

DEPARTMENT OF THE ARMY CAMP STANLEY STORAGE ACTIVITY, MCAAP 25800 RALPH FAIR ROAD, BOERNE, TX 78015-4800

November 1, 2011

U-147-11

25490 Old Fredericksburg Road Boerne, TX 78015

SUBJECT: Sampling of Water Well RFR-10, Located at 25490 Old Fredericksburg Rd.

Dear

Camp Stanley Storage Activity (CSSA) collected a groundwater sample from your well (RFR-10) on 9/6/11. This sample was submitted to a laboratory contracted by CSSA's environmental contractor for volatile organic compound (VOC) analysis. This letter provides you with the VOC data from the laboratory results and a formal thank you for your assistance in this groundwater monitoring effort.

An abbreviated summary of analytical results compared to maximum contaminant levels (MCLs) allowed in drinking water by the U.S. EPA under the Safe Drinking Water Act is provided below:

Date Sampled	VOC Compound	Result (ppb)	MCL (ppb)					
Well RFR-10, located at 25490 Old Fredericksburg Road								
9/6/11	Tetrachloroethene (PCE)	6.75	5					
	Trichloroethene (TCE)	1.79	5					
	cis-1,2-Dichloroethene (DCE)	<0.07 (non-detect)	70					

Based on the analytical data, levels of the VOC PCE and TCE were identified in the water sample from your well before granular activated carbon (GAC) filtration. Results from the laboratory analysis are provided as an attachment for the above sampling event. The concentrations reported for the VOCs PCE and TCE were above the MCL in the past. Therefore, a filtration system has been installed on your well.

Carbonair Environmental Systems of San Marcos, Texas previously installed the GAC filtration system on your well RFR-10. The system will remain in operation for the foreseeable future or until significant reductions in contamination levels are seen in the water in your well before it enters the filtration system. As we discussed at the time of installation, CSSA will continue to be responsible for all costs associated with operation and maintenance of this system. CSSA will continue to send a representative every three weeks to exchange the five-micron pre-and post-filters in the system.

Carbonair exchanged the first carbon canister and performed other routine maintenance on your system in July 2011. If you experience any problems with the system, please let the installer or CSSA know immediately. Carbonair is very responsive and can make additional maintenance visits if needed.

On 9/6/11, CSSA collected a sample from your well (RFR-10) after the water was processed through the GAC filter system. This sample is representative of the water being delivered to your house for daily use. Based on the analytical data, no VOCs related to CSSA's groundwater investigation were identified in the sample after the second carbon canisters (A2) and (B2). A summary of the post-GAC analytical results is provided below. Copies of the laboratory data sheets are attached. CSSA will collect additional confirmation samples on a 6 month basis to confirm the system remains effective.

Date		Result	MCL						
Sampled	VOC compound	(ppb)	(ppb)						
Well RFR-10-A2, located at 25490 Old Fredericksburg Road									
9/6/11	PCE	<0.06 (non-detect)	5						
	TCE	<0.05 (non-detect)	5						
	cis-1,2-DCE	<0.07 (non-detect)	70						
Well RFR-10-B2, located at 25490 Old Fredericksburg Road									
9/6/11	PCE	<0.06 (non-detect)	5						
	TCE	<0.05 (non-detect)	5						
	cis-1,2-DCE	<0.07 (non-detect)	70						

As part of the ongoing CSSA environmental program, we are continuing to investigate and cleanup VOC source areas on the installation and to track these compounds in groundwater onand off-post. As part of this effort, your well is scheduled to be sampled again in December 2011.

Again, we would like to thank you for your cooperation. We regret that your well has been impacted, but remain committed to making sure your water is safe to use and keeping you informed. If you have any questions concerning this letter, please contact Gabriel Moreno-Fergusson, Environmental Program Manager, at (210) 698-5208.

Sincerely,

Jason D. Shirley Installation Manager

Enclosure

cc: Mr. Greg Lyssy, EPA Region 6
Mr. Kirk Coulter, TCEQ Central Office
Mr. Henry Karnei, TCEQ Region 13
Ms. Kyle Cunningham, San Antonio Metropolitan Health Dist.
Ms. Julie Burdey, Parsons

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260B Lab Name: APPL, Inc Preparatory Method: 5030B AAB #: 110909AS-159130

Contract #: 2010*1286022*000

Date Analyzed: 09-Sep-11

Lab Sample ID: AY45745

Initial Calibration ID: S110908

Date Prepared: 09-Sep-11

Matrix: Water

Field Sample ID: RFR-10

% Solids: NA

Date Received: 07-Sep-11 Concentration Units: ug/L

MDL	RL	Concentr	ation	Dilution	C	onfirm	Qualifier
0.12	1.2		0.12	1			U
0.07	1.2		0.07	1			U
0.05	1.0		1.79	1			
0.06	1.4		6.75	1			
0.08	0.6		0.08	1			U
0.08	1.1		0.08	1			U
	Re	Recovery		Control Limits		Qualifier	r
SURROGATE: 1,2-DICHLOROETHANE-		103		69-1	69-139		
SURROGATE: 4-BROMOFLUOROBENZ SURROGATE: DIBROMOFLUOROMETH				75-1	125		
				75-1	125		
(S)		96.8		75-]	125		
Internal Std				alifier			
1,4-DICHLOROBENZENE-D4 (IS)							
CHLOROBENZENE-D5 (IS)							
FLUOROBENZENE (IS)							
	0.12 0.07 0.05 0.06 0.08 0.08 0.08 00ETHANE JOROBENZ JOROMET (S) Std .0ROBENZ BENZENE-1	0.12 1.2 0.07 1.2 0.05 1.0 0.06 1.4 0.08 0.6 0.08 1.1 Re OETHANE- JOROBENZ JOROMETH (S) Std OROBENZENE-D4 BENZENE-D5 (IS)	0.12 1.2 0.07 1.2 0.05 1.0 0.06 1.4 0.08 0.6 0.08 1.1 Recovery OETHANE- 103 JOROBENZ 99.7 JOROMETH 103 (S) 96.8 Std	0.12 1.2 0.12 0.07 1.2 0.07 0.05 1.0 1.79 0.06 1.4 6.75 0.08 0.6 0.08 0.08 1.1 0.08 0.00BENZ 99.7 JOROBENZ 99.7 JOROMETH 103 (S) .96.8 Std Qu .000BENZENE-D4 (IS)	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 1.79 1 0.06 1.4 6.75 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 0COBENZ 99.7 75-1 JOROBENZ 99.7 75-1 JOROMETH 103 75-1 Std Qualifier 0 OROBENZENE-D4 (IS) 8 8	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 1.79 1 0.06 1.4 6.75 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 Control Limits OETHANE- 103 69-139 JOROBENZ 99.7 75-125 JOROMETH 103 75-125 Std Qualifier OROBENZENE-D4 (IS) BENZENE-D5 (IS)	0.12 1.2 0.12 1 0.07 1.2 0.07 1 0.05 1.0 1.79 1 0.05 1.0 1.79 1 0.06 1.4 6.75 1 0.08 0.6 0.08 1 0.08 1.1 0.08 1 Recovery Control Limits Qualifier 0COBENZ 99.7 75-125 JOROMETH 103 75-125 Std Qualifier .0ROBENZENE-D4 (IS) BENZENE-D5 (IS)

Comments:

ARF: 65592

AFCEE FORM O-2

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Analytical Method: EPA 8260BPreparatory Method: 5030BAAB #: 110909AS-159130Lab Name: APPL, IncContract #: 2010*1286022*000Field Sample ID: RFR-10-A2Lab Sample ID: AY45746Matrix: Water% Solids: NAInitial Calibration ID: S110908Date Received: 07-Sep-11Date Prepared: 09-Sep-11Date Analyzed: 09-Sep-11

Concentration Units: ug/L

Analyte	MDL	RL	Concentr	ation	Dilution	Confirm	1 (Qualifier
1,1-DCE	0.12	1.2		0.12	1			U
CIS-1,2-DCE	0.07	1.2		0.07	1			U
TCE	0.05	1.0	1.0]			U
TETRACHLOROETHENE	0.06	1.4		0.06]			U
TRANS-1,2-DCE	0.08	0.6		0.08]			U
VINYL CHLORIDE	0.08	1.1		0.08]			U
Surrogate		Re	Recovery		Control Limits		fier	
SURROGATE: 1,2-DICHLOR	SURROGATE: 1,2-DICHLOROETHANE- SURROGATE: 4-BROMOFLUOROBENZ SURROGATE: DIBROMOFLUOROMETH SURROGATE: TOLUENE-D8 (S)				69-	139		
SURROGATE: 4-BROMOFLU					75-	125		
SURROGATE: DIBROMOFL					75-125 75-125]
SURROGATE: TOLUENE-D8								
Internal	Internal Std				alifier			
1,4-DICHI								
CHLORO								
FLUOROI								
								

Comments:

ARF: 65592

AFCEE FORM O-2

;

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

Preparatory Method: Analytical Method: EPA 8260B 5030B AAB #: 110909AS-159130 Lab Name: APPL, Inc Contract #: 2010*1286022*000 Field Sample ID: RFR-10-B2 Lab Sample ID: AY45747 Matrix: Water % Solids: NA Initial Calibration ID: S110908 Date Analyzed: 10-Sep-11 Date Received: 07-Sep-11 Date Prepared: 10-Sep-11 Concentration Units: ug/L Analyte MDL RL Concentration Dilution Confirm Qualifier

Analyte		WIDL	KL	Concentr	ation	Dilution		onnrm	Qu	anner
1,1-DCE		0.12	1.2		0.12		1			U
CIS-1,2-DCE		0.07	1.2		0.07		1			U
TCE		0.05	1.0		0.05		1			U
TETRACH	LOROETHENE	0.06	1.4		0.06		1			U
TRANS-1,	2-DCE	0.08	0.6		0.08		1			U
VINYL CH	ILORIDE	0.08	1.1		0.08		1			U
	Surrogate			covery	y Control Lin			Qualifier		
	SURROGATE: 1,2-DICHLOROETHANE- SURROGATE: 4-BROMOFLUOROBENZ SURROGATE: DIBROMOFLUOROMETH SURROGATE: TOLUENE-D8 (S)			108	108					
				99.4 75-			125			
				102		75-	-125			
				99.9	_	75-	125			
	Internal S			Qu	alifier					
	1,4-DICHLOROBENZENE-D4 (IS)									
	CHLOROBENZENE-D5 (IS)									
FLUOROBENZENE (IS)										

Comments:

ARF: 65592

AFCEE FORM O-2