ATTACHMENT B

Slide Presentation

L.		1 00 (1	orarra	otarc)
Sources	s of Conta	amination		
• pa	st land disp	oosal activiti	es (B-2, B-2	4, & AOC-73)
• an	open burn	open deton	ation unit (E	8-20/21); and
• re	oorted sma	Il arms pop	oina furnace	(B-8).
Chemic	als of Po	tential Col	ncern:	
Chemic	Max Value (mg/kg)	CSSA Background (mg/kg)	Eco Screening (mg/kg)	Residential Tier 1 Human Health (mg/kg)
Chemic	Max Value (mg/kg) 156,640	CSSA Background (mg/kg) 84.5	CEIN: Eco Screening (mg/kg) 50	Residential Tier 1 Human Health (mg/kg) 500
Chemic Lead Barium	AIS OT PO Max Value (mg/kg) 156,640 15,493	CSSA Background (mg/kg) 84.5 186	Eco Screening (mg/kg) 50 500	Residential Tier 1 Human Health (mg/kg) 500 5,143
Lead Barium Copper	AIS OT POI Max Value (mg/kg) 156,640 15,493 1,515.6	CSSA Background (mg/kg) 84.5 186 23.2	Eco Screening (mg/kg) 50 500 61	Residential Tier 1 Human Health (mg/kg) 500 5,143 547.6
Lead Barium Copper Mercury	AIS OT POI Max Value (mg/kg) 156,640 15,493 1,515.6 0.69	CSSA Background (mg/kg) 84.5 186 23.2 0.77	CCETN: Eco Screening (mg/kg) 50 500 61 0.1	Residential Tier 1 Human Health (mg/kg) 500 5,143 547.6 0.091
Lead Barium Copper Mercury Zinc	Max Value (mg/kg) 156,640 15,493 1,515.6 0.69 406.4	CSSA Background (mg/kg) 84.5 186 23.2 0.77 73.2	CCETN: Eco Screening (mg/kg) 50 61 0.1 120	Residential Tier 1 Human Health (mg/kg) 500 5,143 547.6 0.091 9,921.4

Additional Sampling and Potential Removal Actions at North Pasture Sites Estimated Number Estimated Removal Volume of Additional Anticipated Analytes Investigation Samples (yd³) B-2 50 10 Metals, Explosives B-8 400 10 Metals B-20/21 250 22 Metals, Explosives VOC, SVOC, Metals, Explosives B-24 150 24 AOC-73 150 10 VOCs, SVOCs, Metals

	Site	s Near	North	Pasture	
 Sites ne B-3, B-7 Sites ne include: 	ar North 1, B-28 ar North B-4, A0	n Pasture th , and AOC- n Pasture th OC-62, AO	nat have be 64. nat have no C-52, AOC	een investigat ot been invest -42, and AOC	ed include: igated 2-58.
	Unit	COPC	Planned Actions	Land Use	
	B-3	CAHs, Lead	Removal Complete	Groundwater Remedial Activities	
	B-71	Benzene, Metals	Limited Removal	Pasture	
	B-28	Nickel	None	Pasture	Construction of the
1000	AOC-64	Benzene, Metals	Limited Removal	Pasture	
Aline			1		8

WORK PLAN OUTLINE

SECTION

1)	Introduction – Background Objectives Overview of TCEQ Tiered Approach Reference Documents Work Plan Organization	
2)	Site Characteristics – Sources of Information North Pasture Sites AOC-73 and Other Sites in North Pasture	
3)	Steps of the SLERA Process – Problem Formulation Exposure Characterization Risk Characterization	
-		14

WORK PLAN OUTLINE SECTION 4) Problem Formulation – Environmental Setting Identification of Ecological Receptors at CSSA Selection of Indicator Species Contaminant Fate and Transport Analysis Identification of Bioaccumulative COPCs 5) Characterization of Exposure – Estimation of Environmental Exposure Estimation of Receptor Uptake 6) Characterization of Ecological Effects – Toxicity Data Derivation of Toxicity Reference Values (TRVs)

SECTION 4 PROBLEM FORMULATION 4.3 SELECTION OF INDICATOR SPECIES TCEQ Guidance: Key Receptors from Upland Forest Food Web Mammals: - White-footed mouse - represents the effects on herbivore mammals - Short-tailed shrew - represents the effects on insectivorous mammals - Gray fox - represents the effects on upper-trophic level mammals Birds: - American robin - represents the effects on omnivorous birds - Bobwhite quail - represents the effects on herbivorous birds Red-tailed hawk – represents the effects on upper-trophic level carnivorous birds T&E Species (Birds): Black-capped vireo – selected to represent the effects on insectivorous birds and because it is an endangered species - Golden-cheeked warbler - selected to represent the effects on tree-dwelling insectivores and because it is an endangered species

10

SECTION 4 PROBLEM FORMULATION

4.4 IDENTIFICATION OF COMPLETE EXPOSURE PATHWAYS

Oral - Primary exposure route

- Direct ingestion of source media
- Dietary ingestion of plant tissues
- Dietary ingestion of prey tissues containing COPCs that have bioaccumulated in tissue from the source media
- Adequate toxicological data

Dermal - negligible

- Toxicological data generally not available for wildlife

Inhalation - negligible

- COPCs not volatile (metals)
- Abundant vegetation
- Toxicological data generally not available for wildlife

SECTION 4 PROBLEM FORMULATION

- 4.5 COPC FATE AND TRANSPORT ANALYSIS
- 4.6 IDENTIFICATION OF BIOACCUMULATIVE COPCs (metals)

Table 4.3 Example Modifying Factors in the Transfer of Inorganic COPCs from Soils to Plants and Herbivores

Element	Potential for Uptake by Vegetation	Potential for Toxicity to Herbivores
Mercury, lead	Not taken up by the roots, or not transported from roots to shoots.	Minimal potential: plants do not absorb the element or chelate it in the roots.
Copper and nickel	Minimum transfer from roots to shoots and leaves: root cell sap contains high levels of organic acids and amino acids that chelate (bind) many elements.	Low potential: element levels in plant foliage are generally safe for herbivores due to phytotoxicity limits.
Zinc	Readily transported from roots to shoots and leaves.	Moderate potential due to phytotoxicity limits.
Zinc	Variable transport to fruits and seeds: many plants restrict entry of various elements and compounds into reproductive structures.	Variable, depending on plant-specific concentration in fruits and seeds, and degree of consumption by birds and mammals.

SECTION 5 CHARACTERIZATION OF EXPOSURE

- 5.1 ESTIMATION OF ENVIRONMENTAL EXPOSURE
 - 5.1.1 Soil
 - 5.1.2 Tissue

5.2 ESTIMATION OF RECEPTOR UPTAKE

Tissue Concentrations

- Soil-to-plant uptake factors
- Soil-to-mammal factors or multipliers
- Dietary Composition varies by species Exposure Frequency (EF) – 100% for all species

Area Use Factor (AUF)

- Multi-site evaluation
- 100% for non-predator species
- Proportional to acreage for predator species

SECTION 6 CHARACTERIZATION OF ECOLOGICAL EFFECTS

- 6.1 LITERATURE REVIEW OF TOXICITY DATA TOXICITY REFERENCE VALUES
- 6.2 DERIVATION OF TRVs FOR BIRDS AND MAMMALS
 - ORNL Conservative TRVs (Sample et al., 1996)
 - Allometric equation for intra-species extrapolations (Sample, 1999)
 - PCL calculations
 - T&E species: NOAEL-based
 - Others: Mid-point NOAEL LOAEL

24

