APPENDIX F EROSION CONTROL AND NON-POINT SOURCE POLLUTION PREVENTION BEST MANAGEMENT PRACTICES

Best Management Practices Erosion Control and Non Point Source Pollution Prevention

Best management practices (BMPs) listed below are selected from *EPA National Menu of Best Management Practices*, available online at *http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm*. The online version contains a complete list with associated factsheets. The factsheets included here were selected on the basis of applicability to the CSSA natural resource program. The BMPs included in this appendix include the following:

- Mulching application
- Permanent seeding for construction site runoff control
- Soil Roughening to slow runoff
- Geotextiles application
- Soil Retention structures
- Temporary Stream Crossing
- Vegetated Buffers
- Construction Phasing
- Brush Barriers
- Silt Fencing

Mulching

Construction Site Storm Water Runoff Control

Description

Mulching is a temporary erosion control practice in which materials such as grass, hay, wood chips, wood fibers, straw, or gravel are placed on exposed or recently planted soil surfaces. Mulching is highly recommended as a stabilization method and is most effective when used in conjunction with vegetation establishment. In addition to stabilizing soils, mulching can reduce storm water runoff velocity. When used in combination with seeding or planting, mulching can aid plant growth by holding seeds, fertilizers, and topsoil in place, preventing birds from eating seeds, retaining moisture, and insulating plant roots against extreme temperatures.

Grass mulching is applied to stabilize exposed soils and to reduce storm water runoff velocity

Mulch mattings are materials such as jute or other wood fibers that are formed into sheets and are more stable than loose mulch. Jute and other wood fibers, plastic, paper, or cotton can be used individually or combined into mats to hold mulch to the ground. Netting can be used to stabilize soils while plants are growing, although netting does not retain moisture or insulate against extreme temperatures. Mulch binders consist of asphalt or synthetic materials that are sometimes used instead of netting to bind loose mulches.

Applicability

Mulching is often used in areas where temporary seeding cannot be used because of environmental constraints. Mulching can provide immediate, effective, and inexpensive erosion control. On steep slopes and critical areas such as waterways, mulch matting is used with netting or anchoring to hold it in place. Mulches can be used on seeded and planted areas where slopes are steeper than 2:1 or where sensitive seedlings require insulation from extreme temperatures or moisture retention.

Siting and Design Considerations

When possible, organic mulches should be used for erosion control and plant material establishment. Suggested materials include loose straw, netting, wood cellulose, or agricultural silage. All materials should be free of seed, and loose hay or straw should be anchored by applying tackifier, stapling netting over the top, or crimping with a mulch crimping tool. Materials that are heavy enough to stay in place (for example, gravel or bark or wood chips on flat slopes) do not need anchoring. Other examples include hydraulic mulch products with 100-percent post-consumer paper content, yard trimming composts, and wood mulch from recycled stumps and tree parts. Inorganic mulches such as pea gravel or crushed granite can be used in unvegetated areas.

Mulches may or may not require a binder, netting, or tacking. Effective use of netting and matting material requires firm, continuous contact between the materials and the soil. If there is no contact,

the material will not hold the soil and erosion will occur underneath the material. Grading is not necessary before mulching.

There must be adequate coverage to prevent erosion, washout, and poor plant establishment. If an appropriate tacking agent is not applied, or is applied in insufficient amounts, mulch is lost to wind and runoff. The channel grade and liner must be appropriate for the amount of runoff, or there will be resulting erosion of the channel bottom. Also, hydromulch should be applied in spring, summer, or fall to prevent deterioration of mulch before plants can become established. Table 1 presents guidelines for installing mulches.

Material	Rate per Acre	Requirements	Notes			
Organic Mulches						
Straw	1–2 tons	Dry, unchopped, unweathered; avoid weeds.	Spread by hand or machine; must be tacked or tied down.			
Wood fiber or wood cellulose	¹ / ₂ -1 ton		Use with hydroseeder; may be used to tack straw. Do not use in hot, dry weather.			
Wood chips	5–6 tons	Air dry. Add fertilizer N, 12 lb/ton.	Apply with blower, chip handler, or by hand. Not for fine turf areas.			
Bark	35 yd ³	Air dry, shredded, or hammermilled, or chips	Apply with mulch blower, chip handler, or by hand. Do not use asphalt tack.			
Nets and Mats	Nets and Mats					
Jute net	Cover area	Heavy, uniform; woven of single jute yarn. Used with organic mulch.				
Excelsior (wood fiber) mat	Cover area					
Fiberglass roving	¹ /2-1 ton	Continuous fibers of drawn glass bound together with a non- toxic agent.	Apply with compressed air ejector. Tack with emulsified asphalt at a rate of 25–35 gal./1000 ft. ²			

Tabla 1	Tuniool	mulahing	motorial and	application rates
Table L.	IVDICAL	multime	materials and	application rates

Limitations

Mulching, matting, and netting might delay seed germination because the cover changes soil surface temperatures. The mulches themselves are subject to erosion and may be washed away in a large storm. Maintenance is necessary to ensure that mulches provide effective erosion control.

Maintenance Considerations

Mulches must be anchored to resist wind displacement. Netting should be removed when protection is no longer needed and disposed of in a landfill or composted. Mulched areas should be inspected frequently to identify areas where mulch has loosened or been removed, especially after rainstorms. Such areas should be reseeded (if necessary) and the mulch cover replaced immediately. Mulch

binders should be applied at rates recommended by the manufacturer. If washout, breakage, or erosion occurs, surfaces should be repaired, reseeded, and remulched, and new netting should be installed. Inspections should be continued until vegetation is firmly established.

Effectiveness

Mulching effectiveness varies according to the type of mulch used. Soil loss reduction for different mulches ranges from 53 to 99.8 percent. Water velocity reductions range from 24 to 78 percent. Table 2 shows soil loss and water velocity reductions for different mulch treatments.

Table 2. Measured reductions in soil loss for different mulch treatments (Source: Harding, 1990, as cited in USEPA, 1993)

Mulch Characteristics	Soil Loss Reduction (%)	Water Velocity Reduction (% relative to bare soil)
100% wheat straw/top net	97.5	73
100% wheat straw/two nets	98.6	56
70% wheat straw/30% coconut fiber	98.7	71
70% wheat straw/30% coconut fiber	99.5	78
100% coconut fiber	98.4	77
Nylon monofilament/two nets	99.8	74
Nylon monofilament/rigid/bonded	53.0	24
Vinyl monofilament/flexible/bonded	89.6	32
Curled wood fibers/top net	90.4	47
Curled wood fibers/two nets	93.5	59
Antiwash netting(jute)	91.8	59
Interwoven paper and thread	93.0	53
Uncrimped wheat straw, 2,242 kg/ha	84.0	45
Uncrimped wheat straw, 4,484 kg/ha	89.3	59

In addition, a study by Hetzog et al. (1998) concluded that mulching provides a high rate of sediment and nutrient pollution prevention. In addition, this study also found that seeding or mulching added value to a site in the eyes of the developers, real estate agents, and homebuyers that more than offset the cost of seeding or mulching.

Cost Considerations

Costs of seed and mulch average \$1,500 per acre and range from \$800 to \$3,500 per acre (USEPA, 1993).

References

Harding, M.V. 1990. Erosion Control Effectiveness: Comparative Studies of Alternative Mulching Techniques. *Environmental Restoration*, pp. 149–156, as cited in USEPA. 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Hetzog et al., 1998. Journal of Soil and Water Conservation.

Smolen, M.D., D.W. Miller, L.C. Wyatt, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

USEPA. 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Permanent Seeding

Construction Site Storm Water Runoff Control

Description

Permanent seeding is used to control runoff and erosion on disturbed areas by establishing perennial vegetative cover from seed. It is used to reduce erosion, to decrease sediment yields from disturbed areas, and to provide permanent stabilization. This practice is economical, adaptable to different site conditions, and allows selection of the most appropriate plant materials.

Applicability

Permanent seeding is well-suited in areas where permanent, long-lived vegetative cover is the most practical or most effective method of stabilizing the soil. Permanent seeding can be used on roughly graded areas that will not be regraded for at least a year. Vegetation controls erosion by protecting bare soil surfaces from displacement by raindrop impacts and by

Hydroseeding is a popular technique for applying seeds, fertilizer, and chemical stabilizers in a single application (Source: Terra Firma Industries, 2000)

reducing the velocity and quantity of overland flow. The advantages of seeding over other means of establishing plants include lower initial costs and labor inputs.

Siting and Design Considerations

Areas to be stabilized with permanent vegetation must be seeded or planted 1 to 4 months after the final grade is achieved unless temporary stabilization measures are in place. Successful plant establishment can be maximized with proper planning; consideration of soil characteristics; selection of plant materials that are suitable for the site; adequate seedbed preparation, liming, and fertilization; timely planting; and regular maintenance. Climate, soils, and topography are major factors that dictate the suitability of plants for a particular site. The soil on a disturbed site might require amendments to provide sufficient nutrients for seed germination and seedling growth. The surface soil must be loose enough for water infiltration and root penetration. Soil pH should be between 6.0 and 6.5 and can be increased with liming if soils are too acidic. Seeds can be protected with mulch to retain moisture, regulate soil temperatures, and prevent erosion during seedling establishment.

Depending on the amount of use permanently seeded areas receive, they can be considered high- or low-maintenance areas. High-maintenance areas are mowed frequently, limed and fertilized regularly, and either (1) receive intense use (e.g., athletic fields) or (2) require maintenance to an aesthetic standard (e.g., home lawns). Grasses used for high-maintenance areas are long-lived perennials that form a tight sod and are fine-leaved. High-maintenance vegetative cover is used for homes, industrial parks, schools, churches, and recreational areas.

Low-maintenance areas are mowed infrequently or not at all and do not receive lime or fertilizer on a regular basis. Plants must be able to persist with minimal maintenance over long periods of time.

Grass and legume mixtures are favored for these sites because legumes fix nitrogen from the atmosphere. Sites suitable for low-maintenance vegetation include steep slopes, stream or channel banks, some commercial properties, and "utility" turf areas such as road banks.

Limitations

The effectiveness of permanent seeding can be limited because of the high erosion potential during establishment, the need to reseed areas that fail to establish, limited seeding times depending on the season, and the need for stable soil temperature and soil moisture content during germination and early growth. Permanent seeding does not immediately stabilize soils—temporary erosion and sediment control measures should be in place to prevent off-site transport of pollutants from disturbed areas.

Maintenance Considerations

Grasses should emerge within 4–28 days and legumes 5–28 days after seeding, with legumes following grasses. A successful stand should exhibit the following:

- Vigorous dark green or bluish green seedlings, not yellow
- Uniform density, with nurse plants, legumes, and grasses well intermixed
- Green leaves—perennials should remain green throughout the summer, at least at the plant bases.

Seeded areas should be inspected for failure, and necessary repairs and reseeding should be made as soon as possible. If a stand has inadequate cover, the choice of plant materials and quantities of lime and fertilizer should be reevaluated. Depending on the condition of the stand, areas can be repaired by overseeding or reseeding after complete seedbed preparation. If timing is bad, rye grain or German millet can be overseeded to thicken the stand until a suitable time for seeding perennials. Consider seeding temporary, annual species if the season is not appropriate for permanent seeding. If vegetation fails to grow, soil should be tested to determine if low pH or nutrient imbalances are responsible.

On a typical disturbed site, full plant establishment usually requires refertilization in the second growing season. Soil tests can be used to determine if more fertilizer needs to be added. Do not fertilize cool season grasses in late May through July. Grass that looks yellow may be nitrogen deficient. Do not use nitrogen fertilizer if the stand contains more than 20 percent legumes.

Effectiveness

Perennial vegetative cover from seeding has been shown to remove between 50 and 100 percent of total suspended solids from storm water runoff, with an average removal of 90 percent (USEPA, 1993).

Cost Considerations

Seeding costs range from \$200 to \$1,000 per acre and average \$400 per acre. Maintenance costs range from 15 to 25 percent of initial costs and average 20 percent (USEPA, 1993).

References

FHWA. 1995. *Best Management Practices for Erosion and Sediment Control*. FHWA-SLP-94-005. Federal Highway Administration, Sterling, VA.

Smolen, M.D., D.W. Miller, L.C. Wyall, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

Terra Firma Industries. 2000. *Hydroseeding*. [www.terra-firma-ind.com/hydroseeding.htm]. Last updated May 31, 2000. Accessed January 2001.

USEPA. 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Soil Roughening

Construction Site Storm Water Runoff Control

Description

Soil roughening is a temporary erosion control practice often used in conjunction with grading. Soil roughening involves increasing the relief of a bare soil surface with horizontal grooves, stair-stepping (running parallel to the contour of the land), or tracking using construction equipment. Slopes that are not fine graded and that are left in a roughened condition can also reduce erosion. Soil roughening reduces runoff velocity, increases infiltration, reduces erosion, traps sediment, and prepares the soil for seeding and planting by giving seed an opportunity to take hold and grow.

Exposed soils can be temporarily stabilized by driving a tractor over the surface

Applicability

Soil roughening is appropriate for all slopes. Soil roughening works well on slopes greater than 3:1, on piles of excavated soil, and in areas with highly erodible soils. This technique is especially appropriate for soils that are frequently mowed or disturbed because roughening is relatively easy to accomplish. To slow erosion, roughening should be done as soon as possible after the vegetation has been removed form the slope. Roughening can be used with both seeding and planting and temporary mulching to stabilize an area. For steeper slopes and slopes that will be left roughened for longer periods of time, a combination of surface roughening and vegetation is appropriate. Roughening should be performed immediately after grading activities have ceased (temporarily or permanently) in an area.

Siting and Design Considerations

Rough slope surfaces are preferred because they aid the establishment of vegetation, improve infiltration, and decrease runoff velocity. Graded areas with smooth, hard surfaces might seem appropriate, but such surfaces may increase erosion potential. A rough soil surface allows surface ponding that protects lime, fertilizer, and seed. Grooves in the soil are cooler and provide more favorable moisture conditions than hard, smooth surfaces. These conditions promote seed germination and vegetative growth.

It is important to avoid excessive compacting of the soil surface, especially when tracking, because soil compaction inhibits vegetation growth and causes higher runoff velocity. Therefore, it is best to limit roughening with tracked machinery to sandy soils that do not compact easily and to avoid tracking on heavy clay soils, particularly when wet. Roughened areas should be seeded as quickly as possible. Proper dust control procedures also should be followed when soil roughening.

There are different methods for achieving a roughened soil surface on a slope. The selection of an appropriate method depends on the type of slope and the available equipment. Roughening methods include stair-step grading, grooving, and tracking. Factors to consider when choosing a method are slope steepness, mowing requirements, whether the slope is formed by cutting or filling, and available equipment. The following methods can be used for surface roughening

Cut slope roughening for areas that will not be mowed. Stair-step grades or groove-cut slopes should be used for gradients steeper than 3:1. Stair-step grading should be used on any erodible material that is soft enough to be ripped with a bulldozer. Slopes consisting of soft rock with some subsoil are particularly suited to stair-step grading. The vertical cut distance should be less than the horizontal distance, and the horizontal portion of the step should be slightly sloped toward the vertical wall. Individual vertical cuts should not be made more than 2 feet deep in soft materials or more than 3 feet deep in rocky materials.

Grooving. This technique uses machinery to create a series of ridges and depressions that run across the slope along the contour. Grooves should be made using any appropriate implement that can be safely operated on the slope, such as disks, tillers, spring harrows, or the teeth on a front-end loader bucket. The grooves should be made more than 3 inches deep and less than 15 inches apart.

Fill slope roughening for areas that will not be mowed. Fill slopes with a gradient steeper than 3:1 should be placed in lifts less than 9 inches, and each lift should be properly compacted. The face of the slope should consist of loose, uncompacted fill 4 to 6 inches deep. Grooving should be used as described above to roughen the face of the slopes, if necessary. The final slope face should not be bladed or scraped.

Cuts, fills, and graded areas that will be mowed. Mowed slopes should be made no steeper than 3:1. These areas should be roughened with shallow grooves less than 10 inches apart and more than 1 inch deep using normal tilling, disking, or harrowing equipment (a cultipacker-seeder can also be used). Excessive roughness is undesirable where mowing is planned.

Roughening with tracked machinery. Roughening with tracked machinery should be limited to sandy soils to avoid undue compaction of the soil surface. Tracked machinery should be operated perpendicular to the slope to leave horizontal depressions in the soil. Tracking is generally not as effective as other roughening methods.

Limitations

Soil roughening is not appropriate for rocky slopes. Soil compaction might occur when roughening with tracked machinery. Soil roughening is of limited effectiveness in anything more than a gentle or shallow depth rain. If roughening is washed away in a heavy storm, the surface will have to be reroughened and new seed laid.

Maintenance Considerations

Areas need to be inspected after storms, since roughening might need to be repeated. Regular inspection of roughened slopes will indicate where additional erosion and sediment control measures are needed. If rills (small watercourses that have steep sides and are usually only a few inches deep) appear, they should be filled, graded again, and reseeded immediately. Proper dust control methods should be used.

Effectiveness

Soil roughening provides moderate erosion protection for bare soils while vegetative cover is being established. It is inexpensive and simple for short-term erosion control when used with other erosion and sediment controls.

Cost Considerations

Soil roughening is inexpensive with respect to cost of materials but requires the use of heavy equipment.

References

Smolen, M.D., D.W. Miller, L.C. Wyall, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

USEPA. 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Protect steep slopes

Geotextiles

Construction Site Storm Water Runoff Control

Description

Geotextiles are porous fabrics also known as filter fabrics, road rugs, synthetic fabrics, construction fabrics, or simply fabrics. Geotextiles are manufactured by weaving or bonding fibers made from synthetic materials such as polypropylene, polyester, polyethylene, nylon, polyvinyl chloride, glass, and various mixtures of these materials. As a synthetic construction material, geotextiles are used for a variety of purposes such as separators, reinforcement, filtration and drainage, and erosion control (USEPA, 1992). Some geotextiles are made of biodegradable materials such as mulch matting and netting. Mulch mattings are jute or other wood fibers that have been formed into sheets and are more stable than normal mulch. Netting is typically made from jute, wood fiber, plastic, paper, or cotton and can be used to hold the mulching and matting to the ground. Netting can also be used alone to stabilize soils while the plants are growing; however, it does not retain moisture or temperature well. Mulch binders (either asphalt or synthetic) are sometimes used instead of netting to hold loose mulches together. Geotextiles can aid in plant growth by holding seeds, fertilizers, and topsoil in place.

Geotextile mats not only protect ground surfaces from wind and storm water erosion but also allow vegetative growth (Source: Rolanka International, 2000)

Fabrics are relatively inexpensive for certain applications. A wide variety of geotextiles exist to match the specific needs of the site.

Applicability

Geotextiles can be used alone for erosion control. Geotextiles can be used as matting, which is used to stabilize the flow of channels or swales or to protect seedlings on recently planted slopes until they become established. Matting may be used on tidal or stream banks, where moving water is likely to wash out new plantings. They can also be used to protect exposed soils immediately and temporarily, such as when active piles of soil are left overnight. Geotextiles are also used as separators; for example, as a separator between riprap and soil. This "sandwiching" prevents the soil from being eroded from beneath the riprap and maintains the riprap's base.

Siting and Design Considerations

There are many types of geotextiles available. Therefore, the selected fabric should match its purpose. State or local requirements, design procedures, and any other applicable requirements should be considered. Effective netting and matting require firm, continuous contact between the

materials and the soil. If there is no contact, the material will not hold the soil, and erosion will occur underneath the material.

Limitations

Geotextiles (primarily synthetic types) have the potential disadvantage of being sensitive to light and must be protected prior to installation. Some geotextiles might promote increased runoff and might blow away if not firmly anchored. Depending on the type of material used, geotextiles might need to be disposed of in a landfill, making them less desirable than vegetative stabilization. If the fabric is not properly selected, designed, or installed, the effectiveness may be reduced drastically.

Maintenance Considerations

Regular inspections should be made to determine if cracks, tears, or breaches have formed in the fabric; if so, it should be repaired or replaced immediately. It is necessary to maintain contact between the ground and the geotextile at all times. Trapped sediment should be removed after each storm event.

Effectiveness

Geotextiles' effectiveness depends upon the strength of the fabric and proper installation. For example, when protecting a cut slope with a geotextile, it is important to properly anchor the fabric. This will ensure that it will not be undermined by a storm event.

Cost Considerations

Costs for geotextiles range from \$0.50 to \$10.00 per square yard, depending on the type chosen (SWRCP, 1991).

References

Rolanka International. 2000. *Bio-D Mesh*. [http://www.rolanka.com/biodmesh_2.shtml]. Accessed June 1, 2001.

SWRPC. 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical Report No. 31. Southeast Wisconsin Regional Planning Commission, Waukesha, WI.

USEPA. 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Washington, DC.

Soil Retention

Construction Site Storm Water Runoff Control

Description

Soil retention measures are structures or practices that are used to hold soil in place or to keep it contained within a site boundary. They may include grading or reshaping the ground to lessen steep slopes or shoring excavated areas with wood, concrete, or steel structures. Some soil-retaining measures are used for erosion control, while others are used for protection of workers during construction projects such as excavations.

Applicability

Grading to reduce steep slopes can be implemented at any construction site by assessing site conditions before breaking ground and reducing steep slopes

A permanent retaining wall prevents slope failure

where possible. Reinforced soil-retaining structures should be used when sites have very steep slopes or loose, highly erodible soils that cause other methods, such as chemical or vegetative stabilization or regrading, to be ineffective. The preconstruction drainage pattern should be maintained to the extent possible.

Siting and Design Considerations

Some examples of reinforced soil retaining structures include:

- *Skeleton sheeting*. An inexpensive soil bracing system that requires soil to be cohesive and consists of construction grade lumber being used to support the excavated face of a slope
- *Continuous sheeting*. Involves using a material that covers the entire slope continuously, with struts and boards placed along the slope to support the slope face steel, concrete, or wood should be used as the materials
- *Permanent retaining walls*. Walls of concrete masonry or wood (railroad ties) that are left in place after construction is complete in order to provide continued support of the slope

The proper design of reinforced soil-retaining structures is crucial for erosion control and safety. To ensure safety of the retaining structure, it should be designed by a qualified engineer who understands all of the design considerations, such as the nature of the soil, location of the ground water table, and the expected loads. Care should be taken to ensure that hydraulic pressure does not build up behind the retaining structure and cause failure.

Limitations

To be effective, soil-retention structures must be designed to handle expected loads. However, heavy rains or mass wasting may damage or destroy these structures and result in sediment inputs to waterbodies. They must be properly installed and maintained to avoid failure.

Maintenance Considerations

Soil-stabilization structures should be inspected periodically, particularly after rainstorms, to check for erosion, damage, or other signs of deterioration. Any damage to the actual slope or ditch, such as washouts or breakage, should be repaired prior to any reinstallation of the materials for the soil-stabilization structure.

Effectiveness

Soil-retention structures, if properly designed and installed, can effectively prevent erosion and mass wasting in areas with steep slopes and erodible soils. Their potential for failure depends on their design, installation, maintenance, and the likelihood of catastrophic events such as heavy rains, earthquakes, and landslides.

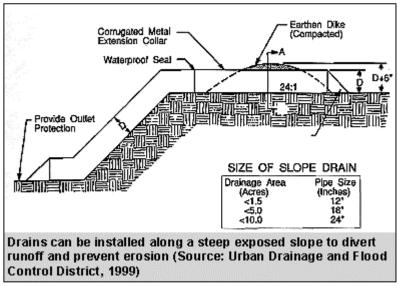
Cost Considerations

Slope reduction can be accomplished during site development and might not incur any additional costs. Soil stabilization structures can be expensive because they require a professional engineer to develop a design (estimated to be 25 to 30 percent of construction costs [Ferguson et al., 1997]). Depending on the size of the proposed structure and the relief of the surrounding area, excavation and installation costs might be high. Capital costs include mobilization, grading, grooving, tracking and compacting fill, and installing the structures. Labor costs for regular inspection and repairs are also a consideration.

References

Fergusen, T., R. Gignac, M. Stoffan, A. Ibrahim, and J. Aldrich. 1997. *Rouge River National Wet Weather Demonstration Project: Cost Estimating Guidelines Best Management Practices and Engineered Controls*. Rouge River National Wet Weather Demonstration Project, Wayne County, MI.

USEPA. 1992. Storm Water Management for Construction Activities: Developing Pollution Prevention Plans and Best Management Practices. EPA 832-R-92-005. U.S. Environmental Protection Agency, Office of Water, Washington, DC.


Virginia Department of Conservation and Recreation. 1995. *Virginia Erosion & Sediment Control Field Manual. Second Edition*. Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, Richmond, VA.

Temporary Slope Drain

Construction Site Storm Water Runoff Control

Description

A temporary slope drain is a flexible conduit extending the length of a disturbed slope and serving as a temporary outlet for a diversion. Temporary slope drains, also called pipe slope drains, convey runoff without causing erosion on or at the bottom of the slope. This practice is a temporary measure used during grading operations until permanent drainage structures are installed and until slopes are permanently stabilized. They are typically used for less than 2 years.

Applicability

Temporary slope drains can be used on most disturbed slopes to eliminate gully erosion problems resulting from concentrated flows discharged at a diversion outlet.

Siting and Design Considerations

Recently graded slopes that do not have permanent drainage measures installed should have a temporary slope drain and a temporary diversion installed. A temporary slope drain used in conjunction with a diversion conveys storm water flows and reduces erosion until permanent drainage structures are installed.

The following are design recommendations for temporary slope drains:

- The drain should consist of heavy-duty material manufactured for the purpose and have grommets for anchoring at a spacing of 10 feet or less.
- Minimum slope drain diameters should be observed for varying drainage areas.
- The entrance to the pipe should consist of a standard flared section of corrugated metal; the corrugated metal pipe should have watertight joints at the ends; the rest of the pipe is typically corrugated plastic or flexible tubing, although for flatter, shorter slopes, a polyethylene-lined channel is sometimes used.
- The height of the diversion at the pipe should be the diameter of the pipe plus 0.5 foot.
- The outlet should be located at a reinforced or erosion-resistant location.

Limitations

The area drained by a temporary slope drain should not exceed 5 acres. Physical obstructions substantially reduce the effectiveness of the drain. Other concerns are failures from overtopping because of inadequate pipe inlet capacity, and reduced diversion channel capacity and ridge height.

Maintenance Considerations

The slope drain should be inspected after each rainfall to determine if capacity was exceeded or if blockages occurred. Repairs should be made promptly. Construction equipment and vehicular traffic must be rerouted around slope drains.

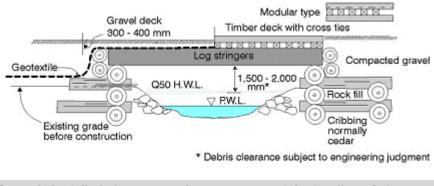
References

FHWA. 1995. *Best Management Practices for Erosion and Sediment Control*. FHWA-SLP-94-005. Federal Highway Administration, Sterling, VA.

MPCA. 1998. *Protecting Water Quality in Urban Areas*. Minnesota Pollution Control Agency, Division of Water Quality, St. Paul, MN.

Smolen, M.D., D.W. Miller, L.C. Wyall, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

Urban Drainage and Flood Control District. 1999. Urban Storm Drainage: Criteria Manual. Denver, CO.


Protect waterways

Temporary Stream Crossings

Construction Site Storm Water Runoff Control

Description

A temporary steam crossing is a structure erected to provide a safe and stable way for construction vehicle traffic to cross a running watercourse. The primary purpose of such a structure is to provide streambank stabilization, reduce the risk of damaging the streambed or channel, and reduce the risk of sediment loading from construction traffic. A temporary stream crossing may be a bridge, a culvert, or a ford.

Properly installed stream crossings can prevent destruction of stream habitat (Source: British Columbia Ministry of Forests, no date)

Applicability

Temporary stream crossings are applicable wherever heavy construction equipment must be moved from one side of a stream channel to the other, or where lighter construction vehicles will cross the stream a number of times during the construction period. In either case, an appropriate method for ensuring the stability of the streambanks and preventing large-scale erosion is necessary.

A bridge or culvert is the best choice for most temporary stream crossings. If properly designed, each can support heavy loads and materials used to construct most bridges, and culverts can be salvaged after they are removed. Fords are appropriate in steep areas subject to flash flooding, where normal flow is shallow or intermittent across a wide channel. Fords should be used only where stream crossings are expected to be infrequent.

Siting and Design Considerations

Because of the potential for stream degradation, flooding, and safety hazards, stream crossings should be avoided on a construction site whenever possible. Consideration should be given to alternative routes to accessing a site before arrangements are made to erect a temporary stream crossing. If it is determined that a stream crossing is necessary, an area where the potential for

erosion is low should be selected. If possible, the stream crossing structure should be selected during a dry period to reduce sediment transport into the stream.

If needed, over-stream bridges are generally the preferred temporary stream crossing structure. The expected load and frequency of the stream crossing, however, will govern the selection of a bridge as the correct choice for a temporary stream crossing. Bridges usually cause minimal disturbance to a stream's banks and cause the least obstruction to stream flow and fish migration. They should be constructed only under the supervision and approval of a qualified engineer.

As general guidelines for constructing temporary bridges, clearing and excavation of the stream shores and bed should be kept to a minimum. Sufficient clearance should be provided for floating objects to pass under the bridge. Abutments should be parallel to the stream and on stable banks. If the stream is less than 8 feet wide at the point a crossing is needed, no additional in-stream supports should be used. If the crossing is to extend across a channel wider than 8 feet (as measured from top of bank to top of bank), the bridge should be designed with one in-water support for each 8 feet of stream width.

A temporary bridge should be anchored by steel cable or chain on one side only to a stable structure on shore. Examples of anchoring structures include large-diameter trees, large boulders, and steel anchors. By anchoring the bridge on one side only, there is a decreased risk of downstream blockage or flow diversion if a bridge is washed out.

When constructing a culvert, filter cloth should be used to cover the streambed and streambanks to reduce settlement and improve the stability of the culvert structure. The filter cloth should extend a minimum of 6 inches and a maximum of 1 foot beyond the end of the culvert and bedding material. The culvert piping should not exceed 40 feet in length and should be of sufficient diameter to allow for complete passage of flow during peak flow periods. The culvert pipes should be covered with a minimum of 1 foot of aggregate. If multiple culverts are used, at least 1 foot of aggregate should separate the pipes.

Fords should be constructed of stabilizing material such as large rocks.

Limitations

Bridges can be considered the greatest safety hazard of all temporary stream crossing structures if not properly designed and constructed. Bridges might also prove to be more costly in terms of repair costs and lost construction time if they are washed out or collapse (Smolen et al., 1988).

The construction and removal of culverts are usually very disturbing to the surrounding area, and erosion and downstream movement of soils is often great. Culverts can also create obstructions to flow in a stream and inhibit fish migration. Depending on their size, culverts can be blocked by large debris in a stream and are therefore vulnerable to frequent washout.

If given a choice between building a bridge or a culvert as a temporary stream crossing, a bridge is preferred because of the relative minimal disturbance to streambanks and the opportunity for unimpeded flow through the channel.

The approaches to fords often have high erosion potential. In addition, excavation of the streambed and approach to lay riprap or other stabilization material causes major stream disturbance. Mud and

other debris are transported directly into the stream unless the crossing is used only during periods of low flow.

Maintenance Considerations

Temporary stream crossings should be inspected at least once a week and after all significant rainfall events. If any structural damage is reported to a bridge or culvert, construction traffic should stop use of the structure until appropriate repairs are made. Evidence of streambank erosion should be repaired immediately.

Fords should be inspected closely after major storm events to ensure that stabilization materials remain in place. If the material has moved downstream during periods of peak flow, the lost material should be replaced immediately.

Effectiveness

Both temporary bridges and culverts provide an adequate path for construction traffic crossing a stream or watercourse.

Cost Considerations

Generally speaking, temporary bridges are more expensive to design and construct than culverts. Bridges are also associated with higher maintenance and repair costs should they fail. Additional costs may accrue to the site team in terms of lost construction time if a temporary structure is washed out or otherwise fails.

References

British Columbia Ministry of Forests. No date. *Forest Practices Code Stream Crossing for Fish Streams Guidebook*. [www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/stream/figure19.htm]. Accessed January 2001.

Smolen, M.D., D.W. Miller, L.C. Wyatt, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

VDCR. 1995. *Virginia Erosion & Sediment Control Field Manual*. Second Edition. Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, Richmond, VA.

Vegetated Buffer

Construction Site Storm Water Runoff Control

Description

Vegetated buffers are areas of either natural or established vegetation that are maintained to protect the water quality of neighboring areas. Buffer zones reduce the velocity of storm water runoff, provide an area for the runoff to permeate the soil, contribute to ground water recharge, and act as filters to catch sediment. The reduction in velocity also helps to prevent soil erosion.

Applicability

Vegetated buffers can be used in any area that is able to support vegetation but they are most effective and beneficial on floodplains, near wetlands, along streambanks, and on steep, unstable slopes. They are also effective in separating land use areas that are not compatible and in protecting

Buffers at the perimeters of construction sites are similar to agricultural buffers in that they trap sediments and remove pollutants in runoff from exposed areas (Source: Nova Scotia Department of Agriculture and Fisheries, 2000)

wetlands or waterbodies by displacing activities that might be potential sources of nonpoint source pollution.

Siting and Design Considerations

To establish an effective vegetative buffer, the following guidelines should be followed:

- Soils should not be compacted.
- Slopes should be less than 5 percent.
- Buffer widths should be determined after careful consideration of slope, vegetation, soils, depth to impermeable layers, runoff sediment characteristics, type and quantity of storm water pollutants, and annual rainfall.
- Buffer widths should increase as slope increases.
- Zones of vegetation (native vegetation in particular), including grasses, deciduous and evergreen shrubs, and understory and overstory trees, should be intermixed.
- In areas where flows are concentrated and velocities are high, buffer zones should be combined with other structural or nonstructural BMPs as a pretreatment.

Limitations

Vegetated buffers require plant growth before they can be effective, and land on which to plant the vegetation must be available. If the cost of the land is very high, buffer zones might not be cost-effective. Although vegetated buffers help to protect water quality, they usually do not effectively counteract concentrated storm water flows to neighboring or downstream wetlands.

Maintenance Considerations

Keeping vegetation healthy in vegetated buffers requires routine maintenance, which (depending on species, soil types, and climatic conditions) can include weed and pest control, mowing, fertilizing, liming, irrigating, and pruning. Inspection and maintenance are most important when buffer areas are first installed. Once established, vegetated buffers do not require much maintenance beyond the routine procedures listed earlier and periodic inspections of the areas, especially after any heavy rainfall and at least once a year. Inspections should focus on encroachment, gully erosion, density of vegetation, evidence of concentrated flows through the areas, and any damage from foot or vehicular traffic. If there is more than 6 inches of sediment in one place, it should be removed.

Effectiveness

Several researchers have measured greater than 90 percent reductions in sediment and nitrate concentrations. Buffer/filter strips do a reasonably good job of removing phosphorus attached to sediment, but are relatively ineffective in removing dissolved phosphorus (Gilliam, 1994).

References

Gilliam, J.W. 1994. Reparian Wetlands and Water Quality. *Journal of Environmental Quality*. 23:896-900. As cited in Michigan Department of Environmental Quality. 1998. *Guidebook of Best Management Practices for Michigan Watersheds*. Michigan Department of Environmental Quality, Surface Water Quality Division, Lansing, MI.

Nova Scotia Department of Agriculture and Fisheries. 2000. *Awareness and Communication Project Reports, Appendix E: Photographs*. [http://www.gov.ns.ca/nsaf/home.htm]. Last updated January 1997. Accessed January 2001.

USEPA. 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. EPA 832-R-92-006. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1996. *Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices*. EPA 843-B-96-001. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Phase construction

Construction Sequencing

Construction Site Storm Water Runoff Control

Description

Construction sequencing requires creating and following a work schedule that balances the timing of land disturbance activities and the installation of measures to control erosion and sedimentation, in order to reduce on-site erosion and off-site sedimentation.

Applicability

Construction sequencing can be used to plan earthwork and erosion and sediment control (ESC) activities at sites where land disturbances might affect In sequenced construction, sites are completed water quality in a receiving waterbody.

Siting and Design Considerations

Construction sequencing schedules should, at a minimum, include the following:

- The ESC practices that are to be installed
- Principal development activities
- Which measures should be installed before other activities are started •
- Compatibility with the general contract construction schedule

Table 1 summarizes other important scheduling considerations in addition to those listed above.

Limitations

Weather and other unpredictable variables may affect construction sequence schedules. However, the proposed schedule and a protocol for making changes due to unforeseen problems should be plainly stated in the ESC plan.

in stages and completed portions are permanently stabilized before other areas are disturbed

Construction Activity	Schedule Consideration
Construction access—entrance to site, construction routes, areas designated for equipment parking	This is the first land-disturbing activity. As soon as construction begins, stabilize any bare areas with gravel and temporary vegetation.
Sediment traps and barriers—basin traps, sediment fences, outlet protection	After construction site is accessed, principal basins should be installed, with the addition of more traps and barriers as needed during grading.
Runoff control—diversions, perimeter dikes, water bars, outlet protection	Key practices should be installed after the installation of principal sediment traps and before land grading. Additional runoff control measures may be installed during grading.
Runoff conveyance system—stabilize stream banks, storm drains, channels, inlet and outlet protection, slope drains	If necessary, stabilize stream banks as soon as possible, and install principal runoff conveyance system with runoff control measures. The remainder of the systems may be installed after grading.
Land clearing and grading—site preparation (cutting, filling, and grading, sediment traps, barriers, diversions, drains, surface roughening)	Implement major clearing and grading after installation of principal sediment and key runoff-control measures, and install additional control measures as grading continues. Clear borrow and disposal areas as needed, and mark trees and buffer areas for preservation.
Surface stabilization—temporary and permanent seeding, mulching, sodding, riprap	Temporary or permanent stabilizing measures should be applied immediately to any disturbed areas where work has been either completed or delayed.
Building construction—buildings, utilities, paving	During construction, install any erosion and sedimentation control measures that are needed.
Landscaping and final stabilization— topsoiling, trees and shrubs, permanent seeding, mulching, sodding, riprap	This is the last construction phase. Stabilize all open areas, including borrow and spoil areas, and remove and stabilize all temporary control measures.

Table 1. Scheduling considerations for construction activities.

Maintenance Considerations

The construction sequence should be followed throughout the project and the written plan should be modified before any changes in construction activities are executed. The plan can be updated if a site inspection indicates the need for additional erosion and sediment control.

Brush Barrier

Construction Site Storm Water Runoff Control

Description

Brush barriers are perimeter sediment control structures used to prevent soil in storm water runoff from leaving a construction site. Brush barriers are constructed of material such as small tree branches, root mats, stone, or other debris left over from site clearing and grubbing. In some configurations, brush barriers are covered with a filter cloth to stabilize the structure and improve barrier efficiency.

Applicability

Brush barriers are applicable to sites where there is enough material from clearing and grubbing to form a sufficient mound of debris along the perimeter of

Brush barriers trap sediment and remove pollutants from storm water

an area. The drainage area for brush barriers must be no greater than 0.25 acre per 100 feet of barrier length. In addition, the drainage slope leading down to a brush barrier must be no greater than 2:1 and no longer than 100 feet. Brush barriers have limited usefulness because they are constructed of materials that decompose.

Siting and Design Considerations

A brush barrier can be constructed using only cleared material from a site, but it is recommended that the mound be covered with a filter fabric barrier to hold the material in place and increase sediment barrier efficiency. Whether a filter fabric cover is used or not, the barrier mound should be at least 3 feet high and 5 feet wide at its base. Material with a diameter larger than 6 inches should not be used, as this material may be too bulky and create void spaces where sediment and runoff will flow through the barrier.

The edge of the filter fabric cover should be buried in a trench 4 inches deep and 6 inches wide on the drainage side of the barrier. This is done to secure the fabric and create a barrier to sediment while allowing storm water to pass through the water-permeable filter fabric. The filter fabric should be extended just over the peak of the brush mound and secured on the down-slope edge of the fabric by fastening it to twine or small-diameter rope that is staked securely.

Limitations

Brush barriers are an effective storm water runoff control only when the contributing flow has a slow velocity. Brush barriers are therefore not appropriate for high-velocity flow areas. A large amount of material is needed to construct a useful brush barrier. For sites with little material from clearing, alternative perimeter controls such as a fabric silt fence may be more appropriate. Although brush barriers provide temporary storage for large amounts of cleared material from a site, this material

will ultimately have to be removed from the site after construction activities have ceased and the area reaches final stabilization.

Maintenance Considerations

Brush barriers should be inspected after each significant rainfall event to ensure continued effectiveness. If channels form through void spaces in the barrier, the barrier should be reconstructed to eliminate the channels. Accumulated sediment should be removed from the uphill side of the barrier when sediment height reaches between 1/3 and 1/2 the height of the barrier. When the entire site has reached final stabilization, the brush barrier should be removed and disposed of properly.

Effectiveness

Brush barriers can be effective at reducing off-site sediment transport, and their effectiveness is greatly increased with the use of a fabric cover on the up-slope side of the brush barrier.

Cost Considerations

Creating brush barriers can range in cost from \$390 to \$620, depending upon the equipment used, vegetation type (heavy or light), fuel price, personnel, amount of filter fabric needed (if used), and the number of hours to perform the task. A common filter fabric, geotextile, can range in cost from \$0.50 to \$10.00/square yard, depending upon the type of geotextile used.

References

Casados, A., and Leyba, P. Forest Engineers, Santa Fe National Forest, personal communication, February 7, 2000.

Straw Wattles. 2000. *Photos: Mine1*. [http://www.strawwattles.com/photos/mine1.jpg]. Accessed January 2001.

VDCR. 1995. *Virginia Erosion & Sediment Control Field Manual*. Second Edition. Virginia Department of Conservation, Division of Soil and Water Conservation.

Silt Fence

Construction Site Storm Water Runoff Control

Description

Silt fences are used as temporary perimeter controls around sites where there will be soil disturbance due to construction activities. They consist of a length of filter fabric stretched between anchoring posts spaced at regular intervals along the site perimeter. The filter fabric should be entrenched in the ground between the support posts. When installed correctly and inspected frequently, silt fences can be an effective barrier to sediment leaving the site in storm water runoff.

Applicability

Silt fences are generally applicable to construction sites with relatively small drainage areas. They are appropriate in areas where runoff will be occurring as low-level shallow flow, not exceeding 0.5 cfs. The drainage area for silt fences generally should not exceed 0.25 acre per 100-foot fence length. Slope length above the fence should not exceed 100 feet (NAHB, 1995).

Silt fences prevent the offsite transport of sediment

Siting and Design Considerations

Material for silt fences should be a pervious sheet of synthetic fabric such as polypropylene, nylon, polyester, or polyethylene yarn, chosen based on minimum synthetic fabric requirements, as shown in Table 1.

Physical Property	Requirements
Filtering Efficiency	75–85% (minimum): highly dependent on local conditions
Tensile Strength at 20% (maximum) Elongation	Standard Strength: 30 lbs/linear inch (minimum) Extra Strength: 50 lbs/linear inch (minimum)
Ultraviolet Radiation	90% (minimum)
Slurry Flow Rate	0.3 gal/ft2/min (minimum)

Table 1. Minimum requirements for silt fence construction (Sources: USEPA, 1992; VDCR, 1995)

If a standard strength fabric is used, it can be reinforced with wire mesh behind the filter fabric. This can increase the effective life of the fence. In any case, the maximum life expectancy for synthetic fabric silt fences is approximately 6 months, depending on the amount of rainfall and runoff for a given area. Burlap fences have a much shorter useful life span, usually only up to 2 months.

Stakes used to anchor the filter fabric should be either wooden or metal. Wooden stakes should be at least 5 feet long and have a minimum diameter of 2 inches if a hardwood such as oak is used. Softer woods such as pine should be at least 4 inches in diameter. When using metal post in place of wooden stakes, they should have a minimum weight of 1.00 to 1.33 lb/linear foot. If metal posts are used, attachment points are needed for fastening the filter fabric using wire ties.

A silt fence should be erected in a continuous fashion from a single roll of fabric to eliminate unwanted gaps in the fence. If a continuous roll of fabric is not available, the fabric should overlap from both directions only at stakes or posts with a minimum overlap of 6 inches. A trench should be excavated to bury the bottom of the fabric fence at least 6 inches below the ground surface. This will help prevent gaps from forming near the ground surface that would render the fencing useless as a sediment barrier.

The height of the fence posts should be between 16 and 34 inches above the original ground surface. If standard strength fabric is used in combination with wire mesh, the posts should be spaced no more than 10 feet apart. If extra-strength fabric is used without wire mesh reinforcement, the support posts should be spaced no more than 6 feet apart (VDCR, 1995).

The fence should be designed to withstand the runoff from a 10-year peak storm event, and once installed should remain in place until all areas up-slope have been permanently stabilized by vegetation or other means.

Limitations

Silt fences should not be installed along areas where rocks or other hard surfaces will prevent uniform anchoring of fence posts and entrenching of the filter fabric. This will greatly reduce the effectiveness of silt fencing and can create runoff channels leading off site. Silt fences are not suitable for areas where large amounts of concentrated runoff are likely. In addition, open areas where wind velocity is high may present a maintenance challenge, as high winds may accelerate deterioration of the filter fabric. Silt fences should not be installed across streams, ditches, or waterways (Smolen et al., 1988).

When the pores of the fence fabric become clogged with sediment, pools of water are likely to form on the uphill side of fence. Siting and design of the silt fence should account for this and care should be taken to avoid unnecessary diversion of storm water from these pools that might cause further erosion damage.

Maintenance Considerations

Silt fences should be inspected regularly and frequently as well as after each rainfall event to ensure that they are intact and that there are no gaps at the fence-ground interface or tears along the length of the fence. If gaps or tears are found, they should be repaired or the fabric should be replaced immediately. Accumulated sediments should be removed from the fence base when the sediment reaches one-third to one-half the height of the fence. Sediment removal should occur more

frequently if accumulated sediment is creating noticeable strain on the fabric and there is the possibility of the fence failing from a sudden storm event. When the silt fence is removed, the accumulated sediment also should be removed.

Effectiveness

USEPA (1993) reports the following effectiveness ranges for silt fences constructed of filter fabric that are properly installed and well maintained: average total suspended solids removal of 70 percent, sand removal of 80 to 90 percent, silt-loam removal of 50 to 80 percent, and silt-clay-loam removal of 0 to 20 percent. Removal rates are highly dependent on local conditions and installation.

Cost Considerations

Installation costs for silt fences are approximately \$6.00 per linear foot (USEPA, 1992). SWRPC estimates unit costs between \$2.30 and \$4.50 per linear foot (SWRPC, 1991).

References

NAHB. 1995. *Guide for Builders and Developers*. National Association of Homebuilders, Washington, DC.

Smolen, M.D., D.W. Miller, L.C. Wyatt, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission, North Carolina Department of Environment, Health, and Natural Resources, and Division of Land Resources Land Quality Section, Raleigh, NC.

SWRPC. 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical report no. 31. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI.

USEPA. 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1992. Storm Water Management for Construction Activities: Developing Pollution Prevention Plans and Best Management Practices. EPA 832-R-92-005. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

VDCR. 1995. *Virginia Erosion & Sediment Control Field Manual*. 2nd Edition. Virginia Department of Conservation, Division of Soil and Water Conservation, Richmond, VA.