

DEPARTMENT OF THE ARMY CAMP STANLEY STORAGE ACTIVITY, MCAAP 25800 RALPH FAIR ROAD, BOERNE, TX 78015-4800

April 30, 2013

U-086-13

8902 Cedar Trail Boerne, TX 78006

SUBJECT: Sampling of Water Well OFR-3, Located at 25617 Old Fredericksburg Road

Dear

Camp Stanley Storage Activity (CSSA) collected groundwater samples from your well (OFR-3) on 3/11/13. These samples were submitted to a laboratory contracted by CSSA's environmental contractor for volatile organic compound (VOC) analysis. This letter provides you with the VOC data from the laboratory results and a formal thank you for your assistance in this groundwater monitoring effort.

An abbreviated summary of analytical results compared to maximum contaminant levels (MCLs) allowed in drinking water by the U.S. EPA under the Safe Drinking Water Act is provided below:

Date Sampled	VOC Compound	Result (ppb)	MCL (ppb)
Well OFR-3	3, 25617 Old Fredericksburg Road		
3/11/13	Tetrachloroethene (PCE)	3.18	5
	Trichloroethene (TCE)	2.87	5
	<i>cis</i> -1,2-Dichloroethene (DCE)	<0.07 (non-detect)	70

Based on the analytical data, levels of the VOCs TCE and PCE were identified in the water sample from your well before granular activated carbon (GAC) filtration. Results from the laboratory analysis are provided as an attachment for the above sampling event. The concentrations reported for the VOC PCE was above the MCL in the past. Therefore, a filtration system was installed on your well.

Carbonair Environmental Systems of San Marcos, Texas installed the GAC filtration system on your well. The system will remain in operation for the foreseeable future or until significant reductions in contamination levels are seen in the water in your well before it enters the filtration system. As we discussed at the time of installation, CSSA will continue to be responsible for all costs associated with operation and maintenance of this system. CSSA will continue to send a representative every three weeks to exchange the five-micron pre-and post-filters in the system.

Carbonair exchanged the first carbon canister and performed other routine maintenance on your system in January 2013. If you experience any problems with the system, please let the installer or CSSA know immediately. Carbonair is very responsive and can make additional maintenance visits if needed.

On 3/11/13, CSSA collected a sample from your well OFR-3 after the water was processed through the granular activated carbon (GAC) filter system. This sample is representative of the water being delivered to you for daily use. Based on the analytical data, no VOCs related to CSSA's groundwater investigation were identified in the sample after the second carbon canister (A2). A summary of the post-GAC analytical results is provided below. Copies of the laboratory data sheets are attached. CSSA will collect additional confirmation samples on a 6-month basis to confirm the system remains effective.

Date Sampled	VOC compound	Result (ppb)	MCL (ppb)	
Well OFR-3, 256	17 Old Fredericksburg Road			
3/11/13	PCE	<0.06 (non-detect)	5	
	TCE	<0.05 (non-detect)	5	
cis-1,2-DCE		<0.07 (non-detect)	70	
Well OFR-3, field	d duplicate			
3/11/13	PCE	<0.06 (non-detect)	5	
	TCE	<0.05 (non-detect)	5	
	cis-1,2-DCE	<0.07 (non-detect)	70	

As part of the ongoing CSSA environmental program, we are continuing to investigate and cleanup VOC source areas on the installation and to track these compounds in groundwater onand off-post. As part of this effort, your well is scheduled to be sampled again in June 2013.

Again, we would like to thank you for your cooperation. We regret that your well has been impacted, but remain committed to making sure your water is safe to use and keeping you informed. If you have any questions concerning this letter, please contact Gabriel Moreno-Fergusson, Environmental Program Manager, at (210) 295-7014.

Sincerely,

Jason D. Shirley Installation Manager

Enclosure

cc: Mr. Greg Lyssy, EPA Region 6
Mr. Kirk Coulter, TCEQ Central Office
Mr. Jorge Salazar, TCEQ Region 13
Ms. Kyle Cunningham, San Antonio Metropolitan Health Dist.
Ms. Julie Burdey, Parsons

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B	Preparatory Method:	paratory Method: 5030B AAB #: 130314AN-175515							
Lab Name: APPL, Inc Contract #: *G012									
Field Sample ID: OFR-3Lab Sample ID: AY76704Matrix: Water									
% Solids: NA	% Solids: NA Initial Calibration ID: N130308								
Date Received: 13-Mar-13 Date Prepared: 14-Mar-13 Date Analyzed: 14-Mar-13									
Concentration Units: ug/L									
			· · · · · · · · · · · · · · · · · · ·						
Analyte	MDL RL	Concentration	Dilution	Confirm	Qualifier				

Analyte	MDL	RL	Concentr	ation	Dilution	Confirm	Qualifier	
1,1-DCE	0.12	1.2	0.12		1		1	
CIS-1,2-DCE	0.07	1.2		0.07	1			
TCE	0.05	1.0		2.87	1		0	
TETRACHLOROETHENE	0.06	1.4		3.18	1			
TRANS-1,2-DCE	0.08	0.6		0.08	1		U	
VINYL CHLORIDE	0.08	1.1		0.08	1		U	
Surrogate		Rec	covery	Con	trol Limits	Qualifie	r	
SURROGATE: 1,2-DICHLORO	DETHANE	- 92.8		69-139				
SURROGATE: 4-BROMOFLU	OROBENZ	:	90.8		75-12	25		
SURROGATE: DIBROMOFLL	OROMETH	OROMETH	H	92.3		75-12		
SURROGATE: TOLUENE-D8	SURROGATE: TOLUENE-D8 (S)			75-		25		
internal Std				Our	lifier			
1,4-DICHL	1,4-DICHLOROBENZENE-D4 (IS) CHLOROBENZENE-D5 (IS)							
CHLOROB								
FLUOROBENZENE (IS)								

Comments:

ARF: 70137

AFCEE FORM 0-2

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B	Preparatory Method: 503	0B AAB #: 130314AN-175515	;
Lab Name: APPL, Inc	Contract #: *G012		
Field Sample ID: OFR-3-A2 FD	Lab Sample I	ID: AY76705 Matrix: Water	
% Solids: NA	Initial Calibration ID: N13	30308	
Date Received: 13-Mar-13	Date Prepared: 14-Mar-13	Date Analyzed: 14-Mar-13	
Concentration Units: ug/L			

Analyte		MDL	RL	Concentr	ation	Dilution	Confirm	Q	ualifier
1,1-DCE		0.12	1.2		0.12	1			U
CIS-1,2-D	CE	0.07	1.2		0.07	1			U
TCE		0.05	1.0		0.05]			U
TETRACH	LOROETHENE	0.06	1.4		0.06	1			U
TRANS-1,	2-DCE	0.08	0.6		0.08]		_	U
VINYL CH	ILORIDE	0.08	1.1		0.08	1			U
	Surrogate		Ree	covery Cor		trol Limits	Qualif	ier	
	SURROGATE: 1,2-DICHLOROETHAN			102		69-1	39		
	SURROGATE: 4-BROM			93.8		75-1	25		
	SURROGATE: DIBROMOFL	OFLUOROMET	Н	102		75-1	25		l .
	SURROGATE: TOLUEN	E-D8 (S)		94.0		75-1	25		
	Inter	rnal Std			Qu	alifier			
	1,4-D	ICHLOROBENZ	ENE-D4	(IS)					
	CHL	CHLOROBENZENE-DS							
	FLU	IS)							

Comments:

ARF: 70137

AFCEE FORM 0-2

.

34

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

alytical Method: EPA 8260B	Preparatory Method:	5030B AAB	#: 130314AN-175515			
o Name: APPL, Inc	Contract #: *G	012				
Field Sample ID: OFR-3-A2 Lab Sample ID: AY76706 Matrix: Water						
Solids: NA	Initial Calibration ID:	N130308				
te Received: 13-Mar-13	Date Prepared: 14-Mar-13	Date Analyz	ed: 14-Mar-13			
ncentration Units: ug/L						
ld Sample ID: OFR-3-A2 Solids: NA te Received: 13-Mar-13	Lab Sam Initial Calibration ID:	ple ID: AY76706 N130308				

	MDL	RL	Concentr	ation	Dilution	Confirm	Qu	alifier
E		1.2	0.12		1		1	U
	0.07	1.2	0.0		1			U
	0.05	1.0	1.0		1	1		U
	0.06	1.4	1.4 0.06 1					
	0.08	0.6		0.08	1			U
	0.08	1.1		0.08	1			υ
Surrogate		Rec	covery	Con	trol Limits	Qualifi	er	
-DICHLORO	DETHANE-		100		69-1	39		
ROMOFLUOROBEN		2	95.1		75-1	25		
BROMOFLU	OROMET	H	100		75-1	25		
LUENE-D8	(S)		94.5		75-1	25		
				Qua	alifier			
			IS)					
FLUOROBENZENE (IS)								
	ROMOFLU BROMOFLU LUENE-D8 Internal S 1,4-DICHLO CHLOROB	0.12 0.07 0.05 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08	0.12 1.2 0.07 1.2 0.05 1.0 0.06 1.4 0.08 0.6 0.08 1.1 Real POICHLOROETHANE- ROMOFLUOROBENZ BROMOFLUOROBENZ BROMOFLUOROBENZ BROMOFLUOROMETH LUENE-D8 (S) Internal Std 1,4-DICHLOROBENZENE-D4 (CHLOROBENZENE-D5 (IS)	0.12 1.2 0.07 1.2 0.05 1.0 0.06 1.4 0.08 0.6 0.08 1.1 Recovery DICHLOROETHANE- 100 ROMOFLUOROBENZ 95.1 BROMOFLUOROBENZ 95.1 BROMOFLUOROMETH 100 LUENE-D8 (S) 94.5 Internal Std 1,4-DICHLOROBENZENE-D4 (IS) CHLOROBENZENE-D5 (IS) 100	0.12 1.2 0.12 0.07 1.2 0.07 0.05 1.0 0.05 0.06 1.4 0.06 0.08 0.6 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.08 1.1 0.08 0.09 1.1 0.08 Recovery Con Con BROMOFLUOROBENZ 95.1 38 BROMOFLUOROMETH 100 100 LUENE-D8 (S) 94.5 1 Internal Std Quatistical statistical statistatistical statistical statistical statistatistica	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 0.05 1 0.06 1.4 0.06 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 DICHLOROETHANE- 100 69-1 Recovery Control Limits BROMOFLUOROBENZ 95.1 75-1 BROMOFLUOROMETH 100 75-1 UENE-D8 (S) 94.5 75-1 Internal Std Qualifier 1,4-DICHLOROBENZENE-D4 (IS) CHLOROBENZENE-D5 (IS)	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 0.05 1 0.06 1.4 0.06 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 Recovery Control Limits Qualifier DICHLOROETHANE 100 69-139 ROMOFLUOROBENZ 95.1 75-125 BROMOFLUOROMETH 100 75-125 LUENE-D8 (S) 94.5 75-125 Internal Std Qualifier 1,4-DICHLOROBENZENE-D4 (IS) CHLOROBENZENE-D5 (IS)	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 0.05 1 0.06 1.4 0.06 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 Recovery Control Limits Qualifier DICHLOROETHANE- 100 69-139 ROMOFLUOROBENZ 95.1 75-125 BROMOFLUOROMETH 100 75-125 UENE-D8 (S) 94.5 75-125 Internal Std 1,4-DICHLOROBENZENE-D4 (IS) Qualifier CHLOROBENZENE-D5 (IS) 0

Comments:

ARF: 70137

AFCEE FORM 0-2