Agenda for Technical Interchange Meeting #2 Groundwater Monitoring - Delivery Order T0008 Long Term Monitoring Optimization Study – Draft Recommendations

Date: Tuesday, March 8, 2005

Time: 9:00 am – 11:00

Place: Camp Stanley Storage Activity - Boerne, Texas

Proposed Order of Discussion

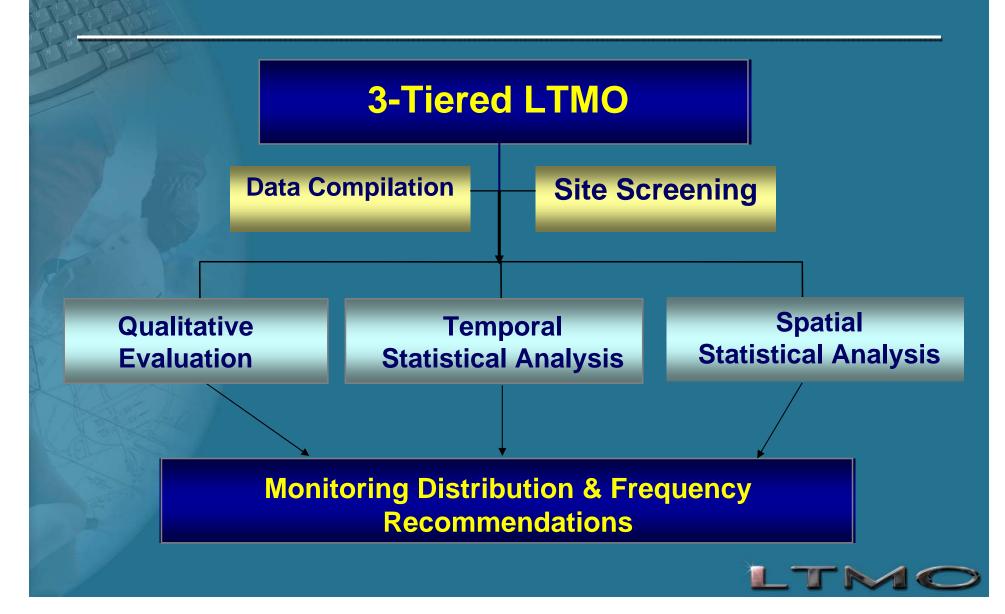
Time	Торіс
10:00 am	Presentation of Draft LTMO study recommendations and methodology by Dr. Carolyn Nobel
10:30 am	Discussion of LTMO study evaluations and review of sampling recommendations

Camp Stanley Storage Area 3-Tiered Long Term Monitoring Optimization (LTMO) Analysis

Carolyn Nobel, Ph.D., P.E. March 8th, 2005 **PARSONS**

What's the Point?

- A 3-Tiered LTMO Approach was applied to the CSSA monitoring program to evaluate the distribution and frequency of groundwater sampling.
- The combined qualitative, temporal & spatial statistical approach identified a 57% potential reduction for on and off-post monitoring well sampling events.



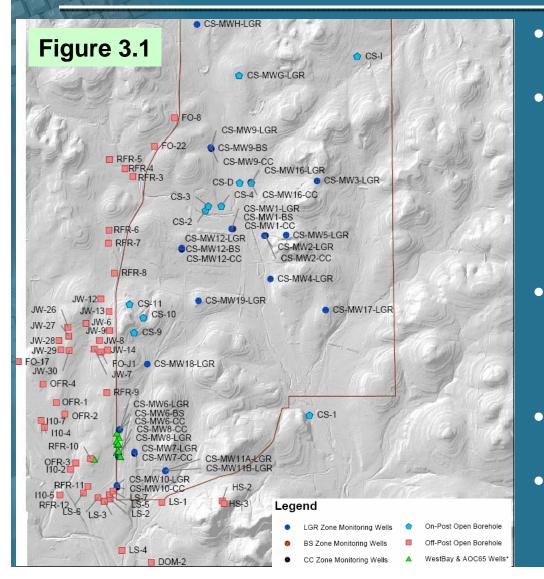
Outline

 3-Tiered Approach Overview Monitoring Program & Data Summary 3-Tiered Analysis & Results Qualitative Evaluation - Temporal Evaluation - Spatial Evaluation - Combined Evaluation Recommendations & Future Applications

3-Tiered Approach at A Glance

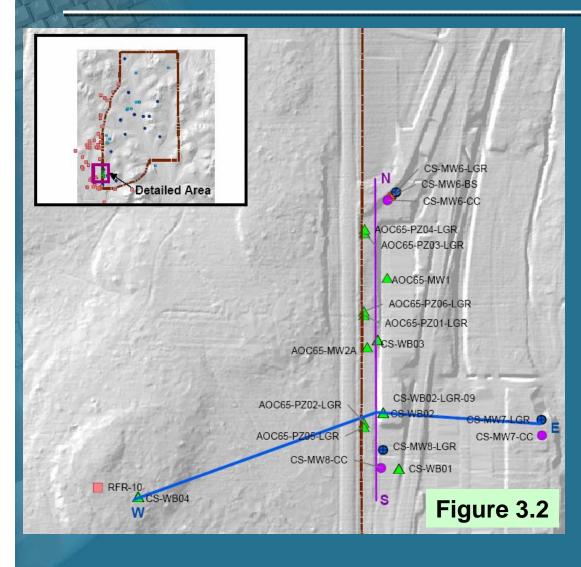
3-Tiered Methodology

Qualitative Evaluation
Temporal Evaluation
Spatial Evaluation
3-Tiered Summary

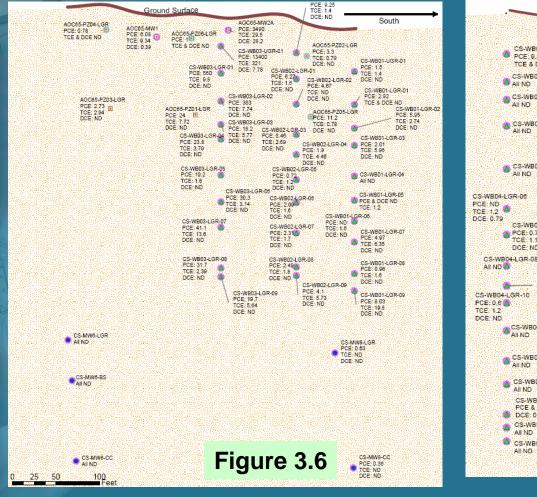

Information

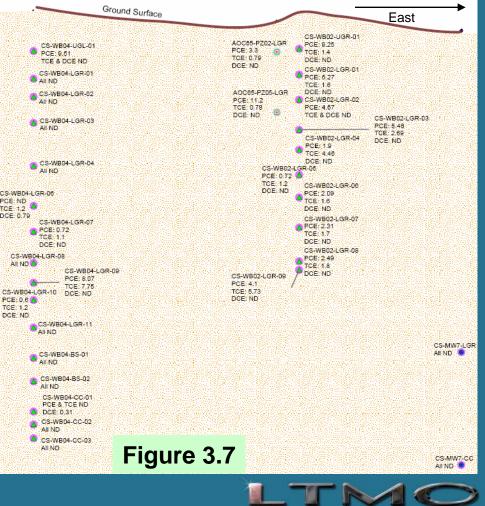
Solutions

Decisions


Current Monitoring Program

- 139 Sampling Locations Evaluated
- 41 On-Post Wells
 - Sampled Quarterly
 - 17 LGR Zone Wells
 - 11 Open Boreholes
 - 4 BS Zone Wells
 - 9 CC Zone Wells
- 44 Off-Post Wells
 - 18 Sampled Annually, 26 Quarterly
 - All Open Boreholes
- LGR MWs, On & Off-Post Open Boreholes → LGR Zone
- Westbay[®] & AOC65 Wells
 Evaluated in "Vertical" Analysis


"Vertical" Analysis: AOC65 & WestBay® Wells



- "Screening Level" Data
- 8 AOC-65 MWs & PZs
- 4 Westbay[®] Wells
 - Sampled Monthly & After Rain Events
 - 17 zones with 46
 Sampling Locations

North to South & West to East Cross Sections

Data Statistical Analysis: All Wells

								Tab	e 3.2			
Parameter	Parameter ParLabel		ParLabel Total Samples Range of Det		Range of Detects (µg/L)	Percentage		Percentage of Samples with MCL MCL (µg/L) Exceedances		Number of Wells with Detections	Number of Wells with MCL Exceedances	
Tetrachloroethene	PCE	1828	0 - 13,900	54.7%	22.6%	5	139	104	45			
Trichloroethene	TCE	1826		7.9%	16.9%	5	139	85	35			
Lead	PB	345	Primary COC	6.8%	7.0%	15	46	38	9			
Dichloroethene, cis-1,2-	DCE12C	1783	0 - 290	15.5%	2.9%	70	139	44	3			
Bromodichloromethane	BDCME	1073	0-6	1.5%	1.5%	0	85	8	8			
Cadmium	CD	338	0 - 15	19.5%	0.9%	5	45	28	3			
Methylene chloride	MTLNCL	1059	0 - 19	22.7%	0.8%	5	85	70	7			
Nickel	NI	341	0 - 216	46.9%	0.6%	100	45	37	2			
Bromoform	TBME	780	0-3	0.5%	0.5%	0	85	4	4			

 Analytical Data from August 1991 through December 2004

• Primary COCs \rightarrow PCE, TCE, C12DCE, PB

 Additional COCs → Bromodichloromethane, Bromoform, Vinyl Chloride & Toluene

Data Statistical Analysis: LGR Zone Wells

Parameter	ParLabel	Total Samples	Maximum Detection (µg/L)	Percentage of Detects	Percentage of Samples with MCL Exceedances	MCL (µg/L)	Number of Wells with Results	Number of Wells with Detections	Number of Wells with MCL Exceedances				
LGR Zone Monitoring Wells													
	CE	234	41	57.7%	12.8%	5	17	15	2				
	CE	234	40	38.0%	12.8%	5	17	12	2	Fable			
Lead PE		109	47	45.9%	3.7%	15	17	16	2	3.3			
Nickel NI		107	150	72.9%	0.9%	100	17	16	1				
Cadmium CI	D D	109	7.0	23.9%	0.9%	5	17	11	1				
Bromoform TH	BME	150	0.1	0.7%	0.7%	0	17	1	1				
On-Post Open Borehole Wells													
Tetrachloroethene PO	CE	286	230	41.3%	19.9%	5	11	10	3				
Trichloroethene TC	CE	289	300	31.5%	19.7%	5	11	7	3				
Dichloroethene, cis-1,2- D	CE12C	259	290	22.8%	16.2%	70	11	4	2				
Lead PE	B	169	250	72.2%	11.8%	15	11	11	7	Fable			
Bromodichloromethane BI	BDCME	285	4.7	2.5%	2.5%	0	11	3	3	3.4			
Methylene chloride M	ATLNCL	287	9.6	21.3%	2.1%	5	11	11	5	5.7			
Cadmium CI	D D	165	15.4	20.0%	1.2%	5	11	10	2				
Bromoform TH	BME	114	3.4	0.9%	0.9%	0	11	1	1				
Nickel NI	II	169	216	35.5%	0.6%	100	11	10	1				
		Off	-Post Op	en Borel	nole Wells								
Tetrachloroethene PC	CE	444	30	55.6%	9.0%	5	44	25	6				
Trichloroethene T('CE	438	10	38.8%	4.1%	5	44	15	2	Fable			
Bromodichloromethane BI	BDCME	413	5.9	2.2%	2.2%	0	44	5	5	3.7			
Bromoform TH	BME	408	1.1	0.5%	0.5%	0	44	2	2	5.7			
Methylene chloride M	ATLNCL	395	19	12.7%	0.3%	5	44	29	1				

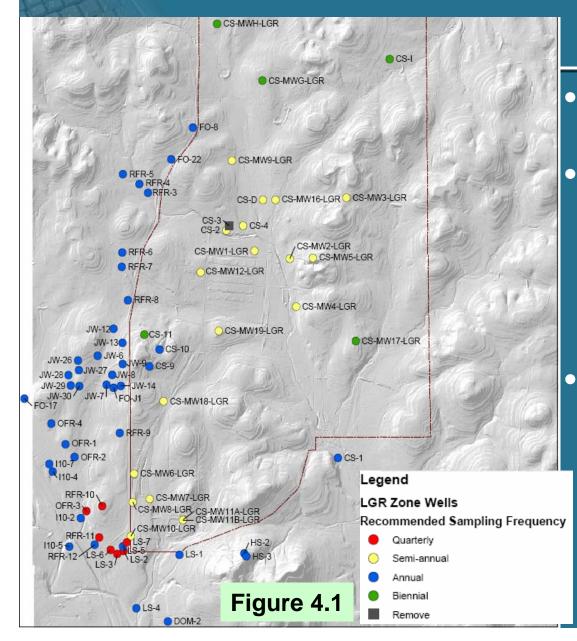
Qualitative Evaluation Methodology

• DATA:

- Site characterization
- Monitoring results
- Monitoring Network DQOs, etc.
- INFORMATION:
 - Value of each well in big picture context

• SOLUTION:

- Recommend:
 - Well retention or removal
 - Optimal sampling frequency
- Provide Rationale



Well ID	E	0	5	A	в	Summary of Rationale
CS-MW6-CC	2	1	1	3	,	BEAL:Never much to write about here. Just a few stray hits(very low) BURDEY:No detections in CC well. Given lack of significant to CC vs LGR, continued monitoring is not that important from an investigative perspective. It may als be worthwhile to monitor the deep CC formation as part of groundwater enhanced bio-monitoring well network/tracer studies at AOC-65. (Corrective Action Monitoring, no longer investigative monitoring). ELLIOTT:Monitor annually until PCE/TCE is detected, then reevaluate. MARTIN: PEARSON:Once-a-year to verfily no leakage from LGR to CC RILEY: Well is important for defining the vertical extent of contaminants TENNYSON:Reduce frequency due to steady trends, retain to monitor plume concentrations moving toward private supply wells. BRV:No detections in CC well. Given lack of significant to CC vs LGR, continued monitoring is not that important for moving toward worthwhile to monitor the deep CC formation as part of groundwater enhanced bio-monitoring is not that important for defining as be
CS-MW6-LGR	0	2	2	3		BEAL:Never seen much in the way of VOCs here, just a few stray hits. Lets keep it around though for it sentry location. BURDEY:No recent detections in LGR well. Given the importance of LGR monitoring and conceptual fault-block inter-relationships, it is worthwhile to continue monitoring this well. Increased off-post pumping could have effect on flow directions/plume migration on- post. This well would provide early data if that occurs. ELLIOTT:Monitor annually until PCE/TCE is detected, then reevaluate. MARTIN: PEARSON:Minor F-flagged hits in 2001-none since. Well appears to be upgradient to Plume 2 source area. RILEY: Well is important for defining the lateral extent of contaminants TENNYSON:Reduce frequency due to steady trends, retain to monitor plume concentrations moving toward private supply wells. BRV:No recent detections in LGR well. Given the importance of LGR monitoring and conceptual fault-block inter-relationships, it is worthwhile to continue monitoring this well on at least an ANNUAL basis, but may be important to continue on semi-annual basis for at least one more year. It will be worthwhile to monitor
CS-MW7-CC	2	1	1	4		BEAL:Again.not much forund with this well. VOCs are rare BURDEY:No detections in CC well. Given lack of significant to CC vs LGR, continued monitoring is not that important from an investigative perspective. ELLIOTT:Monitor annually until PCE/TCE is detected, then reevaluate. MARTIN: PEARSON:Once-a-year to verfily no leakage from LGR to CC RILEY: Well is important for defining the vertical extent of contaminants TENNYSON:Consistent trends. BRV:No detections in CC well. Given lack of significant to CC vs LGR, continued monitoring is not
CS-MW7-LGR	o	3	1	4		BEAL:Never seen much in the way of VOCs here, just a few stray hits. Lets keep it around though for it sentry location. BURDEY:No recent detections in LGR well. Given the importance of LGR monitoring and conceptual fault-block inter-relationships around building 90, it is worthwhile to continue monitoring this well on at least an ANNUAL basis. It may be worthwhile to include monitoring of this up/cross gradient well as part of any groundwater enhanced bio-monitoring well network/tracer studies at AOC-65. (Corrective Action Monitoring, no longer investigative monitoring). ELLIOTT: MARTIN: PEARSON:Single F-flagged PCE detection in 2002. Well is cross gradient to Plume 2 source area. RILEY: Well is needed to further characterize the site for monitor changes in concentrations over time. TENNYSON:Consistent trends. BRV:No recent detections in LGR well. Given the importance of LGR monitoring and conceptual fault-block inter-relationships around building 90, it is worthwhile to continue monitoring this well on at least an ANNUAL basis. It may be worthwhile to include monitoring of this up/cross gradient well as part of functions the swell on at least an ANNUAL basis. It may be worthwhile to include monitoring of this up/cross gradient well as part of
CS-MW8-CC	1	2	1	3		BEAL:No hits here yet. Lets drop it back to annual. BURDEY:No detections in CC well. Companion LGR well has had only below MCL detections. Given lack of significant to CC vs LGR, continued monitoring is not important from an investigative perspective. ELLIOTT:Well is needed to further monitor changes in contaminant concentrations through time. MARTIN: PEARSON:Once-a-year to verfily no leakage from LGR to CC RILEY: Well is important for defining the vertical extent of contaminants TENNYSON:Steady trends. BRV:No detections in CC well. Given lack of significant to CC vs LGR, continued monitoring is not that important from an investigative perspective. It may als be worthwhile to monitor the deep CC formation as part of groundwater enhanced bio-monitoring well network/tracer studies (Corrective Action Monitoring, no longer investigative monitoring) or to assess for communication between the LGR and CC. I
CS-MW8-LGR	0	3	3	1	1	BEAL:Consistent low levels of VOCs here. Worth keeping an eye on. Sentry location is hard to beat also BURDEY:Located in critical portion of aquifer south of apparent plume center at AOC 65 (Building 90). Detections have been below MCL, but are steady and continue to fluctuate slightly, so continued sampling of LGR at this locations provides critical data to assess plume characteristics and stability. ELLIOTT:Well is needed to further monitor changes in contaminant concentrations through time. MARTIN: PEARSON:Repeated F-flag hits are notable. Retain for semi-annual monitoring as a sentinel for changes in aquifer near plume area and off-post consumers. RILEY: Well is needed to further characterize the site for monitor changes in concentrations over time. TENNYSON:Steady trends. BRV:Located in critical portion of aquifer south of apparent plume center at AOC-65 (Building 90). Detections have been below MCL, but are steady and continue to fluctuate slightly, so continued sampling of LGR at this locations provides critical data to assess plume center at AOC-65 (Building 90). Detections have been below MCL, but are steady and continue to fluctuate slightly, so continued sampling of LGR at this locations provides critical data to assess plume characteristics and stability.

- 8 Individual Qualitative Evaluations
- Group Discussion
- Agreement on Final Qualitative Recommendation

Summary Qualitative Evaluation

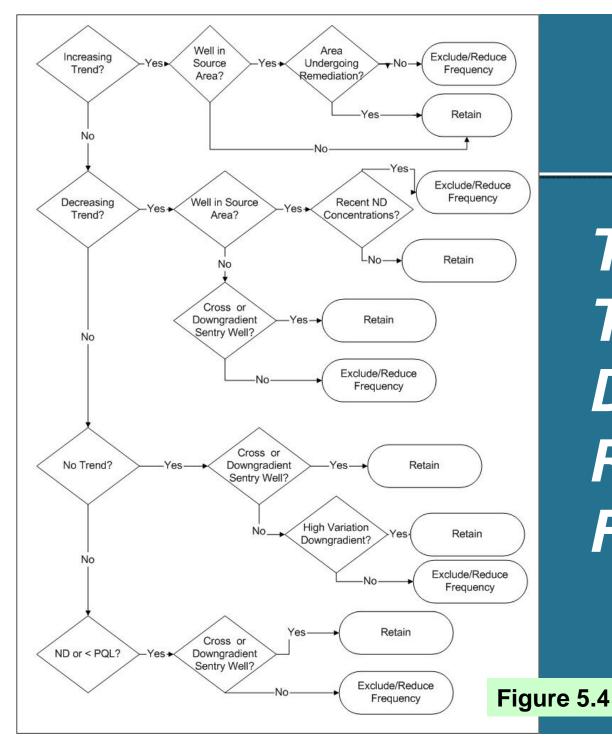
- Primarily Recommended
 Frequency Reductions
- On Post
 - SA → Plume definition or source characterization
 - $A \rightarrow$ Drinking supply well
 - $B \rightarrow BS$, CC with low detections, non-plume def.
- Off Post
 - $Q \rightarrow$ Wells with GAC
 - A → Historically F-Flagged or TR detections, and/or drinking supply well

Temporal Statistical Evaluation Methodology

- DATA:
- >4 sampling results over time
 Well/plume location & GW direction
 Chemical concentration
 INFORMATION:

 Mann-Kendall Trend analysis
 Automated process (GIS script)

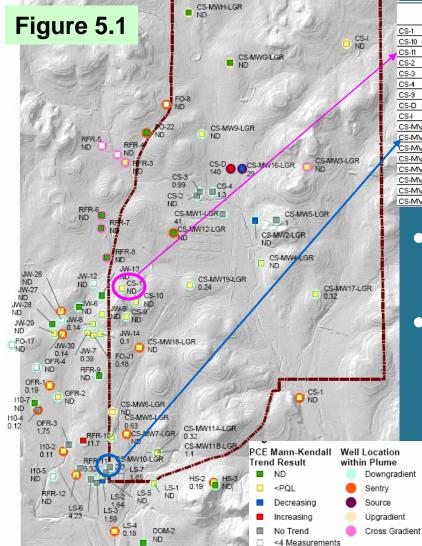
 SOLUTION:
 - Recommend retention or removal/reduction
 based on decision rationale


"ND" & "<PQL" Trend Classification

Well ID	COC	Date	Qualifier	Result	MDL
CS-1	PCE	8/9/91	ND	0.00	1
CS-1	PCE	11/3/92	ND	0.00	0.5
CS-1	PCE	5/26/94	ND	0.00	0.3
CS-1	PCE	9/30/94	ND	0.00	1
CS-1	PCE	12/19/94	ND	0.00	1
CS-1	PCE	3/30/95	ND	0.00	1
CS-1	PCE	6/13/95	ND	0.00	5
CS-1	PCE	8/11/95	ND	0.00	5
CS-1	PCE	8/25/95	ND	0.00	5
CS-1	PCE	2/28/96	ND	0.00	5
CS-1	PCE	11/6/98	ND	0.00	0.4
CS-1	PCE	9/9/99	ND	0.00	0.087
CS-1	PCE	12/14/99	TR	0.17	0.087
CS-1	PCE	3/20/00	TR	0.11	0.087
CS-1	PCE	6/14/00	ND	0.00	0.008
CS-1	PCE	9/13/00	ND	0.00	0.008
CS-1	PCE	3/19/01	TR	0.11	0.008
CS-1	PCE	6/12/01	ND	0.00	0.16
CS-1	PCE	9/17/01	TR	0.14	0.11
CS-1	PCE	12/11/01	ND	0.00	0.11
CS-1	PCE	3/19/02	TR	0.12	0.11
CS-1	PCE	6/17/02	TR	0.11	0.04
CS-1	PCE	9/10/02	TR	0.08	0.05
CS-1	PCE	12/10/02	TR	0.10	0.05
CS-1	PCE	3/19/03	ND	0.00	0.05
CS-1	PCE	3/19/03	TR	0.08	0.05
CS-1	PCE	6/19/03	TR	0.09	0.05
CS-1	PCE	9/16/03	TR	0.08	0.05
CS-1	PCE	12/16/03	TR	0.10	0.05
CS-1	PCE	3/11/04	TR	0.09	0.05
CS-1	PCE	6/22/04	TR	0.09	0.05
CS-1	PCE	9/15/04	TR	0.07	0.05
CS-1	PCE	12/2/04	ND	0.00	0.17

- "ND" classification assigned if all results are ND
- "<PQL" classification assigned if all results are all TR or ND and TR
- Prevents assigning spurious trends due to potential changes in MDL over time

Example of well resulting in "<PQL" trend classification



Temporal Trend Decision Rationale Flowchart

Temporal Analysis Results

	Vell ID	PCE	TCE	cis-1,2- DCE	Lead	Bromo- form	Bromodi- chloromethane	¥inyl Chloride	Toluene	Ezclude/ Reduce	Retain
15	CS-1	PQL	No Trend	ND	Decreasing	No Trend	No Trend	ND	No Trend		1
	CS-10	PQL	ND	ND	No Trend	ND	ND	ND	No Trend	1	
	CS-11	PQL	PQL	PQL	Increasing	ND	Decreasing	ND	No Trend		*
	CS-2	No Trend	PQL	ND	No Trend	ND	ND	ND	No Trend	1	
	CS-3	No Trend	ND	ND	No Trend	<4Meas	ND	ND	<4Meas	1	
	CS-4	No Trend	Increasing	Increasing	<4Meas	ND	ND	ND	PQL		≁
00	CS-9	PQL	ND	ND	Decreasing	ND	ND	ND	Increasing	*	
ਿ	CS-D	Increasing	Increasing	Increasing	No Trend	ND	ND	PQL	No Trend		1
	CS-I	PQL	PQL	ND	No Trend	ND	Decreasing	ND	No Trend		-
	CS-MW10-CC	PQL	ND	ND	PQL	ND	ND	ND	No Trend	1	
L.	CS-MW10-LGR	No Trend	PQL	ND	PQL	ND	ND	ND	No Trend	1	
	CS-MW11A-LGR	PQL	ND	ND	<4Meas	ND	ND	ND	PQL	1	
	CS-MW11B-LGR	PQL	ND	ND	<4Meas	ND	ND	ND	PQL	1	
100	CS-MW12-BS	ND	ND	ND	<4Meas	ND	ND	PQL	Decreasing	1	
1	CS-MW12-CC	ND	ND	ND	<4Meas	ND	ND	PQL	No Trend	1	
ef.	CS-MW12-LGR	ND	ND	ND	<4Meas	ND	ND	ND	No Trend		~
1	CS-MW16-CC	No Trend	No Trend	No Trend	<4Meas	ND	ND	PQL	PQL		-

CS-11

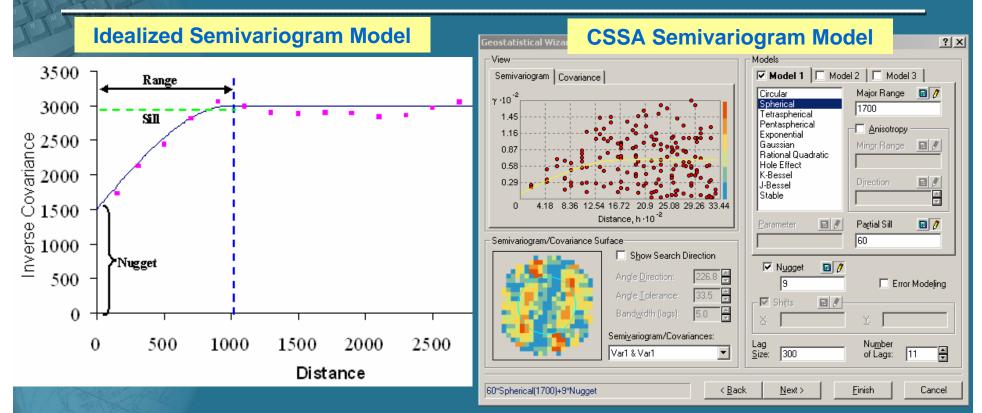
Table 5.1

- \uparrow Lead Downgradient = Retain
- CS-MW10-LGR
 - Stable PCE Trend downgradient
 - Others ND/PQL = Exclude/Remove ____

Spatial Statistics Evaluation Methodology

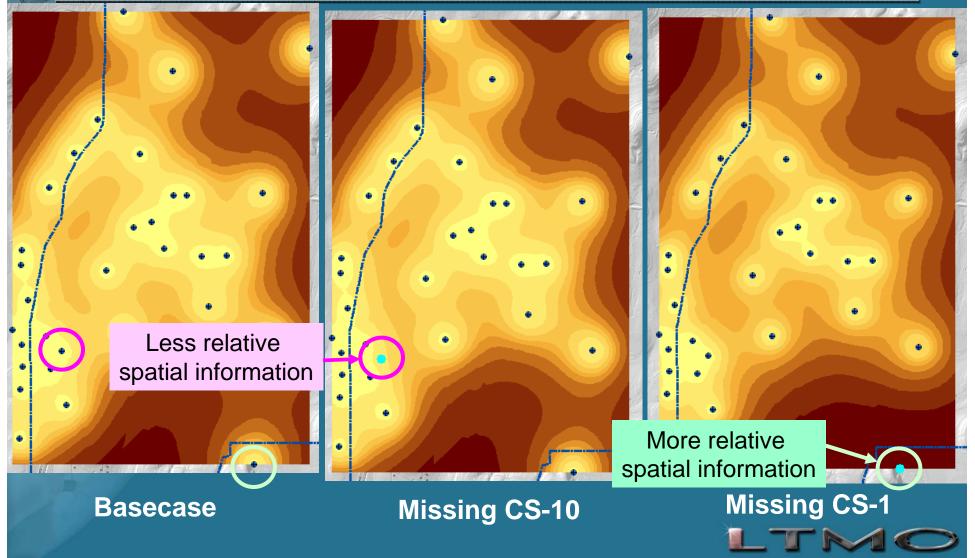
DATA

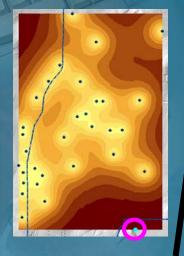
- Spatial "Snapshot" of Plume
 - Most recent chemical concentrations
 - Indicator chemical
 - Wells in same zone
- INFORMATION:
 - Geostatistical (Kriging) Evaluation
 - Develop spatial model (semivariogram)
 - Calculate Kriging predicted standard error metric for each well
- Conducted Using ArcGIS Geostatistical Analyst
 SOLUTION:
 - Recommend removal or retention based on relative value of spatial information of each well

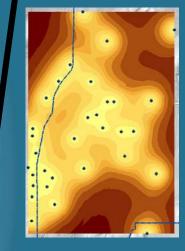


Spatial Statistics Well Selection & Data Preparation

- Select spatial evaluation well set
 - Same zone
 - Same time
 - -LGR Zone \rightarrow 71 Wells (Exclude CS-3)
 - -BS/CC Zones < 11 Wells \rightarrow Not Analyzed
 - – Cross Sections → AOC65 MWs, WB & other MWs (exclude PZs)
- Define "Indicator" Chemical
 - Sum of PCE, TCE & C12DCE

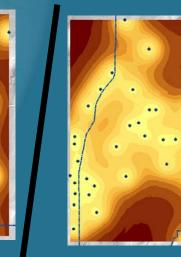

Semivariogram Model Development


Model Used to Create Surfaces of Predicted Values & Associated Predicted Error

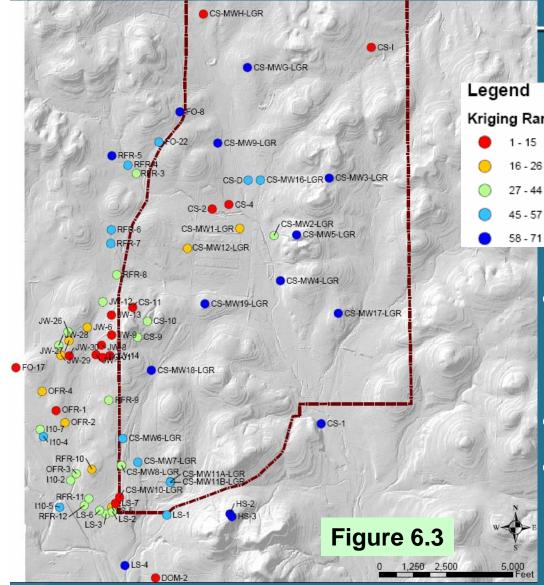


Calculate Predicted Standard Error for Basecase & "Missing Well" Scenarios

Calculate Spatial Metrics for Each Well



Missing CS-1/Basecase = 1.005Rank = $67/71 \rightarrow$ Retain


Median Missing Well Grid Median Basecase Grid = Spatial Metric

Missing CS-10/Basecase = 1.0001 Rank = 29/71 → Intermediate (No Recommendation)

Spatial Evaluation Results

Legend Kriging Rankings 1 - 15 Least value of spatial information 16 - 26 27 - 44 45 - 57 58 - 71 Most value of spatial information

- Results dependant on:
 - Relative Location
 - Concentration
- Low value → exclude
- High value \rightarrow retain

Vertical Spatial Evaluations N-S & W-E Cross Sections

Figure 6.4	Figure 6.5
CS-W803-UGR-01	
CS-WB03-LGR-01	CS-W804-UGL-01
CS-WB03LGR-02 OCS-WB02LGR-0	CS-W802LGR-01
	CS-WB04LGR-02
CS-WB02LGR-04	OCS-WB04LGR-03
CS-WB03-LGR-05	CS-WB02LGR-04
CS-WB03-LGR-06 CS-WB02-LGR-0CS-WB01-LGR-0S	CS-W802LGR-05
CS-WB03LGR-07	OCS-WB04LGR-06
CS-W601_LGR-07	Ocs-Web4LGR-07
CS-WB03LGR.08 CS-WB03LGR.09 CS-WB03LGR.09 CS-WB03LGR.09 CS-WB03LGR.09	CS-WB04LGR-08
OCS-WB01LGR-09	CS-W804-LGR-09
	CS-W804LGR-11
CS-MWBLOR Legend	CS-MW74.GR CS-W804-BS-01 Legend
CS-MW6-8S Kriging Rankings	CS-W804-5S-02 Kriging Rankings
2.5 Least value of spatial information 6-9	1-4 Least value of spatial information 5-9
0.10-18	CS-W804-CC-02 CS-W804-CC-03 10 - 18
19-31	0 19 - 23 CS-MW7-CC_
CS-MVB-CC 32 - 37 Most value of spatial information	24 - 28 Most value of spatial information

3-Tiered LTMO Summary

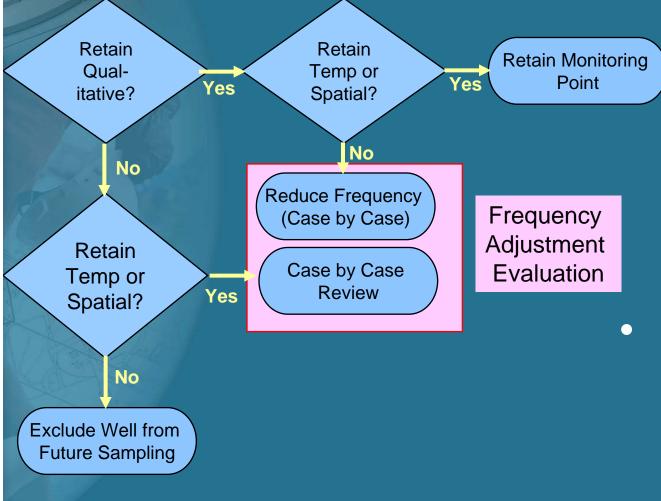
 Qualitative Evaluation
 – Experienced geologist big-picture analysis

 Temporal Statistical Evaluation

Mann Kendall trend analysis

Decision rationale

Spatial Statistical Evaluation


- Geostatisical Kriging predicted error analysis
- Spatial metric & relative ranking

3-Tiered LTMO

Combines three evaluations to optimize the distribution and frequency of groundwater sampling.

Combined Evaluation Summary

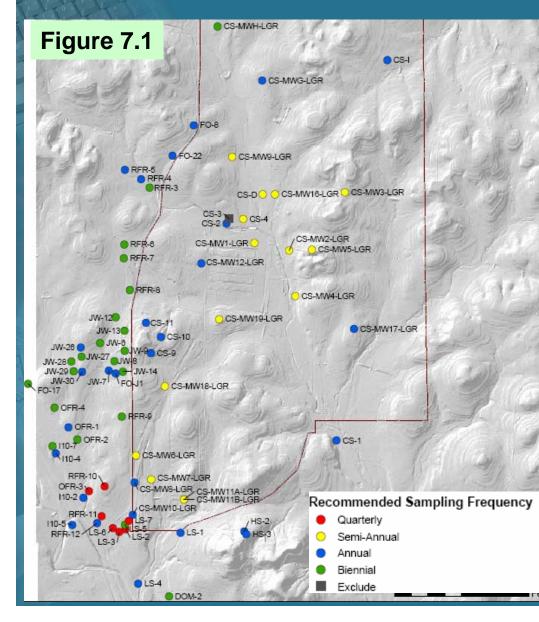
Combine 3 Analyses to Determine Final Distribution and Frequency Recommendation

Qualitative Verified & Refined by Quantitative

Combined Evaluation Results

	(Qualitative E	valuation	Temporal I	Evaluation	Spatial Evaluation		Summary		
Well ID	Exclude	Retain	Recommended Monitoring Frequency	Exclude/ Reduce	Retain	Exclude	Retain	Exclude	Retain	Recommended Monitoring Frequency
CS-9		√	Annual	✓					✓	Annual
CS-D		√	Semi-annual		✓		1		✓	Semi-Annual
CS-I		√	Biennial		✓	✓			✓	Annual
CS-MW10-CC		√	Biennial	✓		Not In	cluded		✓	Biennial
CS-MW10-LGR		√	Semi-annual	✓		✓			✓	Annual
CS-MW11A-LGR		√	Semi-annual	✓			1		✓	Semi-Annual
CS-MW11B-LGR		√	Semi-annual	✓			✓		✓	Semi-Annual
CS-MW12-BS		√	Biennial	1		Not In	Not Included		✓	Biennial
CS-MW12-CC		√	Biennial	✓		Not Included			4	Biennial
CS-MW12-LGR		√	Semi-annual		✓	✓			✓	Annual
CS-MW16-CC		√	Semi-annual		✓	Not In	cluded		✓	Semi-Annual
CS-MW16-LGR		√	Semi-annual		✓		1		✓	Semi-Annual
CS-MW17-LGR		√	Biennial	1			1		✓	Annual
CS-MW18-LGR		√	Semi-annual		✓		✓		✓	Semi-Annual
CS-MW19-LGR		√	Semi-annual	√			1		✓	Semi-Annual
CS-MW1-BS		√	Biennial	✓		Not In	cluded		✓	Biennial
CS-MW1-CC		√	Biennial	✓		Not In	cluded		4	Biennial
CS-MW1-LGR		✓	Semi-annual		✓	✓			*	Semi-Annual
CS-MW2-CC		4	Biennial	4					*	Biennial
CS-MW2-LGR		4	Semi-annual	4					*	Semi-Annual
CS-MW3-LGR		4	Semi-annual	✓			4		*	Semi-Annual
CS-MW4-LGR		4	Semi-annual	*			4		*	Semi-Annual

Table 7.1



Refine Frequency Based on Statistics

Confirm qualitative sampling frequency – CS-D: Temp/Spat "Retain" → Confirms SA – CS-MWH-LGR: Temp/Spat "Exclude/Reduce" → **Confirms Biennial** • Decrease sampling frequency - CS-2: Temp/Spatial "Exclude/Reduce" \rightarrow Reduce sampling from Semi Annual to Annual • Qualitative factor overrides statistics – Well CS-10: Temp/Spatial "Exclude/Reduce" → Keep at Annual due to qualitative (drinking supply well) • Increase sampling frequency – CS-11: Temp retain (increasing lead) → Increase sampling from Biennial to Annual

Combined Evaluation Summary

- 88 On & Off-Post Wells
 - 33 Biennial
 - 28 Annual
 - 16 Semi-Annual
 - 7 Quarterly
- WBs
 - Semiannual & after rain events
- AOC65
 - Exclude PZs
 - MWs after rain events

Recommendations

		Total					
Type of Well	Not Sampled	Biennial	Annual	Semi- Annual	Quart- erly	After Rain Event	Sampling Points
On-post	1(1)	13	11	16	(40)		40 (40)
Off-post		20	17(18)		7(26)		44 (44)
AOC-65	6				(8)	2	2 (8)
Westbay®				46		46 (46 ^{b/})	46 (46)
Total Wells	7 (1)	33	28 (18)	52	7 (74)	48 (46) ^{c/}	132 (138)

On & Off-Post Wells

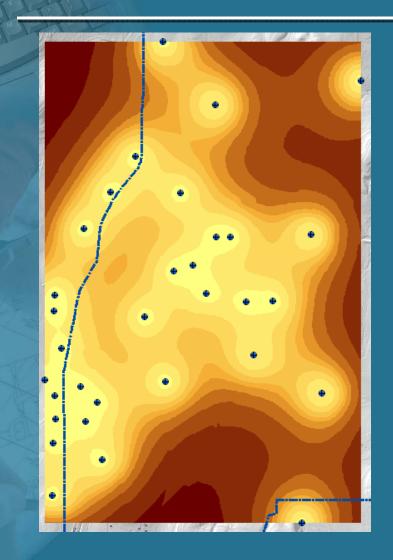

- Reduce from 242 to 104.5 sampling events per year
 - On-Post: 120 to 49.5 events
 - Off-Post: 122 to 55 events
- 57% reduction
- Westbay[®] Wells
 - Reduce from 528 to 88 events
 - 88% reduction

Table 7.2

Future Applications

- Apply Spatial Statistics to Identify Potential New Well Locations
- Use Statistics to Refine WB
 Sampling Zones
- Integrate Temporal Trend Analysis into Existing GIS System
- Periodic Updated LTMO Analysis
- CSSA "Simplified" Case Study at EPA LTMO Workshop in Sacramento March 30-31st.

"A conclusion is simply the place where someone got tired of thinking." Arthur Block

Thank you!

