071414 Storage 0 'C  2330 Analym.  In action lot: 071400-28213  n action Rec. 271111 MFR. exp. 0774114  The appele above was casked gen 12-11 of tradfered  G. G. Mer. 1 Appele above has casked gen 12-11 of tradfered  PETN - 95 - STAC  [COD PPM  Opened 12-1-12  Absolute  TOR LABORATORY USE ORLY  35 Philosophia  Cut: 21011284 30018  Roc. 11/16/11 MFR. exp. 11/19/13  201.  POISON	
<u></u>	170500	
L 17.	Laboratory Use Only - See MSDS	
	tipi	
EPA	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	
	**************************************	
BSOLUI	IE STANDARDS	٠
<del></del>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	The amounte above was creeked open lattition	
	to an amber injection vial labelled labelled:	
- 72		
<u></u>	INITIAL SOURCE FINAL FINAL SCILEN.: JACK.  RD GONC DATE ALIQUOT VOLUME GNC LOT# INNTIALS  E. 12-1-12  Phisology  Laboratory Use Only - See MSDS  9 Exp. 071414 Storage 0 °C  ethod 8330 Anni MEN  rythriot letrant  Lot. 071409-28213  Prim In section  Rec 2/11/11 MFRep, 07/4/14  The Grossle above was cracked open 12-1-11 of transferred  - Gn context Injection via Laboratory Use Only  STANDARDS  The Grossle above was cracked open 12-1-11 of transferred  - Gn context Injection via Laboratory Use Only  Opened 12-1-11  Egn 12-1-12  Absolute  TORAGE Annivers  TORAGE Annivers  13 POISON	
	1000 PPM	
	Opened 12-1-11	
	INITIAL SOURCE FINAL FINAL SOURCE SALEURY USE ONC LOT# INNTIALS  FINAL FINAL SOURCE FINAL FINAL SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOUR	
	HNITIAL SOURCE FINAL FINAL SIN TENN WATER  CONC DATE ALIQUOT VOLUME ONC LOT# INSTALLS  E	
<del></del>	MOS DIVID	
		,
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
	Stating 3,5 Dinitroanline	
5-Dinitroahil Marakatir		
t: 210111	284	
p. Nov 19,	INITIAL SOURCE  FINAL FINAL STU-BY.  STATIDARD  SONC DATE ALIQUOT VOLUME ONC LOT# INITIALS  PASSIVE  ABSOLVE  TOTAL STORE ONC LOT# INITIALS  PASSIVE  ABSOLVE  THE GROUNE CHARLES WERE CONTROLUME ONC LOT# INITIALS  THE GROUNE CHARLES WERE CONTROLUME ONC LOT# INITIALS  THE GROUNE CHARLES WERE CONTROLUME ONC LOT# INITIALS  THE GROUNE CHARLES WERE CONTROLUME ONC LOT# INITIALS  ACCUSTANDARDS  TOTAL SOURCE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  ABSOLVE  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  JALES  FINAL FINAL STU-IVE  INITIALS  JALES  JALES  FINAL STU-IVE  INITIALS  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES  JALES	
1	$\Gamma$ , $\kappa_{\rm C}$ , $\kappa_{\rm C}$ , $\kappa_{\rm C}$	

3,5-1047 100 PPM

3,5-1048 1000 idml 12-1-11 Im land landme 1:1 few new 124-11

288 ACU MENH 124-11

7.8 ml injection Mad

LOMESTANDARD PREP LOCK 99 PAGES	•
LARASISTANDAMENTED LAGUE 90 BAGES	1/3
FRIUM STANDAKO LIKEL TOOK TO LANGEST	

TANE	ARD	INITIAL CONC	17 23 3	IRCE A	LIQUOT	FINAL VOLUM			.OT#	<del>DATE</del> INITIAL	ı,
				ع بدو	- ^	<u></u>	60 18	<u> </u>	<u> </u>		
		following.			<u> ۱۱۵ ده است</u>						
	document	<u>ed here</u>	<u> </u>	<u>ი</u>	3-1 62 11.	<u> </u>		· .			
	    8330_MX-B	10	.0 ppm	11/30/11	0.10 ml	1.0 mL	1.0 ppm	1:1 ACN/DE296	12/04/11 : MeOH/51	. 1171	1111 12103 112
	8330_MX-B	1.	0 ppm	12/15/11	0.10 ml	1,0 mL	0.10 ppm	1:1 ACN/DE298	12/04/11	нм 💳	+
	8330MXB_CB 2.0 £ 8330_MX-Ð 8330MXÐ_CB 1.0 £	10	.0 ppm	11/30/11	0,200 ml	1.0 mL	2.0 ppm	1:1:6 ACN:MeOI DE296:511	133 ; H2O	RE	-
	8330_MX-B		nqq 0.0	11/30/11	0.100 ml	1,0 mL	1.0 ppm		12/15/11	HM	
	8330MXB_CB 0.5 p 8330_MX-B	10	).0 ppm	11/30/11	0.050 ml	1.0 mL	0.5 ppm		12/15/11	HM	
	8330MXB_CB 0.2   8330_MX-B	1	.0 ppm	12/15/11	0.200 ml	1.0 mL	0.2 ppm		12/15/11	HM   ا	
	8330MXB_CB 0.1 ( 8330_MX-8	1	.0 ppm	12/15/11	0.100 ml	1.0 mL	0.1 ppm		12/15/11	IHM	
	8330MXB_CB 0.05 8330_MX-B	5 ppm 1	.0 ppm	12/15/11	0.050 ml	1.0 mL	0.05 ppm		12/15/1	інм	
	8330MXB_CB 0.02 8330_MX-B	? ppm 0.	.10 ppm	12/15/11	0.200 ml	1.0 mL	0.02 ppm		12/15/1	1 нм  -	
	8330MXB_CB 0.01 8330_MX-B	1 ppm 0.	.10 ppm	12/15/11	0.100 ml	1.0 mL	0.01 ppm		12/15/1	1 HM	
	8330MXB_CB 0.00 8330_MX-B	05 <b>pp</b> m 0	.10 ppm	12/15/11	0.050 ml	1.0 mL	0,005 ppm	,	12/15/1	1 НМ	<u></u>
		·		<u> </u>				<u></u>			
							- 1252.54	<u> </u>			
		· · · ·				<u>6.72</u>	1/20	<u>(-:\</u> 50	<u> </u>	سينتث	
								<u> </u>		 	
		<u></u>	<u> </u>	<u> </u>		<u> </u>					
								<u> </u>	<u> </u>		
<u>* * *</u>						<u>:3\</u>	42	<u>. A i</u>	<u></u>	<del></del>	

104			INITIAL	SOURCE	<u> </u>		-FINAL	-FINALO	OCE PIV.	DATE
STANÜA	RD	i law.	CONC	DATE	ALIQU	OT Y	1.11	ONC	LOT#	INITIAL
7.16.	1		Verrege	TO SEC.	W 193	: 4 % -	y 49 <del>5 as</del> 1			<u> 4444</u>
0220 M	1 ° IV.A	•	10.0 ppm	11/30/11	0.10 ml	1.0 mL	1,0 ppm	1:1		1/031
	W-W	-	TOTO PRO							
#330 M	IX-A		1.0 ppm	12/15/11	0.10 ml	1.0 mL	0.10 ppm			
0300_1"	,,,,,		,,					ACN/DE296	: MeOH/51133	{
8330MX	кв св:	2.0 ppm					_	4.4.0	40/45/44 HM	
		• •	10.0 ppm	11/30/11	0.200 ml	1.0 mL	_ 2.0 ppm			
<del>-</del>										
<del>-</del>							40.000	DE230 . 311		\
8330_M	AX-A		10.0 ppm	11/30/11	0.100 mi	1.0 ML	L 1.0 ppm			
8330MX	XA_CB	0. <b>5</b> ppm		441001111	0 0E0!	10	0.5 nnm		12/15/11 HM	
			10.0 ppm	11/30/11	U.UOU MI	1.0 [[[[	_ 0.0 ppm			. [
_		0.2 ppm		40/45/44	0 200 ml	1 0 ml	l. 0.2 nom		12/15/11 HM	
			1.0 ppm	12/15/11	V.200 IIII		- AIT LE			
		0.1 ppm	4.0	40/45/44	0 100 ml	1,0 ml	L 0.1 ppm		12/15/11 HM	
			1.0 ppm	12/10/11	0.1001111	,,,,				-
		0.05 ppm	4.0	12/15/11	0.050 ml	1.0 ml	L 0.05 ppm		12/15/11 HM	
		n nn	ı.o ppiii	(2) (0) (1)	3.220					
		v.vz ppm	0.10 nnm	12/15/11	0.200 ml	1.0 m	L 0.02 ppm		12/15/11 HM	
		0.01 pam	o' to bhiii	22, 10, 11						
		O.OT PPIN	0.10 nnm	12/15/11	0.100 ml	1.0 m	L 0.01 ppm		12/15/11 HM	
		0 005 ppm	Olio Phili							
		O'000 bbiii	0.10 ppm	12/15/11	0.050 ml	1,0 m	L 0.005 ppm	1	12/15/11 HM	
9330 <u>_</u> r	TIA-74				<u> </u>		<del></del>	·		
90001	IYA GO	1 0 PPM	-				•	4.4.5	46 12/45/11 HM	
			100 ppm	12/01/11	0.010 ml	1.0 m	nL 1.0 ppm	1:1:0		-
	,,,,_00									+
									12/45/11 HM	ı <del>-  -</del>
8330M	AXB SS	1.0 PPM					40 555			
			100 ppm	12/20/11	0.010 ml		ղև լ,ս իկու			$\top$
			100 ppm	12/01/11	0.010 ml	ı		5420014	-	
	`			-						
	<del> </del> -	<del></del>								
	<b>↓</b>	<del></del> -		<u> </u>						и.
	832	nek_	8000 6	0.5 hg/	_/_		<del></del>	- , ,	<del>-/</del>	
10 - 1					200		1.54/4/	Kether	1/5/223	01-07-1
75/4	100	10-70		<u> </u>			7-	-	′	
	<u> </u>			<u></u>		<del></del>	. 1.	h /	<i></i>	<del>- //</del>
nidsth.	10	78 11-2	2-11 0	./2	1.0	107	7.84/-/	Helhars!	31223 B	-05-12
<del>. 15 . 7 . 7 . 7 . 1 . 5</del> 1.3					4 .					
	1	7 7	1		7/					*/
	$\Pi_{\mathbf{k}}^{-1}$		/	7 T /	81-/		<u> </u>			Rf
	hell	dishil	hos Sfl	_ <i>U/1.4</i>			ь	// ./		-77
A. Har	153	chidale	405 Sfl 2-12-	0,116h	1 25.	D i	0.50 M	tan/15	1223 01-0	3-12
:dopo	187	child of	hos set	0,1162	1 25.	D (	0.50 M	han/ 15	1223 01-0	3-12-
Anto	157	chidele X BM	2-12	0,1162	1 25.	D j	0.50 M	ton/15	1223 01-0	3-12
Aspe	187	chidel x blo	2-12	0,1162	125.	D i	0.50 M	han 1/5	123 01-0	3-12-
	8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M 8330_M	8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B	8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A	8330_MX-A  8330_MX-A  8330_MX-A  1.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  10.0 ppm  8330_MX-A  10.0 ppm  100 ppm  8330_MX-A  100 ppm  100 ppm  100 ppm	8330_MX-A  8330_MX-A  10.0 ppm 11/30/11  8330_MX-A  10.0 ppm 12/15/11  8330_MX-A  8330_MX-A  10.0 ppm 11/30/11  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-A  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B  8330_MX-B	### STANDARD   GONC   DATE   ALIQUATION	### ### ##############################	### STAND ### SONC DATE ALIQUOT VSLUMS  ### 8330_MX-A  ### 10.0 ppm 11/30/11 0.10 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.10 ml 1.0 mL 0.10 ppm  ### 10.0 ppm 11/30/11 0.200 ml 1.0 mL 2.0 ppm  ### 10.0 ppm 11/30/11 0.200 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 11/30/11 0.200 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 11/30/11 0.050 ml 1.0 mL 0.5 ppm  ### 10.0 ppm 11/30/11 0.050 ml 1.0 mL 0.5 ppm  ### 10.0 ppm 11/30/11 0.200 ml 1.0 mL 0.5 ppm  ### 10.0 ppm 12/15/11 0.200 ml 1.0 mL 0.2 ppm  ### 10.0 ppm 12/15/11 0.200 ml 1.0 mL 0.2 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.05 ppm  ### 10.0 ppm 12/15/11 0.200 ml 1.0 mL 0.05 ppm  ### 10.0 ppm 12/15/11 0.200 ml 1.0 mL 0.05 ppm  ### 10.0 ppm 12/15/11 0.200 ml 1.0 mL 0.05 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.05 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.01 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.01 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.01 ppm  ### 10.0 ppm 12/15/11 0.050 ml 1.0 mL 0.01 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm  ### 10.0 ppm 12/15/11 0.010 ml 1.0 mL 1.0 ppm	### STANDARD   CONC   DATE   ALCOLOT   VSLUMS   ONC	## STANDING   CONC   DATE   ALIQUOT   VOLUMS   ONC   LOT#

#### LOMS STANDARD PREP LOGH 98 PAGES 106

W	106		(NITIAL	SOURCE		FINAL	FINAL:	oO⊾ "⊭N⊹" LQT#	Jaie 7 Tamals
5	AMCI/AA7	0	CONC	DATE	ALIQUOT	VOLUME			
833	8330_07	7/13_MixA_SS_ 7/13_MixB_SS_ 7/13_SS_INTS	_STK	100 ppm 12	2/20/2011 10	0.0 μL 1.0 mL 0.0 μL 1.0 mL 0.0 μL 1.0 mL	1.0 ppm 1.0 ppm 1.0 ppm	HIM 2116 1:1:6 ACN:MeOH:M DE002:51076	LLIPORE
			07 01 08-CCU 1.	06/12 0 PPM	HM:	ode on			locumented_
		8830_MV - 8330_n <u>vg_c</u> 8330_MX-B	<u>(y so Pr</u> r 10 aujn		и (30/11	100-VL - ML 1.0	-	·Ougline 6:	BOHL SIONS
	,	5330_CCV \$330_MX-A \$330_MX-A	1			D. 1.0,	nc 10	Zufac 6:11. L Hore.	i Hm incoy Yella Kasa
Perchloral Perchlora	e gage Le 10	Cistor 1	perform Dugh-1 1-19-11	0.18	/0. 0	~	h://spoc	01-06-12 ubder 01	N
Perchlo Perchlorate	Cale QAQ	spihe , c Stock	0.10 mg/m, 10 010	/ W 5-12 0:	17-6-12 25 XQ 25.	0 0.10mg	.( <u>h://:</u> he	one oto	N 5-12
· · · · · · · · · · · · · · · · · · ·					,				

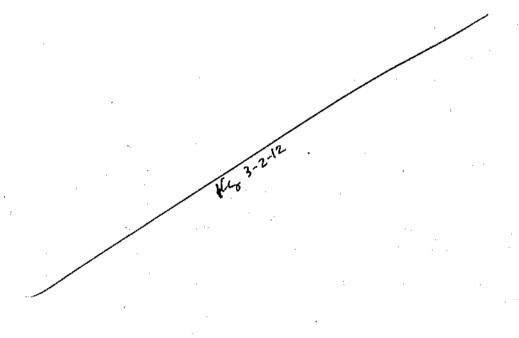
	Loimes	TANDARD PREP L	OG# 48 PAGE#	TOR	
108	į			FINAL	SUL FN. DATE!
STANDA	INITIA RONC	DATE A	FINAL LIQUOT VOLUME	<del>at on€</del> ⊝	LOT# INTIAL
	Na Pinitrobenzene :	<u> </u>	·		
	Solution 1 (1000 mg/L, 1 ml	· .	roke open the I	to trail	stemed to
	Trans SOUTEONS	anlam	ber 18ml	d.,.	
	1,2-0inikrobenzene Lot#: 175528 - 30114 Rec: 12/15/11 MFA exp. 07/10/14		*5~10 or	_	01/09/12
			<u> </u>	1, 1, 3,	
		-	P. 67/04/12.		
	1/2 -00013 //0		109/13 1080W	10m1 10	Duglac 1:1 Atw MADH1 0634651076
	A STATE OF STATE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	age E	#\\\\ 1\\ 1\\\\
			•	· ·	
	8330-CCV		وَعْلِينَ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْهِ عِنْ	ما ام	whot 6:1:3
77.33	8330 MIX-3		1 3.75 4.75		tho Aun Mean DE198 Austo
<u> </u>	on Mark to a			9 <b>9</b> 1	HM/9/12
	Solution 1,000 mg/L, 1 ml	I broke	open the	Carlos Col	belled to the
	South South	ileft and	· transferred to	s de m	lmber 1.8mL
n <u>.</u> 1,2∙D	Initrobenzene 175526 - 30116	injection	vial - 1,2-1	oub 100	Dught 1/10/12
( <del> </del>	12/15/11 MFR exp. 07/10/14	1			
	Commence of the Commence	\$77 tr			
	And States And States				<u></u>
<b>●</b> Acc M-8330-R	Lot #	St New Hayen, O. (1983) - 1982 od 8330 - Explosives : 209101177-01 - 29865	G: This product contains		
Method 83	30 - Explosives by Hi Rec: L in MeOH:AcCN (1:1)	10/25/11 MFR ехр. 04/20/1	I to cause cancer and birth r other reproductive harm  STORAGE Freeze (<-10° C)		<u></u>
Lot: 2091 Exp: Apr 2	01177-01 29,2013 <b>HIGHLY</b>	14 comps. FLAMMABLE			
	I bake	spea the vi	I labelled a	box ad	transferred
<b>4</b>	to an am M-8330-12	han 1.8ml	Injection well-	*	
	171-0530-12	เอองเปเ	u !lolia		
THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S				sycosa po anosanasta C	

### LCAME STANDARD PREP LOGH 98 PAGEN 109

	IANTIAL COURSE	
<b>STAN</b> ÛA	RD GONG DATE ALIQUOT VOLUME ONG LOT# INTIALS	
	M-8880-R 100 PPM EXPENTIONAL	
	M-8880-8-11000 illibita millibita 1000 1000 111	<u></u>
\$2 67 4.5	12-12N/3 1 1 1 1 1 per meath 1116	112
	San O State Barrier William State and A	
20 -	8330WA PA CREW NO PRINT THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WAR AND THE WA	
5 5		<u> </u>
	MOD ARM MACH 1/4 DESPAY SIGN	
V	the transfer of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	
2: 9: 6:-	NOTE: THE FOLLOWING DOCUMENTATION 31	
	WAS PERFORMED AS PATED: 384 01-11-12 OLIL-17	2
	8290 = 40 mg/ml 01-08-172	
· <del>  </del>	EDF- HOSS SOOMgland II- MINISTER TOOK OF OB!	<u> </u>
<u> </u>	GOOS ML. Sand State Control To	
· · · · · · · · · · · · · · · · · · ·	EUR- 6005 100:500 Mg/ml 09:02-11 B	
	TOOK O OHO MIL	
	TOOK 0.052 ML	
	COMBINED THE ABOVE CONSTITUENTS	
	IN A MICRO INSERT WITHIN AN AMBER	
- +	INTECTION VIAL	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	8290-QC_CHY   DF 01-08-12:	
	EDE-HOSS BOOMS/MQ 11-11-11 & TOOK	
	.0.008 ML	
	EDF-5005 100-500 malme 09:02:118	
	TOOK O. OHO ML	
	EDF-500B 100:500 mg/ml: 10:12-11F	
	TOOK OOLO ME O	
	SIGNA- ALDRICH NONEME SHBB29354	
	TOOK 0.042 MIL	
	COMBINED ABOUE CONSTITUENTS	
·	200	

#### COMSTANDARD PREP LOCK 18 PAGES 105

105


PANIAR		GON	AL SOU	TE ALIQU	OT VSI		FINAL ONC	LOT#	initials	
								601 19	IN I INE	
			<u>.                                    </u>		5/.0	6311	~~ \\Z			
	<u>8330-w</u>	SURRE	SC BUE	5.0PPM	FX		5		<u> ann</u>	
	1,2-DNB	1000	ا ساسر اوس	3106/11	50	10 Wr		ACN Me PEXA6 S	om ollow 5/076	1/12
						_ <del></del>				
	8330-WA	7-CCV_	1.0 PPM	. Supplied to	<u>. 14 </u>	\(\frac{1}{2}\)	<u>ئىسىنىڭ</u> ئامەلىرىما	6:131	Hen	
	8330_ MI	4-A	<u> </u>	11/30	10.	<u>ا ليو</u>	<u></u>	HOW FILM MES PEJUL II	ollo-	4112
	8330_M	x3_Ccy	1.0 PPM	11. 11. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	<u></u>	<u> </u>		6:1:1		m
	8330-M	IV - B .	<u>اه.ميهامد</u>	<u> 기 3이</u> 가	190.	<u></u>	1.0uglmL	Hen Aral N		loul:
<del></del>	<u> </u>			2 22 30 22	· <u> </u>					
<del></del> +	<u> </u>				1	ا د م	lastia	and docus	vented.	
	The	following	CBs	nec me	de on	<u>. OII</u>	17:00	•		
					de en	. <u> </u>			. <u></u>	
	The here		1/06/19		de on	. <u> </u>				
330 MX	here.				<u>de</u> oa					
30_MX 8330_M	hece.		1/06/12						1106112	
	hece.		1/06/12	HM.				THM O	106112	
8330_M	lece. A		1/06/12	HM.				HIM 0	1 106112 6 MILLIPORE	
8330_M 30_MX	A IX-A		10.0 pg	HM: om 11/30/201	1 200 µL	1.0 mL	2,0 ppm	HIM 6 1:1: ACN: MeOH:1 DE002:510	1   06  14 6 MILLIPORE 78 : H2O	
8330_M	A IX-A		10.0 pg	HM.	1 200 µL	1.0 mL		HIM 6 1:1: ACN: MeOH: N DE002: 510	1   06  1/2 8 MILLIPORE 78 : H2O 8	
8330_M 30_MX	A IX-A		10.0 pg	HM: om 11/30/201	1 200 µL	1.0 mL	2,0 ppm	HIM 6 1:1: ACN: MeOH:1 DE002:510	A 106112 6 MILLIPORE 78: H2O 6 MILLIPORE	
8330_M 30_MX	A IX-A		10.0 pg	HM: om 11/30/201	1 200 µL	1.0 mL	2,0 ppm	1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: MeOH: N	A 106112 6 MILLIPORE 78: H2O 6 MILLIPORE	
8330 M 30 MX 8330 M	A AXA B AX-B		10.0 pg	HM: om 11/30/201	1 200 μL 1 200 μL	1.0 mL	2,0 ppm	1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: MeOH: N	A 106112 6 MILLIPORE 78: H2O 6 MILLIPORE	
8330 MX 8330 MX 8330 M	A IX-A		10.0 pp	m 11/30/201	1 200 μL 1 200 μL	1.0 mL 1.0 mL	2.0 ppm 2.0 ppm	1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: MeOH: N DE002: 510:	1 10611/2 6 MILLIPORE 76 : H2O 6 MILLIPORE 76 : H2O	
8330 MX 8330 MX 8330 M 30B CB 8330 M 8330 M	A  IX-A  IX-B  IX-A  IX-B		10.0 pp	m 11/30/201 m 11/30/201 m 11/30/2011 m 11/30/2011	1 200 μL 1 200 μL 1 100 μL 1 100 μL	1.0 mL 1.0 mL 1.0 mL	2.0 ppm 2.0 ppm 1.0 ppm 1.0 ppm	1:1: ACN: MeOH: N DE002: 510;  1:1: ACN: MeOH: N DE002: 510;	A 1061V2 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 M 8330 M 8330 M 8330 M 8330 M 8330 M	A  AX-A  B  IX-B  IX-B  IX-B  IX-B  IX-B		10.0 pp	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011	1 200 μL 1 200 μL 1 100 μL 100 μL 50 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm 2.0 ppm 1.0 ppm 1.0 ppm 0.5 ppm	1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: Me	MILLIPORE 76: H2O 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 MX 8330 M 8330 M 8330 M 8330 M	A  IX-A  IX-B  IX-B  IX-B  IX-B  IX-B  IX-B		10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011	1 200 μL 1 200 μL 1 100 μL 100 μL 50 μL 50 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm	1:1: ACN: MeOH: N DE002: 5107  1:1: ACN: MeOH: N DE002: 5107	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 MX 8330 M 8330 M 8330 M 8330 M 8330 M	A  IX-A  IX-B  IX-B  IX-B  IX-B  IX-B  IX-B  IX-B		10.0 pp  10.0 pp  10.0 pp  10.0 pp  10.0 pp  10.0 pp  10.0 pp  2.0 ppr	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 n 11/30/2011	1 200 μL 1 200 μL 1 100 μL 100 μL 50 μL 50 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm	1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: MeOH: N DE002: 510: 1:1: ACN: Me	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 MX 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M	A  IX-A  IX-A  IX-B  IX-B  IX-B  IX-B  IX-B  IX-B  IX-B		10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 2.0 ppm 2.0 ppm	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/5/2012 n 1/5/2012	1 200 μL 1 200 μL 1 100 μL 100 μL 50 μL 100 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.2 ppm	1:1: ACN: MeOH: N DE002: 5107  1:1: ACN: MeOH: N DE002: 5107	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 MX 8330 M 8330 M 8330 M 8330 M 8330 M	A  A  A  A  A  A  A  A  A  A  A  A  A		10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 2.0 ppn 2.0 ppn 1.0 ppn	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 1/5/2012 n 1/5/2012 n 1/5/2012	1 200 µL 1 200 µL 1 100 µL 50 µL 50 µL 100 µL 100 µL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.2 ppm 0.1 ppm	1:1: ACN: MeOH: N DE002: 5107  1:1: ACN: MeOH: N DE002: 5107	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 MX 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M	A AX-A B AX-B AX-B AX-B AX-B AX-B AX-B A		10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 2.0 ppm 2.0 ppm	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 n 1/5/2012 n 1/5/2012 n 1/5/2012 n 1/5/2012	1 200 μL 1 200 μL 1 100 μL 100 μL 50 μL 100 μL 100 μL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm  2.0 ppm  1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.2 ppm	1:1: ACN: MeOH: N DE002: 5107  1:1: ACN: MeOH: N DE002: 5107	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	
8330 MX 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M 8330 M	A  A  A  A  A  A  A  A  A  A  A  A  A		10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 10.0 pp 2.0 ppn 1.0 ppn 0.5 ppn	m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 m 11/30/2011 n 1/5/2012 n 1/5/2012 n 1/5/2012 n 1/5/2012 n 1/5/2012	1 200 µL 1 200 µL 1 100 µL 50 µL 50 µL 100 µL 100 µL 100 µL	1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL	2.0 ppm 2.0 ppm 1.0 ppm 1.0 ppm 0.5 ppm 0.5 ppm 0.2 ppm 0.2 ppm 0.1 ppm 0.05 ppm	1:1: ACN: MeOH: N DE002: 5107  1:1: ACN: MeOH: N DE002: 5107	6 H2O 61/20 6 MILLIPORE 76: H2O 6 MILLIPORE 76: H2O	

#### LOIMS STANDARD PREP LOG# 97 PAGES 106 ALL AND THE REAL PROPERTY. 106 OCK EN. FINAL: FINAL INITIAL SOURCE INSTIALS LOT# ALIQUOT VOLUME ONC CONC DATE CRACHATA (165°) HM 3116112 8330B SS 1:1:6 1.0 ppm 12/1/2011 10.0 սև 1.0 mL 8330 07/13 MixA SS STK 100 ppm ACN : MeOH : MILLIPORE 12/20/2011 10.0 µL 1.0 mL 1.0 ppm 100 ppm 8330_07/13_MIxB_\$S_STK DE002: 51076: H2O 10.0 μL 1.0 mL 1.0 ppm 12/1/2011 100 ppm PETN 07/13 SS_INTSTK following cous use mode on ollosliz 01/06/12 8330-MAR-CEN 1.0 PPM 10.0 uslmL 4/30/11 100WL HIO RENHAM 15046 SIOT-6 8330-MYB-CCV 1.0 PPM 1 Ouglost 6:131 113611 83)0. MX-B. 100 WILL نامد سلس 100/ HIOHENMERTI DENGL SUZ 1.0PPM 8330_CCV 1.0me 8330_MX-A 10 aught 11 30/11 the permeny 461 \$330-MIX-A BAR YOU Standard Pero Docum -tal

#### Organic Extraction Worksheet

Method	Explosives Soil Extraction	n 8330B	Extraction	1 Set   120	302A	Extrac	tion Method	MSE018	Units mL
Spiked ID I	8330 100ppm STK 02-2	23-12 exp 08-23-12	····	Surrogate I	D1	1,2-DNB STK	100 PPM 02-21-	12 exp 08-21-12	<u>_</u>
Spiked ID 2				Surrogate I	D 2		5 S S S S		
Spiked ID 3				Surrogate I	D 3			· · · · · · · · · · · · · · · · · · ·	
Spiked ID 4		*		Surrogate I	D.4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Spiked ID 5				Surrogate I	D 5		:		
Spiked ID 6				Sufficient \	ol fo	r Matrix QC:	NO		
Spiked ID 7				Ext. Start T	ime:		03/02/12 13:50	<u> </u>	
Spiked ID 8				Ext. End Ti	me:		03/03/12 7:50	,	
	<b>N</b> .			GC Requir	es Ex	tract By:			:
				pHt		· · · · ·		Water Bath Te	mp Criteria
		•		рН2				<del></del>	
				рН3	T				

Spiked By: KY		Date 03/02/1	2		Witness	ed By: C	FM		Date 03/02/	12
Sample	Sample Container	Spike Amount	Spike ID	Surrogate Amount	Surrogate ID	Extract Amount	1 7 1 5	рĤ	Extract Date/Time	Comments
l 120302A Blk				0.060	1 equip	10.0 <b>2</b> g	20mL	NA	03/02/12 13:50	
2120302A LCS-1		0.2		NA	NA equip	10.01g	20mL	NA	03/02/12 13:50	
AY56027	AY56027S03			0.060	1 equip	10.07g	20mL	NA	03/02/12 13:50	67099 Rush 3 Day 4oz Jar



Solvent and Lot#	
Acetonitrile	DF301
Silica Sand	0-74-11
· .	
<del></del>	
<u> </u>	
:	
······································	
<del></del>	······

Extraction COC Transfer	
Extraction lab employee Initials	CFM
GC analyst's initials	HSM
Date	3-3-12
Time	8:00
Refrigerator	Hobart/Brown

	Technician's Initials
Scanned By	CFM
Sample Preparation	CFM
Extraction	CFM
Concentration	-17400104-17

Modified	Į.	)3/02/12	1:53:41 PM

Reviewed By:

lhr

296 Date 3-2-12

## METALS EPA SW846 - 6010B



## METALS EPA SW846 - 6010B Forms



# AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 6010B AAB #: 120302A-164505 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-SW1 AY56027 Comments: ARF: 67099 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Date:

Diane Anderson
Project Manager

### AFCEE **INORGANIC ANALYSES DATA SHEET 2 RESULTS**

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120302A-164505

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: 120305A

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	5.3	1	F
BARIUM (BA)	0.1	1.0	54.5	1	J
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	16.9	1	F
COPPER (CU)	0.19	2.0	5.20	1	
LEAD (PB)	0.18	10.0	5.24	1	F
NICKEL (NI)	0.12	2.0	8.03	1	
ZINC (ZN)	0.6	5.0	13.9	1	

Comments:

ARF: 67099

# AFCEE INORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

Analyi	tical Method: EPA 6010E				AAB#:	120302A-164	505			
	Lab Name: APPL, Inc.				Contract #: *G012					
Date of Initial		Initial Cal	ibration ID:	120305A						
In	strument ID: PHOEBE		Con	icentration	units (mg/L	or mg/kg):	mg/Kg	, <u>_</u>		
	Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	r	Q	
	As	0.3500	17.5	100.0	5349.4	200.0	10358.5	0.99992		
	Ba	0.5000	1655.3	100.0	275011.1	200.0	528297.8	0.99987		
	Cd	0.5000	3126.4	100.0	491771.6	200,0	931835.8	0.99976		
	Cr	0.5000	1185.0	100.0	189188.2	200.0	364890.6	0.99989		
	Cu	0.5000	975.1	100.0	146109.6	200.0	286798.0	0.99997		
	Ni	0.5000	604.2	100.0	89550.2	200.0	170486.3	0.99980		
	Pb	0.3000	87.5	100.0	21363.1	200.0	40211.2	0.99970		
	Zn	2.0000	3674.8	100.0	139512.3	200.0	264116.2	0.99975		
	Comments:									

AFCEE FORM I-3

#### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB#: 120302A-164505
Lab Name: APPL, Inc.	Contract#: *G012
Instrument ID: PHOEBE	Initial Calibration ID: 120305A
2nd Source ID: ICV 3/5/12 10:39	ICV ID: ICV 3/5/12 10:39
CCV #1 3D: CCV1 3/5/12 11:09	CCV #2 ID: CCV2 3/5/12 15:19
Concentration Units (mg/L	or mg/kg); mg/Kg

		2nd S	ource Calib	ration	Initial Calibration		Continuing Calibration					$\Box$		
A	nalyte		Verification		1	Verification				Verif	ĭcation			0
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	
							<u> </u>		i		<u> </u>	2		
As		100.0	97.0	3.0%	100.0	97,0	3.0%	100.0	103.1	3.1%	75.0	78,6	4.8%	
Ва		100.0	98.5	1.5%	100.0	98.5	1.5%	100.0	104.4	4.4%	75.0	74.9	0.1%	П
Çd		100.0	103.7	3.7%	100,0	103.7	3.7%	100.0	105.7	5.7%	75.0	78.3	4.3%	
Cr		100.0	104.2	4.2%	100.0	104.2	4.2%	100.0	104,3	4.3%	75.0	74.1	1.3%	
Cu		100,0	98.9	1.1%	100.0	98.9	1.1%	100.0	103,3	3.3%	75.0	72.3	3.6%	
Ni		100.0	104.8	4.8%	100,0	104.8	4.8%	100.0	104.9	4.9%	75.0	75.2	0.3%	
Рb		100.0	102.7	2.7%	100.0	102.7	2.7%	100.0	106.6	6.6%	75.0	77.9	3.8%	
Zn		100.0	105.4	5.4%	100.0	105.4	5.4%	100.0	106.2	6.2%	75.0	79.9	6.6%	П

Comments:		 	 
	<del></del>	 	 

AFCEE FORM I-4 Page 1 of 2

### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120302A-164505
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Calibration JD: 120305A
2nd Source ID: ICV 3/5/12 10:39	ICV ID: ICV 3/5/12 10:39
CCV #1 ID: CCV1 3/5/12 16:28	CCV #2 ID:
Concentration Units (me/l	or nig/kg): mg/ko

		2nd S	ource Calib	ration	Init	Initial Calibration		Continuing Calibration						Т
	Analyte	Verification			Verification		Verification						Q	
		Expected	Found	%D	Expected	_ Found	%D	Expected	Found	%D	Expected	Found	%D	+
						<u> </u>			1			2		$\top$
As		100.0	97.0	3.0%	100.0	97.0	3.0%	100.0	105.6	5.6%	1			$\top$
Ba		100.0	98.5	1.5%	100.0	98.5	1.5%	100.0	101.4	1.4%	1			1-
Cd		100.0	103.7	3.7%	100.0	103.7	3.7%	100.0	106.0	6.0%	1 1			+
Cr		100.0	104.2	4.2%	100.0	104.2	4.2%	100.0	100.5	0.5%	<u> </u>		<del></del>	1-
Ĉu		100.0	98.9	1.1%	100.0	98.9	1.1%	100.0	99.2	0.8%	1 1			+
Ni		100.0	104.8	4.8%	100.0	104.8	4.8%	100.0	101.7	1.7%	<del>                                     </del>			+-
Pb		100.0	102.7	2.7%	100.0	102.7	2.7%	100.0	104.5	4.5%	1			$\uparrow -$
Zu		100.0	105.4	5.4%	100.0	105.4	5.4%	100.0	107.8	7.8%	<del>                                     </del>			+

Comments:	 	<del>-</del>		 	
	 	 <del></del>	··········	 <del></del>	_

AFCEE FORM I-4 Page 2 of 2

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 6010B

AAB #: 120302A-164505

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120302A;BLK

Initial Calibration ID: 120305A

3050G

17-9-12

Analyte	Method Blank	RL	Q
ARSENIC (AS)	< RL	40.0	U
BARIUM (BA)	< RL	1.0	Ü
CADMIUM (CD)	< RL	0.50	บ
CHROMIUM (CR)	< RL	20.0	U
COPPER (CU)	< RL	2.0	U
LEAD (PB)	< RL	10.0	Ų
NICKEL (NI)	< RL	2.0	U
ZINC (ZN)	< RL	5.0	U

Comments:

ARF: 67099, Sample: AY56027

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 6010B		AAB #:	AAB #: 120302A-164505		
Lab Name: APPL, Inc.		Contract #;	*G012		
	Co	oncentration Units (mg/L or mg/kg);	mg/Kg		
Initial Calibration Blank ID: 10	CB 3/5/12 10:47	Initial Calibration ID;	120305A		
CCB #1 ID: <u>C</u>	CCB 3/5/12 11:25	CCB #2 ID: CCB 3/5/12 15:27	CCB #3 ID: CCB 3/5/12 1	6:47	
Method Blank ID: 12	20302A-3050G-BLK	Initial Calibration ID:	120305A		

	Analyte	Initial Calibration Blank	Continu	oing Calibrati	Method Blank	RL	Q	
l			1	2	3			
As		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ba	į	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<>	<rl< td=""><td>1.00</td><td></td></rl<>	1.00	
Cd		<rl< td=""><td><rl< td=""><td><rl,< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl,<></td></rl<></td></rl<>	<rl< td=""><td><rl,< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl,<></td></rl<>	<rl,< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl,<>	<rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr		<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl,< td=""><td>2.0</td><td></td></rl,<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl,< td=""><td>2.0</td><td></td></rl,<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl,< td=""><td>2.0</td><td></td></rl,<></td></rl<></td></rl<>	<rl< td=""><td><rl,< td=""><td>2.0</td><td></td></rl,<></td></rl<>	<rl,< td=""><td>2.0</td><td></td></rl,<>	2.0	
Ni		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Pb		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zn		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl,< td=""><td>5.0</td><td></td></rl,<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl,< td=""><td>5.0</td><td></td></rl,<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl,< td=""><td>5.0</td><td></td></rl,<></td></rl<></td></rl<>	<rl< td=""><td><rl,< td=""><td>5.0</td><td></td></rl,<></td></rl<>	<rl,< td=""><td>5.0</td><td></td></rl,<>	5.0	

Comments:		
	•	· · · · ·

AFCEE FORM I-5 Page 1 of 1

## AFCEE **INORGANIC ANALYSES DATA SHEET 6** LABORATORY CONTROL SAMPLE

Analytical Method: EPA 6010B

AAB #: 120302A-164505

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120305A

LCS ID: 120302A LCS 305001 Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ARSENIC (AS)	25.0	28.6	114	75-125	
BARIUM (BA)	25.0	26.6	106	75-125	
CADMIUM (CD)	5.00	5.80	116	75-125	
CHROMIUM (CR)	25.0	28.7	115	75-125	
COPPER (CU)	25.00	26.73	107	75-125	
LEAD (PB)	25.00	29.01	116	75-125	
NICKEL (NI)	25.00	29.23	117	75-125	
ZINC (ZN)	50.0	57.7	115	75-125	

Comments:

ARF: 67099, Sample: AY56027

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 6010B

AAB#: 120302A-164505

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-NT1-SW1	29-Feb-12	01-Mar-12	05-Mar-12	180	5	

Comments:

ARF: 67099

## AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 6010B

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PHOEBE ICAL ID: 120305A

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
CalBlk	05-Mar-12	10:21	05-Mar-12	10:21
STD 1	05-Mar-12	10:25	05-Mar-12	10:25
STD 2	05-Mar-12	10:30	05-Mar-12	10:30
STD 3	05-Mar-12	10:34	05-Mar-12	10:34
ICV	05-Mar-12	10:39	05-Mar-12	10:39
ICB	05-Mar-12	10:47	05-Mar-12	10:47
ICSA	05-Mar-12	10:56	05-Mar-12	10:56
ICSAB	05-Mar-12	11:02	05-Mar-12	11:02
CCV1	05-Mar-12	11:09	05-Mar-12	11:09
CCB	05-Mar-12	11:25	05-Mar-12	11:25
CCV2	05-Mar-12	15:19	05-Mar-12	15:19
CCB	05-Mar-12	15:27	05-Mar-12	15:27
120302A-3050G-BLK	05-Mar-12	15:44	05-Mar-12	15:44
120302A-3050G-LCS	05-Mar-12	15:49	05-Mar-12	15:49
AY56027S03	05-Mar-12	15:54	05-Mar-12	15:54
AY56027S03-A	05-Mar-12	16:09	05-Mar-12	16:09
AY56027S03-1/5	05-Mar-12	16:14	05-Mar-12	16:14
CCV1	05-Mar-12	16:28	05-Mar-12	16:28
ССВ	05-Mar-12	16:47	05-Mar-12	16:47

## 6010 Injection Log

Directory:

K:\ICAP PHOEBE\Backup Excel\

RunID	Injected		Sample Name	Misc Info	FileName	Multiplier
1	05 Mar 2012	10:21	CalBlk 120305EA I:PB O:EA		120305A6010	1.
2	05 Mar 2012	10:25	STD 1 120305EA I:PB O:EA		120305A6010	1.
3	05 Mar 2012	10:30	STD 2 120305EA I:PB O:EA		120305A6010	1.
4	05 Mar 2012	10:34	STD 3 120305EA I:PB O:EA		120305A6010	1.
5	05 Mar 2012	10:39	ICV 120305EA I:PB O:EA		120305A6010	1,
6	05 Mar 2012	10:47	ICB 120305EA I:PB O:EA		120305A6010	1.
8	05 Mar 2012	10:56	ICSA 120305EA I:PB O:EA		120305A6010	1.
9	05 Mar 2012	11:02	ICSAB 120305EA I:PB O:EA		120305A6010	1.
10	05 Mar 2012	11:09	CCV1 120305EA I:PB O:EA		120305A6010	1.
11	05 Mar 2012	11:25	CCB 120305EA I:PB O:EA		120305A6010	1.
46	05 Mar 2012	15:19	CCV2 120305EA I:PB O:EA		120305A6010	1.
47	05 Mar 2012	15:27	CCB 120305EA I:PB O:EA		120305A6010	1.
50	05 Mar 2012	15:44	120302A-3050G-BLK		120305A6010	1.
51	05 Mar 2012	15:49	120302A-3050G-LCS		120305A6010	1.
52	05 Mar 2012	15:54	AY56027S03		120305A6010	1.
55	05 Mar 2012	16:09	AY56027S03-A		120305A6010	1.
56	05 Mar 2012	16:14	AY56027S03-1/5		120305A6010	5.
57	05 Mar 2012	16:28	CCV1 120305EA I:PB O:EA		120305A6010	1.
58	05 Mar 2012	16:47	CCB 120305EA I:PB O:EA		120305A6010	1.

## A.P.P.L. INC.

### 5B

## POST DIGEST SPIKE SAMPLE RECOVERY

CLIENT SAMPLE N	O
B4-NT1-SW1	_

Lab Name;	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67099	SDG:	67099

Analysis Date: 03/05/12

Concentration Units: mg/kg

Analyte	Control Limit %R	Spiked Samp Result (SSR	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Arsenic (As)	75-125	47.98	4.788		45.045	95.9		
Barium (Ba)	75-125	80.45	48.93		45.045	70.0		М
Cadmium (Cđ)	75-125	5.761	ND		9.009	64.0		М
Clıromium (Cr)	75-125	50.38	15.17		45.045	78.2		
Copper (Cu)	75-125	43.3	4.674		45.045	85.8		_
Nickel (Ni)	75-125	42,44	7.21		45.045	78.2		
Lead (Pb)	75-125	39.54	4.707		45.045	77.3		
Zinc (Zn)	75-125	80.97	12,49	-   ''	90.090	76.0		

Comment	S:			
03/05/12	15:54	AY56027S03	 ····	
03/05/12	16:09	AY56027S03-A	 	

## A.P.P.L. INC.

### ICP SERIAL DILUTION

CLIENT SAMPLE NO.

B4-NT1-SW1

Lab Name:

A.P.P.L. INC.

Contract:

**Parsons** 

ARF No.:

67099

SDG:

67099

Matrix:

soil

Analysis Date: 03/05/12

Concentration Units: mg/kg

Analyte	Analyte Initial Sample Result (I)			%D	Q	М
	c		c			
Barium (Ba)	48.93	58.41	十	19,4		M
Chromium (Cr)	15.17	17.78		17.2		М

Con	ıme	nts:
$\sim$	11110	1112

03/05/12 15:54 AY56027S03

03/05/12 16:14 AY56027S03-1/5

## A.P.P.L. INC. 4 ICP INTERFERENCE CHECK SAMPLE

Lab Name:

A.P.P.L. INC.

Contract:

*G012

ARF#:

67099

SDG:

67099

ICP ID No

PHOEBE

DG: 670:

ICS Source: Environmental Express

Analysis Date

03/05/12

Concentration Units: mg/L

ANALYTË		TRUE			Initial Found			
	SOL A	SOL AB	SOL A 10:56	Recovery	SOL AB 11:02	%R(1)		
Aluminum	200	200	197.8	98.9	207.7	103.9		
Arsenic		0.5	0.002234	<rl< td=""><td>0.4748</td><td>95.0</td></rl<>	0.4748	95.0		
Barium		0.5	0.000043	<rl< td=""><td>0.4766</td><td>95.3</td></rl<>	0.4766	95.3		
Calcium	200	200	201.3	100.7	202.9	101.5		
Cadmium		1	0.000004	<rl< td=""><td>0.962</td><td>96.2</td></rl<>	0.962	96.2		
Chromium		0.5	ND	<rl< td=""><td>0.4983</td><td>99.7</td></rl<>	0.4983	99.7		
Copper		0.5	ND	<rl< td=""><td>0.5048</td><td>101.0</td></rl<>	0.5048	101.0		
Iron	200	200	181.8	90.9	180.8	90.4		
Magnesium	200	200	195.5	97.8	195.6	97.8		
Nickel		1	0.000004	<rl< td=""><td>0.9572</td><td>95.7</td></rl<>	0.9572	95.7		
Lead		1	0.001693	<rl< td=""><td>0.9702</td><td>97.0</td></rl<>	0.9702	97.0		
Zinc		1	ND	<rl< td=""><td>0.9565</td><td>95.7</td></rl<>	0.9565	95.7		

(1) Control Limits: Metals 80-120

## METALS EPA SW846 - 6010B Calibration Data



Reprocessing Begun

Logged In Analyst: chemist metals

Technique: ICP Continuous

Results Data Set (original): 120305A6010X

Results Library (original): C:\PE\ohemist\RESULTS\Results.mdb
Results Data Set (reprocessed):

Results Library (reprocessed):

Sequence No.: 1

Sample ID: Calblk 120305EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 03/05/12 10:21:08 AM

Data Type: Reprocessed on 03/06/12 9:16:32 AM

Mean Data:	CalBlk 120305EA I:PB O:EA				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev		Cond.	
Ag 338.289	~83.5°	102.14	122.25%	[0.00]	
Al 308.215	1209.7	29.38	2.43%	[0.00]	•
As 188.979	-2.3	1.32	56.7 <b>9</b> %	[0.00]	
В	19.0	5.15	27.04%	[0.00]	
Ba 233.527	177.5	6.33	3.57%	[0.00]	
Be 313.107	-12791.9	256.81	2.01%	[0.00]	•
Ca 315.887	430.7	12.37	2.87%	[0.00]	•
Cd 214.440	468.8	4.92	1.05%	[0.00]	
Co 228.616	109.8	11.09	10.10%	[0.00]	•
Cr 267.716	909.7	19.95	2.19%	[0.00]	•
Cu 327,393	-361.8	15.80	4.37%	[0.00]	•
Fe 273.955	141.1	14.75	10.45%	[0.00]	•
K 766.490	-452.8	111.32	24.59%	[0.00]	
Mg 285.213	-257.8	10.65	4.13%	[0.00]	
Mn 257.610	-64.5	4.08		[0.00]	•
Mo 202.031	141.7	0.72	0.51%	[0.00]	
Na 589.592	-59.9	89.80	149.87%	[0.00]	•
Ni 231.604	-201.6	10.82	5.37%	[0.00]	•
P 213.617	<b>~23.3</b>	8.05	34.47%	[0.00]	
Pb 220.353	-27.3	1.20	4.40%	[0.00]	
Sb 206.836	3.7		170.77%	[0.00]	•
Se 196.026	-19.5	8.70	44.64%	[0.00]	•
Sn 189.927	193.2	2.28	1.18%	[0.00]	
Sr 421.552	1759.8	62.50	3.55%	(0.00)	ug/L
Ti 337.279	-609.4	30.51	5.01%	(0.00)	- ·
Tl 190.801	-130.7	6.90	5.28%	(0.00)	
V 292.402	-481.5	265.15	55.07%	(0.00)	
Zn 206.200	-227.7	10.17	4.478	(0.00)	ug/L

Address of the

Sequence No.: 2

Sample ID: STD 1 120305EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collegted: 03/05/12 10:25:58 AM

Data Type: Reprocessed on 03/06/12 9:16:34 AM

Initial Sample Vol: Sample Prep Vol:

Page

Mean Data:	STD 1 120305EA I:PB O:EA				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	Red	Cons.	Units
Ag 338.289	245.1	92.90	37.91%	[1.00]	ug/L
Al 308.215	250.8	23.92	9.53%	[100.00]	ug/L
As 188.979	17.5	4.58	26.18%	[3.50]	ug/L
В	465.1	10.43	2.24%	[50.00]	ug/L
Ba 233.527	1655.3	3.21	0.19%	[5.0 <b>0</b> ]	
Be 313.107	18745.4	224.51	1.20%	[2.00]	ug/L
Ca 315.887	3811.5	39.69	1.04%	[100.00]	
Cd 214.440	3126.4	19.85	0.63%	[5.00]	
Co 228,616	688.7	10.59	1.54%	(5.00)	ug/L
Cr 267.716	1185.0	17.49	1.48%	(5.00)	ug/L
Cu 327.393	975.1	6.66	0.68%	(5.00)	
Fe 273.955	3094.5	10.11	0.33%	[50.00]	ug/L
K 766.490	5597.3	194.80	3.48%	[1000.00]	ug/L
Mg 285,213	3517.0	14.48	0.41%		ug/L
Mn 257.610	645.2	9.30	1.44%	[5.00]	ug/L
Mo 202.031	303.6	10.73	3.53%	[5.00]	
Na 589.592	17721.9	17.02	0.10%	[1000.0 <b>0</b> ]	
Ni 231.604	604.2	31.08	5.14%	[5.00]	
P 213.617	214.3	5.91	2.76%	(25.00)	
Pb 220.353	87.5	14.17	16.19%	(3.00)	
Sb 206.836	51.7	2.11	4.08%	(5.00)	
Se 196.026	26.3	9.11	34.57%	(5.00)	
Sn 189.927	22.1	1.96	8.86%	(5.00)	
Sr 421.552	8210.7	113.64	1.38%	[5.00]	
Ti 337.279	398.0	23.47	5.90%	(5.00)	
Tl 190.801	70.1	7.17	10.22%	(5.00)	• • •
V 292.402	2034.8	159.01	7.01%	(5,00)	
Zn 206.200	3674.8	23.36	0.64%	[20.00]	ug/L

Sequence No.: 3

Sample ID: STD 2 120305EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 03/05/12 10:30:58 AM

Data Type: Reprocessed on 03/06/12 9:16:35 AM

Mean Corrected Calib Analyte Intensity Std.Dev. RSD Conc. Units Ag 338.289 92300.2 293.54 0.32% [500.0] ug/L	
Ag 338.289 92300.2 293.54 0.32% [500.0] ug/L	
Al 308.215 46341.2 636.43 1.37% [20000.00] ug/L	
As 188.979 5349.4 89.40 1.67% [1000.00] ug/L	
8 8579.0 79.68 0.93% [1000.00] ug/L	
Ba 233.527 275011.1 749.57 0.27% [1000.00] ug/L	
Be 313.107 7731477.1 10614.98 0.14% (1000.00) ug/L	
Ca 315.887 1195146.4 9264.56 0.78% [50000] ug/L	
Cd 214.440 491771.6 1173.09 0.24% [1000.00] ug/L	
Co 228.616 106121.9 243.17 0.23% [1000.00] ug/L	
Cr 267.716 189188.2 538.71 0.28% [1000.00] ug/L	
Cu 327,393 146109.6 296.90 0.20% [1000.00] ug/L	
Fe 273.955 802569.7 1874.91 0.23% [20000] ug/L	
K 766.490 114140.9 1000.01 0.88% (20000) ug/L	
Mg 285.213 2287811.6 14525.75 0.63% [50000] ug/L	
Mn 257.610 107611.6 830.36 0.77% [1000.00] ug/L	
Mo 202.031 56374.2 311.95 0.55% [1000.00] ug/L	
Na 589.592 407908.0 2332.03 0.57% [25000] ug/L	
Ni 231.604 89550.2 339.66 0.38% [1000.00] ug/L	
P 213.617 43747.3 293.31 0.67% [5000] ug/L	
Pb 220.353 21363.1 158.21 0.74% (1000.00) ug/L	
Sb 206.836 7226.7 61.47 0.85% (1000.00) ug/L	
Se 196.026 5025.2 39.29 0.78% [1000.00] ug/L	
Sn 189.927 10345.4 87.86 0.85% [1000.00] ug/L	
Sr 421.552 1480763.1 8217.19 0.55% [1000.00] ug/L	
Ti 337.279 110608.9 858.24 0.78% [1000.00] ug/L	
T1 190.801 13730.0 99.39 0.72% [1000.00] ug/L	
V 292.402 357233.0 1092.28 0.31% [1000.00] ug/L	
Zn 206.200 139512.3 442.01 0.32% [1000.00] ug/L	

Dilution:

Sequence No.: 4 Sample ID: STD 3 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 10 Date Collected: 03/05/12 10:34:12 AM Data Type: Reprocessed on 03/06/12 9:16:36 AM

Initial Sample Vol: Sample Prep Vol:

Mean Data: 8TD 3	120305EA I.PB O.EA	•			
	Mean Corrected	a		<b></b>	Calib
Analyte	Intensity	Std.Dev.	RSD		Unite
Ag 338.289	182030.4	1830.80	1.01%	[1000.00]	<b>-</b> .
Al 308.215	92577.5	1381.56	1.49%	[40000.00]	
As 188.979	10358.5	105.58	1.02%	[2000.00]	
Э	16864.7	117.90	0.70%	[2000.00]	
Ва 233.527	528297.8	4051.20	0.77%	[2000.00]	
Be 313.107	14681595.0	27724.63	0.19%	[2000.00]	
Ca 315.887	2339406.7	14056.97	0.60%	[100000.0]	
Cd 214.440	931835.8	7889.14	0.85∜	[2000.00]	
Co 228.616	202671.8	1606.95	0.79%	[2000.00]	
Cr 267.716	364890.6	2920.74	0.80%	[2000.00]	
Cu 327.393	286798.0	2501.68	0.87%	[2000.00]	ug/L
Fe 273.955	1532263.7	11783.76	0.77%	[40000]	ug/L
K 766.490	222097.4	1765.89	0.80%	[40000]	ug/L
Mg 285.213	4433147.1	26752.84	0.60%	[100000]	ug/L
Mn 257.610	210774.9	1298.23	0.62%	[2000.00]	ug/L
Mo 202.031	105413.0	753.77	0.72%	[2000.00]	ug/L
Na 589.592	800082.6	5424.40	0.68%	[50000]	ug/L
Ni 231.604	170486.3	1710.33	1.00%	[2000.00]	ug/L
P 213.617	82734.9	916.01	1.11%	[10000]	ug/L
Pb 220.353	40211.2	225.14	0.56%	[2000.00]	ug/L
Sb 206.836	13970.0	102.49	0.73%	[2000.00]	ug/L
Se 196.026	9549.1	64.41	0.67%	[2000.00]	ug/L
Sn 189.927	19775.2	163.10	0.82%	[2000.00]	ug/L
Sr 421,552	2914994.7	18221.64	0.63%	[2000.00]	ug/L
Ti 337.279	217438.5	1519.07	0.70%	[2000.00]	ug/L
Tl 190.801	25526.8	155.21	0.61%	[2000.00]	ug/L
V 292.402	695271.9	5610.96	0.81%	[2000.00]	ug/L
Zn 206.200	264116.2	2089.05	0.79%	[2000.00]	

### Calibration Summary

Analyte	Stås.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Aq 338.289	3	Lin Thru 0	0.0	182.5	0.00000	0.999984	
Al 308.215	3	Lin Thru 0	0.0	2.315	0.00000	1,000000	
As 188.979	3	Lin Thru 0	0.0	5.213	0.00000	0.999915	
В	3	Lin Thru 0	0.0	8.462	0.00000	0.999974	
Ba 233.527	3	Lin Thru 0	0.0	266.3	0.00000	0.999867	
Be 313.107	3	Lin Thru 0	0.0	7419	0.00000	0.999778	
Ca 315.887	3	Lin Thru 0	0,0	23.50	0.00000	0.999962	
Cd 214,440	3	Lin Thru 0	0.0	471.1	0.00000	0.999759	
Co 228,616	3	Lin Thru 0	0.0	102.3	0.00000	0.999825	
Cr 267.716	3	Lin Thru 0	0.0	183.8	0.00000	0.999892	
Cu 327.393	3	Lin Thru 0	0.0	143.9	0.00000	0.999971	
Fe 273.955	3	Lin Thru 0	0.0	38.67	0.00000	0.999822	
K 766.490	3	Lin Thru 0	0.0	5.583	0.00000	0.999939	
Mg 285.213	3	Lin Thru 0	0.0	44.62	0.00000	0.999918	
Mn 257.610	3	Lin Thru 0	0.0	105.8	0.00000	0.999965	
Mo 202.031	3	Lin Thru 0	0.0	53.44	0.00000	0.999623	
Na 589.592	3	Lin Thru 0	0.0	16.07	0.00000	0.999968	
Ni 231.604	3	Lin Thru 0	0.0	86.10	0.00000	0.999799	
P 213.617	3	Lin Thru 0	0.0	8.369	0.00000	0.999741	
Pb 220.353	3	Lin Thru 0	0.0	20.36	0.00000	0.999695	
Sb 206.836	3	Lin Thru 0	0.0	7.033	0.00000	0.999905	
Se 196.026	3	Lin Thru 0	0.0	4.825	0.00000	0.999784	
Sn 189.927	3	Lin Thru O	0.0	9.979	0.00000	0.999831	
Sr 421.552	3	Lin Thru 0	0.0	1462	0.00000	0.999980	
Ti 337.279	3	Lin Thru 0	0.0	109.1	0.00000	0.999976	
Tl 190.801	3	Lin Thru 0	0.0	12.96	0.00000	0.999555	
11 130.001	,						

Method: 120305	-6010B	-c	Page	5		Date: 03/06/12 9:16:37 AM
V 292.402	3	Lin Thru 0	0.0	349.6	0.00 <b>0</b> 00	0.999940
Zn 206.200	3	Lin Thru 0		133.6	0.0 <b>0</b> 000	0.999745

Sequence No.: 5 Sample ID: ICV 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution

Autosampler Location: 11 Date Collected: 03/05/12 10:39:00 AM Data Type: Reprocessed on 03/06/12 9:16:37 AM

			305EA I:PB O:E. Nean Corrected	1		Calib.				Sample		
B mai	01v+0		Thean corrected	•	Conc	Trod to	ď	td Dov.	Conc.	Inite	Std.Dev.	RSD
Au	athra		Intensity 87313.0		478	. un/L	5	5 37	478 3	na/L	5.37	1.12%
~9	OC value	within	limits for Ag	338	289	Perovery	- 95	66%	2,015	~5, <u>~</u>		
ר ת	308.215	MT CHITH	55922.6	330	2416	nua/t.	- )	333.5	24160	υα/Τ.	333.5	1.38%
Λ±	OC value	within	limits for Al	308	215	Recovery	= 96	.63%	2123	-3/ -		
ħα	188.979	HICHILI	5057.0			ug/L	- 20	6.91	970.0	ua/L	6.91	0.71%
A.S		within	limits for As			Recovery	= 97	.00%	-,	31		
В	So tarac	""	7884.6			7 ug/L	,	15.7	1017	ug/L	15.7	1.55%
_	OC value	within	limits for B	Rec	overv	= 101.728	&					
Ва	233.527		263564.9		985.	3 ug/L		16.09	985.3	ug/L	16.09	1.63%
			limits for Ba									
Ве	313,107		7415600.1		1003	ug/L		7.6	1003	ug/L	7.6	0.76%
	QC value	within	limits for Be	313	.107	Recovery	= 10	0.32%				
Сa	315.887		578955.8		24540	ug/L		219.1	24540	ug/L	219.1	0.89%
	QC value	within	limits for Ca	315	.887	Recovery	= 98	.16%				
Cđ	214.440		488943.7		1031	7 ug/L		17.4	1037	ug/L	17.4	1.60%
	QC value	within	limits for Cd			Recovery	= 10	3.68%		_		
Co	228.616					3 աց/և		18.4	1053	ug/L	18.4	1.74%
	QC value	within	limits for Co	228	.616	Recovery	= 10	5.33%				
Cr	267.7 <b>1</b> 6		191577.9		1042	ug/L		18.4	1042	ug/L	18.4	1.77%
		within	limits for Cr	267	.716	Recovery	= 10	4.25%		,_		4 460
Cu	327.393		142373.3		989.	L_ug/L		10.50	989.1	ug/ь	10.50	1.06%
	QC value	within	limits for Cu	327	.393	Recovery	= 98	.91%	05170	/7	402.6	1,60%
Fe	273.955		979035.3		25170	) ug/ь	10	403.6	25170	ug/L	403.6	1.004
		within	limits for Fe	273	.955	Recovery	= 10		24060	ua /ī	324.6	1.35%
K 7	766 . 490	2 . 1. 2	134474.6			) ug/L		324.6	24000	ug/L	324.0	1.33%
		within	limits for K 7 1105283.9	. 00	490 F	recovery =	= 30	202 U	24750	110/6	202.0	0.82%
мg	285.213		limite for Mg	205	24/50	Pagayary	_ 00	01%	24730	ug/ L	202.0	0.020
	QC value	MICHIN	108386.7	200	1022	Recovery	- 33	15 5	1023	na/L	15.5	1.51%
шк	257.010	i bb i n	limits for Mn	257	610	Decovery	- 101	2 25%	4023	ug, 2	13.5	1.010
	202.031	ATCIIII	51873.5	231	972 3	t ua/L		3.34	972.3	ug/L	3.34	.0.34%
MO	00.031	within	limits for Mo							-3, -		
	589.592	MICHI	387036.4	200	24060	) ug/[.		160.0	24060	ug/L	160.0	0.66%
ма	OC value	within	limits for Na	589	.592	Recovery	= 96	. 24%				
	231.604		90511.6		1048	uq/L		16.9	1048	ug/L	16.9	1.61%
	OC value	within	limits for Ni	231	.604	Recovery	= 104	1.79%				
	13.617		40835.9		4880	ug/L		31.8	4880	ug/L	31.8	0.65%
	OC value	within	limits for P 2	13.0	617 F	lecovery =	97.	598				
Pb	220.353		20916.3		1027	ug/L		9.0	1027	ug/L	9.0	0.87%
	QC value	within	limits for Pb	220	.353	Recovery	= 102	2.75%				
Sb	206.836		7359.5		1046	ug/L		4.8	1046	ug/L	4.8	0.46%
	QC value	within	limits for Sb	206	.836	Recovery	= 104	1.64%		_		
	196.026		4944.3		1025	ug/L		3.7	1025	ug/L	3.7	0.36%
	QC value	within	limits for Se	196	.026	Recovery	= 102	2.48%				
Sn	189.927		5395.3			ug/L		1.03	540.7	ug/L	1.03	0.19%
	QC value	within	limits for Sn	189	.927	Recovery	= 108					A 11110
sr	421.552		1423825.8			_ug/L		7.51	973.1	ug/L	7.51	0.77%
		within	limits for Sr	421	.552	Recovery	= 97	.31*	075 1	/*	12.02	1.42%
Ţi	337.279		106494.9		975.1	ug/L	0.7	13.83	975.1	ug/ L	13.83	1.426
		within	limits for Ti	337			= 97.	3.3	1034	~ /T	3.3	0.32%
TI	190.801		13153.7			ug/L	. 102		1034	ug/II	3.3	0.323
		within	limits for Tl	190			# 10:	16.6	1013	ug/L	16.6	1.64%
۷ 2	92.402		347202.6	02		. ug/L	- 101		1011	чалп	10.0	T.040
		ATCUIU	limits for V 2 140093.5	24.9		ug/L	- 101	17.0	1054	ug/L	17.0	1.62%
4II	206.200	within	limits for Zn	206			= 104		1034	~5, ~	1,,,	020
	oc value analyte(			200	. 200							
wtl	analyce!	ol hone	ica ye.									

Dilution:

Sequence No.: 6 Sample ID: ICB 120305EA I:PB O:EA Logged In Analyst (Original) : chemist metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/05/12 10:47:07 AM Data Type: Reprocessed on 03/06/12 9:16:38 AM

Mean Data: ICB 120	305EA I:PB O:BA					
	Mean Corrected	Calib.			Sample	
Analyte	Intensity			Conc.	Units	Std.Dev. RSD
Ag 338.289		0.078 ug/L		0.078	ug/L	0.4214 540.48%
QC value within	limits for Ag 338		Not calculated			
A1 300,215	76.2	32.92 ug/L		32.92	ug/L	25.911 78.70%
	limits for Al 308				-	
As 188.979	1.0	0.187 ug/L		0.187	ug/L	1.0654 570.62%
7.7	limits for As 188				/-	0 1004 0 000
B	53.9	6.382 ug/L		6.382	ug/L	0.1904 2.98%
	limits for B Reco			0.007	/T	0.0921 95.05%
Ba 233.527	26.0	0.097 ug/L	0.0921	0.097	աց/ հ	0.0941 95.05%
	limits for Ba 233 326.9	0.044 uq/L		0.044	υα/T.	0.0619 141.81%
Be 313.107	limits for Be 313			0.044	ug/ L	0.0013 141.018
Ca 315.887	27.9	1.174 ug/L		1.174	ua/I.	1.4800 126.06%
	limits for Ca 315				ug, 2	111000 -001000
Cd 214.440	23.7	0.050 ug/L	0.0814	0.050	ug/L	0.0814 161.73%
	limits for Cd 214				5, -	
Co 228.616		0.023 ug/L	0.1249	0.023	ug/L	0.1249 533.76%
	limits for Co 228				<b>J</b> .	
Cr 267.716		-0.129 ug/L	0.1248 -	0.129	ug/L	0.1248 96.61%
QC value within	limits for Cr 267.	716 Recovery	= Not calculated		-	
Cu 327.393	177.1	1.231 ug/L	0.3132	1.231	ug/L	0.3132 25.45%
QC value within	limits for Cu 327.					
Fe 273.955	106.7	2.749 ug/L		2.749	ug/L	0.6816 24.79%
QC value within	limits for Fe 273.		= Not calculated		•	
K 766.490		·75.33 ug/L	25.234 -	75.33	ug/L	25.234 33.50%
QC value within	limits for K 766.4	190 Recovery =	Not calculated		-	
Mg 285.213	20.3	0.449 ug/L	0.4831	0.449	ոն/բ	0.4831 107.51%
	limits for Mg 285.	213 Recovery	= Not calculated		1-	A 1001 DO 110
Mn 257.610	15.5	0.146 ug/L		0.146	ug/ L	0.1201 82.11%
	limits for Mn 257.		= NOC CAICUIACEG	0 000	/T	0.2709 >999.9%
Mo 202.031	-0.3 -limits for Mo 202.	0.006 ug/L		0.006	սց/ և	0.4/07 >333.36
_	11M1tB 10F MO 202.	0.710 ug/L	3.6885 ~(	0.710 1	υσ/T.	3.6885 519.70%
Na 589.592	limits for Na 589.	592 Recovery	= Not calculated	01,710	ug/ 13	3.0003 313.700
Ni 231.604		0.050 ug/L	0.0577	0.050	nα/I.	0.0577 115.17%
OC value within	limits for Ni 231.	604 Recovery			~3, ~	******
P 213.617	3.7	0.439 ug/L	0,6833	0.439 i	ua/L	0.6833 155.75%
OC value within	limits for P 213.6				<b>-</b>	
Pb 220.353	16.3	0.799 ug/L	0.3738	0.799 1	ug/L	0.3738 46.79%
OC value within	limits for Pb 220.	353 Recovery	≈ Not calculated		<del>-</del> *	
Sb 206.836	9.8	1.390 ug/L	0.2645	1.390 1	ug/L	0.2645 19.03%
OC value within	limits for Sb 206.	836 Recovery	⊨ Not calculated			
Se 196.026	0.6	0.129 ug/L	0.9472	0.129 1	ug/L	0.9472 734.19%
QC value within	limits for Se 196.	026 Recovery	Not calculated			
Sn 189.927	6.9	0.691 ug/L	0.2457	0. <b>691</b> ı	ug/L	0.2457 35.58%
	limits for Sn 189.		⊨ Not calculated		-	
Sr 421.552	77.2	0.053 ug/L	0.1071	0.053 ι	ug/L	0.1071 203.91%
	limits for Sr 421.	552 Recovery	Not calculated		/=	0 -003 460 440
Ti 337.279		0.071 ug/L		0.071 ı	и9/ Б	0.1203 168.44%
**	limits for Ti 337.		# NOC Calculated	A A D 77 .	/I	0 0001 160 308
T1 190.801	6.3	0.487 ug/L		0.487 1	սց/ ப	0.8201 168.39%
	limits for Tl 190.	OUT RECOVERY	0.0968	0.020 ı	ng/L	0.0968 480.20%
V 292.402	7.7 limits for V 292.4	0.020 ug/L		U.UZU (	79, D	V.V201 10V.V0
Zn 206.200		0.091 ug/L	0.0819 (	0.091 1	ıa/L	0.0819 90.25%
OC value within	limits for Zn 206.	200 Recovery		(	-31 -	
All analyte(s) pass		200 Moorory				
urr angrace(p) hase	Yo.					

Sequence No.: 8 Sample ID: ICSA 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 12 Date Collected: 03/05/12 10:56:55 AM Data Type: Reprocessed on 03/06/12 9:16:40 AM

Mean Data: ICSA 12						****
	Mean Correcte	đ Calib.			Sample	
Analyte Ag 338,289	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Ag 338,289	-73.2	-0.401 ug/L	0.3530	-0.401	ug/L	0.3530 87.98%
OC value within	limits for Ag	338.289 Recovery	<ul> <li>Not calculated</li> </ul>	ì		
Al 308.215	457825.1	197800 ug/L	862.4	197800	ug/L	862.4 0.44%
QC value within	i limits for Al	308.215 Recovery				
As 188.979	11.6	2.234 ug/L	1.8999	2.234	ug/L	1.8999 85.06%
	i limits for As	188.979 Recovery			_	
В	-5334.5	-24.69 ug/L	8.551	-24.69	ug/L	8.551 34.63%
	limits for B	Recovery = Not cal	culated			
Ba 233.527	9589.6	0.043 ug/L	0.8967	0.043	ug/L	0.8967 >999.9%
QC value within	11mits for Ba	233.527 Recovery				
Be 313.107	22210.8	-0.082 ug/L	0.0478	-0.082	ug/L	0.0478 58.46%
QC value within	limits for Be	313.107 Recovery				
Ca 315.887	4741937.2	201300 ug/L	277.0	201300	ug/L	277.0 0.14%
		315.887 Recovery				
Cd 214.440	6052.0	0.004 ug/L	0.0517	0.004	ug/L	0.0517 >999.9%
QC value within	limits for Cd	214.440 Recovery				
Co 228.616	932.6	-0.356 ug/L	0.1523	-0.356	ug/L	0.1523 42.82%
	limits for Co	228.616 Recovery	= Not calculated			
Cr 267.716	1138.7	-1.273 ug/L	0.1357	-1.273	ug/L	0.1357 10.66%
QC value within	limits for Cr	267.716 Recovery				
Cu 327.393	-18.5	-0.129 ug/L	0,2222	-0.129	սց/և	0.2222 172.65%
		327.393 Recovery				
		181800 ug/L		181800	ug/L	1168.2 0.64%
		273.955 Recovery				_
K 766.490	367.3	-47.15 ug/L	4.349	-47.15	ug/L	4.349 9.23%
QC value within	limits for K 7	66.490 Recovery =				
Mg 285.213	8/29/22.3	195500 ug/L	296.0	195500	ug/L	296.0 0.15%
	TIMICS for MG	285.213 Recovery				
Mn 257.610	1045.1	-2.235 ug/L	0.8527	-2,235	ug/L	0.8527 38.14%
	TIMITER FOL MU	257.610 Recovery				
Mo 202.031		0.001 ug/L		0.001	ug/L	0.3755 >999.9%
Na 589.592	TYMITER TOL MO	202.031 Recovery -11.48 ug/L				
OC value within	2000.4	589.592 Recovery	9.924	-11.48	ug/ь	9.924 86.44%
Ni 231.604	795.6					A 4000 000 00
		231.604 Recovery	0.1827	0.004	ug/L	0.1827 >999.9%
P 213.617			1.3079		/7	1 0070 00 070
	limita for D 2	13.617 Recovery =		5.919	ug/L	1.3079 21.87%
Pb 220.353		1.693 ug/L		1 602	սց/Ն	0 2522 35 252
	limite for Ph	220.353 Recovery	- Not calculated	1.093	աց/ Ե	0.2700 15.95%
Sb 206.836	-0.4	-0.052 ug/L	0.5593	0.052	ug/L	0.5593 >999.9%
		206.836 Recovery:	- Not calculated	0.032	ug/ II	0.5593 >999.94
Se 196.026	20 6	4.274 ug/L	1 3828	4.274	na/T	1 3000 20 268
		196.026 Recovery :		4.4/4	ug/ n	1.3828 32.36%
Sn 189.927	19.2	1.928 ug/L	0.3654	1 020	ug/L	0 3654 10 068
		189.927 Recovery :		1.540	աց/ և	0.3654 18.96%
Sr 421.552	7311.7	-0.167 ug/L		0.167	na/I	0 0172 10 26%
		421.552 Recovery :		0.107	ug/ n	0.0172 10.26%
Ti 337.279	894.7	1.099 ug/L	0.3875	1.099	na/t.	0.3875 35.25%
		337.279 Recovery =		<b>⊥.</b> ∨>>	ug/ u	V.JO/D JD.ZD*
Tl 190.801	1.4	-1.867 ug/L		1.867	ucr/T.	0.3674 19.68%
		190.801 Recovery =		1.00/	77 H	V.30/4 13.00%
V 292,402	16038.6	1.561 ug/L		1.561	na/I.	0.1245 7.98%
		92.402 Recovery =		T. JOT (	~5/ u	V.1240 /.368
Zn 206.200	2787.0	-0.036 ug/L		י מזג י	ıg/L	0.1865 522.74%
		206.200 Recovery =		2.030 (	~5/ <del>-</del> 1	0.1005 322./48
All analyte(s) pass						
:	<b>x-</b> ·					

Sequence No.: 9 Sample ID: ICSAB 120305EA I:PB O:EA Analystı Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 13 Date Collected: 03/05/12 11:02:37 AM Data Type: Reprocessed on 03/06/12 9:16:41 AM

Mean Data: ICSAB 1	20305RA T.PR O						
Mouli Dutat Tobab 1	Mean Corrected				Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	8td.Dev.	Red
Analyte Ag 338.289	173040.1	947.9 ug/L	4.84	947.9	ug/L	4.84	0.51%
QC value within	limits for Ag	338.289 Recovery	= 94.79%				
Al 308.215	480776.0	207700 ug/L	2093.0	207700	ug/L	2093.0	1.01%
		308,215 Recovery					
As 188.979	2475.1	474.8 ug/L	3.92	474.8	ug/L	3.92	0.83%
	limits for As	188.979 Recovery	= 94.95%				
B		-14.12 ug/L		~14.12	ug/L	9.388	66.47%
Ba 233.527		Recovery = Not ca 476.6 ug/L		47C C	ug/L	3.41	0.72%
		233.527 Recovery	- 05 22B	9/0.0	ug/ L	3.41	0.728
Be 313,107	3585499.0			480 2	ug/L	3.23	0.67%
		313.107 Recovery		400.2	ug/ D	3.23	V.010
		202900 ug/L		202900	ug/L	1230.6	0.61%
		315.887 Recovery			37		
Cd 214.440	459079.7			962.0	ug/L	5. <b>91</b>	0.61%
		214.440 Recovery	= 96.20%		5.		
Co 228.616	50795.4	488.0 ug/L	4.36	488.0	ug/L	4.36	0.89%
QC value within	limits for Co	228.616 Recovery					
Cr 267.716	92864.3			490.3	ug/L	5.03	1.01%
QC value within		267.716 Recovery	= 99.66%				
Cu 327.393		504.8 ug/L	3.44	504.8	ug/L	3.44	0.68%
		327.393 Recovery					
		180800 ug/L		180800	ոց/ը	1123.5	0.62%
		273.955 Recovery		20.00	12	04 004	DA DAR
K 766.490	438.3	-39.86 ug/L	31.771	-39.86	ug/L	31.771	79.70%
		66.490 Recovery : 195600 ug/L			/T	1029.6	0.53%
		285.213 Recovery		195000	ug/L	1029.6	0.534
Mn 257.610		496.8 ug/L	₩ 97.02% O 1E	406 0	υσ./T.	9.15	1.84%
		257.610 Recovery	~ 00 35%	430.0	ug/ II	9.10	I.O44
Mo 202.031	24529.2	466.6 ug/L	4.42	466.6	ug/L	4 42	0.95%
		202.031 Recovery		100.0	ug, D	4.12	0.550
		10.87 ug/L		10.87	ug/L	1.287	11.84%
		589.592 Recovery		d	37		
Ni 231.604		957.2 ug/L	4.04	957.2	ug/L	4.04	0.42%
		231.604 Recovery	= 95.72%		5.		
P 213.617	170.0	20.32 ug/L	2.711	20.32	ug/L	2.711	13.34%
QC value within	limits for P 2	13.617 Recovery =	Not calculated				
		970.2 ug/L		970.2	ug/L	7.91	0.82%
		220.353 Recovery					
Sb 206.836	3575.6	508.4 ug/L	1.65	508.4	ug/L	1.65	0.32%
		206.836 Recovery					
		492.5 ug/L		492.5	ug/L	6.76	1.37%
		196.026 Recovery 3.566 ug/L		3 566	/ T	0.0501	D 000
Sn 189.927	35.6	<b>J</b> .	0.2521	3.566	ug/ L	0.2521	7.07%
Sr 421.552	7767.7	189.927 Recovery 0.092 ug/L	0.0624	0.092	υα/τ.	0.0624	67 628
OC value within	limite for gr	421,552 Recovery		1	ug/ L	0.0024	07.020
Ti 337.279	938.2	1.395 ug/L	0.7692	1.395	υα/Τι	0.7692	55.15%
		337.279 Recovery			~9/ =	017032	391230
Tl 190.801	6256.6	485.5 ug/L	0.53	485.5	ug/L	0.53	0.11%
		190.801 Recovery			<b>J.</b>	•	
V 292.402	183668.9	493.3 ug/L	3.78	493.3	ug/L	3.78	0.77%
QC value within		92.402 Recovery =	98.66%		<u> </u>		
Zn 206.200	130066.0	956.5 ug/L	5.88	956.5	ug/L	5.88	0.61%
		206.200 Recovery	= 95.65 <del>%</del>				
All analyte(s) pass	ed QC.						

Sequence No.: 10 Sample ID: CCV1 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 03/05/12 11:09:11 AM Data Type: Reprocessed on 03/06/12 9:16:42 AM

	Mean Corrected	l Calib.			Sample		
nalyte		Conc. Units	Std.Dev.	Cong	Units	Std.Dev.	RSD
9 338.289	93757.0	513.6 ug/L	3.84		ug/L	3.84	0.759
QC value	within limits for Ag	338.289 Recovery	= 102.72%	0	~9, <u>-</u>	3,01	0.75
1 308.215	47064.5	20330 ug/L	366.1	20330	ug/L	366.1	1.809
QC value	within limits for Al	308.215 Recovery		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	37		
9 188,979	5377.4	1031 ug/L	7.0	1031	ug/L	7.0	0.689
	within limits for As	188.979 Recovery			~g, ~		0.00
	8756.4	1110 ug/L	20.4	1110	ug/L	20.4	1.849
OC value	greater than the uppe			5%	wg/ 4	20.1	1.02
233.527	279115.2	1044 ug/L	8.8		ug/L	8.8	0.849
	within limits for Ba			2011	ug, 2	0.0	V.01
313,107	7690403.8	1040 ug/L	6.4	1040	na/L	6.4	0.61%
	within limits for Be			1010	ug/ u	0.4	0.014
315.887		52240 ug/L		52240	υα /T	144.5	0.28%
	within limits for Ca			52240	ug/ L	144.3	0.201
214.440	498583.6	1057 ug/L	9.1	1057		8.1	0 000
	within limits for Cd			1027	ug/L	8.1	0.76%
				1050	17		
228.616		1052 ug/L		1052	ug/L	8.4	0.808
	within limits for Co						
267.716	191893.3	1043 ug/L	8.3	1043	ug/L	8.3	0.798
	within limits for Cr						
327,393	148736.2		7.0	1033	ug/L	7.0	0.689
	within limits for Cu						
273.955		20900 ug/L		20900	ug/L	184.1	0.889
QC value	within limits for Fe						
766.490	115578.7	20650 ug/L	266.8	20650	ug/L	266.8	1.298
	within limits for K 7						
	2356805.5			52790	ug/L	211.0	0,40%
QC value	within limits for Mg	285.213 Recovery	<b>≈ 105.57</b> %				
257.610	109378.5	1030 ug/L	12.7	1030	ug/L	12.7	1.23%
QC value	within limits for Mn	257.610 Recovery	= 103.00%			•	
202.031	57063 <i>.</i> 7	1069 ug/L	5.3	1069	ug/L	5.3	.0.49%
QC value	within limits for Mo	202.031 Recovery	= 106.88%				
589.592	417986.3	25970 ug/L	98.0	25970	ug/L	98.0	0.38%
QC value	within limits for Na	589.592 Recovery	= 103.90%				
231.604	90641.9	1049 ug/L	8.8	1049	ug/L	8.8	0.84%
QC value	within limits for Ni .	231.604 Recovery	= 104.89%		•		
213.617	44183.8		54.2	5280	ug/L	54.2	1.03%
	within limits for P 2		105.59%		3,		
220.353	21700.3	1066 ug/L	9.9	1066	ug/L	9.9	0.93%
	within limits for Pb		= 106.60%		- <b>J</b> , -		
206,836	7322.4	1041 ug/L	6.4	1041	ug/L	6.4	0.62%
	within limits for Sb :			~~-	-5,	• • •	0.020
196.026	5082.7	1053 ug/L	13.1	1053	na/L	13.1	1.25%
	within limits for Se			2005	u3/ 11	10.1	*****
189.927	10426.7	1045 ug/L	9.0	1045	na/L	9.0	0.86%
	within limits for Sn :			1043	ug/ L	3.0	0.000
421.552	1519543.0	1038 ug/L	3.8	1038	nα/τ.	3.8	0.37%
	vithin limits for Sr			1030	ug/ L	3.0	0.370
337.279	112981.8	1034 ug/L	20.4	1034	u ~ / T	20.4	1 008
				1034	աց/ և	20.4	1.98%
	vithin limits for Ti			1000	/ 7		
190.801	13850.0	1088 ug/L	10.6	1088	ug/ь	10.6	0.98%
	vithin limits for Tl :				1-		
292.402	363101.6	1059 ug/L	7.8	1059	ug/L	7.8	0.73%
	vithin limits for V 25						
	141200 0	1000/1	9.1	1062	ua/I	9.1	0.86%
206.200	141309.9 vithin limits for Zn :	1062 ug/L		1062	սց/ ը	3.1	0.000

Dilution:

ŗ

Sequence No.: 11 Sample ID: CCB 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 1 Date Collected: 03/05/12 11:25:32 AM Data Type: Reprocessed on 03/06/12 9:16:43 AM

Mean Data: CCB 1203						
		Calib.			Bample	
Analyte Ag 338.289	Intensity	Conc. Units	Std.Dev.	Conc.	Unite	Std.Dev. RSD 0.0387 269.19%
Ag 338.289	-2.6	-0.014 ug/L	0.0387	-0.014	ug/L	0.0387 269.19%
QC value within	limits for Ag	338.289 Recovery	□ Not calculated			
Al 308.215	162.8	70.32 ug/L	21,240	70.32	ug/L	21.240 30.21%
QC value within	limits for Al	308.215 Recovery				
As 180.979	1.1	0.208 ug/L	0.2992	0.208	ug/L	0.2992 143.98%
QC value within	limits for As	188.979 Recovery	= Not calculated		_	
В	36.6		1.3199		ug/L	1,3199 30.34%
OC value within	limits for B	Recovery = Not cal	lculated			
Ba 233,527	14.9	0.054 ug/L	0.0528	0.054	ug/L	0.0528 97.65%
OC value within	limits for Ba	233.527 Recovery	= Not calculated		_	
Be 313.107	834.8	0.112 ug/L		0.112	ug/L	0.0124 11.01%
		313.107 Recovery				
Ca 315,887	84.8	3.557 ug/L	0.9618	3.557	uq/L	0.9618 27.04%
		315.887 Recovery			Ų.	
Cd 214.440	18.9	0.040 ug/L	0.0173	0.040	uq/L	0.0173 43.33%
OC value within	limits for Cd	214.440 Recovery	= Not calculated		<b>-</b> .	
Co 228.616	8.0		0.1316	0.078	uq/L	0.1316 169.16%
OC value within		228.616 Recovery	≈ Not calculated		٥.	
Cr 267.716	-31.7	-0.173 ug/L	0.0908	0.173	ug/L	0.0908 52.50%
OC value within	limits for Cr	267.716 Recovery	Not calculated		- 2,	
Cu 327.393		0.780 ug/L		0.780	ug/L	0.3059 39.23%
OC value within	limits for Cu	327.393 Recovery			-31	* 1 * 1 * 1
		8.136 ug/L	0.6875	8.136	ua/L	0.6875 8.45%
		273.955 Recovery			-5, -	******
K 766.490	-310 3		25.128	55.57	ug/L	25.128 45.22%
AC realize within		66.490 Recovery =			~37 ~	
	ETHICE FOL K /		0.2554	1 263	ug/L	0.2554 20.21%
Mg 285.213	limite for Ma	285.213 Recovery		1.203	ug/ 2	V12001 201221
	111111111111111111111111111111111111111	0.163 ug/L	0.1015	0 163	ug/L	0.1015 62.36%
Mn 257.610	limita for Mn	257.610 Recovery			ug/ 11	0,1010
	3.7		0.1715	0.069	ug/L	0.1715 247.89%
Mo 202.031	Jimita for Mo	202.031 Recovery		0.003	ug/ D	V,1110 24.10pV
		0.937 ug/L		0 937	ug/L	5.7017 608.35%
Na 589.592	liming for No	589.592 Recovery		0.,,,,,	ug/ D	5.1017 000.554
	-5,6	-0.066 ug/L	0.2053	.0 066	ug/L	0.2053 309.20%
Ni 231.604		231.604 Recovery		0.000	497 1	0.2033 3031200
	-2.8	-0.332 ug/L	0.7698 -	A 222	ug/L	0.7698 232.02%
P 213.617		-0.332 ug/D	Not aslaulated	0.332	ug/ L	0.7090 232.020
		13.617 Recovery =	Not calculated	1 175	ug/L	0.6044 51.44%
	23.9				ug/1	0.0044 51.440
		220.353 Recovery	= NOC Calculated	0 704	uq/L	0.8713 123.69%
Sb 206.836	5.0				ug/ Li	0.0713 123.030
	limits for So	206.836 Recovery	= NOE CALCULATEG	0 000		1.6059 >999.9%
Se 196.026	0.4	0.080 ug/L	1.0059	V.V6V	ug/Ľ	1.0033 3333.30
		196.026 Recovery		0 016		A 0007 35 00%
Sn 189.927	7.1	0.716 ug/L	0.2527	Ų./I6	ug/Ľ	0.2527 35.28%
		189.927 Recovery				0
Sr 421.552	38.3	0.026 ug/L	0.1168	0.026	ոգ\ Ի	0.1168 452.67%
		421.552 Recovery				0 1404 550 60
Ti 337.279	0.7	0.007 ug/L	0.1786	0.007	ug/ь	0.1786 >999.9%
		337.279 Recovery			1-	A ##RA ==
Tl 190.801	10.7	0.827 ug/L	0.6523	0.827	ug/ь	0.6523 78.87%
QC value within		190.801 Recovery			1-	
V 292.402	5 <b>.7</b>	0.014 ug/L	0.1224	0.014	ug/L	0.1224 884.42%
QC value within	limits for V 2	92.402 Recovery =				
Zn 206.200	14.0	0.103 ug/L	0.0893	0.103	ug/L	0.0893 86.83%
QC value within	limits for Zn :	206.200 Recovery	= Not calculated			
All analyte(s) pass	ed QC.					

Sequence No.: 52 Sample ID: CCV2 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 8 Date Collected: 03/05/12 3:19:40 PM Data Type: Reprocessed on 03/06/12 9:17:25 AM

	20305BA I:PB O:EA						
	Mean Corrected	Calib.			Sample		
Analyte	Intensity 65830.0	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	65830.0	360.6 ug/L	2.21	360.6	ug/L	2.21	0.61
QC value within	n limits for Ag 33	0.289 Recovery	<b>= 96.17%</b>				
Al 308.215	35054.3	15140 ug/L	138.0	15140	ug/L	138,0	0.91
QC value within	limits for Al 30	8.215 Recovery	≈ 100.95%				
As 188.979	4096.5	785.8 ug/L	10.63	785.8	ua/L	10.63	1.35
QC value withir	limits for As 18	8.979 Recovery	= 104.77%		- 3,		
3	6242.2	791.8 ug/L	6.71	791.8	սգ/և	6.71	0.85
QC value within	limits for B Re	covery = 105.57%			~3, ~	0.72	•
3a 233.527	200213.8	749.1 ug/L	4.27	749.1	ug/L	4.27	0.57
OC value withir	limits for Ba 23	3.527 Recovery	= 99.88%		~g, _	,	V131
Be 313.107	5485578.5	742 0 ug/Ti	2.02	742 0	ug/L	2.02	0.27
	limits for Be 31	3.107 Recovery	~ QD QA%	712.0	ug/ L	2.02	0.27
Ca 315.887		37700 ug/L		27700	ug/L	701.0	0.80
	limits for Ca 31	5 997 Pegovoru	_ 100 52%	37700	աց/ և	301.0	0.80
20 value wienin	368968.9	782.5 ug/L	4.66	200 6			0 60
	limits for Cd 21			702,5	ug/ L	4.66	0.60
© 228.616	77683.3	4.440 Kecovery	# 104.33%	BE0 3			
00 33100 63464	lideita fee de co	750.3 ug/L	4.65	758.3	ug/L	4.65	0.61
r 267.716	limits for Co 22	8.616 Recovery	□ 101.10%		,_		
	136245.3	740.6 ug/L	4.96	740.6	ug/L	4.96	0.679
	limits for Cr 26	7.716 Recovery	= 98.75%				
u 327.393	104075.7	723.0 ug/L	4.56	723.0	ug/L	4.56	0.63
QC value within	limits for Cu 32'	7.393 Recovery	= 96.41%				
e 273.955	582338.5	14920 ug/L	105.7	14920	ug/L	105.7	0.71
	limits for Fe 273		= 99.44%				
766.490	80947.3	14470 ug/L	72.5	14470	ug/L	72.5	0.509
	limits for K 766.						
	1708785.1			38270	ug/L	230.4	0.60%
QC value within	limits for Mg 289	.213 Recovery :	= 102.06%				
n 257.610	79798.4	751.5 ug/L	5.50	751.5	ug/L	5.58	0.74%
QC value within	limits for Mn 257	7.610 Recovery :	= 100.20%		5,		•
o 202.031	41184.6	771.3 ug/L	5.06	771.3	ug/L	5.06	0.669
QC value within	limits for Mo 202	2.031 Recovery =	= 102.85%		- <b>2.</b> –		
a 589.592	290964.4	18080 ug/L	116.3	18080	ug/L	116.3	0.64%
	limits for Na 589				-3, -	22015	•.•.
i 231.604	64997.5	752.1 ug/L	5.86	752.3	υα/Τι	5.86	0.78%
OC value within	limits for Ni 231				-5, -	5.00	V., O
213.617			22.8	3718	ug/L	22.8	0.61%
OC value within	limits for P 213.			0.10	ug, D	22.0	0.010
b 220,353	15854.2			778 8	ug/L	1.41	0.10%
	limits for Pb 220	353 Recovery F	103 848	,,,,,	ug/ L	1.41	0.100
206,836	5642.5	802.3 ug/L	2.98	002 2	~/T	2 00	
	limits for Sb 206			602.3	ug/L	2.98	0.37%
e 196.026	3772.7			702.0	IT		
	limits for Se 196		6.14	782.0	սցյո	6.14	0.79₹
189.927	7966.9	798.4 ug/L	3.77	700 4	/*		
	limits for Sn 189			798.4	цу/ ь	3.77	0.47%
				50. F	/=		
c 421.552	1056054.5	721.5 ug/L	5.12	721.5	դգ\ բ	5.12	0.71%
	limits for Sr 421						
i 337,279	80415.6	735.7 ug/L	5.91	735.7	1 <b>3</b> \P	5.91	0.80%
	limits for Ti 337				•		
190.801	10450.6	020.1 ug/L	3.78	820.1 1	յց/և	3.70	0.46%
	limits for Tl 190						
292.402	257353.1	750.7 ug/L	5.20	750.7 t	ıg/L	5.20	0.69%
	limits for V 292.		100.10%				
1 206.200	106433.6	799.4 ug/L	5.15	799.4	ıg/L	5,15	0.64%
	limits for Zn 206				_		_

;

Sequence No.: 53 Sample ID: CCB 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 2 Date Collected: 03/05/12 3:27:01 PM Data Type: Reprocessed on 03/06/12 9:17:26 AM

•••	an Datai	CCB 120	305BA I:	PB O:E	A d		Calib.				a1		
B	alubo		Wean Co	orrecte	GL ,	~	CALLD.			_	Sample		
A.	arico		THE	ensity		conc.	Units	. Bt	d.Dev. 0.2932	Conc.	Units	Std.Dev	. RSD
мy	00.207	within	limita	-04.2 -fan Ne	220 4	U. 352	ug/ь		1.2932	-0.352	ng/L	0.2932	83.419
ר מ	308.215	ATCIITI	TIMITUB	LOT AG	330	489 I	ecovery	= NOT	calculated		4-		
ΑT		ed bhila	] ]imita	(37.4 Fox 31	200 6	59.36	ug/ь		5.934	59.36	ug/L	5.934	10.00%
λa	100.979	MICHIN			308.2	515 F	ecovery		calculated		•_		
Ab		ud bbdm	1:-:	-0.6	700	7.TTR	ug/L		.6313	-0.118	ug/L	0.6313	534.05%
В	QC value	WICHIII	TIMICS	TOT AB	T00.5	979 k			calculated		4		
ь	00	مناط المنام	l Idmallar	18.1	D	13.96	ոձ\ Ի		1.661	13.96	ug/L	1.661	11.90%
р.	QC value	MICHIN	TIMITCH	LOF B	Recov	/ery =	Not ca.	Iculat	ed				
Ва	233.527		7 4 4	31.3		).117	ug/L	0	.0479	0.117	ug/L	0.0479	40.818
n.	313.107	WICHIR	11111111	IOT Ba	233.5	27 R	ecovery	= Not	calculated				
ве			17	95.1		).241	ug/L 1	0	.0093	0.241	ug/L	0.0093	3.85%
	QC value	within	TIMICE	ior Be	313.1	107 R	ecovery	= Not	calculated		_		
Ca	315.887		7	40.7	3	11.47	ug/L		4.458	31.47	ug/L	4.458	14.16%
	QC value	within							calculated		_		
Ca	214.440			37.3		0.079	ug/L	0	.0484	0.079	ug/L	0.0484	61.13%
_	QC value	within	limits	for Cd	214.4	140 R	ecovery	= Not	calculated				
CO	228.616			14.9	0	.145	ug/L	0	.0370	0.145	ug/L	0.0370	25.46%
_		within	limits	for Co	228.6	16 R	ecovery	= Not	calculated				
	267.716			55.5	-0	.302	ug/L	0	.0971	-0.302	ug/L	0.0971	32.12%
_	QC value	within	limite	for Cr	267.7	'16 R	ecovery	= Not	calculated				
	327.393		_ 1	95.1	1	356	ug/L	0	.4565	1.356	ug/L	0.4565	33.67%
_	QC value	within	limits	for Cu	327.3	93 R	ecovery	= Not	calculated				
	273,955			56.2	1	.370	ug/L	0	.2721	1.370	ug/L	0.2721	19.86%
	QC value	within	limite	for Pe	273.9	55 R	ecovery	= Not	calculated				
	66.490			46.5		6.26	ug/L	53	3.154	-26.26	uq/L	53.154	202.40%
	QC value	within	limite :	for K 7	66.49	0 Re	covery =	Not	calculated				
	285.213		•	73.4	1	.614	ug/L	0	.1432	1.614	uq/L	0.1432	8.07%
	QC value	within	limits:	for Mg	285.2	13 R	ecovery	# Not	calculated		J		
٩n	257.610			24.0	0	.225	uq/L	0	. 0949	0.225	ug/L	0.0949	42.11%
	QC value	withi <b>n</b>	limite :	for Mn	257.6	10 R	ecovery	≂ Not	calculated		٥.		
МО	202.031			4.1	0	.076 1	uq/L	0	.0747		ug/L	0.0747	97.82%
	QC value	within	limits :	for Mo	202.0	31 Re	ecovery	⇒ Not	calculated	-	<b>5.</b>		
٧a	589.592		3:	23.6	2	0.13 1	uq/L	6	3.296	20.13	uq/L	8.296	41.21%
1	QC value ı	within	limits :	for Na .	589.5	92 Re	ecovery	≃ Not	calculated		-5,	0.250	
	231.604			14.6		.171 ı		0.		0.171	na/t	0.2029	118 74%
	QC value v	within	limits f	for Ni	231.6	04 Re	ecoverv	≖ Not	calculated		~5/ ~	0.2025	110.710
	13.617		-	-7.7	-0	.920 ı	19/L			0.920	ug/L	1.0790	117 2/8
	QC value v	vithin	limits 1	for P 2	13.61	7 Rec	coverv =		alculated	0.000	wg/ <b>L</b>	2.0750	111.710
	220.353		]	16.9	0	.829 i	ıg/L	0.		0.829	nα/L	0.2926	25 20%
	OC value v	vithin	limits f	for Pb :	220.3	53 Re	coverv	= Not	calculated	0.02,	ug/ <b>L</b>	0.2320	33.638
	206,836			9.8		.389 i		0.		1 389	na/L	0.4433	21 019
		vithin			206.83	36 Re	covery		calculated	1.507	ug/ H	0.4433	31,310
	196.026			5.6	-1	.167 1	ia/I	1		1 167	ug/L	1 0003	02 226
									calculated	1.107	ug/ L	1.0883	73.43%
	189.927			34.4		.447 L				2 447	ug/L	0.0501	7 210
		vithin							calculated	3.441	աց/ ո	0.2521	1.314
	121.552			2.1		.028 ປ				0.028	na/I.	0.0523	100 406
		ithin			121 55	: Da	covery	a Mat	calculated	0.020	ug/ Li	0.0532	100.428
	337,279			20.7			ig/L			0 101	/T	A 2204 :	
		rithin				10 De	govern .	- Not	calculated	0.191	սց/ Ե	0.2304	120.56%
	190.801	,1011111		3.1						1 000	/ -		
		debin'				./05 U	ig/L	1.	1183	1.785	ug/ь	1.1183	62.66%
	SC AUTHE A	/I CIIIII .			790.80	)1 Ke	covery :		calculated				
	92.402	debi-		3.9		.209 u	19/ h	U.	2828	0.209	ug/L	0.2828	L35.13%
		TENIN .	TTW168 1	or v 29	2.402	, Rec	overy =		alculated		•-		
	206.200			8.9	-0.	071 u	.g/ ь		0882 -	0.071 ι	ug/L	0.0882	L24.56%
-	n: Waliia W	ııcnın .	Limita f	or 2n 2	206.20	in Re	COVEYV :	= Not	calculated				
,,(	analyte(s	1	-4 00	· · · · · ·		, ,			ourouracea				

Dilution:

Sequence No.: 63 Sample ID: CCV1 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 3 Date Collected: 03/05/12 4:28:12 PM Data Type: Reprocessed on 03/06/12 9:17:36 AM

We.	on Doto.		305EA I:PB O:							
Me	an Daca:		Mean Correcte		Calib			Commit a		
An	alvte	•	Intensity	. Co	onc. Unite	Std. Dov	Cono	Sample	Otd Dov	ben
Ag	338.289		90214.3	49	94.2 ug/L	Std.Dev. 4.95	494.2	na/L	4 Q5	1.00%
_	QC value	e within 1	limits for Ag	338.28	39 Recovery	' = 98.84%	.,	ug, 2	41,55	1.000
A1	308.215		48613.9	21	1000 ua/L -	158.5	21000	uq/L	158.5	0.75%
	QC value	e within 1	limits for Al	308.23	15 Recovery	' = 105.00%				
As	188.979		5506.6	1	1056 ug/L	5.7	1056	ug/L	5.7	0.54%
-		e within l	Limits for As	188.97	9 Recovery					
В			8824.7	1	116 ug/L	13.5	1116	ug/L	13.5	1.21%
Da		e greater	than the uppe	er limi	t for B Re	covery = 111.64				
ьа	233,527	within 1	270984.7 Limits for Ba	222 52	.014 ug/L	13.4	1014	ug/L	13.4	1.32%
Re	313.107	S WICHIN I	7408277.6	233.32	000 ve/r		1000	17		
ь		within 1	limits for Be	313 10	.002 ug/L 17 Pecovery	8.1	1002	ug/L	8.1	0.81%
Ca	315.887		1241344.1	52	720 ug/t	- 100,23% 485 6	52720	υα /T.	485.6	0.92%
		within l	imits for Ca	315.88	7 Recovery	= 105.45%	32720	ug/D	405.0	0.928
Cd	214.440		499739.8	1	060 ug/L	13.9	1060	ug/L	13.9	1.31%
	QC value	within l	imits for Cd	214.44	0 Recovery	= 105,99%	1000	~5/ <del>_</del>	13.7	1.314
Co	228.616		104896.4	1	024 ug/L	11.8	1024	ug/L	11.8	1,16%
	QC value	within l	imits for Co	228.61	6 Recovery	≈ 102.38%		51		-1200
Cr	267.716		184033.7	1	005 ug/L -	13.5	1005	ug/L	13.5	1.35%
		within 1	imits for Cr	<b>267.71</b>	6 Recovery	<b>□ 100.47%</b>				
Cu	327.393		142763.7	99	1.8 ug/L	6.55	991.8	ug/L	6.55	0.66%
D-	OC value	within 1	imits for Cu	327.39	3 Recovery	≈ 99.18%				
ье	273.955		787848.3	20	180_ug/L	258.6	20180	ug/L	258.6	1.28%
16 5	766.490	MICHIN I	imits for Fe 112922.2	273.95	5 Kecovery					
		within 1	imite for K 7	4U 66 400	180 ug/L	229.4	20180	ug/L	229.4	1.14%
	285.213	WICHIEL I	2379571.5	00.49U 53	Recovery :	≈ 100.90* 444.6	E2200	/7		0 000
5	OC value	within 1:	imits for Mg	285 . 21	3 Recovery	- 106 50%	53300	ug/L	444.6	0.83%
Mn	257,610		111247.1	1	048 ug/I	13.3	1048	ug/L	13.3	1.27%
	QC value	within 1:	imits for Mn	257.61	0 Recovery	= 104.77%	1040	ug/ 11	13.3	1.2/6
	202.031		57520.9	1	077 ug/L	9.3	1077	ua/1.	9.3	0.87%
	QC value	within 1:	imite for Mo	202.03	1 Recovery	= 107.72%		-5, -	,,,	0.0,0
Na	589.592		395131.9	24	550 ug/L	238.0	24550	ug/L	238.0	0.97%
		within 1:	imits for Na	589.59	2 Recovery	= 98.21%		•		
	231.604		87870.6	10	017 ug/L	12.2	1017	ug/L	12.2	1.20%
		within li	imits for Ni	231.60	Recovery					
	13.617	1134 31	43319.6	51	176 ug/L	52.5	5176	ug/L	52.5	1.01%
		within is	imits for P 2	13.617	Recovery =	: 103.53%				
	220.353	within li	imits for Pb :	720 3E1	045 ug/L	5.5	1045	ug/L	5.5	0.53%
	206.836	MICHIEL I	7639.1	44V.35.	086 ug/L		1006		4.0.	
		within li	imits for Sb	206 B36	Pecovery	12.1	1086	и <b>д</b> / Г	12.1	1.11%
	196.026		5106.6	10	DSB pa/L	7.0	1058	ua /T.	7.0	0.66%
		within li	imits for Se :	196.026	Recovery		1036	ug, 1	7.0	0.00%
	189.927		10516.9		54 ug/L	9.3	1054	ոց/լ	9.3	0.89%
	QC value	within li	imits for Sn :					-5, -2	5.5	0.050
$\operatorname{sr}$	421.552		1471375.1	10	05 ug/L	9.0	1005	лд/L	9.0	0.90%
	QC value	within li	imits for Sr 4	121.552	Recovery	= 100.53%				
	337.279		113900.4	10	042 ug/L	11.8	1042	ւց/Ն	11.8	1.13%
		within li	imits for Ti							
	190.801		13860.0	10	089_ug/L	4.8	1089 t	ıg/L	4.8	0.44%
	92.402	MICUIN II	lmits for Tl ]					-	_	
		within 14	350905.3 mits for V 29	70 402 TU	24 ug/L	14.1	1024 1	1 <b>g/</b> L	14.1	1.30%
	206.200	"TOURH II	143533.4		Recovery = 78 ug/L	102.408	1078 ı	ia /T.	1	1 740
		within li	mits for Zn 2	200	Recovery		70/0 f	л9/ п	14.4	1.34%
QC	Failed.	Continue	with analysis			2011000				
'		<b>_</b>								

Sequence No.: 64 Sample ID: CCB 120305EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/05/12 4:47:29 PM Data Type: Reprocessed on 03/06/12 9:17:37 AM

Mean Data:	CCB 120305EA I:PB O:E	A I Calib.					
Analuska	Mean Correcte	Calib.		_	Sample -		
wharkee	Tureualth	Conc. Units	Std.Dev.	Conc.	Unita	Std.Dev.	RSD
Ag 330.209	Intensity -72.1 within limits for Ag	-0.395 ug/L	0.5037	-0.395	ug/L	0.5037	127.47%
Al 308.215	wrenth rimited for Mg	133.7 ug/L	' = NOC CAICUIACE	ea.			
	greater than the uppe	133.7 UG/L	10.94	133.7	ug/L	10.94	8.18%
As 188.979	greater than the uppe						
	within limits for As	100 070 become	0.7395	0.429	ug/L	0.7395	172.21%
В	98.7	11.69 ug/L	= NOT CAICUIACE				
	within limits for B	Percyery - Not co	loulated	11.69	ug/L	0.396	3.39*
Ba 233.527	5 4	0.019 ug/L	V 003C	0 010	/T	0 0005	405 600
	within limits for Ba	233 527 Pegoveru	v.vyso - Not aplaulota	4 0.019	ug/L	0.0936	487.598
Be 313.107	1872.1	0.250 ug/L	0.0250		υσ./T	0 0050	0.000
	within limits for Be	313.107 Recovery	- Mot calculate	d 0.250	ug/L	0.0250	9.998
Ca 315.887	1289.1	54.75 ug/L	- NOC CATCUIALE		ug/L	C 40C	11 740
	within limits for Ca	315 887 Pecovery	- Not calculate	391.13 A	ug/ D	0.426	11.748
Cd 214.440	22.8		0.0435		ug/L	0.0425	00 048
	within limits for Cd	214 440 Recovery	- Not calculate	d	ug/L	0.0435	90.048
Co 228,616	21.4	0.210 ug/L	0.1717		ug/L	0.1717	01 050
	within limits for Co	228.616 Recovery	= Not calculate	d . 2 1 0	ug/ L	0.1717	91.954
Cr 267.716	-78.3	-0.427 ug/L	7 1400		ug/L	0 1400	25 210
	within limits for Cr	267 716 Pecovery	- Not calculate	-0.427 A	ug/II	0.1498	32,114
Cu 327.393	171.3	1.190 ug/L	0 5142		ug/L	0 6340	43 200
	within limits for Cu	327.393 Recovery	- Not calculate	1.190 A	ug/ L	0.5142	43.20%
Fe 273.955	176.3	4.392 ng/t.	0 2452		ug/L	0.0450	C C00
	within limits for Fe	273.955 Recovery	= Not calculate	7.37 <u>2</u> 1	ug/ D	0.2452	5.58%
K 766.490	-166.0			-20 77	ug/L	77 375 1	104 000
	within limits for K 7		. Not calculated	-23.77	սց/ ո	32.135 1	107.938
Mg 285.213	87.0	1.891 ug/L	0.1636		ug/L	0 1636	0.650
	within limits for Mg	285.213 Recovery	- Not calculate	4	ug/ L	0.1636	8.65%
Mn 257.610	41.3	0.388 ug/L	0 0383		ug/L	0.0383	0.00
QC value	within limits for Mn	257.610 Recovery	= Not calculated	1	ug/II	0.0363	9.000
Mo 202.031	6.3		0.3607	0 117	ug/L	0 2607 3	100 114
QC value	within limits for Mo	202.031 Recovery		1	ug/D	0.3007 3	000.124
Na 589.592	471.5	29.32 ug/L	7.856		ug/L	7 056	26 008
QC value	within limits for Na	589.592 Recovery	= Not calculated	1	ug/ L	7.050	20.00%
Ni 231.604			0.2935		ug/L	0 2025 1	35 064
QC value	within limits for Ni :	231.604 Recovery	= Not calculated	1	ug, <b>D</b>	0.2935 1	.33.000
P 213.617	-11.5	-1.373 ug/L	0.2626		ug/L	0 2626	10 128
QC value	within limits for P 2:	13.617 Recovery =	Not calculated	1.373	ug/ 11	0.2020	17.128
Pb 220.353	4.9	0.239 ug/L	0.7274	0.239	ug/L	0.7274 3	04 218
QC value	within limits for Pb :	20.353 Recovery	= Not Calculated	1	ug, 1	0.7274 3	04.210
Sb 206.836	7.3	1.031 ug/L	0.4592		ug/L	0 4592	44 528
QC value	within limits for Sb 2	06.836 Recovery	= Not calculated	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	49/ L	0.4392	44.326
Se 196.026		-0.874 ug/L			ug/L	0 6535	74 779
QC value v	within limits for Se 1	96.026 Recovery	= Not calculated	1	.5/ -	0.0333	/4.//0
Sn 189.927	27.2	2.724 ug/L	0.3481	2.724 1	1a/T.	0.3481	10 782
QC value v	vithin limits for Sn 1				.g, <u>.</u>	0.5401	12.700
Br 421.552	11.2	0.007 ug/L	0.1174	0.007 1	ia/L	0.1174 >	000 04
QC value v	vithin limits for Sr 4	21.552 Recovery	= Not calculated		.g, <u>-</u>	0.11/4 >	<i>JJJ</i> .30
ri 337.279	-39.6	-0.365 ug/L		-0.365 ι	ια/Τ.	0.0790	21 65%
QC value v	vithin limits for Ti 3	37,279 Recovery	Not calculated		-5/-	0.0750	21.034
rl 190.801	5.4	0.423 ug/L	0.2562	0.423 ι	ıα/I.	0.2562	60 628
	ithin limits for Tl 1	90.801 Recovery		0.125	.9, 0	0.2302	00.02%
QC value v	160.9	0.457 ug/L	0.1769	0.457 ι	ıα/Τ.	0.1769	38 768
UC Value v 7 292.402	100.3					V.1/U7	JU . 100
7 292.402		2,402 Recovery =	Not calculated				
7 292.402	thin limits for V 29	2.402 Recovery =		1.230 1			
7 292.402 QC value w n 206.200	ithin limits for V 29	2.402 Recovery = 1.230 ug/L	0.1024	1.230 u		0.1024	8.32%

## METALS EPA SW846 - 6010B Raw Data



Sequence No.: 56 Sample ID: 120302A-3050G-BLK Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1 g Dilution:

Autosampler Location: 69 Date Collected: 03/05/12 3:44:05 PM Data Type: Reprocessed on 03/06/12 9:17:29 AM

Mean Data:	120302A-3050G-BLK						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	-	Std.Dev. RSD
Ag 338.289	-79.6	-0.436	ug/L	0.1382	-0.044		0.0138 31.70%
Al 300.215	99.9	43.14	ug/L	17.867	4.314		1.7867 41.42%
As 188.979	-2.4	-0.453	ug/L	0.9075	-0.045		0.0908 200.35%
В	75.6	9.003	ug/L	1.2351	0.900		0.1235 13.72%
Ba 233.527	77,2	0.285		0.0810	0.029		0.0081 28.36%
Be 313.107	2159,3	0.292	ug/L	0.0348	0.029	mg/kg	0.0035 11.94%
Ca 315.887	3601.9	153.2	ug/L	1.09	15.32		0.109 0.71%
Cd 214.440	16.2	0.032	ug/L	0.0320	0.003		0.0032 99.93%
Co 228.616	28.5	0.276	ug/L	0.1313	0.028		0.0131 47.51%
Cr 267.716	-62.0	-0.340	ug/L	0.2019	-0.034		0.0202 59.37%
Cu 327.393	321.1	2.231	ug/L	0.2970	0.223		0.0297 13.31%
Fe 273.955	744.5	19.07	ug/L	0.310	1.907		0.0310 1.63%
K 766.490	-291.9	~52.43		51.203	-5.243		5.1203 97.67%
Mg 285.213	297.2	6.562	ug/L	0.2144	0.656	mq/kq	0.0214 3.27%
Mn 257.610	91.6	0.862	ug/L	0.0503	0.086 (		0.0050 5.84%
Mo 202.031	13.5	0.252	ug/L	0.0969	0.025 I		0.0097 38.48%
Na 589.592	392.6	24.36		8.960	2.436 t	mg/kg	0.8960 36.78%
Ni 231.604	-0.6	-0.010	ug/L	0.0355	-0.001 [		0.0035 350.06%
P 213.617	209.3	25.00		0.686	2.500 г		0.0686 2.74%
Pb 220.353	24.7	1.212		0.5799	0.121 т	ng/kg	0.0580 47.83%
Sb 206.836	18.9	2.694	ug/L	0.4206	0.269 m		0.0421 15.61%
Se 196.026	0.1	0.022		1.6447	0.002 π		0.1645 >999.9%
Sn 189.927	-109.9	-11.01	ug/L	0.330	-1.101 n	ng/kg	0.0330 3.00%
Sr 421.552	469.5	0.319		0.1254	0.032 π	ng/kg	0.0125 39.33%
Ti 337.279	45.7	0.416		0.2073	0.042 п		0.0207 49.77%
Tl 190.801	5.7	0.450		0.4213	0.045 m		0.0421 93.62%
V 292.402	57.6	0.159		0.2517	0.016 m		0.0252 157,89%
Zn 206.200	695.0	5.195	ug/L	0.1381	0.520 π		0.0138 2.66%

Sequence No.: 57

Sample ID: 120302A-3050G-LCS

Analyst: BA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1 g

Dilution:

Autosampler Location: 70

Date Collected: 03/05/12 3:49:03 PM

Data Type: Reprocessed on 03/06/12 9:17:30 AM

Mean Data:	120302A-3050G-LCS							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Cona.	Units	Std.Dev.	Cong.	Units	Std.Dev.	RSD
Ag 338.289	18983.9	104.0	ug/L	1.06	10.40	mg/kg	0.106	1.02%
Al 308.215	5115,6	2210	ug/L	119.0	221.0	mg/kg	11.90	5.39%
As 188.979	1493.2	286.4	ug/L	5.01		mg/kg	0.501	1.75%
В	2386.1	290.8	ug/L	6.29		mg/kg	0.629	2.16%
Ba 233.527	70795.8	265.5	ug/L	2.61	26.55	mg/kg	0.261	0.98%
Be 313.107	416176.3	57.00	ug/L	0.510		mg/kg	0.0510	0.90%
Ca 315.887	667 <b>9</b> 73. <b>7</b>	28390	ug/L	315.1		mg/kg	31.5	1,11%
Cd 214.440	27433.2	58,05		0.252	5.805	mg/kg	0.0252	0.43%
Co 228.616	29521.3	288.1		1.45		mg/kg	0.145	0.50%
Cr 267.716	52838.0	286.6		2.38	28.66	mg/kg	0.238	0.83%
Cu 327.393	38480.6	267.3		2.79	26.73	mg/kg	0.279	1.04%
Fe 273.955	43464.5		ug/L	8.4	103.8		0.84	0.81%
K 766.490	30062.4		ug/L	57.0	535.8	mg/kg	5.70	1.06%
Mg 285.213	1270717.8	28460	ug/L	278.8	2846	mg/kg	27.9	0.98%
Mn 257.610	31338.7	294.1		2.89	29.41	mg/kg	0.289	0.98%
Mo 202.031	15178.3	203.7	ug/L	1.38	28.37	mg/kg	0.138	0.49%
Na 589.592	430170.7	26760	ug/L	257.5	2676	mg/kg	25.7	0.96%
Ni 231.604	25280.3	292.3		1.31	29.23		0.131	0.45%
P 213.617	19254.7	2301	ug/L	13.2	230.1		1.32	0.58%
Pb 220.353	5906.5	290.1		0.97	29.01	mg/kg	0.097	0.34%
Sb 206.836	2100.6	298.7		1.36	29.87	mg/kg	0.136	0.46%
Se 196.026	1427.9	295.9	ug/L	2.08	29.59	mg/kg	0.208	0.70%
Sn 189.927	2904.1	291.0		1.80	29.10	mg/kg	0.180	0.62%
Sr 421.552	392307.9	267.9	ug/L	2.72	26.79		0.272	1.01%
Ti 337.279	30130.6	275.0		2.28	27.50		0.228	0.83%
Tl 190.801	3783.8	297.0		2.46	29.70	mg/kg	0.246	0.83%
V 292.402	94917.4	277.8	ug/L	2.41	27.78		0.241	0.87%
Zn 206.200	77037.1	577.2	ug/L	5.15	57.72	mg/kg	0.515	0.89%

Sequence No.: 58 Sample ID: AY56027803

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.11 g

Dilution:

Autosampler Location: 71 Date Collected: 03/05/12 3:54:40 PM Data Type: Reprocessed on 03/06/12 9:17:31 AM

Mean Data:	AY56027803							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Cona.	Unita	Std.Dev.	Conc.	Unita	Std.Dev.	RSD
Ag 338.289	3610.5	19.78	ug/L	0.241	1.782	mg/kg	0.0217	1.22%
Al 308.215	583561.4	252100	ug/L	2983.7	22710	mg/kg	268.8	1.18%
As 188,979	277.1	53.15	ug/L	3.867		mg/kg	0.3484	7.28%
В	-1016.6	423.4	ug/L	9.18		mg/kg	0.827	2.17%
Ba 233.527	153146.0	543.2	ug/L	5.74		mg/kg	0.517	1.06%
Be 313.107	20185.0	-0.457		0.0598	-0.041		0.0054	13.09%
Ca 315.887	46614763.2	1984000		3751.7	178700		338.0	0.19%
Cd 214.440	3223.6	-15.16	ug/L	0.284	-1.365		0.0256	1.88%
Co 228.616	3 <b>91</b> 7.8	14.04		0.663	1.265		0.0598	4.72%
Cr 267.716	35673.4	168.4		1.27	15.17		0.115	0.76%
Cu 327.393	7467.4	51.88	ug/L	0.959	4.674		0.0864	1.85%
Fe 273.955	4863243.9	123900	ug/L	1302.9	11160	mq/kq	117.4	1.05%
K 766.490	262042.4	45290	ug/L	623.3		mg/kg	56.2	1.38%
Mg 285.213	1694954.1	36890	ug/L	388.1		πg/kg	35.0	1.05%
Mn 257.610	190561.3	1770	ug/L	15.4	159.5		1.38	0.87%
Mo 202.031	26.6	-12.43		0.815	-1.120		0.0734	6.56%
Na 589.592	21106.6	296.9	ug/L	13.79	26.75		1,242	4.64%
Ni 231.604	9080.5	80.04	ug/L	0.614	7.210	mg/kg	0.0553	0.77%
P 213.617	7376.8	881.5	ug/L	8.49	79.41	mg/kg	0.765	0.96%
Pb 220.353	1063.5	52.24		1.396	4.707		0.1257	2.67%
Sb 206.836	-37.9	-5.394	ug/L	3.3321	-0.486		0.3002	61.78%
Se 196.026	~33.7	-6.978	ug/L	11.0977	-0.629	mg/kg	0.9998	159.03%
Sn 189.927	-200.0	-20.04	ug/L	1.872	~1.805	mg/kg	0.1687	9.34%
Sr 421.552	438897.5	277.1	ug/L	3.38	24.96		0.305	1.22%
Ti 337.279	147329.4	1321		11.8	119.0		1.06	0.89%
Tl 190.801	-329.4	-5.160		4.1948	-0.465	mg/kg	0.3779	81,30%
V 292.402	114622.2	285.5		3.12	25.72		0.281	1.09%
Zn 206.200	27675.5	138.6		0.39	12.49		0.035	0.28%

Sequence No.: 61 Sample ID: AY56027803-A

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.11 g

Dilution:

Autosampler Location: 74 Date Collected: 03/05/12 4:09:20 PM Data Type: Reprocessed on 03/06/12 9:17:34 AM

> Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data:	AY56027803-A						4	
	Mean Corrected		Calib.		5	Sample		
Analyte	Intensity	Cond.	Units	Std.Dev.	Conc. t	_	Std.Dev.	RSD
<b>A</b> g 338.289	33473.0	183.4	ug/L	0.83	16.52 m		0.075	0.45%
Al 308.215	564569.9	243900	ug/L	4270.0	21970 m		384.7	1.75%
As 188.979	2776.6	532.6	ug/L	3.51	47.98 n	ng/ka	0.317	0.66%
B	3089.1	892.0	ug/L	9.60	80.36 m		0.865	1.08%
Ba 233.527	245968.7	893.0	ug/L	1.91	80.45 m		0,172	0.21%
Be 313.107	619267.8	82.09	ug/L	0.285	7.396 m		0.0257	0.35%
Ca 315.887	45234635.0	1925000	ug/L	14397.0	173400 m		1297.0	0.75%
Cd 214.440	40073.5	63.95	ug/L	1.066	5.7 <b>61</b> m		0.0960	1.67%
Co 228.616	44181.2	407.9	ug/L	3.62	36.75 m		0.326	0.89%
Cr 267.716	107526.4	559.2	ug/L	1.83	50.38 m		0.164	0.33%
Cu 327.393	69179.8	480.6		2.86	43.30 m		0.258	0.60%
Fe 273,955	4647121.4	118300		374.9	10660 m		33.8	0.32%
K 766.490	302245.3	52540	ug/L	985.4	4733 m		88.8	1.88%
Mg 285.213	3622736.1	80120		1415.2	7218 m		127.5	1.77%
Mn 257.610	233964.4		ug/L	14.3	196.3 m	q/kq	1.28	0.65%
Mo 202.031	22392.9	406.2		2.29	36.60 m		0.207	0.56%
Na 589.592	759681.8	46300	սց/և	846.9	4171 m		76.3	1.83%
Ni 231.604	42802.8	471.0	ug/L	4.48	42.44 m		0.403	0.95%
P 213.617	37188.5	4444		48.4	400.3 m	q/kg	4.36	1.09%
Pb 220.353	8935.2	438.9		6.27	39.54 m		0.565	1.43%
Sb 206.836	3302.3	469.5	ug/L	8.22	42.30 mg	g/kg	0.741	1.75%
Se 196.026	2248.8	466.1		18.13	41.99 m		1.633	3.89%
Sn 189.927	4045.2	405.4	ug/L	4.92	36.52 m		0.443	1.21%
Sr 421.552	1078334.7	714.9		13.74	64.41 mg		1.238	1.92%
Ti 337.279	193193.3	1741		13.3	156.8 mg		1,19	0.76%
Tl 190.801	4669.2	388.4		2.79	34.99 mg		0.251	0.72%
V 292.402	251732.5	689.0		2.33	62.07 mg	g/kg	0.210	0.34%
Zn 206.200	128677.2	898.7	ug/L	4.24	80.97 mg	g/kg	0.382	0.47%

Sequence No.: 62

Autosampler Location: 75

Bample ID: AY56027803-1/5

Analyst: EA

Logged In Analyst (Original) : chemist metals

Initial Sample Wt: 1.11 g

Dilution: 5X

Autosampler Location: 75
Date Collected: 03/05/12 4:14:15 PM
Data Type: Reprocessed on 03/06/12 9:17:35 AM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data:	AY56027803-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	808.7	4.430		0.1883	1.996	mg/kg	0.0848	4.25%
Al 308.215	126272.6	54550		676.1	24570	mg/kg	304.5	1.24%
Ав 188.979	43.7	8.392		0.7276	3.780	mg/kg	0.3278	8.67%
В	-177, <b>7</b>	114,2	ug/L	4.17	51.45	mg/kg	1.880	3,65%
Ba 233.527	36650.5	129.7	ug/L	1.25	58.41	mg/kg	0.563	0.96%
Be 313.107	56 <b>0</b> 2.9	-0.118	ug/L	0.0236	~0.053	mg/kg	0.0106	20.02%
Ca 315.887	11380519.7	484300		2658.3	218100		1197.4	0.55%
Cd 214.440	845.2	-3.686	ug/L	0.0067	~1.660	mg/kg	0.0030	0.18%
Co 228.616	997.3	3,896	ug/L	0.2370	1.755	mg/kg	0.1067	6.08%
Cr 267,716	8394.4	39.46	ug/L	0.168	17.78		0.076	0.43%
Cu 327.393	1427.6	9.918		0.0983	4.468	mg/kg	0.0443	0.99%
Fe 273.955	1225621.1	31250	ug/L	307.0	14070	mg/kg	138.3	0.98%
K 766.490	55890.3		ug/L	120.8	4329	mg/kg	54.4	1.26%
Mg 285.213	389414.7	8460	ug/L	81.8	3811	mg/kg	36.9	0.97%
Mn 257.610	44933.7	417.3	ug/L	7.28	188.0		3.28	1.74%
Mo 202.031	29.5	-2.489	ug/L	0.1980	-1.121	mg/kg	0.0892	7.95%
Na 589.592	7506.9	219.5	ug/L	6.69	98.89	mg/kg	3.014	3,05%
Ni 231.604	2349.0	21.11	ug/L	1.679	9.511	mg/kg	0.7563	7.95%
P 213.617	1684.0	201.2	ug/L	2.97	90.64	mg/kg	1.338	1.48%
Pb 220.353	279.2	13.72	ug/L	0.608	6.178		0.2739	4.43%
Sb 206.836	-7.3	-1.043		1.1559	-0.470	mg/kg	0.5207	110.86%
Se 196.026	-22.9	-4.754	ug/L	2.2829	-2.142	mg/kg	1.0283	48.02%
Sn 189.927	-63.8	-6.393	ug/L	0.3952	-2.880		0.1780	6.18%
Sr 421.552	98364.5	61.64	ug/L	0.748	27.77		0.337	1.21%
Ti 337.279	33206.4	297.2		6.31	133.9		2.84	2.12%
Tl 190.801	-97.4	-2.952		0.6451	-1.330		0.2906	21.86%
V 292.402	27553.0	68.27	ug/L	0.513	30.75		0.231	0.75%
Zn 206.200	8716.2	48.51	ug/L	0.375	21.85		0.169	0.77%

the mand		The state of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the s
272'		Metals Standards Log Book # 34 Page 7/43
	SA	
1803 - 3022	3-2-12	100 mL
	11,0103.C	Prepared in 2000 mJ DI Water K23022 12/27/11 ImL Ca CP/ 105012/27865 0/27/12  STD L41 CO CP/ 11/4000-247/29 00/15/10
	$(\mathcal{A})$	AMOUNT STD MUNITATURES LOT EXP DATE POWER 1001215-2788 04/2012  0.5 mL 600 LDI 4001 LDI EXP DATE POWER 1002245-2789 04/22152
		Propured in 50 ml 1940\03559HC1
30112		1ML
EXP DATE		Mill   CCV-C   ABSOLUTE   091009-25207   09410412   Iml   Fe   O281   1002245-27609   0472742
126 09/15/12 166 04/20/12		STD 27 CCV1 60108/6010C/6010C  Preputed in 90 ml 1/MANQU/SMC1  AMOUNT STD PREPUTED  60108/MAINC COV
999 04/22/12		25mL STD-1 Today 1 week 0.5kH QCS (CV A CPI 51C17428548 DW17/12 25mL 15kh)/Q3/5xHC1 Today 0.5kH QCS (CV B CPI 51C17428548 DW17/12
385 04/20/12		AMOUNT STD PREP DATE EXPLANT
328 09/15/12 785 04/20/12		15th
692 04/22/12 -01 03/01/12		12/2/2/1
548 09/17/12	NBS 03/02/1	NBS 03/02/12
549 09/17/12	17	I I I I I I I I I I I I I I I I I I I
		1ml X 10ug/ml Hg STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Final concentration is 50 ug/L Expires 03/44/9
		Final concentration is 50 ug/L. Expires03/01/12
lallb - d		1%500075%HC4BLK
		AMOUNT REAGENT ANNUACTIONS LOT OPENDATE AMOUNT STD MANUACTIONS LOT ANNUAL BOX
K47023	6016B-C	70 mL HNO) JT BAKER K23022 12/27/F1 ImL AI CPI 105012-27685 04/20/12 Prepared in 2000 ml DI Water CPI 105012-27685 04/20/12
K47023	3,8-12	STD 1/LDL 60108/6018C   ImL   Mg   CPI   10H213-2786   O472012
		9.5 m.L 6010 LDL ABSOLUTE 091409-25205 0914142 Propared in 50 m1 1% RNO US % HC   Propared in 50 m1 1% RNO US % HC   91409-25205 0914142 60108 6010 C ICS AB
		STD 3/101 @16/0/9010C
		INIL   CCV-C   ABSOLUTE   C91109-25208   C971412   IniL   Fe   C951   C92245-2789   C972412   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C97245-2789   C972
03/02/12		STD 1 / CCVL 6010B/6010CC010C Propured in 50 ml /WRNOJ/SWHC1
03/07/12		25ml STD3 Today 1 week 0.5M2 QCS KVVA CPI 11G174-28548 09117/52
03/02/12		CCY1 (a) (b) (a) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
		15mL STD Today 1 week
03/02/12		tody I week 8 3 5 12
10174-28548		
10:174-28549 03/02/12	0 0 12	Hg WORKING STANDARD
1C066-28529 03/02/12		1ml X 10ug/ml Hg STOCK STD (90/47/49/49/49/49
		1ml X 10ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Final concentration is 50 ug/L. Expires. 0.3 0.5/12.
1C088-28578 023805-28210 03/02/12		rinal concentration is 50 ug/L. Expires. 03 05 12
036407-28139 1036410-28140 1100309-28141		
03/02/12		
		——————————————————————————————————————
74 74 PHO 257 48 23	1055 TO 12 March 7 (27)	

### **Metals Digestion Worksheet**

Method Name 3050B Digestion (GROSS UP)

Prep Method M3050GROSS

Set 120302A

Units mL

Spikes Second			
Spiked ID 1	LCSW LOT# #103	2278-30260	_
Spiked ID 2	LCSW LOT# #103	2271-30258	
Spiked ID 3			
Spiked ID 4			
Spiked By	LO	Date:	03/02/12 1:00:00 PM
Witnessed By	NM	Date:	03/02/12 1:00:00 PM

Starting Temp:	95 C
Ending Temp:	95 C
Temperature Type:	Mod Block
Sufficient Vol for Matrix QC:	YES
End Date/Time	03/02/12 16:30

Sample	Sample Container	Spike Amount	1 -	Digested Amount		Start Daté/Time	Comments
1 120302A Blk				1.00g	100mL	03/02/12 13:00	equip: Modblock1
2 120302A LCS	1(110111111111111111111111111111111111	lmL	1+2	1.00g		03/02/12 13:00	equip: Modblock1
3 AY56027	AY56027803			1.11g	100mL	03/02/12 13:00	equip: Modblock1
4 AY56027 MS	AY56027S03	2mL	1+2	1.11g	100mL	03/02/12 13:00	equip: Modblock1
5 AY56027 MSD	AY56027S03	2mL	1+2	1.11g	100mL	03/02/12 13:00	equip: Modblock1

Solvent and Lor# 34.25	
1:1 HNO3 na	
HNO3 J.T.B K47023 0145	
H2O2 EMD na	
HCL B.D.H 4111060 0146	
,	

Sample COO Transfer And Sample COO Transfer	
Sample prep employee Initials	LO .
Analyst's initials	EA
Date	3-2-12
Time	16:30
Moved to	Metals

Technicianis Iniualsias	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	ro
Modified	03/02/12 4:28:31 PM

Reviewed By: 2

Ð

336 Date: 3-2-12

## MERCURY EPA SW846 7471A



### MERCURY EPA SW846 7471A AFCEE Forms



## AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 7471B AAB #: 120302A-164455 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-SWI AY56027 ARF: 67099 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date:

Diane Anderson

Project Manager

# AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120302A-164455

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-SW1

Lab Sample ID: AY56027

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: 120305B

Date Received: 01-Mar-12

Date Prepared: 02-Mar-12

Date Analyzed: 05-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01		0.07	1	F

Comments:

ARF: 67099

### AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Analytical	Method:	7471 Gross U	P			_		AAB#:	120302A-164	455		_	
L	ab Namo:	APPL, Inc				_	Contract #: *G012						
Instru	ıment ID:	PE300				-	Date of Initial Calibration: 05-Mar-12						
nitial Calibr	ration ID:	120305B				Concent	ration Units (n	ng/L or mg/kg):	mg/kg	···· ·· ·		<b>→</b>	
_								•					
	Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	FUF 4	Sid S	RF 5		Q
M	eraury	0.000208	0.005	0.000521	0.012	0.001042	0,021	0,002083	0,042	0,005208	0.101	0.99992	
												r = correfatio	on coefficie
C	omments:											•	
	JILLIEINS.												
								<del></del>					

AFCEE FORM I-3A

# AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Analytical Method;	7471 Gross U	Jp		,	A	AAB#: <u>120302/</u>	<u>1-164455</u>		_	
Lab Name:	Lab Name: APPL, Inc					Contract #: *G012				
Instrument ID: PE300					Date of Initial Calib	_				
itial Calibration ID:	120305B			Concentration	on Units (mg/Lorn	_				
Analyte	Std 6	RF 6							ı	Q
Mercury	0.01042	0.205							0.99992	
Comments:									r = correlati	on coefficie

AFCEE FORM I-3A

### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method:	7471 Gross Up	AAB#:	120302A-164455
Lab Name:	APPL, Inc.	Contract #:	*G012
Instrument ID:	PE300	Initial Calibration 1D:	120305B
2nd Source ID:	ICV 03/05/12 13:24	ICV ID:	ICV 03/05/12 13:24
CCV #1 ID:	CCV 03/05/12 13:28	CCV #2 ID:	CCV 03/05/12 13:41
	Concentration Units (mg/L	or mg/kg): mg/kg	

2nd Source Calibration			tation	Initial Calibration			Continuing Calibration Verification					
Analyte	Verification			Verification							Q	
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	$\Box$
				_			-	1		2		
Мегсигу (Hg)	0,00417	0,00407	2.4%	0.00417	0.00407	2.4%	0,005208	0,00514	1.3%	0.00532	2.1%	

Comments:			
_	AFCEE FORM I-4	Page 1 of 1	

### AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7471B

AAB #: 120302A-164455

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120302A-BLK

Initial Calibration ID: 120305B

Analyte	Method Blank	RL	Q
MERCURY (HG)	< RL	0.1	U

Comments:

ARF: 67099, Sample: AY56027

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 7471 Gross Up				AAB #: 120302A-164455				
Leb Name: APPL, Inc.			Contract#: *G012					
		C	Concentration	n Units (mg/L∢	or mg/kg): <u>mg/kg</u>			
Calibration Blank ID: ICB 03/05/12 13:27 Initial Calibration ID: 120305B								
	2/05/12 12:22		CCB #2 ID:	CCB 03/05/12	13:44	_ ,	CCB #3 1D;	
CCB #1 ID: <u>CCB 0</u>	3103/12 13:32		-					
CCB #1 ID: CCB 0  Method Blank ID: 12030			<u>-</u>		ration ID: 120305B			
			<b>-</b>	Initial Calib				
	2A-BLK Initial Calibration		uing Calibrat	Initial Calib	ration ID: <u>120305B</u> Method	RL	Q	*
Method Blank ID: 12030	2A-BLK		<b>-</b>	Initial Calib	ration ID: 120305B		Q	· •.

Page ___ of ___

AFCEE FORM I-5

345

# AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7471B

AAB #: 120302A-164455

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120302A LCS

Initial Calibration ID: 120305B

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.67	0.73	100		j

Comments:

ARF: 67099, Sample: AY56027

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7471B

AAB#: 120302A-164455

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-NT1-SW1	29-Feb-12	01-Mar-12	05-Mar-12	28	5	

Comments:

ARF: 67099

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7471B	ICAL ID: <u>120305B</u>
--------------------------	-------------------------

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PE300

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Calib Blank	05-Mar-12	13:08	05-Mar-12	13:08
0.208	05-Mar-12	13:09	05-Mar-12	13:09
0.520833	05-Mar-12	13:11	05-Mar-12	13:11
1.041667	05-Mar-12	13:13	05-Mar-12	13:13
2.083333	05-Mar-12	13:15	05-Mar-12	13:15
5.208	05-Mar-12	13:17	05-Mar-12	13:17
10.417	05-Mar-12	13:19	05-Mar-12	13:19
ICV	05-Mar-12	13:24	05-Mar-12	13:24
ICB	05-Mar-12	13:27	05-Mar-12	13:27
CCV	05-Mar-12	13:28	05-Mar-12	13:28
CCB	05-Mar-12	13:32	05-Mar-12	13:32
120302A-BLK	05-Mar-12	13:33	05-Mar-12	13:33
120302A-LCS	05-Mar-12	13:34	05-Mar-12	13:34
AY56027S03	05-Mar-12	13:36	05-Mar-12	13:36
CCV	05-Mar-12	13:41	05-Mar-12	13:41
CCB	05-Mar-12	13:44	05-Mar-12	13:44

### MERCURY EPA SW846 7471A Calibration Data



### **Parsons**

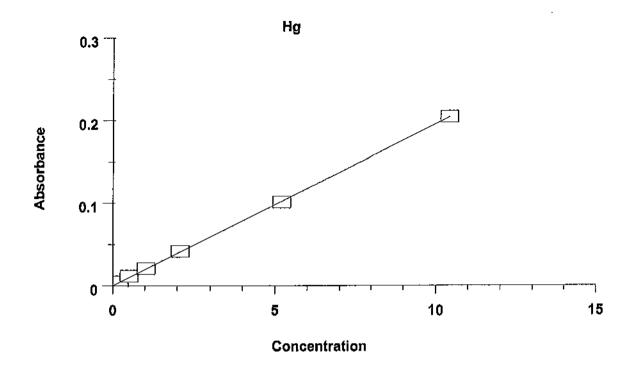
### Hg BY METHOD 7471B QCG 120302A-7471GROSS ANALYSIS DATE: 03/05/12

ARF#67099

### R=0.99992

NAME	TRUE	RESULT	% RECOVERY
ICV	4.17ppb	4.070	97.6%
ICB	0ppb	0.059	
CCV-1	5,208ppb	5.141	98.7%
CCB-1	0ppb	0.043	
CCV-2	5.208ppb	5.318	102.1%
CCB-2	0ppb	0.080	

Method Name: Hg-7471 - KWS Element: Hg Date: 03/05/2012 Results Data Set: 120302A-7471GRO Element: Hg Seq. No.: 2 Date: 03/05/2012 Sample ID: Sample Repl SampleConc StndConc BlnkCorr Time μq/L Signal # μg/L 0.000 13:06:57 1 Auto-zero performed. Element: Hg Seq. No.: 3 Date: 03/05/2012 Sample ID: Calib Blank ______ SampleConc StndConc BlnkCorr Time Repl  $\mu g/L$   $\mu g/L$ Signal # 0.000 13:08:25 1 -0,001 13:08:31 2 -0.001 13:08:36 3 0.000 Mean: 0.000 SD : 52.91 %RSD: Auto-zero performed. Element: Hg Seq. No.: 4 Date: 03/05/2012 Sample ID: 0.2083 03-02-12 LO _ SampleConc StndConc BlnkCorr Time Repl μg/L μg/L Signal # 13:09:39 0.005 1 0.005 13:09:44 2 0.005 13:09:49 3 0.005 Mean: 0.000 SD : 5.60 %RSD: Standard number 1 applied. [0.2083333] Slope: 0.0230 Correlation Coefficient: 1.0000 Element: Hg Seq. No.: 5 Date: 03/05/2012 Sample ID: 0.520833 SampleConc StndConc BlnkCorr Time Repl μg/L Signal  $\mu g/L$ # 0.012 13:10:52 1 0.012 13:10:57 2 13:11:03 0.012 3 0.012 Mean: 0.000 SD : 2.93 %RSD: Standard number 2 applied. [0.520833] Slope: 0.0228 Correlation Coefficient: 1.0000


An extra autosampler wash has been performed.

```
Element: Hg Seq. No.: 6 Date: 03/05/2012
Sample ID: 1.041667
Repl SampleConc StndConc BlnkCorr
                           Time
 #
    μg/L μg/L
                  Signal
                    0.020
1
                           13:12:53
                    0.021
2
                           13:12:59
                    0.021
                           13:13:04
3
                    0.021
Mean:
                    0.001
SD :
%RSD:
                     2.91
Standard number 3 applied. [1.041667]
Correlation Coefficient: 0.9936
                               Slope: 0.0207
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 7 Date: 03/05/2012
Sample ID: 2.003333
SampleConc StndConc BlnkCorr
                           Time
Repl
#
    \mu g/L \mu g/L Signal
                    0.041 13:14:55
0.042 13:15:01
1
2
                    0.043
                           13:15:06
3
                    0.042
Mean:
                    0.001
SD :
Standard number 4 applied. [2.083333]
                                Slope: 0.0202
Correlation Coefficient: 0.9986
An extra autosampler wash has been performed.
________
Element: Hg Seq. No.: 8 Date: 03/05/2012
Sample ID: 5.208
-
    SampleConc StndConc BlnkCorr
                          Time
Repl
    \mu g/L \mu g/L Signal
Ħ
                         13:16:58
13:17:03
                    0.098
1
                    0.102
2
                          13:17:09
                    0.104
3
Mean:
                    0.101
                    0.003
SD :
%RSD:
Standard number 5 applied. [5.208]
Correlation Coefficient: 0.9996
                              Slope: 0.0196
An extra autosampler wash has been performed.
_______________________________
Element: Hg Seq. No.: 9 Date: 03/05/2012
Sample ID: 10.417
_
   SampleConc StndConc BlnkCorr Time
Repl
                  Signal
#
    \mu q/L \mu g/L
                   0.198
                          13:19:01
1
                    0.206
                          13:19:07
2
                    0.210
                          13:19:12
3
Mean:
                    0.205
                    0.006
SD :
%RSD:
The calibration curve may not be linear.
Standard number 6 applied. [10.417]
```

353

Slope: 0.0196

Correlation Coefficient: 0.9999



Calibration data for Hg					
		Entered	Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	(μg/L)	(µg/ь)	Deviation	<b>%RSD</b>
Calib Blank	0.000		0.000	0.000258	
0.2083 03-02-12 LO	0.005	0.2083333	0.2434	0.000268	5.600887
0.520833	0.012	0.520833	0.6044	0.000347	2.925640
1.041667	0.021	1.041667	1.061	0.000606	2.906682
2.083333	0.042	2.083333	2.123	0.001040	2.492723
5.208	0.101	5.208	5.161	0.002805	2.766294
10.417	0.205	10.417	10.42	0.005957	2.908552
Correlation Coeffici	ent: 0.99992	Slope: 0.0	1965		

MERCURY EPA SW846 7471A Raw Data



Element: Hg Seq. No.: 10 Date: 03/05/2012 Sample ID: ICV 03-02-12 LO Repl SampleConc StndConc BlnkCorr Time 

 Repl
 SampleConc
 StndConc
 BinkCorr

 #
  $\mu g/L$  Signal

 1
 3.936
 0.077

 2
 4.114
 4.114
 0.081

 3
 4.161
 4.161
 0.082

 Mean:
 4.070
 4.070
 0.080

 SD:
 0.1187
 0.1187
 0.002

 %RSD:
 2.92
 2.92
 2.92

 13:24:45 13:24:50 13:24:56 OC value within specified limits. An extra autosampler wash has been performed. ______ Element: Hg Seq. No.: 11 Date: 03/05/2012 Sample ID: ICB 03-02-12 LO Repl SampleConc StndConc BlnkCorr Time #  $\mu$ g/L  $\mu$ g/L Signal # μg/μ μg/μ 31346 0.001
2 0.07685 0.07685 0.002
3 0.06527 0.06527 0.001
Mean: 0.05852 0.05852 0.001 13:27:33 13:27:38 13:27:44 SD: 0.02247 0.02247 0.000 %RSD: 38.39 38.39 38.39 0.000 OC value within specified limits. Element: Hg Seq. No.: 12 Date: 03/05/2012 Sample ID: CCV 03-02-12 LO _ Repl SampleConc StndConc BlnkCorr Time OC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 13 Date: 03/05/2012 Sample ID: CCB 03-02-12 LO _ Repl SampleConc StndConc BlnkCorr Time # µg/L µg/L Signal .
1 0.04471 0.04471 0.001
2 0.05476 0.05476 0.001
3 0.03001 0.03001 0.001 13:31:56 13:32:01 13:32:07 0.001 Mean: 0.04316 0.04316 SD: 0.01244 0.01244 0.000 %RSD: 28.83 28.83 28.83

QC value within specified limits.

Element: Hg Seq. No.: 14 Date: 03/05/2012 Sample ID: 120302A BLK _ Repl SampleConc StndConc BlnkCorr mg/kg μg/L Signal # 0.03648 0.2280 0.004 0.03637 0.2273 0.004 0.03648 13:33:10 1 13:33:15 3 0.03597 0.2248 0.004
Mean: 0.03627 0.2267 0.004
SD: 0.000266 0.001662 0.000
%RSD: 0.73 0.73 0.73 2 13:33:20 Element: Hg Seq. No.: 15 Date: 03/05/2012 Sample ID: 120302A LCS Repl SampleConc StndConc BlnkCorr Time mg/kg μg/L Signal 0.7056 4.410 0.087 # 13:34:24 13:34:29 13:34:35 An extra autosampler wash has been performed. Element: Hg Seq. No.: 16 Date: 03/05/2012 Sample ID: AY56027S03 _ Repl SampleConc StndConc BlnkCorr Time 

 Repl
 Samplecond
 Stracond
 BinkCoff

 #
 mg/kg
  $\mu$ g/L
 Signal

 1
 0.06244
 0.4358
 0.009

 2
 0.06653
 0.4643
 0.009

 3
 0.06554
 0.4574
 0.009

 Mean:
 0.06484
 0.4525
 0.009

 SD:
 0.002130
 0.01487
 0.000

 %RSD:
 3.29
 3.29
 3.29

 13:36:25 13:36:30 13:36:35 Element: Hg Seq. No.: 17 Date: 03/05/2012 Sample ID: AY56027S03 MS Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu g/L$  Signal # 4.780 0.094 4.913 0.097 4.980 0.098 4.891 0.096 4.780 13:37:38 13:37:43 0.6849 0.7039 13:37:48 0.7135 Mean: 0.7008 4.891 0.096 SD: 0.01453 0.1014 0.002 %RSD: 2.07 2.07 2.07 An extra autosampler wash has been performed. Element: Hg Seq. No.: 18 Date: 03/05/2012 Sample ID: AY56027S03 MSD Repl SampleConc StndConc BlnkCorr Time mg/kg  $\mu g/L$  Signal # 4.647 13:39:39 0.6659 0.091 1 4.826 0.095 13:39:44 0.6915 2 0.7006 0.6860 4.890 0.096 13:39:50 3 0.6860 4.788 0.094 0.01802 0.1258 0.002 2.63 2.63 2.63 Mean: SD : %RSD:

An extra autosampler wash has been performed.

Element: Hq Seq. No.: 19 Date: 03/05/2012 Sample ID: CCV 03-02-12 LO _____ Repl SampleConc StndConc BlnkCorr Time Signal Ħ μg/L μg/L 5.166 1 5.166 0.101 13:41:41 0.105 0.107 2 5.343 5.343 13:41:47 5.446 5.446 13:41:52 3 5.318 5.318 0.104 Mean: 0.1416 0.003 0.1416 SD : 2.66 2.66 %RSD: 2.66 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 20 Date: 03/05/2012 Sample ID: CCB 03-02-12 LO SampleConc StndConc BlnkCorr Time Repl μg/L Signal μg/Ē # 0.001 13:44:00 0.07303 0.07303 1 0.09145 0.09145 0.002 13:44:05 2 0.07648 0.07648 0.002 13:44:11 3 0.002 Mean: 0.08032 0.08032 SD ; 0.009792 0.009792 0.000

%RSD: 12.19

OC value within specified limits.

12.19

12.19

# Wetals Standards Log Book # 34 Page #3

<u> </u>										
SS 1.	AND CORT V	<del></del>		1	0.	10B/6010C1C	iA			4_
	SMECIBLK REAGENT	MANUFACTURES	LOT	OPEN DATE	AMOUNT	STP	KUNTACTURE	LOT_	EXP DATE	1
AMOUNT	HCL	BDH	411040	12/28/11	lmL	N.	CPI	108012-27085	04/20/12	1
100 mL	HNOI	JT BAKER	K23022	52/27/11	lmL	Ca	CPI	(1,4,006-24528	09/16/12	<b> -</b>
20 mL		N DANKER	,		1mL	Mg	CPI	10H213-2788	04/20/12	ļ
Prepared in 2000 mi DI	Viter	<del> </del>			InL	Fe	O2SI	1022245-27599	04/22/12	Ŀ
STD 1/LDI	,6010B/6010C		LOT	EXP DATE		a 50 må 1 /4/10/C	PORSSEC		Γ''	ŀ
AMOUNT	STD	MANUFACTUAZR		09/14/12		10B/6010C 1CS				1
0.5 mL	6010 LDL	VB20FALE	091409-25205	03914112	LmC.	Al	CPI	10E012-27683	04/20/12	۲
Pressund in 50 m.	INHNOVSUHCI	<del> </del>		<del></del>	im.	- a	CPI	118008-28528	09/15/12	1
STD 3/HD	L 60108/6010C	. <del> </del>			-		CPI	1011213-2786	04/20/12	L
IMIL	CCA-Y	ABSOLUTE	091409-25206	09/14/12	lm).	Mg	0281	1022245-27699	04/22/12	1
i IML	CCV-B	ABSOLUTE	091109-26205	09/14/12	Inl	Fe		160495-01-01	03/01/12	1
IML	ccv-c	ABSOLUTE	091009-26207	09/10/12	0.5mL	11 SPECIAL M	028	100195-01-01	2001.12	t
	1909007/5909CL			<u> </u>		in 50 ml 19690000				1
Fredrict action in	50108/6010C/6010C	T				0103/6010C1C		<del></del>	09/17/12	1
AMOUNT	STD	PREPDATE	EXP DATE		0.51,91	QCS ICV A	CPI	41C174-26548		1
	STD 3	Today	1 week		0.5ML	QCS ICV B	CPI	110171-28519	09/17/12	1
25mL	INHNONNECI	Today	1 week	T	Prepared	<b>b</b> 50m) 17/10/0	NAME .	ļ <u> </u>		╁
25mL		1								4
	510B/6010C 8TD	PREP DATE	EXP DATE	<u> </u>	·					╄
AMOUNT		Today	1 week	1			I	l		4
15ml	STD1		5 week	-	37	7.5	100	i	l	į
25ml	1MHMO3/SWHC(	Today	11000		<u>''(2"</u> .	52	72			_
68:00 T						-	. —		,	

NBS 03/02/12

Hg WORKING STANDARD

1ml X 10ug/ml Hg STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 1ml X 10ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Final concentration is 50 ug/L. Expires.....93/02/12.....

r.	1000 P										
H			<del> </del>		<del>-                                    </del>	60	10B/6010C TC	SA			┌
Н	1%HN03/	SWHCIBLK	<del> </del>	LOT	OPEN DATE	AMOUNT	STD	MANUFACTURES	LOT	EXPLATE	1
II	AMOUNT	REAGENT	MANUFACTURES		12/28/11	Int	ÄL.	CPI	10E012-27665	04/20/12	┈
Ш	100 mL	RCL	врн	411040	12/27/11	Inl.	a	CPI	11A008-28528	09/15/12	1
ď	20 ml.	HNOJ	∏ BAXER	K23022	122111	1mL	Mg	CPI	10H213-2768	04/20/12	L.
اا	Prepared in 2000 mi Di	Water	<u> </u>	<del></del>	<del> </del> !	Int	Fo	O2SI	1022245-27699	04/22/12	
i		6010B/6010C			EXP DATE		a 50 ml   1/65030	DVSWHCI			j
풺	AMOUNT	8TD	HANDFACTURES	LOT			19B/6010C ICS			_	
3	0.5mL	6010 LDL	ABSOLUTE	091409-25205	09/14/12	Inl.	Al	CPI	10E012-27685	04/20/12	]
		1 1X5ENOU/SX/BCI	<u> </u>		ļ	InL	Ca	CPI	114000-28528	09/15/12	<b>}-</b> -
H	STD 1/HD	L 6010B/6010C	<u> </u>		<del> </del> -	lmr lmr	Ms	CPI CPI	10H213-2788	04/20/12	1
ī		CCV-A	ABSOLUTE	091409-26206	09/14/12		Fe	0281	1022245-27699		1
	IML	CCY-B	ABSOLUTE	091109-25208	09/14/12	lmL_			160495-01-01	03/01/12	7-
뷝	1ML	CCV-C	ABSOLUTE	091009-25207	09/10/12	0.5ml.	T SPECIAL M		100000		1
a	2000 Throat of 100 m	1 1/HN03 / 5%HCI					in 50 ml 19312N		···		┺
i		6010B/6010C/6010C		·			21 20109/8010		110174-28548	09/17/12	1
a	AMOUNT	STD	PREPDATE	EXP DATE	<u> </u>	0.5ML	QCS ICV A	<del></del>	110174-28549		1_
É	25mL	STD3	Today	1 week	1	0.51/0	QCS ICV B		1121742004		1
ă		INENONANHO	Today	1 week	1	Prepared	in 50ml (VIII)	OWSWHUL	<del></del>	<del> </del> -	┨
Ш	25ml		<del> </del>		T	<u> </u>	<b>_</b>	<b>├</b> ─ · ─	<del>1</del>	<del> </del>	╁╼
4		010B/6010C	PREP DATE	EXP DATE		L	<u> </u>		<del> </del> -	<del></del>	┨ .
3	AMOUNT	87D3	Today	1 Week	Τ	<u> </u>	<b>↓</b>	ļ <u> </u>	<del>                                     </del>	<del></del>	┪_
ŝ	15mL		Today	1 week		1_6	4	<u>  -                                   </u>	<del></del>	T	•
Ş	25mL	1/kHNO3/5/kHCl	1	V-1.			/ 2	J 14	-		
18	1898					,					

KWS 03/05/12

Hg WORKING STANDARD

1ml X 10ug/ml Hg STOCK STD. (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Tml X 10ug/ml Hg STOCK ICV (02/17/12KWS)/200ml 1% HNO3 Lot#K47023 Final concentration is 50 ug/L. Expires. 93 QS/12.....

# Matals Standards Log Book # 34 Page # 063

### Hg STANDARD

CPI Lot # 11D140-28885 10ug/ml in 1% HNO3 LOT#K47023 02/17/12 Prep.-Date 03/16/12

Exp. Date By KWS

Manufacturer: J.T. Baker

### Hg STOCK ICV

Ultra Scientific Lot# K00200-26307

10ug/ml in 1% HNO3 LOT#K47023

02/17/12 Prep.Date 03/16/12 Exp. Date

By KWS

Manufacturer: J.T. Baker

### STANNOUS CHLORIDE

125g SnCl2 MACRON Lot #K12620 100 mL HCl J.T. BAKER Lot #K29026 Brought to 500 mL with DI Water Prep. Date 02/17/12

02/16/13 Exp. Date

By KWS

### ICP-MS STANDARDS 8020/6020A/3016/3051A Today's Dale: Expires: 02/24/12 Prep 1% HN03/1.0%HCL 20 mL HN03 / 2000 mL Di Water 02/24/12 Lat # K23022 20mL HCL / 2000mL DI Water Lot #K43032 02/24/12 Internal Standard Mix: Prep 02/16/2012 Lot# 1038407-28139 Manufacturer Amount Eny. Express Env. Express 1036410-28140 1100309-28141 Prepared in 100 mL of 1% HNO3/1.0% HCL

Manufactures STD CCV-A CCV-B Env. Express Eny, Express CCV-C repared in 100 mL of 1% HNO3/1.0% HCL

02/17/12

Amount QCS ICV A QCS ICV B 50 UL 50 UL ICSA Prep: ICSA Lo1# 1038407-28139 1038410-28140 1100309-28141

1mL 0.025mL Prepared ICP-LOR

CCV-C

Standard 2 Amount 500 aL Prepared in 60 mL of 1% HNO3/1.0% HCL 02/24/12 Standard 1 Amount 50 LL 02/17/12 Prepared in 50 mL of 1% HNO3/1.0% HCL 02/17/18 ICP-M8 ICV 110174-28548 11G174-28549 02/17/12 Prepared in 50 mL of 1% HNO3/1.0% HCL 02/24/12 110066-28529 Prepared in 6 mL of 1% HNO3/1.6% HCL 110068-28529 1023805-28210 in 6 mL of 1% HNO3/1.0% HCL 02/24/12 STO Amount 1036407-28139 Env. Express Env. Express 1038410-28140 1100309-28141 02/17/12

### NBS 02/20/12

lmt 8	STD	Element	Vendor		5000 Ug/L	06/1
00/L 1	1000 ug/ml.	ü	CPI	101079-27839		09/2
	000 ug/mL	ln .	CPI	10J155-28574	5000 vo1	09/2
	1000 ug/mL	Ho	CPI	10A107-28576	5000 us/l.	09/2
	1000 va/mL	ТЬ	CPI	118054-28575	5000 U2/L	08/1
2001	1000 ug/ml	Sc	025	1024073-28527	5000 ug/L	1 02/0
	1000 ug/mL	Ga	Environmental Express	1116011-29381	I BOOK 191	

### **Mercury Digestion Worksheet**

Method Name 7471A Mercury Digestion (GROSS UP Prep Method M7471GRO

Set 120302A

Sufficient Vol for Matrix QC: YES

Units mL

Spiked ID 1	Hg WORKING STAN	DARD prep 0.	3-02-12	245 SORIE		07245
Spiked ID 2	Hg WORKING ICV p	rep 03-02-12	<del></del>		-	
Spiked ID 3		1.0			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<del></del>
Spiked ID 4		100	4.			
Spiked By	LO	Date:	03/02/12	1:00:00	PM	
Witnessed By	NM	Date:	03/02/12	1:00:00	PM	: .

Starting Temp:	95 C	XXXXIII SALEMANIA (CARACTERIA)	S E S A S A S A S A S A S A S A S A S A		
Ending Temp:	95 C		· · · · · · · · · · · · · · · · · · ·	<del></del>	···
Тетр Туре:	Modblocki		· · ·		
End Date/Time				03/02/12 1	50:00 PM

Mercura	ACalibration :		
Sample	Spike Amount	Spike ID	Final Volume
0 ppb	_	1	96 ml
0.2 ppb	0.4 ml	1	96 ml
0.5 ppb	i mi	1	96 ml
1 ppb	2 ml	1	96 ml
2 ppb	4 ml	1	96 ml
5 ppb	10 ml	1	96 ml
5 ppb	10 ml	1	96 ml
10 ppb	20 ml	1	96 ml
ICV	8 ml	2	96 ml

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
1 120302A Bfk				0.60g	96mL	03/02/12-13:00	equip: Modblock1
2 120302A LCS		8mL	1	0,60g	96mL	03/02/12 13:00	equip: Modblock!
AY56027	AY56027803		T	0.67g	96mL	03/02/12 13:00	equip: Modblock1
AY56027 MS	AY56027803	8mL	1	0,67g	96mL	03/02/12 13:00	equip: Modblock!
AY56027 MSD	AŸ56027S03	8mL	1	0.67g	96mL	03/02/12 13:00	equip: Modblock1

SolvantandiLor.	
AQUAREGIA 2-16-12	′
KMnO4 12-15-11	
DECOLORIZER 12-14-11	
	-

Isamble GOC Transfer.	
Sample prep employee Initials	LO
Analyst's initials	21
Date	3-2-12
Time	13:50
Moved to	uetals

Ext_ID

35103

Lechnician similials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/02/12 4:46:51 PM

Reviewed By: 24

Date: 3-2-/2

### **Wetlab Results**

ARF: 67099

APPL Inc.

, 908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: AY	56027 -Client Sample ID: B4-NT1-SW1		-Sample Collection Da	ate: 02/29/12	Project: 74837	2.06000 CSSA B-
CLP MOIST	MOISTURE	10.2	2.0	%	03/01/12	03/02/12

# Sample/Sample Duplicate Results

8000 Centre Park Drive Ste 200

Parsons

Austin, TX 78754

Attn: Tammy Chang

Sample ID: AY56027

Client ID: B4-NT1-SW1

APPL Inc. 908 North Temperance Avenu Clovis, CA 93611

ARF: 67099

Project: 748372.06000 CSSA B-4

			Sample	Sample Dup		RPD			Sample	Sample	Sample Sample Dup Sample Dup	Sample Dup
Method	Analyte	Sample ID	Result	Result	RPD	Max	БР	Units	Extract Date	Analysis Date	Extract Date	PQL Units Extract Date Analysis Date Extract Date Analysis Date
CLP MOIS	MOISTURE	AY56027	10.2		10.6 3.8	20	2.0		% 03/01/12	03/02/12	03/01/12	03/02/12

**%** Moisture

Batch: QCG 120301-M003937

Date: 03/01/12 16:31

			Method:	CLP 4.0			Date: 05/01/12 10.51	
	Container	Pan (g)	Pan+Wet (g)	Pan+Dry 1 (g)	Pan+Dry 2 (g)	Moisture (%)	Comments	
AY56027D		0.8240 03/01/12 16:31	7.7978 03/01/12 16:32	7.0551 03/02/12 10:19	7.0555 03/02/12 10:19	10.644	AY56027802	
AY56027		0.8265 03/01/12 16:30	7.6378 03/01/12 16:31	6.9427 03/02/12 10:18	6.9432 03/02/12 10:19	10.198	AY56027S02	

Date/Time	Date/Time	Date/Time	Date/Time
InOven@104°C	OutOven@104°C	InOven@104°C	OutOven@104°C
03/01/12 4:32:00 PM			03/02/12 10:19:00 AM

Date	Initlals	Balance	Weight	Reading	Lower Limit	Upper Limit	Comments / Is the Bubble Centered?
2/28/12	RB	Mettler AT200	0.5g	0.5000 B	0.4995	0.5005	YES.
/- <u>/-</u>	ـــ <del>ـــــــــــــــــــــــــــــــــ</del>	Mettler AT200	1g	1.000   B	0.9990	1.0010	1
		Mettler AT200	20g	20.0007g	19.9800	20.0200	
		Mettler AT200	50g		49,9500	50.0500	
		Mettler AT200	100g		99.9000	100.1000	
		Mettler AT200	150g	1 T T T T T T T T T T T T T T T T T T T	149.8500	150.1500	
		OHAUS ARC120	0.1g	1-1-34	0.08	0.12	
		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	1 <b>g</b>	1,00 g	0.98	1.02	-
		OHAUS ARC120	100g	100,00 8	98.00	102.00	
		OHAUS ARC120	1kg		980.00	1020.00	
\(\frac{1}{V}\)	-√	OHAUS ARC120	2kg		1960.00	2040.00	
<del>                                     </del>				1130118			- <del></del>
1-29-12	CK	Mettler AT200	0.5g	0 5000 g	0.4995	0.5005	Hei
<u> </u>		Mettler AT200	lg	1.0000g	0.9990	1.0010	
<del> </del>		Mettler AT200	20g	20.0001g	19,9800	20.0200	
<del> </del>	<del></del>	Mettler AT200	50g	500014 g	49.9500	50.0500	
<del>   </del>		Mettler AT200	100g	100.0027 g	99.9000	100.1000	· <del></del>
<del>   </del>		Mettler AT200	150g	150.004D g	149.8500	150.1500	
F		OHAUS ARC120	0.1g	g 01.0	0.08	0.12	
<del> </del>		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
-		OHAUS ARC120	lg		0.98	1.02	<del>-  </del>
<del>   </del>		OHAUS ARC120	100g		98.00	102.00	
<del> </del>		OHAUS ARC120		100.00 g	980.00	102.00	<del>-  </del>
<del>                                     </del>	- 17	OHAUS ARC120		1000000 g	1960.00	2040.00	<del>- 1</del>
<del>  Y  </del>		Official Arcizo	ZNB	300000 B	1900.00	2040.00	
3-1-12	Ck	Mettler AT200	0.5g	0.5000 g	0.4995	0.5005	Hes
3472	<u> </u>	Mettler AT200			0.9990	1.0010	1/23
	<del></del>	Mettler AT200	1g 20g	100008	19.9800	20.0200	
		Mettler AT200		10.00068	49.9500	50.0500	
	<del></del> -		50g	50.00148	99.9000	100,1000	
		Mettler AT200	100g	100.0027g	**************************************	150.1500	
		Mettler AT200	150g	1500011 g	149.8500		
<del>   -</del>		OHAUS ARC120	0.1g	0,10 g	0.08	0.12	
		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	100c	1.00 g	0.98	1.02	<del></del>
· ·		OHAUS ARC120	100g	100.00 g	98.00	102.00	<del></del>
<del></del>	<del>-  ,</del>	OHAUS ARC120	1kg	999,98 g	980.00	1020.00	<del></del>
<u> </u>		OHAUS ARC120	ZKg	1999.96 g	1960.00	2040.00	
7 61 15	701	Mattley ATOOO	0.6-		0.400€	0.5005	100
3-2-12	CK.	Mettler AT200	0.5g	0.500g	0.4995	0.5005	Hes
<del>- ,  </del>	1	Mettler AT200	1g	\ .000Dg	0.9990	1.0010	<del></del>
		Mettler AT200	20g	20 000/g	19.9800	20.0200	
		Mettler AT200	50g	50.0013 g	49,9500	50.0500	
	į	Mettler AT200		100.00758	99.9000	100.1000	
		Mettler AT200	150g	(30 00 38 g	149.8500	150.1500	
		OHAUS ARC120	0.1g	0.10 g	0.08	0.12	
		OHAUS ARC120	0.5g	0.57) g	0.48	0.52	
		OHAUS ARC120	1g	1.00 g	0.98	1.02	
<del>  -</del>		OHAUS ARC120	100g	100.00 g	98.00	102.00	
<del>- \ ; - \</del>		OHAUS ARC120		999.96 g	980.00	1020.00	
		OHAUS ARC120	2kg	199997 g	1960.00	2040.00	

#### DATA VERIFICATION SUMMARY REPORT

#### for B4 samples collected from

#### CAMP STANLEY STORAGE ACTIVITY

#### **BOERNE, TEXAS**

Data Verification by: Tammy Chang Parsons - Austin

#### INTRODUCTION

The following data verification summary report covers five soil samples collected from B4 at Camp Stanley Storage Activity (CSSA) on March 8, 2012. The samples were assigned to the following Sample Delivery Group (SDG):

67172

The samples in this SDG were analyzed for metals.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 1.5°C, which was below the 2-6°C range recommended by the CSSA QAPP. There were no indications of freeze when lab received the sample shipment.

#### **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

#### **ICP-AES Metals**

#### General

The ICP-AES metal portion of this SDG consisted of five (5) soil samples for the analysis of arsenic, barium, cadmium, chromium, copper, nickel, lead, and zinc.

The metal analyses were performed using USEPA SW846 Method 6010B. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

These samples were digested in batch #164848. All analyses were performed undiluted.

PAGE 1 OF 4

#### Accuracy

Accuracy was evaluated using the percent recovery obtained from the laboratory control sample (LCS).

The LCS recoveries for all target metals were within acceptance criteria.

#### Precision

Precision could not be evaluated due to the lack of duplicate analyses.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

All samples were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding times required by the method.

- All instrument initial calibration criteria were met.
- Low-level check standard met the criteria.
- All second source criteria were met. The initial calibration verification (ICV) sample was prepared using a secondary source.
- All continuing calibration verification (CCV) criteria were met.
- All interference check (ICSA/ICSAB) criteria were met.
- The dilution test (DT) was performed on sample B4-US01. This test was applicable to metals listed below:

Metal	%D	Criteria
Arsenic	8.8	
Barium	42	
Chromium	43	%D ≤ 10
Copper	19	70D ≤ 10
Nickel	42	
Lead	42	

• The post digestion spike (PDS) was performed on the same sample as the DT. It was applicable for barium, cadmium, nickel, and zinc:

Metal	%R	Criteria
	PAGE 2	OF 4

Barium	82	
Cadmium	75	
Chromium	98	
Copper	94	
Nickel	92	75 1250/
Lead	90	75 – 125%
Zinc	87	

There were one method blank and several calibration blanks associated with the metal analyses in this SDG. All blanks were compliant.

#### Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metal results for the samples in this SDG were considered usable. Therefore, the completeness for the lead portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

#### **MERURY**

#### General

The mercury portion of this SDG consisted of five (5) soil samples. These samples were collected on March 8, 2012 and was prepared and analyzed for total mercury using USEPA Method SW7471B.

These samples were analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

These samples were digested in batch #164750 and analyzed undiluted.

#### **Accuracy**

Accuracy was evaluated using the percent recovery obtain from the LCS.

The LCS recovery was within acceptance criteria.

#### **Precision**

Precision could not be evaluated due to the lack of duplicate analysis.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and

PAGE 3 OF 4

• Examining laboratory blanks for cross contamination of samples during sample analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All calibration verification criteria were met.
- DT was performed with sample B4-US01. The %difference (%D) was 4.3% which was less than the criteria of 10%.

There were one method blank and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

#### **Completeness**

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

The mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

## Laboratory Report

### **Parsons**

## **CSSA**

Project #: 748372.06000

ARF: 67172

Samples collected: March 8, 2012

APPL, Inc.

### Data Validatable Package

for

## Project: 748372.06000 CSSA

### ARF 67172

### **TABLE OF CONTENTS**

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	<u>3</u>
Chain of Custody and ARF	8
Method 6010B	14
AFCEE Forms	72
Calibration Data	<u>34</u>
Raw Data	49
Method 7471B	<u>(01</u>
AFCEE Forms	62
Calibration Data	80
Raw Data	<u>85</u>

**CASE NARRATIVE** 



#### **Case Narrative**

ARF: 67172

Project: 748372.06000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)

Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

#### Sample Receipt Information:

The soil samples were received March 9, 2012, at 1.5°C. The samples were assigned Analytical Request Form (ARF) number 67172. The sample numbers and requested analyses were compared to the chain of custody. No exception was noted.

#### Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
B4-US06	AY56657	SOIL	03/08/12	03/09/12
B4-US05	AY56658	SOIL	03/08/12	03/09/12
B4-US03	AY56659	SOIL	03/08/12	03/09/12
B4-US08	AY56660	SOIL	03/08/12	03/09/12
B4-US01	AY56661	SOIL	03/08/12	03/09/12

Percent moisture was determined using CLP 4.0.

# EPA Method 6010B Metals

#### **Digestion Information:**

The soil samples were digested according to EPA method 3050B. No exception was encountered. All holding times were met.

#### Analysis Information:

#### Samples:

The samples were analyzed according to EPA method 6010B using a Perkin Elmer Optima 5300DV ICP.

#### Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

#### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank.

#### Spikes:

Laboratory Control Spike (LCS), post-digestion spike (PDS) and dilution test (DT) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-US01 was selected by the laboratory as the QC sample for the analytical batch. The dilution test was applicable to arsenic, barium, chromium, copper, nickel and lead; barium, chromium, copper, nickel and lead exceeded the 10% deviation limit. The PDS was applicable to barium, cadmium, chromium, copper, nickel, lead and zinc. The PDS met acceptance criteria.

#### Summary:

No other analytical exception is noted.

## EPA Method 7471B

### Mercury

#### **Digestion Information:**

The soil samples were digested according to EPA method 7471B. No exceptions were encountered. All holding times were met.

#### **Analysis Information:**

#### Samples:

The soil samples were analyzed by EPA method 7471B using a Perkin Elmer AAnalyst 300.

#### Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

#### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank,

#### Spikes:

A Laboratory Control Spike (LCS) was used for quality assurance. All LCS acceptance criteria were met.

No sample was designated by the client for MS/MSD analysis. Mercury was detected at greater than 25 times the MDL (0.01mg/kg) in sample B4-US01. Therefore, a dilution test was performed. All acceptance criteria were met in the dilution test.

#### Summary:

No analytical exception is noted.

#### **CERTIFICATION**

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or her designee, as verified by the following signature.

Sharon Dehmlow, Laboratory Director / Date

## CHAIN OF CUSTODY AND ARF

#### **APPL - Analysis Request Form**

Client:	Parsons	Received by: TBV	
Address:	8000 Centre Park Drive Ste 200	Date Received: 03/09/12 Time: 09	:30
	Austin, TX 78754	Delivered by: FED EX	·
Attn:	Tammy Chang	Shuttle Custody Seals (Y/N): Y Time Zone:	CST_
Phone: 5	12-719-6092 Fax: 512-719-6099	Chest Temp(s): 1.5°C	
Job: <u>7483</u>	372.06000 CSSA	Color: B-RED	
PO #: 74	18336.30000-00 (prime *G012)	Samples Chilled until Placed in Refrig/Freezer:	<u> Y</u>
Chain of C	Custody (Y/N): Y # 030812APPFA	Project Manager: Diane Anderson rp	
RAD Scre	en (Y/N): Y pH (Y/N): N	QC Report Type: DVP4/AFCEE/ERPIMS/TX	
Turn Arou	nd Type: 3 DAYS	Due Date: 03/12/12	

#### Comments:

3-day TAT for prelims (due 03-14-12); final report due 03-21-12 pdf ARF to Tammy & Pam; send HC: 2 DVP3 with colored dividers & send DVP4 on CD to Tammy.

Definitive data needs DVP 4; needs AFCEE forms and package, Internal COC Case Narrative, CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested. EDD: ERPIMS 4 Lab PC4 checked TXF to Pam.Ford@parsons.com

#### 3-2 Sent ARF

Other: 5-_M3050GROSS, 5-_M7471GROSS

Metals: 5-\$HGAFBS, (5-\$MTAFS(As,Ba,Cd,Cr,Cu,NI,Pb,Zn)

Sample Distribution: 320

Wetlab: 5-MOIST 3.14

Client ID	APPL ID Sampled Analyses Requested
. B4-US06	AY56657S 03/08/12 08:16 \$HGAFB\$, 
B4-US05	AY56658S 03/08/12 08:18 \$HGAFBS, 
B4-US03	AY56659S 03/08/12 08:22 \$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
. B4-US08	AY56660S 03/08/12 08:27 \$HGAFBS,

Charges:

Invoice To:

BOA 748336.30000 TO# 2

Austin, TX 78754-5140 Attn: Ellen Felle

8000 Centre Park Drive Ste 200

B4-US01

AY56661S 03/08/12 08:30

\$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST

рH

Sample	Container Type	Count	pН
AY56657	21 8oz Jar	1	NA
AY56658	21 8oz Jar	1	NA
AY56659	2t 8oz Jar	1	NA
AY56660	21 80z Jar	1	NA
AY56661	21 8oz Jar	1	NA

Sample	Container Type	Count

Camp Stanley Storage Activity Chain Of Custody

Project Location: CSSA COC ID: Creation Date: Job Number: 9 Task Manager Laura Marbury 3/8/2012 748372.06000 030812APPFA Relinquish_Time: Collection Team: Relinquish_Date: 3/8/2012
Relinquished_By: KXC Sample Data Type Definitive 1:00 PM KKC, WE 3 Day TAT

TAT:	BM Airbill Carrier;	Camier:	LabCode:	Coaler ID:
2 Day 7A7	er: 876436443447	FedEx	AppF	>

20	Sampler(s):	
ARX.	XXX	70
Wart O	かんだって	2

		MERCURY	SW7471							
ZINC ·	SW6010B	EAG	SW6010B							
NICKEL	SW6010B	COPPER	SW6010B				•		Ģ	Remarks:
CHROMIUM	SWB010B	CADMIUM	1 SW6010B	Containers:	EBLOT:		FLUSAMPID B4-US01_030812_N0830	FCUSAMPID B4-0	ú	000
BARIUM	SW60108	ARSENIC	SW6010B	ı	ABLOT:	SMCODE: G	SACODE: N	LOGIIME: 8:30		2 6
		nalysis Required:	Analysis I		TBLOT:	MATRIX: SO	• •	1	. 84-US01	
		MERCURY	SW7471						1	
ZINC	SW6010B	LEAD	SW6010B							
NICKEL	\$W6010B	COPPER	SW6010B				I		Ģ	Remarks:
CHROMIUM	SW80108	CADMIUM	1 SW6010B	Containers:	EBLOT:		FLDSAMPID B4-US08_030812_N0827	FLDSAMPID B4-U	35	SHD:
BARIUM	SW60108	ARSENIC	SW6010B	-	ABLOT:	SMCODE: G	SACCOUT: N	LOGIIME: 8:27		
		nalysis Required:	Analysis I		TBLOT:	MATRIX: SO			· B4-US08	
		MERCURY	SW7471						- 1	3
ZINC	SW6010B	LEAD	SW60108							
NICKEL	SW6010B	COPPER	SW60108		,				S.	· Remarks:
CHROMIUM	SW6010B	CADMIUM	1 SW60108	Containers:	EBLOT:		FLDSAMPID 84-US03_030812_N0822	FLDSAMPID 84-U	3.5	SED:
BARIUM	SW6010B	ARSENIC	SW60108		ABLOT:	SMCODE: G	8:22 SACODE: N	LOGITIME: 8:22		
		nalysis Required:	Analysis		TBLOT:	MATRIX: SO	: :		84-US03	נים ליון: בים כון:
		MERCURY	SW7471							
ZINC	SW80108	LEAD	SW6010B							
NICKEL	SW5010B	COPPER	SW6010B		:				Ġ	Remarks
CHROMIUM	SW6010B	CADMIUM	1 SW6010B	Containers:	EBLOT:		FLDSAMPID B4-US05_030812_N0818	FLDSAMPID B4-U	3.5	SED:
BARIUM	SW6010B	ARSENIC	SW6010B		ABLOT:	SMCODE: G	SACODE: N	LOGTIME: 8:18	6	000
		inalysis Required:	Analysis		TBLOT:	MATRIX: SO	LOGDATE: 3/8/2012		B4-US05	
		MERCURY	SW7471							3
ZINC	SW6010B	EAD	SW6010B							
NICKEL	80109WS	COPPER	SW6010B						ផ	Remarks:
CHROMIUM	SW5010B	CADMIUM	1 SW6010B	Containers:	EBLOT:		FLDSAMPID B4-US06_030812_N0816	FLDSAMPID B4-U	3.5	SEO:
BARIUM	SW6010B	ARSENIC	SW6010B		ABLOT:	SMCODE: G	SACODE: N	LOGINE: 8:16	ι	0
	j	vnalysis Required:	Analysis		TBLOT:	MATRIX: SO	17		B4-US06	

Tarie 1
3/1/20
R.Z.
Relinquished I
rquished by

_Date_ _Date_

_Time_ _Time_

Recieved by:_ Relinquished by:

_Date_ Date_

Page 1 of 1 _Time_ _Time___

### METALS EPA SW846 - 6010B



### METALS EPA SW846 - 6010B Forms



### AFCEE INORGANIC ANALYSES DATA PACKAGE

AAB #: 120312A-164848

Prime Contractor: Parsons

AY56657

AY56658

AY56659

AY56660

Lab Sample ID

Contract #: *G012

Analytical Method: EPA 6010B

Field Sample ID

B4-US06

B4-US05

B4-US03

B4-US08

Lab Name: APPL, Inc

Base/Command: CSSA

B4-US01 AY56661 Comments: ARF: 67172 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Diane Anderson Signature: Project Manager Date: - Title:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US06

Lab Sample ID: AY56657

Matrix: Soil

% Solids: 89.0

Initial Calibration ID: 120313A

Date Received: 09-Mar-12 Date Prepared: 12-Mar-12

Date Analyzed: 13-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.5	1	F
BARIUM (BA)	0.1	1.0	25.4	1	
CADMIUM (CD)	0.03	0.50	0.03	1	U
CHROMIUM (CR)	0.1	20.0	7.8	1	F
COPPER (CU)	0.19	2.0	5.78	1	
LEAD (PB)	0.18	10.0	3.00	1	F
NICKEL (NI)	0.12	2.0	2.56	1	
ZINC (ZN)	0.6	5.0	0.7	1	F

Comments: AR

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #; *G012

Field Sample ID: B4-US05

Lab Sample ID: AY56658

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: 120313A

Date Prepared: 12-Mar-12

Date Analyzed: 13-Mar-12

Date Received: 09-Mar-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier	
ARSENIC (AS)	0.2	. 40.0	4.9	1	F	
BARIUM (BA)	0.1	1.0	33.5	1		
CADMIUM (CD)	0.03	0.50	0.03	1	U	
CHROMIUM (CR)	0,1	20.0	12.0	1	F	
COPPER (CU)	0.19	2.0	5.99	1		
LEAD (PB)	0.18	10.0	4.91	1	F	
NICKEL (NI)	0.12	2.0	5.21	1		
ZINC (ZN)	0.6	5.0	6.2	1		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Lab Sample ID: AY56659

Matrix: Soil

% Solids: 88.6

Initial Calibration ID: 120313A

Date Received: 09-Mar-12

Field Sample ID: B4-US03

Date Prepared: 12-Mar-12

Date Analyzed: 13-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier	
ARSENIC (AS)	0.2	40.0	11.8	1	F	
BARIUM (BA)	0.1	1.0	145.1	1		
CADMIUM (CD)	0.03	0.50	0.03	1	Ü	
CHROMIUM (CR)	0.1	20.0	34,1	1		
COPPER (CU)	0.19	2.0	10.80	1		
LEAD (PB)	0.18	10.0	15.10	1	•	
NICKEL (NI)	0.12	2.0	17.36	1		
ZINC (ZN)	0.6	5.0	32.3	j		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

Date Prepared: 12-Mar-12

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US08

Lab Sample ID: AY56660

Matrix: Soil

% Solids: 88.1

Initial Calibration ID: 120313A

mmai Canoranon i

Date Analyzed: 13-Mar-12

Date Received: 09-Mar-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier	
ARSENIC (AS)	0.2	40.0	7.4	1	I	
BARIUM (BA)	0.1	1.0	62.8	1		
CADMIUM (CD)	0.03	0.50	0.03	1	Ţ	
CHROMIUM (CR)	0.1	20.0	19.8	1	F	
COPPER (CU)	0.19	2.0	8.28	1	****	
LEAD (PB)	0.18	10.0	8.97	1	F	
NICKEL (NI)	0.12	2.0	9,58	1		
ZINC (ZN)	0.6	5.0	19.4	1		

Comments:

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US01

Lab Sample ID: AY56661

Matrix: Soil

% Solids: 91.5

Initial Calibration ID: 120313A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 13-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	6.7	1	F
BARIUM (BA)	0.1	1.0	61.6	1	
CADMIUM (CD)	0.03	0.50	0.03	1	U
CHROMIUM (CR)	0.1	20.0	18.0	1	F
COPPER (CU)	0.19	2.0	8.92	1	
LEAD (PB)	0.18	10.0	7.60	. 1	F
NICKEL (NI)	0.12	2.0	9.84	1	
ZINC (ZN)	0.6	5.0	23.3	1	

Comments:

# AFCEE INORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

f Initia	l Calibration: 13-Mar-12		Initial Cali	ibration ID:	120313A				
<u>I</u> 1	nstrument ID: PHOEBE	centration	centration Units (mg/L or mg/kg): mg/Kg						
	Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	r	
	As	0.3500	23,9	100.0	6871.4	200.0	13556.9	0.99999	
	Ва	0.5000	1579.1	100.0	265799.2	200.0	515170.0	0.99992	
	Cd	0.5000	3737.7	100.0	643982.5	200.0	1240809,3	0.99989	
	Cr	0.5000	775,3	100.0	123706.1	200.0	241484.0	0.99995	
	Cu	0.5000	1064.2	100.0	158812.0	200.0	312998.2	0.99998	
	Ni	0.5000	601,6	100.0	93371.4	200.0	180609.5	0.99991	
	РЬ	0.3000	60.9	100.0	25160.9	200.0	48056,9	0.99983	
	Zn	2.0000	5130.9	100.0	203865.3	200.0	389653.9	0.99983	

AFCEE FORM I-3

# AFCEB INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120312A-164848
Lab Name: AFPL, Inc.	Contract #: *C012
Instrument ID:PHOEBE	Initial Calibration 1D: 120313A
2nd Source ID: ICV 3/13/12 11:16	ICV ID: ICV 3/13/12 11:16
CCV #1 ID: CCV1 3/13/12 11:36	CCV #2 TD: CCV1 3/13/12 16:27
Concentration Units (ma)	Tarmo/kalmo/Ka

	2nd S	ource Calib	ration	Ini	iial Calibra	tion	Continuing Calibration						
Analyte	,	Verification	1		Verification	n			Venil	ication			ŢQ
	Expected	Found	%D	Bypected	Found	%D	Expected	Found	%D	Expected	Found	%D	
								1			2		
As	100.0	98.5	1.5%	100.0	98,5	1.5%	100.0	104.9	4.9%	100.0	105.4	5.4%	T
Ва	100.0	100,4	0.4%	100.0	100.4	0.4%	100.0	104.2	4.2%	100,0	104.9	4.9%	Ι
Cd	100.0	105.2	5.2%	100.0	105,2	5,2%	100.0	105.2	5.2%	100.0	107.7	7.7%	
Cr	100.0	107.0	7.0%	100.0	107.0	7.0%	100.0	104.5	4.5%	100,0	104.8	4.8%	I
Cu	100.0	101.2	1.2%	100.0	101.2	1.2%	100.0	102.9	2.9%	100.0	101.8	1.8%	
Ni	100.0	106.2	6,2%	100.0	106.2	6.2%	100.0	104.3	4.3%	100.0	105.1	5.1%	Τ.
РЬ	100.0	105.5	5.5%	100.0	105.5	5.5%	100.0	105.4	5.4%	100.0	108.6	8.6%	
Zn	100.0	106.1	6.1%	100.0	106.1	6.1%	100,0	105.5	5.5%	100,0	108.8	8.8%	

Comments;		
-	 	
-		

AFCEB FORM I-4 Page 1 of 2

#### AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 601013	AAB#: 120312A-164848
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID:PHOEBE	Initial Calibration ID: 120313A
2nd Source ID: ICV 3/13/12 11:16	ICV ID; ICV 3/13/12 11:16
CCV #1 ID: CCV2 3/13/12 17:02	CCV #2 ID;
Concentration Units (mg/	L or mg/kg)mg/kg

	2nd S	ource Calib	ration	Initial Calibration		Continuing Calibration							
Analyte		Verification	ı	Verification		Verification						Q	
	Expected	Found	%D	Expeoted	Found	%D	Expected	Found	%D	Bxpected	Found	%D	1
								1			2		1
As	100.0	98.5	1.5%	100.0	98.5	1.5%	75.0	74.9	0.2%				1
Ba	100,0	100.4	0.4%	100.0	100.4	0.4%	75.0	74.8	0.3%				T
Cd	100.0	105.2	5.2%	100.0	105.2	5.2%	75.0	76,6	2.1%				$\top$
Cr	100.0	107.0	7.0%	100,0	107.0	7.0%	75.0	74.8	0.3%	· ···· ···			$\top$
Cu	100.0	101.2	1.2%	100.0	101.2	1.2%	75.0	72,0	4.1%				1
Ni	100.0	106.2	6.2%	100.0	106.2	6.2%	75.0	74.8	0.3%				$\top$
Pb	100.0	105.5	5.5%	100.0	105,5	5,5%	75.0	77.6	3.5%	1			T
Zn	100.0	106.1	6.1%	100.0	106,1	6,1%	75.0	77.6	3.5%	1			<b>T</b>

Comments:	<u>.                                    </u>	

AFCEB FORM I-4 Page 2 of 2

#### AFCEE **INORGANIC ANALYSES DATA SHEET 5** BLANK

Analytical Method: EPA 6010B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120312A-BLK
3050G 5A 3-19-12

Initial Calibration ID: 120313A

Analyte	Method Blank	RL	Q
ARSENIC (AS)	< RL	40.0	U
BARIUM (BA)	< RL	1.0	U
CADMIUM (CD)	< RL	0.50	U
CHROMIUM (CR)	< RL	20.0	U
COPPER (CU)	< RL	2.0	บ
LEAD (PB)	< RL	10.0	บ
NICKEL (NI)	< RL	2.0	U
ZINC (ZN)	< RL	5.0	U

Comments:

ARF: 67172, Sample: AY56657

## AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method:6010B			AAB #: 120312A-164848					
Lab Name: APPL, Inc.			C	ontract#; <u>*6012</u>				
			Concentration U	Inita (mg/L	or mg/kg <u>)mg/Kg</u>			
Initial Calibration Blank ID; ICB 3/13/12 11:21				Initial Calibration ID: 120313A				
CCB #1 ID: CCB 3/13/12 11:42			CCB #2 ID: CCB 3/13/12 16:32 CCB			CB #3 ID:	CCB 3/13/12 17:07	
Meth	od Blank ID: 120312/	-3050G-BLK	Initial Calibration ID: 120313A					
				I			<del>,</del>	1
	Analyte	Initial Calibration Blank	Continuing Calibrati	on Blank	Method Blank	RL	Q	

Analyte		Initial Calibration Blank	Continuing Calibration Blank			Method Blank	RL	Q
			1	2	3			
As		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ba		<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>1.00</td><td></td></rl<></td></rl<>	<rl< td=""><td>1.00</td><td></td></rl<>	1.00	
Cd		<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr		<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu		<rl< td=""><td><rj.< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl.<></td></rj.<></td></rl<>	<rj.< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl.<></td></rj.<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Ni		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
₽ъ		<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zn		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>5.0</td><td></td></rl<>	5.0	

Comments;	

AFCER FORM I-5 Page 1 of 1

#### AFCEE **INORGANIC ANALYSES DATA SHEET 6** LABORATORY CONTROL SAMPLE

Analytical Method: EPA 6010B

AAB #: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Initial Calibration ID: 120313A

LCS ID: 120312A LCS

3050 G 54 3-19-12

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
ARSENIC (AS)	25.0	27.5	110	75-125	
BARIUM (BA)	25.0	26.5	106	75-125	
CADMIUM (CD)	5.00	5.39	108	75-125	
CHROMIUM (CR)	25.0	28.4	114	75-125	
COPPER (CU)	25.00	26.36	105	75-125	
LEAD (PB)	25.00	28.38	114	75-125	
NICKEL (NI)	25.00	28.12	112	75-125	
ZINC (ZN)	50.0	55.5	111	75-125	

Comments:

ARF: 67172, Sample: AY56657

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 6010B

AAB#: 120312A-164848

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-US01	08-Mar-12	09-Mar-12	13-Mar-12	180	5	
B4-US03	08-Mar-12	09-Mar-12	13-Mar-12	180	5	
B4-US05	08-Mar-12	09-Mar-12	13-Mar-12	180	5.	
B4-US06	08-Mar-12	09-Mar-12	13-Mar-12	180	5,	
B4-US08	08-Mar-12	09-Mar-12	13-Mar-12	180	5,	

Comments:

#### AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:	6010B		

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PHOEBE ICAL ID: 120313A

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
CalBlk	13-Mar-12	11:00	13-Mar-12	11:00
STD 1	13-Mar-12	11:04	13-Mar-12	11:04
STD 2	13-Mar-12	11:08	13-Mar-12	11:08
STD 3	13-Mar-12	11:12	13-Mar-12	11:12
ICV	13-Mar-12	11:16	13-Mar-12	11:16
ICB	13-Mar-12	11:21	13-Mar-12	11:21
ICSA	13-Mar-12	11:27	13-Mar-12	11:27
ICSAB	13-Mar-12	11:30	13-Mar-12	11:30
CCV1	13-Mar-12	11:36	13-Mar-12	11:36
ССВ	13-Mar-12	11:42	13-Mar-12	11:42
CCV1	13-Mar-12	16:27	13-Mar-12	16:27
CCB	13-Mar-12	16:32	13-Mar-12	16:32
120312A-3050G-BLK	13-Mar-12	16:35	13-Mar-12	16:35
120312A-3050G-LCS	13-Mar-12	16:39	13-Mar-12	16:39
AY56657S01	13-Mar-12	16:42	13-Mar-12	16:42
AY56658S01	13-Mar-12	16:45	13-Mar-12	16:45
AY56659S01	13-Mar-12	16:48	13-Mar-12	16:48
AY56660S01	13-Mar-12	16:51	13-Mar-12	16:51
AY56661S01	13-Mar-12	16:54	13-Mar-12	16:54
AY56661S01-A	13-Mar-12	16:56	13-Mar-12	16:56
AY56661S01-1/5	13-Mar-12	16:59	13-Mar-12	16:59
CCV2	13-Mar-12	17:02	13-Mar-12	17:02
CCB	13-Mar-12	17:07	13-Mar-12	17:07

### 6010 Injection Log

Directory:

K:\ICAP PHOEBE\Backup Excel\

RunID	Injected		Sample Name	Misc Info	FileName	Multiplier
1	13 Mar 2012	11:00	CalBik 120313EA I:PB O:EA		120313A6010	1.
2	13 Mar 2012	11:04	STD 1 120313EA I:PB O:EA		120313A6010	1.
3	13 Mar 2012	11:08	STD 2 120313EA I:PB O:EA		120313A6010	1.
4	13 Mar 2012	11:12	STD 3 120313EA I:PB O:EA		120313A6010	1.
5	13 Mar 2012	11:16	ICV 120313EA I:PB O:EA		120313A6010	1.
6	13 Mar 2012	11:21	ICB 120313EA I:PB O:EA		120313A6010	1.
8	13 Mar 2012	11:27	ICSA 120313EA I:PB O:EA		120313A6010	1.
9	13 Mar 2012	11:30	ICSAB 120313EA I:PB O:EA		120313A6010	1.
10	13 Mar 2012	11:36	CCV1 120313EA I:PB O:EA		120313A6010	1.
11	13 Mar 2012	11:42	CCB 120313EA I:PB O:EA		120313A6010	1.
76	13 Mar 2012	16:27	CCV1 120313EA I:PB O:EA		120313A6010	1.
77	13 Mar 2012	16:32	CCB 120313EA I:PB O:EA		120313A6010	1.
78	13 Mar 2012	16:35	120312A-3050G-BLK		120313A6010	1.
79	13 Mar 2012	16:39	120312A-3050G-LCS		120313A6010	1.
80	13 Mar 2012	16:42	AY56657S01		120313A6010	1.
81	13 Mar 2012	16:45	AY56658S01		120313A6010	1.
82	13 Mar 2012	16:48	AY56659S01		120313A6010	1.
83	13 Mar 2012	16:51	AY56660S01		120313A6010	1.
84	13 Mar 2012	16:54	AY56661S01		120313A6010	1.
85	13 Mar 2012	16:56	AY56661S01-A		120313A6010	1.
86	13 Mar 2012	16:59	AY56661S01-1/5		120313A6010	5.
87	13 Mar 2012	17:02	CCV2 120313EA I:PB O:EA		120313A6010	1.
88	13 Mar 2012	17:07	CCB 120313EA I:PB O:EA		120313A6010	1.

#### A.P.P.L. INC.

5B

#### POST DIGEST SPIKE SAMPLE RECOVERY

LIENT	SAMP	LE NO
4-US01		

Lab Name:	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67172	SDG:	67172

Analysis Date: 03/13/12

Concentration Units: mg/kg

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Q	М
Barium (Ba)	75-125	93.81	56.32	45.872	81.7		
Cadmium (Cd)	75-125	6.907	ND	9.174	75.3	T	
Chromium (Cr)	75-125	61.58	16.49	45.872	98.3		
Copper (Cu)	75-125	51.23	8.166	45.872	93.9		
Nickel (Ni)	75-125	51.05	9.007	45.872	91.7	ļ	
Lead (Pb)	75-125	48.15	6.954	45.872	89.8		
Zinc (Zn)	75-125	101	21.32	91.743	86.8		

Comment	8:				
03/13/12	16:54	AY56661S01		 - · · · · ·	
03/13/12	16:56	AY56661S01-A		 	·=

#### A.P.P.L. INC. 9

#### ICP SERIAL DILUTION

AY.	JEN	122 C	420	<b>TO T</b>	1 1 T/
	IHN		ДΝ	P1 P	· NI

B4-US01

Lab Name:

A.P.P.L. INC.

Contract:

Parsons

ARF No.:

67172

SDG: 67172

Matrix:

soil

Analysis Date: 03/13/12

Concentration Units:

mg/kg

Analyte	Initial Sample Result (I)	Serial Dilution Result (S)	%D	Q	М
	c		c		
Arsenic (As)	6.157	5.616	8.79	1	
Barium (Ba)	56.32	80.03	42.1		М
Chromium (Cr)	16.49	23.51	42.6	1	М
Copper (Cu)	8.166	9.753	19.4	1	М
Nickel (Ni)	9.007	12.76	41.7	T	М
Lead (Pb)	6.954	9.85	41.6	†···-	M

Commente	3:	
03/13/12	16:54 AY56661S01	
03/13/12	16:59 AY56661S01-1/5	 

### A.P.P.L. INC. 4 ICP INTERFERENCE CHECK SAMPLE

Lab Name:

A.P.P.L. INC.

Contract:

*G012

ARF #:

67172

SDG:

67172

ICP ID No

**PHOEBE** 

ICS Source: Environmental Express

Analysis Date

03/13/12

Concentration Units: mg/L

ANALYTE		TRUE	Initial Found				
	SOL A	SOL AB	SOL A 11:27	Recovery	SOL AB 11:30	%R(1)	
Aluminum	200	200	203.0	101.5	200.1	100.1	
Arsenic		0.5	ND	<rl< td=""><td>0.4764</td><td>95.3</td></rl<>	0.4764	95.3	
Barlum		0.5	0.000079	<rl< td=""><td>0.4834</td><td>96.7</td></rl<>	0.4834	96.7	
Calcium	200	200	201.3	100.7	199.3	99.7	
Cadmium		1	ND	<rl< td=""><td>0.9786</td><td>97.9</td></rl<>	0.9786	97.9	
Chromium		0.5	ND	<rl< td=""><td>0.5232</td><td>104.6</td></rl<>	0.5232	104.6	
Соррег		0,5	0.00001	<rl< td=""><td>0.5133</td><td>102.7</td></rl<>	0.5133	102.7	
Iron	200	200	187.9	94.0	189.2	94.6	
Magnesium	200	200	185.0	92.5	183.5	91.8	
Nickel	1	1	ND	<rl< td=""><td>0.9874</td><td>98.7</td></rl<>	0.9874	98.7	
Lead		1	0.000297	<rl< td=""><td>0.98</td><td>98.0</td></rl<>	0.98	98.0	
Zinc		1	ND	<rl< td=""><td>0.97</td><td>97.0</td></rl<>	0.97	97.0	

(1) Control Limits: Metals 80-120

### METALS EPA SW846 - 6010B Calibration Data



Reprocessing Begun

Logged In Analyst: chemist_metals

Technique: ICP Continuous

Autosampler Location: 1

Date Collected: 03/13/12 11:00:31 AM

Data Type: Reprocessed on 03/14/12 2:44:24 PM

Results Data Set (original): 120313A6010X

Results Library (original): C:\PE\chemist\RESULTS\Results.mdb
Results Data Set (reprocessed):

Results Library (reprocessed):

Sequence No.: 1 Sample ID: CalBlk 120313EA I:PB O:EA

Analyst:

Initial Sample Vol: Sample Prep Vol:

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Mean Data:	CalBlk 120313EA I:PB O:EA Mean Corrected	gud Dan	rsd	Calib Cons. Units
Analyte	Intensity	Std.Dev.	12.11%	(0.00) ug/L
Ag 338,289	271.1	32.84		[0,00] ug/L
Al 308.215	333.1	36.74	11.03%	[0.00] ug/L
As 188.979	6.5		134.19%	(0.00) ug/L
B 100.272	102.4	35.32	34.49%	[0.00].ug/L
Ba 233.527	389.5	29.90	7.68%	[0.00] ug/L
Be 313.107	-11264.7	47.19	0.42%	(0.00) ug/L
Ca 315.887	6549.5	38.49	0.59%	[0.00] ug/L
Cd 214.440	1105.9	18.05	1.63%	[0.00] ug/L
CQ 214.440	253.0	25.88	10.23%	[0.00] ug/L
Co 228.616	95.8	26.67	27.85%	(0.00) ug/L
Cr 267,716	844.4	230.83	27.34%	[0,00] ug/L
Cu 327.393	1180.5	39.20	3.32%	[0.00] ug/L
Fe 273.955	-726.2	34.38	4.73%	[0.00] ug/L
K 766.490	-192.1	109.06	56.78%	[0.00] ug/L
Mg 285.213	-95.1	36.59	38.48%	[0.00] ug/L
Mn 257.610	288.4	10.33	3.58%	(0.00) ug/L
Mo 202.031	-347.4	179.02	51.53%	[0.00] ug/L
Na 589.592	-84.3	37.99	45.08%	(0.00) ug/L
Ni 231.604	90.3	7.75	8.59%	[0.00] ug/L
P 213.617	-15.0	12.68	84.57%	[0.00] ug/L
Pb 220.353	-92.6	2.02	2.18%	[0.00] ug/L
Sb 206.836	-5.0	9.58		[0. <b>0</b> 0] ug/L
ge 196.026		156.99		[0.00] ug/L
gr 421,552	6695.7	31.48		[0,00] ug/L
Ti 337.279	-897.9	4.00		[0.00] ug/L
Tl 190.801	-207.6	97.28		(0.00) ug/L
y 292,402	-300.1	26.95		[0.00] ug/L
Zn 206.200	-536.5	20.93	3.020	- · · · · · · · · · · · · · · · · · · ·

___________

Sequence No.: 2 Sample ID: STD 1 120313EA I:PB 0:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 5
Date Collected: 03/13/12 11:04:40 AM
Data Type: Reprocessed on 03/14/12 2:44:25 PM

Mean Data: 87	rD 1 120313EA I:PB O:EA Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Ag 338.289	325.2	76.64	23.57%	[1.00]	ug/L
Al 308,215	214.6	52.91	24.65%	(100.00)	ug/L
As 188,979	23.9	8.55	35.82%	[3.50]	ug/L
В	352.0	10.58	3.01%	[50.00]	ug/L
Ba 233.527	1579.1	13.49	0.85%	[5.00]	ug/L
Be 313.107	15904.9	199.71	1.26%	[2.00]	ug/L
Ca 315.887	2714.8	148.80	5.48%	[100.00]	ug/L
Cd 214.440	3737.7	36.14	0.97%	[5,00]	ug/L
Co 228.616	707.3	8.50	1.20%	[5,00]	ug/L
Cr 267.716	775.3	10.31	1.33%	[5.00]	ug/L
Cu 327.393	1064.2	159.57	14.99%	[5.00]	
Fe 273.955	2909.2	40.08	1.38%	[50.00]	
K 766.490	3729.5	106.82	2.86%	[1000.00]	ug/L
Mg 285.213	2596.4	67.13	2.59%	(50]	ug/L
Mn 257.610	432.1	55.71	12.89%	[5.00]	
Mo 202.031	287.7	19.28	6.70%	[5.00]	
Na 589.592	11733.4	289.27	2.47%	[1000.00]	ug/L
Ni 231.604	601.6	36.37	6.05%	[5.00]	ug/L
P 213.617	275.8	8.63	3.13%	[25.00]	
Pb 220.353	60.9	11.70	19.20%	[3.00]	٥.
Sb 206.836	42.9	9.55	22.28%	[5.00]	
Se 196.026	52.2	4.20	8.05%	[5.00]	ug/L
Sr 421.552	5300.6	158.56	2.99%	[5.00]	
Ti 337.279	279.9	46.3 <b>0</b>	16.54%	[5.00]	-
Tl 190.801	72.7	2.0 <b>0</b>	2.75%	[5.00]	ug/L
V 292.402	1636.8	46.12	2.82%	[5.00]	ug/L
Zn 206.200	5130.9	23.09	0.45%	[20.00]	ug/L

Sequence No.: 3

Sample ID: STD 2 120313EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 3
Date Collected: 03/13/12 11:08:49 AM
Data Type: Reprocessed on 03/14/12 2:44:26 PM

Mean Data: STD 2	120313EA I:PB O:EA				
	Mean Corrected	•			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Aq 338.289	77814.5	457.31	0.59%	[500.0]	ug/L
Al 308.215	40338,1	290.26	0.72%	[20000.00]	ug/L
As 188.979	6871,4	129.75	1,89%	[1000.00]	ug/L
В	5990.9	120.68	2.01%	[1000.00]	ug/L
Ba 233.527	265799.2	2760.37	1.04%	[1000.00]	ug/L
Be 313.107	6919218.4	65630.57	0.95%	[1000.00]	ug/L
Ca 315,887	864164.9	11883.56	1,38%	[50000]	ug/L
Cd 214,440	643982.5	7260.16	1.13%	[1000.00]	ug/L
Co 228.616	113100.8	1247.92	1.10%	[1000.00]	ug/L
Cr 267.716	123706.1	1619.47	1.31%	[1000.00]	ug/L
Cu 327.393	158812.0	1357.13	0.85%	[1000.00]	ug/L
Fe 273.955	789077.1	8473.09	1.07%	[20000]	ug/L
K 766.490	77518.2	1013.10	1.31%	[20000]	ug/L
Mg 285.213	1526219.3	18787.02	1.23%	[50000]	ug/L
Mn 257.610	70643.4	617.78	0.87%	[1000.00]	ug/L
Mo 202,031	57 <b>803.</b> 2	192.83	0.33%	[1000.00]	ug/L
Na 589.592	262081.7	3664.63	1.40%	[25000]	ug/և
Ni 231.604	93371.4	981.33	1.05%	[1000,00]	ug/L
P 213.617	54581.4	497.13	0.91%	[5000]	ug/L
Pb 220.353	25160.9	54.84	0.22%	[1000.00]	ug/L
5b 206.836	8318.0	193.01	2.32%	[1000.00]	ug/L
Se 196.026	6692.9	81.39	1,22%	[1000.00]	ug/L
Sr 421.552	835847.5	10373.19	1.24%	[1000.00]	ug/L
Ti 337.279	66905.2	505.28	0.76%	[1000.00]	ug/L
Tl 190.801	16213.1	128.45	0.79%	[1000.00]	ug/L
V 292.402	305061.9	2777.74	0.91%	[1000.00]	ug/L
Zn 206.200	203865.3	2478.21	1.22%	[1000.00]	ug/L

Autosampler Location: 10

Sequence No.: 4 Sample ID: STD 3 120313EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist metals

Data Type: Reprocessed on 03/14/12 2:44:27 PM

Date Collected: 03/13/12 11:12:15 AM

Initial Sample Wt:

Initial Sample Vol: Dilution: Bample Prep Vol:

Mean Data: STD 3	120313EA I:PB 0:1	3A			0-14F
	Mean Corrected	01-4 Da	D.C.D	<b>5</b>	Calib
Analyte	Intensity 153775.7	<b>Std.Dev.</b> 64.18	RBD 0.04%	[1000.00]	Unite
Ag 338.289	78679.5	370.50		[40000.00]	•
Al 308.215		136.30	0.47%	•	
As 188.979	13556.9		1.01%	[2000.00] [2000.00]	
B	11593.7	48,17	0.42%		
Ba 233.527	515170.0	184.98	0.04%	[2000.00]	
Be 313.107	13500858.9	155250,39	1.15%	[2000.00]	
Ca 315.887	1687661.1	22887.22	1.36%	[100000.0]	
Cd 214.440	1240809.3	1578.25	0.13%	[2000.00]	
Co 228.616	210005.0	128.94	0.06%	[2000.00]	
Cr 267.716	241484.0	877.38	0.36%	[2000.00]	
Cu 327.393	312998.2	555.70	0.18%	[2000.00]	
Fe 273.955	1530564.4	1402.73	0.09%	[40000]	
K 766.490	153938.5	497.73	0.32%	[40000]	
Mg 285.213	2877538.2	31401.42	1.09%	[100000]	ug/L
Mn 257.610	137644.6	590.89	0.43%	[2000.00]	ug/L
Mo 202,031	112876.1	370.05	0.33%	[2000.00]	ug/L
Na 589.592	511671.3	5785.04	1.13%	[50000]	ug/L
Ni 231.604	180609.5	176.10	0.10%	[2000.00]	ug/L
P 213.617	109859.3	358.86	0.33%	[10000]	ug/L
Pb 220.353	48056.9	157.11	0.33%	[2000.00]	ug/L
Sb 206.836	16514.2	220.56	1.34%	[2000.00]	ug/L
Se 196.026	12871.3	133.61	1.04%	[2000.00]	ug/L
Sr 421.552	1638844.4	18423.58	1.12%	[2000.00]	
Ti 337.279	132418.3	629.90	0.48%	[2000.00]	
Tl 190.801	30935.1	224.77	0.73%	[2000.00]	
V 292,402	598290.3	728.42	0.12%	[2000.00]	
Zn 206,200	389653.9	172.71	0.04%	[2000.00]	
DI POUIPVV	00,000.				- J, –

#### Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Aq 338.289	3	Lin Thru 0	0.0	154.1	0.00000	0.999988	-
Al 308.215	3	Lin Thru 0	0.0	1.977	0.00000	0.999949	
As 188.979	3	Lin Thru 0	0.0	6.797	0.00000	0.999985	
В	3	Lin Thru 0	0.0	5.836	0.00000	0.999901	
Ba 233.527	3	Lin Thru 0	0.0	259.2	0.00000	0.999920	
Be 313.107	3	Lin Thru 0	0.0	6784	0.00000	0.999950	
Ca 315.887	3	Lin Thru 0	0.0	16.96	0.00000	0.999954	
Cd 214.440	3	Lin Thru 0	0.0	625.1	0.00000	0.999886	
Co 228.616	3	Lin Thru 0	0.0	110.2	0.00000	0.999912	
Cr 267.716	3	Lin Thru 0	0.0	121.3	0.00000	0.999952	
Cu 327.393	3	Lin Thru 0	0.0	157.0	0.00000	0.999982	
Fe 273.955	3	Lin Thru 0	0.0	38.50	0.00000	0.999923	
K 766.490	3	Lin Thru 0	0.0	3.854	0.00000	0.999996	
Mg 285.213	3	Lin Thru 0	0.0	29.13	0.00000	0.999712	
Mn 257.610	3	Lin Thru 0	0.0	69,19	0.00000	0.999944	
Mo 202.031	3	Lin Thru 0	0.0	56.71	0.00000	0.999954	
Na 589.592	3	Lin Thru 0	0.0	10.28	0.00000	0.999950	
Ni 231.604	3	Lin Thru 0	0.0	90.92	0.00000	0.999909	
P 213.617	3	Lin Thru 0	0.0	10.97	0.00000	0.999997	
Pb 220.353	3	Lin Thru 0	0.0	24.25	0.00000	0.999826	
Sb 206.836	3	Lin Thru 0	0.0	8.269	0.00000	0.999996	
Se 196.026	3	Lin Thru Q	0.0	6.487	0.00000	0.999873	
Sr 421,552	3	Lin Thru 0	0.0	822.7	0.00000	0.999968	
Ti 337.279	3	Lin Thru 0	0.0	66.35	0.00000	0.999991	
Tl 190.801	3	Lin Thru 0	0.0	15.62	0.00000	0.999818	
V 292.402	3	Lin Thru 0	0.0	300.3	0.00000	0.999969	
Zn 206.200	3	Lin Thru 0	0.0	196.6	0.00000	0.999827	

Sequence No.: 5
Sample ID: ICV 120313EA I:PB 0:EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: Dilution: Autosampler Location: 11
Date Collected: 03/13/12 11:16:51 AM
Data Type: Reprocessed on 03/14/12 2:44:29 PM

	B 4- TOT 100	21001 7.00 0.0							
Me	an Data: ICV 120			G-14h			gemn10		
_	_	Mean Corrected		Calib.	a.a. n		Sample	CLA Dov	RSD
An	alyte	Intensity	Conc	. Unite	Std.Dev.		Units	Std.Dev.	0.91%
Ag	338.289	77571.9	503.2	2_ug/L	4.56	503.2	ug/L	4.56	0.314
	QC value within			Recovery =			1-		A 200
Al	308.215	51876.5		ug/L	101.8	26150	ug/ь	101.8	0.39%
	QC value within	limits for Al	308.215	Recovery =					
ВA	188.979	6696.7		2 ug/L	2.95	985.2	ug/L	2.95	0.30%
	QC value within	limits for As	188.979	Recovery =	: 98.52∜				
В		5656.8	1058	3 ug/L	17.0	1058	ug/L	17.0	1.61%
	QC value within	limits for B	Recovery	= 105.78%					
Ba	233.527	261579.9	1004	ug/L	6.9	1004	ug/L	6.9	0.68%
	QC value within	limits for Ba	233.527	Recovery =	: 100.42%				
Be	313.107	6920425.9		lug/L	8.5	1024	ug/L	8.5	0.83%
	QC value within		313.107	Recovery =	: 102.38%		_		
Ca		432463.0		ug/L	379.9	25400	uq/L	379.9	1.50%
	QC value within				: 101.59%				
ca	214.440	657971.8		l ug/L	7.9	1052	ug/L	7.9	0.75%
Cu	QC value within						٥.		
Co	228.616	117564.5	1069	Sug/L	6.9	1065	ug/L	6.9	0.64%
CO	QC value within	limits for Co.	228 616	Pecovery =	106 53%		~5/ =		
<b>a</b>	<del>-</del>	129835.9		uq/L	12.4	1070	ug/L	12.4	1,16%
CF	267.716 QC value within					1070	ug, 2	-2	_,_,
					8.3	1012	ug/L	8.3	0.82%
Cu	327.393	158289.6		ug/L		1012	ug/ D	0.5	0.020
	QC value within					20040	/T	197.3	0.76%
Fe		1008683.7		) ug/L		26040	ug/ L	197.3	0.70%
	QC value within		273.955	Recovery =		24600		261.0	1.05%
K	766.490	96163.2	24920	ug/L	261.0	24920	ug/L	261.0	1.05%
	QC value within	limits for K 7	766.490 F	secovera =	99.69%		(-		- 000
Mg	285.213	772308.2	26490	ug/L	339.1	26490	ug/L	339.1	1.28%
	QC value within	limits for Mg	285.213	Recovery =	: 105.98∜				
Mn	257.610	74281.3	1072	≀ug/L	6.3	1072	ug/L	6.3	0.59%
	QC value within	limits for Mn	257.610	Recovery =	: 107.19%				
Mo	202.031	55745.5	984.6	iug/L	3.27	984.6	ug/L	3.27	0.33%
	QC value within	limits for Mo	202.031	Recovery =	98.46%				
Na	589.592	258993.1	25150	) ug/L	323.4	25150	ug/L	323.4	1.29%
	QC value within	limits for Na	589.592	Recovery =	: 100.61%				
Νi	231.604	96834.0	1062	lug/L	9.2	1062	ug/L	9.2	0.87%
	QC value within	limits for Ni	231.604	Recovery =	: 106.16%				
ъ.	213.617	53887.6	4911	Luq/L	56.8	4911	ug/L	56.8	1.16%
•	QC value within				98,23%				
Dh	220.353		1055		7.0	1055	uq/L	7.0	0.66%
FD	QC value within				105.52%		٠.		
0h	206.836	8000.8	967.5	ug/L	2.80	967.5	ug/L	2.80	0.29%
30	QC value within	limita for Ch	206 836	Pecovery =		20	37		
		6750.5	1041	NOCOTOLY	9.8	1041	ug/L	9.8	0.94%
se	196.026 QC value within	0/30.3	106 026			2022	ug, 2	3.5	• . •
	Oc varue within	110111111111111111111111111111111111111	005	Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recovery and Recov	12.50	995.2	ua/ī.	12.50	1.26%
sr	421.552	819454.7	401 550.4	Bogovoru -		323.2	ug, 2	12100	2,200
	QC value within		421.552	Recovery =		1017	ug/L	4.6	0.46%
Ti	337.279	67523.0	1017	ug/L	4.6	1017	ug/ D	4.0	0.400
	QC value within		337.279	kecovery =		1022	ug/L	4.3	0.40%
Tl	190.801	16421.3		l ug/L	4.3	10/1	աց/ ո	4.2	0.400
	QC value within		190.801	kecovery =		3040	/1	0 1	0.77%
V :	292.402	307530.6		ug/L	8.1	1042	ug/L	8,1	0.//8
	QC value within						- 17		0.000
2n	206.200	207816.6		ug/L	9.4	1061	ug/L	9.4	0.89%
	QC value within	limits for Zn	206.200	Recovery =	: 106.15%				
A1:	l analyte(s) pas:	sed QC,							

Sequence No.: 6 Sample ID: ICB 120313EA I:PB O:EA Analyst Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/13/12 11:21:22 AM Data Type: Reprocessed on 03/14/12 2:44:30 PM

		Меап С	arrented	\ i		Calib.				Sample		
An	alyte	Inte	ensity	C	onc.	Units	St	d.Dev.	Cona.	Unite	Std.Dev	. RSD
Αq	338.289		-26.6	-0	,172	ug/L	(	.2031	-0.172	ug/L	0.2031	117.91%
_	QC value within	limite										
Αl	308,215		37.8					3,339	19.08	ug/L	23.339	122.30%
	QC value within	limits	for Al	308.2	15	Recovery	Not					
Aε	188.979		-3.1	-0	.457	ug/L	C	.2486	-0.457	ug/L	0.2486	54.44%
	QC value within	limits	for As	188.9	79	Recovery	= Not	calculated				
В			-17.3	-2	.962	ug/L	5	.4988	-2.962	ug/L	5.4988	185.64%
	QC value within	limits	for B	Recove	ery	= Not cal	lculat	ed				
Ва						ug/L				ug/L	0.1324	400.15%
	QC value within	limite	for Ba	233.52	27	Recovery	= Not	calculated				
Ве	313.107		182.1			ug/L				ug/L	0.0145	20.90%
	QC value within	limits	for Be	313.10	07	Recovery	= Not	calculated				
Са	315.887		L07.7			ug/L		.6826		ug/L	6.6826	105.62%
	QC value within	limits	for Ca	315.80	87	Recovery	= Not	calculated				
Cđ	214.440		21.1			ug/L				ug/L	0.0863	256.31%
	QC value within	limits	for Cd	214.44	40	Recovery	= Not					
Co	228.616					ug/L				ug/L	0,2316	200.16%
	QC value within	limits	for Co	228.61	16	Recovery	⇒ Not	calculated				
Cr	267.716					ug/L				ug/L	0.4788	254.56%
	QC value within	limits	for Cr	267.73	16	Recovery	= Not	calculated				
Cu	327.393		237.5	1	.514	ug/L		.5421		ug/L	0.5421	35.81%
	QC value within					Recovery	= Not	calculated				
Fe	273.955		16.9		.417	ug/L		.3100	0.417	ug/L	0.3100	74.28%
	QC value within											
κ '	766.490					ug/L			13.18	ug/L	40.979	310.99%
	QC value within	limits						calculated				_
Мg	285.213	-	72.2	-2.	.490	ug/L		. 3583	-2.490	ug/L	2.3583	94.72%
	QC value within	limits	for Mg	285.23	13 1	Recovery	= Not	calculated				
ďΩ	257.610					ug/L				ug/L	0.4778	169.67%
	QC value within							calculated				
10	202.031		10.3	0	.181	ug/L		,6329	0.181	ug/L	0.6329	349.84%
	QC value within									,_		
٧a	589.592		51.8			ug/L		4.744		ug/L	14.744	99.93%
	QC value within	limite	for Na	589.59	92	Recovery	= Not	calculated				
٧i	231.604		26.1	0.	.286	ug/L	0	.3061		ug/L	0.3061	106.93%
	QC value within	limits						calculated		. 1-	A 5006	155 600
? 2	213.617		-4.1	-0.	.378	ug/L			-0.378	ug/L	0.5876	155.60%
	QC value within	limits	for P 2	13.617	7 R	ecovery :	: Not	calculated			A 6004	010 000
Pb	220.353		-7.6	-0.	.314	ug/L		.6874	-0.314	ug/L	0.6874	218.80%
	QC value within			220.35	53 1	Recovery	# NOC	calculated				<b>33.30</b>
Bb	206.836		12.4			ug/L			1.498	ug/L	1.0993	73.39%
_	QC value within	limits	for Sb	206.83	36 J	Recovery	# NOC	calculated	4 400	/-	0.4501	174 000
Se	196.026		9.1	1 .	.407	ug/ь	27 a b	.4501	1.407	սց/ Ե	2,4501	174.09%
	QC value within	limits		196.02	26 1	Recovery			0 064	/7	0 0555	00 770
3r	421,552		52.4	0.	.064	ug/L		.0555	0.064	ug/L	0.0555	87.33%
	QC value within			421.55	52	Recovery			0 451	17	1 0540	225 608
Гi	337.279		30.0			ug/L		.0640	0.451	սց/ ւ	1.0640	235.68%
	QC value within	limits								/ T	0.0000	E00 018
r1	190.801		-2.4	-0.	.154	ug/L			-0.154	ug/L	0.8969	582.73%
	QC value within	limits		190.80	01 1	Recovery		calculated		17	0 (05)	. 000 08
7 2	92.402		-3.3	-0.	.011	ug/L			-0.011	ug/L	0.6253	>999.9%
	QC value within	limits	for V 2	92.402	2 R	ecovery =	NOL	calculated	0.005		0.0500	160 060
'n	206.200					ug/L			0.037	սց/ Ե	0.0602	162.96%
	QC value within	limita	for Zn	206.20	90 l	Recovery	= Not	carcutated				
	. analyte(s) pass											

Dilution

Sequence No. 1 8 Sample ID: ICSA 120313EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 12 Date Collected: 03/13/12 11:27:38 AM Data Type: Reprocessed on 03/14/12 2:44:32 PM

Mean Data: ICSA 12	0313EA I:PB 0:1	AS	•			
	35 A	- 4-111			8ample	
Analyte Ag 338.289	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Aq 338.289	-117,4	-0.761 ug/L	0.0931	-0.761	ug/L	0.0931 12.23%
QC value within	limits for Ag	338.289 Recovery	= Not calculate	Çi .		
Al 308.215	402410.2	203000 ug/L	1409.3	203000	ug/L	1409.3 0.69%
		308.215 Recovery			,_	1 1000 50 20%
As 188.979	-11.0	-1.742 ug/L	1.1899		ug/L	1.1899 68.29%
QC value within	limits for As	188.979 Recovery	= Not calculate	a 		5,0550 106.03%
В		4.767 ug/L		4.767	ug/L	5,0550 100:054
	limits for B	Recovery = Not ca.	0.9680	0.070	na/t.	0.9680 >999.9%
Ba 233.527	10364.3	0.079 ug/L	U. YOUU	a 0.079	ug/ D	0.3000 2322.30
	limits for Ba	233.527 Recovery -0.143 ug/L	0.0311	u _n 143	ug/L	0.0311 21.74%
Be 313.107		313.107 Recovery			ug, D	0.0022
	11W1C8 LOL B6	201300 ug/L	1534.2	201300	ug/L	1534,2 0.76%
Ca 315.887	3423363.5	315.887 Recovery	- 100.66%	201300	wg, 2	
	7231.0	-0.002 ug/L	0.2149	-0.002	ug/L	0.2149 >999.9%
Cd 214.440	limite for Cd	214.440 Recovery	= Not calculate			
Co 228.616	1058.6	-0.070 ug/L	0.4051	-0.070	ug/L	0.4051 581.88%
OC value within	limits for Co	228.616 Recovery	= Not calculate		_	
Cr 262 716	-53.2	-0.438 ug/L	0.9247	-0.438	ug/L	0.9247 211.01%
OC value within	limits for Cr	267.716 Recovery	= Not calculate	d		
Cu 327.393	-1440.8	0.010 uq/L	1.4862	0.010	ug/L	1.4862 >999.9%
OC value within	limits for Cu	327.393 Recovery	= Not calculate	đ	_	
Fe 273.955	7250211.8	187900 ug/L	1274.0	187900	ug/L	1274.0 0.68%
OC value within	limits for Fe	273.955 Recovery	= 93.94%		,	
K 766 490	363.8	-20.86 ug/L	70.025		ug/L	70.025 335.75%
QC value within	limits for K ?	766.490 Recovery	<ul> <li>Not calculated</li> </ul>		-	1505 5 0 038
Ma 285 213	5393094.9	185000 uq/L	1536.7	185000	ug/L	1536.7 0.83%
QC value within	limits for Mg	285.213 Recovery	= 92.52%		. 1=	0.3294 13.84%
Mn 257 610	633.6	-2.380 uq/L	0.3294		ug/L	0.3294 13.648
	limits for Mn	257.610 Recovery	* Not calculate	aa		1.3898 141.74%
Mo 202.031	-500.1	-0.981 ug/L	1.3898		ug/L	1.3890 141.748
	limite for Mo	202.031 Recovery	≈ NOC Calculate	u _10_72	ug/L	14.712 49.48%
Na 589.592	1434.3	-29.73 ug/L	14./12		աց/ ո	14.712 45.400
	limits for Na	589.592 Recovery	0.9907	ս _n ճԶԶ	ug/L	0.9907 144.08%
Ni 231.604	782.8	-0.688 ug/L			ug, D	0.330, 211.000
	limits for Ni	231.604 Recovery 16.66 ug/L	2 080	16.66	ug/L	2.080 12.49%
P 213.617	182.8	213.617 Recovery	= Not calculated		<b>4</b> 3, ~	
	7.2	0.297 ug/L	1.1930	0.297	ug/L	1,1930 401.42%
Pb 220.353	limite for Dh	220.353 Recovery			<b>J</b> .	
Sb 206.836	-14.8	-1.792 ug/L	2.8551	-1.792	ug/L	2.8551 159.37%
Of value within	limits for Sb	206.836 Recovery	= Not calculate	d	•	
Qp 106 026	60.8	9.377 uq/L	4.2288	9.377	ug/L	4.2288 45.10%
OC value within	limits for Se	196.026 Recovery	= Not calculate	d		
Gr 421 552	5017.0	-0.004 uq/L	0.3539	-0.004	ug/L	0.3539 >999.9%
OC value within	limits for Sr	421.552 Recovery	= Not calculate	:d		
TH 337 279	535.4	1.170 ug/L	0.3878	1.170	ug/L	0.3878 33.14%
OC value within	limits for Ti	337.279 Recovery	= Not calculate	d		
ጥገ 19በ ጸበ1	8.0	-1.457 ug/L	6,9153	-1.457	ug/L	6.9153 474.54%
QC value within	limits for Tl	190.801 Recovery		d	/ <del>-</del>	A CACH - 000 00
V 202 402	14690.0	-0.056 ug/L	0.6067	-0.056	ug/ь	0.6067 >999.9%
QC value within		292,402 Recovery	Not calculated	0 04-	/1	0.1838 8.18%
2n 206 200	3719.8	-2.246 ug/L	0.1838	-2.246	ug/т	0.1020 0.104
QC value within	limits for Zn	206.200 Recovery	≈ NOT Calculate	u		
All analyte(s) pas	sed QC.					

Sequence No.: 9
Sample ID: ICSAB 120313RA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Sequence No.: 9 Autosampler Location: 13
Sample ID: ICSAB 120313RA I:PB O:EA Date Collected: 03/13/12 11:30:47 AM
Analyst: Data Type: Reprocessed on 03/14/12 2:44:34 PM

							,	
Mean Data: ICSAB 1			g-145			Sample		
	Mean Corrected	_	Calib.	eta Dou	Conc.		Std.Dev.	RSD
Analyte Ag 338.289	Intensity	Conc.	Units	8.76		ug/L	8.76	0.92%
Ag 338.289	146094.1	220 200	ug/b		747.0	ug/ 1	• • • • • • • • • • • • • • • • • • • •	
QC value within	396632.3	338.289	Recovery :	= 24.700 1216 F	200100	no/L	1216.5	0.61%
Al 308.215	396632.3	200100	ug/u Dagawaru	- 100 048 - 1216.5	200100	ug/ 2		
QC value within		308.215	Recovery :	14.74	476 A	ua/L	14.74	3,09%
As 188.979	3238.2	476.4	ug/ n Dogovionii		4,0.4	~9/ ~		
QC value within		188.979	Recovery :	2.6593	7 646	ug/L	2.6593	34.78%
В	-3620.0		ug/L		7.030	ug/ L	2.0572	
QC value within	limits for B	Recovery	= NOE CATO	culaced	402.4	na/L	4.16	0.86%
Ba 233.527	135633.3	483.4	_ла\г	4,16	403.4	ug/ L	4,14	
QC value within		233.527	Recovery :	= 90.090	404 E	ua/I.	3.44	0.70%
Be 313.107	3375588. <b>7</b>	494.5	_ug/L	3.44	494.5	աց/ և	3.71	0.,00
QC value within	limits for Be	313.107	Recovery :	= 98.90%	100000	/ ٢	1130.4	0.57%
Ca 315.887	3389264.4	199300	ug/L	1130.4	199300	ug/L	1130.4	0.574
QC value within	limits for Ca	315.887	Recovery :	≈ 99.65 <b>%</b>	000 6	17	0.40	0.86%
Cd 214.440	618863.8	978.6	ug/L	8.40	978.6	ացյո	8.40	0.00%
QC value within	limits for Cd	214.440	Recovery :	= 97.86%		. 17	0 12	0.02%
Co 228.616	55069.5	491.1	ug/L	0.12	491.1	աց/ և	0.12	0.025
QC value within	limits for Co	228.616	Recovery :	= 98.22%		. 1-	* 02	0.20%
Cr 267 716	63485.9	523.2	ug/ե	1.03	523.2	ug/L	1.03	0.20%
QC value within	limits for Cr	267.716	Recovery :	= 104.65%				0.600
Cu 227 293	79103.0	513.3	ug/L	3.56	513.3	ug/L	3.56	0.69%
QC value within	limits for Cu	327.393	Recovery	= 102.67%				
Re 273 955	7300900.6	189200	ug/L	1353.6	18920 <b>0</b>	ug/L	1353.6	0.72%
QC value within	limits for Fe	273.955	Recovery	= 94.58%				
K 766 490	. 247.5	-54.75	ug/L	96.286		ug/L	96.286	175.86%
QC value within	limite for K	766.490 R	ecovery =	Not calcula	ted			
Mar 285 213	5347468.5	183500	uq/L	1439.1	183500	ug/L	1439.1	0.78%
QC value within	limits for Mq	285,213	Recovery	= 91.73%				_
Mn 257 610	35437.5	500.9	uq/L	2.19	500.9	ug/L	2.19	0.44%
QC value within	limits for Mn	257.610	Recovery :	≈ 100.17 <b>%</b>				
Mo 202.031	25958.4	466.0	uq/L	1.83	466.0	ug/L	1.83	0.39%
QC value within	limits for Mo	202.031	Recovery	= 93.20 <b>%</b>				
	1462.4	-28.99	ua/L	11.096	-28.99	ug/L	11.096	38.28%
Na 589.592 QC value within	limita for Na	589.592	Recovery	= Not calcul	ated	-		
	90702.5	987.4	ua/L	2.86	987.4	ug/L	2,86	0.29∜
Ni 231.604 QC value within	limite for Ni	231 604	Recovery	= 98.74%				
	214.5	19 55	ug/L	2.426	19.55	uq/L	2.426	12.41%
P 213.617 QC value within	limite for D 2	212 61 <b>7</b> R	ecoverv =		ted	_		
	23770.1	980 0	na/L	2.77	980.0	uq/L	2.77	0.28%
Pb 220.353 QC value within	limite for Db	220 353	Recovery	= 98.00%		٥.		
	3761.4	A5A 9	ug/L	4.83	454.9	ug/L	4.83	1.06%
Sb 206.836 QC value within	limite for Ch	206 836	Recovery					
Se 196,026	1711111 TOT 20	495 N	na/L	5.22	495.0	uq/L	5.22	1.05%
QC value within	Jimita for Do	106 026	Decovery	= 99.00%		Ų.		
	4889.9	-0 166	ug/L	0.0850	-0.166	uq/L	0.0850	51.27%
Sr 421.552 QC value within	4809.9	421 652	Decovery			5.		
OC value within	TIMICS TOT ST	421.552	ug/L	1.7934	0.872	ug/L	1,7934	205.67%
Ti 337.279 QC value within	507.2	0.074 227 220	Decomers			· Jr		
	TIMICS IOT TI	331.217 En1 7	ug/L	4.03	501.7	ug/L	4.03	0.80%
Tl 190.801	7792.1	201.7	Decorer:		30211	-g, -	<del>-</del>	
QC value within	Timits for TI	190.801	recovery	3.82	497 A	ug/L	3.82	0.77%
V 292.402	160625.4	497.8	ug/L		457.0	~ <del>_</del>	<b>-</b>	- · · ·
QC value within	limits for V	292.4U2 R	ecovery = ) ug/L	9,578	970 O	ug/L	9.66	1.00%
Zn 206,200	194148.0	970.0	Pegovoru		5,0.0	~5, ~	2.00	<del>-</del>
QC value within	Timits for Zu	∠∪0.∠UU	VECOACTA					
All analyte(s) pas	sed QC.							

Dilution:

Sequence No.: 10 Sample ID: CCV1 120313EA I:PB 0:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 3 Date Collected: 03/13/12 11:36:41 AM Data Type: Reprocessed on 03/14/12 2:44:35 PM

Mean Data:	CCV1 120313BA I:PB 0:	: EA			_		
	Mean Correcte	ad Calib.			Sample		200
Analyte	Intensity 79150.8	Conc. Units	Std.Dev.		Units	Std.Dev. 2.43	RSD 0.47%
Ag 338.289	79150.8	513.5 ug/b	2.43	513.5	ug/ n	2.43	0.178
	within limits for Aq 41223.5		= 102.70 <del>1</del> 233.7	20720	na/L	233.7	1.13%
Al 308.215	within limits for Al			20,20	ug/ H	230 ( )	•
As 188.979	7129.8	1049 ug/L	3.6	1049	uq/L	3,6	0.35%
OC value	within limits for As	188,979 Recovery :	= 104.90%				
Ħ	6166.2	1132 uq/L	12.2	1132	ug/L	12.2	1.08%
QC value	greater than the upp	er limit for B Reco	overy = 113.15	*	4-		
Ba 233.527	271092.0	1042 ug/L	2.6	1042	ug/L	2.6	0.25%
	within limits for Ba	233.527 Recovery		1001	ug/L	6.2	0.59%
Be 313.107		1051 ug/L	6.2	1031	ug/ n	0.2	0.376
	within limits for Be	513.10/ Recovery 5	175.0	51300	na/L	175.0	0.34%
Ca 315.887	within limits for Ca	315 997 Pecovery :	: 102.60%	31000	~g, _		
Cd 214 440	658240.2	1052 ug/L	4.9	1052	ug/L	4.9	0.46%
OC value	within limits for Co						
Co 228,616	115665.8	1048 ug/L	3.3	1048	ug/L	3.3	0.31%
OC value	within limits for Co	228.616 Recovery:	= 104.81%				
Cr 267.716	126774.6	1045 ug/L	2.3	1045	ug/L	2.3	0.22%
QC value	within limits for Co	267.716 Recovery :	= 104.48%	1000		2,9	0.28%
Cu 327.393	161059.5	1029 ug/L	2.9	1029	ug/L	2.9	0.200
	within limits for Co	1 327,393 Recovery :	= 102.91% 71 1	20700	ug/L	71.1	0.34%
Fe 273.955	804678.8 within limits for Fe	20/00 ug/L	/↓·± - 103 51%	20,00	ug/ L	1212	
	78608.6	20350 ug/L	64.2	20350	ug/L	64.2	0.32%
K 766.490	within limits for K	766.490 Recovery =			J.		
Mq 285.213	1541833.3	52900 ug/L	238.5	52900	ug/L	238.5	0.45%
OC value	within limits for Mg	285.213 Recovery	<b>≠ 105.80%</b>				
Mn 257.610	72529.9	1045 ug/L	11.7	1045	ug/L	11.7	1.12%
QC value	within limits for Mr	1 257.610 Recovery :	3 104.49%		17	0.4	0.81%
Mo 202.031	59288.2	1046 ug/L	8.4	1046	ug/ L	8.4	0.014
	within limits for Mc	202.031 Recovery	= 104,64 <del>5</del>	25600	ug/L	84.4	0.33%
Na 589.592	263730.9	25600 ug/L	04.4 - 102 41%	25000	ug/D	01.1	0.500
	within limits for No. 95183.1	1043 ug/L	3.2	1043	ug/L	3,2	0.31%
Ni 231.604	within limits for N	231.604 Recovery:		-•	3,		
P 213.617	55951.3	5099 ug/L	14.8	5099	ug/L	14.8	0.29%
OC value	within limits for P	213.617 Recovery =	101.99%		_		_
Pb 220.353	25553.3	1054 ug/L	7.7	1054	ug/L	7.7	0.73%
QC value	within limits for Pl	220.353 Recovery	= 105.35%		-		A 774
Sb 206.836	8698.5	1052 ug/L	8.1	1052	ug/L	0.1	0.77%
QC value	within limits for S	206.836 Recovery	= 105.19%	1052	ug/L	11.2	1.06%
Se 196.026	6827.2	1052 ug/L	11.2 - 105 24%	1032	ug/ L	11.2	1.000
-	within limits for Se 842045.4	1022 ug/L	2.8	1022	ug/L	2.8	0.27%
Sr 421.552	within limits for S	r 421.552 Recovery:			51 -		
Ti 337.279	69254.6	1042 ug/L	13.0	1042	ug/L	13.0	1.25%
OC value	within limits for T	i 337,279 Recovery	≈ 104.18%				
Tl 190.801	16657.3	1086 ug/L	8.3	1086	ug/L	8.3	0.76%
QC value	within limits for T	l 190.801 Recovery	= 108.59%		. 1=	^ =	0.00
V 292.402	311201.6	1056 ug/L	2.7	1056	ug/L	2.7	0.26%
	within limits for V	292.402 Recovery =	7 \2 \2 \2 \2 \2 \2 \3 \3 \3 \3 \3 \3 \3 \3 \3 \3 \3 \3 \3	1055	ug/L	4.3	0.41%
Zn 206,200	206814.6	1055 <b>ug/L</b>	4.3	1099	ug/ II	1,3	0,120
QC value	within limits for Zu	izuo.200 kecovery	- 100.00				
QC Falled.	Continue with analys	J. J. J. J. J. J. J. J. J. J. J. J. J. J					

Sequence No.: 11 Sample ID: CCB 120313EA I:PB O:EA Logged In Analyst (Original) : chemist metals Initial Sample Wt: Dilution:

Autosampler Location: 1 Date Collected: 03/13/12 11:42:08 AM Data Type: Reprocessed on 03/14/12 2:44:36 PM

Me	an Data: CCB 120	313EA I Mean C	:PB 0:EP	A H	Calib.				Sample		
Δn	alvte	Int	engity	Conc	Tinite	g r	d.Dev.	Cona	nanhra	ged Day	. Pgn
Aq	alyte 338.289		64.1	0.41	6 na/L	0	.1807	0.416	ua/L	0.1807	43.488
	QC value within	limite	for Ag	338.289	Recovery	r = Not	calculated	0	ug/ 2	0,100,	
Αl	308.215		-89.9	-45.4	6 ug/L	3	2.308	-45.46	11g/I	32.308	71.079
	QC value within	limits	for Al	308.215	Recovery	· = Not	calculated	-0	-3/ -	02.500	
Aθ	188.979		-2.0	~0.29		1	.2715	-0.296	υα/Ι.	1.2715	430.25%
	QC value within	limits		188.979	Recovery	= Not	calculated	V, 25 V	~gr ~	2,2,20	
В	_		-6.2		7 ug/L				ug/L	4.1463	392.09%
	QC value within	limits					ed	_,,,,	-9, -		
Ва	233.527		-6.0	-0.02	3 ug/L	0	.0550	-0.023	ug/L	0.0550	243.54%
	QC value within	limits	for Ba	233.527	Recovery	□ Not	calculated		-51 -		
Ве			-30.8	0.00	2 ug/L	0			ug/L	0.0972	>999.9%
	QC value within	limite	for Be	313.107	Recovery	× Not	calculated		5.		
Ca	315.887	:	121.3	7.19	6 ug/L 🧻	5	.8171		ug/L	5.8171	80.84%
	QC value within	limits	for Ca	315.887	Recovery	= Not	calculated		_		
Cd	214.440		3.8	0,000	6 ug/L	0	.0277	0.006	ug/L	0.0277	492.54%
	QC value within	limits	for Cd	214.440	Recovery	= Not	calculated		2.		
Co	228.616		3.1	0.023	3 ug/L	0	.2149	0.023	ug/L	0.2149	927.05%
	QC value within	limits	for Co	228.616	Recovery	= Not	calculated		•		
Cr	267.716		-1,4	-0.012	2 ug/L	0	.0673	-0.012	ug/L	0.0673	572.18%
	QC value within	limits	for Cr	267.716	Recovery	= Not	calculated				
Cu	327.393				lug/L		.6472	1.292	ug/L	0.6472	50.09%
	QC value within								_		
Fе	273.955		77.8	2.016	ug/L -	0	.4701	2.016	ug/L	0.4701	23.32%
	QC value within	limits	for Fe	273.955	Recovery	= Not	calculated		_		
	66.490				ն աց/L -			-75.82	ug/L	47.822	63.07%
	QC value within	limits	for K 7	66.490 F	Recovery :	⇒ Not «	calculated				
					lug/L			1.694	ug/L	1.5659	92.44%
	QC value within										
					l ug/L			0.024	սց/Ն	0.7736	>999,9%
	QC value within										
	202.031		-10.9		Lug/L	0	.2017 -	0.191	սց/և	0.2817	147.69%
	QC value within	limite	for Mo	202.031	Recovery	= Not	calculated				
	589.592	-	34.2	-3.310	ug/L	23	. 3479 -	3.310	ug/L	23.3479	705.32%
	QC value within	limits	for Na	589.592	Recovery	= Not					
					lug/L			0.364	ug/L	0.2743	75.30%
	QC value within										
	13.617				ug/L			1.174	ug/L	1.6827	143.34%
	QC value within	limits	for P 2	13.617 R	ecovery =	= Not (	calculated				
									ug/L	0.5512	164.60%
	QC value within						calculated				
	206.836		0.3		ug/L				ug/L	0.8773	>999.9%
	QC value within										
	196.026							2.244	ug/L	0.5980	26.64%
	QC value within										
	421.552		94.4		_ug/L			0.358	ug/L	0,1209	33.80%
	QC value within								-		
	337.279		.23.6		_ug/L			1.864	ug/L	0.7108	38.14%
	QC value within										
	190.801		-2.2	-0.1 <b>1</b> 9			1875 -	0.119	ug/L	1.1875	>999.9%
	QC value within										
	92.402		.66.6		ug/L			0.550	ug/L	0.0843	15.34%
	QC value within										
											DC 214
'n	206.200		16.8	0.086				0.086	ug/L	0.0814	95.214
'n	206.200 2C value within analyte(s) pass	limits						0.086	ug/L	0.0814	95.214

Sequence No.: 74
Sample ID: CCV1 120313EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 3 Date Collected: 03/13/12 4:27:32 PM Data Type: Reprocessed on 03/14/12 2:45:47 PM

ме	an Data: (		0313EA I:PB ( Mean Correct			Calib				Sample		
7-	alurka		Thtendit	,	Cong	Unite	S+A	l.Dev.	Conc.	Units	Std.Dev.	RSD
An	SSE SEE		Intensity 79232.6	ſ	514.0	) 110/16	500	5.72		ug/L	5.72	1,11%
<b>~</b> 9	OC value	within	limits for A	Aσ 338	. 289	Recovery	= 102.			-3, -		
ומ	308.215	**********	42201.6	.g 000	21210	) ug/L	2	26.3	21210	uq/L	226.3	1.07%
7.1		within	limits for A							5,		
No	188.979	WYCHILL	7164.2		1054			9.8	1054	ug/L	9,8	0.93%
n o	OC value	within	limits for A				= 105.					
В	QC VALUE	11 2 011 411	6451.9			ug/L		12.8	1182	uq/L	12.8	1.08%
	OC value	greatei	r than the up				covery		k			
Ba	233.527		272930.9						1049	uq/L	12.9	1.23%
ы	OC value		limits for E							<b>J</b> .		
Re	313.107		7166775.2		1060			7.3	1060	ug/L	7.3	0.69%
20	OC value	wi⊦hin	limits for E				= 106.	03%		•		
Ca	315.887		922386.9	•	54280	ug/L	4	55.3	54280	ug/L	455.3	0.84%
	OC value	within	limits for (	a 315	.887	Recovery	= 108.	56%				
ca	214.440		674082.6		1077			15.9	1077	ug/L	15.9	1,48%
-	OC value	within	limits for (				<b>= 107.</b>	75%				
Co	228,616		117365.8		1063	ug/L		14.1	1063	ug/L	14.1	1.33%
-	OC value		limits for (				<b>= 106</b> .	348				
Cr	267.716	.,	127120.6		1048	uq/L		10.9	1048	ug/L	10.9	1.04%
			limits for (									
Cu	327.393		159300.0		1018	lug/L		13.1	1018	ug/L	13.1	1.29%
	OC value	within	limits for (	ա 327	.393	Recovery	= 101.	80%				
Fe	273.955		812278.9		20890	ug/L	2	78.7	20890	ug/L	278.7	1.33%
	OC value	within	limits for F	e 273	, 955	Recovery	<b>= 104</b> .	478				
к '	766.490		82677.4		21410	ug/L	1	30.6	21410	ug/L	130.6	0.61%
	QC value	within	limits for F	766.	490 R	ecovery =	≈ 107.¢	3%				
Мq	285.213		1610827.0		55270	ug/L	5	31.1	55270	ug/L	531.1	0.96%
_	QC value	greater	r than the up	per l	imit f	or Mg 285	5.213	Recovery	= 110.5	48 .		
Μn	257.610	_	75054.3		1081	. ug/L		10.8	1081	ug/L	10.8	1.00%
	QC value	within	limits for M	In 257	.610	Recovery	<b>= 108.</b>	12%				
Mo	202.031		60251.0		1063	ug/L		14.1	1063	ug/L	14.1	1.33%
	QC value	within	limite for M	fo 202	.031	Recovery	<b>¤ 106</b> .	33%		•-		
Na	589.592		268603.0		26070	ug/L	2	38.6	26070	ug/L	238.6	0.91%
	QC value	within	limits for N				= 104.					
Ni	231.604		95898.8		1051	. ug/L		14.8	1051	ug/L	14.8	1.41%
	QC value	within	limits for N	ĭi 231	.604	Recovery	= 105.	09%		,_		
Р :	213.617		57960.3		5283				5283	ug/L	71.2	1,35%
	QC value	within	limits for F	213.	617 R	ecovery =	= 105.6	5*		- 1-	14.0	1 200
Рb	220.353		26344.9	_	1086	ug/L		14.3	1086	ug/L	14.3	1.32%
	QC value	within	limits for F	b 220	.353	Recovery	= 108.	628	10.5		10.1	0.96%
Sb	206.836		8639.1			ug/L		10.1	1045	ug/L	10.1	0.900
			limits for S	b 206	.836	Recovery	= 104.	4/6	1000	/T	11.6	1.07%
Se	196.026				1090		100		1090	ug/L	11.6	1.078
		within	limits for S	e 196	.026	Recovery	= 108.	98 <del>8</del>	1040	~ /T	9.5	0.91%
Sr	421.552		857910.1			ug/L	104	9.5	1042	ug/L	3.3	0.510
		within	limits for S	sr 421	.552	Recovery	= 104.	10.4	1004	ua /1	11.8	1.09%
Ti	337.279		72069.6			ug/L	200	11.8	1004	ug/L	71.0	1.030
		within	limits for T	1 337	.279	Recovery	≈ IVO.		1001	ng /I.	12.7	1.16%
T1	190.801	1.1.2	16730.7			. ug/L	- 100	12.7	1031	ug/L	14.1	1.100
		Within	limits for T	T 130	1050	recovery	± TÛΆ.	13.1	1050	ug/L	13.1	1.25%
V 2	292.402		309341.3		400 E	ug/L	- 204 0		1050	49/11	13.1	1.200
_		within	limits for V	494.	402 N	ecovery :	- TA4'2	15.2	1000	ug/L	15.2	1.39%
zn	206.200	مال ما المالية الحري	213355.8 limits for 2	n 200	200	Decovery	- 108		1000	291 2	15.2	,
^~	QC value	WITHIN	TIME TOE 2	ni 200	. 200	VECCAETA	~ TOO.	V=0				
ΩC	rallea.	COUCTUL	ue with analy	DID.								

Sequence No.: 75
Sample ID: CCB 120313EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 03/13/12 4:32:31 PM
Data Type: Reprocessed on 03/14/12 2:45:48 PM

Mean Corrected   Callb.   Std.Dev.   Conc. Units   Ag 338.289   1	lear	n Data:	CCB 120				Calib				Camala		
Ag 338-289   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7276 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7278 9.00   0.7	ina 1	lv+a		Tnt	oned tu	Cone	Udity.	7.6	d 8	A	Sample	G. J. D	200
Al 306.215	uia.	120 200		1110	110 /	0.76	. Units	90	d'neA'	Conc.	Units	etd.Dev	. KBD
13 38.212   16.228   11.62 ug/L   16.228   14.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228   11.62 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16.228 ug/L   16	<b>.</b> 9 ,	)	within	. limita	110.4	220 000	B ug/L		. /2/6	0.768	ug/L	0,7276	94.70%
CC value within limits for Al 308.215   Recovery = Not calculated   1.0987 -0.135 ug/L   1.0987 81 818.979   CC value within limits for As 188.979   Recovery = Not calculated   -3.259 ug/L   6.1814 -3.259 ug/L   6.1814 -3.259 ug/L   6.1814 -3.259 ug/L   6.1814   183 233.527   CC value within limits for B   Recovery = Not calculated   -3.259 ug/L   0.0263   12		SC AUTHE	MICHIE	TTIIITER	TOT MG	330.209	Recovery	= NOT	carculated				
188, 979					-29.4	-14.6	z_ug/L	1	6.228	-14.62	ug/L	16.228	111.02%
C value within limits for As 188.979   Recovery = Not calculated   -18.4   -3.259 ug/L			wichin	allmics	ior Ai	308,215	Recovery	= Not	calculated				
OC value within limits for B Recovery = Not calculated					-0.9	-0.13	5 ug/L	1	.0987	-0.135	ug/L	1.0987	815.33%
Oc value within limits for B Recovery = Not calculated	C	C value	within	limits	for As	188.979	Recovery	= Not	calculated				
Oc value within limits for B Recovery = Not calculated							9 ug/L	6	.1814	-3.259	ug/L	6.1814	189.69%
OC value within limits for Ba 233.527 Recovery = Not calculated	C	C value	within	limits	for B	Recovery	= Not cal	lculat	eđ				
OC value within limits for Ba 233.527 Recovery = Not calculated 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0299 0.104 ug/L 0.0291 ug/L 0.021.1 ug/L 0.021.1 ug/L 0.021.1 ug/L 0.021.1 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.021 ug/L 0.0370 0.291 ug/L 0.0370 1.201 ug/L 0.0370 0.291 ug/L 0.0370 1.201 ug/L 0.0273 446 0.273.93 205.6 1.303 ug/L 0.0273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.273 -0.051 ug/L 0.0273 446 0.0273.93 205.6 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.570 -26.10 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -21.176 ug/L 0.590 -					-51.9	-0.19	5 ug/L	0	.0263	-0.195	uq/L	0.0263	13.51%
313.107	Ç	C value	within	limits	for Ba	233.527	Recovery	¤ Not	calculated		· <b>J</b> .		
OC value within limits for Be 313.107   Recovery = Not calculated   1.11   -227.1 ug/L   0.11   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.				- 6	586.7	-0.10			.0299	0.104	na/L	0 0299	28 81%
315.887			within	limite	for Re	313.107	Recovery	# Not	calculated.		49/ 5	0.0233	20.010
QC value less than the lower limit for Ca 315.887 Recovery = Not calculated			., - 5	-36	152 7	-227	1 na/L	- HOC	carcaracea	227 1	/T	c 11	2 609
Oc value within limits for Cd 214.440   Recovery = Not calculated   31.4   0.291 ug/L   0.0370   0.291 ug/L   0.0370   12   OC value within limits for Co 228.616   Recovery = Not calculated   0.277   -0.051 ug/L   0.273   446   Oc value within limits for Cr 267.716   Recovery = Not calculated   327.393   205.6   1.303 ug/L   1.0808   1.303 ug/L   1.0808   0.273   346   Oc value within limits for Cr 27.716   Recovery = Not calculated   1.0808   1.303 ug/L   1.0808   0.273   395   -1014.6   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/L   0.570   -26.10 ug/	0	C value	lege F	han the	lower l	imit for	1 49/D 12 315 00	. n.	O.II To	1	ug/L	6.11	2.098
QC value within limits for Cd 214.440 Recovery = Not calculated 31.4 0.291 ug/L 0.0370 0.291 ug/L QC value within limits for Co 228.616 Recovery = Not calculated 327.716 -6.2 -0.051 ug/L QC value within limits for Cr 267.716 Recovery = Not calculated 327.393 205.6 1.303 ug/L QC value within limits for Cr 27.716 Recovery = Not calculated 273.955 -1014.6 -26.10 ug/L QC value within limits for Fe 273.955 Recovery = Not calculated 273.95 -1014.6 -26.10 ug/L QC value within limits for Fe 273.955 Recovery = Not calculated 273.95 -30.8 -96.80 ug/L GC value within limits for K 766.490 Recovery = Not calculated 326.490 -373.8 -96.80 ug/L GC value within limits for Mg 285.213 Recovery = Not calculated 285.213 -346.1 -11.76 ug/L QC value within limits for Mg 285.213 Recovery = Not calculated 227.950 -0.243 ug/L QC value within limits for Mn 257.610 Recovery = Not calculated 227.031 -14.2 0.251 ug/L QC value within limits for Mn 257.610 Recovery = Not calculated 231.604 Qc value within limits for No 202.031 Recovery = Not calculated 231.604 Qc value within limits for No 389.592 Recovery = Not calculated 231.604 Qc value within limits for P 213.617 Recovery = Not calculated 2320.353 -13.0 -0.535 ug/L QC value within limits for P 213.617 Recovery = Not calculated 2320.353 -13.0 -0.535 ug/L QC value within limits for Sc 189.592 Recovery = Not calculated 202.353 -13.0 -0.535 ug/L QC value within limits for Sc 189.602 Recovery = Not calculated 206.836 Qc value within limits for Sc 196.026 Recovery = Not calculated 207.598 ug/L QC value within limits for Sc 196.026 Recovery = Not calculated 208.836 Qc value within limits for T1 190.801 Recovery = Not calculated 209.801 -197.9 -2.353 ug/L QC value within limits for T1 190.801 Recovery = Not calculated 209.801 -198.4 -0.582 ug/L QC value within limits for T1 190.801 Recovery = Not calculated 209.801 -198.9 -0.866 ug/L QC value within limits for T1 190.801 Recovery = Not calculated 200.001 -10.009 -109.801 Recovery = Not calculated 200.000 -109.0000 -109.00000 -109.0000000 -109.000	2	t varue	TGBB C	nan che	TOWEL 1	THILL LOT	Ca 315.80	37 Re	covery = Not	carcu	itacea		
228.616 31.4 0.291 ug/L 0.0370 0.291 ug/L 0.0370 (C value within limits for Co 228.616 Recovery = Not calculated 267.716 -6.2 -0.051 ug/L 0.2273 -0.051 ug/L 0.2273 446 (C value within limits for Cr 267.716 Recovery = Not calculated 327.393 205.6 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 1.0808 1.303 ug/L 0.570 273.955 (C value within limits for Cu 327.393 Recovery = Not calculated 66.490 -373.8 -96.80 ug/L 61.498 -96.80 ug/L 66.490 -373.8 -96.80 ug/L 61.498 -96.80 ug/L 61.498 -96.80 ug/L 62.490 -373.8 -96.80 ug/L 1.0808 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11.76 ug/L 1.908 -11	_	14.440		2.4-4.4-	-6.9	~0.01.	r_ng/r		.0813	0.011	սց/ ե	0.0813	748.73%
OC value within limits for Co 228.616 Recovery = Not calculated 0.227.716 0.227.3			within	TIWITA	for Ca	214.440	Recovery	= Not					
267.716					31.4	0.29	l ug/L	0	. 0370	0.291	ug/L	0.0370	12.73%
QC value within limits for Cr 267.716 Recovery = Not calculated 3273.933			within	limits	for Co	228.616	Recovery	= Not	calculated				
QC value within limits for Cr 267.716 Recovery = Not calculated 327.393					-6.2	-0.05	Lug/L	0	. 2273 -	0.051	ug/L	0.2273	446.25%
227.393	Q	C value	within	limite	for Cr	267.716	Recovery	= Not	calculated		-		
QC value within limits for Cu 327.393 Recovery = Not calculated 273.955 -1014.6 -26.10 ug/L 0.570 -26.10 ug/L QC value within limits for Fe 273.955 Recovery = Not calculated 66.490 -373.8 -96.80 ug/L 61.498 -96.80 ug/L QC value within limits for K 766.490 Recovery = Not calculated 285.213 -346.1 -11.76 ug/L 1.908 -11.76 ug/L 1.908 1.05395 -0.243 ug/L QC value within limits for Mg 285.213 Recovery = Not calculated 257.610 -17.1 -0.243 ug/L 0.5395 -0.243 ug/L 0.5395 222 QC value within limits for Mn 257.610 Recovery = Not calculated 202.031 14.2 0.251 ug/L 0.5296 0.251 ug/L 0.5296 0.251 ug/L 0.5296 20.251 ug/L 0.5296 2					105.6	1.30	uq/L	1	. 0808	1.303	ug/L	1.0808	82.97%
QC value within limits for Fe 273.955 Recovery = Not calculated 66.490 -373.8 -96.80 ug/L 61.498 -96.80 ug/L 61.498 63 QC value within limits for K 766.490 Recovery = Not calculated QC value within limits for Mg 285.213 Recovery = Not calculated QC value within limits for Mg 285.213 Recovery = Not calculated QC value within limits for Mg 285.213 Recovery = Not calculated QC value within limits for Mm 257.610 Recovery = Not calculated QC value within limits for Mm 257.610 Recovery = Not calculated QC value within limits for Mm 202.031 Recovery = Not calculated QC value within limits for No 589.592 Recovery = Not calculated QC value within limits for No 589.592 Recovery = Not calculated QC value within limits for No 589.592 Recovery = Not calculated QC value within limits for No 31.604 Recovery = Not calculated QC value within limits for No 321.604 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for P 213.617 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for Sc 196.026 Recovery = Not calculated QC value within limits for T1 190.801 Recovery = Not calculated QC value within limits for C 292.402 Recovery = Not calculated QC value within limits	o	C value	within	limits	for Cu	327.393	Recovery	= Not	calculated		-5/ -		027510
QC value within limits for Fe 273.955 Recovery = Not calculated 66.490 -373.8 -96.80 ug/L 61.498 -96.80 ug/L 61.498 -96.80 ug/L QC value within limits for K 766.490 Recovery = Not calculated 285.213 -346.1 -11.76 ug/L 1.908 -11.76 ug/L 1.908   QC value within limits for Mg 285.213 Recovery = Not calculated 257.610 -17.1 -0.243 ug/L 0.5395 -0.243 ug/L 0.5395 222 QC value within limits for Mn 257.610 Recovery = Not calculated 202.031 14.2 0.251 ug/L 0.5296 0.251 ug/L 0.5296   QC value within limits for Mo 202.031 Recovery = Not calculated 2689.592 149.9 14.71 ug/L 0.5298 0.251 ug/L 0.5298   QC value within limits for No 589.592 Recovery = Not calculated 231.604 20.9 0.234 ug/L 0.5298 0.234 ug/L 0.5298   QC value within limits for Ni 231.604 Recovery = Not calculated 231.617 3.6 0.329 ug/L 1.896 0.329 ug/L 0.5298   QC value within limits for P 213.617 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748   QC value within limits for P b 20.353 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748   QC value within limits for P b 20.353 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3548 3.521 ug/L 0.0548 1 QC value within limits for P b 20.353 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3548 3.521 ug/L 0.0548 1 QC value within limits for P b 20.353 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3554 -2.353 ug/L 0.3554   QC value within limits for S tall.552 Recovery = Not calculated 231.602 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554   QC value within limits for Ti 337.279 Recovery = Not calculated 231.279 -5.77 -0.866 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Ti 90.801 Recovery = Not calculated 232.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 -0.582 ug/L 0.8				-10	114.6	-26.16	nace, czy			26 10	ua/I.	0.670	2 10%
1.66.490			within	limita	for Fo	272 OFF	Decorary	_ No+	aslaulskad	20.10	ug/ II	0.570	2.10%
Note of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content			WICHILL	11111100	72 0	213.355	Recovery	= NOC		06.00	/ =	<b></b>	
285.213										96.80	ug/L	61.498	63.53%
C value within limits for Mg 285.213 Recovery = Not calculated 0.5365 -0.243 ug/L 0.5395 222 0.57.610 -17.1 -0.243 ug/L 0.5395 -0.243 ug/L 0.5395 222 0.251 ug/L 0.5296 0.251 ug/L 0.5296 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5296 0.251 ug/L 0.5296 213 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.5298 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.251 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252 ug/L 0.252			MICHIN										
17.1									.908 -	11.76	ug/L	1.908	16.22%
C value within limits for Mn 257.610 Recovery = Not calculated   0.251 ug/L   0.5296   0.251 ug/L   0.5296   211   0.5296   0.251 ug/L   0.5296   211   0.5296   211   0.5296   0.251 ug/L   0.5296   211   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.5298   0.234 ug/L   0.2363   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.2369   0.239 ug/L   0.2369   0.239 ug/L   0.2369   0.2369   0.239 ug/L   0.2369   0.2369   0.2369   0.234 ug/L   0.2369   0.2369 ug/L   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0.2369   0			within	limita	for Mg 2	285.213	Recovery	≈ Not	calculated				
14.2				-	17.1	-0.243	ug/L	0.	.5395 -	0.243	սց/Լ	0.5395	222,00%
C value within limits for Mo 202.031 Recovery = Not calculated 189.592 149.9 14.71 ug/L 1.647 14.71 ug/L 1.647 11  C value within limits for Na 589.592 Recovery = Not calculated 131.604 20.9 0.234 ug/L 0.5298 0.234 ug/L 0.5298 226  C value within limits for Ni 231.604 Recovery = Not calculated 13.617 3.6 0.329 ug/L 1.2896 0.329 ug/L 1.2896 392  C value within limits for P 213.617 Recovery = Not calculated 120.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70  C value within limits for Pb 220.353 Recovery = Not calculated 106.836 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1  C value greater than the upper limit for Sb 206.836 Recovery = Not calculated 196.026 5.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165  C value within limits for Se 196.026 Recovery = Not calculated 21.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15  C value within limits for Sr 421.552 Recovery = Not calculated 27.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163  C value within limits for Ti 337.279 Recovery = Not calculated 20.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  C value within limits for Tl 190.801 Recovery = Not calculated 2.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  C value within limits for V 292.402 Recovery = Not calculated 06.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25  C value within limits for Zn 206.200 Recovery = Not calculated	þ	C value	within	limits	for Mn :								
C value within limits for Mo 202.031 Recovery = Not calculated 189.592 149.9 14.71 ug/L 1.647 14.71 ug/L 1.647 11  C value within limits for Na 589.592 Recovery = Not calculated 131.604 20.9 0.234 ug/L 0.5298 0.234 ug/L 0.5298 226  C value within limits for Ni 231.604 Recovery = Not calculated 13.617 3.6 0.329 ug/L 1.2896 0.329 ug/L 1.2896 392  C value within limits for P 213.617 Recovery = Not calculated 120.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70  C value within limits for Pb 220.353 Recovery = Not calculated 106.836 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1  C value greater than the upper limit for Sb 206.836 Recovery = Not calculated 196.026 5.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165  C value within limits for Se 196.026 Recovery = Not calculated 21.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15  C value within limits for Sr 421.552 Recovery = Not calculated 27.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163  C value within limits for Ti 337.279 Recovery = Not calculated 20.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  C value within limits for Tl 190.801 Recovery = Not calculated 2.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  C value within limits for V 292.402 Recovery = Not calculated 06.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25  C value within limits for Zn 206.200 Recovery = Not calculated	2	02.031			14.2	0.251	uq/L	0.	5296	0.251	uq/L	0.5296	211.21%
149.9 14.71 ug/L 1.647 14.71 ug/L 1.647 14.71 ug/L 1.647 11    C value within limits for Na 589.592 Recovery = Not calculated 20.9 0.234 ug/L 0.5298 0.234 ug/L 0.5298 226   C value within limits for Ni 231.604 Recovery = Not calculated 23.617 3.6 0.329 ug/L 1.2896 0.329 ug/L 1.2896 392   C value within limits for P 213.617 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70   C value within limits for Pb 220.353 Recovery = Not calculated 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1   C value greater than the upper limit for Sb 206.836 Recovery = Not calculated 29.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165   C value within limits for Se 196.026 Recovery = Not calculated 21.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15   C value within limits for Sr 421.552 Recovery = Not calculated 237.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163   C value within limits for Ti 337.279 Recovery = Not calculated 290.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 60   C value within limits for Tl 190.801 Recovery = Not calculated 22.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140   C value within limits for V 292.402 Recovery = Not calculated 22.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.1545 -0.606 ug/L 0.1545 25   C value within limits for Zn 206.200 Recovery = Not calculated 25.060 ug/L 0.1545 -0.606 ug/L 0.1545 25   C value within limits for Zn 206.200 Recovery = Not calculated 25.060 ug/L 0.1545 -0.606 ug/L 0.1545 25	0	C value	within	limits	for Mo 2	202.031	Recovery	= Not	calculated		- <b>-</b> -		
QC value within limits for Na 589.592 Recovery = Not calculated 231.604 20.9 0.234 ug/L 0.5298 0.234 ug/L 0.5298 0.234 ug/L 0.5298 226 QC value within limits for Ni 231.604 Recovery = Not calculated 13.617 3.6 0.329 ug/L 1.2896 0.329 ug/L 1.2896 392 QC value within limits for P 213.617 Recovery = Not calculated 220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70 QC value within limits for Pb 220.353 Recovery = Not calculated 206.836 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1 QC value greater than the upper limit for Sb 206.836 Recovery = Not calculated 196.026 5.1 0.788 ug/L 1.3005 165 QC value within limits for Se 196.026 Recovery = Not calculated 421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 -2.366 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 -2.246 ug/L 0.1545 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 -0.606 ug/L	5	89.592		1	49.9	14.73	ua/L	1			ua/I.	1.647	11 20%
231.604			within	limits	for Na 9	. R9 592	Recovery	- Not	calculated	*****	ug, 1	2,047	11.200
QC value within limits for Ni 231.604 Recovery = Not calculated 13.617			**********	TIMECO	20 0	0 22/	Necovery	- 1100	E200	0 924	/T	0 5000	006 008
13.617  3.6  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  1.2896  0.329 ug/L  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3748  0.3749  0.388 ug/L  0.388 ug/L  0.3854  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.3005  1.300			within	limita	for Mi	221 604	Dogovozu.	- Not	anlaulahad	0.234	ug/ L	0.5290	220.0/6
CC value within limits for P 213.617 Recovery = Not calculated  220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70  CC value within limits for Pb 220.353 Recovery = Not calculated  206.836 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1  CC value greater than the upper limit for Sb 206.836 Recovery = Not calculated  1.3005 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165  CC value within limits for Se 196.026 Recovery = Not calculated  1.21.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15  CC value within limits for Sr 421.552 Recovery = Not calculated  1.37.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163  CC value within limits for Ti 337.279 Recovery = Not calculated  1.20.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  CC value within limits for Tl 190.801 Recovery = Not calculated  1.22.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  CC value within limits for V 292.402 Recovery = Not calculated  1.3005 165  CC value within limits for Tl 190.801 Recovery = Not calculated  1.3005 165  CC value within limits for V 292.402 Recovery = Not calculated  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165  1.3005 165			MICHIE								J		
220.353 -13.0 -0.535 ug/L 0.3748 -0.535 ug/L 0.3748 70 QC value within limits for Pb 220.353 Recovery = Not calculated 206.836 29.1 3.521 ug/L 0.0548 3.521 ug/L 0.0548 1 QC value greater than the upper limit for Sb 206.836 Recovery = Not calculated 196.026 5.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165 QC value within limits for Se 196.026 Recovery = Not calculated 421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15 QC value within limits for Sr 421.552 Recovery = Not calculated 237.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Ti 190.801 Recovery = Not calculated 292.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated									2896	0.329	ug/ь	1.2896	392.17%
QC value within limits for Pb 220.353 Recovery = Not calculated 206.836			within	limics	for P 21	L3.617 F	ecovery =	NOT C					
206.836				<del>-</del>	13.0	-0.535	ug/L	0,	3748 -	0.535	ug/L	0.3748	70.02%
QC value greater than the upper limit for Sb 206.836 Recovery = Not calculated  196.026	Q(	C value	within	limits	for Pb 2								
196.026 5.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165 QC value within limits for Se 196.026 Recovery = Not calculated 421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15 QC value within limits for Sr 421.552 Recovery = Not calculated 337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Tl 190.801 Recovery = Not calculated 192.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated							. աց/Ն	0.	0548			0.0548	1.56%
196.026 5.1 0.788 ug/L 1.3005 0.788 ug/L 1.3005 165 QC value within limits for Se 196.026 Recovery = Not calculated 421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15 QC value within limits for Sr 421.552 Recovery = Not calculated 337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Tl 190.801 Recovery = Not calculated 92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated	Q	C value	greater	than t	he upper	: limit f	or Sb 206	.836	Recovery = 1	Not ca	lculated		
QC value within limits for Se 196.026 Recovery = Not calculated  421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15  QC value within limits for Sr 421.552 Recovery = Not calculated  337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163  QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  QC value within limits for Tl 190.801 Recovery = Not calculated  192.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25  QC value within limits for Zn 206.200 Recovery = Not calculated	15	96.026	_		5.1	0.788	uq/L	ı.	3005	0.788	ua/L	1.3005	165.06%
421.552 -1937.9 -2.353 ug/L 0.3554 -2.353 ug/L 0.3554 15 QC value within limits for Sr 421.552 Recovery = Not calculated 337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Tl 190.801 Recovery = Not calculated 92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated	o	C value	within	limits:	for Se 1	96.026	Recovery	= Not	calculated		. 37		
QC value within limits for Sr 421.552 Recovery = Not calculated  337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163  QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  QC value within limits for Tl 190.801 Recovery = Not calculated  92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25  QC value within limits for Zn 206.200 Recovery = Not calculated										2 252	ua/I.	0 3664	15 10%
337.279 -57.7 -0.866 ug/L 1.4188 -0.866 ug/L 1.4188 163 QC value within limits for Ti 337.279 Recovery = Not calculated 190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Tl 190.801 Recovery = Not calculated 92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated			within							2.333	ug, 1	0.3554	19.104
QC value within limits for Ti 337.279 Recovery = Not calculated  190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6  QC value within limits for Tl 190.801 Recovery = Not calculated  92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140  QC value within limits for V 292.402 Recovery = Not calculated  206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25  QC value within limits for Zn 206.200 Recovery = Not calculated			MICHIE							A 066	/ T	3 4300	
190.801 -34.8 -2.246 ug/L 0.1451 -2.246 ug/L 0.1451 6 QC value within limits for Tl 190.801 Recovery = Not calculated 192.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated										U.866	ug/ь	1.4188	163.84*
QC value within limits for Tl 190.801 Recovery = Not calculated 92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated			MICUIN								_		
92.402 -178.4 -0.582 ug/L 0.8187 -0.582 ug/L 0.8187 140 QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated										2.246	ug/L	0.1451	6.46%
QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated	QC	value v	within	limits 1	for Tl 1			≈ Not					
QC value within limits for V 292.402 Recovery = Not calculated 206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated									8187 -	0.582	ug/L	0.8187	140.80%
206.200 -120.9 -0.606 ug/L 0.1545 -0.606 ug/L 0.1545 25 QC value within limits for Zn 206.200 Recovery = Not calculated	QC	value v	within	limits 1	for V 29	2.402 R	ecovery =	Not c	alculated		-		
QC value within limits for Zn 206.200 Recovery = Not calculated										0.606	ug/L	0.1545	25.47%
			within									3.2020	25.210
Failed. Continue with analysis.								00					

Dilution:

Sequence No.: 85
Sample ID: CCV2 120313EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:

Autosampler Location: 8
Date Collected: 03/13/12 5:02:25 PM
Data Type: Reprocessed on 03/14/12 2:45:58 PM

Mean Data: CCV2 12	031308 T.DD O.E						
Mean Data: CCV2 12		Calib.			Sample		
Boolute			Std.Dev.	Cona	Units	Std.Dev.	RSD
Analyte Ag 338.289	56145 6	364 2 ug/T.	6.10		ug/L	6.10	1.67%
OC value within	limits for Ag	338.289 Recovery	- 07 13%	304.2	ug/ D	0.10	7,010
Al 308,215			93.6	15550	ug/L	93.6	0.60%
		308.215 Recovery		13330	ug/ D	33.0	01000
As 188.979	5089.3	748.8 ug/L	2.80	748.8	ug/L	2.80	0.37%
		188.979 Recovery		,1010	-5, -	2.00	0.570
В			10.76	826.2	ug/L	10.76	1.30%
<del>-</del>		Recovery = 110.16%			3/		
Ba 233.527	194578.7		8.47	747.7	ug/L	8.47	1.13%
		233.527 Recovery			-g/ -	• • • • • • • • • • • • • • • • • • • •	
Be 313.107	5057341.8	· -	8.91	748.3	ug/L	8.91	1.19%
		313.107 Recovery			-5		
		39280 ug/L 1		39280	ug/L	190.7	0.49%
		315.887 Recovery			J.		
Cd 214.440	479275.1	766.1 ug/L	9,41	766.1	ug/L	9.41	1.23%
QC value within	limits for Cd :	214.440 Recovery	= 102,14%		-		
	83689.7		9.30	758.2	ug/L	9.30	1.23%
QC value within	limits for Co	228.616 Recovery	<b>= 101.10%</b>		_		
Cr 267.716	90775.8	748.1 ug/L	7.54	740.1	ug/L	7.54	1.01%
QC value within	limits for Cr	267.716 Recovery	<b>⇒ 99.75%</b>				
Cu 327.393	112587.3	719.5 ug/L	9.35	719.5	ug/L	9.35	1.30%
		327.393 Recovery					
Fe 273.955	579781.2	14910 ug/L	176.8	14910	ug/L	176.8	1.19%
QC value within	limits for Fe	273.955 Recovery	= 99.42%				
K 766.490	58259.6		62.2	15080	սց/և	62.2	0.41%
		66.490 Recovery =					
		40430 ug/L		40430	ug/L	164.5	0.41%
QC value within		205.213 Recovery			_		
Mn 257.610		794.0 ug/L		794.0	ug/L	7.17	0.90%
		257.610 Recovery			4-		
Mo 202.031	42601.3	751.8 ug/L	1.84	751.0	ug/L	1.84	0.24%
		202.031 Recovery			-		
		18610 ug/L		18610	ug/L	70.3	0.38%
		89.592 Recovery					
Ni 231.604	68272.1	748.1 ug/L	9.51	748.1	ug/L	9.51	1.27%
	limits for N1 2	231.604 Recovery		2057	/ T	- 1	A 16B
P 213.617			6.3	3057	ug/L	6.3	0.16%
OC value within	10007 1	13.617 Recovery = 776.2 ug/L	2 20	226.2	ug/L	2 20	0.30%
				110.2	ug/ L	2,30	0.30%
	6130.1	220.353 Recovery : 742.3 ug/L	10.55	742.3	va /T.	10.55	1.42%
Sb 206.836		206.836 Recovery		742.3	ug/n	10.55	1.420
Se 196.026	EUAU 3	781.6 ug/L	2.00	781,6	na/L	2.00	0.26%
		196.026 Recovery		701,0	ացյո	2.00	0.20%
Sr 421.552	615242.5	747.0 uq/L	2.78	747.0	na/L	2.78	0.37%
		121.552 Recovery		747.0	ug/ H	2.70	0.370
Ti 337.279	52040.7	782.8 ug/L	7.19	782.8	na/t.	7.19	0.92%
		37.279 Recovery			~3, •		J.J20
Tl 190.801	12038.0	785.1 ug/L	2.35	785.1	pa/Ti	2.35	0.30%
		.90.801 Recovery			-31 -	2.23	3.500
V 292.402	219648.6	745.3 ug/L	9.23	745.3	uq/L	9.23	1.24%
		2.402 Recovery =			37		
Zn 206.200	152145.5	776.1 ug/L	9.96	776.1	uq/L	9.96	1.28%
OC value within		06.200 Recovery			J	- <del></del>	
All analyte(s) pass							
	_						

Sequence No.: 86 Sample ID: CCB 120313EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 2 Date Collected: 03/13/12 5:07:30 PM Data Type: Reprocessed on 03/14/12 2:45:59 PM

Mean Data: CCB 120	313EA I:PB O:EA Mean Corrected	deldh			Sample		
	Mean Corrected	Calib.	GLd Day	Cond	TTmd box	Std.Dev.	RSD
Analyte	Intensity	Conc. Units	0.3066	0.257	ug/L	0.3066	119.09%
Ag 338.289	39.7	0.257 ug/L		U.2J7	ug/ n	0.5000	
	limits for Ag 338	.289 Recovery =	39.2769	_6 3N1	ug/L	39.2769	623.35%
Al 308.215	-11.b				ug/ 11	33.2.0	
QC value within	limits for Al 308	0,215 Recovery =	0.1493	. n n4n	ug/L	0.1493	375.05%
As 188.979	0.3	0,040 ug/L			ug/ II	0.220	
	limits for As 188	1,979 Recovery =	O DINO	_2 120	ug/L	2.9108	93.00%
B	-18.0	-3.130 ug/L		-3.130	ug/ n	2.3100	33.000
	limits for B Rec	overy = Not card	culateu	-0.100	υα /T.	0 <b>0</b> 508	59.59%
Ba 233.527	-27.1	-0.100 ug/L			ug/ n	0.0330	22.020
QC value within	limits for Ba 233	.527 Recovery #	NOC CALCULATED		uq/L	0 0459	59.09%
Be 313.107	-452.8	-0.078_ug/L			ug/ n	0.0437	33.050
QC value within	limits for Be 313	1.107 Recovery =	Not calculated		/ 7	13,77	2 429
Ca 315.887	6811.5	401.7 ug/L	13.77	401.7	ug/L	13,77	3.430
QC value greate	r than the upper 1	imit for Ca 315.	.887 Recovery =	NOT C	arcutaced	0.0100	14.88%
CA 214 440	~4B.9	-0.080 կգ/ե	0.0120	-0.080	ug/L	0.0120	14,005
QC value within	limits for Cd 214	.440 Recovery =	<ul> <li>Not calculated</li> </ul>			0.0385	BB 228
Co 228 616	33.6	0.307 uq/L	0.2375	0.307	ug/L	0.2375	77.33%
OC value within	limits for Co 228	.616 Recovery =	<ul> <li>Not calculated</li> </ul>	ì			
Cr 267 716	15.9	0.131 ug/L	0,1115	0.131	ug/L	0.1115	85,24%
OC value within	limits for Cr 267	7.716 Recovery =	<ul> <li>Not calculated</li> </ul>	l			
Cu 327 393	72.3	0.463 ug/L	1.5867	0.463	ug/L	1.5867	342.84%
OC value within	limits for Cu 327	.393 Recovery =	<ul> <li>Not calculated</li> </ul>	l			
Po 272 055	~1004.1	-26.51 uq/L	0.371	-26.51	ug/L	0.371	1.40%
OC value within	limits for Fe 273	.955 Recovery =	<ul> <li>Not calculated</li> </ul>	l			
К 766.490	169.2	43.55 ug/L	135.420	43.55	ug/L	135.420	310.95%
N 700,430	limits for K 766.						
	29.5	0.785 ug/L	2.4784	0.785	ug/L	2.4784	315.54%
Mg 285.213	limits for Mg 285	213 Recovery :	Not calculated				
	0.2	~0.003 ug/L	0.2703	-0.003	ug/L	0.2703	>999.9%
Mn 257.610	limits for Mn 257	.0.003 ag/B	= Not calculated		3,		
	-21.0	-0.376 ug/L	0.2602	-0.376	ug/L	0.2602	69.26%
Mo 202.031	limits for Mo 202	-0.370 ug/m 1 031 Degovery -	- Not calculated		··J, –		
	TIMICE FOR MO 202	84.24 ug/L	6.034	R4 . 24	ug/L	6.034	7.16%
Na 589 592	868.3	04.24 ug/D			~5, –		
QC value within	limits for Na 589	7.592 Recovery -	0.3700	n 244	ug/L	0.3700	151.81%
Ni 231.604	22.4	0.244 ug/L			49/ =		
	limits for Ni 231	1.604 Recovery	A KASA	_n 374	uq/L	0.6334	169.46%
P 213.617	-4.1	-0.374 ug/L	V.0334	-0.574	ug/ L	0.0054	407.200
	limits for P 213	617 Recovery =	NOC CATCUTACEO	_1 100	ug/L	0 5232	47.22%
Pb 220.353	-26.9	-1.108 ug/L	0.5232		ug/ D	0.5252	4,1220
QC value within	limits for Pb 220	353 Recovery	= NOC Calculated	l 4 20 <i>c</i>	u~/r	0.8269	19.29%
Sb 206.836	35.4	4.286 ug/L	0.8268	4.280	ug/L -laulatad	0.0200	19.230
QC value greate	r than the upper	limit for SD 206	.836 Recovery	NOT C	arcuraceu	0.6798	202 028
Co 106 026	-1.1	-0.173 uq/L	0.6790	-0.173	пд\г	0.6790	332.020
QC value within	limits for Se 196	5.026 Recovery	not calculated	i	,-	0 2062	4.70%
O- 401 EEO	572N 1	6.949 ua/L	0.3263	6.949	ug/L	0.3263	4.700
QC value greate	r than the upper	limit for Sr 421	.552 Recovery =	Not C	alculated	0 (430	27 418
m4 227 270	-155.2	-2.346 uq/L	0.6432	-2.340	ug/L	0.6432	27.41%
QC value within	limits for Ti 33'	7.279 Recovery	Not calculated	i			30 600
ጥን 100 ፀለ1	-44.7	-2.882 uq/L	1.1147	-2.882	ug/L	1.1147	38.68%
OC value within	limits for Tl 190	0.801 Recovery :	≓ Not calculated	1			0 500
17 202 402	137.8	0.460 uq/L	0.0424	0.460	ug/L	0.0424	9.23%
OC value within	limits for V 292	.402 Recovery =	Not calculated				
7n 206 200	203.4	1.024 ug/L	0.0709		ug/L	0.0709	6.93%
OC value within	limits for Zn 200	5.200 Recovery	Not calculated	į			
QC Failed. Contin	ue with analysis.	_					
50 1000m; 00.16m;	······································						

## METALS EPA SW846 - 6010B Raw Data



Sequence No.: 78 Sample ID: AY56657801

Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.12 g

Dilution:

Autosampler Location: 92
Date Collected: 03/13/12 4:42:51 PM
Data Type: Reprocessed on 03/14/12 2:45:51 PM

Mean Data: AY566	57S01							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Cona.	Unite	Std.Dev.	RSD
Ag 338.289	4373.5	28,37	ug/L	0.196	2.533	mg/kg	0.0175	0.69%
Al 308.215	147402.1	71520	ug/L	269.3	6386	mg/kg	24.0	0.38%
As 100.979	239.0	35.16	ug/L	5,846	3.139	mg/kg	0.5220	16.63%
В	-382.4	296.4	ug/L	7.94	26.47	mg/kg	0.709	2.68%
Ва 233.527	713 <b>75.</b> 8	253.1	ug/L	0.73	22.60	mg/kg	0.066	0.29%
Be 313.107	8879.5	-7.524	ug/L	0.0450	-0.672	mg/kg	0.0040	0.60%
Ca 315.887	47482402.7	2800000	ug/L	14038.3	250000	mg/kg	1253.4	0.50%
Cd 214.440	2105.6	-20.50	ug/L	0.335	-1.831	mg/kg	0.0300	1.64%
Co 228,616	2609.7	-0.927	ug/L	0.7468	-0.083	mg/kg	0.0667	80.53%
Cr 267.716	9444.2	77.84	ug/L	1,151	6.950	mg/kg	0.1027	1.48%
Cu 327.393	1081.9	57.66	ug/L	1.336	5.148	mg/kg	0.1193	2.32%
Fe 273.955	2100635.7	52150	ug/L	203.8	4656	mg/kg	18.2	0.39%
K 766.490	62092.4	13780	ug/L	132.3	1230	mg/kg	11.8	0.96%
Mg 285.213	702068.3	22590	ug/L	137.6		mg/kg	12.3	0.61%
Mn 257,610	77075.7	1074	ug/L	3.0	95.85		0.268	0.28%
Mo 202.031	58.4	-23.34	սց/L	1.504	-2.084	mg/kg	0.1343	6.44%
Na 589.592	12106.0	-194.5	ug/L	19.72	-17.37	mg/kg	1.761	10.14%
Ni 231.604	5099.5	25.50	ug/L	2.023	2.277	mg/kg	0.1806	7.93%
P 213.617	23571.5	2148	սց/ե	8.5	191.8	mg/kg	0.76	0.40%
Pb 220.353	726.1	29.94	ug/L	2.445	2.673	mg/kg	0.2183	8.17%
Sb 206.836	-68.5	-8.289	ug/L	2.4738	-0.740	mg/kg	0.2209	29,85%
Se 196.026	-56.0	-8.640	ug/L	7.8638	-0.771	mg/kg	0.7021	91.02%
Sr 421,552	774056.1	910.1	ug/L	4.40	81.26	mg/kg	0.393	0.48%
Ti 337,279	28759.9	394.2	ug/L	3.78	35.20		0.338	0.96%
T1 190.801	-267.0	-14.10	ug/L	0.781	-1.259	mg/kg	0.0697	5.54%
V 292.402	50848.9	136.7		0.32	12.21		0.029	0.23%
Zn 206.200	18878.7	7.242	ug/L	0.7230	0.647	mg/kg	0.0646	9.98%

Sequence No.: 79 Sample ID: AY56658801

Analyst: EA

Logged In Analyst (Original) : chemist metals

Dilution:

Initial Sample Wt: 1.11 g

Autosampler Location: 93 Date Collected: 03/13/12 4:45:39 PM Data Type: Reprocessed on 03/14/12 2:45:52 PM

Mean Data: A	Y56658901							
110uii Budat I	Mean Correct	ed.	Calib.			Sample	l	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev	. RSD
Ag 338.289	3538.4	22.96	ug/L	0.327	2.068	mg/kg	0.0295	1.42%
Al 308.215	227586.6	112400	ug/L	1840.2	10120	mg/kg	165.8	1.64%
As 188.979	330.9	48.68	ug/L	2.833		mg/kg	0.2553	5.82%
B	~1043.4	26 <b>6.</b> 8	ug/L	7.24	24.04	mg/kg	0.652	2.71%
Ba 233.527	93817.7	334.3	ug/L	2.12	30.12	mg/kg	0.191	0.64%
Be 313.107	17231.1	-4.498		0.1477	~0.405	mg/kg	0.0133	3.20%
Ca 315.887	41991959.7	2476000	ug/L	36645.2	223100	mg/kg	3301.4	1.48%
Cd 214.440	3241.1	-18.02	ug/L	0.397	-1.624	mg/kg	0.0358	2.21%
Co 228.616	3 <b>90</b> 9. <b>0</b>	11.31	ug/L	0.371	1.019	mg/kg	0.0334	3.20%
Cr 267.716	14475.8	119.3		0.51	10.75	mg/kg	0.046	0.42%
Cu 327.393	1988.8	59.70	ug/L	0.674	5.379	mg/kg	0.0608	1.13%
Fe 273.955	3360779.1	85120	ug/L	463.9	7668	mg/kg	41.8	0.54%
K 766.490	91738.1	21740	ug/L	348.7	1959	mg/kg	31.4	1.60%
Mg 285,213	812277.2	26550	ug/L	469.8	2392	mg/kg	42,3	1.77%
Mn 257.610	116911.9	1654	•	12.2	149.0	J. J	1,10	0.74%
Mo 202.031	108.6	-17.34	ug/L	1.462	-1.562		0.1317	0.43%
Na 589.592	10979.5	-161.3	•	47,99	-14.53		4.324	29.75%
Ni 231.604	7310.1	51.97	ug/L	1.902	4.682	mg/kg	0.1713	3.66%
P 213.617	20876.6	1903	ug/L	11.5	171.4		1.04	0.61%
Pb 220.353	1187.9	48.97	ug/L	0.680	4.412	mg/kg	0.0613	1.39%
Sb 206.836	-103.8	-12.55	ug/L	2.848	-1.131	mg/kg	0.2565	22.68%
Se 196.026	-31.9	-4.915		6.0950	~0.443	mg/kg	0.5491	124.02%
Sr 421.552	656995.6	770.6	ug/L	13.12	69.42	mg/kg	1.182	1.70%
Ti 337,279	45180.9	645.9		4,85	58.19		0.437	0.75%
Tl 190.801	-338.3	-10.96		3.132	-0.988		0.2821	28.56%
V 292.402	70617.0	196.9		0.81	17.74	mg/kg	0.073	0.41%
Zn 206.200	28018.1	61.66	ug/L	2.211	5.555	mg/kg	0.1992	3.59%

Sequence No.: 80 Sample ID: AY56659801

Analyst: BA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.13 g

Dilution:

Autosampler Location: 94

Date Collected: 03/13/12 4:48:24 PM

Data Type: Reprocessed on 03/14/12 2:45:53 PM

Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data:	AY56659801							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	620.2	4.023	ug/L	0.6528	0.356	mg/kg	0.0578	16.22%
Al 308.215	751874.3	378600		5313.3	33500	mg/kg	470.2	1.40%
As 188.979	800.5	117.8		5.71		mg/kg	0.505	4.84%
B	-3942.4	179.1		12.79	15.85	mg/kg	1.132	7,14%
Ba 233.527	390707.4	1454	ug/L	19.1		mg/kg	1.69	1.31%
Be 313.107	58784.3	8.979	ug/L	0.1144		mg/kg	0.0101	1.27%
Ca 315.887	23235544.8	1370000	ug/L	7077.2	121200		626.3	0.52%
Cd 214.440	7947.1	-9.175	ug/L	0.2390	-0.812		0.0212	2.61%
Co 228.616	10957.0	73.69		1.042	6.521		0.0922	1.41%
Cr 267.716	41478.2	341.8	ug/L	4.69	30.25	mg/kg	0.415	1.37%
Cu 327.393	11301.2	108.1	ug/L	1.72	9.566	mg/kg	0.1522	1.59%
Fe 273.955	9089180.7	234600		987.9	20760	mg/kg	87.4	0.42%
K 766.490	181520.9	45980		577.6	4069	mg/kg	51.1	1.26%
Mg 285,213	1195391.4	40250	ug/L	568.6	3562	mg/kg	50.3	1.41%
Mn 257.610	335436.6		ug/L	46.7	427.2	mg/kg	4.13	0.97%
Mo 202.031	-307.1	-5.422		1.7534	-0.480	mg/kg	0.1552	32,34%
Na 589.592	13223.9	526.1	ug/L	14.48	46.56	mg/kg	1.282	2.75%
Ni 231.604	17889.2	173.8		1.73	15.38	mg/kg	0.153	1.00%
P 213.617	17664.5	1610	ug/L	20.2	142.5	mg/kg	1.79	1.26%
Pb 220.353	3666.1	151.1		2.31	13.38	mg/kg	0.204	1.53%
Sb 206.836	-193.8	-23.43	ug/L	2.343	-2.074		0.2073	10.00%
Se 196.026	-13.5	-2.075		6.0874	-0.184	mg/kg	0.5387 2	93.37%
Sr 421,552	300360.4	345.9	ug/L	4.93	30.61		0.437	1.43%
Ti 337.279	130318.2	1942	ug/L	10.0	171.9	mg/kg	1.59	0.93%
Tl 190.801	-920.2	-7.641	ug/L	2.4524	~0.676		0.2170	32.09%
V 292.402	210684.1	635.2		8.26	56.21	πg/kg	0.731	1.30%
Zn 206.200	74592.1	323.2	ug/L	4.81	28.60	mg/kg	0.426	1.49%

Sequence No.: 81 Autosampler Location: 95 Sample ID: AY56660S01 Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.14 g

Dilution:

Date Collected: 03/13/12 4:51:17 PM Data Type: Reprocessed on 03/14/12 2:45:54 PM

Mean Data:	AY56660801							
	Mean Correc	ted	Calib.			Sample	1	
Analyte	Intensit	y Conc.	Unite	Std.Dev.	Conc.	Units	Std.Dev	RSD
Ag 338.289	2524.5	16.38	ug/L	0.731	1.437	mg/kg	0.0641	4.46%
Al 308.215	407359.8	203700	ug/L	2503.3	17870	mg/kg	219.6	1.23%
As 188.979	507.2	74.62	ug/L	4.364	6.546	mg/kg	0.3828	5.85%
В	-2073.9	221,2	ug/L	3.78	19.40	mg/kg	0.332	1.71%
Ba 233.527	172801.3	630.7	ug/L	2.16	55.32	mg/kg	0.189	0.34%
Be 313.107	28033.9	0.072		0.0994	0.006	mg/kg	0.0087	138.52%
Ca 315.887	34263836.9	2020000	ug/L	22712.4	177200	mg/kg	1992.3	1.12%
Cd 214,440	9156.1	-7.448	ug/L	0.4868	-0.653	mg/kg	0.0427	6.54%
Co 228.616	5682.5	27.36	ug/L	0.529	2.400	mg/kg	0.0464	1,93%
Cr 267.716	24172.3	199.2	ug/L	2.88	17.48	mg/kg	0.253	1.45%
Cu 327.393	6496.5	83.14	սց/Ն	0,898	7.293	mg/kg	0.0788	1.08%
Fe 273.955	5267929.3	135000	սց/և	497.0	11840	mg/kg	43.6	0.37%
K 766.490	135142.6	33390	ug/L	392.2		mg/kg	34.4	1.17%
Mg 285.213	1044660.8	34750	ug/L	431.6	3049	mg/kg	37.9	1.24%
Mn 257,610	167745.5	2394	ug/L	29.9	210.0	mg/kg	2.62	1.25%
Mo 202.031	-131.8	-14,40	ug/L	1.296	-1.263	mg/kg	0.1137	9.00%
Na 589.592	11650.6	101.2	ug/L	40.23	8.879	mg/kg	3.5294	39.75%
Ni 231.604	11085.8	96.19	ug/L	2.158	8.437	mg/kg	0.1893	2.24%
P 213.617	18789.4	1712		27.9	150.2	mg/kg	2.45	1.63%
Pb 220.353	2185.1	90.09	ug/L	2.129	7.903	mg/kg	0.1867	2.36%
Sb 206.836	-92.0	-11.13	ug/L	5.451	-0.976	mg/kg	0.4781	48.98%
Se 196.026	5.2	0.795	ug/L	2.3249	0.070	mg/kg	0.2039	292.50%
Sr 421.552	581057.8	682.1	ug/L	9.24	59.84	mg/kg	0.811	1.35%
Ti 337.279	77290.8	1135		13.9	99,59		1.216	1.22%
Tl 190.801	-568.0	-13.34	ug/L	5.444	-1.170		0.4776	40.81%
V 292.402	120321.5	353.6		1.27	31.01		0.111	0.36%
Zn 206.200	51987,4	194.4	ug/L	4.84	17.05	mg/kg	0.425	2.49%

Sequence No.: 82 Sample ID: AY56661901

Analyst: EA

Logged In Analyst (Original) : chemist metals Initial Sample Wt: 1.09 g

Dilution:

Autosampler Location: 96

Date Collected: 03/13/12 4:54:07 PM

Data Type: Reprocessed on 03/14/12 2:45:55 PM

Mean Data: AY566	61801							
110411 24047 111000	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	Unite	Std.Dev.	RSD
Ag 338.289	2830.9	18.37		0.548		mg/kg	0.0503	2,99%
Al 308.215	378661.9	189000		2433.3		mg/kg	223.2	1,29%
As 188.979	456.2	67.11		3.240	6.157	mg/kg	0.2972	4.83%
В	-1593.8	268.2		3.25		mg/kg	0.299	1.21%
Ba 233.527	167853.3	613.9		3.84		mg/kg	0.353	0.63%
Be 313.107	21595.7	-1.141		0.1028	-0.105		0.0094	9.01%
Ca 315.887	37440448.9	2207000	ug/L	14870.2	202500		1364.2	0.67%
Cd 214.440	5527.3	-13,89	սց/ե	0.051	-1.275		0.0047	0.37%
Co 228.616	4971.2	19.92	ug/L	0.617	1.828		0.0566	3.10%
Cr 267.716	21811.9	179.8	ug/L	0.57	16.49	mg/kg	0.052	0.32%
Cu 327,393	7030.5	89.00	ug/L	1,409	8.166	mg/kg	0.1293	1.58%
Fe 273.955	4686381.4	119700		834.0	10980	mg/kg	76.5	0.70%
K 766.490	136405.8	33560		266.9	3079	mg/kg	24.5	0.80%
Mg 285.213	1190224.9	39650	ug/L	510.1	3638	mg/kg	46.8	1.29%
Mn 257.610	171361.7	2444		28.8	224.2	mg/kg	2.64	1.18%
Mo 202.031	~10.9	-15.02		0.578	-1.378	mg/kg	0.0530	3.85%
Na 589.592	11996.4	49.36		25.113	4.520	mg/kg	2.3039	50.88%
Ni 231.604	11406.3	98.17	ug/L	1.390	9.007	mg/kg	0.1275	1.42%
P 213.617	19063.9	1730		17.4	159.4	mg/kg	1.59	1.00%
Pb 220.353	1838.6	75.80		0.408	6.954	mg/kg	0.0374	0.54%
Sb 206.836	-116.2	~14.05		2.500	-1.289	mg/kg	0.2293	17.78%
Se 196.026	-26.4	-4.072		6.0919	-0.374	mg/kg	0.5589	149.59%
Sr 421.552	603655.3	707.9		0.04	64.94	mg/kg	0.811	1.25%
Ti 337,279	81496.8	1196		19.0	109.7		1,74	1.59%
Tl 190.801	-564.5	-13.16		3.280	-1.208		0.3009	24.92%
V 292.402	104825.4	304.2		2.12	27.91		0.194	0.70%
Zn 206.200	60433.2	232.4	ug/L	3.14	21.32	mg/kg	0.288	1.35%

Sequence No.: 76

Sample ID: 120312A-3050G-BLK

Analyst: EA

Logged In Analyst (Original) : chemist_metale

Initial Sample Wt: 1 g

Dilution:

Autosampler Location: 90 Data Collected: 03/13/12 4:35:51 PM Data Type: Reprocessed on 03/14/12 2:45:49 PM

Mean Data:	120312A-3050G-BLK						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Unite	8td.Dev.	Conc.	Units	Std.Dev. RSD
Ag 338.289	-5.2	-0.033	ug/L	0.8368	-0.003	mg/kg	0.0837 >999.9%
Al 308.215	301.5	149.3		25.78	14.93	mg/kg	2.578 17.26%
As 188.979	-1,1	-0.161	ug/L	1.2485	-0.016	mg/kg	0.1248 775.17%
В	-49.2	-7.352	ug/L	7.9720	-0.735	mg/kg	0,7972 108.44%
Ba 233.527	229.7	0.817		0.1240	0.082	mg/kg	0.0124 15.17%
Be 313.107	-262.8	-0.015	ug/L	0.0669	-0.001		0.0067 459.18%
Ca 315.887	42341.7		ug/L	53.3	249.6	mg/kg	5.33 2.14%
Cd 214.440	7.4	-0.023		0.0354	-0.002	mg/kg	0.0035 151.98%
Co 228.616	-23.3	-0.264	ug/L	0.0392	-0.026	mg/kg	0.0039 14.81%
Cr 267.716	147.1	1.213		0.0909	0.121	mg/kg	0.0091 7.50%
Cu 327.393	216.3	1.448	ug/L	1.2913	0.145	mg/kg	0.1291 89.18%
Fe 273.955	11035.7	284.3	ug/L	2.46	28.43	mg/kg	0.246 0.87%
K 766.490	-214.3	-57.74	ug/L	28.342	-5.774	mg/kg	2.8342 49.09%
Mg 285.213	2922.6	98.95	ug/L	2.419	9.895	mg/kg	0.2419 2.44%
Mn 257.610	514.4	7.396		0.9182	0.740	mg/kg	0.0918 12.41%
Mo 202.031	17.3	0.299	ug/L	0.1615	0.030	mg/kg	0.0161 54.08%
Na 589.592	1786.5	172.4	ug/L	32.84	17,24	mg/kg	3.284 19.05%
Ni 231.604	61.8	0.644	ug/L	0.1023	0.064	mg/kg	0.0102 15.89%
P 213.617	218.8	19,94		0.722	1.994	mg/kg	0.0722 3.62%
Pb 220.353	21.5	0.886	ug/L	0.5012	0.089	mg/kg	0.0501 56.54%
Sb 206.836	-378.9	-45.82	ug/L	0.339	-4.582	mg/kg	0.0339 0.74%
Se 196.026	10.3	1.588		1.4261	0.159	mg/kg	0.1426 89.78%
Sr 421.552	26975.4	32.76	ug/L	0.401	3.276	mg/kg	0.0401 1.22%
Ti 337.279	593.6	8.910		0.9302	0.891	mg/kg	0.0930 10,44%
Tl 190.801	23.6	1.643		0.5777	0.164	mg/kg	0.0578 35.16%
V 292.402	212.7	0.629		0.1982	0.063	mg/kg	0.0198 31.53%
Zn 206.200	1534.2	7.714	ug/L	0.0696	0.771	mg/kg	0.0070 0.90%

______

Sequence No.: 77

Sample ID: 120312A-3050G-LCS

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1 g

Dilution:

Autosampler Location: 91
Date Collected: 03/13/12 4:39:21 PM
Data Type: Reprocessed on 03/14/12 2:45:50 PM

Initial Sample Vol:

Sample Prep Vol: 100 mL

Mean Data: 120								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Unita	Std.Dev.		Unite	Std.Dev.	RØD
Ag 338.289	15015.4	97.41		1.304	9.741	mg/kg	0.1304	1.34
Al 308.215	4463.4		ug/L	25.1	218.6	mg/kg	2.51	$1.15^{\circ}$
As 180,979	1869.8	275,1		2.42	27.51	mg/kg	0.242	0.08
В	1553.8	275.1	ug/L	5.14	27.51	mg/kg	0.514	1.87
Ba 233.527	68671.8	264.6	ug/L	3.97	26.46	mg/kg	0.397	1.50
Be 313.107	373835.8	56.01	ug/L	0.768	5.601	mg/kg	0.0768	1.37
Ca 315.887	484137.4	28510	ug/L	179,9	2851	mg/kg	18.0	0.638
Cd 214.440	33831.4	53.93		0.808		mg/kg	0.0808	1.50
Co 228.616	30175.7	273.3		4.50	27.33	mg/kg	0.450	1,65
Cr 267.716	34446.6	203.9	ug/L	4.12	28.39	mg/kg	0.412	1.45
Cu 327.393	41288.0	263.6		5.05		mg/kg	0.505	1.92
Fe 273.955	41963.2	1003		14.2	100.3	mq/kg	1.42	1.42
K 766.490	20907.9	5399	ug/L	78.3	539.9	mg/kg	7.83	1.45
Mg 285.213	854719.6	29330		204.6		mg/kg	20.5	0.70
Mn 257.610	20444.4	293.4		0.97	29.34	mg/kg	0.097	0.33
Mo 202.031	14982.6	263.9	ug/L	0.63		mg/kg	0.063	0.249
Na 589.592	281127.7	27320		233.7		mg/kg	23.4	0.869
Ni 231.604	25681.5	281.2	ug/L	3.67	28.12	mq/kq	0.367	1.31
P 213.617	24595.9		ug/L	5.9	224.2		0.59	0.26
Pb 220.353	6884.2	203.0		2.03	28.38	mg/kg	0.203	0.724
Sb 206.836	2190.1	264.9		3.64		mg/kg	0.364	1.379
Se 196.026	1050.1	286.4		1.57	28.64		0.157	0.559
Sr 421.552	222191.5	269.6		2.41	26.96		0.241	0.899
Ti 337,279	10508,3	277.8		0.20	27.78		0.020	0.079
Fl 190.801	4321.4	281.8	ug/L	2,13	28.18		0.213	0.769
V 292,402	79488.2	270.6		3.76	27.06		0.376	1.399
Zn 206.200	109135.2	555.4		7.98	55.54		0.798	1.449

Sequence No.: 83

Sample ID: AY56661801-A

Analyst: EA

Logged In Analyst (Original) : ohsmist metals

Initial Sample Wt: 1.09 g

Dilution:

Autosampler Location: 97

Date Collected: 03/13/12 4:56:54 PM

Data Type: Reprocessed on 03/14/12 2:45:56 PM

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	Rød
Ag 338.289	30938.1	200.7	ug/L	1.93	18.41	mg/kg	0.177	0.969
Al 308.215	302654.1	191000	ug/L	1501.1	17520	mg/kg	137.7	0.799
As 188.979	3772.3	555.0	ug/L	8.43	50.92	mg/kg	0.773	1.529
В	1542.3	798.4	ug/L	5.37	73.24	mg/kg	0.493	0.679
Ba 233.527	273575.6	1023	ug/L	6.9	93.81	mg/kg	0.635	0.689
Be 313.107	652173.9	93.67	ug/L	0.733	8.594	mg/kg	0.0672	0.789
Ca 315.887	36934017.9	2178000	ug/L	10697.6	199800	mg/kg	981.4	0.499
Cd 214.440	60911.0	75.29	ug/L	1.095	6.907	mg/kg	0.1004	1.458
Co 228.616	54667.4	470.7	ug/L	5.38	43.19	mg/kg	0.493	1.149
Cr 267.716	81444,3	671.2	ug/L	8.05	61,58	mg/kg	0.739	1.20%
Cu 327.393	80824.1	558.4	ug/L	3.96	51.23	mg/kg	0.363	0.71%
Fe 273.955	4548286.4	116000	ug/L	916.0	10650	mg/kg	84.0	0.798
K 766.490	171821.6	42770	ug/L	875.7	3924	mg/kg	80.3	2.059
Mg 285.213	2524089.4	85460	ug/L	1601.8	7840	mg/kg	147.0	1.879
Mn 257.610	205450.1	2934	ug/L	23.3	269.2	mg/kg	2,14	0.798
Mo 202.031	25231.3	430.0	ug/L	5.60		mg/kg	0.514	1,30%
Na 589.592	539118.6	51320	ug/L	1010.6		mg/kg	92.7	1.97%
Ni 231.604	53182.7	556.5	ug/L	8.66	51.05	mg/kg	0.795	1.56%
P 213.617	61294.4	5586	ug/L	71.7	512.5	mg/kg	6.50	1.20%
Pb 220.353	12730.2	524.8	ug/L	6.43	48.15	mg/kg	0.590	1.23%
Sb 206.836	3639.8	440.2	ug/L	5.97		mg/kg	0.548	1.36%
Se 196.026	3195.6	492.6	ug/L	10.31	45.19	mg/kg	0.945	2.09%
8r <b>421</b> .552	989077.4	1177	ug/L	21.9	107.9	mg/kg	2.01	1.879
Ti 337.279	112937.0		ug/L	10.0	153.1		0.92	0.60%
Tl 190.801	6159.3	426.3		4.34	39.11	mg/kg	0.398	1.02%
V 292.402	238939.3	762.7		6.15	69.97		0.564	0.81%
Zn 206.200	230485.9	1101		9.8	101.0		0.90	0.89%

Sequence No.: 84 Sample ID: AY56661801-1/5 Analyst: EA

Logged In Analyst (Original) : chemist metals Initial Sample Wt: 1.09 g

Dilution: 5X

Autosampler Location: 98
Date Collected: 03/13/12 4:59:42 PM
Data Type: Reprocessed on 03/14/12 2:45:57 PM

Year Date: 3								
Weall Date: W	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	714.7	4.636		0,2539		mg/kg	0.1165	5.48%
Al 308.215	102381.5	51070	•	871.2	23430	mg/kg	399.6	1.71%
As 188.979	83,2	12.24	ο.	3.796		mg/kg	1,7413	31.01%
В	-431.0	79.25	ug/L	5.471	36.35	mg/kg	2.510	6.90%
Ba 233.527	47693.5	174.5	ug/L	2.18	80.03	mg/kg	0.999	1.25%
Be 313.107	5242.1	-0.533	ug/L	0.0443	-0.245	mg/kg	0.0203	8.30%
Ca 315.887	10751727.6	633900	ug/L	15462.5	290800	mg/kg	7092.9	2.44%
Cd 214.440	1424.0	-4.230	ug/L	0.2543	-1.941	mg/kg	0.1167	6.01%
Co 228.616	1502.5	6.493	ug/L	1.3090	2.978	mg/kg	0.6005	20.16%
Cr 267.716	6218.1	51.25	ug/L	1.455	23.51	mg/kg	0.667	2.84%
Cu 327.393	1349.3	21.26	ug/L	1.035	9,753	mg/kg	0.4749	4.87%
Fe 273.955	1320216.6	33710	ug/L	611.4	15470	mg/kg	280.5	1.81%
K 766.490	34465.3	8417	ug/L	157,2	3861	mg/kg	72.1	1.87%
Mg 285.213	334389.4	11130	ug/L	224.5	5107	mg/kg	103.0	2.02%
Mn 257.610	49569.6	707.0	ug/L	4.02	324.3	mg/kg	1.84	0.57%
Mo 202.031	54.8	-3.309	ug/L	1.0367	-1.518	mg/kg	0.4756	31,34%
Na 589.592	3249.6	-4.185	ug/L	6.2333	-1.920			148.95%
Ni 231.604	3238.2	27.82	ug/L	0.818	12.76		0.375	2.94%
P 213.617	5027.2	458.2	ug/L	7.98	210.2		3.66	1.74%
Pb 220.353	520.8	21.47	ug/L	1.934	9.850	J. J	0.8870	9.01%
Sb 206.836	-84.1	-10.17	ug/L	5.660	-4.663	J. J	2.5965	55.68%
Se 196.026	-42.1	-6.484	ug/L	0.4629	-2.974		0.2123	7.14%
Sr 421.552	163535.3	191.4	ug/L	3.89	87.78		1,783	2.03%
Ti 337.279	22158.1	324.7	ug/L	2.28	149.0		1.04	0.70%
Tl 190.801	-170.5	-4.504	ug/L	2.0840	-2.066	- · · ·	0.9560	46.27%
V 292.402	28779.9	83.16	- · ·	1.217	38.15	• • •	0.558	1.46%
Zn 206.200	17696.2	68.53	ug/L	1.852	31.44	mg/kg	0.849	2.70%

# 080 Metals Standards Log Book # 34 Page # 200

											$\overline{}$	
l	1 7 10			T .	·		6	L0B/6010C 3C	SA			
۱	CN 7-13-171		5%HCLBLK		LOT	OPEN DATE	AMOUNT	STD	MANUFACTURES	LOT	EXP DATE	_
1		AMOUNT	REAGENT	MANUFACTURER	411040	12/28/11	InL	٨.	CPI	10E012-27685	04/20/12	
1	$\lambda \lambda \lambda \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	.1m 001	HC1	ВДН	K23022	12/27/11	Int	Ca	CPL	11,0008-28528	OW15/12	
١	-1001005	20 ml	HNO3	IT BAKER	KZQUZE	1222111	InL	Mg	CPi	1011213-2786	04/20/12	_
ł		Prepared in 2000 oil Di	Water	<u> </u>		<del> </del> -	Sml.	Fe	02\$1	1072245-27699	04/22/12	
١		STD 1/LD1	,6010B/6010C	1	<del></del> _			n 50 m <u>l 1%35</u> 00				_
	<b>X</b> ./	AMOUNT	STD	HANUFACTURER	LOT	EXPLATE		LOB/6010C ICS				ĺ
ď		0.5 mL	6010 LDL	ABSOLUTB	091409-25205	03/14/12	ImL	A1	Cel	10E012-27685	04/20/12	i
ij		Prepared in 50 m	NHRIONSMHC1	<del>                                     </del>		<b>_</b>		- a	CP2	11A005-28528	09/15/12	Г
Н	5731318 8731	STD 3/HD	L 6010B/6010C			<del> </del>	ImL		CPI	101/213-2786		į.
ı		INIL	CCV-A	ABSOLUTE	091409-25206	09/14/12	lmL	Mg	O2SI	1022245-27699		ļ
ij	CONT. N. 12	IML	CCV-B	ABSOLUTE	091109-25208	09/14/12	1mL	Fe		160495-01-03	03/01/12	1
l		1ML	CCV-C	ABSOLUTB	091009-25207	09/10/12	0.5mL	T SPECIAL M		100493-01-07		1
ı	1999		INHNO1/SWHCI			<u> </u>		n 50 ml 17/HEN			<del> </del> -	-
ĭ	WC+Y W.S.		6010B/6010C/6010C					010B/6010C 1C			09/17/12	
I		AMOUNT	ŜTD	PREP DATE	EXP DATE (		0.6ML	QCS KVA		110174-26548		_
H	9000000 000000000000000000000000000000	25mL	STD3	Today	1 week	l	0.6ML	QCS KV B		110174-28549	09/17/12	÷
i		25mL	(MHNOD/SWHC)	Today	1 week	1	Prepared	in 50ml 1%HD10	D3/51/HCL	.——-	<b>├</b> ──	
ì			010B/6010C	<del></del>		Τ			ļ	<del> </del> -	1 <u>—</u> .	-
1			STD	PREPDATE	EXP DATE	T			<u></u>	ļ	<b></b>	-
ij	<b>2</b>	AMOUNT	STD3	Today	1 week	T"		·		<u> </u>	<del>└─</del> ─	_
1	630000 C	15ml	INHWONNHCI	Today	1 week	†··	37.1	<del>7</del> 7-	2-1	<b>,</b>	J.,	٠.
í	P. S. V.	25mL_	TARKONSARCI	1 10003		•		_O	10 12			

9783 3/13/2

23 3/13/12

Hg WORKING STANDARD

R3235377			-1-01							
SA 2-14-2	124HNO3	/SWHCI BLK	T			69	10B/6010C IC	SA		
3711 5-14-16	AMOUNT	REAGENT	HANUFACTURES	LOT	OPEN DATE	AMOUNT	STD	MUNUFACTURES	LOT	EXP DATE -
	100 ml	HCL	BDH	451040	12/28/11	lmL	Al	CPI	10E012-27685	04/20/12
IESGATAR-C.	20 mL	HNO3	JT BAKER	K23022	12/27/11	\$mL	Ca	ÇPI	11A006-28528	09/15/12
3233200	Prepared in 2000 ml DI	Water			[	Jml	Mg	CPI	1094213-2786	
( <del>4</del> )	STD 1/LD	L 6210B/6010C				lml	Fo	O28I	1022245-27699	04/22/12
(3.3.0.2.1.X.1.X.1.X.1.X.1.X.1.X.1.X.1.X.1.X.1	AMOUNT	STD	MANUFACTURER	LOT	EXP DATE	Prepared i	o 50 ml 15/19/10	33/5%HC4		
	0.5 mL	6010 LDL	ABSOLUTB	091409-25205	09/14/12	60	10B/6010C tCS			
and the second	Prepared in 50 m	4 1%KNO3/SWHCL				1mL	Al	CPI	IDE012-27685	04/20/12
		L 6019B/6019C			i	]mL	Ca	CPI	11A005-28528	
	1MIL	CCV-A	ABSOLUTE	091409-25206	09/14/12	ImL	Mg	CPI	10H213-2788	
***************************************	IML	CCV-B	ABSOLUTE	091109-25208	09/14/12	InL	Fa	O281	1022245-27699	
	1ML	CCY-C	ABSOLUTB	091009-25207	08/10/12	0.5mL	T SPECIAL M	O2\$1	160496-01-01	03/01/12
Received and the second	Prepared in 100 m	I LYHNOD / SWHCI			Ι΄΄	Prepared	n \$0 ml 1%KNX	ээ/зинсі		
	SID 2/ CCVI	6010B/6010C/6010C				6	0103/6010C FC	v		<b></b>
	AMOUNT	STD	PREPDATE	EXP DATE		0.5ML	QCS ICY A	CPI	HC174-28548	
	25mL	STD 3	Today	1 week		0.5M2	OCS ICA B	CPI	11C174-28549	09/17/12
	25mL	1WHNOVSWHCI	Today	1 week	L	Prepared	in 50ml LXHD(C	335%HC1		ļ
3272	CCV2 6	010B/601QC								<b></b>
	AMOUNT	\$TD	PREPDATE	EXP DATE						<u></u>
####################################	15ml.	STD 3	Today	1 week		4	l	<u></u>		<u> </u>
	25ml.	1WENOVSWHCI	Today	1 week	L\$_A	£ 7 -	161-1	h	_ ا	
18/8/2022-03-15	ı . <del> </del>		-		-	10	/	/		

### Metals Digestion Worksheet

Method Name 3050B Digestion (GROSS UP)

Prep Method M3050GROSSa

Set 120312A

Units mL

Spikes 1D 1	LCSW LOT# #	1032278-30261	
Spiked ID 2		1032271-30259	
Spiked ID 3			· · · · · · · · · · · · · · · · · · ·
Spiked ID 4			
Spiked By	LO	Date:	03/12/12 9:00:00 AM
Witnessed By	KWS	Date:	03/12/12 9:00:00 AM

Starting Temp:	95 C
Ending Temp:	95 C
Temperature Type:	Mod Block
Sufficient Vol for Matrix QC:	YES
End Date/Time	03/12/12 10:45

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount	1	Start Date/Time	Comments
1 120312A Blk				1.00g	100mL	03/12/12 9:00	equip: Modblock1
2 120312A LCS		1 mL	1+2	1.00g	100mL	03/12/12 9:00	equip: Modblock1
3 AY56657	AY56657801			1.12g	100mL	03/12/12 9:00	equip: Modblock1
4 AY56658	AY56658S01		T .	1.11g	100mL	03/12/12 9:00	equip: Modblock1
5 AY56659	AY56659801			1.13g	100mL	03/12/12 9:00	equip; Modblock1
6 AY56660	AY56660801			i.14g	100mL	03/12/12 9:00	equip: Modblock1
7 AY56661 	AY56661S01		Ι.	1.09g	100mL	03/12/12 9:00	equip: Modblock1
8 AY56661 MS	AY56661S01	2mL	1+2	1.09g	- 100mL	03/12/12 9:00	equip: Modblock1
9 AY56661 MSĎ	AY56661801	2mL	1+2	1.09g	100mL	03/12/12 9:00	equip; Modblock1

Solventand/Löf#.
I:I HNO3 NA
HNO3 J.T.B K47023 0153
H2O2 EMD NA
HCL BDH 4111060 0152

Sample COCS transfer 23.3	
Sample prep employee Initials	LO
Analyst's initials	24
Date	3-12-12
Time	10:45
Moved to	Metals

Technician silnitials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/12/12 3:16:54 PM

Reviewed By: 24

Date: 3-12-12

# MERCURY EPA Method 7471B



# MERCURY EPA Method 7471B AFCEE Forms



# AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 7471B AAB #: 120312A-164750 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-US06 AY56657 B4-US05 AY56658 B4-US03 AY56659 **B4-US08** AY56660 B4-US01 AY56661 Comments: ARF: 67172 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data

Title:

package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

Diane Anderson

Project Manager

the Manager's designee, as verified by the following signature.

Signature:

Date:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US06

Lab Sample ID: AY56657

Matrix: Soil

% Solids: 89.0

Initial Calibration ID: 120312A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 12-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.05	1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US05

Lab Sample ID: AY56658

Matrix: Soil

% Solids: 89.8

Initial Calibration ID: 120312A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 12-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.08	1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US03

Lab Sample ID: AY56659

Matrix: Soil

% Solids: 88.6

Initial Calibration ID: 120312A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 12-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	
MERCURY (HG)	0.01	0.1	0.04	1	F

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-US08

Lab Sample ID: AY56660

Matrix: Soil

% Solids: 88.1

Initial Calibration ID: 120312A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 12-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0,30		

Comments:

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

% Solids: 91.5

Contract #: *G012

Lab Sample ID: AY56661

Matrix: Soil

Field Sample ID: B4-US01

Initial Calibration ID: 120312A

Date Received: 09-Mar-12

Date Prepared: 12-Mar-12

Date Analyzed: 12-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifler
MERCURY (HG)	0.01	0.1	1.27	1	

Comments:

#### AFCBE INORGANIC ANALYSES DATA SHEET I MERCURY INITIAL MULTIPOINT CALEBRATION

ylical Method:	al Method: 7471B				AAB#: 120312A-164750							
Lab Name:	Lab Name: APPL, Inc				Contract #: #G012							
instrument ID;	PR300				Date of Initial Calibration 12-Mar-12						_	
Calibration ID	alibration ID: 120312A Concentration Units (mg/L or mg/kg): mg/kg											
Analyte	Sid	RJF 1	Std	RJ? 2	SM	RF 1	Skd 4	RF	Sid 5	RJF 4	1	Q
		0.004	0.000521	0.009	0.001042	0.020	0.002083	7	<del>                                     </del>			
Mercury	0.000208	0.004	0.000321	V.007	0.001.042	0.020	0.002063	0.038	0.005208	0.093	0.99997	1

AFCEB FORM I-3A

#### AFCBB INOROANIC ANALYSES DATA SHBET 3 MBRCURY INITIAL MULTIPOINT CALIBRATION

ytical Mothod: 7471B			P4	AAB #: 120312A-164750  Contract #: *G012				
Lab Name	Lab Name: APPL, Inc							
Instrument 1D				Date of Initial Calibration: 12-Mar-12				
Calibration ID:	120312A		Concen	tration Units (mg/L or mg/kg)	mg/kg			
Analyte	Std	RF	<del>                                     </del>	· · ·		Т	r	<del>                                     </del>
	6	6	<del>-  </del>					ļ
Mercury	0.010420	0.188			<u> </u>		0.99997	I
Метситу	0.010420	0.188				<u> </u>	r = correlat	ion co
Mercury  Comments:		0.188			. ,			ion co

AFCBB FORM I-3A

## APCED INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Meth	od:7471B			_		AAB#	: 120312A-164	750		<b>-</b>		
Lab Na	ne: APPL, Inc.			_	Contract #: *C012					_		
Instrument 1	D: PB300			<del>_</del>	Initial Calibration ID: 120312A					_		
2nd Source	ID. <u>ICV 03/12/</u>	12 11:37		_	ICV ID: ICV 03/12/12 11:37							
CCV #1	D: <u>CCV 03/12</u>	12 [1:4]		_		CCV #21D	: CCV 03/12/1	2 12:03		_		
		Concentration	on Units (m	g/L or mg/kg) <u>r</u>	mg/Kg			-				
							•					
Analyte	2nd	Source Calib Verification		Initial Calibration Verification			Continuing Calibration Verification					Q
	Bxpected	Found	%D	Expected	Found	%D	Bxpected	Found 1	%D	Found 2	%1)	$\top$
Mercury (Hg)	0.00417	0.00425	1.8%	0.00417	0.00425	1.8%	0.005208	0.00531	1.9%	0.00567	8.9%	+-
Соппре	its;			···	-		<u>-</u>			·····		<u>-</u>

#### APCEE INORGANIC ANALYSES DATA SHBET 4 CALIBRATION VERIFICATION

Analytical Method: 7471B	AAB #: <u>120312A-164750</u>
Lab Name: APPI, Inc.	Contract #: *G012
Instrument ID: PB300	Initial Calibration ID: 120312A
2nd Source ID: ICV 03/12/12 11:37	ICV ID: ICV 03/12/12 11:37
CCV #1 ID: CCV 03/12/12 12:25	CCV #2 ID:
Concentration Units (mg/L	or mg/kg); mg/Kg

	2nd :	Source Calil	oration		Initial Calibrat	ton		Cont	inuing Calibra	ition		
Analyte		Verification	n		Verification Verification				l Q l			
	Expected	Found	%D	Expected	Found	%D	Bxpected	Found	%D	Found	%D	
	_			_			ŕ	1		2		
Mercury (Hg)	0.00417	0.00425	1.8%	0.00417	0.00425	1.8%	0.005208	0.00560	7.6%			

AFCUE FORM I-4 Page 2 of 2	

## AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120312A-BLK

Initial Calibration ID: 120312A

Analyte	Method Blank	RL	Q
MERCURY (HG)	<rl< td=""><td>0.1</td><td>U</td></rl<>	0.1	U

Comments:

ARF: 67172, Sample: AY56661

#### AFCBB INORGANIC ANALYSES DATA SHEBT 5 BLANKS

/L2/12 11:40	(	Concentration	n Units (mg/L o	ontract #: <u>*G012</u> or mg/kg): <u>mg/kg</u>					
****	(	Concentration		or mg/kg):mg/kg					
****									
8/12/12 11:44		-	Initial Calibration ID:120312A						
CCB #1 ID: CCB 03/12/12 11:44			CCB #2 ID: CCB 03/12/12 12:06				CCB #3 ID: CCB 03/12/12 12:27		
A-BLK		_	Initial Calib	ration ID:120312A					
Initial Calibration Blank	Contin	uing Calibra	tion Blank	Method Blank	RL	Q			
22,	1	2	3						
<rl td="" ∣<=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rj.< td=""><td>0.1</td><td></td><td>1</td></rj.<></td></rl<></td></rl<></td></rl<></td></rl>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rj.< td=""><td>0.1</td><td></td><td>1</td></rj.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rj.< td=""><td>0.1</td><td></td><td>1</td></rj.<></td></rl<></td></rl<>	<rl< td=""><td><rj.< td=""><td>0.1</td><td></td><td>1</td></rj.<></td></rl<>	<rj.< td=""><td>0.1</td><td></td><td>1</td></rj.<>	0.1		1		
2	Calibration Blank	Initial Contin Calibration Blank	Initial Continuing Calibra Calibration Blank 1 2	Initial Continuing Calibration Blank Calibration Blank  1 2 3	Initial Continuing Calibration Blank Calibration Blank Blank 1 2 3	Initial Continuing Calibration Blank Calibration Blank Blank 1 2 3	Initial Continuing Calibration Blank Calibration Blank Blank  1 2 3		

## AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7471B

AAB #: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120312A LCS

Initial Calibration ID: 120312A

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.67	0.70		77-120	

Comments:

ARF: 67172, Sample: AY56661

## AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7471B

AAB#: 120312A-164750

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-US01	08-Mar-12	09-Mar-12	12-Mar-12	28	4	
B4-US03	08-Mar-12	09-Mar-12	12-Mar-12	28	4	
B4-US05	08-Mar-12	09-Mar-12	12-Mar-12	28	4	
B4-US06	08-Mar-12	09-Mar-12	12-Mar-12	28	4	
B4-US08	08-Mar-12	09-Mar-12	12-Mar-12	28	4	

Comments:

ARF: 67172

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7471B ICAL ID: 120312A

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PE300

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Calib Blank	12-Mar-12	11:22	12-Mar-12	11:22
0.208	12-Mar-12	11:23	12-Mar-12	11:23
0.520833	12-Mar-12	11:25	12-Mar-12	11:25
1.041667	12-Mar-12	11:26	12-Mar-12	11:26
2.083333	12-Mar-12	11:28	12-Mar-12	11:28
5.208	12-Mar-12	11:30	12-Mar-12	11:30
10.417	12-Mar-12	11:32	12-Mar-12	11:32
ICV	12-Mar-12	11:37	12-Mar-12	11:37
ICB	12-Mar-12	11:40	12-Mar-12	11:40
CCV	12-Mar-12	11:41	12-Mar-12	11:41
CCB	12-Mar-12	11:44	12-Mar-12	11:44
120312A-BLK	12-Mar-12	11:47	12-Mar-12	11:47
120312A-LCS	12-Mar-12	11:49	12-Mar-12	11;49
AY56657S01	12-Mar-12	11:53	12-Mar-12	11:53
AY56658S01	12-Mar-12	11:55	12-Mar-12	11:55
AY56659S01	12-Mar-12	11:56	12-Mar-12	11:56
AY56660S01	12-Mar-12	11:57	12-Mar-12	11:57
AY56661S01	12-Mar-12	11:59	12-Mar-12	11:59
CCV	12-Mar-12	12:03	12-Mar-12	12:03
CCB	12-Mar-12	12:06	12-Mar-12	12:06
AY56661S01-1/5	12-Mar-12	12:16	12-Mar-12	12:16
CCV	12-Mar-12	12:25	12-Mar-12	12:25
ССВ	12-Mar-12	12:27	12-Mar-12	12:27

\$ample_ID	EL	Date	Time	Mean SA	Units	Batch ID	Wt	Dilu
Calib Blank	Hg	03/12/12	11:22:43	-	μg/L	_		
0.2083 03-12-12 LO	Hg	03/12/12	11:23:56		μg/L			
0.520833	Нg	03/12/12	11:25:09		μg/L			
1.041667	Hg	03/12/12	11:26:23		μg/L			
2.083333	Hg	03/12/12	11:28:25		μg/L			
5,206	Hg	03/12/12			μg/L			
10.417	Hg	03/12/12	11:32:31		μg/L			
ICV 03-12-12 LO	Hg	03/12/12	11:37:27	4.246689				
ICB 03-12-12 LO	Hg	03/12/12	11:40:11	0.112266	μg/L			
CCV 03-12-12 LO	Hg	03/12/12	11:41:26	5.30792	μg/L			
CCB 03-12-12 LO	Hg	03/12/12	11:44:30	0.129274	μg/L			
120312A BLK	Нg	03/12/12	11:47:16	0.005551	mg/kg	120312A-7471GROSS	0.6	
120312A BLK	-H <del>g</del>	03/12/12	41:48:31	0.002961	mg/kg	120312A-7471MIS-	<del>2.5</del>	· —
120312A LC\$	Hg	03/12/12	11:49:44	0.700305	mg/kg	120312A-7471GROSS	0.6	i
120312A-LCS	- <del>Hg</del>	03/12/12	<del>11:51:45</del>	0.175122	mg/kg	<del>120312A-7471MIS</del>	2.5	
AY56657S01	Hg	03/12/12	11:53:46	0.041422	mg/kg	120312A-7471GROSS	0,67	1
AY56656S01	Hg	03/12/12	11:55:00	0.071336	mg/kg	120312A-7471GROSS	0.67	
AY56659S01	Hg	03/12/12	11:56:14	0.033003	mg/kg	120312A-7471GROSS	0.68	ı
AY56660\$01	Hg	03/12/12	11:57:27	0.263415	mg/kg	120312A-7471GROSS	0.66	ı
AY56661S01	Hg	03/12/12	11:59:30	1.160416	mg/kg	120312A-7471GROSS	0.66	
AY56661S01 MS	- <del>Hg</del>	03/12/12	<del>12:01:33</del>	<del>1.856017</del>	mg/kg	120312A-7471GROSS-	- <del>0.6</del> 6	
CCV 03-12-12 LO	Hg	03/12/12	12:03:37	5.672228	μg/L			
CCB 03-12-12 LO	Hg	03/12/12	12:06:02	0.194257	μg/L			
AY56661S01 MSD-	- <del>Hg</del>	03/12/12	12:11:20	<del>1.840928</del>	mg/kg	120312A-7471GROSS	- <del>0.66</del>	<del></del>
AY56661S01-A	- <del>Hg</del>	03/12/12	12:14:12	<del>1.72815</del> 4	mg/kg	120312A-7471GROSS	- <del>0.66</del>	<del></del>
AY56661S01-1/5	Hg	03/12/12	12:16:33	1.210425	mg/kg	120312A-7471GROSS	0.66	- 5
AY55787S01	- <del>Hg</del>	03/12/12	<del>12:18:37</del>	0.179729	mg/kg	120312A-7471MIS	<del>2.5</del> 4	
AY55787S01 MS	- <del>Hg</del>	03/12/12	12:20:42	<del>0.31485</del>	mg/kg	120312A-7471MIS	<del>2.5</del> 4	
AY55787S01 MSD	- <del>Hg</del>	03/12/12	12:22:45	0.365572	mg/kg	<del>120312A-7471MIS</del>	<del>2,5</del> 4	
CCV 03-12-12 LO	Hg	03/12/12	12:25:04	5.603553	μg/L			
CCB 03-12-12 LO	Hg	03/12/12	12:27:39	0.09101	μg/L			
R=0.99997								

#### A.P.P.L. INC.

9

#### CVAA SERIAL DILUTION

CLIENT SAMPLE NO.

AY56661S01	
	ļ

Lab Name: APPL, INC.

Contract: PARSONS

ARF No .: 67172 SAS No .: _____ SDG No .: 67172

Matrix (soil/water): SOIL

Lab Code: \$HGAFBS

Concentration Units: mg/Kg

		Serial		8		
1	Initial Sample	Dilution		Differ-		
Analyte	Result (I) C	Result (S)	С	ence	Q	М
		i				
Mercury	1.16	1,21		4.3		

03/12/12 11:59 AY56661S01 03/12/12 12:16 AY56661S01-1/5

FORM IX - IN

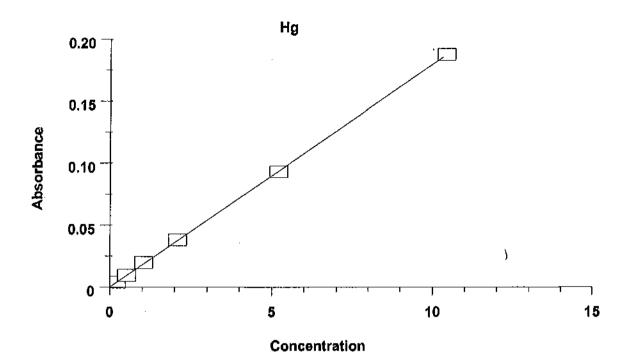
ILM02.0

# MERCURY EPA Method 7471B Calibration Data



**Parsons** 

#### Hg BY METHOD 7471B QCG 120312A-7471GROSS ANALYSIS DATE: 03/12/12


ARF#67172

#### R=0.99997

NAME	TRUE	RESULT	% RECOVERY
ICV	4.17ppb	4.24 <b>7</b>	101.8%
ICB	0ppb	0.112	
CCV-1	5.208ppb	5.308	101.9%
CCB-1	0ppb	0.129	
CCV-2	5.208ppb	5.672	108.9%
CCB-2	0ppb	0.194	
CCV-3	5.208ppb	5.804	107.6%
CCB-3	0ppb	0.091	

```
Method Name: Hg-7471 - KWS
                  Element: Hq
Date: 03/12/2012
Results Data Set: 120312A-7471GRO
Element: Hg Seq. No.: 9 Date: 03/12/2012
Sample ID: Sample
Repl
    SampleConc StndConc BlnkCorr
                         Time
 #
    μq/L
           μq/L
                  Signal
 1
                  0.001
                         11:21:27
Auto-zero performed.
Element: Hg Seq. No.: 10
                 Date: 03/12/2012
Sample ID: Calib Blank
Repl
    SampleConc StndConc BlnkCorr
                         Time
#
    μg/L
           μg/L
                 Signal
1
                  0.000
                         11:22:32
2
                  0.000
                         11:22:38
3
                  0.000
                         11:22:43
Mean:
                  0.000
SD :
                  0.000
%RSD:
                  110.82
Auto-zero performed.
Element: Hg Seq. No.: 11
                   Date: 03/12/2012
Sample ID: 0.2083 03-12-12 LO
______
    SampleConc StndConc BlnkCorr
                         Time
Repl
#
    μg/L
           \mu g/L
                 Signal
                  0.004
1
                         11:23:46
2
                  0.004
                         11:23:51
                         11:23:56
3
                  0.004
Mean:
                  0.004
SD :
                  0.000
Standard number 1 applied. [0.2083333]
Correlation Coefficient: 1,0000
                            Slope: 0.0189
______________________________
Element: Hq Seq. No.: 12 Date: 03/12/2012
Sample ID: 0.520833
Repl
                        Time
    SampleConc StndConc BlnkCorr
#
                 Signal
           μg/L
1
                  0.009
                        11:24:59
2
                  0.009
                        11:25:04
3
                  0.010
                        11:25:09
Mean:
                  0.009
                  0.000
SD :
%RSD:
                   4.14
Standard number 2 applied. [0.520833]
Correlation Coefficient: 0.9992
                            Slope: 0.0182
```

```
Element: Hg Seq. No.: 13 Date: 03/12/2012
Sample ID: 1.041667
SampleConc StndConc BlnkCorr
                           Time
     µg/L µg/L
                  Signal
 1
                    0.019
                          11:20:
11:26:17
                           11:26:12
 2
                    0.020
                    0.020
 3
                           11:26:23
Mean:
                    0.020
SD :
                    0.001
%RSD:
Standard number 3 applied. [1.041667]
Correlation Coefficient: 0.9993
                               Slope: 0.0188
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 14 Date: 03/12/2012
Sample ID: 2.083333
SampleConc StndConc BlnkCorr
Repl
                           Time
#
    uq/L
        \mu g/L Signal
1
                    0.036
                           11:28:14
2
                    0.038
                           11:28:19
3
                    0.040
                           11:28:25
Mean:
                    0.038
SD :
                    0.002
%RSD:
Standard number 4 applied. [2.083333]
Correlation Coefficient: 0.9997
                               Slope: 0.0184
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 15 Date: 03/12/2012
Sample ID: 5.208
SampleConc StndConc BlnkCorr
                           Time
Repl
#
    μg/L μg/L
                  Signal
                          11:30:17
                    0.089
1
                          11:30:22
                    0.094
2
                    0.097
                           11:30:27
3
                    0.093
Mean:
                    0.004
SD :
%RSD:
                    4.50
Standard number 5 applied. [5.208]
Correlation Coefficient: 0.9999
                               Slope: 0.0180
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 16 Date: 03/12/2012
Sample ID: 10.417
Repl SampleConc StndConc BlnkCorr
                           Time
#
                  Signal
    μq/L μq/L
                         11:32:20
11:32:25
                    0.180
1
2
                    0.190
                    0.195
                           11:32:31
3
Mean:
                    0.188
SD :
                    0.008
%RSD:
                    4.17
Standard number 6 applied. [10.417]
Correlation Coefficient: 1.0000
                                Slope: 0.0181
```



Calibration data for Hg					
_		Entered	Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	(μg/L)	(μg/ <b>L</b> )	Deviation	%RSD
Calib Blank	0.000		0.000	0.000097	
0.2083 03-12-12 LO	0.004	0.2083333	0.2176	0.000247	6.274565
0.520833	0.009	0.520833	0.5201	0.000389	4.143651
1.041667	0.020	1.041667	1.093	0.000503	2.543806
2.083333	0.038	2.083333	2.110	0.002135	5.600604
5.208	0.093	5.208	5.174	0.004209	4.502511
10.417	0.188	10,417	10.42	0.007863	4.174857
Correlation Coeffici	ent: 0.99997	Slope: 0.0	1807		

## MERCURY EPA Method 7471B Raw Data



Element: Hg Seq. No.: 17 Date: 03/12/2012 Sample ID: ICV 03-12-12 LO _____ Repl SampleConc StndConc BlnkCorr Time μg/L μg/L Signal 4.030 4.030 0.073 4.278 4.278 0.077 # 1 11;37:17 2 11:37:22 4.433 0.080 4.247 0.077 4.433 3 11:37:27 4,247 Mean: 0.2032 0.2032 SD : 0.004 4.79 4.79 %RSD: 4.79 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 18 Date: 03/12/2012 Sample ID: ICB 03-12-12 LO Repl SampleConc StndConc BlnkCorr Time  $\mu g/L$   $\mu g/L$  Signal #  $\overline{0.1146}$ 0.1146 0.1146 0.002 0.1168 0.002 1 11:40:00 0.1168 2 11:40:05 3 0.1054 0.1054 Mean: 0.1123 0.1123 0.002 11:40:11 0.002 0.000 5.41 SD : 0.006069 0.006069 %RSD: 5.41 5.41 QC value within specified limits. ______ Element: Hg Seq. No.: 19 Date: 03/12/2012 Sample ID: CCV 03-12-12 LO ______ SampleConc StndConc BlnkCorr Time Repl Signal Ħ μg/L μg/L 5.063 5.348 5.063 0.091 11:41:15 1 5.348 0.097 11:41:20 2 5.512 5.512 3 0.100 11:41:26 5.308 5.308 Mean: 0.096 0.2275 0.2275 0.004 SD : 4.29 4.29 %RSD: 4.29 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 20 Date: 03/12/2012 Sample ID: CCB 03-12-12 LO SampleConc StndConc BlnkCorr Repl Time  $\mu$ g/L  $\mu$ g/L Signal # 0.1152 0.1152 0.002 0.1277 0.1277 0.002 11:44:20 1 11:44:25 2 0.1450 0.003 11:44:30 3 0.1450 0.1293 0.1293 0.002 Mean: SD: 0.01496 0.01496 0.000

11.57 11.57

QC value within specified limits.

11.57

%RSD:

Method Name: Hg-7471 - KW8 Blement: Hg Date: 03/12/2012 Results Data Set: 120312A-7471GRO . Element: Hg Seq. No.: 21 Date: 03/12/2012 Sample ID: Sample Repl SampleConc StndConc BlnkCorr Time μg/L μg/L Signal 0.1288 0.1288 0.002 11:45:53 1 Auto-zero performed. Element: Hg Seq. No.: 22 Date: 03/12/2012 Sample ID: 120312A BLK _____ Repl SampleConc StndConc BlnkCorr Time 

 Rep1
 SampleCone
 Stractore
 BinkColl

 #
 mg/kg
  $\mu$ g/L
 Signal

 1
 0.005826
 0.03641
 0.001

 2
 0.005688
 0.03555
 0.001

 3
 0.005138
 0.03211
 0.001

 Mean:
 0.005551
 0.03469
 0.001

 SD:
 0.000364
 0.002275
 0.000

 %RSD:
 6.56
 6.56
 6.56

 11:47:02 11:47:11 11:47:16 Element: Hg Seq. No.: 23 Date: 03/12/2012 Sample ID: 120312A BLK SampleConc StndConc BlnkCorr Repl Time mg/kg μg/L 0.002839 0.07393 # Signal 11:48:20 11:48:25 11:48:31 0.001 1 0.002740 0.07135 2 0.001 3 0.003305 0.08607 0.002 Mean: 0.002961 0.07712 0.001 SD : 0.000302 0.007858 0.000 %RSD: 10.19 10.19 10.19 Element: Hg Seq. No.: 24 Date: 03/12/2012 Sample ID: 120312A LCS Repl SampleConc StndConc BlnkCorr Time # mg/kg  $\mu$ g/L Signal 0.6721 0.7058 0.7230 0.7003 4.201 0.076 4.411 0.080 4.519 0.082 4.377 0.079 1 11:49:33 2 11:49:39 3 11:49:44 0.7003 4.377 0.02588 0.1618 3.70 3.70 Mean: 0.079 0.1618 0.003 3.70 3.70 SD : 0.02588 %RSD:

An extra autosampler wash has been performed.

Sample	nt: Hg Se e ID: 120312 	eq. No.: 25 PA LCS	Date		
Repl	SampleCond	StndCone	BlnkCorr	Time	
#	mg/kg	μg/L	Signal		
ï	0.1681	4.379	0.079	11:51:34	
2	0.1762	4.589	0.083	11:51:39	
3	0.1810	4.713			
				11:51:45	
Mean:		4.560	0.082		
SD :	•	0.1692	0.003	•	
%RSD:	3.71	3.71	3.71		
An ext	tra autosamp	oler wash ha	s been perf	ormed.	
Eleme	nt: Hg Se	q. No.: 26		03/12/2012	
Sample 	e ID: AY5665	7501			
Repl	SampleCond	StndConc	BlnkCorr	Time	<b>_</b>
#	mg/kg	μg/L	Signal	1100	
				11.52.25	
1	0.04283	0.2989		11:53:35	
2		0.2919		11:53:41	
3		0.2764	0.005	11:53:46	
Mean:	0.04142	0.2891	0.005		
SD :	0.001651	0.01152	0.000		
%RSD:	3.98	3.98	3.98		
Elemer		g. No.: 27		03/12/2012	
			D 1 1- 00		
Repl	SampleConc	Stnaconc	BinkCorr	Time	
Repl #	mg/kg	μg/L	Signal	Time	
#	mg/kg	μg/L	Signal	Time 11:54:49	
# 1	mg/kg 0.06686	μg/L 0.4666	Signal 0.008	11:54:49	
# 1 2	mg/kg 0.06686 0.07458	μg/L 0.4666 0.5205	Signal 0.008 0.009	11:54:49 11:54:54	
# 1 2 3	mg/kg 0.06686 0.07458 0.07257	μg/L 0.4666 0.5205 0.5065	Signal 0.008 0.009 0.009	11:54:49	
# 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134	μg/L 0.4666 0.5205 0.5065 0.4979	Signal 0.008 0.009 0.009 0.009	11:54:49 11:54:54	
1 2 3 Mean: SD :	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796	Signal 0.008 0.009 0.009 0.009 0.001	11:54:49 11:54:54	
# 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134	μg/L 0.4666 0.5205 0.5065 0.4979	Signal 0.008 0.009 0.009 0.009	11:54:49 11:54:54	
# 1 2 3 Mean: SD : %RSD:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62	Signal 0.008 0.009 0.009 0.009 0.001 5.62	11:54:49 11:54:54 11:55:00	=======================================
# 1 2 3 Mean: SD : kRSD:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62	Signal 0.008 0.009 0.009 0.009 0.001 5.62	11:54:49 11:54:54	=======================================
# 1 2 3 Mean: SD : kRSD: ===== Elemen 3ample	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28	Signal 0.008 0.009 0.009 0.009 0.001 5.62	11:54:49 11:54:54 11:55:00	=======================================
# 1 2 3 Mean: ED: RSD: Elemen Bample	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec ID: AY56659	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 	Signal 0.008 0.009 0.009 0.001 5.62 Date:	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: ED: RSD: Elemen Bample Rep1 #	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 2. No.: 28 9S01 StndConc μg/L	Signal 0.008 0.009 0.009 0.001 5.62 Date:	11:54:49 11:54:54 11:55:00	=======================================
# 1 2 3 Mean: ED: RSD: E==== Elemen Bample Repl #	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 t: Hg Sec ED: AY5665 SampleConc mg/kg 0.03320	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 The strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the strate of the	Signal 0.008 0.009 0.009 0.001 5.62 Date:	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: ED: RSD: Elemen Rample Rep1 # 1	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec ED: AY5665: SampleConc mg/kg 0.03320 0.03276	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: 5D : kRSD: ===== Elemen 3 ample  Rep1 # 1 2 3	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec EXECUTE SEC SampleConc mg/kg 0.03320 0.03276 0.03306	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: SD: kRSD: ===== Elemen Sample Rep1 # 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec EXECUTE SEC SampleConc mg/kg 0.03320 0.03276 0.03306 0.03300	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 EXECUTE: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341 0.2338	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: SD: kRSD: ===== Elemen Sample Rep1 # 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec EXECUTE SEC SampleConc mg/kg 0.03320 0.03276 0.03306	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: SD: %RSD: ====== Elemen Sample Rep1 # 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec EXECUTE SEC SampleConc mg/kg 0.03320 0.03276 0.03306 0.03300	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 EXECUTE: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341 0.2338	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00	
# 1 2 3 Mean: SD: %RSD: ===== Elemen Sample Repl # 1 2 3 Mean: SD: &RSD:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec ExampleConc mg/kg 0.03320 0.03276 0.03306 0.03300 0.000226 0.68	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00 03/12/2012 Time 11:56:03 11:56:09 11:56:14	
# 1 2 3 Mean: SD: RSD: ===== Elemen Sample Rep1 # 1 2 3 Mean: SD: RSD:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62 at: Hg Sec ExampleConc mg/kg 0.03320 0.03276 0.03306 0.03300 0.000226 0.68	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00 03/12/2012 Time 11:56:03 11:56:09 11:56:14	
# 1 2 3 Mean: SD: RSD: Elemen 3 ample Repl # 1 2 3 Mean: RSD: RSD: Elemen Gample	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec t: Hg Sec 0.03320 0.03276 0.03306 0.03300 0.000226 0.68  t: Hg Sec	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62 q. No.: 28 9S01 StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00 03/12/2012 Time 11:56:03 11:56:09 11:56:14	
# 1 2 3 Mean: ED: RSD: Elemen Sample Repl # 1 2 3 Mean: ERSD: ERSD: ERSD: ERSD: ERSD: ERSD:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec Et: Hg Sec O.03320 0.03276 0.03306 0.03300 0.000226 0.68  t: Hg Sec ID: AY56666	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.004	11:54:49 11:54:54 11:55:00 03/12/2012 Time 11:56:03 11:56:09 11:56:14	
# 1 2 3 Mean: BD: RSD: Elemen Sample Pepl # 1 2 3 Mean: GRSD: Elemen Sample # 4 1 2 3 Mean: GRSD: Elemen Elemen Elemen Elemen	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec Et: Hg Sec TD: AY5665:  SampleConc mg/kg 0.03320 0.03276 0.03306 0.03300 0.000226 0.68  t: Hg Sec TD: AY56666	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  StndConc μg/L StndConc μg/L	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 Date:	11:54:49 11:54:54 11:55:00  03/12/2012  Time  11:56:03 11:56:09 11:56:14	
# 1 2 3 Mean: ED: RSD: Elemen Sample 1 2 3 Mean: ERSD: ERSD: Elemen Sample 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec t: Hg Sec TD: AY5665:  SampleConc mg/kg 0.03320 0.03276 0.03306 0.03300 0.000226 0.68  t: Hg Sec TD: AY56666	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.004 0.005 Date:	11:54:49 11:54:54 11:55:00  03/12/2012  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16	
# 1 2 3 Mean: BRSD: Elemen Sample Repl # 1 2 3 Mean: BRSD: Elemen Sample Tean: BRSD: Elemen Tean Tean Tean Tean Tean Tean Tean Te	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785 1.890	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.004 0.005 Date: BlnkCorr Signal 0.032 0.032 0.034	11:54:49 11:54:54 11:55:00  11:55:00  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16 11:57:16 11:57:22	
# 1 2 3 Mean: SD: Elemen Sample Repl # 1 2 3 Mean: SD: Elemen Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785 1.890 1.923	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.006 0.68 Date: BlnkCorr Signal 0.032 0.034 0.035	11:54:49 11:54:54 11:55:00  03/12/2012  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16	
# 1 2 3 Mean: BRSD: Elemen 3 Mean: BRSD: Elemen 4 1 2 3 Mean: BRSD: Elemen 4 1 2 3 Mean: BRSD: Elemen 4 1 2 3 Mean: BRSD: Elemen 4 1 2 3 Mean:	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec Et: Hg Sec O.03320 0.03276 0.03306 0.03300 0.00226 0.68  at: Hg Sec U. SampleConc mg/kg 0.0520 0.68	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785 1.890 1.923 1.866	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.006 0.68 Date: BlnkCorr Signal 0.032 0.032 0.034 0.035 0.034	11:54:49 11:54:54 11:55:00  11:55:00  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16 11:57:16 11:57:22	
# 1 2 3 Mean: SD: Elemen Sample Repl # 1 2 3 Mean: SD: Elemen Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample Ample	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at: Hg Sec at	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785 1.890 1.923	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.006 0.68 Date: BlnkCorr Signal 0.032 0.034 0.035	11:54:49 11:54:54 11:55:00  11:55:00  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16 11:57:16 11:57:22	
# 1 2 3 Mean: BD: BRSD: Bample Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1 2 3 Mean: Bepl # 1	mg/kg 0.06686 0.07458 0.07257 0.07134 0.004007 5.62  at: Hg Sec Et: Hg Sec O.03320 0.03276 0.03306 0.03300 0.00226 0.68  at: Hg Sec U. SampleConc mg/kg 0.0520 0.68	μg/L 0.4666 0.5205 0.5065 0.4979 0.02796 5.62  q. No.: 28 9801  StndConc μg/L 0.2352 0.2320 0.2341 0.2338 0.001600 0.68  q. No.: 29 0801  StndConc μg/L 1.785 1.890 1.923 1.866	Signal 0.008 0.009 0.009 0.001 5.62 Date: BlnkCorr Signal 0.004 0.004 0.004 0.004 0.004 0.006 0.68 Date: BlnkCorr Signal 0.032 0.032 0.034 0.035 0.034	11:54:49 11:54:54 11:55:00  11:55:00  Time  11:56:03 11:56:09 11:56:14  Time  11:57:16 11:57:16 11:57:22	

Element: Hg Seq. No.: 30 Date: 03/12/2012 Sample ID: AY56661801 Repl SampleConc StndConc BlnkCorr Time 

 Repl
 SampleConc
 Stractor
 BinkCorr
 Time

 #
 mg/kg
  $\mu$ g/L
 Signal

 1
 1.119
 7.691
 0.139
 11:59:19

 2
 1.169
 8.039
 0.145
 11:59:25

 3
 1.193
 8.204
 0.148
 11:59:30

 Mean:
 1.160
 7.978
 0.144

 SD:
 0.03807
 0.2618
 0.005

 %RSD:
 3.28
 3.28

 An extra autosampler wash has been performed. Element: Hg Seq. No.: 31 Date: 03/12/2012 Sample ID: AY56661S01 MS Repl SampleConc StndConc BlnkCorr Time # mg/kg  $\mu$ g/L Signal 1 1.793 12.33 0.223 12:01:22 Sample absorbance is greater than that of the highest standard. 2 1.864 12.82 0.232 12:01:28
Sample absorbance is greater than that of the highest standard. 3 1.911 13.14 0.237 12:01:33 Sample absorbance is greater than that of the highest standard. Mean: 1.856 12.76 0.231 SD: 0.05920 0.4070 0.007 %RSD: 3.19 3.19 3.19 Sample absorbance is greater than that of the highest standard. An extra autosampler wash has been performed. _______ Element: Hg Seq. No.: 32 Date: 03/12/2012 Sample ID: CCV 03-12-12 LO ______ Repl SampleConc StndConc BlnkCorr Time 

 Repl
 SampleConc
 StndConc
 BinkCorr

 #
  $\mu g/L$  Signal

 1
 5.507
 5.507
 0.100

 2
 5.703
 5.703
 0.103

 3
 5.807
 5.807
 0.105

 Mean:
 5.672
 5.672
 0.102

 SD:
 0.1519
 0.1519
 0.003

 %RSD:
 2.68
 2.68
 2.68

 12:03:27 12:03:32 12:03:37 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 33 Date: 03/12/2012 Sample ID: CCB 03-12-12 LO Repl SampleConc StndConc BlnkCorr Time # \(\mu_g/L\) \(\mu_g/L\) \(\signal\)
1 \(0.2143\) \(0.2143\) \(0.2143\) \(0.004\)
2 \(0.1878\) \(0.1878\) \(0.1878\) \(0.003\)
3 \(0.1806\) \(0.1806\) \(0.1806\) \(0.003\)
Mean: \(0.1943\) \(0.1943\) \(0.004\)
SD : \(0.01774\) \(0.01774\) \(0.000\)
%RSD: \(9.13\) \(9.13\) \(9.13\) 12:05:51 12:05:57 12:06:02

QC value within specified limits.

```
_______
Element: Hg Seq. No.: 34 Date: 03/12/2012
Sample ID: Sample
   Repl SampleConc StndConc BlnkCorr
                               Time
 # \mug/L \mug/L Signal
     0.1782
 1
             0.1782 0.003 12:09:22
Auto-zero performed.
Element: Hg Seq. No.: 35 Date: 03/12/2012
Sample ID: AY56661S01 MSD
Repl SampleConc StndConc BlnkCorr Time
 # mg/kg \mug/L Signal 1 1.781 12.25 0.221 12:11:18
Sample absorbance is greater than that of the highest standard.
2 1.849 12.71 0.230 12:11:24
Sample absorbance is greater than that of the highest standard.
3 1.892 13.01 0.235 12:11:29
Sample absorbance is greater than that of the highest standard.
Mean: 1.841 12.66 0.229
SD: 0.05595 0.3847 0.007
             3.04
                     3,04
     3.04
%RSD:
Sample absorbance is greater than that of the highest standard.
An extra autosampler wash has been performed.
______
Element: Hg Seq. No.: 36 Date: 03/12/2012
Sample ID: AY56661S01-A
Repl
     SampleConc StndConc BlnkCorr
                              Time
#
    mg/kg \mug/L Signal 1.700 11.69 0.211 12:14:02
 1
Sample absorbance is greater than that of the highest standard.
2 1.733 11.91 0.215 12:14:07
Sample absorbance is greater than that of the highest standard.
     1.751 12.04 0.218 12:14:12
Sample absorbance is greater than that of the highest standard.
Mean: 1.728 11.88 0.215
SD: 0.02573 0.1769 0.003
%RSD: 1.49 1.49 1.49
Sample absorbance is greater than that of the highest standard.
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 37 Date: 03/12/2012
Sample ID: AY56661501-1/5
SampleConc StndConc BlnkCorr
                               Time
Repl
# mg/kg \mug/L Signal
1 1.187 1.632 0.029
2 1.200 1.650 0.030
3 1.244 1.711 0.031
Mean: 1.210 1.664 0.030
SD : 0.03019 0.04151 0.001
%RSD: 2.49 2.49 2.49
                               12:16:22
                               12:16:27
                               12:16:33
```

90

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 38 Date: 03/12/2012 Sample ID: AY55787S01 _____ Repl SampleConc StndConc BlnkCorr Time # mg/kg µg/L Signal 1 0.1729 4.575 0.083 12:18:26 2 0.1809 4.787 0.087 12:18:32 3 0.1853 4.903 0.089 12:18:37 Mean: 0.1797 4.755 0.086 SD : 0.006284 0.1663 0.003 %RSD: 3.50 3.50 An extra autosampler wash has been performed. Element: Hg Seq. No.: 39 Date: 03/12/2012 Sample ID: AY55787801 MS _____ Repl SampleConc StndConc BlnkCorr Time # mg/kg µg/L Signal
1 0.3035 8.030 0.145 12:20:31
2 0.3163 8.370 0.151 12:20:37
3 0.3247 8.591 0.155 12:20:42
Mean: 0.3149 8.330 0.151
SD : 0.01067 0.2824 0.005
%RSD: 3.39 3.39 3.39 An extra autosampler wash has been performed. Element: Hg Seq. No.: 40 Date: 03/12/2012 Sample ID: AY55787801 MSD Repl SampleConc StndConc BlnkCorr Time An extra autosampler wash has been performed. Element: Hg Seq. No.: 41 Date: 03/12/2012 Sample ID: CCV 03-12-12 LQ Repl SampleConc StndConc BlnkCorr Time 

 Repl
 Samplecone
 Stndcone
 Binkcorr

 #
  $\mu g/L$  Signal

 1
 5.393
 5.393
 0.097

 2
 5.645
 5.645
 0.102

 3
 5.773
 5.773
 0.104

 Mean:
 5.604
 5.604
 0.101

 SD:
 0.1934
 0.1934
 0.003

 RSD:
 3.45
 3.45
 3.45

 12:24:53 12:24:58 12:25:04

QC value within specified limits.

An extra autosampler wash has been performed.

Elemen Sample	nt: Hg Sec : ID: CCB 03	q. No.: 42 -12-12 LO	Date	03/12/2012	
Repl	SampleConc	StndConc	BlnkCorr	Time	
#	μg/Ъ	μg/L	Signal		
1	0.09214	0.09214	0.002	12:27:28	
2	0.09745	0.09745	0.002	12:27:33	
3	0.08344	0.08344	0.002	12:27:39	
Mean:	0.09101	0.09101	0.002		
SD :	0.007072	0.007072	0.000		
%RSD:	7.77	7.77	7.77		
QC val	ue within sp	ecified li	mits.		

Metals Standards Log Book # 34 Page # 063 2H2/12 Hg STANDARD Hg STOCK ICV CPI Lot # 11D140-28885 Ultra Scientific Lot# 10ug/ml in 1% HNO3 LOT#K47023 K00200-26307 Prep.-Date 02/17/12 10ug/ml in 1% HNO3 LOT#K47023 Exp. Date 03/16/12 02/17/12 Prep.Date Bv KWS Exp. Date 03/16/12 By KWS Manufacturer: J.T. Baker Manufacturer: J.T. Baker STANNOUS CHLORIDE 125g SnCl2 MACRON Lot #K12620 100 mL HCI J.T. BAKER Lot #K29026 Brought to 500 mL with DI Water Prep. Date 02/17/12 Exp. Date 02/16/13 By KWS CP-MS SYANOARDS 6020/6020A/3015/3051A 12 1168 Standard 2 02/24/12 02/24/12 Amount 500 uL STD 6520/6020 A Prep 1% HNO3/1.0%HCL 20 mL HNO3 / 2000 mL Di Water Standard 4 Prepared in 50 mL of 1% HNO3/1,0% HCL 02/17/12 Lot # K23022 20mL HCL / 2000mL Di Water Standard 4 02/24/12 Lol #K43032 Amount 50 ut 02/24/12 Standard 4 nlemai Standard Mix: Prep 02/18/2012 Standard 4 Prepared in 50 mL of 1% HNO3/1.0% HCL 02/17/12 Amount 50 uL STO CCV-A CCV-B CCV-C 1036407-28139 1036410-28140 1100309-28141 Env. Express Env. Express ICP-MS ICV 50 bL 50 bL STO Env. Express QCS ICV A 11C174-28548 110174-28549 Prepared in 100 mL of 1% HNO3/1.0% HCL 02/17/12 Prepared in 50 mL of 1% HNO3/1.0% HCL Standard & ICSA Prep: 02/24/12 Amount 25 ut. Menufecturer Lot# 1038407-28139 1038410-28140 1 mL ICSA CP) Prepared in 6 mL of 1% HNO3/1,6% HCL 11C068-28529 CCV-A Env. Express 25 UL 25 UL CCV-B Env. Express 1100309-28141 02/17/12 ICSAB Prepa 110068-28529 0.025mL Prepared in 5 mL of 1% HNO3/1.0% HCL ICP-LOR 1023805-28210 02/24/12 Amount 50 uL STO OCV-A CCV-B CCV-C 50 uL 50 uL Env. Express 1038410-28140 50 uL CCV-C Env. Express Prepared in 10 mL of 1% HNO3/1.0% HCL 02/17/12 NBS 02/20/12 NES 02/20/12 Internal Standard Concentration Element Amt STD Vendor Lot# Final Conc. in Std Expires 500ul 1000 vo/mL CPI 10L079-27639 5000 ug/L 06/10/12 XUU. 1000 ug/mL CPI 101155-28574 5000 ug/L 09/25/12 500uL 1000 ww/mL Ко CPI 10A107-28578 5000 ug/L 09/25/12 OOUL. ÇPI 1000 bg/mL JТЪ 118054-28575 5000 ug/L 09/25/12 500UL 1000 ug/ml, Sc Ge 1024073-28527 5000 ug/L DB/18/17 500uL 5000 ug/L 02/08/13 N8\$ Prep: 02/20/12 1%HNO3/1.0%HCL: Lot #KK23022/43032 in 100mL Expires: 03/21/12

w.

~

X. 5.

M. A.

والمراجع

فالمتحبية

للترجيز

### Mercury Digestion Worksheet

Method Name 7471A Mercury Digestion (GROSS UP Prep Method M7471GRO

Set 120312A

Units mL.

Spiked ID 1	Hg WORKING S	TANDARD prep 03-12-12
Spiked ID 2	Hg WORKING R	CV prep 03-12-12
Spiked ID 3		
Spiked ID 4.		
Spiked By	LO	Date; '03/12/12 9:00:00 AM
Witnessed By	KWS	Date: 03/12/12 9:00:00 AM

Starting Temp:	95 C	 and a series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of
Ending Temp:	95 C	
Тетр Туре:	Modblockl	· · · · · · · · · · · · · · · · · · ·
End Date/Time		 03/12/12 9:50:00 AM

<b>Jercury</b>	Calibration		
Sample	Spike Amount	Spike ID	Final Volume
0 ppb		1	96 ml
0.2 ppb	0.4 ml	1	96 ml
0.5 ppb	1 ml	i	96 ml
l ppb	2 ml	1	96 ml
2 ppb	4 ml	1	96 ml
5 ррь	10 ml	1	96 ml
5 ppb	10 ml	1	96 ml
10 ppb	20 ml	1	96 ml
ICV	8 ml	2	96 ml

Start Date/Time of Calibration 03/12/12 9:00
Sufficient Vol for Matrix QC: YES

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount	l	Start Date/Time	Comments
1 1203 12A Bik				0.60g	96mL	03/12/12 9:00	equip: Modblock1
2 120312A LCS		8mL	1	0.60g	96mL	03/12/12 9:00	equip: Modblock1
3 AY56657	AY56657\$01			0.67g	96mL	03/12/12 9:00	equip: Modblock1
4 AY56658	AY56658S01	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Ly Sugar	0.67g	96mL	03/12/12 9:00	equip: Modblock!
5 AY56659	AY56659S01			0.68g	96mL	03/12/12 9:00	equip: Modblock1
6 AY56660	AY56660801			0,68g	96mL	03/12/12 9:00	equip: Modblock I
7 AY56661	ÁY56661801		1	0.66g	96mL	03/12/12 9:00	equip: Modblock1
8 AY56661 MS	AY56661801	8mL	1	0.66g	96mL	03/12/12 9:00	equip: Modblock1
AY56661 MSD	AY56661801	8mL	1	0.66g	96mL	03/12/12 9:00	equip: Modblock1

KMnO4 12-15-11	
DECOLORIZER 12-14-11	•

Sample GOC Transfer	and the second
Sample prep employee Initials	LO
Analyst's initials	24
Date	3-12-12
Time	9:50
Moved to	netars

Teomician silnitials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/12/12 3:09:14 PM

Reviewed By:

Es.

Date: 3-12-12

Ext_ID 35202

## Wetlab Results

ARF: 67172

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons 8000 Centre Park Drive Ste 200 Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: A	<b>Y56657</b> -Client Sample ID: B4-US06		-Sample Collection Date	e: 03/08/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	1 <b>1.</b> 0	2.0	%	03/09/12	03/10/12
APPL ID: A	Y56658 -Client Sample ID: B4-US05		-Sample Collection Date	e: 03/08/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	10.2	2.0	%	03/09/12	03/10/12
APPL ID: A	<b>Y58659</b> -Client Sample ID: B4-US03		-Sample Collection Date	e: 03/08/12	Project: 74837	2.08000 CSSA
CLP MOIST	MOISTURE	11.4	2.0	%	03/09/12	03/10/12
APPL ID: A	<b>Y56660</b> -Client Sample ID: B4-US08		-Sample Collection Date	e: 03/08/12	Project: 74837	2.08000 CSSA
CLP MOIST	MOISTURE	11.9	2.0	%	03/09/12	03/10/12
APPL ID: A	<b>Y56661</b> -Client Sample ID: B4-US01		-Sample Collection Date	e: 03/08/12	Project: 74837	2.08000 CSSA
CLP MOIST	MOISTURE	8.5	2.0	%	03/09/12	03/10/12

Printed: 03/19/12 11:43:03 AM

% Moisture

**Batch:** QCG 120309-M003970

			Method:	CLP 4.0			
Sample	Container	Pan (g)	Pan+Wet (g)	Pan+Dry i (g)	Pan+Dry 2 (g)	Moisture (%)	Comments
ΛΥ56661	\$01	0.8166	6.6968	6.1986	6.1985	8.474	AY56661S01
		03/09/12 18:42	03/09/12 18:42	03/10/12 12:54	03/10/12 12:54		
ΛΥ56660	s01	0.8126	7.8344	7.0010	7.0010	11.869	AY56660S01
		03/09/12 18:41	03/09/12 18:41	03/10/12 12:54	03/10/12 12:54		
AY56659	s01	0.8208	8.1732	7.3372	7.3373	11.369	AY56659S01
		03/09/12 18:40	03/09/12 18:40	03/10/12 12:53	03/10/12 12:53		
AY56658	s01	0.8227	8.1405	7.3924	7.3925	10.222	AY56658S01
		03/09/12 18:39	03/09/12 18:40	03/10/12 12:53	03/10/12 12:53		
AY56657	s01	0.8107	6.7477	6.0961	6.0961	10.975	AY56657801
		03/09/12 18:38	03/09/12 18:39	03/10/12 12:53	03/10/12 12:53		
AY56621D	m01	0.8104	7.6044	7.4796	7.4794	1.840	AY56621M01
		03/09/12 18:37	03/09/12 18:38	03/10/12 12:53	03/10/12 12:53		
AY56621	m01	0.8256	7.8907	7.7570	7.7570	1.892	AY56621M01
		03/09/12 18:36	03/09/12 18:37	03/10/12 12:53	03/10/12 12:53		

Date/Time	Date/Time	Date/Time	Date/Time
InOven@104°C	OutOven@104°C	InOven@104°C	OutOven@104°C
03/09/12 6:42:00 PM		·	03/10/12 12:53:00 PM

Date: 03/09/12 18:42

Mettler AT200	Date	Initials	Balance	Welght	Reading	Lower Limit	Upper Limit	Comments / Is the Bubble
Mettler AT200	3/8/17	RZ	Mettler AT200	0.50	h —		<u> </u>	Centered?
Mettler AT200   208   20-20-2   8   19-9800   20-20200	1	1			0.5000 g	0.4995		yes_
Mettler AT200		_			<del> </del>			·
Mettler AT200		11	<del></del>					
Mettler AT200			·			49.9500		
OHAUS ARCI20		·				99.9000	<del></del>	ļ
OHAUS ARC120				0.10	150:004Tg			<del></del>
OHAUS ARC120						*		<del> </del>
OHAUS ARC120				1 g		·		i
OHAUS ARC120						·		<u> </u>
OHAUS ARC120   2kg   2000.00		1						<del> </del>
Mettler AT200	V	7					<del>-</del>	<del>                                     </del>
Mettler AT200	<u> </u>	\ <u> </u>	1 1110120	- ZNB	7000.40 8	1900.00	2040.00	<u> </u>
Mettler AT200	3-4-12	P.K.	Mettler AT200	0.50	O OMna	0.4006	0.5005	
Mettler AT200   20g   40,000 x   19,9800   20,0200	1	<del>                                     </del>			0.2000g			Hed !
Mettler AT200   50g   50c 2016g   49.9500   50.0500     Mettler AT200   100g   190c 2014g   99.9000   100.1000     Mettler AT200   150g   150c 2014g   99.9000   100.1000     Mettler AT200   150g   150c 2014g   149.8500   150.1500     OHAUS ARC120   0.1g   0.10 g   0.88   0.12     OHAUS ARC120   0.5g   0.50 g   0.48   0.52     OHAUS ARC120   100g   100c 20 g   98.00   102.00     OHAUS ARC120   18g   49.9500   2040.00     OHAUS ARC120   18g   49.9500   2040.00     OHAUS ARC120   18g   49.9500   20.000     Mettler AT200   12g   1.00 g   0.9990   1.0010     Mettler AT200   100g   100c 2016g   19.9800   20.0200     Mettler AT200   100g   100c 2016g   19.9800   20.0200     Mettler AT200   100g   100c 2016g   19.9800   100.1000     OHAUS ARC120   18g   10.08   10.02     OHAUS ARC120   18g   10.08   10.02     OHAUS ARC120   18g   19.9800   100.000     OHAUS ARC120   100g   100c 2016g   19.9800   20.0200     Mettler AT200   20g   100c 20g   20.9990   1.0010     Mettler AT200   100g   100c 2016g   19.9800   20.0200     Mettler AT200   100g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2016g   100c 2					4 0 000g			
Mettler AT200		<del>                                     </del>	<del></del>			-		
Mettler AT200		<del>                                     </del>	<del></del>					
OHAUS ARC120								
OHAUS ARC120		<del>                                     </del>		0.10				
OHAUS ARC120		<del>                                     </del>						
OHAUS ARC120		<del>                                     </del>						
OHAUS ARC120		<u> </u>			- 1 00 g			
OHAUS ARC120   2kg   DOOOO   B   1960.00   2040.00					10000 g			
Mettler AT200					HAN AP B			
Mettler AT200	3/10/12	1212			accor 8	1960.00	2040.00	
Mettler AT200		1	Mettler AT200	0.50	0 C000 a	0.4005	- 0.5005	Yes
Mettler AT200   20g   20.000   3g   19.9800   20.0200     Mettler AT200   50g   50.023   g   49.9500   50.0500     Mettler AT200   100g   100.223   g   99.9000   100.1000     Mettler AT200   150g   150.023   g   99.9000   150.1500     OHAUS ARC120   0.1g   g   0.08   0.12     OHAUS ARC120   0.5g   g   0.48   0.52     OHAUS ARC120   100g   g   98.00   102.00     OHAUS ARC120   1kg   g   980.00   1020.00     OHAUS ARC120   2kg   g   1960.00   2040.00     OHAUS ARC120   1g   1.000   g   19.9800   20.0200     Mettler AT200   20g   10.000   g   19.9800   20.0200     Mettler AT200   50g   50.01   3g   49.9500   50.0500     Mettler AT200   150g   100.002   g   99.900   100.1000     Mettler AT200   150g   100.002   g   99.900   150.1500     Mettler AT200   150g   100.002   g   99.900   150.1500     OHAUS ARC120   0.1g   0.02   g   0.48   0.52     OHAUS ARC120   1g   1.00   g   0.98   1.02     OHAUS ARC120   1kg   49.40   g   98.00   102.00     OHAUS ARC120   1kg   49.40   g   98.00   102.00     OHAUS ARC120   1kg   49.40   g   98.00   102.00			<del></del>					
Mettler AT200   50g   50.0e18 g   49.9500   50.0500     Mettler AT200   100g   100.aa34 g   99.9000   100.1000     Mettler AT200   150g   150.ea41 g   149.8500   150.1500     OHAUS ARC120   0.1g   g   0.08   0.12     OHAUS ARC120   0.5g   g   0.48   0.52     OHAUS ARC120   100g   g   98.00   102.00     OHAUS ARC120   1kg   g   980.00   102.00     OHAUS ARC120   2kg   g   1960.00   2040.00     OHAUS ARC120   2kg   g   1960.00   2040.00     OHAUS ARC120   2kg   g   19.800   20.0200     Mettler AT200   1g   1.000 g   19.9800   20.0200     Mettler AT200   50g   50.000 g   19.9800   20.0200     Mettler AT200   100g   100.000 g   19.9800   20.0200     Mettler AT200   100g   100.000 g   19.9800   100.1000     Mettler AT200   100g   100.000 g   19.9800   100.1000     Mettler AT200   100g   100.000 g   19.8500   150.1500     OHAUS ARC120   0.1g   0.100 g   0.98   0.12     OHAUS ARC120   100g   100.000 g   98.00   102.00					1.000 () B			
Mettler AT200				50g	(0.00() AR			
Mettler AT200		~		100				
OHAUS ARC120	V	4		1 2 2 2				
OHAUS ARC120								V
OHAUS ARC120 1g g 0.98 1.02  OHAUS ARC120 100g g 98.00 102.00  OHAUS ARC120 1kg g 980.00 1020.00  OHAUS ARC120 2kg g 1960.00 2040.00  OHAUS ARC120 1g 1.000 g 0.9990 1.0010  Mettler AT200 20g 10.000 g 19.9800 20.0200  Mettler AT200 50g 50.001 g 19.9800 20.0200  Mettler AT200 100g 100.002 g 19.9800 50.0500  Mettler AT200 100g 100.002 g 99.9000 100.1000  Mettler AT200 150g 50.001 g 149.8500 150.1500  OHAUS ARC120 0.1g 0.00 g 0.98 0.12  OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 1kg 447.4 g 980.00 102.00				0.18				
OHAUS ARC120 1kg g 980.00 1020.00 OHAUS ARC120 2kg g 1960.00 2040.00  3-12-12 (K) Mettler AT200 0.5g 0.5000 g 0.4995 0.5005 Mettler AT200 1g 1.0000 g 0.9990 1.0010 Mettler AT200 20g 10.0000 g 19.9800 20.0200 Mettler AT200 50g 50.013 g 49.9500 50.0500 Mettler AT200 100g 100.0020 g 99.9000 100.1000 Mettler AT200 150g 150.0020 g 99.9000 100.1000 Mettler AT200 150g 150.0020 g 99.9000 150.1500 OHAUS ARC120 0.1g 0.00 g 0.48 0.52 OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00				10				
OHAUS ARC120 1kg g 980.00 1020.00 OHAUS ARC120 2kg g 1960.00 2040.00  3-12-12 (K) Mettler AT200 0.5g 0.5000 g 0.4995 0.5005 Mettler AT200 1g 1.0000 g 0.9990 1.0010 Mettler AT200 20g 10.0000 g 19.9800 20.0200 Mettler AT200 50g 50.013 g 49.9500 50.0500 Mettler AT200 100g 100.0020 g 99.9000 100.1000 Mettler AT200 150g 150.0020 g 99.9000 100.1000 Mettler AT200 150g 150.0020 g 99.9000 150.1500 OHAUS ARC120 0.1g 0.00 g 0.48 0.52 OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00  OHAUS ARC120 100g 100.000 g 98.00 102.00	7.00						100.00	
OHAUS ARC120 2kg g 1960.00 2040.00  3-12-12 (**) Mettler AT200 0.5g 0.5000 g 0.4995 0.5005 (**)  Mettler AT200 1g 1.0000 g 0.9990 1.0010 (**)  Mettler AT200 20g 10.0000 g 19.9800 20.0200 (**)  Mettler AT200 50g 50.0013 g 49.9500 50.0500 (**)  Mettler AT200 100g 100.0020 g 99.9000 100.1000 (**)  Mettler AT200 150g 100.0020 g 99.9000 150.1500 (**)  OHAUS ARC120 0.1g 0.00 g 0.08 0.12 (**)  OHAUS ARC120 100g 100.000 g 98.00 102.00 (**)  OHAUS ARC120 100g 100.000 g 98.00 102.00 (**)  OHAUS ARC120 100g 100.000 g 98.00 102.00 (**)	VO						102.00	*/
3-12   2   6   Mettler AT200   0.5g   0.5000 g   0.4995   0.5005   1.0010			***************************************				1020.00	W.
Mettler AT200   1g   1.0000 g   0.9990   1.0010				—— <u></u>		1900.00	2040.00	
Mettler AT200   1g   1.0000 g   0.9990   1.0010	3-12-12	70K	Mettler AT200	0.50	55000 a	0.4005	0.5005	
Mettler AT200   20g   10.000   g   19.9800   20.0200     Mettler AT200   50g   50/013 g   49.9500   50.0500     Mettler AT200   100g   100.002   g   99.9000   100.1000     Mettler AT200   150g   150.003   g   149.8500   150.1500     OHAUS ARC120   0.1g   0.00   g   0.08   0.12     OHAUS ARC120   0.5g   0.50   g   0.48   0.52     OHAUS ARC120   1g   1.00   g   0.98   1.02     OHAUS ARC120   100g   100.00   g   98.00   102.00     OHAUS ARC120   1 kg   149.4   1 g   980.00   1020.00		<del></del>						THA .
Mettler AT200   50g   500013 g   49.9500   50.0500     Mettler AT200   100g   100.0026 g   99.9000   100.1000     Mettler AT200   150g   50.0036 g   149.8500   150.1500     OHAUS ARC120   0.1g   0.10 g   0.08   0.12     OHAUS ARC120   0.5g   0.50 g   0.48   0.52     OHAUS ARC120   1g   1.00 g   0.98   1.02     OHAUS ARC120   100g   100.00 g   98.00   102.00     OHAUS ARC120   1kg   191.4					10000 8			
Mettler AT200   100g   100,001   g   99,9000   100,1000     Mettler AT200   150g   50,003   g   149,8500   150,1500     OHAUS ARC120   0.1g   0.10   g   0.08   0.12     OHAUS ARC120   0.5g   0.5V   g   0.48   0.52     OHAUS ARC120   1g   1.00   g   0.98   1.02     OHAUS ARC120   100g   100,00   g   98,00   102,00     OHAUS ARC120   1kg   197,4   1   g   980,00   1020,00				50g	57000130			
Mettler AT200   150g   150.00% g   149.8500   150.1500     OHAUS ARC120   0.1g   0.10 g   0.08   0.12     OHAUS ARC120   0.5g   0.5l g   0.48   0.52     OHAUS ARC120   1g   1.00 g   0.98   1.02     OHAUS ARC120   100g   100.00 g   98.00   102.00     OHAUS ARC120   1kg   191.4								
OHAUS ARC120 0.1g 0 to g 0.08 0.12  OHAUS ARC120 0.5g 0.5D g 0.48 0.52  OHAUS ARC120 1g 1.00 g 0.98 1.02  OHAUS ARC120 100g 100,00 g 98.00 102.00  OHAUS ARC120 1kg 100,00 g 98.00 102.00								
OHAUS ARC120 0.5g 0.5D g 0.48 0.52  OHAUS ARC120 1g 1.0 D g 0.98 1.02  OHAUS ARC120 100g 100,00 g 98.00 102.00  OHAUS ARC120 1kg 99,4 J g 980.00 1020.00					M MA			
OHAUS ARC120					0.57) 8			
OHAUS ARC120 100g 100,00 g 98.00 102.00  OHAUS ARC120 1kg 997,4,7 g 980.00 1020.00								<del></del>
OHAUS ARC120 1kg 999.47 g 980.00 1020.00					<del></del>			
V OHATTE APOLOGO OLI 1020.00 1020.00	$ \sqrt{T}$			1kg 9	74 7			
	₩					1960.00	2040.00	<del></del>

#### DATA VERIFICATION SUMMARY REPORT

#### for B4 samples collected from

#### CAMP STANLEY STORAGE ACTIVITY

#### **BOERNE, TEXAS**

Data Verification by: Tammy Chang Parsons - Austin

#### INTRODUCTION

The following data verification summary report covers three soil samples collected from B4 at Camp Stanley Storage Activity (CSSA) on March 12, 2012. The samples were assigned to the following Sample Delivery Group (SDG):

67194

The samples in this SDG were analyzed for metals.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 2.5°C, which was within the 2-6°C range recommended by the CSSA QAPP.

#### **EVALUATION CRITERIA**

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

#### **ICP-AES Metals**

#### General

The ICP-AES metal portion of this SDG consisted of three (3) soil samples for the analysis of arsenic, barium, cadmium, chromium, copper, nickel, lead, and zinc.

The metal analyses were performed using USEPA SW846 Method 6010B. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

These samples were digested in batch #164961. All analyses were performed undiluted.

PAGE 1 OF 4

#### Accuracy

Accuracy was evaluated using the percent recovery obtained from the laboratory control sample (LCS).

The LCS recoveries for all target metals were within acceptance criteria.

#### Precision

Precision could not be evaluated due to the lack of duplicate analyses.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

All samples were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding times required by the method.

- All instrument initial calibration criteria were met.
- Low-level check standard met the criteria.
- All second source criteria were met. The initial calibration verification (ICV) sample was prepared using a secondary source.
- All continuing calibration verification (CCV) criteria were met.
- All interference check (ICSA/ICSAB) criteria were met.
- The dilution test (DT) was performed on sample B4-NT1-BOT06. This test was applicable to metals listed below:

Metal	%D	Criteria
Barium	33	
Chromium	12	0/D < 10
Copper	18	%D ≤ 10
Lead	27	

• The post digestion spike (PDS) was performed on the same sample as the DT. It was applicable for barium, cadmium, nickel, and zinc:

Metal	%R	Criteria
Arsenic	81	
Barium	70	

PAGE 2 OF 4

Cadmium	59	
Chromium	74	75 – 125%
Copper	76	
Nickel	68	
Lead	69	
Zinc	57	

The "J" flags applied to the chromium results were replaced with "F" due to (1) minor exceedance in the PDS; and (2) results were between method detection limit and reporting limit. "J" flags were applied to all non-compliant metal result.

There were one method blank and several calibration blanks associated with the metal analyses in this SDG. All blanks were compliant.

#### **Completeness**

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metal results for the samples in this SDG were considered usable. Therefore, the completeness for the lead portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

#### **MERURY**

#### General

The mercury portion of this SDG consisted of three (3) soil samples. These samples were collected on March 12, 2012 and was prepared and analyzed for total mercury using USEPA Method SW7471B.

These samples were analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

These samples were digested in batch #164958 and analyzed undiluted.

#### Accuracy

Accuracy was evaluated using the percent recovery obtain from the LCS.

The LCS recovery was within acceptance criteria.

#### Precision

Precision could not be evaluated due to the lack of duplicate analysis.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

• Comparing the COC procedures to those described in the CSSA QAPP;

PAGE 3 OF 4

- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All calibration verification criteria were met.
- DT and PDS were not applicable.

There were one method blank and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

#### Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

The mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

# **Laboratory Report**

# Parsons

# **CSSA**

Project #: 748372.06000

ARF: 67194

Samples collected: March 12, 2012

APPL, Inc.

# Data Validatable Package

for

# Project #: 748372.06000 CSSA

# ARF 67194

# **TABLE OF CONTENTS**

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	3
Chain of Custody and ARF	_8_
Method 6010B	<u> 13</u>
AFCEE Forms	14
Calibration Data	<u>33                                   </u>
Raw Data	<u>55</u>
Method 7471B	5عا
AFCEE Forms	<u>(66</u>
Calibration Data	80
Raw Data	<u>85</u>

**CASE NARRATIVE** 



## **Case Narrative**

ARF: 67194

Project: 748372.06000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)
Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

## Sample Receipt Information:

Three soil samples were received March 13, 2012, at 2.5°C. The samples were assigned Analytical Request Form (ARF) number 67194. The sample numbers and requested analyses were compared to the chain of custody. No exception was noted.

## Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
B4-NT1-BOT04	AY56792	SOIL	03/12/12	03/13/12
B4-NT1-BOT05	AY56793	SOIL	03/12/12	03/13/12
B4-NT1-BOT06	AY56794	SOIL	03/12/12	03/13/12

Percent moisture was determined using CLP 4.0.

# EPA Method 6010B Metals

### **Digestion Information:**

The soil samples were digested according to EPA method 3050B. No exception was encountered. All holding times were met.

### **Analysis Information:**

## Samples:

The samples were analyzed according to EPA method 6010B using a Perkin Elmer Optima 5300DV ICP.

### Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. In the Continuing Calibration Verification (CCV) on 3/20/12 at 16:31, cadmium and zinc exceed the 10% deviation limit at 11%D and 12%D, respectively. This CCV does not bracket any samples. All other calibration acceptance criteria were met.

#### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank.

### Spikes:

Laboratory Control Spike (LCS), post-digestion spikes (PDS) and dilution tests (DT) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-NT1-BOT06 was selected by the laboratory as the QC sample for the analytical batch. The dilution test was applicable to barium, chromium, copper and nickel, all of which exceeded the 10% deviation limit. In the PDS, six analytes recovered below the 75% lower control limit: barium at 69.9%, cadmium at 59.4%, chromium at 74.1%, nickel at 67.7%, lead at 68.8% and zinc at 57.1%. Barium, cadmium, chromium, nickel, lead and zinc are flagged with a "J" in all associated samples, in accordance with CSSA QAPP guidelines.

### Summary:

No other analytical exception is noted.

# EPA Method 7471B Mercury

## **Digestion Information:**

The soil samples were digested according to EPA method 7471B. No exceptions were encountered. All holding times were met.

## **Analysis Information:**

### Samples:

The soil samples were analyzed by EPA method 7471B using a Perkin Elmer AAnalyst 300.

### Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

### Blanks:

No target metal was detected above the reporting limit (RL) in the method blank.

### Spikes:

A Laboratory Control Spike (LCS) was used for quality assurance. All LCS acceptance criteria were met.

No sample was designated by the client for MS/MSD analysis.

### Summary:

No analytical exception is noted.

### CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or her designee, as verified by the following signature.

Sharon Dehmlow, Laboratory Director / Date

# CHAIN OF CUSTODY AND ARF

# **APPL - Analysis Request Form**

Client:	Parsons	Received by: Ti	BV		
Address:	8000 Centre Park Drive Ste 200	Date Received:	03/13/12	Time:	11:08
	Austin, TX 78754	Delivered by: Fi	ED EX		
Attn:	Tammy Chang	Shuttle Custody Se	eals (Y/N): <u>Y</u>	_ Time Zo	ne: CDT
Phone: 5	12-719-6092 Fax: 512-719-6099	Chest Temp(s): 2	.5°C		
Job: <u>7483</u>	372.06000 CSSA	Color: <u>G</u>	-BLUE	·	
PO #: <u>7</u> 4	18336.30000-00 (prime *G012)	Samples Chilled u	ntil Placed in F	Refrig/Freez	er: <u>Y</u>
Chain of C	Custody (Y/N): Y # 031212APPFA CSSA	Project Manager:	Diane Ander	son TA	
RAD Scre	en (Y/N): Y pH (Y/N): N	QC Report Type:	DVP4/AFCE	/ERPIMS/	г <b>х</b>
Turn Arou	and Type: 3 DAYS	Due Date:	03/1	16/12	

### Comments:

3-day TAT for prelims (due 03-16-12); final report due 03-23-12 pdf ARF to Tammy & Pam; send HC: 2 DVP3 with colored dividers & send DVP4 on CD to Tammy-

Definitive data needs DVP 4; needs AFCEE forms and package, Internal COC -Case Narrative. CSSA + AFCEE 3.1 QAPP. Only report MS/MSD when requested. < Case Narrative. CSSA + AFUEE 3.1 WALL SUBJECT STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET

Sample Distribution: Metals: 3-\$HGAFBS, 3-\$MTAFS(AWetals) 3-MOIST/ Other: 3M3050GROSS, 3M74		Charges	S:   Invoice To:   BOA 748336.30000 TO# 2   8000 Centre Park Drive Ste 200   Austin, TX 78754-5140   Attn: Ellen Felfe
Client ID	APPL ID Ser	mpled	Analyses Requested
1. B4-NT1-BOT04	AY56792S 03/12	/12 08:43	\$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
2. B4-NT1-BOT05	AY56793S 	/12 08:56	\$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST
3. B4-NT1-BOT06		/12 09:07	\$HGAFBS, \$MTAFS(As,Ba,Cd,Cr,Cu,Ni,Pb,Zn), MOIST

Sample Container Type

pН

Count

Sample	Container Type	Count	pН
AY56792	²⁰ 4oz Jar	1	NA
AY56793	²⁰ 4oz Jar	1	NA .
AV56794	²⁰ 4oz Jár	1 .	NΛ

# Camp Stanley Storage Activity Chain Of Custody

ZINC	SW6010B	LEAD MERCURY	SW60108 SW7471								ड	Remarks
CHROMIUM	SW6010B	CADMIUM	SWEDTOB	Containers:	EBLOT:		12_N0907	FLDSAMPID 84-NT1-BOT06_031212_N0907	IPID B4-NT1-	FLDSAM	6	SED:
BARIUM	SW60108	ARSENIC	SW6010B		ABLOT:		SMCODE: G	CODE: N	LOGTIME: 9:07 SACODE:	LOGTIME	15.5	SBD:
		Analysis Required:	Analysis		TBLOT:	SO	MATRIX:	LOGDATE: 3/12/2012		<b>B4-NT1-BOT06</b>		LOCID:
		MERCURY	SW7471			[			:			
ZINC	SW6010B	LEAD	SW60108	-							ç	í
NICKEL	SW6010B	COPPER	SW6010B									Remarke:
CHROMIUM	\$W80108	CADMIUM	SW6010B	Containers: "	EBLOT		2 N0856	FLDSAMPID B4-NT1-BOT05 031212 N0856	1PID 84-NT1-	FLDSAM	6	SED:
BARIUM	SW6010B	ARSENIC	80109WS	•	ABLOT:		SMCODE: G	CODE:	: 8:56 SACODE:	LOGTIME:	15.5	SBD:
		Analysis Required:	Analysis		TBLOT:		LOGDATE: 3/12/2012 MATRIX: SO	GDATE: 3/1		B4-NT1-BOT05		Locib:
		MERCURY	SW7471									
ZINC	SW8010B	LEAD	SW6010B								į	Į.
NICKEL	SW8010B	COPPER	SW6010B					1	į			Remarks:
CHROMIUM	SW6010B	CADMIUM	SW60108	Containers: .	EBLOT		2 NO843	FLDSAMPID 84-NT1-BOT04 031212 N0843	1PID 84-NT1-	FLDSAM	6	SED:
BARIUM	SW6010B	ARSENIC	SW6010B		ABLOT:		SMCODE: G	SACODE: N		LOGTIME: 8:43	15.5	SBD:
		Analysis Required:	Analysis		TBLOT:		LOGDATE: 3/12/2012 MATRIX: SO	GDATE: 3/1		<b>B4-NT1-BOT04</b>		LOCID:
1	ا ا ا			3 Day TAT	TAT:	ا ا	Sample Data Type Definitive	Sample	Ž	Laura Marbury	lask Manager	l ask
つりを	12-12	ろってん	Z	876436443414	Airbill Camer		Collection Team: KKC, MC	Collection		3/12/2012	Creation Date:	Creati
			Ţ	FedEx	Carrier:		h_Time: 5:00 PM	Relinquish_Time:	9	748372.06000	Job Number.	Job N
		er(s)	Sampler(s)	APPF	LabCode:		hed_By: JM	Relinquished_By:		n: CSSA	Project Location: CSSA	Projec
	)			Þ	Cooler ID:		h_Date: 3/12/2012	Relinquish_Date:	řΑ	031212APPFA	Ģ	COC ID:

Recieved by:	Time_	Date	Recieved by:	Recieved by: Date 3/13//Filme 1/68
Relinquished by:	Time	Date	Relinquished by:	Relinquished by W. W. Date Time
•			of C	アードルル
			>	

Time____ Time___ Page 1 of 1

	COOLER RECEIPT FORM	1	
	Number of Coolers:  Were coolers and samples screened for radioactivity  Were custody seals on outside of cooler? How many	Date Received: <u>3//3//2</u>	_
2) Coolers:	Number of Coolers:	<del>y</del>	•
3) YES NO	Were coolers and samples screened for radioactivity	?	
4) YES NO	Were custody seals on outside of cooler? How many	? Date on seal? $3/(2)/(2)$	
5)	Name on seal?	rel	-
	Were custody seals unbroken and intact at the time o		•
7) YES NO	Did the cooler come with a shipping slip (air bill, etc.)?		
8)	Shipping slip numbers:1)8764764434142)	2)	•
ON WES NO NA	Was the shipping slip scanned into the database?	<u></u>	•
10) VEC AIR NA	if applies belongs to ADDI. her it has a legged into the	laa ahaat datahaa O	
11) Describe tun	If cooler belongs to APPL, has it been logged into the	ice chest database?	
11) Describe typ	e of packing in cooler (bubble wrap, popcorn, type of ic	e, etc.): bubble bay Exploc	
10) VEO NO KIE	in wet ice		
	For hand delivered samples was sufficient ice present	t to start the cooling process?	
13) YES NO	Was a temperature blank included in the cooler?		
14) Serial numbe	er of certified NIST thermometer used: A35767	Correction factor:	
	(s): 1) <del>2.5°(2)</del> 3) 4) 5)	6)8)	_
Chain of custod	ly:		nitials
16) YES NO	Was a chain of custody received?		<u>2</u>
17) YES NO	Were the custody papers signed in the appropriate pla	RCOS?	
18) YES NO	Was the project identifiable from custody papers?		W
19) YES NO	Did the chain of custody include date and time of same	pling?	얼
20) YES NO	is location where sample was taken listed on the chair	of custody?	<i>&gt;</i>
Sample Labels:			
	Were container labels in good condition?		
	Was the client ID on the label?		
	Was the date of sampling on the label?		
			Ö
	Was the time of sampling on the label?		Date
. –	Did all container labels agree with custody papers?		
Sample Contain			3/12/12
	Were all containers sealed in separate bags?		$\overline{}$
	Did all containers arrive unbroken?		N
	Was there any leakage from samples?		\
	Were any of the Ilds cracked or broken?		<b>ぶ</b>
	Were correct containers used for the tests indicated?	!	L.
	Was a sufficient amount of sample sent for tests indica		
32) YES NO ((12)	Were bubbles present in volatile samples? If yes, the	following were received with air bubbles:	
Larger than a	pea:		
Smaller than	а реа:		
Preservation & F			
33) YES NO NA	Was a sufficient amount of holding time remaining to a	nalvze the samples?	
34) YES NO NA	Do the sample containers contain the same preservative	ve as what is stated on the COC?	
35) YES NO NA	Was the pH taken of all non-VOA preserved samples a	and written on the semale container?	
36) YES NO NA	Was the pH of acid preserved non-VOA samples < 2 & sodii	um hydrovide presented semples > 122	
37) YES NOWA I	Inpreserved VOA Vials received?	and hydroxido preservou eamples > 121	
38) YES NOMA	Jnpreserved VOA Vials received?	FLD on the ARE?	
00, 120 110 021	TO displace the tension total in the ADD 1201 I is	LED OII (III AIII I	
l ah natified if all	es not adequate:	•	
Cab Rollied II pri wi	as not adequate:		
Deliciencies			- "
	<del></del>	· · · · · · · · · · · · · · · · · · ·	
	<del></del>		
Oleve etc.			
signature of perso	innel receiving samples:	Second reviewer:	
signature of project	ot manager notified:*	_Date and Time of notification:	
Name of client not	onnel receiving samples:fang TO ct manager notified: ifled:	_Date and Time of notification:	
ntormation given i	to client:		
	12	by whom (initials):	

# METALS EPA SW846 - 6010B



# METALS EPA SW846 - 6010B Forms



# AFCEE INORGANIC ANALYSES DATA PACKAGE

AAB #; 120314A-164961

Prime Contractor: Parsons

Lab Sample ID

Contract #: *G012

Analytical Method: EPA 6010B

Field Sample ID

Lab Name: APPL, Inc

Base/Command: CSSA

B4-NT1-BOT04 AY56792 AY56793 B4-NT1-BOT05 AY56794 B4-NT1-BOT06 Comments: ARF: 67194 I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Diane Anderson Project Manager Date:

# AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT04

Lab Sample ID: AY56792

Matrix: Soil

% Solids: 97.2

Initial Calibration ID: 120320A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 20-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	0.5	1	F
BARIUM (BA)	0.1	1.0	4.1	1	J
CADMIUM (CD)	0.03	0.50	0.03	1:	J
CHROMIUM (CR)	0.1	20.0	1.8	1	J
COPPER (CU)	0.19	2.0	3.60	1	
LEAD (PB)	0.18	10.0	0.66	1	J
NICKEL (NI)	0.12	2.0	0.12	1:	J
ZINC (ZN)	0.6	5.0	1.0	1	J

Comments:

ARF: 67194

# AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT05

Lab Sample ID: AY56793

Matrix: Soil

% Solids: 93.7

Initial Calibration ID: 120320A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 20-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	0.8	1	· F
BARIUM (BA)	0.1	1.0	9.6	1	J
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	3.5	1	J
COPPER (CU)	0.19	2.0	4.49	1	
LEAD (PB)	0.18	10.0	1.84	1	J
NICKEL (NI)	0.12	2.0	2.99	1	J
ZINC (ZN)	0.6	5.0	5.9	1	J

Comments:

ARF: 67194

# AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 6010B

Preparatory Method: 3050B

AAB #: 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT06

Lab Sample ID: AY56794

Matrix: Soil

% Solids: 93.2

Initial Calibration ID: 120320A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 20-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
ARSENIC (AS)	0.2	40.0	3.2	1	F
BARIUM (BA)	0.1	1.0	25.4	1	J
CADMIUM (CD)	0.03	0.50	0.03	1	J
CHROMIUM (CR)	0.1	20.0	8.9	1	ſ
COPPER (CU)	0.19	2.0	33.42	1	
LEAD (PB)	0.18	10.0	4.52	1	J
NICKEL (NI)	0.12	2.0	6.96	1	J
ZINC (ZN)	0.6	5.0	29.6	1	J

Comments: ARF: 67194

# AFCEE INORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

Analy	tical Method: EPA	6010B		AAB #: <u>120314A-164961</u>						
	Lab Name: APPL	, Inc.				Contract #:	*G012			
Date of Initia	l Calibration: 20-M	ar-12		Initial Calibration ID: 120320A						
li	nstrument ID: <u>PHOI</u>	ВВЕ	Cor	ncentration Units (mg/L or mg/kg): mg/Kg						
	Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	r	Q	
	As	0.3500	17,8	100.0	6640.6	200.0	12838.6	0.99991		
	Ba	.0,5000	1427.6	100.0	266688.5	200.0	512941.2	0.99988		
	Cd	0,5000	3025.7	100.0	532893.2	200.0	1009195.6	0.99975		
	Cr	0.5000	1053.9	100.0	178397.2	200.0	344079.1	0.99989		
	Cu	0,5000	764,3	100.0	181961.9	200.0	357131.4	0.99997		
	Ni	0.5000	460,6	100.0	86671.6	200.0	165041.8	0.99980		
	Рb	0.3000	70.6	100.0	21737.4	200.0	41660.4	0.99985		
	Zn	2.0000	3646,1	100.0	155350.7	200.0	294008.5	0.99975		
	Comments:									

AFCEE FORM I-3

# AFCEB INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB#; 120314A-164961
Lab Namo: APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Calibration ID: 120320A
2nd Source ID: ICV 3/20/12 12:54	ICV ID: ICV 3/20/12 12:54
CCV #1 ID: CCV1 3/20/12 13:12	CCV #2 ID: <u>CCV2 3/20/12 15:35</u>
Concentration Units (mg/	L or mg/kg}mg/Kg

		2nd S	2nd Source Calibration Initial Calibration				lion	Continuing Calibration						]
	Analyte	Verification			,	Verification		Verification						Q
	1 11 11	Expected:	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	
									1			2		
As		100.0	90.1	9.9%	100.0	90.1	9.9%	100.0	103.0	3.0%	75.0	78.7	4.9%	
Ba		100.0	93,6	6.4%	100,0	93,6	6.4%	100,0	102.7	2.7%	75,0	79.1	5.4%	
Cd		100.0	98.9	1.1%	100.0	98.9	1.1%	100.0	104.2	4.2%	75.0	80.5	7.4%	
Ст		100.0	99.0	1.0%	100,0	99.0	1,0%	100.0	102.7	2.7%	75,0	78.5	4.7%	П
Cu		100.0	94.8	5.2%	100.0	94.8	5.2%	100.0	101.7	1.7%	75.0	77.1	2.8%	
Ni		100,0	99.1	0.9%	100,0	99.1	0.9%	100.0	103.6	3.6%	75.0	79.6	6,1%	
Pb		100.0	97.6	2.4%	100.0	97.6	2.4%	100.0	105.1	5.1%	75.0	80.5	7.3%	
Zn		100.0	100.7	0.7%	100.0	100.7	0.7%	100.0	104.7	4.7%	75.0	81.1	8.1%	$\Box$

Comments:				
		···	 	

AFCBE FORM I-4 Page 1 of 3

# AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB #: 120314A-164961
Lab Name; APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Calibration 10: 120320A
2nd Source ID: ICV 3/20/12 12:54	ICV ID: ICV 3/20/12 12:54
CCV #1 ID: CCV1 3/20/12 16:31	CCV #2 ID: CCV1 3/20/12 18:29
Concentration Units (mg/L	.or mp/kg): mg/kg

		2nd S	2nd Source Calibration Initial Calibration					Continuing	Calibration			Т		
A	nalyte		Verification	1		Verification	n.			Verif	ication			Q
		Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	$\top$
									1			2		$\top$
Λs		100.0	90.1	9.9%	100.0	90.1	9.9%	100.0	107.6	7.6%	100.0	107.7	7.7%	T
Ba		100.0	93.6	6,4%	100.0	93.6	6.4%	100.0	109.2	9.2%	100.0	103.2	3,2%	T
Cd		100.0	98.9	1.1%	100.0	98.9	1.1%	100.0	111.0	11.0%	100.0	107.7	7.7%	1
Cr		100.0	99.0	1.0%	100.0	99.0	1.0%	100.0	108.3	8.3%	100.0	102,5	2.5%	Т
Cu		100.0	94.8	5.2%	100.0	94.8	5.2%	100.0	106,9	6.9%	100.0	97.6	2.5%	1
Ni		100.0	99,1	0.9%	100.0	99.1	0.9%	100.0	109.7	9.7%	100.0	104.7	4.7%	Т
Pb		100.0	97.6	2.4%	100.0	97.6	2.4%	100.0	109.2	9.2%	100.0	105.9	5.9%	1
Zn		100.0	100.7	0.7%	100.0	100.7	0.7%	100.0	111.7	11.7%	100.0	109.3	9.3%	T •

Comments:	 		
		•	

AFCEE FORM I-4 Page 2 of 3

### AFCBB INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 6010B	AAB#: 120314A-164961
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PHOEBE	Initial Calibration ID: 120320A
2nd Source ID: ICV 3/20/12 12:54	ICV ID: ICV 3/20/12 12:54
CCV #1 ID: CCV2 3/20/12 19:30	CCV #2 ID: CCV1 3/20/12 20:28
Concentration Units (mg/L)	or mg/kg)mg/kg

	2nd S	2nd Source Calibration Initial Calibration			Continuing Calibration						Т		
Analyte	,	Verification	1	Verification		Verification						Ō	
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	$\Box$
							· · · · · · · · · ·	1			2		1
As	100.0	90.1	9.9%	100.0	90.1	9.9%	75.0	77.5	3.3%	100.0	104,0	4.0%	1
Ва	100.0	93.6	6.4%	100.0	93.6	6.4%	75.0	77.1	2,8%	100.0	102.5	2.5%	1
Cd	100.0	98,9	1.1%	100.0	98.9	1.1%	75.0	78.1	4.2%	100.0	103.7	3,7%	1
Ст	100.0	99.0	1.0%	100.0	99.0	1.0%	75.0	76.5	2.0%	100,0	102.0	2.0%	<b>T</b>
Cu	100.0	94.8	5.2%	100.0	94.8	5.2%	75.0	75,2	0.2%	100.0	100.8	0.8%	1
Ni	100.0	99.1	0.9%	100.0	99.1	0.9%	75.0	77.2	2.9%	100.0	102,6	2.6%	1
РЬ	100.0	97.6	2.4%	100.0	97.6	2.4%	75,0	76.9	2.5%	100.0	101.7	1.7%	$\top$
Zn	100.0	100.7	0.7%	100.0	100.7	0.7%	75.0	79,0	5.3%	100.0	104.6	4.6%	1

Comments:	···,	 

AFCEE FORM I-4 Page 3 of 3

## AFCEE **INORGANIC ANALYSES DATA SHEET 5** BLANK

Analytical Method: BPA 6010B

AAB #: 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120314A-BLK 30509 per 3/22/12

Initial Calibration ID: 120320A

Analyte	Method Blank	RL	Q
ARSENIC (AS)	< RL	40.0	U
BARIUM (BA)	< RL	1.0	U
CADMIUM (CD)	< RL	0.50	υ
CHROMIUM (CR)	< RL	20.0	U
COPPER (CU)	< RL	2.0	U
LEAD (PB)	< RL	10.0	U
NICKEL (NI)	< RL	2.0	U
ZINC (ZN)	< RL	5.0	U

Comments:

ARF: 67194, Sample: AY56794

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

CCB #1 ID: CCB 3/20/12 12:57  CCB #1 ID: CCB 3/20/12 13:14  Method Blank ID: 120314A-3050G-BLK  Initial Contact Calibration	Concentration	n Units (ıng/L	Contract #: *G012 . or mg/kg/mg/Kg			<del> </del>
Celibration Blank ID: ICB 3/20/12 12:57  CCB #1 ID: CCB 3/20/12 13:14  Method Blank ID: 120314A-3050G-BLK  Initial Contact Calibration	Concentration		or mg/kg <u>)mg/Kg</u>			
Method Blank ID: 120314A-3050G-BLK  Initial Contact Calibration						<del></del>
Method Blank ID: 120314A-3050G-BLK  Initial Contact Calibration	<del></del>	Initial Calib	oration ID: <u>120320</u>	A		<del></del>
Initial Con-	CCB #2 ID; CCB 3/20/12 15:39 CCB #3 ID; CCB 3					CCB 3/20/12 16:34
Analyte Calibration		Initial Calib	ration ID: 120320	A		
Analyte Calibration					· · · · · · · · · · · · · · · · · · ·	
Btank					i I	
1	liming Calibra	ration Blank	Mothod Blank	RL	Q	

Analyte	Initial Calibration Blank	Blank		RL	Q		
		1	2	3			
As	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th>40,0</th><th></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th>40,0</th><th></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th>40,0</th><th></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th>40,0</th><th></th></rl<></th></rl<>	<rl< th=""><th>40,0</th><th></th></rl<>	40,0	
Ba	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1,00</td><td></td></rl<></td></rl<>	<rl< td=""><td>1,00</td><td></td></rl<>	1,00	
Cd	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td><del></del></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td><del></del></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td><del></del></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.5</td><td><del></del></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td><del></del></td></rl<>	0.5	<del></del>
Cr	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu	<rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Ni	<rl< td=""><td>⊲RL</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	⊲RL	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Pb	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zn	<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>5.0</td><td></td></rl<>	5.0	

Comments:	
	 ,
	 •

APCBB FORM I-5 Page 1 of 2

# AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Ausl	ytical Method:6010B		AAB#: 120314A-164961						
Lab Name: APPL, Ino.					c	ontract#: <u>*0012</u>			
	·		Co	oncentration	Units (mg/L	or mg/kg <u>)</u> nig/Kg			
Initial Calibra	ion Blank ID: ICB 3/20	0/12 12:57		Initial Calibration ID: 120320A				<u></u>	
	CCB #1 ID: CCB 3/20/12 18:34			CCB #2 ID: CCB 3/20/12 19:34 CCB #3 ID: CCB 3/20/12 20:33					
Mell	nod Blank ID: 120314/	-3050G-BLK			Initial Calib	ration ID: <u>120320</u> /	۸		<del></del>
		Initial	Contin	uing Calibra	tion Blank			<u> </u>	1
	Analyte Calibration Blank		Solition	aring Satistia	,,vii Piatik	Method Blenk	RL	Q	
			1	2	3				

Analyte	Initial Calibration	Contin	uing Calibra	tion Blank	Method	RL	Q
	Blank	1	2	3	Blenk	-	
As	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td>40.0</td><td></td></rl<></td></rl.<>	<rl< td=""><td>40.0</td><td></td></rl<>	40.0	
Ba	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>1.0</td><td></td></rl<>	1.0	
Ba Cd Cr Cu	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.5</td><td></td></rl<></td></rl<>	<rl< td=""><td>0.5</td><td></td></rl<>	0.5	
Cr	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>20.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>20.0</td><td></td></rl<>	20.0	
Cu	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rj.< td=""><td>2.0</td><td></td></rj.<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rj.< td=""><td>2.0</td><td></td></rj.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rj.< td=""><td>2.0</td><td></td></rj.<></td></rl<></td></rl<>	<rl< td=""><td><rj.< td=""><td>2.0</td><td></td></rj.<></td></rl<>	<rj.< td=""><td>2.0</td><td></td></rj.<>	2.0	
Ni	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>2.0</td><td></td></rl<>	2.0	
Pb	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>10.0</td><td></td></rl<>	10.0	
Zη	<rj.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rj.<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.0</td><td></td></rl<></td></rl<>	<rl< td=""><td>5.0</td><td></td></rl<>	5.0	

Comments:	

AFCEE FORM I-5 Page 2 of 2

## AFCEE **INORGANIC ANALYSES DATA SHEET 6** LABORATORY CONTROL SAMPLE

Analytical Method: EPA 6010B

AAB #; 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120314A LCS 30506 205 3/12/12 Concentration Units: mg/kg

Initial Calibration ID: 120320A

Analyte	Expected	Found	% R	Control Limits	Q
ARSENIC (AS)	25.0	26.6	106	75-125	
BARIUM (BA)	25.0	26.1	104	75-125	
CADMIUM (CD)	5.00	5.53	I11	75-125	
CHROMIUM (CR)	25.0	28.2	113	75-125	
COPPER (CU)	25.00	25.95	104	75-125	
LEAD (PB)	25.00	27.47	110	75-125	
NICKEL (NI)	25.00	28.72	115	75-125	
ZINC (ZN)	50.0	55.0	110	75-125	

Comments:

ARF: 67194, Sample: AY56794

# AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 6010B

AAB#: 120314A-164961

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-NT1-BOT04	12-Mar-12	13-Mar-12	20-Mar-12	180	8	
B4-NT1-BOT05	12-Мат-12	13-Mar-12	20-Mar-12	180	8	
B4-NT1-BOT06	12-Mar-12	13-Mar-12	20-Mar-12	180	8	

Comments:

ARF: 67194

# AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 6010B

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PHOEBE ICAL ID: 120320A

Field Sample ID/Std ID/	Date Analysis	Time Analysis	Date Analysis	Time Analysis
Blank ID/QC Sample ID	Started	Started	Completed	Completed
CalBlk	20-Mar-12	12:38	20-Mar-12	12:38
STD 1	20-Mar-12	12:42	20-Mar-12	12:42
STD 2	20-Mar-12	12:46	20-Mar-12	12:46
STD 3	20-Mar-12	12:49	20-Mar-12	12:49
ICV	20-Mar-12	12:54	20-Mar-12	12:54
ICB	20-Mar-12	12:57	20-Mar-12	12:57
ICSA	20-Mar-12	13:05	20-Mar-12	13:05
ICSAB	20-Mar-12	13:09	20-Mar-12	13:09
CCV1	20-Mar-12	13:12	20-Mar-12	13:12
ССВ	20-Mar-12	13:14	20-Mar-12	13:14
CCV2	20-Mar-12	15:35	20-Mar-12	15:35
CCB	20-Mar-12	15:39	20-Mar-12	15:39
120314A-3050G-BLK	20-Mar-12	15:51	20-Mar-12	15:51
120314A-3050G-LCS	20-Mar-12	15:55	20-Mar-12	15:55
CCV1	20-Mar-12	16:31	20-Mar-12	16:31
CCB	20-Mar-12	16:34	20-Mar-12	16:34
CCVI	20-Mar-12	18:29	20-Mar-12	18:29
CCB	20-Mar-12	18:34	20-Mar-12	18:34
AY56792S01	20-Mar-12	19:24	20-Mar-12	19:24
CCV2	20-Mar-12	19:30	20-Mar-12	19:30
CCB	20-Mar-12	19:34	20-Mar-12	19:34
AY56793S01	20-Mar-12	19:39	20-Mar-12	19:39
AY56794S01	20-Mar-12	19:45	20-Mar-12	19:45
AY56794S01-A	20-Mar-12	19:59	20-Mar-12	19:59
AY56794S01-1/5	20-Mar-12	20:04	20-Mar-12	20:04
CCVI	20-Mar-12	20:28	20-Mar-12	20:28
CCB	20-Mar-12	20:33	20-Mar-12	20:33

# 6010 Injection Log

Directory: K:\ICAP PHOEBE\Backup Excel\

RunID	Injected		Sample Name	Misc Info	FileName	Multiplier
1	20 Mar 2012	12:38	CalBlk 120320EA I:PB O:EA		120320A6010	1.
2	20 Mar 2012	12:42	STD 1 120320EA I:PB O:EA		120320A6010	1.
3	20 Mar 2012	12:46	STD 2 120320EA I:PB O:EA		120320A6010	1.
4	20 Mar 2012	12:49	STD 3 120320EA I:PB O:EA		120320A6010	1.
5	20 Mar 2012	12:54	ICV 120320EA I:PB O:EA		120320A6010	1.
6	20 Mar 2012	12:57	ICB 120320EA I:PB O:EA		120320A6010	1.
8	20 Mar 2012	13:05	ICSA 120320EA I:PB O:EA		120320A6010	1.
9	20 Mar 2012	13:09	ICSAB 120320EA I:PB O:EA		120320A6010	1.
10	20 Mar 2012	13:12	CCV1 120320EA I:PB O:EA		120320A6010	1.
¹ 11	20 Mar 2012	13:14	CCB 120320EA I:PB O:EA		120320A6010	1.
44	20 Mar 2012	15:35	CCV2 120320EA I:PB O:EA		120320A6010	1.
45	20 Mar 2012	15:39	CCB 120320EA I:PB O:EA		120320A6010	1.
48	20 Mar 2012	15:51	120314A-3050G-BLK		120320A6010	1.
49	20 Mar 2012	15:55	120314A-3050G-LCS		120320A6010	1.
56	20 Mar 2012	16:31	CCV1 120320EA I:PB O:EA		120320A6010	1.
57	20 Mar 2012	16:34	CCB 120320EA I:PB O:EA		120320A6010	1.
58	20 Mar 2012	18:29	CCV1 120320EA I:PB O:EA		120320A6010	1.
59	20 Mar 2012	18:34	CCB 120320EA I:PB O:EA		120320A6010	1.
69	20 Mar 2012	19:24	AY56792S01		120320A6010	1.
70	20 Mar 2012	19:30	CCV2 120320EA I:PB O:EA		120320A6010	1.
71	20 Mar 2012	19:34	CCB 120320EA I:PB O:EA		120320A6010	1.
72	20 Mar 2012	19:39	AY56793S01		120320A6010	1.
73	20 Mar 2012	19:45	AY56794S01		120320A6010	1.
76	20 Mar 2012	19:59	AY56794S01-A		120320A6010	1.
77	20 Mar 2012	20:04	AY56794S01-1/5		120320A6010	5.
82	20 Mar 2012	20:28	CCV1 120320EA I:PB O:EA		120320A6010	1.
83	20 Mar 2012	20:33	CCB 120320EA I:PB O:EA		120320A6010	1.

## A.P.P.L. INC.

### 5B

## POST DIGEST SPIKE SAMPLE RECOVERY

	LIENT SAMPLE	NO
В	4-NT1-BOT06	

Lab Name:	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67194	SDG:	67194

Analysis Date: 03/20/12 Concentration Units: mg/kg

•									
Analyte	Control Limit %R	Spiked Samp Result (SSR		Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Arsenic (As)	75-125	40.66	Ť	2.958	+	46.729	80.7	-	
Barium (Ba)	75-125	56.29		23.64		46.729	69.9		М
Cadmium (Cd)	75-125	5.552		ND		9.346	59.4	1	М
Chromium (Cr)	75-125	42.9		8.278		46.729	74.1		М
Copper (Cu)	75-125	66.44	<u>  </u>	31.15		46.729	75.5		
Nickel (Ni)	75-125	38.11		6.486		46.729	67.7		М
Lead (Pb)	75-125	36.37		4.216		46.729	68.8		М
Zine (Zn)	75-125	80.94		27.57		93,458	57.1		м

Comment	<b>s</b> :						
03/20/12	19:45	AY56794S01			·		
03/20/12	19:59	AY56794S01-A					
			<u>.</u>	•	•		

### A.P.P.L, INC.

9

## ICP SERIAL DILUTION

CLIENT SAMPLE NO.

B4-NT1-BOT06

Lab Name:	A.P.P.L. INC.	Contract:	Parsons
ARF No.:	67194	SDG:	67194

Matrix: soil

Analysis Date: 03/20/12 Concentration Units: mg/kg

Analyte	Initial Sample Result (I)		Serial Dilution Result (S)	%D	Q	М	
		c		С			
Barium (Ba)	23.64		31.43		33.0		М
Chromium (Cr)	8.278		9.278		12.1		М
Copper (Cu)	31.15		36.66		17.7		М
Nickel (Ni)	6.486		4.741		26.9		М

Comments:	:	
03/20/12	19:45	AY56794S01
03/20/12	20:04	AY56794S01-1/5
	. <u></u>	

# A.P.P.L. INC. ICP INTERFERENCE CHECK SAMPLE

Lab Name:

A.P.P.L. INC.

Contract:

*G012

ARF#:

67194

SDG:

67194

ICP ID No

**PHOEBE** 

ICS Source: Environmental Express

Analysis Date

03/20/12

Concentration Units: mg/L

ANALYTE		TRUE		Initial Found			
	SOL A	SOL AB	SOL A 13:05	Recovery	SOL AB 13:09	%R(1)	
Aluminum	200	200	193.5	96.8	189.1	94.6	
Arsenic		0.5	ND	<rl< td=""><td>0.4432</td><td>88.6</td></rl<>	0.4432	88.6	
Barium		0.5	ND	<ŘL	0.4456	89.1	
Calcium	200	200	191.2	95.6	188	94.0	
Cadmium		1	0.000033	<rĺ< td=""><td>0.9016</td><td>90.2</td></rĺ<>	0.9016	90.2	
Chromium		0.5	0.000141	<rl< td=""><td>0.4671</td><td>93.4</td></rl<>	0.4671	93.4	
Copper		0.5	ND	<rl< td=""><td>0.4783</td><td>95.7</td></rl<>	0.4783	95.7	
Iron	200	200	176.6	88.3	175.5	87,8	
Magnesium	200	200	186.9	93.5	183.5	91.8	
Nickel		1	0.000046	<rl< td=""><td>0.9047</td><td>90.5</td></rl<>	0.9047	90.5	
Lead		1	0.00055	<rl< td=""><td>0.9212</td><td>92.1</td></rl<>	0.9212	92.1	
Zinc		1	0.003175	<rl< td=""><td>0.9012</td><td>90.1</td></rl<>	0.9012	90.1	

(1) Control Limits: Metals 80-120

# METALS EPA SW846 - 6010B Calibration Data



Reprocessing Begun

Logged In Analyst: chemist metals

Technique: ICP Continuous

Results Data Set (original): 120320A6010X

Results Library (original): C:\PE\chemiat\RESULTS\Results.mdb
Results Data Set (reprocessed):

Results Library (reprocessed):

Sequence No.: 1

Sample ID: CalBlk 120320EA I:PB O:EA

Analyst

Logged In Analyst (Original) : chemist metals

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 03/20/12 12:38:08 PM

Data Type: Reprocessed on 03/21/12 9:48:48 AM

Initial Sample Vol: Sample Prep Vol:

Mean Data:	CalBlk 120320EA I:PB O:EA				Calib
	Mean Corrected		B.C.B.		Units
Analyte	Intensity	Std.Dev		Conc.	
Ag 338.289	-193.2	32.00	16.56%	[0.00]	ug/L
Al 308.215	205.1	3.97	1.93%	[0.00]	ug/L
Ав 108.979	-3.5		139.57%	[0.00]	ug/L
В	198.5	16.50	8.31%	[0.00]	ug/L
Ba 233.527	256.7	10.35	4.03%	[0.00]	ug/L
Be 313.107	-9716.7	387.08	3.98∜	[0.00]	ug/L
Ca 315.887	15.7	19.55	124.37%	[0.00]	ug/L
Cd 214.440	695.8	21.14	3.04%	[0.00]	ug/L
Co 228,616	169.5	9.52	5.62%	[0.00]	ug/L
Cr 267.716	913.1	17.73	1.94%	[0.00]	ug/L
Cu 327.393	1286.3	75.55	5.87%	[0.00]	ug/L
Fe 273.955	405.9	37.78	9.31%	[0.00]	ug/L
K 766.490	-210.2	105.13	50.00%	[0.00]	ug/L
Mg 285.213	-256.1	15.93	6.22%	[0.00]	ug/L
Mn 257.610	-41.3	13.87	33.62%	[0.00]	ug/L
Mo 202.031	205.8	11.09	5.39%	[0.00]	ug/L
Na 589.592	241.9	227.22	93.95%	[0.00]	ug/L
Ni 231.604	-232.3	0.37	0.16%	[0,00]	ug/L
P 213.617	-77.7	2.34	3.01%	[0.00]	ug/L
РЬ 220.353	6.3	7.41	117.17%	[0.00]	ug/L
Sb 206.836	17.1	3.08	10.04%	[0.00]	ug/L
Se 196,026	-28.0	3.13	11.16%	[0.00]	ug/L
Sn 189,927	23.3	4.20	18.00%	[0.00]	ug/L
Sr 421,552	1575.6	79.87	5.07%	[0.00]	ug/L
Ti 337,279	-655.9	18.96	2.89%	[0.00]	ug/L
Tl 190.801	-150.7	7.22	4.79%	[0.00]	ug/L
V 292.402	-450.3	112,72	25.03%	[0.00]	ug/L
Zn 206.200	-219,6	14.19	6.46%	[0.00]	ug/L
DII AUU AUU	223.0		- / - • -		- 3.

_______

Sequence No.: 2

Sample ID: STD 1 120320EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 03/20/12 12:42:30 PM

Data Type: Reprocessed on 03/21/12 9:48:50 AM

Date: 03/21/12 9:48:50 AM

Initial Sample Vol: Sample Prep Vol:

Mean Data: STD 1	120320EA I:PB O:EA				
	Mean Corrected			_	Calib
Analyte	Intensity	Std.Dev.			Unite
Ag 338.289	194.9	95.53	49.00%	[1.00]	
Al 308.215	291.8	12.72	4.36%	[100.00]	
As 188.979	17.8	2.69	15.06%	[3.50]	ug/L
В	258.4	9.21	3.56%	[50.00]	ug/L
Ba 233.527	1427.6	12.79	0.90%	[5.00]	ug/L
Be 313.107	14972.2	246.86	1.65%	[2.00]	ug/L
Ca 315.887	2552.0	25.80	1.01%	[100.00]	
Cd 214.440	3025.7	16.04	0.53%	[5.00]	
Co 228.616	607.0	20.90	3.44%	[5.00]	
Cr 267.716	1053.9	13.38	1.27%	[5.00]	
Cu 327.393	764.3	58.70	7.68%	[5.00]	
Fe 273.955	2364.8	22.25	0.94%	(50.00)	
K 766.490	4753.5	182.52	3.84%	[1000.00]	
Mg 285.213	2766.8	4.99	0.18%		ug/L
Mn 257.610	475.7	5.05	1.06%	[5.00]	
Mo 202.031	283.4	7.18	2.54%	[5.00]	
Na 589.592	14071.7	208.76	1.48%	[1000.00]	
Ni 231.604	460.6	6.86	1.49%	[5.00]	
P 213.617	198.8	5.46	2.75%	[25.00]	
Pb 220.353	70.6	4.27	6.05%	[3,00]	
Sb 206.836	51.5	2.77	5.38%	[5.00]	
Se 196.026	21.4	4.37	20.40%	[5.00]	
Sn 189.927	4.5	1.42	31.55%	[5.00]	
Sr 421.552	6274.8	153.76	2.45%	(5.00)	
Ti 337.279	296.1	17.43	5.89%	(5.00)	
Tl 190,801	69.3	12.44	17.95%	(5.00)	
V 292.402	1750.8	105.85	6.05%	[5.00]	
Zn 206.200	3646.1	11.64			
Dit 200.200	3040 T	TT'04	0.32%	[20.00]	ug/ D

Sequence No.: 3

Sample ID: STD 2 120320EA I:PB O:EA

Analyst:

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 03/20/12 12:46:54 PM

Data Type: Reprocessed on 03/21/12 9:48:51 AM

Initial Sample Vol:
Sample Prep Vol:

Mean Data: STD 2	2 120320EA I:PB O:EA	ı			
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Ag 338.289	76959.4	600.67	0.78%	[500.0]	ug/L
A1 308.215	53326.3	628.59	1.18%	[20000.00]	ug/L
As 188.979	6640.6	49.83	0.75%	[1000.00]	ug/L
В	6921.3	88.41	1,28%	[1000.00]	ug/L
Ba 233.527	266688.5	2371.78	0.89%	[1000.00]	ug/L
Be 313.107	7066385.5	8621.62	0.12%	[1000.00]	ug/L
Ca 315.887	997346.3	10729.40	1.08%	[50000]	ug/L
Cd 214.440	532893.2	4961.03	0.93%	[1000.00]	ug/L
Co 228.616	105191.4	998.50	0.95%	[1000.00]	ug/L
Cr 267.716	178397.2	1325.25	0.74%	[1000.00]	ug/L
Cu 327.393	181961.9	1310.93	0.72%	[1000.00]	ug/L
Fe 273.955	752235.7	6445.00	0.86%	[20000]	ug/L
K 766.490	97675.3	753.23	0.77%	[20000]	ug/L
Mg 285.213	1953329.3	18804.47	0.96%	[50000]	ug/L
Mn 257,610	89686.1	1100.81	1.23%	[1000.00]	ug/L
Mo 202.031	59791.6	137.11	0,23%	(1000.00)	ug/L
Na 589.592	348509.2	2787.63	0.80%	(25000)	ug/L
Ni 231,604	86671.6	723.13	0.83%	[1000.00]	ug/L
P 213.617	45526.7	266.88	0.59%	[5000]	ug/L
Pb 220.353	21737.4	272.54	1.25%	[1000.00]	ug/L
Sb 206.836	7529.6	23.62	0.31%	[1000.00]	ug/L
Se 196.026	5445.8	68.08	1.25%	[1000.00]	ug/L
Sn 189.927	11009.0	35.32	0.32%	[1000.00]	ug/L
Sr 421.552	1241735.3	11218.83	0.90%	[1000.00]	ug/L
Ti 337.279	89744.7	1228.19	1.37%	[1000.00]	ug/L
Tl 190.801	16126.8	56.46	0.35%	[1000.00]	ug/L
V 292.402	335779.8	3078.91	0.92%	[1000.00]	ug/L
Zn 206.200	155350.7	1338.56	0,86%	[1000.00]	ug/L

Sequence No.: 4
Sample ID: STD 3 120320EA I:PB 0:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 10
Date Collected: 03/20/12 12:49:35 PM
Data Type: Reprocessed on 03/21/12 9:48:52 AM

Initial Sample Vol: Sample Prep Vol:

Mean Data: STI	) 3 120320EA I:PB O:EA Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Aq 338.289	151417.2	2183.18	1.44%	[1000.00]	ug/L
Al 308.215	105380.2	1137.32	1.08%	[40000.00]	ug/L
As 188.979	12838.6	233,27	1.82%	[2000.00]	ug/L
В	13814.5	220.02	1,59%	[2000.00]	ug/L
Ba 233.527	512941.2	7279.80	1.42%	[2000.00]	ug/L
Be 313.107	13574309.0	73222.72	0.54%	[2000.00]	ug/L
Ca 315,887	1960548.8	5991.54	0.31%	[100000.0]	ug/L
Cd 214,440	1009195.6	15598.82	1.55%	[2000.00]	ug/L
Co 228.616	200563.0	2980.88	1.49%	[2000.00]	ug/L
Cr 267.716	344079.1	4636.01	1.35%	[2000.00]	ug/L
Cu 327.393	357131.4	4258.86	1.19%	[2000.00]	ug/L
Fe 273.955	1436556.2	20310.03	1.41%	[40000]	ug/L
К 766.490	197332.0	2235.44	1.13%	[40000]	ug/L
Mg 285.213	3796526.4	14143.93	0.37%	[100000]	ug/L
Mn 257.610	174591.2	1738.79	1.00%	[2000.00]	ug/L
Mo 202.031	112288.0	1615.27	1.44%	[2000.00]	ug/L
Na 589.592	600013.1	2729.77	0.40%	[50000]	ug/L
Ni 231.604	165041.8	2541.34	1.54%	[2000.00]	ug/L
P 213.617	86410.8	1599.51	1.85%	[10000]	ug/L
Pb 220.353	41660.4	706.47	1.70%	[2000.00]	ug/L
Sb 206.836	14812.7	277.40	1.87%	[2000.00]	ug/L
Se 196,026	10600.8	212.70	2.01%	[2000.00]	ug/L
Sn 189.927	21394.0	371.92	1.74%	[2000.00]	ug/L
Sr 421.552	2459803.0	8391.71	0.34%	[2000.00]	ug/L
Ti 337.279	177392.0	1936.81	1.09%	[2000.00]	ug/L
Tl 190.801	30604.1	431.82	1.41%	[2000.00]	ug/L
V 292.402	652048.7	8996.74	1.38%	[2000.00]	ug/L
Zn 206.200	294008.5	4428.51	1,51%	[2000.00]	ug/L

#### Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 338.289	3	Lin Thru 0	0.0	151.9	0.00000	0.999978	_
Al 308.215	3	Lin Thru 0	0.0	2.641	0.00000	0.999988	
As 188.979	3	Lin Thru 0	0.0	6.464	0.00000	0.999906	
В	3	Lin Thru 0	0.0	6.909	0.00000	0.999984	
Ba 233.527	3	Lin Thru 0	0.0	258.5	0.00000	0.999875	
Be 313.107	3	Lin Thru 0	0.0	6843	0.00000	0.999867	
Ca 315.887	3	Lin Thru 0	0.0	19.67	0.00000	0.999976	
Cd 214.440	3	Lin Thru 0	0.0	510.3	0.00000	0.999754	
Co 228.616	3	Lin Thru 0	0.0	101.3	0.00000	0.999812	
Cr 267.716	3	Lin Thru 0	0.0	173.3	0.00000	0.999892	
Cu 327.393	3	Lin Thru 0	0.0	179.2	0.0000	0.999971	
Pe 273.955	3	Lin Thru 0	0.0	36.25	0.00000	0.999825	
K 766.490	3	Lin Thru 0	0.0	4.923	0.00000	0.999992	
Mq 285.213	3	Lin Thru 0	0.0	38.19	0.00000	0.999933	
Mn 257.610	3	Lin Thru 0	0.0	87.77	0.00000	0.999941	
Mo 202.031	3	Lin Thru 0	0.0	56.87	0.00000	0.999671	
Na 589.592	3	Lin Thru 0	0.0	13.81	0.00000	0.999989	
Ni 231.604	3	Lin Thru 0	0.0	83.35	0.00000	0.999802	
P 213.617	3	Lin Thru 0	0.0	8.734	0.00000	0.999774	
Pb 220.353	3	Lin Thru 0	0.0	21.01	0.00000	0.999851	
Sb 206.836	3	Lin Thru 0	0.0	7.431	0.00000	0.999978	
Se 196.026	3	Lin Thru 0	0.0	5.329	0.00000	0.999940	
Sn 189.927	3	Lin Thru 0	0.0	10.76	0.00000	0.999931	
Sr 421.552	3	Lin Thru 0	0.0	1232	0.00000	0.999993	
Ti 337.279	3	Lin Thru 0	0.0	88.91	0.00000	0.999989	
T1 190.801	3	Lin Thru O	0.0	15.47	0.00000	0.999773	

Method: 120320A	-6010E	3-C	Page	5		Date: 03/21/12 9:48:53 AM		
V 292.402 Zn 206.200	3 3	Lin Thru 0 Lin Thru 0	0.0	328.0 148.7	0.00000 0.00000	0.999929 0.999746		

Sequence No.: 5
Sample ID: ICV 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Sequence No.: 5

Sample ID: ICV 120320EA I:PB O:EA

Analyst:

Date Collected: 03/20/12 12:54:24 PM

Data Type: Reprocessed on 03/21/12 9:48:53 AM

an Data:	ICV 120:	320EA I:PB 0:EF				domalo		
		Mean Corrected	Cali		<b></b>	Sample	Std.Dev.	RØD
alyte		Intensity 75042.7	Conc. Unit	Std.Dev.		Units		0.22
338.289		75042.7	494.0 ug/L	1,00	494.0	ug/L	1.00	0.22
QC value	within	limits for Ag	338.289 Recov	ry = 98.79*	22222		256.3	1.55
308.215		60927.3	$22980~\mathrm{ug/L}$	356.3	22980	ug/L	356.3	1.55
QC value	within	limits for Al	308.215 Recov	ry = 91.93*	201 7		12.15	1,35
188.979		5825.4	901.3 ug/L	12.15	901.3	ug/L	12.13	1,35
QC value	within	limits for As	188.979 Recov	ry = 90.13*	056 5		13 15	1.36
		6115.8	966.5 ug/L	13.15	966.5	ug/L	<b>13.1</b> 5	1.30
QC value	within	limits for B	Recovery = 96.	55%			1 70	0.19
233.527		242882.7	936.2 ug/L	1.78	936.2	ug/L	1.78	0.13
QC value	within	limits for Ba	233.527 Recov	ery = 93.62*	262.0	/ 7	7 51	0.78
313.107		6550836.1	960.8 ug/L	7.51	960.8	пд/ г	7,51	0.70
QC value	within		313.107 Recov	ry = 96.08*		1.	103.0	0.79
315.887		460046.3	23290 ug/L	183.8	23290	п3/г	183.8	0.19
QC value	within	limits for Ca	315.887 Recov	ry = 93.15%		- 17	3 10	0.32
214.440		505105.9	988.9 ug/L	3,19	988.9	ug/L	3.19	0.32
QC value	within	limits for Cd	214.440 Recov	ery = 98.89%		_ 1-	1 02	0.19
228.616		100806.8	994.0 ug/L	1.93	994.0	ug/L	1.93	0.19
QC value	within	limits for Co	228.616 Recov	ery = 99.40%			0.10	
267.716		171575.4	990.2 ug/L	2.19	990.2	ug/L	2.19	0,22
QC value	within	limits for Cr	267.716 Recov	ery = 99.02%			0.75	4 30
327.393		169457.6	948.2 ug/L	2.75	948.2	ug/L	2,75	0.29
OC value	within	limits for Cu	327.393 Recov	ery = 94.82%				
273.955		873902.7	23960 ug/L	44.9	23960	ug/L	44.9	0.19
OC value	within	limits for Fe	273.955 Recov	ery = 95.85%				
766 490		111026.3	22520 ug/L	130.4	22520	ug/L	130.4	0.58
OC value	within	limits for K	66.490 Recove	ry ⊨ 90.10%				
285.213		893889.3	23390 ug/L	154.6	23390	ug/L	154.6	0.66
OC value	within	limits for Mg	285.213 Recov	ery ≈ 93.55%				
257.610		84906.5	965.8 ug/L	14.32	965.8	ug/L	14.32	1,48
OC value	within	limits for Mn	257.610 Recov	ery ≈ 96.58%				
202 031		55621.7	979.3 uq/L	7.43	979.3	ug/L	7,43	0.76
OC value	within	limits for Mo	202.031 Recov	ery = 97.93%		4_		
589 592		315883.4	22850 ug/L	105.7	22850	ug/L	105.7	0.46
OC value	within	limits for Na	589.592 Recov	ery = 91.38%				
231 604		82897.2	991.3 ug/L	2,88	991.3	ug/L	2.88	0.29
OC value	within	limits for Ni	231.604 Recov	ery = 99.13%				
213.617		40952.5	4689 ug/L	26.7	4689	ug/L	26.7	0.57
OC value	within	limits for P 2	13.617 Recove	:y = 93.78%				
220 253		20500.0	975.7 ug/L	5,17	975.7	ug/L	5.17	0.53
OC value	within	limits for Pb	220.353 Recov	ery ≈ 97.57%				
206 836		7905.6	1064 ug/L	8.5	1064	ug/L	8.5	0.80
OC value	within	limits for Sb	206.836 Recov	ery = 106.39%				
196 026		5169.8	970.0 ug/L	6.10	970.0	ug/L	6.10	0.63
OC value	within	limits for Se	196.026 Recov	ery = 97.00%				
100 027		5602.8	520.7 ug/L	4.98	520.7	ug/L	4.98	0.96
OC value	within	limits for Sn	189.927 Recov	ery = 104.15%				
A AD1 650		1132002.8	917.9 ug/L	5.00	917.9	ug/L	5.00	0.54
OC value	within	limits for Sr	421.552 Recov	ery = 91.79%				
227 279		84789.9	952.7 ug/L	13.31	952.7	ug/L	13.31	1.40
. 221.412 Autori	within	limits for Ti	337,279 Recov	ery = 95.27%				
100 201		15021.6	988.7 uq/L	4.42	988.7	ug/L	4.42	0.45
190.801	within	limits for Tl	190.801 Recov			-		
202 402		309558.0	961.9 uq/L	2.73	961.9	ug/L	2.73	0.28
292.402	within	limits for V	92,402 Recove		_			
- DOC 500 GC ASTRE	MI CIIIII	149157 6	1007 ug/L	2.0	1007	ug/L	2.0	0.20
206.200	within	limits for %n	206.200 Recov					
ÖC ∧ar <b>n</b> e	MTCHITH	sed QC.						

Sequence No.: 6
Sample ID: ICB 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Sequence No.: 6

Sample ID: ICB 120320EA I:PB O:EA

Analyst:

Autosampler Location: 1

Date Collected: 03/20/12 12:57:07 PM

Data Type: Reprocessed on 03/21/12 9:48:54 AM

Mean Data: ICB 120	320EA I:PB 0:EA	L				
	Mean Corrected	Calib.			9ample	
Analyte	Intensity	Conc. Units	Std.Dev.	Cono.	Unite	Std.Dev. RSD
Ag 338.289	46.6	0.307 ug/L	0.3196	0.307	ug/L	0.3196 104.18%
QC value within	limits for Ag	338.289 Recovery	= Not calculated		_	
Al 308.215	12.2		9.6625		ug/L	9.6625 208.78%
QC value within	limits for Al	308.215 Recovery	= Not calculated			
As 188.979	-1.8				ug/L	0.7241 258.93%
QC value within			⇒ Not calculated			
B				1,607	ug/L	1.2771 79.48%
QC value within	limits for B	Recovery = Not ca	lculated			
Ba 233.527	-15.7		0.0202	-0.061	ug/L	0.0202 33.41%
QC value within			= Not calculated			
Be 313.107	-63.2	-0.011 ug/L			ug/L	0.0222 193.82%
QC value within			= Not calculated		-	
Ca 315.887		-1.343 ug/L			ug/L	0.7597 56.57%
QC value within			= Not calculated			
Cd 214.440	23.2	0.046 ug/L			ug/L	0.0465 101.59%
	limits for Cd	214,440 Recovery	= Not calculated			
Co 228.616	-15.6	-0.154 ug/L		-0.154	ug/L	0.0772 50.13%
	limits for Co	228.616 Recovery	= Not calculated			
Cr 267.716	5.5	0.031 ug/L			ug/L	0.0687 210.93%
QC value within			= Not calculated		-	
Cu 327.393					ug/L	0.5389 149.69%
QC value within	limits for Cu	327.393 Recovery	= Not calculated		1-	
Fe 273.955	-54.9	-1.506 ug/L	0.7995		ug/L	0.7995 53.07%
_			= Not calculated	04	/7	21 0517 560 258
K 766.490		5.594 ug/L		5.594	лд\г	31.8517 569.35%
	limits for K 7	66.490 Recovery	≈ Not calculated	0.262		0 4545 105 049
Mg 285.213	~13.9	-0.363 ug/L	V.4545	~0.363	սց/ ւ	0.4545 125.24%
	Timits for Mg	285.213 Recovery	= Not calculated	0 000	/1	0.0426 52.19%
Mn 257.610	7.2	0.082 ug/L	0.0426	0.062	ug/L	V.0426 52.134
_			≈ Not calculated	0 045	ug/L	0.2296 508.23%
Mo 202,031	2.6	0.045 ug/L	0,2296 = Not calculated	0.045	ug/ L	0.2236 508.23%
_		-10.61 uq/L	= NOL Calculated	-10 61	ug/L	11.342 106.90%
			= Not calculated		ug/ ii	11.342 100.500
_	-20.2	-0.242 ug/L			ug/L	0.2124 87.78%
Ni 231.604		221 604 Pogovery	= Not calculated		ug/ D	0.2124 87.700
	0.4	0.050 ug/L	1 2146	0 050	ug/L	1.2146 >999.9%
P 213.617		13.617 Recovery		0.000	ug/ D	1.2110 /333.30
	-4,3	-0.206 ug/L	0.2791	-0.206	ug/L	0.2791 135.61%
Pb 220.353		220 353 Recovery	= Not calculated		ug/ L	V.E.71 133.010
Sb 206.836	5.8	0,774 ug/L	0.3621	0.774	ug/L	0.3621 46.76%
OC value within	limits for Sh	206.836 Recovery	= Not calculated	• • • • •	-5/-	
Se 196.026	-5.4	-1.007 ug/L	1.2000	-1.007	ug/L	1,2000 119,22%
OC value within	limits for Se	196.026 Recovery	= Not calculated		57 -	_,
Sn 189.927	7.3	0.676 ug/L	0.1439	0.676	ua/L	0.1439 21.28%
OC value within			= Not calculated		97	
Sr 421.552	-81.9	-0.066 ug/L			ug/L	0.0949 142.96%
OC value within	limits for Sr	421.552 Recovery	⇒ Not calculated		5.	
ті 337.279	14.4	0,162 ug/L	0.2202		ug/L	0.2202 136.24%
OC value within	limits for Ti	337.279 Recovery	= Not calculated			
T1 190.801	10.4	0.677 ug/L	0.2943	0.677	ug/L	0.2943 43.49%
OC value within	limits for Tl	190.801 Recovery	= Not calculated			
V 292.402	-19.1	-0.057 ug/L	0.1527	-0.057	ug/L	0.1527 268.06%
QC value within	limits for V 2	92.402 Recovery :	= Not calculated			
Zn 206,200	37.1	0.250 սց/Ն	0.0672	0.250	ug/L	0.0672 26.84%
QC value within	limits for Zn	206.200 Recovery	= Not calculated			
All analyte(s) pass	ied QC.					

Sequence No.: 8
Sample ID: ICSA 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chem

Logged In Analyst (Original) : chemist metals Initial Sample Wt:

Dilution:

Autosampler Location: 12 Date Collected: 03/20/12 1:05:52 PM Data Type: Reprocessed on 03/21/12 9:48:56 AM

Mean Data: ICSA 12	.032088 T.DB ():1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Mean paral 102% 12	Mean Corrected				Sample		
Analyta			Std.Dev.	Cono.		Std.Dev	RSD
Analyte Ag 338.289	127.1	0.836 ug/L	0.1381		ug/L	0.1381	
OC value within	limits for Ag	338.289 Recovery	= Not calculat		31		
Al 308,215	512491.1	193500 ug/L	1232.3		ug/L	1232.3	0.64%
		308.215 Recovery			-3/		
As 188.979	-3.2	-0.500 ug/L	1.6802	-0.500	ug/L	1.6802	335.83%
		188.979 Recovery			-37 -		
В			7.839		ug/L	7.839	25.25%
_		Recovery = Not ca			-37 -		
Ba 233.527	7486.4		0.2886	-0.109	uq/L	0.2886	265.85%
	· - • - · -	233.527 Recovery			-31 -		
Be 313.107		0.131 ug/L	0.0636		ug/L	0.0636	48.65%
		313,107 Recovery			~9/ <b>–</b>	0.000	
Ca 315.887		191200 ug/L			uq/L	1451.2	0.76%
		315.887 Recovery		2,2200	49/2	115411	01700
Cd 214.440		0.033 ug/L	0.0920	0.033	ug/L	0.0920	278.81%
		214.440 Recovery			497 E	0.0520	2,0,010
		-0.056 ug/L	0.0649		ug/L	0 0649	116.09%
		228.616 Recovery			49/11	0.0045	110.036
Cr 267.716			0.2440		ug/L	0 2440	172.63%
		267.716 Recovery			ug/ n	0.2440	112.034
Cu 327.393		-0.141 ug/L			ug/L	0 1004	140.63%
		327.393 Recovery			ug/ n	0.1504	140.03%
Fe 273.955	6416312 2	176600 ug/L	584.2		ug/L	584.2	0.33%
				176600	ug/п	304.2	0.33*
		273.955 Recovery 70.22 ug/L		70 22	/7	26 650	37,96%
K 766.490		70.22 ug/11 66.490 Recovery:	26.659		ug/L	20.059	37,906
						1100.0	0.600
Mg 285.213		186900 ug/L	1127.2	199300	ug/L	1127.2	0.60%
		285.213 Recovery		0.750	/7	0 5065	CO 355
Mn 257.610		-0.759 ug/L			ug/L	0.5267	69.37%
	TIMICS FOR MD	257.610 Recovery			/7	0.0014	CO 100
Mo 202.031		-1.542 ug/L	0.8814		ug/L	0.8814	57.17%
QC value within	limics for Mo	202.031 Recovery	= NOC Calculat				
		-14.92 ug/L			ug/L	8.552	57.31*
		589.592 Recovery					
Ni 231,604	810.1	0.046 ug/L	0.0961		ug/L	0.0961	208.59%
		231.604 Recovery		ea	4-		
P 213.617	89.9	10.30 ug/L	0.907	10.30	ug/L	0.907	8.81*
		13.617 Recovery					
Pb 220,353		0.550 ug/L		0.550	ug/L	0.2833	51.49*
		220,353 Recovery			1.		
Sb 206.836	1.8	0.237 ug/L	0.8590	0.237	ug/L	0.8590	361.74%
_		206.836 Recovery			4.		
Se 196.026	53.3	9.995 ug/L	3.3188	9.995	ug/L	3.3188	33.20%
		196.026 Recovery					
Sn 189.927	51.1	4.748 ug/L	0.2693		ug/L	0.2693	5.67%
		189.927 Recovery					
Sr 421.552	6213.3	-0.760 ug/L	0.0316	-0.760	սց/ե	0.0316	4.17%
		421.552 Recovery		ed	4-		
Ti 337.279	785.3	2.032 ug/L	0.3792	2.032	ug/L	0.3792	18.66%
		337.279 Recovery				_	
Tl 190.801	16.7	-0.818 ug/L	0.4496	-0.818	ug/L	0.4496	54.96%
		190.801 Recovery					
V 292.402	13829.6	-0.300 ug/L	0.1718	-0.300	ug/L	0.1718	57.20%
		92.402 Recovery =					
Zn 206.200	3544.2	3.175 ug/L	0.1724	3.175	ug/L	0.1724	5.43%
		206.200 Recovery	= Not calculate	ed			
All analyte(s) pass	iea QC.						

Sequence No.: 9
Sample ID: ICSAB 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 13
Date Collected: 03/20/12 1:09:28 PM
Data Type: Reprocessed on 03/21/12 9:48:57 AM

Жe	an Data: :		20320EA I:PB O							
_	_		Mean Corrected	di	Calib.		_	Sample		
λп	alyte		Intensity 146500.9	Con	c. Units	Std.Dev.	Conc.	Units	Std.Dev	
λg	338.289		146500.9	964	3 ug/L	3.00	964.3	ug/L	3.00	0.31%
	QC value	within	limits for Ag							
Al	308.215		500639.6	1891	.00 ug/L	875.1	189100	ug/L	875.1	0.46%
	QC value	within	limits for Al	308.215	Recovery	≈ 94.53%				
Aя	188.979		2864.5	443	.2 ug/L	7.89	443.2	uq/L	7.89	1.78%
	OC value	within	limits for As					٥.		
В	<b>R</b> • • • • • • • • • • • • • • • • • • •		-4256.7			10.252	~32.29	uα/L	10.252	31.75%
_	OC walue	within	limits for B				32.27	ug/ 13	10.252	31.730
Do		WICHIE	122587.6				445 6	ug/L	1.18	0.27%
Ва	233.527					1.18	445.6	ug/ L	1.10	0.278
_		within	limits for Ba					. /-		
вe	313.107		3165382.4		.7 ug/L	1.74	459.7	ug/L	1.74	0.38%
		within	limits for Be							
Ca	315.887				00 ug/L	831.7	188000	ug/L	831.7	0.44%
	QC value	within	limits for Ca			≈ 94.00%				
Cd	214.440		466423.3	901	.6 ug/L	2.84	901.6	ug/L	2.84	0.32%
	QC value	within	limits for Cd	214.440	Recovery	≈ 90.16%				
Co	228.616				.6 ug/L	3.74	466.6	ua/L	3.74	0.80%
		within	limits for Co			= 93.32%		- 3.		
Cr	267.716		81991.0			1.44	467 3	ug/L	1.44	0.31%
			limits for Cr				307.2	ug/ 11	2.33	0.510
<b>л</b>	327.393	MICHIE		478		1.90	470 3	~/1	1 00	0.40%
Cu							4/0.3	ug/ D	1.90	0.406
_		within	limits for Cu							
rе	273.955			1755		580.0	175500	ug/L	580.0	0.33%
			limits for Fe							
K	766.490		903.9					ug/L	37,335	50.42%
	QC value	within				= Not calculated				
Mg	285.213		7013218.7	1835	00 ug/L	788.0	183500	ug/L	788.0	0.43%
_	QC value	within	limits for Mg	285.213	Recovery	= 91.77%		_		
Mn	257.610		43080.4				479.5	uq/L	2,10	0.44%
			limits for Mn					٥,		
MΩ	202.031		26419.0		.3 ug/L	4.53	470.3	սσ/Ն	4.53	0.96%
		within	limits for Mo					-97-	1.00	0.500
Ma	589.592	***************************************	2266.3			4.9311	2 905	ng/L	4.9311	175 929
Ha		within				= Not calculated		ug/ II	4.5311	175.020
								/=	0.40	
Nı	231,604		76273.6		Ŭ.		904.7	ug/ L	2.42	0.27%
		within	limits for Ni					-		
Р 2	213.617		61.1		91 ug/L	1.7278	6.991	ug/L	1.7278	24.72%
	QC value					Not calculated				
Pb	220.353		19355.3				921.2	ug/L	0.23	0.89%
	QC value	within	limits for Pb	220.353	Recovery	¤ 92.12%				
Sb	206.836		3813.4	513	,2 ug/L	1.01	513.2	ug/L	1.01	0.20%
	OC value	within	limits for Sb	206.836	Recovery	□ 102.64%		•		
Se	196.026		2560.4	480	.4 ug/L	9.74	480.4	սգ/յ,	9.74	2.03%
~~	OC value	within	limits for Se	196.026	Recovery	= 96.08%		-5, -		
Qn.	189,927		47.7		35 ug/L	0.3941	4 435	uq/L	0.3941	8 8 9 Sr
-511		within				= Not calculated		ug/ D	0.5541	0.058
C		MICHIE		-0.1		0.0647	-0.143	ua/T	0 0647	4E 338
ÞΓ	421.552	ni khi s				= Not calculated		ug/ п	0.0647	45.338
		MICHIN						1-		
Tı	337.279		874.3		l4_ug/L	0.9446	3.214	ug/ь	0.9446	29.398
		within				= Not calculated		-	_	
Tl	190.801		7060.8		.9_ug/L	4.88	458.9	ug/L	4.88	1.06%
	QC value	within	limits for Tl			= 91.78%				
V 2	92.402		160822.5		.0 ug/L	1.89	460.0	ug/L	1.89	0.41%
	QC value	within	limits for V 2	92,402	Recovery =	92.00%		-		
Zn	206.200		136521.9	901.	.2 ug/L	3.41	901.2	ug/L	3.41	0.38%
	OC value	within	limits for Zn					J.		
Д11	analyte(	я) равя	ed OC.		•					
		_, _, _,	<b>-</b> -							

Dilution:

Sequence No.: 10
Sample ID: CCV1 120320EA I:PB 0:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:

Autosampler Location: 3
Date Collected: 03/20/12 1:12:11 PM
Data Type: Reprocessed on 03/21/12 9:48:58 AM

Mean Data: CCV1 120320EA I:PB O:EA										
Me	an Data: C	CVI 12	Mean Corrected		Calib.			Sample		
An.	alvte					Std.Dev	r. Conc.	Unite	Std.Dev.	RSD
Aq	338,289		Intensity 76788.3	505.	.5 uq/L	1.65		ug/L		0.33%
			limits for Ag			= 101.09%				
Al	308.215		53529.0		l0 ug/L ੈ	279,1	20140	ug/L	279.1	1.39%
	QC value	within	limits for Al			= 100.68%				
As	188.979		6656.1		30 ug/L	2.7		ug/L	2.7	0.26%
	QC value	within	limits for As					-		
В			6840.7			22.7	1065	ug/L	22.7	2.13%
_	•	within	limits for B	-			1000	47		0 100
Ва	233.527		266352.3		27 ug/L	1.0		ug/ь	1.0	0.10%
n.	_	MICUIN	limits for Ba 7062846.5	103		2.3	1026	ng/L	2.3	0.22%
ве	313.107	within	limits for Be				1030	ug/ b	2.3	0.223
Ca	315.887	MICHIN	1019692.7				51720	ng/ī.	290.1	0.56%
ca		within	limits for Ca				. 31,20	ug/ 2	230.1	V.500
Cd	214.440	112011211	532315.8		2 ug/L	1.6	1042	ug/L	1.8	0.17%
		within	limits for Cd					-3, -		•
Co	228.616			103		2.1	. 1035	ug/L	2.1	0.20%
			limits for Co			= 103,52%		•		
Cr	267.716		178069.7		17 ug/L	0.8	1027	ug/L	0.8	0.08%
	QC value	within	limite for Cr	267.716	Recovery	102.66%				
Cu	327.393		181738.5	101	.7 ug/L	0.6	1017	ug/L	0.6	0.06%
	QC value		limits for Cu							
Fe	273.955		751789.9				20540	ug/L	31.5	0.15%
	QC value	within	limits for Fe							
K '	766.490		99388.5		0 ug/L	108.0	20140	ug/L	108.0	0.54%
	-		limits for K 7							
Mg	285.213			5211		287.0	52110	ug/L	287.0	0.55%
		within	limits for Mg				4000	/=	45.4	1 500
Μŋ	257,610				2 ug/L	15.4	1022	ug/L	15.4	1.50%
		MICUIN	limits for Mn				1063	ug/L	2.5	0.23%
MO	202.031	مداد ما جادي	60418.7 limits for Mo		3 ug/L	2.5	1003	щул	2.5	0.234
NT-	589.592	WICHIH	354204.4			142.9	25610	ug/L	142.9	0.56%
Ма		within	limits for Na				25010	ug/ D	142.5	0.50%
Ni	231.604	WICHILL	86664.1		6 ug/L	1.2	1036	սց/և	1.2	0.11%
		within	limits for Ni					~5, <u> </u>		V
ъ:	213.617		46108.2			8.2	5279	ug/L	8.2	0.16%
- '		within	limits for P 2					-3, -	•	
Pb	220.353		22075.8		1 ug/L	4.0	1051	ug/L	4.0	0.38%
	QC value	within	limits for Pb	220.353	Recovery	= 105.06%				
Sb	206.836		7621.9	102	6 ug/L	4.7	1026	ug/L	4.7	0.46%
	QC value	within	limits for Sb			= 102.57%				
Se	196.026		5490.0	103	0 ug/L	4.8	1030	ug/L	4.8	0.47%
		within	limits for Se	196.026	Recovery					
Sn	189.927		11124.2		4_ug/L	3.4	1034	ug/L	3.4	0.33%
_		within	limits for Sn				***			0.550
Sr	421.552		1263399.7		4 ug/L	6.6	1024	ug/L	6.6	0.65%
		within	limits for Sr				1000	/ T	14.5	1 449
Tı	337.279	ما الما الما الما	89888.9 limits for Ti		9 ug/L	14.5	1009	ug/L	14.5	1,44%
ma		MTCUITU			Recovery 4 ug/L	2.2	1074	ug/L	2.2	0.20%
1.1	190.801	within	16319.8 limits for Tl				10/4	ug/ II	2.2	0.205
ν,	QC Value v 292.402	MTCHTH	335065.9		2 ug/L	2.1	1042	ng/ĭ.	2.1	0.20%
* *	OC value s	within	limits for V 2				1012	-5, -	2.1	5.290
<b>7</b> .n	206.200		155121.8		7 ug/L	2.1	1047	ug/L	2.1	0.20%
~	OC value	within	limits for Zn					J		
All	analyte(	в) равв	ed QC.		•	· ·				
		-								

Sequence No.: 11 Autosampler Location: 1

Sample ID: CCB 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 03/20/12 1:14:52 PM
Data Type: Reprocessed on 03/21/12 9:48:59 AM

Mean Data: CCB 120320FA					
	Corrected	Calib.		Sample	
Analyte In	tensity Cond			Units Std.De	
Ag 338.289	24.3 0.16			ug/L 0.135	2 84.61%
QC value within limit					. 405 158
Al 308.215 QC value within limit				ug/L 8.441:	2 486.16*
As 188.979				ug/L 0.264	1 112.20%
QC value within limit				ug/L 0.204.	1 112.203
B	-81.4 -11.7			ug/L 1.23	3 10.53%
QC value within limit					201000
Ba 233.527				ug/L 0.0303	3 159.89%
QC value within limit					
Be 313.107	-129.4 -0.01	9 ug/L	0.0124 -0.019	ug/L 0.0124	65.80%
QC value within limit	s for Be 313.107	Recovery = No			
Ca 315.887				ug/L 0.4258	42.97%
QC value within limit					
Cd 214,440	-3.0 -0.00		0.0515 -0. <b>00</b> 6	ug/L 0.051	840.64%
QC value within limit					
Co 228.616	-7.1 -0.07			ug/L 0.2557	7 364.90%
QC value within limit					
Cr 267.716				ug/L 0.1528	337.51%
QC value within limit					
Cu 327.393	14.8 0.08	3_ug/L :	L.1096 0.083	ug/L 1.1096	>999.9%
QC value within limit			calculated		
Fe 273.955		J,		ug/L 1.0872	19.12%
QC value within limit					45 400
	-238.0 -48.3		22.925 -48.34	ug/L 22.925	47.42%
QC value within limit				/7 0.3445	10 170
Mg 285.213	41.8 1.09			ug/L 0.1445	13.17%
QC value within limit			. Carcurated 3.0989 -0.066	vo/T 0.000	150.10%
Mn 257.610 QC value within limit				ug/11 0.0985	150.10%
Mo 202.031	-1.0 -0.01		0.0801 -0.018	ug/I. 0.0801	449.53%
QC value within limit:				ug/ D 0:0001	. 445.550
	-167.3 -12.13			ug/L 5.451	45.03%
QC value within limits			calculated	49,2	131030
Ni 231.604	-7.8 -0.09		.1099 -0.093	ug/L 0.1099	117.90%
QC value within limit			calculated	-5,-	
	-8.0 -0.91			ug/L 0.3395	37.07%
QC value within limits			calculated	- <b>-</b>	
Pb 220.353				ug/L 0.2155	190.06%
QC value within limits	s for Pb 220.353	Recovery = Not	calculated		
Sb 206.836			.1928 0.991	ug/L 0.1928	19.44%
QC value within limits					
Se 196.026	0.2 0.029	9 ug/L 0	.5925 0.029	ug/L 0.5925	>999.9%
QC value within limits					
Sn 189.927			.2960 0.313	ug/L 0.2960	94.71%
QC value within limits					
Sr 421.552			.2056 -0.022	ug/L 0.2056	938.76%
QC value within limits					
Ti 337.279	2.4 0.028		.1402 0.028	ug/L 0.1402	503.03%
QC value within limits				/1	06 259
Tl 190.801 QC value within limite		Pagovery - Not		ug/L 0.6914	86,25%
V 292.402			.2225 0.065	ua/t. 0 2005	344.13%
OC value within limits			calculated	ug/ II V. 2225	744.T30
Zn 206.200			.1456 0.191	ua/I, 0 1456	76.24%
OC value within limits				~21 D 0.1400	701240
All analyte(s) passed QC.	3				
anali- (a) Farre 60.					

Sequence No.: 44
Sample ID: CCV2 120320EA I:PB 0:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 8
Date Collected: 03/20/12 3:35:48 PM
Data Type: Reprocessed on 03/21/12 9:49:33 AM

Mean Data: CCV2 120320EA I:PB O:EA										
			Mean Corrected		Calib.			Sample		
	alyte		Intensity		c. Units			Units	Std.Dev.	RSD
Ag	338,289		58473.9		.9 ug/L	4.07	384.9	ug/L	4.07	1,06%
		within	limits for Ag				15000			
AI	308.215	مراد ما الأدار	41967.9		90 ug/L	212.1	15790	ug/L	212.1	1.34%
ħσ		ATCUITU	limits for Al 5083.6				786.5	υσ/T	7 10	0.000
AB	188.979	within	limits for As		.5 ug/L	7.10	786.5	աց/ և	7.10	0.90%
В	QC Value	WICHIII	5413.4		.0 ug/L	19,31	840.8	na/L	19.31	2.30%
	OC value	greate	r than the uppe					ug/ D	17.51	2.300
Ва	233.527	3_0.00	204953.7		.5 ug/L	5,67	790.5	ua/L	5.67	0.72%
		within	limits for Ba				,,,,,	-3, -	2.07	
Ве	313.107	-	5406840.0		.0 ug/L	5.83	793.0	uq/L	5.83	0.74%
	QC value	within	limits for Be			= 105.74%		٥,		
Ca	315.887		791748.0		60 ug/L	316.7	40160	ug/L	316.7	0.79%
	QC value	within	limits for Ca			= 107.09%				
Cd	214.440		411379.3		.4 ug/L	6.27	805.4	ug/L	6.27	0.78%
	QC value	within	limits for Cd			= 107.39%				
Co	228.616		81032.1		.8 ug/L	5.33	798.8	ug/L	5.33	0.67%
		within	limits for Co					_		
Cr	267,716		136187.4		.1 ug/L	6.66	785.1	ug/L	6.66	0.85%
		within	limits for Cr							
Cu	327.393	1	137745.3		.7_ug/L	4.18	770.7	ug/L	4.18	0.54%
		within	limits for Cu						444.	
ьe	273.955	4 10 10 4	578904.1		20 ug/L	114.7	15820	ug/L	114.7	0.73%
<i>v</i> -	_	MICUIN	limits for Fe		Recovery 20 uq/L		15500	/T	06.4	A
K	766.490	مرائط المراث	77563.1		<b>-</b> ,	86.4	15720	и9/ ь	86.4	0.55%
Ma	285.213	MICHIN	limits for K 7 1522306.2		Recovery = 40 ug/L	297.9	20040	ua /T.	297.9	0.75%
ng		within	limits for Mg				39840	ug/D	297.9	0.75%
Mn	257.610	WICHILL	70586.3		.6 ug/L	10.07	801.6	ua/ī.	10,07	1,26%
1-111		within	limits for Mn				001.0	ug, 1	10,07	1,200
Mo	202.031	W1C11111	43960.6		.5 ug/L	4.75	773.5	ua/Ti	4.75	0.61%
		within	limits for Mo					-5/ -		0,010
Na	589.592		277894.0		90 ug/L	158.8	20090	ug/L	158.8	0.79%
•-		within	limits for Na					-5/ -		
Ni	231.604		66604.1	796	.1 ug/L	7.23	796.1	ug/L	7.23	0.91%
	QC value	within	limits for Ni	231.604	Recovery	= 106.15%				
	13.617		33922.3		84 ug/L	43.4	3884	ug/L	43.4	1.12%
	QC value	within	limits for P 2	13.617	Recovery =	103.57%				
	220.353		16914.5		.0 ug/L	3.67	805.0	ug/L	3.67	0.46%
	-	within	limits for Pb					•_		
	206.836		6057.1		.1 ug/L	3.30	815.1	ug/L	3.30	0.41%
		within	limits for Sb				000 0			
	196.026	and wholes	4274.3 limits for Se		.0 ug/L	2.30	802.0	ug/L	2.30	0.29%
		AT CUIT!	8706.5		.2 ug/L	2.14	900 2	/T	2 14	0.256
	189.927	within	limits for Sn				809.2	ug/ь	2.14	0,26%
	421.552	ATCHTH	974861.4		3 ug/L	6.02	790.3	ua / I.	6.02	0.76%
01	OC value	within	limits for Sr				750.5	ug/ D	0.02	0.700
	337.279		71858.3		7 ug/L	10.15	806.7	ua/L	10.15	1.26%
		within	limits for Ti					J, —	_3,10	_,_0
	190.801		12513.5		.8 ug/L	2.56	823.8	uq/L	2,56	0.31%
	QC value	within	limita for Tl					<b>J</b> ,		
V 2	92,402		255171.6	792.	7 ug/L	5.65	792.7	ug/L	5.65	0.71%
		within	limits for V 2			105.70%		J.		
	206.200		120156.9		7 ug/L	5.53	810.7	ug/L	5.53	0.68%
	QC value	within	limits for 2n	206.200	Recovery	= 108.10%				
QC	Failed.	Continu	e with analysi	Β.					•	

Sequence No.: 45
Sample ID: CCB 120320BA I:PB O:BA
Analyst:
Logged In Analyst (Original) : chemist_matals
Initial Sample Wt:
Dilution:

Autosampler Location: 2
Date Collected: 03/20/12 3:39:16 PM
Data Type: Reprocessed on 03/21/12 9:49:34 AM

	iean Corre	ated		Calib.				yomn I o		
				CHIID.			_	Sample		
Analyte	Intensi	.ty	Conc.					Units	Std.Dev	
Ag 338.289		2		_ug/L		.0734		ug/L	0.0734	16,11%
QC value within 1										
Al 308.215		1	6.974			.9724		ug/L	9.9724	143.00%
QC value within l										
As 188.979	1.			ug/L		.2467		ug/L	1.2467	511.31%
QC value within l								17	0 0105	5 010
В				ug/L			-3,713	ug/L	0.2195	5.91%
QC value within 1								/-		50 000
Ba 233.527	-12.		-0.049					ug/L	0.0284	58.20%
QC value within 1								/ 7	0.0006	30.060
Be 313.107	-628.		-0.093				-0.093	ug/L	0.0306	32.96%
QC value within 1								15	0.0001	E2 200
Ca 315.887				ug/L				ug/L	0.6361	53.09%
QC value within 1									0.000	210 609
Cd 214.440	10.		0.020					ug/L	0.0625	310.62%
QC value within 1							-0.181	~/r	0 1747	96.14%
Co 228.616	-18.	4 	-0.181	ug/L	No.			ug/ L	0.1742	90.140
QC value within 1								/7	0.0650	165,62%
Cr 267.716	7.		0.040					ug/L	0.0655	105.023
QC value within 1		CF 267	./16 -1.659	Recovery		nateurateu	-1.659	110 /T	1 2255	74.48%
Cu 327.393 QC value within 1	-297.		202	ug/L Daggeramir				ug/ II	1.2355	#0P.F1
	THITCH TOT	Cu 327	.393 .	ug/L	= 1400	Carcaracea		սզ/և	0.2500	37.77%
Fe 273.955 QC value within l								ug/ D	0.2500	37.776
	37.	TÇ 2/3	7.457	ng/L				ug/L	25.7088	344 74%
K 766.490 QC value within l		1 V 766 .	100 D	uy/u			7.457	ug/ L	25.7000	344.740
Mg 285.213				ug/L			-0 235	ug/L	n 8959	380.95%
QC value within 1	imita for	Ma 285	213	Recovery	= Not	.calculated		ug, 2	0.0353	3001350
Mn 257,610	5.	ng 200	0.055	na/L		.0649	0.055	ug/L	0 0649	117.08%
QC value within 1			.610 3	Recovery				ug/ 1	0.0015	
Mo 202.031	-0.		-0.003			. 1713	-0.003	ug/L	0.1713	>999.9%
QC value within 1						calculated	0.005	~g/ 2	0,1,13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	4650.			ug/L				ug/L	17.89	5.31%
QC value within 1								-5, -		
Ni 231.604	-49.		-0.593			2391	-0.593	ug/L	0.2391	40.34%
QC value within 1						calculated		. 3,	-	-
P 213.617	-6.			ug/L		1413	-0.684	ug/L	0.1413	20.65%
QC value within 1	imits for	P 213.6	517 Re	ecovery =	Not o	calculated		. J.		
Pb 220.353	-8.		-0.403			.2879	-0.403	ug/L	0.2879	71.45%
QC value within 1:	imits for	Pb 220	.353 I	Recovery	= Not	calculated				
Sb 206,836	14.	1	1.893	ug/L	1,	1638	1,893	ug/L	1.1638	61.48%
QC value within 1:	imits for	Sb 206	. 836 I	Recovery	= Not	calculated		_		
Se 196.026	4.	7	0.874	ug/L	2.	1556	0.874	ug/L	2.1556	246.54%
QC value within 1:	imita for	Se 196.	.026 I	Recovery	= Not	calculated				
Sn 189.927				ug/L			0.885	ug/L	0.1823	20.60%
QC value within 1:	imite for									
Sr 421.552	-40.	3 -	-0.033	ug/L	0.	0792	-0.033	ug/L	0.0792	239.59%
QC value within 1:		Sr 421	, 552 F	Recovery						
Ti 337.279	-4.		-0.052			0547 -	-0.052	ug/L	0.0547	104.36%
QC value within 1:										
Tl 190.801	-15,	5 -	-1.010	ug/L	0.	5822 -	1.010	ug/L	0.5822	57.64%
QC value within 1:		Tl 190.	.801 F	Recovery	= Not	calculated				
V 292.402	9.	5	0.028	иg/L	0.	4847	0.028	ug/L	0.4847	>999.9%
QC value within li	imits for	V 292.4	102 Re	covery =	Not c	alculated		4-		
	30		0 761	ug/L		VOEE	.n. ว.c.1	uq/L	0.0855	22 76S
Zn 206.200	-30.	1	.0.201	ug/ 11		0000	0.201	ug/ n	0.0000	32.700
Zn 206.200  QC value within li All analyte(s) passed	imits for	Zn 206.	200 F	Recovery	≈ Not	calculated	0.201	ug/ II	0.0055	32.700

Sequence No.: 56

Autosampler Location: 3

Sequence No.: 56
Sample ID: CCV1 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 3
Date Collected: 03/20/12 4:31:46 PM
Data Type: Reprocessed on 03/21/12 9:49:46 AM

Me	an Data:	CCV1 1203	20EA I:PB	O:BA			*					
		2	Mean Corre	cted		Calib.				Sample		
An	alyte		Intensi	t <i>y</i>	Conc.	Units	St	d.Dev.	Conc.	Units	Std.Dev.	R\$D
Ag	338.289			2		ug/L		5.12	533.6	ug/L	5.12	0.96%
	QC value	e within 1	limits for				= 106	.72%				
Al	308.215		56523.		21260			488.9	21260	ug/L	488.9	2.30%
	QC value	e within ]	limits for				= 106	.31%				
Aa	188.979		6956.	4	1076	ug/L		14.7	1076	ug/L	14.7	1.36%
	QC value	e within 1	limits for	As 188	.979	Recovery	= 107	,63%				
В			7245.	9	1128	ug/L		26.5	1128	ug/L	26.5	2.35%
	QC value	greater	than the	upper l	imit f	or B Rec	covery	= 112.7	7%			
Ba	233.527		283072.			ug/L		10.5	1092	ug/L	10.5	0.96%
	QC value	e within l	imits for	Ba 233	.527	Recovery	<b>≈ 109</b>	.19%				
Ве	313.107		7445139.			ug/L		6.6	1092	ug/L	6.6	0.61%
	QC value	within l	imits for	Be 313	.107	Recovery	= 109	.19%				
Ca	315.887		1087177.	8	55140	ug/L		37.8	55140	ug/L	37.8	0.07%
	QC value	e within l	imite for	Ca 315	.887	Recovery	= 110	.29%				
Cd	214.440		566914.			ug/L		11.7	1110	ug/L	11.7	1.05%
	QC value	greater	than the	ipper 1			.440	Recover				
Co	228.616	-	111801.		1102			12.2		uq/L	12,2	1.11%
	QC value	within l	imits for				= 110	.23%		٥,		
Cr	267,716		187869.			սց/և		11.5	1083	ug/L	11.5	1.06%
	OC value	within 1	imits for	Cr 267			= 108			-3.		
Cu	327.393		191111.			uq/L		8.8	1069	ug/L	8.8	0.82%
		within 1	imits for				<b>≈ 106</b>	_		-2,-		
Fe	273.955		798226.			ug/L		229.8	21810	υα/Τι	229.8	1.05%
		within 1	imits for							-2, -		
К 7	66.490		108152.		21920			464.0	21920	ug/L	464.0	2.12%
		within 1	imits for							37 -		
Ma	285.213		2085044.		54560			48.7	54560	սգ/Ն	48.7	0.09%
5		within 1	imits for				<b>= 109</b>			37		0.050
Mn	257.610		94192.0		1070			23.9	1070	ug/L	23.9	2,23%
		within 1	imits for				= 106		20.0	-5/ -	20.5	21200
Мо	202,031		62833.4			uq/L		10.1	1106	սգ/Ն	10.1	0.91%
		greater	than the u				. 031				-4.1	0.510
Na	589.592	<b>J</b>	377598.3		27300			15.0	27300		15.0	0.05%
		within 1	imits for				= 109		2.500	~5, _	1010	0.000
Νi	231.604	,,	91762.2			ug/L	- 105	10.8	1097	บอ/โ	10.8	0.99%
		within 1	imits for				= 109		1037	49/15	10.0	0.550
	13.617		48520.2			ug/L		66.4	5555	ug/L	66.4	1.20%
		greater	than the i								00.4	1.200
_	220.353	3200001	22945.6		1092		· .	9.1	1092		9,1	0.83%
		within 1	imits for				= 109		1072	ug/ D	J.1	V.03*
_	206.836	41011111 1	8390.2		1129		- 105.	17.6	1129	ua/I.	17.6	1.56%
		greater	than the t				азк				17.0	1.500
	196.026	grouter	5837.6		1095	na/t.		8.6	1095		8.6	0.78%
		within 1	imite for		026 F	ecovery			1095	ug/ L	0.0	0.70%
	189,927	WICHIN I	11698.8		1087		_ 105.	11.4	1087	na/L	11.4	1.05%
		within 1	imits for				- 10B		1007	ug/ L	11.4	1.050
	421.552	112011211 2	1345834.3		1091		- 100.	1.1	1091	ua/ī.	1,1	0.10%
		within 1	imits for				- 109		1071	ug/ L	1,1	0.10%
	337.279	17 L 17 L	97237.6		1092		- 103.	24.6	1092	ua/L	24.6	2.26%
		within 1	imits for				± 100		1032	ug/ u	44.0	4.400
	190,801	"renth 1.	16940.5		1115		_ 109.	11.4	1115	um /T.	11.4	1,02%
		greater	than the u				. 801				11.4	1,048
	92.402	3200001	353992.2		1100		- 0,0 2	10.6	1100		10.6	0.96%
		within 1	imits for				110 0		1100	α9/ n	10.0	A.202
	206.200		165509.6		1117			11.9	1117	ua/L	11.9	1.07%
		greater t	than the u						, = 111 &D	8 8	11.7	T.0/4
OC	Railed.	Continue	with anal	vsis.					- 111.00	•		
# C				<u>.</u>								

Sequence No.: 57
Sample ID: CCB 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
pilution:

Autosampler Location: 1
Date Collected: 03/20/12 4:34:22 PM
Data Type: Reprocessed on 03/21/12 9:49:47 AM

	2000						
Mean Data: CCB 120		Calib.			Comple		
2	mean Corrected	Callo.	Grd Dov	Conc	Sample Units	Std.Dev.	מפמ
Analyte Ag 338.289	Turenaith	Conc. Units	Std.Dev.	Conc.	ug/L	0 04EE	16 499
Ag 336.269	12.U	0.276 ug/L	- Not coloulated	0.276	ug/II	0.0455	10.400
		338.289 Recovery		10 04	ug/L	3 609	29 10%
Al 308.215		12.84 ug/L		12.04	ug/ L	3.600	20.10%
	1.0	308.215 Recovery	= NOC Calculated	0 161	ug/L	0 9101	E00 409
AB 188.979		0.161 ug/L	0.8191	V.101	ug/ь	0.6191	500.49%
		188.979 Recovery	= NOt carcurated	9 649	ug/L	1 2205	16.28%
B		-7.547 ug/L		-/.54/	ug/ D	1.2205	10.20%
		Recovery # Not ca		0 000	/T	0.0640	117.29%
Ba 233.527		0.055 ug/L			ug/L	0.0649	117.230
•		233.527 Recovery	= Not carculated		15	0.0465	40 709
Be 313,107		-0.095 ug/L			ug/L	0.0465	48.78%
_		313.107 Recovery				3 760	14 510
Ca 315.887		25.92 ug/L			ug/L	3.762	14.518
		315.887 Recovery	mot calculated		17	0.0034	00.000
Cd 214.440	-21.0	-0.041 ug/L			ug/L	0.0334	80.80%
		214.440 Recovery	# Not calculated	<b>a</b> : <b>a</b> o o	/ •		160 138
Co 228.616	-19.2	-0.190 ug/L			ug/L	0.3038	160.13%
		228.616 Recovery	≈ Not calculated			0 1000	110 510
Cr 267.716		-0.154 ug/L			ug/L	0.1820	118.548
_		267.716 Recovery			4-		
Cu 327.393		-0.684 ug/L			ug/L	0.3236	47.298
		327.393 Recovery			/-		
		-5. <b>0</b> 54 ug/L			ug/L	0.5025	9.94*
_		273.955 Recovery	= Not calculated		,_		<b>50</b> 540
K 766.490	-235.8	-47.94 ug/L		-47.94	ug/L	29.981	62.548
QC value within		66.490 Recovery			ė		<b>-</b> -
Mg 285.213	42.2	$1.077~\mathrm{ug/L}$	0.4315		սց/Ն	0.4315	40.05%
QC value within		285.213 Recovery	= Not calculated				
Mn 257.610	2 <b>6</b> .1	0.297 ug/L	0.0476	0.297	ug/L	0.0476	16.03*
QC value within		257.610 Recovery					
Mo 202.031	-2.8	-0.050 ug/L		-0.050	ug/L	0.2248	448.64%
		202.031 Recovery			,_		
Na 589.592	1041.9	75.45 ug/L			ug/L	10.744	14.24*
QC value within		589.592 Recovery	Not calculated				
Ni 231.604	1.3	0.016 ug/L	0.1119	0.016	ug/L	0.1119	718.51%
QC value within		231.604 Recovery	= Not calculated				
P 213.617		-0.024 ug/L		-0.024	ug/L	0.5580	>999.9%
	limits for P 2	13.617 Recovery	Not calculated		,_		
		-0.839 ug/L		-0.839	ug/L	0.3593	42.83%
QC value within		220.353 Recovery	= Not calculated		1-		
Sb 206.836	5.0	0.678 ug/L	0.7873	0.678	ug/L	0.7873	116.12*
	limite for Sb	206.836 Recovery	= Not calculated		45		
Se 196.026	-0.5	-0.085 ug/L	2.0428	-0.085	ug/L	2.0428	>999.9*
		196.026 Recovery			4-		
Sn 189.927	17.4	1.620 ug/L	0.0734	1.620	ug/L	0.0734	4.53*
		189.927 Recovery			4-		
Sr 421.552	65.3	0.053 ug/L	0.1627	0.053	ug/L	0.1627	309.30%
		421.552 Recovery	= Not calculated		4-		
Ti 337.279	-8.3	-0.094 ug/L	0.2855 -	0.094	ug/L	0.2855	<b>303.38</b> %
		337.279 Recovery			4-		
Tl 190.801	-11.0	-0.710 ug/L		-0.710	ug/L	0.3815	53,73%
QC value within		190,801 Recovery					
V 292.402	65.7	0.199 ug/L	0.2965	0.199	ug/L	0.2965 1	149.13%
		92.402 Recovery =					
Zn 206,200	-35,4	-0.241 ug/L		0.241	ug/L	0.1155	48.01%
QC value within	limits for Zn	206.200 Recovery	= Not calculated				
All analyte(s) pass	ed QC.						

Sequence No.: 58 Sample ID: CCV1 120320EA I:PB O:EA Analyst Logged In Analyst (Original) : chemist_metals Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 03/20/12 6:29:49 PM Data Typs: Reprocessed on 03/21/12 9:49:48 AM

Me	an Data: CCV1 12										
_	<b>.</b> .	Mean Corre			Calib.				Sample		
An	alyte	Intensi	ty	Conc.	Units	Std.	Dev.			Std.Dev.	R\$D
Ag	338.289	74404.	8	489.8	ug/L	2	.64	489.8	ug/L	2.64	0.54%
	QC value within	limits for	Ag 338	3.289	Recovery				_		
AL	308,215	53592.		20160	ug/L	4	6.8	20160	ug/L	46.8	0.23%
	QC value within										
As	188.979	6959.		1077	ug/L	2	5.6	1077	ug/L	25.6	2.38%
_	QC value within					<b>= 107.6</b>	7%				
В		6957.		1082	ug/L		9.2	1082	ug/L	9.2	0.85%
_	QC value within										
ва	233.527	267484.	)	1032	ug/L	1	3.1	1032	ug/L	13.1	1.27%
_	QC value within	limits for	Ba 233			= 103.1	7%				
Ве	313,107	7101928.			ug/L	1	1.1	1042	ug/L	11.1	1.06%
_	QC value within						5%				
Ca	315.087	1017115.9		51590	ug/L	19	0.8	51590	ug/L	190.8	0.37%
	QC value within	limits for	Ca 315	.887	Recovery :	= 103.1	88				
Cd	214.440	550260.3		1077	ug/L	2	4.3	1077	ug/L	24.3	2.26%
_	QC value within	limits for	Cd 214	.440	Recovery :	= 107.7	3%				
Co	228.616	106585.5	5	1051	ug/L	1	4.8	1051	ug/L	14.8	1.40%
_	QC value within					= 105.0	98				
Cr	267.716	177824.2		1025	ug/L	1	1.5	1025	ug/L	11.5	1.12%
	QC value within	limits for	Cr 267	.716 H	Recovery :	= 102.5	2 %				
Cu	327.393	174344.4		975.5	ug/L	8	.62	975.5	ug/L	8.62	0.88%
	QC value within			.393 I	Recovery =	97.55	<b>*</b>		<del>-</del>		
Fe	273.955	758802.1		20740	ug/L	29.	5.5	20740	ug/L	295.5	1.43%
	QC value within			.955 F	Recovery =	= 103.6	8%		-		
K.	766.490	98794.0		20020	ug/L	6	6.0	20020	ug/L	66.0	0.33%
	QC value within	limits for	K 766.	490 Re	ecovery =	100.11	<del>d</del>		-		
Mg	285.213	1938886.8		50740	ug/L	28	3.0	50740	ug/L	28.0	0.06%
	QC value within	limits for	Mg 285	.213 F	Recovery =	: 101.48	3∜		•		
Mn	257.610	91240.8		1036	սց/L	(	0.8	1036	ug/L	0.8	0.07%
	QC value within	limits for	Mn 257			: 103.62	28				
Mo	202.031	59846.7		1053	ug/L		1.5	1053	ug/L	14.5	1.37%
	QC value within			.031 R	Recovery =	: 105.30	) <del>%</del>		-		
Na	589.592	346715.4		25060	ug/L	25	5.6	25060	ug/L	25.6 `	0.10%
	QC value within	limits for	Na 589	.592 R	ecovery =	: 100.26	8		<b>4</b>		
Ni	231.604	87623.6		1047		14	1.9	1047	ug/L	14.9	1.43%
	QC value within	limits for	Ni 231	.604 R	ecovery =	104.74	%		Ψ.		
	13.617	47951.9			ug/L	180	.5	5490	ug/L	180.5	3.29%
	QC value within	limits for	P 213.0	617 Re	covery =	109.818	\$		•		
	220.353	22254.9		1059	ug/L	24	. 0	1059	սզ/և	24.8	2.34%
	QC value within	limits for	Pb 220			105.92	8				
	206.836	8192.8		1103	ug/L	1.9	1.1	1103	սց/ե	19.1	1.73%
	QC value within		Sb 206	.836 ห	ecovery =	110.25	8		<b>J</b> .		
Se	196.026	5791.0		1087	ug/L	31	3	1087	սզ/Լ	31.3	2.88%
	QC value within	limits for	Be 196.	.026 R	ecovery =	108.66	*				
	189.927	11469.8		1066	ug/L		. 4	1066	ug/L	26.4	2.48%
	QC value within :	limits for a	3n 189.	.927 R	ecovery =	106.60	8		٥.		
	421.552	1244237.6		1009	ug/L	0	.6	1009	ug/L	0.6	0.06%
	QC value within :		3r 421.	.552 R	ecovery =	100.86	*		_		
	337.279	90694.8		1018		2	.1	1018	ug/L	2.1	0.20%
	QC value within :		ri 337.			101.82	&				
	190.801	16207,3		1067		13		1067 t	ւց/և	13.2	1.24%
	QC value within :		Cl 190.			106.66	8				
	92.402	332104.3		1032	ug/L	9	.7	1032 ι	лg/Ъ	9.7	0.94%
	QC value within 1					103.25%			-		
	206.200	161971.3		1093 1		27		1093 ι	ıg/L	27.7	2.54%
	QC value within 1	limite for 2	n 206.	200 R	ecovery =	109.28	%				
A11	analyte(s) passe	ed QC.									

Sequence No.: 59

Autosampler Location: 1

Sequence No.: 59
Sample ID: CCB 120320EA I:PB O:EA
Analyst:

Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Dilution:

Date Collected: 03/20/12 6:34:31 PM Data Type: Reprocessed on 03/21/12 9:49:49 AM

	~~~~	~~~~			
Mean Data: CCB 120	320BA I:PB 0:BA	.			
	Mean Corrected			Sample	a. 4 n
Analyte Ag 338.289	Intensity 3.7	Conc. Units 0.024 ug/L	0.5284 0.02	. Units	Std.Dev. RSD 0.5284 >999.9%
OC value within		338.289 Recovery	= Not calculated	a ug/D	0.3204 7777.70
Al 308.215		6.364 ug/L	2.7294 6.36	4 ug/L	2.7294 42.89%
QC value within	limits for Al	_	= Not calculated		
Ав 188.979	3.3	0.513 ug/L	0.9568 0.51	3 ug/L	0.9568 186.48%
QC value within		188.979 Recovery 18.72 ug/L	= Not calculated 2.970 18.7	2 ug/L	2.970 15.87%
_		Recovery = Not cal		2 49/11	2.570 13.070
Ba 233.527	-0.4		0.0520 -0.00	3 ug/L	0.0520 >999.9%
QC value within		233.527 Recovery	= Not calculated		
Be 313.107		-0.048 ug/L		8 ug/L	0.0595 124.13%
		313.107 Recovery		6 ug/L	8.192 10.03%
Ca 315.887		81.66 ug/L 315.887 Recovery		6 ug/h	0.192 10.03%
Cd 214.440	-13.9	-0.028 ug/L		8 ug/L	0.0148 52.31%
	limits for Cd	214.440 Recovery	= Not calculated	<u>.</u>	
Co 228.616				4 ug/L	0.1531 106.11%
-		228.616 Recovery		0/1	0 0000 60 249
Cr 267.716		-0.102 ug/L 267.716 Recovery		2 ug/L	0.0696 68.34%
Cu 327.393		-1.990 ug/L		0 ug/L	0.6196 31.13%
		327.393 Recovery		5/	***************************************
Fe 273.955	129.3	3.510 ug/L	0.4659 3.51	0 ug/L	0.4659 13.27%
QC value within		273.955 Recovery			
K 766.490	-189.1	~38.48 ug/L		θ ug/L	29.372 76.32%
Mq 285.213	93.1	66.490 Recovery : 2.389 ug/L		9 ug/L	0,4348 18.20%
		285.213 Recovery		, ag, <u>a</u>	011010 201200
Mn 257.610	103.1	1.173 ug/L	0.0482 1.17	3 ug/L	0.0482 4.11%
QC value within		257.610 Recovery	⇒ Not calculated		
Mo 202.031	-17.0	-0.300 ug/L	0.0286 -0.30	0 ug/L	0.0286 9.53%
		202.031 Recovery 20.87 ug/L	= NOT Calculated	7 ug/L	10.798 51.74%
		589.592 Recovery		, ug/L	10.750 517715
Ni 231.604	-31.7	-0.381 ug/L	0.1709 -0.38	l ug/L	0.1709 44.89%
QC value within	limits for Ni	231.604 Recovery	≈ Not calculated		
P 213.617	-5.7	-0.651 ug/L	0.7778 -0.65	l ug/L	0.7778 119.51%
		13.617 Recovery = -0.759 ug/L		9 ng/t	0.3336 43.97%
		220.353 Recovery		s ug/u	0.3330 43.779
Sb 206.836	1.5	0.209 ug/L	0.7999 0.20	9 ug/L	0.7999 383.48%
QC value within	limits for Sb :	206.836 Recovery	= Not calculated		
Se 196,026	-0.3	-0.052 ug/L	1.8752 -0.05	2 ug/L	1.8752 >999.9%
		196.026 Recovery		. u~/ī	0.4215 4.40%
Sn 189.927		9.802 ug/L 189.927 Recovery		ug/L	0.4315 4.40%
Sr 421.552	-5.6	-0.006 ug/L		uq/L	0.1257 >999.9%
QC value within		121.552 Recovery	= Not calculated		
Ti 337.279	-26.9	-0.304 ug/L	0.1219 -0.304	l ug/L	0.1219 40.10%
	limits for Ti	337.279 Recovery			0 5004 30 440
Tl 190.801		-1.456 ug/L 190.801 Recovery		ug/L	0.5694 39.11%
V 292.402	-94.3	-0.294 ug/L	0.4859 -0.294	ug/L	0.4859 165.24%
OC value within	limits for V 29	2.402 Recovery =	Not calculated		J
Zn 206.200	-50.0	-0.340 ug/L	0.0670 -0.340	ug/L	0.0670 19.68%
QC value within	limits for Zn 2	206.200 Recovery	≈ Not calculated		
All analyte(s) pass	sea QC.				

Date: 03/21/12 9:50:00 AM

Sequence No.: 70 Sample ID: CCV2 120320EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Dilution:

Autosampler Location: 8 Date Collected: 03/20/12 7:30:35 PM Data Type: Reprocessed on 03/21/12 9:50:00 AM

	0320EA I:PB O:EA Mean Corrected	Calib.			Sample		
Analyte A g 338.289	Intensity	Cono. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338,289	56515.7	372.0 ug/L	3,03	372.0	սց/Ն	3.03	0.81%
	limits for Ag 338						
	39459.2			14840	ug/L	150.6	1.07%
	limits for Al 308		= 98.96 %				
As 188.979		774.5 ug/L	6.22	774.5	ug/L	6.22	0.80%
	limits for As 188						
В	5091.6		5.10	792.5	ug/L	5.10	0.64%
	limits for B Rec						
Ba 233.527	199853.6	770.9 ug/L	9.93	770.9	ug/L	9.93	1,29%
	limits for Ba 233			766.0	~ /7	4 13	A 549
Be 313.107	5228930.8 limits for Be 313		4.13	/00.8	աց/ և	4.13	0.54%
	754390.2			20260	ug/L	526.5	1.38%
OC value within	limite for Ca 315	997 Decovery	- 102 04%	30200	ug/ II	320.5	1.300
Cd 214.440		781.3 ug/L		781 3	ng/L	8,99	1,15%
	limits for Cd 214			701.3	ug, 13	0,55	11134
Co 228.616	78699.2	775.9 ug/L	10.56	775.9	ug/L	10.56	1.36%
	limits for Co 228				~5, -		_1000
	132656.4			764.8	ug/L	9.21	1.20%
	limits for Cr 267				-51		
Cu 327.393	134332.1		6.59	751.5	ug/L	6.59	0.88%
QC value within	limits for Cu 327	.393 Recovery			_		
	562254.0	15360 ug/L	192.7	15360	ug/L	192.7	1.25%
	limits for Fe 273	.955 Recovery	= 102.42*		_		
	74965.9			15190	ug/L	272.7	1.79%
	limits for K 766.						
	1467668.6			38410	ug/L	522.4	1.36%
	limits for Mg 285						
	67376.7			765.1	ug/L	6.88	0.90%
	limits for Mn 257				,_		
40 202.031			8,27	754.9	ug/L	8.27	1.10%
	limits for Mo 202			10000	/7	250 0	1 226
Na 589.592	261644.5 limits for Na 589	10920 ug/L	250.9	18920	ug/L	250.9	1.33%
Vi 231.604	64596.7	.592 Recovery	= 100.00% 10 17	272 1	~ /T	10.17	1.32%
	limits for Ni 231			112.1	ug/L	10.17	1.326
213.617			46.2	3711	ug/L	46.2	1.24%
	limits for P 213.			3,11	ug/ D	40.2	1.240
	16151.9			768.7	υα /Τ.	3.27	0.43%
	limits for Pb 220					5.2.	V5 ·
3b 206.836	5974.7	804.0 ug/L	2.22	804.0	ua/L	2.22	0.28%
	limits for Sb 206				- J.		• • - • -
Se 196.026	4044.6	758.9 ug/L	1.21	758.9	ug/L	1.21	0.16%
	limits for Se 196.				.		
n 189.927	8276.6	769.3 ug/L	2.72	769.3	ug/L	2.72	0.35%
QC value within	limits for \$n 189.		= 102.57%		_		
Br 421,552	936921.9	759.5 ug/L	10.21	759.5	ug/L	10.21	1.34%
	limits for Sr 421.	552 Recovery	= 101.27%				
ri 337.279	66788.7	749.8 ug/L	6.21	749.8	ug/L	6.21	0.83%
	limits for Ti 337.						
1 190.801		800.3 ug/L	2.18	800.3	ug/L	2.18	0.27%
	limits for Tl 190.	801 Recovery			-		
292.402	249378.4	774.8 ug/L	8.97	774.8	ug/L	8.97	1.16%
QC value within In 206,200	limits for V 292.4			200 0		0.00	
an 206.200		789.8 ug/L	9.88	789.8	սց/ Ի	9.88	1.25%
Of walve within	limits for Zn 206.	200 Recovery	- 1AE 2A&				

Sequence No.: 71
Sample ID: CCB 120320EA I:PB O:EA
Analyst:
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 2
Date Collected: 03/20/12 7:34:46 PM
Data Type: Reprocessed on 03/21/12 9:50:01 AM

Mean Data: CCB 120	320EA I:PB O:BA				
	Mean Corrected	Calib.		Sample	
Analyte Ag 338.209	Intensity	Conc. Units	Std.Dev. Co	nc. Units	Std.Dev. RSD
Ag 338.209				077 ug/L	0.3937 513.66%
QC value within	limits for Ag		= Not calculated	/-	
Al 308.215		0.012 ug/L		012 ug/L	2.7879 34.80%
			<pre>Mot calculated 0.8477 0.8477</pre>	151 ug/L	0.8477 560.27%
As 188.979	1.0 limits for No 1	0.151 ug/L	Not calculated	151 ug/ D	0.0477 500.276
B OC value within	-113.1	-16.36 ug/L		.36 ug/L	0.031 5.08%
-		Recovery = Not ca		.,50 45,2	5100= 51003
Ba 233.527	5.0	0.019 ug/L		019 ug/L	0.0486 256.60%
	limits for Ba 2		<pre>= Not calculated</pre>	u .	
Be 313.107	218.3	0.030 ug/L		030 ug/L	0.0273 89.54%
QC value within			 Not calculated 		
Ca 315.887		97.04 ug/L		.04 ug/L	10.338 10.65%
			= Not calculated	/-	
Cd 214.440		-0.005 ug/L		005 ug/L	0.0263 506.43%
			= Not calculated	072 ug/L	0.1429 199.64%
Co 228.616		-0.072 ug/L	0.1429 -0. = Not calculated	072 ug/ L	0,1429 199.046
Cr 267.716	-6.8	-0.041 ug/L		041 ug/L	0.0518 125.70%
			= Not calculated	011 ug/11	0.0010 120.705
Cu 327.393		-0.970 ug/L		970 ug/L	0.4182 43.12%
			⇒ Not calculated	.	
Fe 273.955	11.6	0.230 ug/L	0.1737 0.	230 ug/L	0.1737 75.63%
QC value within	limits for Fe 2	73.955 Recovery	Not calculated	-	
K 766.490		-23.67 ug/L	49.111 -23	.67 ug/L	49.111 207.50%
QC value within		6.490 Recovery	≈ Not calculated		
Mg 285.213	87.2	2.228 ug/L		228 ug/L	0.7900 35.45%
			= Not calculated	COA	0.0000 10.049
Mn 257.610		0.604 ug/L	0.0969 0. = Not calculated	604 ug/L	0.0969 16.04%
Mo 202.031	-29.9	-0.528 ug/L		528 ug/L	0,1039 19.69%
	limita for Mo 2	-0.526 ug/u 002 031 Recovery	= Not calculated	320 dg/H	V.1033 13.030
Na 589.592		13.86 ug/L	1.137 13	.86 ug/L	1,137 8,20%
	limite for Na 5	89.592 Recovery	= Not calculated		
Ni 231.604	-33.2	-0.398 ug/L	0.2227 -0.	398 ug/L	0.2227 55.94%
QC value within	limits for Ni 2	31,604 Recovery	 Not calculated 		
P 213.617		-2.038 ug/L		038 ug/L	0.3244 15.92%
QC value within		3.617 Recovery			
Pb 220.353		-1.326 ug/L	0.5236 -1.	326 ug/L	0.5236 39.49%
			= Not calculated	000	A 2020 105 509
Sb 206.836	-2.2		0.3739 -0. = Not calculated	297 ug/L	0.3739 125.69%
			1.8326 -0.	835 ug/L	1,8326 219.43%
Se 196.026		96.026 Recovery	= Not calculated	039 ug/ L	1,0320 213.43%
Sn 189.927	14.0	1.303 ug/L		303 ug/L	0.0776 5.95%
			= Not calculated	···	
Sr 421.552	110.0	0.095 ug/L	0.0517 0.	095 ug/L	0.0517 54.61%
QC value within	limits for Sr 4	21.552 Recovery	= Not calculated		
Ti 337.279	-22.4	-0.253 ug/L		253 ug/L	0.1834 72.40%
		37.279 Recovery			
Tl 190.801	-25.4	-1.642 ug/L		642 ug/L	0.2714 16.53%
		90.801 Recovery		aa.c. l-	A 44A4 55- 555
V 292,402	-8.9	-0.036 ug/L		036 ug/L	0.1184 327.22%
	-00.2	2.402 Recovery = -0.543 ug/L		5/2 na/t	0.0311 5.72%
Zn 206,200		06.200 Recovery		543 ug/L	0.0311 5.72%
All analyte(8) pass	ed OC.		CATOUIGEC		
who-j poor					

Dilution:

Sequence No.: 82 Sample ID: CCV1 120320EA I:PB O:EA Analyst: Logged In Analyst (Original) : chemist_metals Initial Sample Wt:

Autosampler Location: 3 Date Collected: 03/20/12 8:28:45 PM Data Type: Reprocessed on 03/21/12 9:50:11 AN

Mean Data: CCV1 120							
		Calib		_	Sample		
Analyte	Intensity	Conc. Units	Std.Dev.		Unite	Std.Dev.	RSD
Ag 338.289	75936.0	499.8 ug/L		499.8	ug/L	3.18	0.64%
	limite for Ag 33 53055.2			10060	na/t.	322.8	1.62%
Al 308.215	limite for Al 30	19960 ug/L	322.8	19900	ug/II	322.0	1.043
As 188.979	6724.3	1040 ug/L	10.7	1040	ug/L	10.7	1.03%
	limits for As 18			1040	ug, D	10.7	1.030
B	7056.0	1095 ug/L	18.9	1095	uq/L	18.9	1.73%
	limits for B Re			-070	u ₃ , 2	2013	21,750
Ba 233.527		1025 ug/L	6.2	1025	ug/L	6.2	0.60%
	limits for Ba 23				~5, ~	5.2	V.04.
Be 313,107			15,2	1028	ug/L	15.2	1.48%
	limits for Be 31	-			3 , –		
Ca 315.887	1015558.9	51510 uq/L	328.9	51510	ug/L	328.9	0.64%
	limits for Ca 31		y ≈ 103.02%		0 -		
Cd 214.440	529741.4	1037 ug/L	6.3	1037	ug/L	6.3	0.61%
QC value within	limits for Cd 21		y = 103.72				
Co 228.616	104880.2	1034 ug/L		1034	ug/L	5.4	0.53%
	limits for Co 22	8.616 Recover					
Cr 267,716	176871.9	1020 ug/L	5.7	1020	ug/L	5.7	0.56%
QC value within	limits for Cr 26		y = 101.97%				
Cu 327.393			4.3	1008	ug/L	4.3	0.42%
QC value within	limits for Cu 32	7.393 Recover	y = 100.83%				
Fe 273.955	747914.4	20430 ug/L	118.9	20430	ug/L	118.9	0.58%
QC value within	limits for Fe 27.	3.955 Recover	y = 102.17%		_		
K 766.490	100380.7	20340 ug/L	310.1	20340	ug/L	310.1	1.52%
	limits for K 766						
	1981918.0			51870	ug/L	322.5	0.62%
QC value within	limits for Mg 28						
Mn 257.610	90753.4	1031 ug/L	16.1	1031	ug/L	16.1	1.57%
	limits for Mn 25						
Mo 202.031	59480.4		9,5	1047	ug/L	9.5	0.91%
_	limits for Mo 20:			0=0=4	17		
Na 589.592	350075.0	25310 ug/L	168,1	25310	ug/L	168.1	0.66%
_	limits for Na 58:		=	1006		6.3	A 600
Ni 231.604	85855.7	1026 ug/L	6.3	1026	ug/L	6.3	0.62%
_	limits for Ni 23: 45150.2	,	y ≈ 102.62 6 57.3	E170	/T	57.3	1,11%
P 213.617	45150.2 limits for P 213			21.10	ug/L	57.3	1.110
Pb 220.353	21372.5	.017 Recovery 1017 uq/L	12.4	1017	ug/L	12.4	1.22%
	limits for Pb 220			101,	49, h	TE 13	4,220
Sb 206,836	8047.7	1083 ug/L	12.3	1083	ug/L	12.3	1.14%
	limits for Sb 200			1003	ug, 2	12.3	1111
Se 196,026	5371.9	1008 ug/L	8.4	1008	ug/L	8.4	0.83%
OC value within	limits for Se 190	6.026 Recover		1000		٠,٠	0.050
Sn 189,927	11006.6	1023 ug/L	8,2	1023	ug/L	8.2	0.80%
OC value within	limits for Sn 189				5, -		
Sr 421,552	1264126.9	1025 ug/L	6,3	1025	ug/L	6.3	0.61%
OC value within	limite for Sr 421		y ≈ 102.48%		٥,		
Ti 337.279	90615.6	1017 ug/L	14.5	1017	սց/Ն	14.5	1.42%
OC value within	limits for Ti 337	7.279 Recover	y = 101.73%		.		
T1 190,801	16087.4	1059 ug/L	9.3	1059	ug/L	9.3	0.88%
QC value within	limits for Tl 190	0.801 Recover	y = 105.89%				
V 292.402	333679.0	1037 ug/L	6.8	1037	ug/L	6.8	0.66%
	limits for V 292.		= 103.72%				
Zn 206,200	155086.6	1046 ug/L	6.9	1046	ug/L	6.9	0.66%
OC value within	limits for Zn 206	5.200 Recover	y = 104.65%				
All analyte(s) pass	ed QC.						

Sequence No.: 83
Sample ID: CCB 120320EA I:PB 0:EA
Analyst:
Loggad In Analyst (Original) : chemist_metals
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 03/20/12 8:33:26 PM
Data Type: Reprocessed on 03/21/12 9:50:12 AM

Mean Data: CCB 120							
• •	Mean Correctad			_	Sample		
Analyte Ag 338.289	Intensity 37.5		Btd.Dev.	Conc.	Units	Std.Dev.	
OC value within	3/.5		0.1405 0).247	ug/L	0.1405	56.86%
Al 308.215	limits for Ag 338 21,5						
	limits for Al 308	8.094 ug/L	3.8550 8	3.094	ug/L	3.8550	47.63%
As 188.979	7 3	.215 Recovery -1.134 ug/L	# NOC Calculated	1 1 2 4		1 5600	127 050
	limits for As 188	-1.134 UG/D	1.5629 "1 - Mot galawlated	1.134	ug/L	1.5629	137.85%
B Oc value within		.979 kecovely -13.76 ug/L		3 76	ug/L	0.692	E 019
	limits for B Rec	-13.70 ug/D	0.092 -1 laulated	.3.76	ug/п	0.692	5.03%
Ва 233.527	-4 9	-0.019 ug/L		010	uq/L	0.0285	161 00%
- ·	limits for Ba 233			,.UI3	ug/ D	0.0265	131.30%
Be 313.107	140.1	0.019 ug/L		0.10	uq/L	0.0295	152 009
	limits for Be 313	.107 Recovery	= Not calculated	,.013	ug/ II	0.0293	133.900
Ca 315.887	1113.5	56.59 ug/L		6 59	ug/L	10.304	18 21%
	limits for Ca 315	.887 Recovery	= Not calculated	,0.32	ug/ 1	10.504	10.210
Cd 214,440	-13.2	-0.027 ug/L	0.0179 -0	0.027	ug/L	0.0179	67 368
	limits for Cd 214	.440 Recovery	= Not calculated		0g/ 13	0.0179	07.304
Co 228,616	-21.8	-0.216 ug/L		236	ug/L	0.1126	52.02%
	limits for Co 228	.616 Recovery	= Not calculated		ug/ 11	0.1120	32.020
Cr 267.716		-0.104 ug/L		104	ug/L	0.0685	65,71%
	limits for Cr 267	.716 Recovery	= Not calculated		ug/ n	0.0005	05,719
Cu 327.393	-387 6			162	ug/L	0.6187	28.62%
	limits for Cu 327	.393 Recovery		1102	ug/ II	0.0167	40.028
Fe 273.955	78.3	2.096 ug/L		096	ug/L	0.6397	20 51%
	limits for Fe 273	955 Decovery	- Not celculated	.030	ug/ II	0.0337	30.31%
K 766,490		-18.55 uq/L		9 55	ug/L	4.660	25 129
	limits for K 766.		. Not calculated		ug/ D	4.000	23.120
Mg 285.213	31.1	0.781 ug/L		781	ug/L	0 4728	60 548
	limits for Mg 285	213 Recovery	= Not calculated	. , 01	ug/ 11	0.4720	00.540
Mn 257.610	56.9	0.648 ug/L	0.1553 0	648	ug/L	0.1553	22 00%
	limits for Mn 257		= Not calculated	.040	ag, n	0.1333	23.990
Mo 202.031	-19.9	0.350 ug/L	0 1826 -0	350	ug/L	0.1826	E2 10%
	limits for Mo 202	.031 Recovery	= Not calculated	.350	ug/ 11	0.1020	34.130
Na 589.592		7.478 ug/L		47R	ug/L	11 0708 -	148 04%
	limits for Na 589	592 Recovery	= Not calculated		ug/ <u>D</u>	11.0700	140.040
Ni 231.604		0.150 ug/L		.150	ug/L	0 1671 1	111 30%
	limits for Ni 231.			.130	ug, 1	0.1071	111.390
P 213.617		1.703 ug/L		. 703 1	ug/L	0.6738	39.56%
	limits for P 213.6		Not calculated		~3, 2	0.0750	33.300
Pb 220.353		1.125 ug/L		.125	ug/L	0.3862	34.34%
	limits for Pb 220.	353 Recovery	= Not calculated		-5/ -	0.5002	31.540
Sb 206.836	-3.6 -	0.483 ug/L		.483 1	ug/L	0.5905 1	22.27%
OC value within	limits for Sb 206.	836 Recovery	= Not calculated		-3, -		
Se 196.026	-3.1 -	0.577 ug/L	2.1593 -0	.577 1	uq/L	2.1593 3	73.98%
QC value within	limits for Se 196.	026 Recovery	= Not calculated		- J. –		
Sn 189.927		0.471 ug/L		.471	ug/L	0.0740	15.70%
	limits for Sn 189.	927 Recovery	= Not calculated				
Sr 421.552		0.021 ug/L		.021 ι	ıq/L	0.1549 7	53.03%
OC value within	limits for Sr 421.		≈ Not calculated		J.		
Ti 337.279		0.259 ug/L -		.259 ı	aq/L	0.0759	29.34%
	limite for Ti 337.		= Not calculated				
Tl 190.801	-15.8 -	1.014 ug/L	0.2063 -1.	.014 ı	ıg/L	0.2063	20.35%
QC value within	limits for Tl 190.		= Not calculated				
V 292.402	46.8	0.136 ug/L	0.3221 0.	.136 u	ıq/L	0.3221 2	37.43%
	limits for V 292.4				.		
Zn 206.200	-35.2 -	0.239 ug/L	0. 0 500 -0.	239 u	ıq/L	0.0500	20.87%
QC value within :	limits for Zn 206.		= Not calculated	_			
All analyte(s) passe	ed QC.	•					
=							

METALS EPA SW846 - 6010B Raw Data

Sequence No.: 69

Autosampler Location: 90

Sample ID: AY56792801 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.03 g Dilution: Autosampler Location: 90
Date Collected: 03/20/12 7:24:55 PM
Data Type: Reprocessed on 03/21/12 9:49:59 AM

Mean Data:	AY56792S01							
	Mean Corrected	1	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	4105.1	27.02	ug/L	0.216	2.623	mg/kg	0.0210	0.80%
Al 308.215	81414.3	28710		147.3	2787	mg/kg	14.3	0.51%
As 188.979	30.3	4.695		1.1462	0.456	mg/kg	0.1113	24.42%
В	340.1	240.0	ug/L	3.40	23.30	mg/kg	0.330	1.42%
Ba 233.527	13263.1	40.63		0.056	3.944	mg/kg	0.0055	0.14%
Be 313.107	163.2	-6.371	ug/L	0.1162	∽0.619	mg/kg	0.0113	1.82%
Ca 315.887	38732477.4	196900 0	սց/Ն	26595.5	191100	mg/kg	2582.1	1.35%
Cd 214.440	1560.1	~12.97		0.235	~1.259		0.0228	1.81%
Co 228,616	539.4	-10.97		0.207	-1.065	mg/kg	0.0201	1.89%
Cr 267.716	7302.9	18.09	ug/L	0.442	1.757	mg/kg	0.0429	2.44%
Cu 327.393	314.5	36.03		2.467	3.498	mg/kg	0.2395	6.85%
Fe 273.955	657851.5	16460	ug/L	62.9		mg/kg	6.1	0.38%
K 766.490	57067.9	9952	ug/L	82.9	966.2	mg/kg	8.04	0.83%
Mg 285.213	937603:7	23490	ug/L	100.9	2281	mg/kg	9.8	0.43%
Mn 257.610	52590.1	570.2	ug/L	9.08	55.36		0.882	1.59%
Mo 202.031	-55.1	-19.53	ug/L	0.159	-1.896	mg/kg	0.0154	0.81%
Na 589.592	19421.8	448.5	ug/L	20.26	43.54	mg/kg	1.967	4.52%
Ni 231.604	1204.6	-6.594	ug/L	0.2609	-0.640	mg/kg	0.0253	3.96%
P 213.617	3845.2	440.3		2.63	42.74		0.255	0.60%
Pb 220.353	138.8	6.608	ug/L	0.6448	0.642	mg/kg	0.0626	9.76%
Sb 206.836	-37.5	~5.047	ug/L	0.5401	-0.490	mg/kg	0.0524	10.70%
Se 196.026	~56.8	-10.67	ug/L	0.848	-1.035	mg/kg	0.0823	7.95%
Sn 189.927	-118.6	-11.04	ug/L	0.293	-1.072	mg/kg	0.0284	2.65%
Sr 421.552	1775213.0	1419		7.9	137.8	mg/kg	0.77	0.56%
Ti 337.279	18823.7	184.0		2.66	17.87		0.258	1.44%
Tl 190.801	-125.7	-8.418	ug/L	0.9547	-0.817	mg/kg	0.0927	11.34%
V 292.402	23495.4	53.97	ug/L	0.070	5.240	mg/kg	0.0068	0.13%
Zn 206.200	10635.5	10.15	ug/L	0.762	0.985	mg/kg	0.0740	7.51%

Sequence No.: 72

Autosampler Location: 91

Sample ID: AY56793S01

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.07 g

Dilution:

Autosampler Location: 91
Date Collected: 03/20/12 7:39:36 PM
Data Type: Reprocessed on 03/21/12 9:50:02 AM

Mean Data: AY56	793501							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	5048.7	33.23	ug/L	0.538	3.106	mg/kg	0.0503	1.62%
Al 308.215	132067.0	47690	ug/L	79.7	4457	mg/kg	7.4	0.17%
Ав 188.979	51.1	7.912	ug/L	0.3337	0.739	mg/kg	0.0312	4.22%
В	441.4	294,8	ug/L	6.72	27.55	mg/kg	0.628	2.28%
Ba 233.527	28073.4	95.84	ug/L	0.405	8.957	mg/kg	0.0378	0.42%
Be 313.107	2040.3	-6.483	ug/L	0.0366	-0.606	mg/kg	0.0034	0.56%
Ca 315.887	42226701.1	2146000		15490.7	200600	mg/kg	1447.7	0.72%
Cd 214.440	1367.4	-15.18	ug/L	0.174	-1.419	mg/kg	0.0163	1,15%
Co 228.616	1054.7	-7.853	ug/L	0.2570	-0.734	mg/kg	0.0240	3.27%
Cr 267.716	10640.0	35.17	ug/L	0.186	3.287	mg/kg	0.0174	0.53%
Cu 327.393	1326.1	45.05	ug/L	0.486	4.210	mg/kg	0.0455	1.08%
Fe 273.955	970611.7	24920	ug/L	238.6	2329	mg/kg	22.3	0.96%
K 766.490	85147.4	15510	ug/L	14.2	1449	mg/kg	1.3	0.09%
Mg 285.213	983208.6	24590		59.5	2298	mg/kg	5.6	0.24%
Mn 257.610	60207.0	654.4	ug/L	6.55	61.16	mg/kg	0.612	1.00%
Mo 202.031	42.7	-19.20	ug/L	0.240	-1.795	mg/kg	0.0224	1.25%
Na 589.592	16821.8	169.9	ug/L	6.34	15.88	mg/kg	0.593	3.73%
Ni 231.604	4436.4	29.97	ug/L	0.560	2.801	mg/kg	0.0523	1.87%
P 213.617	4360.2	499.2	ug/L	3.18	46.66	mg/kg	0.297	0.64%
Pb 220.353	388.6	18.49	ug/L	0.192	1.728	mg/kg	0.0179	1.04%
Sb 206.836	5.9	0.793	ug/L	0.3666	0.074	mg/kg	0.0343	46.22%
Se 196.026	-64.6	-12,13	ug/L	1.102	~1.134	mg/kg	0.1030	9.08%
Sn 189.927	-91.3	-8.487	ug/L	0.6070	-0.793	mg/kg	0.0567	7.15%
Sr 421.552	1360174.1	1080	ug/L	3.2	101.0	mg/kg	0.30	0.29%
Ti 337.27 9	26583.2	268.7		3.15	25.11	mg/kg	0.295	1.17%
Tl 190.801	-145.9	-8.855	ug/L	0.6806	-0.828	mg/kg	0.0636	7.69%
V 292.402	28641.0	66.57	ug/L	0.652	6.221		0.0609	0.98%
Zn 206.200	18785.4	59.02	ug/L	0.810	5.516	mg/kg	0.0757	1.37%

Sequence No.: 73 Sample ID: AY56794801 Analyst: EA Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1.07 g Dilution:

Autosampler Location: 92 Date Collected: 03/20/12 7:45:17 PM Data Type: Reprocessed on 03/21/12 9:50:03 AM

Mean Data: AY56	794601							
•	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSD
Ag 338,289	4194.6	27.61	ug/L	0.225		mg/kg	0.0210	0.81%
Al 308.215	302153.6	112200	ug/L	1000.3		mg/kg	93.5	0.89%
As 188.979	204.6	31.65		2.924	2.958	mg/kg	0.2733	9.24%
В	-49.7	306.2		0.80		mq/kg	0.075	0.26%
Ba 233.527	69678.5	253.0	ug/L	2.52	23.64	mg/kg	0.236	1.00%
Be 313.107	21060.2	-1.657		0.0793	-0.155		0.0074	4.78%
Ca 315.887	38943440.3	1979000	ug/L	14980.6	185000		1400.1	0.76%
Cd 214.440	3674.6	-10.98	ug/L	0.102	-1.026	mg/kg	0.0095	0.93%
Co 228.616	3927.4	19.25		1.039	1.799	mg/kg	0.0971	5.40%
Cr 267.716	19597.0	88.57	ug/L	0.429		mg/kg	0.0401	0.48%
Cu 327.393	53276.8	333.3	ug/L	2.88	31.15	πg/kg	0.269	0.86%
Fe 273.955	2003380.5	53500	ug/L	362.2	5000	mg/kg	33.8	0.68%
K 7 6 6.490	127689.9	24290	ug/L	274.3	2270	mg/kg	25.6	1,13%
Mg 285.213	1136748.8	28690	ug/L	284.0		mg/kg	26.5	0.99%
Mn 257.610	83410.7	920.7	ug/L	12.60	86.05	mg/kg	1.178	1.37%
Mo 202.031	-6.1	-17.27	ug/L	0.518	-1.614	mg/kg	0.0484	3.00%
Na 589.592	40862.0	1977		35.3	184.8	mg/kg	3.30	1.78%
Ni 231.604	7693.4	69.40	ug/L	0.254	6.486	mg/kg	0.0238	0.37%
P 213.617	6356.7	727.8		3.21	68.02	mg/kg	0.300	0.44%
Pb 220.353	947.9	45.11	ug/L	1.228	4.216		0.1148	2.72%
Sb 206.836	-4.7	~0.637	ug/L	2.3038	-0. 0 60	mg/kg	0.2153	361.57%
Se 196.026	31.9	5.982	ug/L	5.7667	0.559	mg/kg	0.5389	96.40%
Sn 189.927	-74.1	-6.891		0.4882	-0.644		0.0456	7.09%
Sr 421.552	1030139,2	813.8	ug/L	7.42	76.05	mg/kg	0.694	0.91%
Ti 337.279	66670.5	721.3		9.24	67.41	mg/kg	0.864	1.28%
Tl 190.801	2.0	8.095		3.5998	0.757		0.3364	44.47%
V 292.402	63392.4	167.2		0.30	15.62	mg/kg	0.028	0.18%
Zn 206.200	53391.6	295.0	ug/L	0.62	27.57	mg/kg	0.058	0.21%

Dilution:

Sequence No.: 48

Autosampler Location: 68

Sample ID: 120314A-3050G-BLK
Analyst: EA
Logged In Analyst (Original) : chemist_metals
Initial Sample Wt: 1 g

Autosampler Location: 68
Date Collected: 03/20/12 3:51:29 PM
Data Type: Reprocessed on 03/21/12 9:49:37 AM

Mean Data:	120314A-3050G-BLK						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Cona.	Units	Std.Dev.	Conc.	Unite	Std.Dev. RSD
Ag 338,289	63.3	0.417	ug/L	0.4135	0.042	mg/kg	0.0413 99.19%
Al 308.215	5.9	2.058	ug/L	4.5328	0.206	mg/kg	0.4533 220.28%
As 188.979	-0.7	-0.105	ug/L	0.5800	-0.010	mg/kg	0.0580 554.73%
В	-108.6	-15.62		1.585	-1.562	mg/kg	0.1585 10.15%
Ba 233.527	-0.1	-0.006	ug/L	0.0530	-0.001	mg/kg	0.0053 932.35%
Be 313.107	-691.6	-0.101		0.0071	~0.010		0.0007 7.06%
Ca 315.887	276.7	13.91	ug/L	0.216	1.391	mg/kg	0.0216 1,55%
Cd 214.440	-26.8	-0.055	ug/L	0.0535	-0.006	mg/kg	0.0054 96,63%
Co 228.616	1.6	0.012		0.1405	0.001	mg/kg	0.0141 >999.9%
Cr 267.716	21.5	0.122	ug/L	0.0529	0.012		0.0053 43.21%
Cu 327.393	-455.8	-2.541	ug/L	0.7436	-0.254	mg/kg	0.0744 29.26%
Fe 273.955	1056.8	29.06		1.034	2.906		0.1034 3.56%
K 766.490	-114.9	-23.39	ug/L	39.493	-2.339	mg/kg	3.9493 168.85%
Mg 285.213	90.2	2.328		0.3369	0.233	mg/kg	0.0337 14.47%
Mn 257.610	45.8	0.521		0.2593	0.052	mg/kg	0.0259 49.75%
Mo 202.031	~23.7	-0.415	ug/L	0.1049	-0.042		0.0105 25.27%
Na 589.592	2350.4	170.2		2.90		mg/kg	0.290 1.70%
Ni 231.604	-29.5	-0.355		0.0905	-0.036	mg/kg	0.0091 25.47%
P 213.617	64.2	7.349		1.1506	0.735	mg/kg	0.1151 15.66%
Pb 220.353	-24.9	-1.187	ug/L	0.4079	-0.119		0.0408 34.37%
Sb 206.836	-4.1	-0,553	ug/L	0.0949	-0.055		0.0095 17.14%
Se 196.026	-11.6	-2.182		1.7625	-0.218		0.1763 80.77%
Sn 189.927	-8.0	-0.740	ug/L	0.2005	-0.074	mg/kg	0.0200 27.09%
Sr 421,552	174.9	0.141	- .	0.1920	0.014		0.0192 136.08%
Ti 337,279	24.0	0.269		0.3920	0.027	mg/kg	0.0392 145.85%
Tl 190.801	-22.3	-1.435		0.2995	-0.143		0.0299 20.87%
V 292.402	-45.6	-0.152		0.2026	-0.015		0.0203 133.43%
Zn 206.200	-36.8	~0.251	ug/L	0.0572	-0.025	mg/kg	0.0057 22.83%

Sequence No.: 49

Autosampler Location: 69

Sample ID: 120314A-3050G-LCS Analyst: EA

Logged In Analyst (Original) : chemist_metals Initial Sample Wt: 1 g

Dilution:

Autosampler Location: 69
Date Collected: 03/20/12 3:55:52 PM
Data Type: Reprocessed on 03/21/12 9:49:38 AM

Mean Data: 1203								
	Mean Correctad		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RBD
Ag 338.289	10756.3	70.80	ug/L	1.034	7.080	mg/kg	0.1034	1.46%
Al 308,215	5607.9	2054	ug/L	33.9	205.4	mg/kg	3.39	1.65%
As 188.979	1716.0	265.5	ug/L	1.52		mg/kg	0.152	0.57%
В	1628.3	244.5	ug/L	5,90	24.45	mg/kg	0.590	2.41%
Ba 233.527	67473.8	260.7	ug/L	3.02	26.07	mg/kg	0.302	1.16%
Ве 313.107	371195.8	55.20	ug/L	0.624	5.520	mg/kg	0.0624	1.13%
Ca 315.887	544614.2	27640	ug/L	273.1	2764	mg/kg	27.3	0.99%
Cd 214.440	28310.1	55.29	ug/L	0.029	5.529	mg/kg	0.0029	0.05%
Co 228.616	28730.8	283.2	ug/L	0.39	28.32	mg/kg	0.039	0.14%
Cr 267.716	48978.4	281.8	ug/L	3.44	28.18	mg/kg	0.344	1.22%
Cu 327.393	46419.0	259.5	ug/L	4.45	25.95	mg/kg	0.445	1.72%
Fe 273.955	42005.0	1075	ug/L	14.0	107.5	mg/kg	1.40	1.30%
K 766.490	26374.5	5331	ug/L	64.1	533.1	mg/kg	6.41	1.20%
Mg 285.213	1026723.2	26870	ug/L	251.2	2687	mg/kg	25.1	0.948
Mn 257.610	24467.8	276.8	ug/L	3.61	27.68	mg/kg	0.361	1.30%
Mo 202.031	16023.8	281,5	ug/L	0.33	28.15		0.033	0.12%
Na 589.592	371966.6	26920	ug/L	220.0	2692	mg/kg	22.0	0.82%
Ni 231.604	24044.1	287.2	ug/L	0.75	28.72	mg/kg	0.075	0.26%
P 213.617	19384.7	2219	ug/L	2.4	221.9	mg/kg	0.24	0.11%
Pb 220.353	5770.9	274.7	ug/L	0.39	27.47	mg/kg	0.039	0.14%
Sb 206.836	2248.5	302.6	ug/L	0.24	30.26	mg/kg	0.024	0.08%
Se 196.026	1466.0	275.1	ug/L	2.49	27,51	mg/kg	0,249	0.90%
Sn 189.927	3247.6	301.8	ug/L	1.02	30.18	mg/kg	0.102	0.34%
Sr 421.552	328944.9	266.5	ug/L	2.16	26.65	mg/kg	0.216	0.81%
Ti 337.279	25583.1	286.7	ug/L	3.63	28.67	mg/kg	0.363	1.27%
Tl 190.801	4150.7	273.3	ug/L	0.61	27.33		0.061	0.22%
V 292.402	87572.8	273.2	ug/L	3.90	27.32	mg/kg	0.390	1.43%
Zn 206.200	81666.9	549.7	ug/L	5.33	54.97	ma/ka	0.533	0.97%

Sequence No.: 76 Sample ID: AY56794S01-A Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.07 g

Dilution:

Autosampler Location: 95
Date Collected: 03/20/12 7:59:33 PM
Data Type: Reprocessed on 03/21/12 9:50:06 AM

Mean Data:	AY56794801-A							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R\$D
Ag 330.289	31009.9	209.4	ug/L	2.75	19.57	mg/kg	0.257	1.31%
Al 300.215	302985.5	112500	ug/L	2098. 0	10510	mg/kg	196.1	1.86%
As 100.979	2811.7	435.0	ug/L	7.97	40.66	mg/kg	0.745	1.83%
В	2864.8	732.4	ug/L	13.44	68.45	mg/kg	1.256	1.04%
Ba 233.527	15999 6 .4	602.3	ug/L	6.72	56.29	mg/kg	0.628	1.12%
Be 313.107	532963.0	74.80	ug/L	0.781	6.990	mg/kg	0.0730	1.04%
Ca 315.887	38730252.4	1968000	ug/L	26651.8	184000		2490.8	1.35%
Cd 214.440	39483.0	59.41	ug/L	1.298	5.552	mg/kg	0.1214	2.19%
Co 228.616	41061.1	385.6	ug/L	5.36	36.03	mg/kg	0.501	1.39%
Cr 267.716	83909.9	459.0	ug/L	4.82	42.90	mg/kg	0.451	1,05%
Cu 327.393	120965.4	710.9		5.12	66.44	mg/kg	0.478	0.72%
Fe 273,955	2003922.2	53440	ug/L	530.6	4994	mg/kg	49.6	0.99%
K 766.490	167752.4	32430		657.9		mg/kg	61.5	2.03%
Mg 285.213	2636113.7	67950		1193.0	6351.	mg/kg	111.5	1.76%
Mn 257.610	118319.7		ug/L	27.3	123.0	mg/kg	2.55	2.08%
Mo 202.031	22851.2	384.6		4.36	35.94	mg/kg	0.407	1.13%
Na 589 592	634273.9	44950		800.3	4201	mg/kg	74.8	1.78%
Ni 231.604	35996.5	407.8		5.01	38.11	mg/kg	0.468	1.23%
P 213.617	34458.4	3945		62.4	368.7	mg/kg	5.83	1.58%
Pb 220.353	8177.3	389.2		5.38	36.37	mg/kg	0.503	1.38%
Sb 206.836	3420.5	460.3	ug/L	10.03	43.02	mg/kg	0.937	2.18%
Se 196.026	2155.1	404,4		14.48	37.79	mg/kg	1.353	3.58%
Sn 189.927	4414.3	410.3		5.51	38.34		0.514	1,34%
Sr 421.552	1506355.1	1200		20.8	112.2		1.94	1.73%
Ti 337.279	105444.9	1157		22.8	108.1		2.13	1.97%
Tl 190.801	5285.1	357.2	•	2.26	33.39	mg/kg	0.211	0.63%
V 292.402	184176.1	544.7		5.82	50.90		0.544	1.07%
Zn 206.200	138007.3	866.1	ug/L	10.58	80.94	mg/kg	0.989	1.22%

Sequence No.: 77

Sample ID: AY56794801-1/5

Analyst: EA

Logged In Analyst (Original) : chemist_metals

Initial Sample Wt: 1.07 g

Dilution: 5X

Autosampler Location: 96

Date Collected: 03/20/12 8:04:21 PM

Data Type: Reprocessed on 03/21/12 9:50:07 AM

Mean Data: AYS	6794801-1/5							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Unite	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 338.289	1067.3	7.026	ug/L	0.2277	3.283	mg/kg	0.1064	3.24%
Al 308.215	76584.4	28400	ug/L	348.2	13270	mg/kg	162.7	1.23%
As 188.979	20.0	3.097	ug/L	0.9413	1.447	mg/kg	0.4399	30.40%
B	-84.5	75.11	ug/L	3.411	35.10	mg/kg	1.594	4.54%
Ba 233.527	18581.4	67.26		1.242	31.43	mg/kg	0.580	1.85%
Be 313.107	-489.0	~1.410	ug/L	0.0311	-0.659	mg/kg	0.0145	2.20%
Ca 315.887	10659590.7	541800	ug/L	8372.7	253200	mg/kg	3912.5	1.55%
Cd 214.440	632.6	~3.788	ug/L	0.1000	~1.770	mg/kg	0.0467	2.64%
Co 228.616	687.2	1,468	ug/L	0.1555	0.686	mg/kg	0.0727	10.59%
Cr 267.716	4597.6	19.86	ug/L	0.226	9.278	mg/kg	0.1055	1.14%
Cu 327.393	12282.3	78.46	ug/L	0.369	36.66	ng/kg	0.173	0.47%
Fe 273.955	569563.0	15230	ug/ե	227.2	7118	mg/kg	106.2	1.49%
K 766.490	30450.3	5735	ug/L	99.9	2680	mg/kg	46.7	1.74%
Mg 285.213	281417.1	7075	ug/L	93.9	3306	mg/kg	43.9	1.33%
Mn 257.610	21997.1	242.6	ug/L	1.30	113.4	mg/kg	0.61	0.54%
Mo 202.031	-8.9	-4.805	ug/L	0.0312	-2.245	mg/kg	0.0146	0.65%
Na 589.592	4380.1	48.59	ug/L	12.884	22.71	mg/kg	6.021	26.51%
Ni 231.604	1366.1	10.14	ug/L	0.144	4.741	mg/kg	0.0674	1.42%
P 213.617	1397.0	159.9	ug/L	2.93	74.74	mg/kg	1.368	1.83%
Pb 220.353	164.1	7.808	ug/L	0.3573	3.649	mg/kg	0.1670	4.58%
Sb 206.836	~7.5	-1.003	ug/L	0.8770	-0.469	mg/kg	0.4098	87.41%
Se 196.026	~28.0	-5.254	ug/L	1.3727	-2.455		0.6415	26.13%
Sn 189.927	- 52 .9	-4.920	ug/L	0.1181	-2.299	mg/kg	0.0552	2.40%
Sr 421.552	255163.7	201.0	ug/L	2.69	93.92	mg/kg	1.258	1.34%
Ti 337.279	17263.2	186.4		1.49	87.10	mg/kg	0.697	0.80%
Tl 190.801	-80.7	-3.252	ug/L	0.3464	-1.520	mg/kg	0.1619	10,65%
V 292.402	15421.4	3 9. 72	ug/L	0.777	18.56	mg/kg	0.363	1.96%
Zn 206.200	9909.2	49.07	ug/L	0.925	22.93	mg/kg	0.432	1.89%

Metals Standards Log Book # 34 Page # 085

	ICP-M	S STANDARDS 60	20/6020A/3015/3051A	
	l iTodavi	s Oale:		/20/12
S 03/20/1	之 Expires		3/27/12	
1 ()	Prep 1	% KNOW1.0%HCL		
000/600/	20 mL	HNO3 /2000 mil (
000/600/	t II	Lot # K23027		
62355	20ml, I	ICL / 2000mt, OI W		
36/AS		Lol #K43032		
STATE OF THE STATE	Expires	: 0:	V27/12	
1200		I 6 44 - 4 - 4 115 16		
SEE C	interna	i Standard Mix: P	rep 03/20/2012	•
2.2	Standa	rd A		
	Amouni		Manufacturer	
	50 uL		Env. Express	Lot #
10 SC (00 00 00 00 00 00 00 00 00 00 00 00 00	50 at		Env. Express	1036407-28139
	50 UL	CCV-C	Env. Express	1008410-28140
	1 -524		CITY. CASHESS	1100309-28141
50385)	Prepare	d in 100 mL of 1%	HNO3/1 0% HCI	03/20/1
202				OS/ZOF (
	Standar	rd 3 03.	27/12	
200	Amount		Manufacturer	Lot#
PASS .		CCV-A	Env. Express	1038407-28139
4.00	25 UL	CCV-B	Env. Express	1038410-28140
	25 UL	CCV-C	Env. Express	1100309-28141
	Prepare	d in 100 mL of 1% i	HNO3/1.0% HCL	03/20/6
	! I			VVIEW F
	11			
		diale-Sh	03/2	7/12
Mark Process]100 ULa	f Sb STO (CPI 124	(0) 1-30298) (n 10 m), of 1	% HNOWLOW HOL
	ICV-S6		03/2	7/12
	100 UL 0	f Intermediate-\$6 I	n 10 mL of 1% HNO3/1.0	% HÇL
Manager 4(4)				

	NR	5 62/2	0/12		
	שיי		7100		1
Standar		03/27/12	•		Ι,
Amount					ı
[500 UL	Standar			03/20/12	ſ
Prepared	in 60 mL of 1	% HNQ3/1.0% HCI	-	03/20/12	١.
l					l
Standar		03/27/12			
Amount		mo			l :
50 ul.	Standan	14		03/20/12	ı
					Į.
ſ					٠ ١
Prénarod	in 60 mt of 6	% HN03/1.0% HCL			ı
100000	,	ATTITION IN THE		03/20/12	۱.
ICP-MS1	CV	03/27/12			
Amount	 8	TO			
50 ot.	QCS ICV	Ä CPI		110174-28548	-
50 UL		/B CPI		11C174-28549	
		6 HN03/1.0% HCL		03/20/12	
1				******	_
ICSA Pre	p:	03/27/12			
1 mL	ICSA	CPI		110066-28529	
Prepared	In 6 mL of 1%	HN03/1.0% HCL		03/20/12	-
				i	
CSAB P		03/27/12			_
imL	ICSA	CPI		11C066-28529	
0.025mL	_ INT	O2Si		1023805-28210	
(CP-LOR		HH03/1.0% HCL		03/20/12	_
Amount		03/27/12		J	
50 DL	STD CCV-A				
50 pt.	CCV-A	Елу, Ехр		1036407-28139	_
50 UL	CCA-B	- Marie Bole		1038410-28140	
			ness	1100309-28141	
Liebsien i	II TO THE OF 1%	HN03/1.0% HCL		03/20/12	_

Amt	STD	Element	Vendor	Lot#	Final (
500tA.	1000 ug/mL	ü	CPi	10L079-27639	5000 ug
500uL	1000 pg/ml	ln .	CPI	10J155-28574	5000 ug
500uL	1000 ug/mL	Но	CPI	10A107-28576	(5000 ug
500uL	Jan/gu 0001	ъ	CPI	118054-26575	5000 vg
500uL	1000 ug/mL	Sc	02s1	1024073-28527	5000 ug
500 _t /L	1000 ug/mL	Ge	Environmental Express	111601f-29351	5000 ug
Prep:	03/20/12	NBS	Prep in -	1%HN03/1.0%HCL:	Lot #K
Explres:	04/19/12				

7	:	1%HNO	/S%HCIBLK		 		- ,,					_
4	<u></u>	AMOUNT	REAGENT	MANUFACTURER	tor	·		60 kb/60 kb/	SA			
	•	100 mL	HCL.	BDH		OPEN DATE	AMOUNT	STD	MANUFACTURE	LOT	EXP DATE	7
4	ं	20 mL	HNOs	JE BAKER	411060	03/15/12	1mL	A1	Gb1	10E012-27685		-
1	Ξ.	Prepared in 2000 rol [D]		N DAVE	K25022	03/15/12	fnL	G	CPI	11A006-28528	09/15/12	-
I	100		DL 6010B/6010C	 		<u> </u>	1ml.	Mg	(P)	1071213-2786	04/20/12	- -
1	-	AMOUNT	T STD			<u> </u>	InL	Fe	O2SI	1022245-27699		1
		0.5 mL		NANUFACTUREA	LOT	EXP DATE	Properedi	o 50 ml 1% HXX		10211722977	01/22/12	1
ı			6010 LDL	ABSOLUME	091409-25206	09/14/52		10B/6010C1CS				Г
ı	99		11%HNO3/5%HG	<u> </u>			žu.L.	AI	OPI			1
ľ			DL 60NB/60NC	<u> </u>			1mL	- a	91	10E012-27685	04/20/12	⇂
Ľ		1341,	OCY-A	ABSOLUTE	091409-15206	09/14/12	red.			11A005-28528	09/15/12	
ľ		1M0.	OCV-B	ABSOLUTE	091109-25208	09/14/12	InL	- Mg Re	CPI	IOH213-2786	01/20/12	
ŀ	0	tMt_	OCV-C	ABSOLUTE	091009-25207	09/10/12				1022245-27699	04/22/12	
ī	7	Prepared in 100 mi	1%HN01/5%HQ	T		- 17714 -		INTERESTAL MIX	O2SI	10)2370-30265	02/01/13	
ŀ		51D2/ CCV1	6010B/6010C/6010C					50 ml 1% HNO				_
27		TANODAY	STD	PREP DATE	EXP DATE			WB/60XC1C/	<u>/</u> i			
ŀ	ै।	25mL	STD 3	Today	1 week		0.5ML	δα21CAΨ	CPI	1(C)74-28548	09/17/12	
ŀ		25ml.	1%HPVO1/5%HCI	Today			0.53/07	QC21CVB	CPi	LIC174-28549	09/17/12	
Š	ং	OCY260	68/699C	 ^~~/	Lweek	 -	Prepared in	SOM ISHNO	/5%HO			
ì	ূ ১	AMOUNT	and a	PREP DATE]		'T				
Į.	2	ISml.	ราบง		EXP DATE	<u> </u> _						
'n.	ी	25mL	I #HD/OJ/S#HCI	Today	1 week							
ź.	િ		18/21/03/31/NO	[Yoday	1 week		[2-91	নে	[

Metals Digestion Worksheet

Method Name 3050B Digestion (GROSS UP)

Prep Method M3050GRQSSa

Set 120314A

Units mL

Soikes					
Spiked ID I	LCSW LOT#	#1032278-30260			جعجت
Spiked ID 2	LCSW LOT# #1032271-30258				
Spiked ID 3					
Spiked ID 4					
Spiked By	LO	Date:	03/14/12	10:10:00 AN	Ŋ
Witnessed By	NM	Date:	03/14/12	10:10:00 AN	И

Starting Temp:	95 C
Ending Temp:	95 C
Temperature Type:	Mod Block
Sufficient Vol for Matrix QC:	YES
End Date/Time	03/14/12 12:30

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
1 120314A Blk				1.00g	100mL	03/14/12 10:10	equip: Modbtock1
2 120314A LCS		lmL	1+2	1.00g	100mL	03/14/12 10:10	equip: Modblock1
3 AY56792	AY56792S01		1	1.03g	100mL	03/14/12 10:10	equip: Modolock1
4 AY56793	AY56793S01			1.07g	100mL	03/14/12 10:10	eguip: Modblock1
5 AY56794	AY56794S01	1	1	1.07g	100mL	03/14/12 10:10	equip: Modblock1
6 AY56794 MS	AY56794S01	2mL	1+2	1.07g	100mL	03/14/12 10:10	equip: Modblock1
7 AY56794 MSD	AY56794S01	2mL	1+2	1.07g	100mL	03/14/12 10:10	equip: Modblock1

Solvent and Lot##ss.	
1:1 HNO3 NA	4.
HNO3 J.T.B K47023 0153	. 5,5
H2O2 EMD NA	
HCL BDH 4111060 0155	
	•

Bample Cucki ransier was the state of the st	
Sample prep employee Initials	LO
Analyst's initials	EA
Date	3-14-12
Time	12:30
Moved to	Metals.

Teobnician silmurais (* 8	
Scanned By	NM .
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/14/12 4:27:48 PM

Reviewed By: 🤧

Date: 3-14-12

MERCURY EPA Method 7471B

MERCURY EPA Method 7471B AFCEE Forms

AFCEE INORGANIC ANALYSES DATA PACKAGE

Analytical Method: EPA 7471B AAB #: 120314A-164958 Lab Name: APPL, Inc Contract #: *G012 Base/Command: CSSA Prime Contractor: Parsons Field Sample ID Lab Sample ID B4-NT1-BOT04 AY56792 B4-NT1-BOT05 AY56793 **B4-NT1-BOT06** AY56794 ARF: 67194 Comments: I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or

Title:

Diane Anderson

Project Manager

the Manager's designee, as verified by the following signature.

Signature:

Date:

AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120314A-164958

Lab Name: APPL, Inc

Contract #; *G012

Field Sample ID: B4-NT1-BOT04

Lab Sample ID: AY56792

Matrix: Soil

% Solids: 97.2

Initial Calibration ID: 120316A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 16-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	
MERCURY (HG)	0.01	0.1	-	1	F

Comments:

ARF: 67194

AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120314A-164958

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT05

Lab Sample ID: AY56793

Matrix: Soil

% Solids: 93.7

Initial Calibration ID: 120316A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 16-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.10	1	

Comments:

ARF: 67194

AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120314A-164958

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID: B4-NT1-BOT06

Lab Sample ID: AY56794

Matrix: Soil

% Solids: 93.2

Initial Calibration ID: 120316A

Date Received: 13-Mar-12

Date Prepared: 14-Mar-12

Date Analyzed: 16-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifter
MERCURY (HG)	0.01	0.1	0.13	1	

Comments:

ARF: 67194

AFCEB INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Lab Name: APPL, Inc					AAB #: 12014A-164958 Contract #: *G012 Date of Initial Calibration: 16-Mar-12 Concentration Units (mg/L or mg/kg): mg/kg																		
												Std 1	RF 1	Stå 2	RF 2	Ştd 3	RF 3	Std 4	RF	Sid 5	RF 5	г	Q
0.000208	0,004	0.000521	0.011	0.001042	0.021	0.002083	0.040	0.005208	0.100	0.99996													
										r = correlati	on o												
	APPL, Inc PE300 120315A Std 1	APPL, Inc PE300 120315A Std RF 1 1	APPL, Inc PB300 120316A Std RF Std 1 L 2	APPL, Inc PB300 120316A Std RF Std RF 1 1 2 2	APPL, Inc PB300 120316A Concents Std RF Std RF Std 1 1 2 2 3 3	PB300 Date of In	APPL, Inc Contract #: PB300 Date of Initial Calibration: 120315A Concentration Units (mg/L or mg/kg): Std RF Std RF Std RF Std 1 1 2 2 3 3 4	Contract #: **CO12	Contract #: *0012 PB300 Date of Initial Calibration: 16-Mar-12	Contract #: ***********************************	APPL, Inc												

AFCEE FORM I-3A

AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

Instrument ID: PE300						-					
					Contract #: *G012					_	
					Date of Initiat Calibration: 16-Mar-12						
Calibration 1D:	Calibration ID: 120316A Co					oncentration Unlis (mg/L or mg/kg): mg/kg					
Analyte	Std	RF						T		r	Q
Amaiyie											
Mercury	6 0.010420	0.203		l						0.99996	
,										0.99996 r = correlati	on coe
,	0.010420										on coe

AFCEE FORM I-3A

AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method; 2471B	AAB #: 120314A-164958
Lab Name; APPL, Inc.	Contract #: *G012
Instrument ID: PE300	Initial Calibration ID; 120316A
2nd Source ID: ICV 03/16/t2 13:34	ICV ID: <u>ICV 03/16/12 13:34</u>
CCV #1 ID: CCV 03/16/12 13:37	CCV #2 ID: CCV 03/16/12 13:53
Concentration Units (mg/	L or mg/kg): <u>mg/Kg</u>

	2nd Source Calibration			Initial Calibration			Continuing Calibration				П	
Analyte		Verification	n		Verification	1			Verification			Q
	Expected	Found	%D	Expected	Found	%D	Expected	Found	%D	Found	%D	
	_			_			_	1 ;		2		Ш
Mercury (Hg)	0.00417	0.00411	1.5%	0.00417	0.00411	1.5%	0.005208	0.00520	0.2%	0.00533	2.4%	

Comments:				
	· ·			
	AFCEE FOR	M I-4	Page of	

AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7471B

AAB #: 120314A-164958

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120314A-BLK

Initial Calibration ID: 120316A

Analyte	Method Blank	RL	Q
MERCURY (HG)	< RL	0.1	Ü

Comments:

ARF: 67194, Sample: AY56794

AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method	tical Method: 7471B				_	AAB#: 120314A-164958			
Lab Name	e: APPL, Inc.	, ,			Contract#: *G012				
			•	Concentratio	n Units (mg/L	or mg/kg): mg/kg			
alibration Blank ID	D: ICB 03/16/	12 13:36		_	Initial Cati	bration ID: <u>120316A</u>			
CCB#1 II	O; CCB 03/16	V12 13:39		CCB #2 ID:	CCB 03/16/12	2 13:55		CCB #3 ID:):
Method Blank ID	D: <u>120314A-</u> E	3LK		_	Initial Cali	bration ID: 120316A			
					-				_
Ana	alyte	Initial Calibration Blank	Contin	uing Calibra	tion Blank	Method Blank	RL	Q	
			1	2	3				
Mercury (Hg)		<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>0.1</td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td>0.1</td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td>0.1</td><td></td><td></td></rl<></td></rl<>		<rl< td=""><td>0.1</td><td></td><td></td></rl<>	0.1		

AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7471B

AAB #: 120314A-164958

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120314A LCS

Initial Calibration ID: 120316A

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.67	0.72		77-120	

Comments:

ARF: 67194, Sample: AY56794

AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7471B

AAB#: 120314A-164958

Lab Name: APPL, Inc

Contract #; *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-NTI-BOT04	12-Mar-12	13-Mar-12	16-Mar-12	28	4	
B4-NT1-BOT05	12-Mar-12	13-Mar-12	16-Mar-12	28	4	
B4-NT1-BOT06	12-Mar-12	13-Mar-12	16-Mar-12	28	4	

Comments:

ARF: 67194

AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7471B ICAL ID: 120316A

Lab Name: APPL, Inc. Contract #: *G012

Instrument ID #: PE300

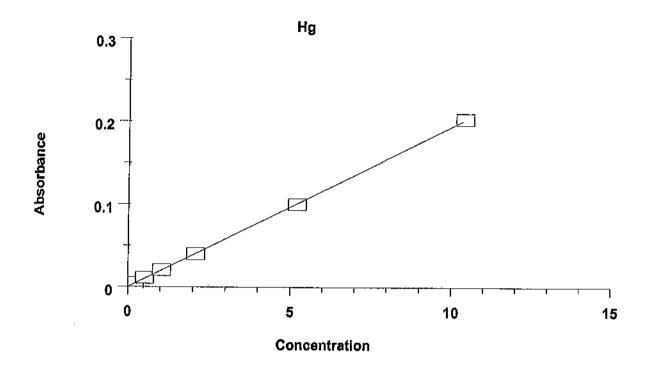
Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Calib Blank	16-Mar-12	13:20	16-Mar-12	13:20
0.2083	16-Mar-12	13:21	16-Mar-12	13:21
0.520833	16-Mar-12	13:22	16-Mar-12	13:22
1.041667	16-Mar-12	13:24	16-Mar-12	13:24
2,083333	16-Mar-12	13:26	16-Mar-12	13:26
5.208	16-Mar-12	13:28	16-Mar-12	13:28
10.417	16-Mar-12	13:30	16-Mar-12	13:30
ICV	16-Mar-12	13:34	16-Mar-12	13:34
ICB	16-Mar-12	13:36	16-Mar-12	13:36
CCV	16-Mar-12	13:37	16-Mar-12	13:37
CCB	16-Mar-12	13:39	16-Mar-12	13:39
120314A-BLK	16-Mar-12	13:40	16-Mar-12	13:40
120314A-LCS	16-Mar-12	13:41	16-Mar-12	13:41
AY56792S01	16-Mar-12	13:43	16-Mar-12	13:43
AY56793S01	16-Mar-12	13:45	16-Mar-12	13:45
AY56794S01	16-Mar-12	13:47	16-Mar-12	13:47
CCV	16-Mar-12	13:53	16-Mar-12	13:53
CCB	16-Mar-12	13:55	16-Mar-12	13:55

Sample_ID	FI	Date	Time	Mean_SA	Units	Batch ID	Wt	Dilu
Calib Blank		03/16/12		modn_o/	μg/L	Baton_tB	***	Dila
0.2083 03-14-12 LO	_	03/16/12			μg/L			
0.520833	_	03/16/12			μg/L			
1.041667	_	03/16/12			μg/L			
2.083333	_	03/16/12			μg/L			
5.208	_	03/16/12			μg/L			
10.417	_	03/16/12			μg/L			
ICV 03-14-12 LO	_	03/16/12						
ICB 03-14-12 LO	_	03/16/12			. •			
CCV 03-14-12 LO	_	03/16/12						
CCB 03-14-12 LO		03/16/12						
120314A BLK	_	03/16/12				120314A-7471GROSS	0.6	
120314A LCS		03/16/12		0.012900		120314A-7471GROSS	0.6	
AY56792S01		03/16/12				120314A-7471GROSS	0.62	
AY56793S01		03/16/12				120314A-7471GROSS	0.64	
AY56794S01		03/16/12				120314A-7471GROSS	0.64	
AY56794S01 MS	_	03/16/12				- 120314A-7471GROSS -		
AY56794S01 MSD	_	03/16/12				- 120314A-7471GROSS -	- 0.6 4	-
CCV 03-14-12 LO	_	03/16/12		5.331783	. •			
CCB 03-14-12 LO	_	03/16/12		0.126933		4000444 747410	0.5	
120314A BLK	_	03/16/12				-120314A-7471IS		
120314A-LCS	_	03/16/12				-120314A-7471IS		<u> </u>
	_	03/16/12				- 120314A-7471IS	2.44	
AY55899S01 MS	_	03/16/12				- 120314A-7471IS	2.4 4	
AY55899S01 MSD	_					- 120314A-7471IS	2.44	
AY56127S01						- 120314A-7471IS	2.56	
AY56128S01						- 120314A-7471IS		-
AY56129S01						- 120314A-7471IS	2.5 3	
AY56130S01						- 120314A-7471IS	2.45	
AY56131S01				0.044913	mg/kg	- 120314A-7471IS	2-56	-
CCV 03-14-12 LO					µg/L —	· 		_
CCB 03-14-12 LO	_					· 		_
AY56132S01	-					- 120314A-7471IS	2.55	
AY56133S01						-120314A-7471IS	2.52	
AY56134S01						· 120314A-7471 \$	2.48	
AY56135S01						- 120314A-7471IS	2.51	
AY56136S01	– Hg	03/16/12	14:32:25	0.043612	mg/kg	- 120314A-7471IS	2.49	_
AY56137S01						- 120314A-7471IS		
AY56138S01	~					-120314A-7471IS	2.48	-
CCV-03-14-12-LO						<u> </u>		
CCB-03-14-12 LO	— Hg	03/16/12	14:38:57	0.21835 8	μg/L	· 		_
R=0.99996								

MERCURY EPA Method 7471B Calibration Data

Parsons

Hg BY METHOD 7471B QCG 120314A-7471GROSS ANALYSIS DATE: 03/16/12


ARF#67194

R=0.99996

NAME	TRUE	RESULT	% RECOVERY
ICV	4.17ppb	4.106	98.5%
ICB	Oppb	0.065	
CC V -1	5.208ppb	5,197	99.8%
CCB-1	0ppb	0.051	
CCV-2	5.208ppb	5.332	102.4%
CCB-2	0ppb	0.127	

Method Name: Hg-7471 - RJS Element: Hg Date: 03/16/2012 Results Data Set: 120314AA-7471GR Element: Hg Seq. No.: 17 Date: 03/16/2012 Sample ID: Calib Blank ______ Repl SampleConc StndConc BlnkCorr Time # μ g/L μ g/L Signal 0.001 13:20:01 0.000 13:20:06 0.001 13:20:11 1 2 3 Mean: 0.001 SD : 0.000 %RSD: 27.38 Auto-zero performed. Element: Hg Seq. No.: 18 Date: 03/16/2012 Sample ID: 0.2083 03-14-12 LO Repl SampleConc StndConc BlnkCorr Time # μ g/L μ g/L Signal 1 0.004 13:21:14 13:21:19 13:21:24 2 0.004 3 0.005 Mean: 0.004 SD : 0.000 %RSD: 5.48 Standard number 1 applied. [0.208333] Correlation Coefficient: 1,0000 Slope: 0.0215 Element: Hg Seq. No.: 19 Date: 03/16/2012 Sample ID: 0.520833 ________ Repl SampleConc StndConc BlnkCorr Time # μ g/L μ g/L Signal 0.011 13:22:27 0.011 13:22:32 1 2 3 0.011 13:22:37 0.011 Mean: SD : 0.000 %RSD: 1.02 Standard number 2 applied. [0.520833] Correlation Coefficient: 0.9996 Slope: 0.0210 An extra autosampler wash has been performed. Element: Hg Seq. No.: 20 Date: 03/16/2012 Sample ID: 1.041667 Repl SampleConc StndConc BlnkCorr Time # $\mu g/L$ $\mu g/L$ Signal 0.020 13:24:28 0.020 13:24:34 0.021 13:24:39 1 2 3 0.021 Mean: 0.001 SD : %RSD: Standard number 3 applied. [1.041667] Correlation Coefficient: 0.9985 An extra autosampler wash has been performed. Slope: 0.0200

```
Element: Hg Seq. No.: 21 Date: 03/16/2012
Sample ID: 2.083333
     SampleConc StndConc BlnkCorr
Repl
                             Time
 #
     μg/L μg/L
                    Signal
 1
                     0.039
                            13:26:30
 2
                     0.040
                            13:26:36
 3
                     0.041
                            13:26:41
Mean:
                     0.040
SD :
                     0.001
%RSD:
Standard number 4 applied. [2.083333]
Correlation Coefficient: 0.9993
                                 Slope: 0.0194
An extra autosampler wash has been performed.
Rlement: Hg Seq. No.: 22 Date: 03/16/2012
Sample ID: 5.208
Repl
     SampleConc StndConc BlnkCorr
                            Time
#
     μg/L
        \mu \mathbf{g}/\mathbf{L}
                   Signal
1
                     0.096
                            13:28:33
2
                     0.101
                            13:28:38
3
                     0.104
                            13:28:44
Mean:
                     0.100
SD :
                     0.004
%RSD:
                     3.81
Standard number 5 applied. [5.208]
Correlation Coefficient: 0.9999
                                 Slope: 0.0193
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 23 Date: 03/16/2012
Sample ID: 10.417
SampleConc StndConc BlnkCorr
Repl
                            Time
#
    μq/L
            μq/L
                   Signal
1
                     0.196
                            13:30:36
2
                     0.204
                            13:30:42
3
                     0.209
                            13:30:47
Mean:
                     0.203
SD :
                     0.006
%RSD:
                     3.15
Standard number 6 applied. [10.417]
Correlation Coefficient: 1.0000
                                 Slope: 0.0194
```


Calibration data for Hg

		Entered	0-11		
			Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	(μg/ μ)	(μg/L)	Deviation	%RSD
Calib Blank	0.000		0.000	0.000182	
0.2083 03-14-12 LO	0.004	0.208333	0.2307	0.000246	5.477201
0.520833	0.011	0.520833	0.5596	0.000111	1.024361
1.041667	0.021	1.041667	1.055	0.000775	3.777530
2.083333	0.040	2.083333	2.057	0.001153	2.881875
5.208	0.100	5.208	5.156	0.003824	3.813883
10.417	0.203	10.417	10.44	0.006388	3.145614
Correlation Coeffici	ent: 0.99996	Slope: 0.0	1945		

MERCURY EPA Method 7471B Raw Data

Element: Hq Seq. No.: 24 Date: 03/16/2012 Sample ID: ICV 03-14-12 LO SampleConc StndConc BlnkCorr Repl 3.949 0.077 4.122 0.0 Time μg/L μg/L 3.949 3.949 # 1 13:33:55 4.122 2 13:34:00 4.247 4.247 3 0.083 13:34:06 4.106 Mean: 0.080 SD : 0.1497 0.1497 0.003 3.64 3.64 %RSD: 3.64 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 25 Date: 03/16/2012 Sample ID: ICB 03-14-12 LO Repl SampleConc StndConc BlnkCorr Time $\mu g/L$ $\mu g/L$ Signal # 0.001 1 0.07243 0.07243 13:35:56 0.05443 0.05443 2 0.001 13:36:02 3 0.06796 0.06796 0.001 13:36:07 Mean: 0.06494 0.06494 0.001 0.000 14.43 SD : 0.009371 0.009371 %RSD: 14.43 14.43 QC value within specified limits. Blement: Hg Seq. No.: 26 Date: 03/16/2012 Sample ID: CCV 03-14-12 LO SampleConc StndConc BlnkCorr Time Repl Signal μg/L μg/L # 5.009 5.009 5.220 1 0.097 13:37:11 5.220 2 0.102 13:37:17 5.363 5.197 .5.363 3 0.104 13:37:22 5.197 0.101 Mean: SD : 0.1783 3.43 0.1783 0.003 %RSD: 3.43 3.43 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 27 Date: 03/16/2012 Sample ID: CCB 03-14-12 LO ______

 SampleCone
 μg/L
 μg/L
 Signal

 0.06975
 0.06975
 0.001

 0.04550
 0.04550
 0.001

 0.03808
 0.001

 SampleConc StndConc BlnkCorr Time # 13:39:13 13:39:19 1 2 13:39:24 3 Mean: 0.05111 0.05111 0.001 SD : 0.01656 0.01656 0.000 32.41 32.41 32.41

%RSD:

QC value within specified limits.

Element: Hg Seq. No.: 28 Date: 03/16/2012 Sample ID: 120314A BLK Repl SampleConc StndConc BlnkCorr
 Rep1
 sampleconc
 sendcone
 Binkcolf

 #
 mg/kg
 μg/L
 Signal

 1
 0.01283
 0.08018
 0.002

 2
 0.01256
 0.07849
 0.002

 3
 0.01333
 0.08333
 0.002

 Mean:
 0.01291
 0.08066
 0.002

 SD:
 0.000393
 0.002456
 0.000

 %RSD:
 3.04
 3.04
 3.04
 Time 13:40:27 13:40:32 13:40:37 Element: Hg Seq. No.: 29 Date: 03/16/2012 Sample ID: 120314A LCS Repl SampleConc StndConc BlnkCorr Time # mg/kg μg/L Signal 13:41:40 13:41:45 13:41:51 An extra autosampler wash has been performed. Element: Hg Seq. No.: 30 Date: 03/16/2012 Sample ID: AY56792801 Repl SampleConc StndConc BlnkCorr Time # mg/kg $\mu g/L$ Signal 0.01620 0.1047 0.1157 0.002 0.1046 0.005 1 0.01792 13:43:42 2 13:43:47 0.01918 0.1239 3 0.002 13:43:52 0.1147 Mean: 0.01776 0.002 SD : 0.001497 0.009669 0.000 8.43 %RSD: 8.43 8.43 Element: Hg Seq. No.: 31 Date: 03/16/2012 Sample ID: AY56793801 Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal
1 0.08766 0.5844 0.011 13:44:55
2 0.09057 0.6038 0.012 13:45:00
3 0.09281 0.6187 0.012 13:45:05
Mean: 0.09035 0.6023 0.012
SD : 0.002580 0.01720 0.000
%RSD: 2.86 2.86 2.86 An extra autosampler wash has been performed. Rlement: Hg Seq. No.: 32 Date: 03/16/2012 Sample ID: AY56794S01 Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal
1 0.1177 0.7848 0.015
2 0.1219 0.8125 0.016
3 0.1236 0.8241 0.016
Mean: 0.1211 0.8071 0.016
SD : 0.003023 0.02016 0.000
%RSD: 2.50 2.50 2.50 13:46:56 13:47:01 13:47:06

87

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 33 Date: 03/16/2012 Sample ID: AY56794S01 MS Repl SampleConc StndConc BlnkCorr Time 13:48:57 13:49:03 13:49:08 An extra autosampler wash has been performed. Element: Hg Seq. No.: 34 Date: 03/16/2012 Sample ID: AY56794S01 MSD SampleConc StndConc BlnkCorr Repl Time mg/kg $\mu g/L$ Signal # 1 0.8206 5.470 0.106
2 0.8448 5.632 0.110
3 0.8612 5.741 0.112
Mean: 0.8422 5.615 0.109
SD : 0.02044 0.1363 0.003
%RSD: 2.43 2.43 13:51:02 13:51:08 13:51:13 An extra autosampler wash has been performed. Element: Hg Seq. No.: 35 Date: 03/16/2012 Sample ID: CCV 03-14-12 LQ SampleConc StndConc BlnkCorr Repl Time Signal Ť# μg/L μg/L 5.136 1 5.136 5.136 0.100
2 5.360 5.360 0.104
3 5.500 5.500 0.107
Mean: 5.332 5.332 0.104
SD: 0.1836 0.1836 0.004
%RSD: 3.44 3.44 3.44 13:53:05 13:53:10 13:53:16 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 36 Date: 03/16/2012 Sample ID: CCB 03-14-12 LO Repl SampleConc StndConc BlnkCorr Time μ g/L μ g/L Signal 0.1288 0.1288 0.003 0.1330 0.1330 0.003 0.1190 0.002 # 13:55:07 13:55:13 1 3 13:55:18 0.002 Mean: 0.1269 0.1269 SD : 0.007156 0.007156 0.000 %RSD: 5.64 5.64 5.64

QC value within specified limits.

Method Name: Hg-7471 - RJS Blement: Hg Date: 03/16/2012 Results Data Set: 120314AA-7471GR Element: Hg Seq. No.: 37 Date: 03/16/2012 Sample ID: Sample Repl SampleConc StndConc BlnkCorr Time Signal uq/L μg/L 1 0.04221 0.04221 0.001 13:59:53 Auto-zero performed. Element: Hg Seq. No.: 38 Date: 03/16/2012 Sample ID: 120314A BLK SampleConc StndConc BlnkCorr Repl Time incorrect units entered. # μg/L μg/L Signal 1 0.02898 0.07246 0.001 14:01:02 correct with = malks. 0.02599 0.06499 2 0.001 14:01:07 3 0.03161 0.07904 0.002 14:01:12 (0.07216 ug/L) (0.096L) 0.02886 0.07216 Mean: 0.001 SD : 0.002812 0.007030 0.000 %RSD: 9.74 9.74 9.74 = 0.0027749/9 = 0.00277 mg/kg

ps 3/10/12

Element: Hg Seq. No.: 39 Date: 03/16/2012 Sample ID: 120314A LCS Repl SampleConc StndConc BlnkCorr Time mg/kg μg/L Signal
0.1717 4.470 0.087
0.1800 4.688 0.091
0.1835 4.780 0.093
0.1784 4.646 0.090 # 1 14:03:51 2 14:03:56 3 14:04:02 Mean: SD : 0.006106 0.1590 0.003 3.42 3.42 %RSD: 3.42 An extra autosampler wash has been performed. Blement: Hg Seq. No.: 40 Date: 03/16/2012 Sample ID: AY55899801 Repl SampleConc StndConc BlnkCorr Time mg/kg μ g/L Signal 0.04627 1.176 0.023 # 1.176 1 1.176 0.023 1.243 0.024 14:05:54 0.04891 2 14:05:59 1.246 1.222 3 0.04903 0.024 14:06:05 0.04807 Mean: 0.024 SD: 0.001561 0.03968 %RSD: 3.25 3.25 0.001 3.25 An extra autosampler wash has been performed. Blement: Hg Seq. No.: 41 Date: 03/16/2012 Sample ID: AY55899801 MS Repl SampleConc StndConc BlnkCorr Time signal 0.106 0.11 # mg/kg μ g/L Signal 5.437 5.673 0.2139 1 14:07:57 0.2232 2 14:08:02 5.807 0.2285 3 14:08:08 5.639 0.1874 3.32 0.2219 Mean: 5.639 0.110 0.004 SD : 0.007373 %RSD: 3.32 An extra autosampler wash has been performed. Element: Hg Seq. No.: 42 Date: 03/16/2012 Sample ID: AY55899801 MSD Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal 0.2172 5.520 0.107 0.2263 5.751 0.112 0.2323 5.904 0.115 14:10:01 14:10:06 1 2 3 14:10:11 Mean: 0.2253 5.725 0.111

SD : 0.007613 0.1935 0.004 %RSD: 3.38 3.38 3.38

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 43 Date: 03/16/2012 Sample ID: AY56127S01 Repl SampleConc StndConc BlnkCorr Time An extra autosampler wash has been performed. Element: Hg Seq. No.: 44 Date: 03/16/2012 Sample ID: AY56128S01 ____ Repl SampleConc StndConc BlnkCorr Time

 Repl
 SampleConc
 StndConc
 BlnkCorr
 Time

 #
 mg/kg
 μ g/L
 Signal

 1
 0.05672
 1.477
 0.029
 14:14:09

 2
 0.05871
 1.529
 0.030
 14:14:14

 3
 0.05978
 1.557
 0.030
 14:14:20

 Mean:
 0.05840
 1.521
 0.030

 SD:
 0.001549
 0.04035
 0.001

 %RSD:
 2.65
 2.65

 An extra autosampler wash has been performed. Element: Hg Seq. No.: 45 Date: 03/16/2012 Sample ID: AY56129801
 Repl
 SampleConc
 StndConc
 BlnkCorr

 #
 mg/kg
 μg/L
 Signal

 1
 0.004513
 0.1189
 0.002

 2
 0.004580
 0.1207
 0.002

 3
 0.004274
 0.1126
 0.002

 Mean:
 0.004456
 0.1174
 0.002

 SD:
 0.000161
 0.004246
 0.000

 %RSD:
 3.62
 3.62
 3.62
 Time 14:16:14 14:16:19 14:16:25 Element: Hg Seq. No.: 46 Date: 03/16/2012 Sample ID: AY56130S01 Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal 1 0.005137 0.1311 0.003 14:17:31 2 0.004327 0.1104 0.002 14:17:36 3 0.004599 0.1174 0.002 14:17:41 Mean: 0.004688 0.1196 0.002 5D : 0.000412 0.01052 0.000 %RSD: 8.79 8.79 Element: Hg Seq. No.: 47 Date: 03/16/2012 Sample ID: AY56131S01 _______ Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal
1 0.04377 1.167 0.023
2 0.04508 1.202 0.023
3 0.04589 1.224 0.024
Mean: 0.04491 1.198 0.023
SD : 0.001067 0.02844 0.001
%RSD: 2.37 2.37 14:18:44 14:18:49 14:18:54

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 48 Date: 03/16/2012 Sample ID: CCV 03-14-12 LO Repl SampleConc StndConc BlnkCorr Time $\mu g/L$ $\mu g/L$ Signal 5.224 5.224 0.102 # 1 5.224 5.224 0.102
2 5.445 5.445 0.106
3 5.571 5.571 0.108
Mean: 5.413 5.413 0.105
SD: 0.1754 0.1754 0.003
%RSD: 3.24 3.24 3.24 14:20:46 14:20:51 14:20:57 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 49 Date: 03/16/2012 Sample ID; CCB 03-14-12 LQ SampleConc StndConc BlnkCorr Repl Time Signal # μg/**៤** μg/៤ 0.1679 0.1679 0.003 14:22:48 1 0.1802 0.1802 0.004 14:22:54 2 3 0.1553 0.1553 0.003 14:22:59 Mean: 0.1678 0.1678 0.003 SD : 0.01250 0.01250 %RSD: 7.45 7.45 0.000

7.45

QC value within specified limits.

```
Element: Hg Seq. No.: 50 Date: 03/16/2012
Sample ID: AY56132S01
Repl SampleConc StndConc BlnkCorr
                            Time
    mg/kg μg/L Signal
0.06621 1.759 0.034
0.06880 1.828 0.036
0.07068 1.877 0.037
0.06857 1.821 0.035
 #
 1
                            14:25:44
                           14:25:44
14:25:50
 2
 3
                            14:25:55
Mean:
SD : 0.002244 0.05960
%RSD: 3.27 3.27
                   0.001
                     3.27
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 51 Date: 03/16/2012
Sample ID: AY56133S01
SampleConc StndConc BlnkCorr
Repl
                            Time
     mg/kg \mug/L Signal
 #
            0.1921
     0.007320
                    0.004
                            14:27:47
 2
    0.007064
            0.1854
                    0.004
                            14:27:52
 3
    0.007157
            0.1879
                    0.004
                            14:27:57
Mean: 0.007180
             0.1885
                    0.004
SD : 0.000130 0.003401
                    0.000
%RSD:
      1.80
              1,80
                     1.80
Element: Hg Seq. No.: 52 Date: 03/16/2012
Sample ID: AY56134S01
SampleConc StndConc BlnkCorr
                            Time
Repl
 #
3 0.007147 0.1846

2 0.007318 0.1890

3 0.006801 0.1757

Mean: 0.007088 0.1831

SD : 0.000263
    mg/kg \mu g/L Signal
                  ____al
0.004
0
                            14:29:00
                            14:29:05
                    0.003
                            14:29:10
                    0.004
                    0.000
SD : 0.000263 0.006798
     3.71
%RSD:
              3.71
                     3.71
Element: Hg Seq. No.: 53 Date: 03/16/2012
Sample ID: AY56135801
SampleConc StndConc BlnkCorr
    #
                          14:30:13
14:30:18
1
3
                            14:30:24
Mean: 0.04210 1.101 0.021
SD : 0.001236 0.03231 0.001
%RSD: 2.94 2.94 2.94
                    0.001
```

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 54 Date: 03/16/2012 Sample ID: AY56136S01 Repl SampleConc StndConc BlnkCorr Time An extra autosampler wash has been performed. Element: Hg Seq. No.: 55 Date: 03/16/2012 Sample ID: AY56137S01 Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal
1 0.006920 0.1845 0.004
2 0.006909 0.1842 0.004
3 0.006106 0.1628 0.003
Mean: 0.006645 0.1772 0.003
SD : 0.000467 0.01245 0.000 14:34:17 14:34:22 14:34:28 7.03 %RSD: 7.03 7.03 ______ Element: Hg Seq. No.: 56 Date: 03/16/2012 Sample ID: AYS6138S01 -Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal # mg/kg μg/L Signal
1 0.006885 0.1779 0.003
2 0.006654 0.1719 0.003
3 0.006983 0.1804 0.004
Mean: 0.006840 0.1767 0.003
SD : 0.000169 0.004366 0.000
%RSD: 2.47 2.47 2.47 14:35:30 14:35:36 14:35:41 Element: Hg Seq. No.: 57 Date: 03/16/2012 Sample ID: CCV 03-14-12 LO -Time

Repl SampleConc StndConc BlnkCorr

QC value within specified limits.

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 58 Date: 03/16/2012 Sample ID: CCB 03-14-12 LO

.

Repl #	SampleConc µg/L	StndConc µg/L	BlnkCorr Signal	Time	
1	0.2408	0.2408	0.005	14:38:46	
2	0.2035	0.2035	0.004	14:38:52	
3	0.2108	0.2108	0.004	14:38:57	
Mean:	0.2184	0.2184	0.004		
SD :	0.01975	0.01975	0,000		
%RSD:	9.04	9.04	9.04		
QC out	of limits.	An alarm w	ая sounded	and the system waits for operator actio	n,

082	fetals Standards Lo	g Book # 34 p	Page # 082	
Ros 3/15/12				<u> </u>
		STANDADD 785	3/15/12	// <u>// // // // // // // // // // // // </u>
	1ml X 10ug/ml Hg STOCK STD. ((1.00 B
······································	1ml X 10ug/ml Hg STOCK ICV	02/17/12KW5)/200ml 1% HNO	3 Lot#K47023	
	Final concentration is 50 ug/L. Ex	voires 3/5/1	3 Lot#K47023	(//di/ <u>/</u>
	i i i i i i i i i i i i i i i i i i i	piles		
		·		
S1 3-15-12	1%HNOJ / 5%HCI BLK AMT. REAGENT MANUFACTURES LOT OPEN	6010B/6010C ICSA		77
6010B-C	100 mL HCL BDH 411060 03/	VDAYE AMT. STD MANUPACTURE 15/12 ImL Al CPI	ER LOT EXP DATE 10E012-27685 04/20/12	
00100 C	20 mL HNO3 JT BAKER K23022 03/ Prepared in 2000 ml DI Water	15/12 ImL Ca CPI	11A006-28528 09/15/12	
(K)	STD 1 / LDL 6010B/6010C	1mL Mg CPI 1mL Pe O2SI	10F1213-2786 04/20/12 1072245-27699 04/22/12	
	AMT. STD MANUFACTURER LOT EXP 0.5 mL 6010 LDL ABSOLUTE 09109-25705 09/	DATE Prepared in 50 ml (%HNO) /50/41/01		
	Prepared in 50 ml 1%HNO3/5%HCI	ImL Al CPI	102012-27635 04/20/12	
<u> </u>	STD 3 / HDL 6010B/6010C 1ML CCV-A ABSOLUTE 051409-25306 09/	tmL Ca CPI	11A006-28528 09/15/12	
	IML CCVB ABSOLUTE 091109-25208 09/1	4/12 ImL Fe 0251	IOH213-2786 O4/20/12 IO72245-27699 O4/22/12	<u> </u>
	ML CCV-C ABSOLUTE 091009-25707 09/1 Prepared in 100 mt 1%HNO3 / 5%HC1	0/12 0.5ml INT SPECIAL MIX O2SI	10372403028 02/01/13	833 B
	STD 2 / CCV1 6010B/6010C/6010C	Prepared in 50 ml 1%HNO3/5%HCl 6010B/6010C ICV		
	AMT. STD PREP DATE EXP DATE 25mL STD 1 Today 1 week	0.5ML QCS ICV A CPI	11C174-28548 09/17/12	
	25mL 1%HNO3/5%HCl Today 1 week	0.5ML QCS ICV B CPI Prepared in 50ml 1%HNO3/5%HCI	UCI74-28549 09/17/12	
	CCV2 6010B/6010C AMT. STD PREP DATE EXP DATE	YITTRIUM INTERNAL STANDARD		
	15mL STD 3 Today 1 week	2.0 mL Yittrium O2SI Prepared in 2000 ml 1%HNO3/5%HCl	1024334 09/04/12/	7786
	25mL 1%HNO3/5%HC1 Today 1 week	2/3/5/2		
- · · · · · · · · · · · · · · · · · · ·		0.31312		
		ring malifiles		
NBS 03/16/12	ICP-M8 STANDARDS 6020/6020A/3015/3051A	NBS 03/16/12		71.87
	Today's Date: 03/16/12 Expires: 03/23/12	Standard 2 03/23/12 Amount 8TD		9288415 40
6020 6022A	Prep 1% HNO3/1.0%HCL 20 mL HNO3 / 2000 mL Di Water	500 ut. Standard 4 Prepared in 50 mL of 1% KNO3/1,0% HCL	03/16/12 03/16/12	
(A) '	Lot # K23022 20mL HCl, / 2000mL Ol Water	Standard 1 03/23/12		77
	Lot #K43032 Explies: 03/23/12	Amount STD 50 M. Standard 4	03/16/12	
	Internal Standard Mix: Prep 03/15/2012			
í	Standard 4	Prepared in 50 mL of 1% HRO3/1.0% HCL	03/18/12	
	Amount STO Manufacturer Lot # 50 UL CCV-A Eny. Express 1036407-28139	ICP-MS ICV 63/23/12	0.01012	
	50 uL CCV-B Env. Express 100907-28140 50 uL CCV-C Env. Express 1100309-28141	Amount STD 60 UL QCS ICV A CPI	11C174-28548	
	Prepared in 100 mL of 1% HN03/1.0% HCL 03/18/12	50 UL QCS ICV B CPI Prepared in 50 mL of 1% HNO3/1.0% HCL	11C174-28549 03/18/12	(2)
	Standard \$ 03/23/12	·	ON (OF 12	15.201.30
	Amount STO Manufacturer Lot #	1 mL ICSA CPI	11C068-28529	
	25 UL CCV-B Env. Express 1038410-28140	Prepared in 5 mL of 1% HNO3/1.0% HCL	03/(6V)2	
	25 UL CCV-C Env. Express 1100309-28141 Prepared in 100 mL of 1% HNO3/1.0% HCL 03/16/12	ICSAB Prep: 03/23/12 Int. ICSA CPI	110060-28529	
 -	<u> </u>	0.025mL INT O25i Prepared in 5 mL of 1% HNO3/1.0% HCL	1023805-28210 03/16/12	
	Intermediate Sb 03/23/12 100 JL of Sb STO (CP) 12A011-30388) In 10 mL of 1% HNO3/1.0% HCL	ICP-LDR 03/23/12 Amount STO		
	ICY-Sb 03/23/12 100 oL of Intermediate-Sb in 10 mL of 1% PNO3/1.0% HCL	50 ut. CCV-A Env. Express 50 ut. CCV-B Env. Express	1036407-28139 1036410-28140	2
		50 ut. CCV-C Env. Express Prepared to 10 mt. of 1% HNOS/1.0% HCL	1100309-28141 03/18/12	
i.				
200 21.1	Hg WORKING S	TANDARD		CAIIC)
293 3/16/12	- 1ml X 10ug/ml Hg STOCK STO /o	7/17/12//MCV/200	1/1/47000	
	1ml X 10ug/ml Hg STOCK STD. (0)	411112NVO)/200ml 1% HNO3 [_0t#K47023	
	1ml X 10ug/ml Hg STOCK ICV (02 Final concentration is 50 ug/L. Exp	717712NVV3)1200ml 1% HNO3 L	.ot#K47U23	
		980	203 3/16/12	
			四字画: <i>三年 8 年 1888年 1</i> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Part of the Pa

Metals Standards Log Book # 34 Page # 063 ER 2/17/12 Hg STANDARD 1813 2/12/12 Hg STOCK ICV CPI Lot # 11D140-28885 Ultra Scientific Lot# 10ug/ml in 1% HNO3 LOT#K47023 K00200-26307 Prep. Date 02/17/12 10ug/ml in 1% HNO3 LOT#K47023 Exp. Date 03/16/12 Prep.Date 02/17/12 By KWS Exp. Date 03/16/12 By KWS Manufacturer: J.T. Baker Manufacturer: J.T. Baker STANNOUS CHLORIDE 125g SnCl2 MACRON Lot #K12620 100 mL HCl J.T. BAKER Lot #K29026 Brought to 500 mL with DI Water Prep. Date 02/17/12 Exp. Date 02/16/13 By KWS ICP-MS STANDAROS 6020/6020A/3015/3051A Today's Date: Standard 2 6020/6020 A 02/24/12 02/24/12 | EXPRESS | 02/24/12 | Prep 114 HNO3/1.0NHCL | 20 ml, HNO3 / 2000 ml, Di V/ater | Lot # K23022 | 20ml, HCL / 2000ml, Di Water Amount STO 500 pt 02/17/12 Prepared in 50 mL of 1% HNO3/1.0% HCL 2000mL Ln Lot #K43032 02/24/12 02/24/52 Expires: 50 uL 02/17/19 nternal Standard Mix: Prep 02/16/2012 Standard 4 Amount 50 J.L 50 J.L Prepared in 50 mL of 1% HNO3/1.0% HCL Manufacturer Lot# 1038407-28139 02/17/12 CCV-A CCV-B Env. Express ICP-M8 ICV 02/24/12 1038410-29140 1100309-28141 Amount 50 ut. QCS ICV A CPJ 50 ut. QCS ICV B CPI Prepared in 60 mt. of 1% HNO3/1.0% HCL 11C174-28548 11C174-28549 Prepared in 100 mL of 1% HNO3/1.0% HCL 02/17/12 02/17/12 Slandard 3 Manufacturer Env. Express Env. Express 02/24/12 Lot# 1038407-28139 1036410-28140 CCV-A ICSA 11C068-28529 Prepared in 5 ml. of 1% HNO3/1.0% HCL 02/17/12 CCV-C 1100309-28141 02/17/12 ICSAB Prep: repared in 100 mL of 1% HNO3/1.0% HCL 110088-28529 INT Prepared in 5 mL of 1% HNO3/1.0% HCL ICP-LOR 02/24/12 02/17/12 Amount 50 ut. 50 ut. 50 ut. STO 1038407-28130 CCV-R 1036410-28140 1100309-28141 50 of CCV.C Env. Express Prepared in 10 mL of \$% HNO3/1.0% HCL NBS 02/20/12 INBS 02/20/12 Internal Standard Concentration Amt STD Element Vendor Lot# Final Conc. in Std Expires 500UL 1000 ug/mL 10L079-27839 5000 ug/L 500ut 06/(0/(2 1000 ug/mL CPI 10J155-28674 5000 ug/t 500ut 09/25/12 1000 ug/mL CPI IOA107-28576 5000 ug/L 500u. 09/25/12 1000 ug/mL CPI 11B054-28575 5000 ug/L JUCOL 1000 ug/mL 02si 1024073-28527 5000 us/L 1000 ug/mL 08/18/12 5000 ug/L Prep; 02/20/12 NBS Prep In -1%HNO3/1.0%HCL: Lot #KK23022/43032

Mercury Digestion Worksheet

Method Name 7471A Mercury Digestion (GROSS UP Prep Method M7471GRO

Cat	1203	1 <i>4</i> A

Sufficient Vol for Matrix QC: YES

Units mL

Spikes Spiked ID I	Hg WORKING STANDARD prep 03-14-12
<u> </u>	Hg WORKING ICV prep 03-14-12
Spiked ID 3	
Spiked ID 4	
Spiked By	LO Date: 03/14/12 10:10:00 AM
Witnessed By	NM Date: 03/14/12 10:10:00 AM

Starting Temp:	96 C
Ending Temp:	96 C
Тетр Туре:	Modblock3
End Date/Time	03/14/12 10:45:00 AM

Sample	Spike Amount	Spike ID	Final Volume
0 ppb		1	96 ml
0.2 ppb	0.4 ml	1	96 ml
0.5 ppb	1 ml	1	96 ml
1 ppb	2 ml	1 .	96 ml
2 ppb	4 ml	1	96 ml
5 ppb	10 ml	1	96 ml
5 ppb	I0 ml	1	96 ml
10 ppb	20 ml	1	96 ml
ICV	8 ml	2	96 ml

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
120314A Bik				0.60g	96mL	03/14/12 10:10	equip: Modblock3
120314A LCS		8mL	1	0.60g	96mL	03/14/12 10:10	equip: Modblock3
AY56792	AY56792801	T		0.62g	96mL	03/14/12 10:10	equip: Modblock3
AY56793	AY56793S01	ļ. 	1	0.64g	96mL	03/14/12 10:10	equip: Modblock3
	A AY56794801	2.34	Ast to	, 0.64g	96mL	03/14/12 10:10	equip: Modblock3
4 V 56794 MS	AY56794S0I	8mL	1	0.64g	96mL	03/14/12 10:10	equip: Modblock3
AY56794 MSD		8mL	$T = J_{ij}$	0.64g	96mL	03/14/12 10:10	equip: Modblock3

AQUAREGIA 2-16-12	
KMnO4 12-15-11	
DECOLORIZER 12-14-11	

Sample COC Transfer	
Sample prep employee Initials	LO
Analyst's initials	84
Date	3-14-12
Time	10145
Moved to	Metals_

Technician's Initials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/14/12 4:41:23 PM

Reviewed By: 24

Date: 3-14-12.

Wetlab Results

ARF: 67194

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: A	Y56792 -Client Sample ID: B4-NT1-BOT0	14	-Sample Collection Da	ate: 03/12/12	Project: 74837.	2.06000 CSSA
CLP MOIST	MOISTURE	2.8	2.0	%	03/13/12	03/14/12
APPL ID: A	Y56793 -Client Sample ID: B4-NT1-BOT0	5	-Sample Collection Da	ate: 0 3/12/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	6.3	2.0	%	03/13/12	03/14/12
APPL ID: A	Y56794 -Client Sample ID: B4-NT1-BOT0	8	-Sample Collection Di	ate: 03/12/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	6.8	2.0	%	03/13/12	03/14/12

Printed: 03/20/12 12:03:45 PM

WETLAB

Sample/Sample Duplicate Results

Parsons
8000 Centre Park Drive Ste 200
Austin TX 78754

Sample ID: AY56792

APPL Inc.

8000 Centre Park Austin, TX 78754	8000 Centre Park Drive Ste 200 Austin, TX 78754		Client	Client ID: B4-NT1-BOT04	BOT04					806 OD	908 North Temperance Avenu Clovis, CA 93611	rance Avenu
Attn: Tammy Chang Project: 748372.060	Attn: Tammy Chang Project: 748372.06000 CSSA			•							ARF: 67194	
Method	Analyte	Sample ID	1 1	Sample Sample Dup Result Result RPD	RPD	RPD Max	Pal	Units	Sample Extract Date	Sample Sample Sample Dup Sample Dup PQL Units Extract Date Analysis Date Extract Date Analysis Date	Sample Sample Dup Sample Dup nalysis Date Extract Date Analysis Date	Sample Dup Analysis Date
CLP MOIS	CLP MOIS MOISTURE	AY56792	2.8	2.8	2.8 NA	8	2.0		% 03/13/12	% 03/13/12 03/14/12 03/13/12	03/13/12	03/14/12

% Moisture

Batch: QCG 120313-M003984

Method: CLP 4.0

Date: 03/13/12 13:36

Sample	Container	Pan (g)	Pan+Wet (g)	Pan+Dry 1 (g)	Pan+Dry 2 (g)	Moisture (%)	Comments	
AY56794	s01	0.8288	6.5602	6.1699	6.1700	6.808	AY56794801	
		03/13/12 13:36	03/13/12 13:37	03/14/12 08:45	03/14/12 08:45			
AY56793	s01	0.8399	7.3003	6.8929	6.8931	6.303	AY56793801	
		03/13/12 13:36	03/13/12 13:36	03/14/12 08:45	03/14/12 08:45			
AY56792D	s01	0.8554	7.1845	7.0042	7.0043	2.847	AY56792S01	
		03/13/12 13:34	03/13/12 13:35	03/14/12 08:44	03/14/12 08:44			
AY56792	s01	0.8417	6.5324	6.3714	6.3719	2.820	AY56792S01	
		03/13/12 13:32	03/13/12 13:34	03/14/12 08:43	03/14/12 08:43			

	Date/Time OutOven@104°C	 Date/Time OutOven@104°C
03/13/12 1:36:00 PM		 03/14/12 8:43:00 AM

Date		Initia	Julance		Weight		Reading		r Upp	er ilt	Comments / Is	
3/13	120	BB	Mettler AT200		0.5g	A 600		 				ntered?
	$\sqsubseteq \bot$	Щ	Mettler AT200		lg	X-X	<u>OD</u> 8	0.49		5005		25
<u> </u>	$\vdash \downarrow$		Mettler AT200	+	20g		2 <i>0</i> g	0.99	$\overline{1}$.	0010	<i></i>	
 -	`		Mettler AT200		50g		006 g	19.98		0200		 -
├ — <i>⋠</i>		_	Mettler AT200		100g	50.0	<u> 13g</u>	49.95		500		
			Mettler AT200	1		100.00	35728	99.90				
			OHAUS ARC12	0 [0.1g	120.0				500		
		- 	OHAUS ARC12		0.5g	0-10		0.0		0.12		
		 	OHAUS ARC12		lg			0.4		0.52		
{			OHAUS ARC12	0 1 7	~~~	1.00	g_	0.9		.02		
- [_	OHAUS ARC120	- 	1kg	100.0		98.0		2.00		
<u>v</u>	-4-	<u>v</u>	OHAUS ARC120			999.9		980.0				
7177	<u> </u>					2000.) <u>7-8</u>	1960.0	0 2040	00		
<u> </u>	2 0	K	Mettler AT200).5g	0.50	7/2-			$-\mathbb{I}$		
			Mettler AT200	- 	lg	1.000	00°	0.499				23
-	-4	 -	Mettler AT200		20g	10.000	JUB	0.999				1
		-4	Mettler AT200		0g	50.00	77.8	19.980				1
	4_		Mettler AT200			00.00	118	49.9500				
 -∤	4—		Mettler AT200		_	50.003	78	99.9000				
	╃—.	- -	OHAUS ARC120		Ig			149.8500				7
	-		OHAUS ARC120		5g	0.50	g	0.08	- -			
━	-		OHAUS ARC120		lg			0.48	- 			
	<u> </u>		OHAUS ARC120	100		1.00	g	0.98	~ 			
 ./ -	₩_	-	OHAUS ARC120			99.96	- <u>E</u>	98.00				T
- V	 	V	OHAUS ARC120			99.95		980.00	1			T
15/12	15	13			- 2 1 1	<u> </u>	_g_	1960.00	2040.0	0		\mathcal{V}^-
	+	┝┷	Mettler AT200	0.5	g O	5000	- -	0.400€			Yes	
 -	├ 		Mettler AT200	1		000 [g	0.4995 0.9990	0.500			
	 -		Mettler AT200	20		0.0005		19.9800	1.001			
	┝┈┞		Mettler AT200	50	* 1	0.001	g	49.9500	20.020			
	┝┈┼		Mettler AT200	100		0.0013	-	99,9000	50.050			
-+		—L	Mettler AT200	150		0.00321	· <u>6</u>		100,1000			
+			OHAUS ARC120	0.1		10	g	149.8500	150.1500			
╼╂}			OHAUS ARC120				~ -	0.08	0.12			
+			OHAUS ARC120	15			<u> </u>	0.48	0.52			
╆┵			DHAUS ARC120	100g	-		g g	0.98 98.00	1.02			
⇟⇁↾	- { -		DHAUS ARC120	1 kg	94	2 4. "	g	980.00	102.00			
~ 	<u>v</u>	-	DHAUS ARC120	2kg	7.0	20.00	<u> </u>	1960.00	1020.00			
6-12	C.K				T		- -	1900.00	2040.00	-	V	
6 rs	_UAK	- ``	lettler AT200	0.5g	0	5000	, 	0.4995	0.5005	 	1:4	
╄	}-		lettler AT200	lg	1	0000	<u>-</u>	0.9990	0.5005	 	Tes	
╫┈┼			lettler AT200	20g	72	0.0003	<u>-</u>	19.9800	1.0010	 -	JL.	
┞──┤ ╺			lettler AT200	50g	5	D 00148	<u></u>	49.9500	20.0200	 		
╆╼┼	-	M	lettler AT200	100g	110	7.0022e		99.9000	50.0500	 _		
 -		 	ettler AT200	150g	1156	0036g	<u>- - - </u>	49.8500	100.1000	 		
 	─ -	-1	HAUS ARC120	0.1g		0.10 g		0.08	150.1500	L <u>. </u>		
_	+-	-+-	HAUS ARC120	0. 5 g	0	50 g	 _	0.48	0.12	<u> </u>		
		-+%	HAUS ARCIZO	1g		-00 g	T^{-}	0.98	1.02		_+_	
	$\dashv -$		HAUS ARCIZO	100g	100	100 g		98.00	102.00			
/	\mathbf{t}	10	HAUS ARC120	lkg	999	.00 0	1	980,00	1020.00			
	<u> </u>		IAUS ARC120	2kg	LAGO	98 g	 	1960.00	2040.00		l l	- 1

DATA VERIFICATION SUMMARY REPORT

for B4 samples collected from

CAMP STANLEY STORAGE ACTIVITY

BOERNE, TEXAS

Data Verification by: Tammy Chang Parsons - Austin

INTRODUCTION

The following data verification summary report covers one soil sample and associated field quality control (QC) samples collected from B4 at Camp Stanley Storage Activity (CSSA) on March 19, 2012. The samples were assigned to the following Sample Delivery Group (SDG):

67264

Field QC sample included one field duplicate (FD) and one pair of matrix spike and matrix spike duplicate (MS/MSD). The samples in this SDG were analyzed for mercury.

All samples were collected by Parsons and analyzed by APPL, Inc. following the procedures outlined in the Statement of Work and CSSA QAPP, Version 1.0. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 2.0°C, which was within the 2-6°C range recommended by the CSSA QAPP.

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the CSSA QAPP, Version 1.0. Information reviewed in the data package included sample results; field and laboratory quality control samples; calibrations; case narratives; raw data; chain-of-custody (COC) forms and the sample receipt checklist. The findings presented in this report are based on the reviewed information, and whether the guidelines in the CSSA QAPP, Version 1.0, were met.

MERURY

General

The mercury portion of this SDG consisted of four (4) soil samples including field QC samples. These samples were collected on March 19, 2012 and were prepared and analyzed for total mercury using USEPA Method SW7471B.

These samples were analyzed following the procedures outlined in the CSSA QAPP, prepared and analyzed within the holding time required by the method.

These samples were digested in batch #165061 and analyzed undiluted.

PAGE 1 OF 2

Accuracy

Accuracy was evaluated using the percent recovery obtain from the laboratory control sample (LCS) and MS/MSD.

The LCS, MS, and MSD recoveries were within acceptance criteria.

Precision

Precision was evaluated based on the relative percent difference (%RPD) of the MS/MSD and parent/FD results.

The %RPD of the MS/MSD was compliant.

Neither parent or FD had mercury detected at or above the reporting limit, therefore, the %RPD calculation was not applicable.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the CSSA QAPP;
- Comparing actual analytical procedures to those described in the CSSA QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during sample analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the CSSA QAPP. All samples were prepared and analyzed within the holding time required by the method.

- All initial calibration criteria were met.
- All second source verification criteria were met. The ICV was prepared using a secondary source.
- All calibration verification criteria were met.
- DT and PDS were not applicable.

There were one method blank and several calibration blanks associated with the mercury analyses in this SDG. All blanks were free of mercury at or above the RL.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

The mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

Laboratory Report

Parsons

CSSA

Project #: 748372.06000 CSSA

ARF: 67264

Samples collected: March 19, 2012

APPL, Inc.

Data Validatable Package

for

Project #: 748372.06000 CSSA

ARF 67264

TABLE OF CONTENTS

LABORATORY NAME: <u>APPL, Inc.</u>	
Case Narrative	3
Chain of Custody and ARF	
Method 7471B	12
AFCEE Forms	13
Calibration Data	27
Raw Data	32

CASE NARRATIVE

Case Narrative

ARF: 67264

Project: 748372.06000 CSSA

California State Certification Number: CA1312 (DW & WW)

NELAP Certification number: 05233CA (HW)

Texas Certificate Number: T104704242-10-3

Results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample Receipt Information:

The soil samples were received March 20, 2012, at 2.0°C. The samples were assigned Analytical Request Form (ARF) number 67264. The sample numbers and requested analyses were compared to the chain of custody. No exception was noted.

Sample Table

CLIENT ID	APPL ID	Matrix	Date Sampled	Date Received
B4-US10	AY57291	SOIL	03/19/12	03/20/12
B4-US10 FD	AY57292	SOIL	03/19/12	03/20/12

Percent moisture was determined using CLP 4.0.

EPA Method 7471B Mercury

Digestion Information:

The soil samples were digested according to EPA method 7471B. No exceptions were encountered. All holding times were met.

Analysis Information:

Samples:

The soil samples were analyzed for mercury by EPA method 7471B using a Perkin Elmer AAnalyst 300.

Calibrations:

Calibrations were performed according to the method for the initial calibration and the initial calibration verification. The initial calibration verification is prepared from a second source standard. All calibration acceptance criteria were met.

Blanks:

Mercury was detected above the reporting limit (RL) in the method blank.

Spikes:

A Laboratory Control Spike (LCS) and matrix spikes (MS/MSD) were used for quality assurance. All LCS acceptance criteria were met.

Sample B4-US10 was designated by the client for MS/MSD analysis. All acceptance criteria were met in the MS/MSD.

Summary:

No analytical exception is noted.

CERTIFICATION

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. These test results meet all requirements of NELAC. Release of the hard copy has been authorized by the Laboratory Manager or her designee, as verified by the following signature.

Sharon Dehmlow, Laboratory Director / Date

CHAIN OF CUSTODY AND ARF

	APPL - An	alysis Request For	m	672	
Client: Parsons		Received by:			
Address: 8000 Centre Par	k Drive Ste 200	Date Received:	03/20/12	Time: <u>10</u>	:40
Austin, TX 7875	4		FED EX		
Attn: Tammy Chang			Seals (Y/N): Y	_ Time Zone:	<u>-5</u>
Phone: <u>512-719-6092</u>	Fax: <u>512-719-6099</u>	Chest Temp(s):		<u></u>	
Job: 748372.06000 CSSA		Color:	H-PUGRN		
PO #: <u>748336.30000-00 (p</u>	rime *G012)	·	until Placed in R		<u>Y</u>
Chain of Custody (Y/N): Y	# <u>031912APPFA</u>	•	: Diane Anders		
RAD Screen (Y/N): Y	pH (Y/N): <u>N</u>	QC Report Type	: DVP4/AFCEE	/ERPIMS/TX	
Turn Around Type:	3 DAYS	Due Date:	03/2	3/12	
Case Narrative. CSSA + AFCE EDD: ERPIMS 4 Lab PC4 ched	cked TXF to Pam.Ford@pa				
3-21 Sent	ARF				
Sample Distribution: Metals: 2-\$HGAFBS 3.28 Wetlab: 2-MOIST Other: 2M7471GROSS		<u>Charges:</u>	Invoice To: BOA 748336.36 8000 Centre Pa	ark Drive Ste 20)0
			Austin, TX 7879 Attn: Ellen Felf 		
Client ID	APPL ID	Sampled Analyse	s Requested		

1. B4-US10

2. B4-US10 FD

03/19/12 09:35 \$HGAFBS, MOIST

9/12 09:35 \$HGAFBS, MOIST

APPL Sample Receipt Form

ARF# 67264

Sample	Container Type	Count	pН
AY57291	²⁰ 4oz Jar	2	na
AY57292	²⁰ 40z Jar	1	na

Sample Container Type

Count pH

COC ID: 031912APPFA Project Location: CSSA Job Number: 748372.06000 Creation Date: 3/19/2012 Task Manager Laura Marhury	Camp Stanley Storage Activity Chain Of Relinquish_Date: 3/19/2012 Cooler ID: A Relinquished_By: JDB LabCode: APPF Relinquish_Time: 5:00 PM Carrier: FedEx Collection Team: KC Airbill Carrier: 876436443322	y Storage Ac Cooler ID: LabCode: Carrier: Airbill Carrier:	tivity Chain A APPF FedEx 876436443322	Sampler(s): A Code Sampler(s): A Code Sampler(s): A Code
LOCID: B4-US10 SBD: 3 LOGTIME: 9:35 SED: 3.5 FLDSAMPID B4 Remarks:	LOGD/ SACOI	TBLOT: ABLOT: EBLOT:	Containers: 0	Analysis Required: SW7471 MERCURY
LOCID: B4-US10 SBD: 3 LOGTIME: 9:35 SED: 3.5 FLDSAMPID B4- Remarks:	LOGDATE: 3/19/2012 MATRIX: SO OGTIME: 9:35 SACODE: N SMCODE: G FLDSAMPID B4-US10_031912_N0935	TBLOT: ABLOT: EBLOT:	Containers: 1	Analysis Required: SW7471 MERCURY
LOCID: B4-US10 SBD: 3 LOGTIME: 9:35 SED: 3.5 FLDSAMPID B4- Remarks:	LOGDATE: 3/19/2012 MATRIX: SO OGTIME: 9:35 SACODE: MS SMCODE: G FLDSAMPID B4-US10_031912_MS0935	TBLOT: ABLOT: EBLOT:	Containers: 1	Analysis Required: SW7471 MERCURY
LOCID: B4-US10 SBD: 3 LOGTIME: 9:35 SED: 3.5 FLDSAMPID B4 -Remarks:	0 LOGDATE: 3/19/2012 MATRIX: SO OGTIME: 9:35 SACODE: FD SMCODE: G FLDSAMPID B4-US10_031912_FD0935	TBLOT: ABLOT: EBLOT:	Containers: 1	Analysis Required: SW7471 MERCURY

Recieved by: Relinquished by Recieved by:_ Relinquished by: _Date_ _Date_ _Time_ _Time_ Recieved by:_ Relinquished by:

Date

__Time___ __Time___ Page 1 of 1

1) Proj	act: 7	48372.0600 CSSVA	Date Received: 3/zo/17
2) Coc	_	Number of Coolers: \	
3) YES		Were coolers and samples screened for radioactivity?	*-
4) (ES	NO	Were custody seals on outside of cooler? How many?	Date on seal?
5)		Name on seal? <u>See ARF 67263 CRF</u>	.10
	NO NA	Were custody seals unbroken and intact at the time of arriva	ornama: Fed FX
	NO	Did the cooler come with a shipping slip (air bill, etc.)? Carrie Shipping slip numbers:1) (3272)	3)
8)	NO NA	Was the shipping slip scanned into the database?	
9) KES	S NOAT	Dif cooler belongs to APPL, has it been logged into the ice ch	est database?
11) De:	scribe tvp	e of packing in cooler (bubble wrap, popcorn, type of ice, etc.)): Bubble Wigo, Wet
To	` y		
12) YE	S NO(NA	For hand delivered samples was sufficient ice present to sta	rt the cooling process?
13) (E	BY NO _	Was a temperature blank included in the cooler?	Correction factor: 2000
		er of certified NIST thermometer used: 1939267	6) 7) 8)
		(''). '') '/	0)
	of custod	was a chain of custody received?	•
16) (E. 17) YE		Were the custody papers signed in the appropriate places?	
18) (E		Was the project identifiable from custody papers?	
19) (E		Did the chain of custody include date and time of sampling?	
20) YE		Is location where sample was taken listed on the chain of cus	stody?
	Labels:		ı
21)(E	NO &	Were container labels in good condition?	
22) (E		Was the client ID on the label?	
23) (FES		Was the date of sampling on the label?	
24) E		Was the time of sampling on the label?	
25) KE S		Did all container labels agree with custody papers?	
Sample	Contain		
26) (E)		Were all containers sealed in separate bags? Did all containers arrive unbroken?	
27) (ES 28) YES		Was there any leakage from samples?	
20) YES		Were any of the lids cracked or broken?	
30) YES		Were correct containers used for the tests indicated?	
31) VES	NO	Was a sufficient amount of sample sent for tests indicated?	
32) YES	NOMA	Were bubbles present in volatile samples? If yes, the following	ng were received with air bubbles:
Larg	er than a		
	aller than		
Preserv	ation & F	fold time:	the samples?
33) YES	NO NA	Was a sufficient amount of holding time remaining to analyze Do the sample containers contain the same preservative as w	the samples:
34)(YES	NO NA	Was the pH taken of all non-VOA preserved samples and write	tten on the sample container?
30) YES		Was the pH of acid preserved non-VOA samples < 2 & sodium hydr	roxide preserved samples > 12?
		University of VOA Viole received?	
38) YES	NO MA	Are unpreserved VOA vials received?	the ARF?
30,			•
.ab notifi	ed if pH w	as not adequate:	
Deficien	cies:		
Signatur	e of perso	onnel receiving samples:Secor ct manager notified:Date a	nd reviewer:
			and Time of notification:
lame of	client no	tified:Date	and Time of notification:
nformati	on given	to client:	by whom (Initials):
			by writin (initials)

MERCURY EPA Method 7471B

MERCURY EPA Method 7471B AFCEE Forms

AFCEE INORGANIC ANALYSES DATA PACKAGE

AAB #: 120321A-165061 Analytical Method: EPA 7471B Contract #: *G012 Lab Name: APPL, Inc Prime Contractor: Parsons Base/Command: CSSA Lab Sample ID Field Sample ID AY57291 B4-US10 AY57292 B4-US10 FD ARF: 67264 Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Name: Diane Anderson

Date: 7-30-/2 Title: Project Manager

AFCEE FORM I-1

AFCEE INORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120321A-165061

Lab Name: APPL, Inc.

Contract #: *G012

Field Sample ID: B4-US10

Lab Sample ID: AY57291

Matrix: Soil

% Solids: 82.4

Initial Calibration ID: 120321A

Date Prepared: 21-Mar-12

Date Analyzed: 21-Mar-12

Date Received: 20-Mar-12 Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.04	1	F

Comments:

ARF: 67264

AFCEE **INORGANIC ANALYSES DATA SHEET 2** RESULTS

Analytical Method: EPA 7471B

Preparatory Method: 7471B

AAB #: 120321A-165061

Lab Name: APPL, Inc

Field Sample ID: B4-US10 FD

Contract #: *G012

Lab Sample ID: AY57292

Matrix: Soil

% Solids: 83.6

Initial Calibration ID: 120321A

Date Received: 20-Mar-12

Date Prepared: 21-Mar-12

Date Analyzed: 21-Mar-12

Concentration Units: mg/kg

Analyte	MDL	RL	Concentration	Dilution	Qualifier
MERCURY (HG)	0.01	0.1	0.04	1	F

Comments:

ARF: 67264

AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

nalytical Method:	7471B				_								
Lab Name:	APPL, Inc					_							
Instrument ID:	PE300				_	Date of Initial Calibration: 21-Mar-12							
al Calibration ID:	120321A				Concent	Concentration Units (mg/L or mg/kg): mg/kg							
					•								
Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	r	Q	
Mercury	0.000208	0.004	0.000521	0.010	0.001042	0.019	0.002083	0.037	0.005208	0.087	0.99963		
Mercury	0.000208	0.004	0.000521	0.010	0.001042	0.019	0.002083	0.037	0.005208	0.087	r = correlati	on coe	
0													
Comments:													

AFCEE FORM I-3A

AFCEE INORGANIC ANALYSES DATA SHEET 3 MERCURY INITIAL MULTIPOINT CALIBRATION

•		Contract #		 	APPL, Inc	Lab Name:
	 21-Mar-12	of Initial Calibration		 	PE300	strument ID:
	 mg/kg		120321A	alibration ID:		
				RF	Std	Analyte
г			I			
r 0.99963				6 0.182	0.010420	Mercury
				6 0.182	0.010420	Mercury
0.99963						Mercury

AFCEE FORM I-3A

AFCEE INORGANIC ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

Analytical Method: 7471B	AAB#: 120321A-165061
Lab Name: APPL, Inc.	Contract #: *G012
Instrument ID: PE300	Initial Calibration ID: 120321A
2nd Source ID: ICV 03/21/12 11:16	ICV ID: <u>ICV 03/21/12 11:16</u>
CCV #1 ID: CCV 03/21/12 11:19	CCV #2 ID: CCV 03/21/12 11:32
Concentration Units (mg/	L or mg/kg): mg/Kg

	2nd	Source Cali	bration		Initial Calibration			Continuing Calibration					
Analyte	1	Verification	n		Verification			Verification					
· ·	Expected	Expected Found %D Expected Found		Found	%D	Expected	Expected Found %D Found 9			%D			
							1 2						
Mercury (Hg)	0.00417	0.00401	3.9%	0.00417	0.00401	3.9%	0.005208	0.00510	2.1%	0.00531	2.0%		

Comments:										··	
	 	·		 			•		 		
			A Ex	CER FORM I	4	Dana	1 06	1			

AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANK

Analytical Method: EPA 7471B

AAB #: 120321A-165061

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

Method Blank ID: 120321A-BLK

Initial Calibration ID: 120321A

Analyte	Method Blank	\mathbf{RL}	Q
MERCURY (HG)	< RL	0.1	U

Comments:

ARF: 67264, Sample: AY57291

AFCEE INORGANIC ANALYSES DATA SHEET 5 BLANKS

Analytical Method: 7471B		AAB#: 120321A-165061						
Lab Name: APPL, Inc.		Contract #: *G012						
		Concentratio	n Units (mg/L	or mg/kg): mg/kg		·, ·		
Initial Calibration Blank ID: ICB 03/21/12 11:	18	_	Initial Cali	bration ID: 120321A	<u></u>			
CCB #1 ID: CCB 03/21/12 11	:21	_CCB #2 ID:	CCB 03/21/12	2 11:34	(CCB #3 ID:		
Method Blank ID: 120321A-BLK		_	Initial Cali	bration ID: 120321A				
							1	
Analyte Calil	itial Contin	Continuing Calibration Blank		Method Blank	RL	Q		
	1	2	3					
Mercury (Hg)	RL <rl< td=""><td><rl< td=""><td><u>l. </u></td><td><rl< td=""><td>0.1</td><td></td><td>İ</td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><u>l. </u></td><td><rl< td=""><td>0.1</td><td></td><td>İ</td><td></td></rl<></td></rl<>	<u>l. </u>	<rl< td=""><td>0.1</td><td></td><td>İ</td><td></td></rl<>	0.1		İ	
Comments:		AFCEE FO	DDM15 P	age of (

AFCEE INORGANIC ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

Analytical Method: EPA 7471B

AAB #: 120321A-165061

Lab Name: APPL, Inc

Contract #: *G012

LCS ID: 120321A LCS

Initial Calibration ID: 120321A

Concentration Units: mg/kg

Analyte	Expected	Found	% R	Control Limits	Q
MERCURY (HG)	0.67	0.66	98.5	77-120	

Comments:

ARF: 67264, Sample: AY57291

AFCEE INORGANIC ANALYSES DATA SHEET 7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

Analytical Method: EPA 7471B

Lab Name: APPL, Inc

Contract #: *G012

Concentration Units: mg/kg

% Solids: 82.4

Parent Field Sample ID: B4-US10

MS ID: 120321-57291S MS

MSD ID: 120321-57291S MSD

		Spike	Spiked Sample Result	% R	Duplicate Spiked Sample Result	% R	4		Control Limits % RPD	
MERCURY (HG)	0.04	0.67	0.81	115	0.80	113	1.2	77-120	25	L

Comments:

ARF: 67264

AFCEE INORGANIC ANALYSES DATA SHEET 8 HOLDING TIMES

Analytical Method: EPA 7471B

AAB#: 120321A-165061

Lab Name: APPL, Inc

Contract #: *G012

Field Sample ID	Date Collected	Date Received	Date Analyzed	Max. Holding Time (days)	Time Held (days)	Q
B4-US10	19-Mar-12	20-Mar-12	21-Mar-12	28	2	
B4-US10 FD	19-Mar-12	20-Mar-12	21-Mar-12	28	2	

Comments:

ARF: 67264

Sample ID		Date	Timo	Mean_SA	Units	Batch_ID	Wt	Dilu
Sample_ID			Time	Mean_SA		Batcii_ib	VVL	Dilu
Calib Blank	_	03/21/12			μg/L			
0.2083 03-21-12 LO	Hg		11:03:53		μg/L 			
0.520833	_	03/21/12			µg/L			
1.041667	Hg	03/21/12	11:07:08		μg/L			
2.083333	Hg	03/21/12	11:09:10		μg/L			
5.208	Hg	03/21/12	11:11:12		μg/L			
10.417	Hg	03/21/12	11:13:16		μg/L			
ICV 03-21-12 LO	Hg	03/21/12	11:16:39	4.00887	μg/L			
ICB 03-21-12 LO	Hg	03/21/12	11:18:41	0.053438	μg/L			
CCV 03-21-12 LO	Hg	03/21/12	11:19:56	5.098003	µg/L			
CCB 03-21-12 LO	Hg	03/21/12	11:21:58	0.081592	µg/L			
120321A BLK	Hg	03/21/12	11:23:11	0.01854	mg/kg	120321A-7471GROSS	0.6	
120321A LCS	Hg	03/21/12	11:24:24	0.655679	mg/kg	120321A-7471GROSS	0.6	
AY57291S01	Hg	03/21/12	11:26:26	0.030124	mg/kg	120321A-7471GROSS	0.73	
AY57291S01 MS	Hg	03/21/12	11:27:39	0.667417	mg/kg	120321A-7471GROSS	0.73	
AY57291S01 MSD	Hg	03/21/12	11:29:40	0.658958	mg/kg	120321A-7471GROSS	0.73	
AY57292S01	Hg	03/21/12	11:31:42	0.037318	mg/kg	120321A-7471GROSS	0.72	
CCV 03-21-12 LO	Hg	03/21/12	11:32:56	5.314449	μg/L			
CCB 03-21-12 LO	Hg	03/21/12	11:34:58	0.129497	μg/L			
R=0.99963								

AFCEE INORGANIC ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 7471B ICAL ID: 120321A

Lab Name: APPL, Inc. Contract #: *G012

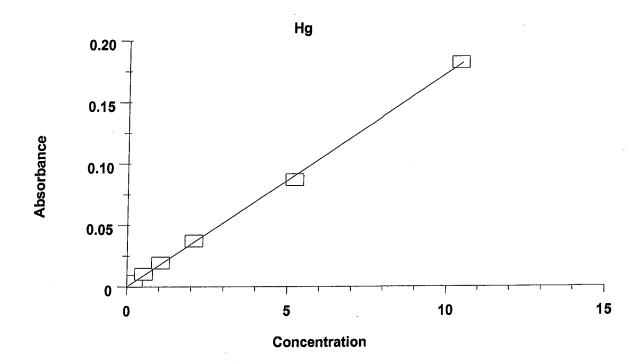
Instrument ID #: PE300

Field Sample ID/Std ID/ Blank ID/QC Sample ID	Date Analysis Started	Time Analysis Started	Date Analysis Completed	Time Analysis Completed
Calib Blank	21-Mar-12	11:02	21-Mar-12	11:02
0.2083	21-Mar-12	11:03	21-Mar-12	11:03
0.520833	21-Mar-12	11:05	21-Mar-12	11:05
1.041667	21-Mar-12	11:07	21-Mar-12	11:07
2.083333	21-Mar-12	11:09	21-Mar-12	11:09
5.208	21-Mar-12	11:11	21-Mar-12	11:11
10.417	21-Mar-12	11:13	21-Mar-12	11:13
ICV	21-Mar-12	11:16	21-Mar-12	11:16
ICB	21-Mar-12	11:18	21-Mar-12	11:18
CCV	21-Mar-12	11:19	21-Mar-12	11:19
CCB	21-Mar-12	11:21	21-Mar-12	11:21
120321A-BLK	21-Mar-12	11:23	21-Mar-12	11:23
120321A-LCS	21-Mar-12	11:24	21-Mar-12	11:24
AY57291S01	21-Mar-12	11:26	21-Mar-12	11:26
AY57291S01 MS	21-Mar-12	11:27	21-Mar-12	11:27
AY57291S01 MSD	21-Mar-12	11:29	21-Mar-12	11:29
AY57292S01	21-Mar-12	11:31	21-Mar-12	11:31
CCV	21-Mar-12	11:32	21-Mar-12	11:32
CCB	21-Mar-12	11:34	21-Mar-12	11:34

MERCURY EPA Method 7471B Calibration Data

Parsons

Hg BY METHOD 7471B QCG 120321A-7471GROSS ANALYSIS DATE: 03/21/12


ARF#67264

R=0.99963

NAME	TRUE	RESULT	% RECOVERY
ICV	4.17ppb	4.009	96.1%
ICB	0ppb	0.053	
CCV-1	5.208ppb	5.098	97.9%
CCB-1	0ppb	0.082	
CCV-2	5.208ppb	5.314	102.0%
CCB-2	0ppb	0.129	

Method Name: Hg-7471 - RJS Element: Hg Date: 03/21/2012 Results Data Set: 120321A-7471GR Element: Hg Seq. No.: 1 Date: 03/21/2012 Sample ID: Sample ______ SampleConc StndConc BlnkCorr Time Repl μ g/L μ g/L Signal # 11:01:01 1 -0.007 Auto-zero performed. Element: Hg Seq. No.: 2 Date: 03/21/2012 Sample ID: Sample ______ Repl SampleConc StndConc BlnkCorr Time Signal # μq/L μg/L 0.000 11:01:25 1 Auto-zero performed. Element: Hg Seq. No.: 3 Date: 03/21/2012 Sample ID: Calib Blank SampleConc StndConc BlnkCorr Repl Signal # μg/L μg/L 11:02:29 0.000 1 0.000 11:02:35 2 11:02:40 0.000 3 0.000 Mean: 0.000 SD : 1433.62 %RSD: Auto-zero performed. Element: Hg Seq. No.: 4 Date: 03/21/2012 Sample ID: 0.2083 03-21-12 LO -----Repl SampleConc StndConc BlnkCorr Time Signal $\mu {
m g/L}$ $\mu {
m g}/{
m L}$ # 11:03:42 0.004 1 11:03:48 0.005 2 11:03:53 0.005 3 0.004 Mean: 0.000 SD : %RSD: Standard number 1 applied. [0.208333] Slope: 0.0215 Correlation Coefficient: 1.0000 Element: Hg Seq. No.: 5 Date: 03/21/2012 Sample ID: 0.520833 Repl SampleConc StndConc BlnkCorr Time μg/L Signal # μg/L 11:04:56 0.010 1 11:05:01 0.010 2 11:05:06 0.010 3 0.010 Mean: 0.000 SD : %RSD: Standard number 2 applied. [0.520833] Slope: 0.0199 Correlation Coefficient: 0.9966 An extra autosampler wash has been performed.

```
Element: Hg Seq. No.: 6 Date: 03/21/2012
Sample ID: 1.041667
SampleConc StndConc BlnkCorr
Repl
                   Signal
            μg/L
 #
     μg/L
                           11:06:57
                    0.019
 1
                           11:07:02
                    0.019
 2
                    0.020
                           11:07:08
 3
                    0.019
Mean:
                    0.001
SD :
%RSD:
Standard number 3 applied. [1.041667]
                               Slope: 0.0189
Correlation Coefficient: 0.9980
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 7 Date: 03/21/2012
Sample ID: 2.083333
_
   SampleConc StndConc BlnkCorr
                           Time
Repl
                   Signal
            \mu g/L
 #
    μg/L
                           11:08:59
                    0.036
 1
                           11:09:04
                    0.037
2
                           11:09:10
                    0.038
3
                    0.037
Mean:
                    0.001
SD :
                    2.89
%RSD:
Standard number 4 applied. [2.083333]
                               Slope: 0.0181
Correlation Coefficient: 0.9988
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 8 Date: 03/21/2012
Sample ID: 5.208
_
   SampleConc StndConc BlnkCorr
                           Time
Repl
                   Signal
            μg/L
#
    μg/L
                           11:11:02
                    0.085
1
                           11:11:07
                    0.088
2
                           11:11:12
                    0.089
3
                    0.087
Mean:
                    0.002
SD :
                    2.63
%RSD:
Standard number 5 applied. [5.208]
                               Slope: 0.0170
Correlation Coefficient: 0.9989
An extra autosampler wash has been performed.
Element: Hg Seq. No.: 9 Date: 03/21/2012
Sample ID: 10.417
            _____
                          Time
   SampleConc StndConc BlnkCorr
Repl
                   Signal
    μg/L
            μg/L
#
                           11:13:05
                    0.176
1
                           11:13:10
                    0.184
2
                           11:13:16
                    0.187
3
                    0.182
Mean:
                    0.006
SD :
                    3.07
%RSD:
The calibration curve may not be linear.
Standard number 6 applied. [10.417]
                               Slope: 0.0174
Correlation Coefficient: 0.9996
```


Calibration data for Hg		Entered	Calculated		
	Mean Signal	Concentration	Concentration	Standard	
Standard ID	(Absorbance)	$(\mu g/L)$	$(\mu g/L)$	Deviation	%RSD
Calib Blank	0.000		0.000	0.000380	
0.2083 03-21-12 LO	0.004	0.208333	0.2571	0.000154	3.446950
0.520833	0.010	0.520833	0.5867	0.000169	1.653396
1.041667	0.019	1.041667	1,114	0.000598	3.083399
2.083333	0.037	2.083333	2.139	0.001075	2.889720
5.208	0.087	5.208	5.013	0.002291	2.626860
10.417	0.182	10.417	10.49	0.005599	3.069127
Correlation Coeffici	ent: 0.99963	Slope: 0.0	1740		

MERCURY EPA Method 7471B Raw Data

Element: Hg Seq. No.: 10 Date: 03/21/2012 Sample ID: ICV 03-21-12 LO _____ Repl SampleConc StndConc BlnkCorr Time $\mu g/L$ $\mu g/L$ Signal 3.861 0.067 4.036 4.036 0.070 4.130 0.072 # 11:16:29 11:16:34 3 11:16:39 0.070 4.009 4.009 Mean: SD: 0.1367 0.1367 %RSD: 3.41 3.41 0.002 3.41 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 11 Date: 03/21/2012 Sample ID: ICB 03-21-12 LO Repl SampleConc StndConc BlnkCorr Time μ g/L μ g/L Signal 0.04838 0.04838 0.001 0.05888 0.05888 0.001 0.05305 0.001 11:18:30 11:18:35 1 11:18:41 3 0.001 Mean: 0.05344 0.05344 0.000 SD : 0.005263 0.005263 %RSD: 9.85 9.85 9.85 QC value within specified limits. Element: Hg Seq. No.: 12 Date: 03/21/2012 Sample ID: CCV 03-21-12 LO -SampleConc StndConc BlnkCorr Time Repl $\mu g/L$ $\mu g/L$ Signal # 11:19:45 1 11:19:50 2 11:19:56 3 Mean: 5.098 5.098 SD: 0.1400 0.1400 %RSD: 2.75 2.75 QC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 13 Date: 03/21/2012 Sample ID: CCB 03-21-12 LO ______ Repl SampleConc StndConc BlnkCorr Time $\mu { t g}/{ t L}$ μ g/L Signal # 0.09334 0.09334 0.002 0.08473 0.08473 0.001 0.06671 0.06671 0.001 0.08159 0.08159 0.001 0.01359 0.01359 0.000 16.66 16.66 16.66 ue within specific 11:21:47 1 11:21:52 2 11:21:58 3 Mean: 0.08159 0.08159 SD: 0.01359 0.01359 %RSD: 16.66 16.66

QC value within specified limits.

Element: Hg Seq. No.: 14 Date: 03/21/2012 Sample ID: 120321A BLK Repl SampleConc StndConc BlnkCorr Time 11:23:01 11:23:06 11:23:11 Element: Hg Seq. No.: 15 Date: 03/21/2012 Sample ID: 120321A LCS Repl SampleConc StndConc BlnkCorr Time # mg/kg μ g/L Signal
1 0.6354 3.971 0.069 11:24:14
2 0.6587 4.117 0.072 11:24:19
3 0.6729 4.206 0.073 11:24:24 Mean: 0.6557 4.098 0.071 SD: 0.01897 0.1186 0.002 %RSD: 2.89 2.89 2.89 An extra autosampler wash has been performed. Element: Hg Seq. No.: 16 Date: 03/21/2012 Sample ID: AY57291S01 _ Repl SampleConc StndConc BlnkCorr Time 2.75 2.75 2.75 %RSD: Element: Hg Seq. No.: 17 Date: 03/21/2012 Sample ID: AY57291S01 MS Repl SampleConc StndConc BlnkCorr Time

 Rep1
 Samplecone mg/kg
 Strictor
 Binkcorr

 # mg/kg
 μ g/L
 Signal

 1
 0.6462
 4.913
 0.085

 2
 0.6709
 5.101
 0.089

 3
 0.6852
 5.211
 0.091

 Mean:
 0.6674
 5.075
 0.088

 SD:
 0.01977
 0.1503
 0.003

 %RSD:
 2.96
 2.96
 2.96

 11:27:28 11:27:33 11:27:39 An extra autosampler wash has been performed. Element: Hg Seq. No.: 18 Date: 03/21/2012 Sample ID: AY57291S01 MSD Repl SampleConc StndConc BlnkCorr Time mg/kg μ g/L Signal 1 0.6417 4.880 0.085
2 0.6605 5.022 0.087
3 0.6747 5.130 0.089

Mean: 0.6590 5.011 0.087
SD : 0.01651 0.1255 0.002

RSD: 2.51 2.51 11:29:29 11:29:34 11:29:40

An extra autosampler wash has been performed.

Element: Hg Seq. No.: 19 Date: 03/21/2012 Sample ID: AY57292S01 ______ Repl SampleConc StndConc BlnkCorr Time mg/kg μg/L 0.03597 0.2698 0.03704 0.2778 Signal # 0.005 11:31:31 1 0.005 11:31:37 2 0.03895 0.2921 0.005 11:31:42 3 0.005 Mean: 0.03732 0.2799 SD : 0.001508 0.01131 0.000 4.04 4.04 4.04 %RSD: Element: Hg Seq. No.: 20 Date: 03/21/2012 Sample ID: CCV 03-21-12 LO Repl SampleConc StndConc BlnkCorr Time μ g/L μ g/L Signal #
 5.193
 5.193
 0.090

 5.342
 5.342
 0.093

 5.409
 5.409
 0.094
 11:32:45 11:32:51 5.193 1 2 11:32:56 3 5.314 0.092 Mean: 5.314 0.1106 0.1106 0.002 2.08 2.08 2.08 SD : %RSD: OC value within specified limits. An extra autosampler wash has been performed. Element: Hg Seq. No.: 21 Date: 03/21/2012 Sample ID: CCB 03-21-12 LO _ Repl SampleConc StndConc BlnkCorr Time # 11:34:48 1 11:34:53 2 11:34:58 3 Mean: 0.000 SD : 0.003844 0.003844 %RSD: 2.97 2.97 2.97 QC value within specified limits.

082	'	Tetals Standards Log Book # 34 Page # 083		
설	SA 3-16-1	2 1%HNO3/5%HCI BLK		
	7,000	AMT. REAGENT MANUFACTURER LOT OPEN DATE AMT. STD. MANUFACTURER		
3	6010B-C	100 mL HCL BDH 411060 12/28/11 1mL Al CPI 10E012-27685 04/20/12 O4/20/12 }	I (A)	STD 1 / LDL 6010B/6010C
	7	AMT. STD MANUFACTURER LOT EXP DATE Prepared in 50 ml 1%HNO3/5%HCl		
		STD 3 / HDL 6010B/6010C		
	1	1ML CCV-A ABSOLUTE 091409-25206 09/14/12 ImJ Ma CPI 11A006-28528 09/15/12		
-		IML CCV-C ABSOLUTE 09109-2500 09/14/12 ImL Fe O2SI 1022245-27699 04/22/12		
ĪĪ		STD 2 / CCV1 6010B/6010C/6010C Prepared in 50 ml 1%HNO3/5%HCl		
2		25mL STD3 Today 1 week 0.5ML QCS ICV A CPI 11C174-28548 09/17/12		
2	7330	25mL 194HNO3/594HCl Today 1 week Prepared in 50ml 194HNO3/594HCl Today 1 week		
-	\{\begin{align*} \text{Fig. 1.1.} \\ Fig	IIIIIRIUM INTERNAL STANDARD		
2		25mL STD 3 Today 1 week 2.0 mL Yittrium O2SI 1024334 09/04/12 Prepared in 2000 ml 1%HNO3/5%HCl 543-16-12		
2 2				
2' 3	PB 3/19/12	Hg STANDARD Hg STOCK ICV		
-	- POS 3/11/1-	CPI Lot # 11D140-28885 Ultra Scientific Lot #		
		10ug/ml in 1% HNO3 LOT#K23022 K00200-26307		
		Prep. Date 03/19/12 10ug/ml in 1% HNO3 LOT#K23022		
<u>'</u>		Exp. Date 04/16/12 Prep.Date 03/19/12		
		Exp. Date 04/16/12		
	10.00	By RJS Manufacturer: J.T. Baker Manufacturer: J.T. Baker		
		Manufacturer: J.T. Baker Manufacturer: J.T. Baker		
		Real-L.		
	PB 3/19/12	STANNOUS CHLORIDE		
	i e	125g SnCl2 MACRON Lot #K12620		
		100 mL HCl BDH Lot #4111060		
	<u>86.63</u>	Brought to 500 mL with DI Water		
		Prep. Date 03/19/12 Exp. Date 03/19/13		
l		By RJS		
	1203 3/15/12	RUS 3/18/12		
	1003 3/19/12	Hg WORKING STANDARD		
	2.9	1ml X 10ug/ml Hg STOCK STD (02/40/42D IS)/200140/ LINES 1 - 1/1/200		
	2000 2000	1ml X 10ug/ml Hg STOCK STD. (03/19/12RJS)/200ml 1% HNO3 Lot#K23022 1ml X 10ug/ml Hg STOCK ICV (03/19/12RJS)/200ml 1% HNO3 Lot#K23022		
		Final concentration is 50 ug/L. Expires3/19/14		
	2549	- Andrew Control of the Control of t		
	NM 3/19/12	KMNO4		
		5.1		
\$		+ 4000 ml DI H20 Exp: 3/19/13		
		in the state of th		
<u>(4.</u>				

Metals Standards Log Book # 34 Page # 085 ICP-MS STANDARDS 8020/6020A/3015/3051A 03/27/12 Standard 2 Todav's Date: NBS 03/20/12 03/27/12 03/20/12 Prep 1% HNO3/1.0%HCL 20 mL HNO3 / 2000 mL Di Water 500 uL repared in 50 mL of 1% HNO3/1.0% HCL 6000/6000/ Lot # K23022 03/27/12 Standard 1 Lot #K43032 03/20/12 50 uL 03/27/12 Internal Standard Mix: Prep 03/20/2012 Prepared in 50 mL of 1% HNO3/1.0% HCL 03/20/1 Standard 4 Manufacture ICP-MS ICV Env. Express Env. Express 1036407-28139 1036410-28140 1100309-28141 STD 50 uL QCS ICV A 11C174-28548 Env. Express 50 uL Prepared in 50 mL of 1% HNO3/1.0% HCL 03/20/1 Prepared in 100 mL of 1% HNO3/1.0% HCL 03/27/12 1 mL ICSA CPI
Prepared in 5 mL of 1% HNO3/1.0% HCL 11C068-28529 STD Manufacturer Amount 1036407-28139 CCV-A CCV-B Env. Express Env. Express 1036410-28140 1100309-28141 25 uL 11C088-28529 Prepared in 100 mL of 1% HNO3/1.0% HCL 03/20/12 0.025mL 028 1023805-28210 O2Si Prepared in 5 mL of 1% HNO3/1.0% HCL ICP-LDR 03/27/12 03/20/1 100 uL of Sb STD (CPI 12A011-30298) in 10 mL of 1% HNO3/1.0% HCL 1036407-26139 ICV-Sb 03/27/12 100 uL of Intermediate-Sb in 10 mL of 1% HNO3/1.0% HCL 1036410-28140 Env. Express 1100309-28141 repared in 10 mL of 1% HNO3/1.0% HCL NBS Internal Standard Concentration NBS 03/20/12 Expires Final Conc. in Std DATI 0/12 Vendo STD Element 06/10/12 10L079-27839 5000 ug/L 500ul 1000 ug/mL 09/25/12 5000 ug/L 10.1155-28574 CPI 5/12 500uL 1000 ug/mL 5000 ug/L 09/25/12 CPI 10A107-28576 0/12 500uL 1000 ug/mL 5000 ug/l 09/25/12 11B054-28575 CP≀ 1000 ug/mL 500uL 08/18/12 5000 ug/l 1024073-28527 1000 ug/mL o2si 500uL 02/08/13 15000 ug/l Environmental Express 1%HNO3/1.0%HCL: Lot #KK23022/43032 NBS 03/20/12 Prep in -Prep: 5/12 04/19/12 Expires:)/12 ?/12 1/13 1%HNO3 / 5%HCI BLK 3-26-17 6010B/6010C1CSA AMOUNT REAGEN MANUFACTURE LOT OPEN DATE AMOUNT STD MANUFACTURE LOT EXP DATE 100 mL Ha BDH 411060 03/15/12 ΑI 10E012-27685 04/20/12 7/12 6010B-C JT BAKER 20 ml HNO K23022 G 1mL 11A006-28528 09/15/12 Prepared in 2000 ml DI Water 1mL œ 10F1213-2786 04/20/12 STD 1 / LDL 6010B/6010C 1mL O2SI 1022245-27699 04/22/12 AMOUNT STD MANUFACTURES LOT EXP DATE Prepared in 50 ml 1%HNO3/5%HO 0.5 mL 6010 LDI ABSOLUTE . 091409-25205 09/14/12 6010B/6010CICSAB Prepared in 50 ml 1%HNO3/5%HC STD 3 / HDL 6010B/6010C 1mI. 11A006-28528 ABSOLUTE OCV-A 091409-25206 09/14/12 1mL Mg CPI 101-1213-2786 04/20/12 ABSOLUTE 091109-25208 09/14/12 imL Fe OZŞI 1022245-27699 04/22/12 1ML ABSOLUTE 091009-25207 0,5mL INT SPECIAL MIX O2SI 1032370-30265 02/01/13 Prepared in 100 ml 1%HNO3 / 5%HO Prepared in 50 ml 1%HNO3/5%HO STD 2 / CCV1 6010B/6010C/6010 6010B/6010CICV AMOUNT STD PREP DATE QCS ICV A 11C174-28548 09/17/12 Today 25mL STD 3 QCS ICV B 11C174-28549 09/17/12 œ 1%HNO3/5%HO Today Prepared in 50ml 1%HNO3/5%HQ CCV2 6010B/6010C AMOUNT STD PREP DATE EXP DATE 15mL STD 3 Today 1 week 1%HN03/5%HO POS 3/21/12 PBS 3/21/12 Hg WORKING STANDARD 1ml X 10ug/ml Hg STOCK STD. (03/19/12RJS)/200ml 1% HNO3 Lot#K23022 1ml X 10ug/ml Hg STOCK ICV (03/19/12RJ\$)/200ml 1% HNO3 Lot#K23022 Final concentration is 50 ug/L. Expires. 3/2/12

Mercury Digestion Worksheet

Method Name 7471A Mercury Digestion (GROSS UP Prep Method M7471GRO

Set 120321A

Units mL

Spikes	
Spiked ID 1	Hg WORKING STANDARD prep 03-21-12
Spiked ID 2	Hg WORKING ICV prep 03-21-12
Spiked ID 3	
Spiked ID 4	
Spiked By	LO Date: 03/21/12 9:15:00 AM
Witnessed By	NM Date: 03/21/12 9:15:00 AM

Starting Temp:	95 C
Ending Temp:	95 C
Temp Type:	Modblockl
End Date/Time	03/21/12 10:00:00 AM

Mercury	Calibration -		
Sample	Spike Amount	Spike ID	Final Volume
0 ppb		1	96 ml
0.2 ppb	0.4 ml	1	96 ml
0.5 ppb	1 ml	1	96 ml
1 ppb	2 ml	1	96 ml
2 ppb	4 ml	I	96 ml
5 ppb	10 ml	1	96 ml
5 ppb	10 ml	1	96 ml
10 ppb	20 ml	1	96 ml
ICV	8 ml	2	96 ml

Start Date/Time of Calib	ration	03/21/12 9:15	
Sufficient Vol for Matrix QC:	YES		

Sample	Sample Container	Spike Amount	Spike ID	Digested Amount		Start Date/Time	Comments
1 120321A Blk				0.60g	96mL	03/21/12 9:15	equip: Modblock1
2 120321A LCS		8mL	1	0.60g	96mL	03/21/12 9:15	equip: Modblock1
3 AY57291	AY57291S01			0.73g	96mL	03/21/12 9:15	equip: Modblock1
4 AY57291 MS	AY57291S01	8mL	1	0.73g	96mL	03/21/12 9:15	equip: Modblock1
5 AY57291 MSD	AY57291S01		1	0.73g	96mL	03/21/12 9:15	equip: Modblock1
6 AY57292	ÀY57292S01		,	0.72g	96mL	03/21/12 9:15	equip; Modblock I

Solvent and	Lot#
AQUAREGIA 2	
KMnO4 12-15-1	1
DECOLORIZER	12-14-11
	1

Sample COC Transfer	
Sample prep employee Initials	LO
Analyst's initials	81
Date	3-21-12
Time	10:00
Moved to	Wetall

Technician's Initials	
Scanned By	NM
Sample Preparation	NM
Digestion	NM
Bring up to volume	LO
Modified	03/21/12 9:31:28 AM

Reviewed By: 54

Date: 3-21-12

Wetlab Results

ARF: 67264

APPL Inc.

908 North Temperance Avenue

Clovis, CA 93611

Parsons

8000 Centre Park Drive Ste 200

Austin, TX 78754

Attn: Tammy Chang

Method	Analyte	Result	PQL	Units	Prep Date	Analysis Date
APPL ID: A	Y57291 -Client Sample ID: B4-US10		-Sample Collection D	ate: 03/19/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	17.6	2.0	%	03/20/12	03/21/12
APPL ID: A	y57292 -Client Sample ID: B4-US10 FD		-Sample Collection D	ate: 03/19/12	Project: 74837	2.06000 CSSA
CLP MOIST	MOISTURE	16.4	2.0	%	03/20/12	03/21/12

Printed: 03/28/12 4:27:56 PM

WETLAB

Sample/Sample Duplicate Results

Parsons
8000 Centre Park Drive Ste 200
Austin, TX 78754

Attn: Tammy Chang

Project: 748372.06000 CSSA

APPL Inc. 908 North Temperance Avenu Clovis, CA 93611

ARF: 67264

			Sample	Sample Dup		RPD			Sample	Sample	Sample Sample Dun Sample Dun	Sample Dun
Method	Analyte	Sample ID	Result	Result RPD	RPD	Max PQL	PaL	Units	Extract Date	Analysis Date	AL Units Extract Date Analysis Date Extract Date Analysis Date	Analysis Date
CLP MOIS	LP MOIS MOISTURE	AY57291	17.6	17.0	17.0 3.5	20	2.0		% 03/20/12	03/21/12	03/20/12	03/21/12

% Moisture

Batch: QCG 120320-M004014

Method: CLP 4.0

Pan+Wet Pan+Dry 1 Pan+Dry 2 Moisture Comments Sample Container Pan (%) (g) (g) (g) AY57292S01 AY57292 s01 0.8153 7.2257 6.1759 6.1761 16.373 03/20/12 13:01 03/21/12 08:48 03/21/12 08:48 03/20/12 13:00 17.026 AY57291S01 AY57291D 7.2807 6.1789 6.1791 s01 0.8106 03/21/12 08:47 03/21/12 08:47 03/20/12 12:58 03/20/12 12:59 17.583 AY57291S01 AY57291 7.5597 6.3754 6.3759 s01 0.8272 03/21/12 08:47 03/21/12 08:47 03/20/12 12:57 03/20/12 12:58

Date/Time	Date/Time	Date/Time	Date/Time
InOven@104°C	OutOven@104°C	InOven@104°C	OutOven@104°C
03/20/12 1:01:00 PM			03/21/12 8:47:00 AM

Date: 03/20/12 13:00

Date	Initial		Weight	Reading	Lower Limit	Upper Limit	Comments / I the Bubble Centered?
3-19-12	CK	Mettler AT200	0.5g	0.50008	0.4995	0.5005	Mes
		Mettler AT200	lg			1.0010	
		Mettler AT200	20g		19.9800	20.0200	V
	 	Mettler AT200	50g	50.0014 g	49.9500	50.0500	
		Mettler AT200	100g	100.0026 g		100.1000	
		Mettler AT200	150g	150.00 40 g		150.1500	
		OHAUS ARC120	0.1g	0.10 g		0.12	
		OHAUS ARC120	0.5g	(7. ∑) g		0.52	
		OHAUS ARC120	lg.	1- <i>DD</i> g	0.98	1.02	
		OHAUS ARC120	100g	100.00 g	98.00	102.00	
		OHAUS ARC120	1kg	1000.00 g	980.00	1020.00	
	V	OHAUS ARC120	2kg	1999 99 g	1960.00	2040.00	\/
				- 1-1-1-1-1-1			V
3-20-12	ek	Mettler AT200	0.5g	0.5000 g	0.4995	0.5005	481
	۸	Mettler AT200	1g	1-0000 g	0.9990	1.0010	7
		Mettler AT200	20g	20:2004g	19.9800	20.0200	
ì		Mettler AT200	50g	50.0013g	49.9500	50.0500	
		Mettler AT200		100-0014g	99.9000	100.1000	
		Mettler AT200		150.003/g g	149.8500	150.1500	
		OHAUS ARC120	0.1g	010 g	0.08	0.12	
		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	1g		0.48	1.02	
		OHAUS ARC120	100g	1.00 g	98.00	102.00	
		OHAUS ARC120			980.00		
1//	-1 -	OHAUS ARC120			1960.00	1020.00	
		OINTOS /IRC120	2Kg 1	999.95 g	1900.00	2040.00	V
-21-19	ek	Mettler AT200	0.5g	0.5000 g	0.4995	0.5005	HA:
71.7	1	Mettler AT200			0.4993	0.5005	yes .
		Mettler AT200	1g	1.0001 g		1.0010	
		Mettler AT200	20g	10.0003 g	19.9800	20.0200	
		Mettler AT200	50g	500011 g	49.9500	50.0500	
				00.0023g	99.9000	100.1000	
		Mettler AT200	150g	50.0034g	149.8500	150.1500	
		OHAUS ARC120	0.1g	0.0 g	0.08	0.12	· · · · · · · · · · · · · · · · · · ·
		OHAUS ARC120	0.5g	0.5V g	0.48	0.52	
		OHAUS ARC120	lg	1.00 g 99.49 g	0.98	1.02	
		OHAUS ARC120	100g	000 O	98.00	102.00	
		OHAUS ARC120		199.94 g	980.00	1020.00	
		OHAUS ARC120	2kg l	49999° g	1960.00	2040.00	V
0 0	63.2						
22-12		Mettler AT200	0.5g	0.5000 g	0.4995	0.5005	yes
		Mettler AT200	1g	1.0000g	0.9990	1.0010	TD
-		Mettler AT200	20g	10.0003g	19.9800	20.0200	
-		Mettler AT200		50.0010g	49.9500	50.0500	
		Mettler AT200		00.0019g	99.9000	100.1000	
		Mettler AT200		50.0030g	149.8500	150.1500	
		OHAUS ARC120	0.1g	0.10 g	0.08	0.12	
		OHAUS ARC120	0.5g	0.50 g	0.48	0.52	
		OHAUS ARC120	1g	1.00 g	0.98	1.02	
		OHAUS ARC120		00.00 g	98.00	102.00	
		OHAUS ARC120		00.00 g	980.00	1020.00	
J		OHAUS ARC120		000.00 g	1960.00	2040.00	

Page 20 of 50